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◮ Vārasaṅkalita: Sum of sums. The k th sum. The k th sum of
series in A.P.
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Meeting of two travelers

Let d be the distance between two places and suppose that two
persons started from these places simultaneously in opposite
direction with speeds v1 and v2. The following rule gives the
rules for their times of meeting.

Rule 39.A:Dva:
a.na ga:	a.ta:ya.ea:ga:&+tea :pra.$a.a:ya:tea :pra:Ta:ma:sa:ñÍçÅÅ*:+mea k+a:l.H Áta:�///////�a.sma:n,a ya.ea:gea ;�a.dõ :gua:Nea ya.ea:ga.a:t,a ta:sma.a:t,a :pua:na:ya.eRa:gaH Á Á 39 Á Á
“The distance divided by the sum of the speeds happen
to be the time for the first meeting. Twice (the quotient)
obtained by the division of distance by the same (is the
time of) meeting again after that meeting.”



Meeting of two travelers

P1 P2

x

AB

y

−→v1
d ←−v2

Meeting of two travelers at A(t1) and B(t2).

Let the travelers start from P1 and P2 with speeds v1 and
v2(P1P2 = d). They meet first at A where P1A = x , at time t1. Then
traveler 1 proceeds towards P2 and 2 towards P1 and reverse their
directions and meet at again at B, where P2B = y , at time t2.
At A, ‘1’ would have traveled a distance x at with speed v1 and ‘2’
would have traveled a distance d − x with speed v2.

Then
x
v1

=
d − x

v2



Meeting of two travelers

Solving for x , we find x =
dv1

v1 + v2

Timing of meeting t1 =
x
v1

=
d

v1 + v2
, as stated.

Let the second meeting be at B, where P2B = y . Then, total distance
traveled by ‘1’ = d + y = D. Total distance traveled by ‘2’
= d + d − y = 3d − D. As the speeds of ‘1’ and ‘2’ are v1 and v2

respectively.
D
v1

=
3d − D

v2

Solving for D, we find D =
3dv1

v1 + v2
. So, time of second meeting

= t2 =
D
v1

=
3d

v1 + v2
.

The time between the first ad second meetings, = t2 − t1 = 2d
v1+v2

as
stated.



Example

Example 44.ya.ea.$a:na:�a�a:Za:t�a.a :pa:nTa.aH :pua.=;ya.ea.=;nta.=M ta:ya.eaH ÁO;:k+a:d:Za:ga:	a.ta:~tvea:k+ea na:va:ya.ea.$a:na:gaH :pa.=H Á Áyua:ga:pa:�a.�a:gRa:ta.Ea .~va:~va:pua.=;ta.ea ;
a.l+�a.pa:va.a:h:k+Ea Á.sa:ma.a:ga:ma:dõ :yMa b.rUa:�a.h ga:.
C+ta.ea:(ãÉa ;
a.na:vxa.�a:ya.eaH Á Á 44 Á Á
“The distance between two towns is 300 yojanas. Two letter carriers started
from their respective towns (simultaneously), one with a speed of 11
yojanas, and the other, 9 yojanas per days. O learned, if you know, tell
quickly the times of their two meetings, (the first) after their start and (the
second) while returning back.”

Solution: Here d = 300, v1 = 11, v2 = 9.

Time of first meeting (t1) =
d

v1 + v2
=

300

11 + 9
= 15

Time of second meeting (t2) =
3d

v1 + v2
= 45

(Time between the two meetings = 30.)



Travellers along a circle

Next, the problem of two travelers traveling along a circle (or any
closed path) with different speeds in the same direction is
considered.

Rule 40 (a)..sa:ñÍç ÅÅ*:+ma:k+a:l.H :pa:�a=;Da.Ea ga:tya:nta.=;Ba.a:�a$a:tea Ba:va:	a.ta Á Á 40 a Á Á
“Length of the circumference, divided by the difference
of speeds, happens to be the time of meeting.”

Let the travelers start from the same point P with speeds v1 and
v2.



Travellers along a circle

P

X

v2

v1

Meeting of two travelers, traveling along a closed path.

Speeds v1 and v2. Let v1 > v2. Let them meet x at a distance from P. Let the
circumference of the path be C. Distance traveled by ‘1’ = c + x . Distance
traveled by ‘2’ = x .

C + x
v1

=
x
v2

Solving for x , we find x =
Cv2

v1 − v2
. As x is the distance traveled by 2, Time of

meeting = x
v2

= C
v1−v2

as stated.

True and False statements as in earlier texts.



Important

Chapter 3

Earlier results on arithmetic progression stated here also, some sophisticated
problems based on these discussed. Standard results on

∑

r ,
∑

r2
,
∑

r3
,
∑∑

r =
∑ r(r + 1)

2

where the summations are from 1 to n are stated.
He consider an A.P. with terms:

(1+2+ · · ·+a), (1+2+ · · ·+a+a+1+ · · ·+a+d), · · · , [1+2+ · · · a+(n−1)d ]



A.P. with each term a sum of A.P.

So the rth term = 1 + 2 + · · ·+ {a + (r − 1)d}

is the sum of an A.P.

The sum of this A.P. =

n∑

r=1

{a + (r − 1)d}{a + (r − 1)d + 1}
2

is stated to be

=
n(n − 1)

2

[
d
2
(2a + 1) +

d2

2

]

+
na(a + 1)

2
+

d2

1 · 2 · 3
n(n−1)(n−2).

[Try this as an exercise.]



A very important advancement in Gan. itakaumud̄ı: k th

Sum

The following rule is an extremely important result in

Gan. itakaumud̄ı. Earlier we had
∑

r =
r(r + 1)

2
,

∑∑
r =

∑ r(r + 1)
2

=
n(n + 1)(n + 2)

1 · 2 · 3
. The last is the sum of

sums or the 2nd sum. Nārāyan. a Pan.d. ita generalises this to the
k th sum :

∑∑

· · ·
∑

r
︸ ︷︷ ︸

k sums

=
n(n + 1)(n + 2) · · · (n + k)

1 · 2 · 3 · · · (k + 1)
= n+kCk+1

This result is stated in Yuktibhās. ā also without referring to
Nārāyan. a Pan. d. ita. It is possible that the Kerala mathematicians
discovered it independently. This plays a crucial role in the
infinite Taylor series for the sine and cosine functions.
This is how he states it:



k th sum of n

Rule 19 (b) - 20 (a):O;:k+a:	a.Da:k+.va.a.=;�a.ma:ta.aH :pa:d.a:�a.d.�+pa.ea.�a.=:aH :pxa:Ta:k, .teMaY:Za.aH Á Á 19 b Á ÁO;:k+ea:dùÅ;ae :k+..
a:ya:h.=:aH ta..�ÈÅ :a:ta.ea va.a.=;sa:ñÍö�ÅÅ*:+
a.l+ta:m,a Á Á 20 a Á Á
“Number of terms (say n) is the first term (of an A.P.) and 1,
the common difference. Those (i.e., terms of the A.P., their
numbers being) 1 more than the number of times (the sum is
to be taken, i.e., k + 1), separately, (are) the numerators. 1
(is ) to first term (of another A.P.) and 1 the common
difference. These are the denominators, (their number
being) the same as that of the former A.P). Their product (is)
the k th sum of n.”



k th sum of n

Proof: It is stated that the k th sum of n denoted by V k
n is

n+kCk+1. We will now show that V k
n satisfies:

V (k)
n = V (k−1)

1 + V (k−1)
2 + · · ·+ V (k−1)

n =
n∑

r=1

V k−1
r

Now, V k
n = n+kCk+1

= n+k−1Ck+1 +
n+k−1Ck , using the properties of nCr .

∴ V k
n = V (k−1)

n + V k
n−1 Using this repeatedly

= V (k−1)
n + V (k−1)

n−1 + V k
n−2

= · · ·

= V (k−1)
n + V (k−1)

n−1 + · · ·+ V (k)
1



k th sum of n

But V (k)
1 = V (k−1)

1 = 1.

V k
n = V (k−1)

n + V (k−1)
n−1 + · · ·+ V (k−1)

1

∴ V (k)
n =

n∑

r=1

V (k−1)
r

Proceeding in this manner,

V (k)
n =

∑

· · ·
∑

V (0)
r

Now, V (0)
r = r C1 = r . (Zeroth of sum of r , which is r itself.) So,

V (k)
n is indeed the k th sum of first n integers.

The use of the k th sum is illustrated with the “Cow problem” in
Gan. itakaumud̄ı.



Cow problem

Example 16.:pra:	a.ta:va:S a ga.EaH .sUa:tea va:SRa:�a�a:ta:yea:na ta:NRa:k� +a ta:~ya.aH Á;�a.va:dõ :n,a ;�a.vMa:Za:	a.ta:va:SERaH ga.ea;=e ;k+.~ya.a:(ãÉa .sa:nta:	a.tMa k+.Ta:ya Á Á
“A cow gives birth to a (she) calf every year and their
calves themselves begin giving birth, when 3 years old.
O learned, tell me the number of progeny produced by
a cow during 20 years.”

The method of solution is given in Rule 22.



Cow problem: Stated solution

Rule 22.A:b.d.a:~ta:NyRa:b.d.ea:na.aH :pxa:Ta:k, :pxa:Ta:k, ya.a:va:d:�pa:ta.Ma ya.a:�//�a.nta Áta.a:
a.na kÒ +.ma:Za:(ãÉEa:k+a:�a.d:k+.va.a.=:a:Na.Ma :pa:d.a:
a.na .~yuaH Á Á
“Subtract the number of years (in which a calf begins
giving birth) from the number of years (successively
and separately), till the remainder becomes smaller
(then the subtractive). Those are the number for
repeated summations. Once, (twice) etc., in order. Sum
of the summations along with 1 added to the number of
years is the number of progeny. (Seems to be including
the original cow also).”



Cow problem

The following table would help us in computing the number of
progeny in 20 years. The initial cow would give birth to calf every
year per 20 years, which constitute the ‘first generation’
numbering 20. The calf born in the first year would produce its
first offspring in the fourth year, this and the one born in the
second year would together produce two offsprings in the fifth
year, and so on. So, the total number of the the second
generation calves would be

V (1)
17 = 1 + 2 + 3 + · · ·+ 17

Similarly, the total number of third, fourth, fifth, sixth, and seventh
generation calves would be V (2)

14 ,V (3)
11 ,

V (4)
8 ,V (5)

5 and V (6)
2 . There are no more generation within 20

years, as the eighth generations would only in the 22nd year.



Total progency

So the total progeny in 20 years is:

V (0)
20 + V (1)

17 + V (2)
14 + V (3)

11 + V (4)
8 + V (5)

5 + V (6)
2 = 20 +

17 · 18

1 · 2
+

14 · 15 · 16

1 · 2 · 3
+

11 · 12 · 13 · 14

1 · 2 · 3 · 4

+
8 · 9 · 10 · 11 · 12

1 · 2 · 3 · 4 · 5
+

5 · 6 · 7 · 8 · 9 · 10

1 · 2 · 3 · 4 · 5 · 6

+
2 · 3 · 4 · 5 · 6 · 7 · 8

1 · 2 · 3 · 4 · 5 · 6 · 7
= 2744

We have to add 1 if want to include the original (initial) cow. (Note V (0)
n = n, V (k)

1 = 1 for all k ).



Year 1st 2nd 3rd 4th 5th 6th 7th

generation generation generation generation generation generation generation

1 1

2 1

3 1

4 1 V (0)
1 = 1

5 1 V (0)
2 = 2

6 1 V (0)
3 = 3

7 1 V (0)
4 = 4 V (0)

1 = V (1)
1

8 1 V (0)
5 = 5 V (0)

1 + V (0)
2

= V (1)
2

9 1 V (0)
6 = 6 V (0)

1 + V (0)
2

+V (0)
3 = V (1)

3

10 1 V (0)
7 = 7 V (1)

4 V (1)
1 = V (2)

1

11 1 V (0)
8 = 8 V (1)

5 V (1)
1 + V (1)

2

= V (2)
2



Year 1st 2nd 3rd 4th 5th 6th 7th

generation generation generation generation generation generation generation

12 1 V (0)
9 = 9 V (1)

6 V (1)
1 + V (1)

2

+V (1)
3 = V (2)

3

13 1 V (0)
10 = 10 V (1)

7 V (2)
4 V (2)

1 = V (3)
1

14 1 V (0)
11 = 11 V (1)

8 V (2)
5 V (2)

1 + V (2)
2

= V (3)
2

15 1 V (0)
12 = 12 V (1)

9 V (2)
6

16 1 V (0)
13 = 13 V (1)

10 V (2)
7 V (3)

4 V (3)
1 = V (4)

1

17 1 V (0)
14 = 14 V (1)

11 V (2)
8 V (3)

5 V (3)
1 + V (3)

2

= V (4)
2

18 1 V (0)
15 = 15 V (1)

12 V (2)
9 V (3)

6 V (4)
3

19 1 V (0)
16 = 16 V (1)

13 V (2)
10 V (3)

7 V (4)
4 V (5)

1

20 1 V (0)
17 = 17 V (1)

14 V (2)
11 V (3)

8 V (4)
5 V (5)

2

Sum V (0)
20 V (1)

17 V (2)
14 V (3)

11 V (4)
8 V (5)

5 V (6)
2

Table. Seven generations of the offsprings of the cow, born in 20 years.



k th sum of a series in A.P.

The next rule gives the k th sum of a series in A.P.

Consider an A.P. with: a, a + d , · · · , a + (n − 1)d (first term is a, common
difference is d , number of terms is n).

Rule 20 b - 21..�+pa.ea:
a.na:ta:pa:d:va.a.=:$a:sa:ñÍö�ÅÅ*:+
a.l+tMa .~ya.a:.
va yea gua:Na.aH .sa :pxa:Ta:k, Á Á 20 Á ÁO;:k+a:	a.Da:k+..
a.a.=.éÈåî Åéé:a.ea v.yea:k+.pa.=:a:�a.ea mua:Kea gua:Na.ea Ba:va:	a.ta Á.~va:gua:NaéÈåî Åéé:a.a:dùÅ;au .�a.=;ya.ea:ya.eRa:gaH .~ya.a:d, va.a.=:$Ma ga:�a.Na:ta:m,a Á Á 21 Á Á
“The k th sum of ‘number of terms less 1’ is the multiplier of (the
common difference). That separately multiplied by ‘1 more than
number of times’ (the sum is to be taken, i.e., k + 1 and then)
divided by the ‘number of terms less 1’ is multiplier of the first term
The first term and the common difference (are both) multiplied by
their own multipliers. The sum of the products happens to be the

k th sum (of the series in A.P.).”



k th sum of a series in A.P.

So,
∑∑

k

· · ·
∑

A.P. =
[

a(k + 1)
(n − 1)

+ d
]
(n − 1) · r · · · (n + r − 1)

1 · 2 · · · (k + 1)

Rationale: First sum of A.P. = an +
n(n − 1)

2
d

k th Sum of the series in A.P. = (k − 1)th Sum of
[

an +
n(n − 1)

2
d
]

= a[(k − 1)th Sum of n] + d [k th Sum of (n − 1)],

as the first sum
∑

n − 1 =
n(n − 1)

2
.

= a
n(n + 1) · · · (n + k − 1)

1 · 2 · · · k
+ d

(n − 1)n · · · (n − 1 + k)
1 · 2 · · · (k + 1)

=

[
a(k + 1)

n − 1
+ d

]
(n − 1) · · · (n + k − 1)

1 · 2 · · · (k + 1)



Example

Example 15.A.a:�a.dH .sa:m�a.a.=;Na:�a.ma:taH :pra:.
a:ya:�/�a.~:�a:sa:*ñÍËÉ ùÁ+;a.eaga:.
Ce +Sua .sa:�a:sua va:d.a:Zua :pra.a.;dÄùÅ;aR :bua.;dÄâ e Áva.a;=E H :pa:ya.ea:
a.na:	a.Da:�a.ma:tEaH :pa:�a=;va:tRa:nea:na.~ya.a:t,a ;�a.kM :P+lM ga:�a.Na:ta:ma:tsa.=;ta.aY:�///�a.~ta .tea ..
ea:t,a Á Á
“First term of (an A.P) is 5, common difference, 3 (and) the number

of terms, 7. O best among scholars, tell quickly the 4th sum (of the
series in A.P.). (Also,) if you have passion for mathematics, tell the
sum by changing the ingredients.”

Solution: a = 5,d = 3,n = 7, k = 4.

∴ Sum =

[

5 × 5

6
+ 3

]

6 · 7 · 8 · 9 · 10

1 · 2 · 3 · 4 · 5
=

[

25

6
+ 3

]

4×63 = 2×25×21+12×63 = 1806.

One can work out changing ingredients.

The treatment of G.P is as in Gan. itasārasaṅgraha and at L̄ılāvat̄ı: nothing new.

So also, Sama Vr. ttas as in L̄ılāvat̄ı.



Geometry in Gan. itakaumud̄ı in chapter 4

All the results of an geometry in Gan. itasārasaṅgraha and L̄ılāvat̄ı are
stated here. Nārāyan. a Pan. d. ita adds many results of his own
especially on rational triangles and quadrilaterals, and also generalizes
many earlier results. We give some interesting results in the geometry
of plane figures introduced / stated in this chapter.

Rule 15 gives “gross-area of regular polygon with n sides.

Rule 15..=;Z}yUa:na.=;�//////�a.Zma:kx +.	a.ta:h:ta:Bua.$a:kx +.	a.ta:�a=;na:&+t,a :P+lM ;�a�a:k+ea:Na.a:d.Ea Á Á 15 Á Á
“Subtract the number of sides from the square of the number
of sides. Multiply (the difference) by the square of the side.
(The product) divided by 12 is the (gross) area of a triangle.”



Area of a regular polygon with n sides
The area of a regular polygon of n sides, each of length S is states to be:

A = (n2
− n)

S2

12

s

r
θ

Area of a regular polygon with side S.

Inscribe the polygon with n sides each of length S in a circle of radius r . It is
clear that θ =

π

n
and S = 2r sin θ.

The area of each triangle, as indicated = r2 sin θ cos θ

∴ Area of the polygon = nr2 sin θ cos θ

∴ A = n
S2 cos θ
4 sin θ

= n
S2 cos

(

π
n

)

4 sin
(

π
n

) .

This is the exact area.



Area for large n

When n is large,

sin
(
π

n

)

≈
π

n
−

1
6

(
π

n

)3
≈

π

n

[

1 −
1
6
π2

n2

]

and cos
(
π

n

)

≈ 1 −
π2

2n2

∴ A ≈ n
S2

4
π

n

(1 −
π2

2n2 )

(1 −
1
6
π2

n2 )

≈
n2S2

4π

(

1 −
1
3
π2

n2

)



Further approximation

If we put π ≈ 3, (this crude approximation to π has been stated
by Narayana), we obtain

A ≈
n2S2

12

(

1 −
3
n2

)

≈
(n2 − 3)

12
S2

It is not clear what is the approximation which led the author to
his result.

After many other ‘gross’ results Nārāyan. a states;“The earlier
gross rules have been stated for novice calculations. Due to
occasional disagreement between (gross and exact) results, I
have not much respect (for them).”



Diagonals of a cyclic quadrilateral

Diagonals of a cyclic quadrilateral.

Here Nārāyan. a gives the standard expression for the diagonals of a cyclic quadrilateral.
He also introduces the concept of third diagonal, which is very useful in deriving many
results (including the expression for the area of a cyclic quadrilateral,
√

(s − a)(s − b)(s − c)(s − d)) which is proved in Yuktibhās. ā.

Rule 47-52 includes:o+Ba:ya:(ra:va:Na.a:�a.(ra:ta:Bua.$a:va:Da:ya.ea:ga.Ea ta.Ea :pa.=;~å.pa.=M ;�a.va:&+ta.Ea Á:pra:	a.ta:Bua.$a:Bua.$a:ba:Da:ya.ea:ga.a h:ta.Ea tua mUa:le ..
a:tua:BRua.$ea k+.Na.ERa Á Á.sa:vRa:.
a:tua:ba.Ra:hU :na.Ma mua:Ka:~ya :pa:�a=;va:tRa:nea ya:d.a ;�a.va:�a.h:tea Ák+.NRa:~ta:d.a txa:t�a.a:yaH :pa.= I+	a.ta k+.NRa.�a:yMa Ba:va:	a.ta Á Á 48 Á Á
“Divide the sum of the products of the sides about both the diagonals by
each other. Multiply the quotients by the sum of the products of opposite
sides. Square roots of the, products are the diagonals in a quadrilateral.

In all (cyclic) quadrilaterals, the (new) diagonal obtained by the interchange
of its face and flank side is the third diagonal.”



Cyclic quadrilateral: Third diagonal

A cyclic quadrilateral ABCD. AC, BD are the diagonals. Another cyclic quadrilateral
ABC’D got by interchanging the sides BC and CD. AC’ is the third ‘diagonal’.

In the figure, ABCD is a cyclic quadrilateral with sides, AB = a,BC = b,

CD = c, and DA = d . AC = e and BD = f are its diagonals. Now on the arc

BD, choose a point C′ such that arc DC′ = arc BC. Then naturally,

arc C′B = arc CD. The corresponding chords are also. Therefore, DC′ = C′B.

So the quadrilateral ABC′D is generated by interchanging the sides b and c in

the original quadrilateral. Then AC′ = g is called the third diagonal.



Expressions for the three diagonals

We had already derived the expressions for the diagonals AC = e or
BD = f in the material on Brāhmasphut.asiddhānta. These are stated by
Nārāyan.a:

AC = (e) =
[
(ac + bd)(ad + bc)

(ab + cd)

]1/2

BD = (f ) =
[
(ac + bd)(ab + cd)

(ad + bc)

]1/2

(The expressions may look slightly different, as the symbols for the
sides is different here.)

The third diagonal AC′ = g is got by interchanging b and c in the
original quadrilateral. Hence, by interchanging b and c in AC

AC′ = (g) =
[
(ab + cd)(ad + bc)

(ac + bd)

]1/2



Circumdiameter

Now we had already seen that in a triangle, the product of sides
(about a perpendicular) divided by the perpendicular is the
diameter of the circumcircle. The circumdiameter D of a cyclic
quadrilateral can be obtained in this way, by considering an
appropriate triangular part of the cyclic quadrilateral. For
instance, Let BQ = r be the perpendicular to the diagonal AC.
Then,

D =
ab
r

It is perpendicular to AB

D =
AD · BD

DE
=

d · f
p

also.



Area of a cyclic quadrilateral

Area of a cyclic quadrilateral is stated in the following rule;

Rule 134 a.k+.Na.Ra:�a.(ra:ta:Bua.$a:ba:Da:yua:	a.ta:gua:�a.Na:tea ta:�///////�a.sma:n,a (ra:va:~yaY:�a.pa ;�a.va:Ba:�+ea Á..
a:tua.=:a:h:ta:&+d:yea:na ;�a.dõ :sa:ma.a:�a.d:.
a:tua:BRua.$ea ga:�a.Na:ta:m,a Á
“Multiply the sum of the products of the sides (of a
quadrilateral) lying on the same side of a diagonal by the
diagonal. Divide (the product) by 4 times the circum-radius.
(The result) is the area of the equilateral and other
quadrilaterals (A).”

That is, area A =
(ab + cd)e

4R
=

(ad + bc)f
4R

(Here circum-radius, R =
D
2

).



Area of a cyclic quadrilateral

Proof: Now D =
ab
r
, or r =

ab
D

.

Area of triangle ABC =
1
2
· AC · r =

ab · e
2D

Similarly, Area of the triangle ADC =
cd · e

2D

By adding two results, area of the quadrilateral ABCD

=
(ab + cd)e

2D
=

(ab + cd)e
4R

Similarly, considering the triangles DCB and DAB flanking the
diagonal, BD = f ,

Area =
(ad + bc)f

4R



An alternate expression for the third diagonal

An alternate expression for the third diagonal, AC′ = g :

Rule 136:..
a:tua.=:a:h:ta:&+d:ya:h:tea ga:�a.Na:tea (rua:	a.ta:Ba.a:�a$a:tea Ba:va:	a.ta ÁBua.$a:mua:Ka:pa:�a=;va:tRa:na.$ea :pa.=:a:�a.Ba:Da.a:na.a (rua:	a.ta:
a.nRa:ya:ta:m,a Á Á 136 Á Á
“4 times the circum-radius multiplied by the area (and then)
divided by the (product of) the diagonals determines the
other diagonal which is obtained by interchanging the face
with a flank side.”



The diagonals, circumradius and area

That is, g =
4RA
ef

From the expression for the diagonals BD(f ) and AC′(g)

gf = ab + cd

But, A =
(ab + cd)e

4R

∴ gf =
4R · A

e

or g =
4RA
ef

From this it follows that

R =
efg
4A

which is stated in the following rule:

Rule 138 a...
a:tua.=:a:h:ta:P+l+�a.va:&+tea ;�a�a:k+.NRa:Ga.a:teaY:Ta:va.a &+d:ya:m,a Á Á 138 Á Á
“Alternatively the product of the three diagonals divided by four
times the area is the circum-radius.”



Construction of integral cyclic quadrilaterals

Construction of integral Cyclic quadrilaterals.

Remember that if we had two right-triangles with the upright,
side and hypotenuse as (a1,b1, c1) and (a2,b2, c2), Brahmagupta
had constructed a cyclic quadrilateral with sides c2a1, c1b2, c2b1

and c1a2 and diagonals: a1a2 + b1b2 and b1a2 + a1b2 which are
perpendicular to each other.

Here Nārāyan. a Pan. d. ita states how one can obtain a cyclic
quadrilateral using the same procedure in which not only all the
sides and diagonals are integral, but also the various
perpendiculars (from the vertices to the appropriate sides,or
diagonals) and the various segments which the perpendiculars
divide the appropriate sides and diagonal into, are integral or
rational. It is stated thus:



Integral cyclic quadrilaterals

Rule 93 b - 97 a:.$a.a:tyea ..
a:tua:BRua.$ea :dõe l+Gua:k+.NRaÈåîÁÁ*+.a:va:na:�pa:k+ea:	a.f:Bua.$a.Ea Á Á 93 Á ÁBa:va:d:neaY:na:�pa:(rua:	a.ta:sa:ñÍç ÅÅ*:u +�a.Na:ta.a:va:�pa:k+ea:	a.f:Bua.$a.Ea Á;�a.va:Sa:ma:.
a:tua:BRua.$a.$a.a:ta.aH .sa:vRa:Bua.$a.a A:�pa:k+.NRa:sa:ñÍç ÅÅ*:u +�a.Na:ta.aH Á Á 94 Á Ák+ea:	a.f:va:Da.a:ba.a:hu :va:Da:ya.eaH .sMa:ya.ea:ga.ea .$a.a:ya:tea gua:Na:(ãÉEa:k:H Á Á 95 Á ÁBua.$a:k+ea:	a.f:va:Da:sa:ma.a:saH :pa.=:eaY:�pa:k+.Na.Ra:h:ta.Ea ;�a.h ta.Ea k+.Na.ERa Á Á 96 Á Áv.ya.a:saH .~ya.a:t,a k+.NRa:dõ :ya:Ga.a:ta.ea d:
a.l+taH :P+lM .sUa:[ma:m,a Á Á 97 Á Á
“The upright and the side of the bigger rectangle, (really triangle,
among two given or assumed triangles) multiplied by the diagonal
of the smaller (triangle separately) are the face and the base. The
upright and side of the smaller (triangle) multiplied by the diagonal
of the bigger rectangle (triangle) are the two flank sides. All sides
multiplied by the diagonal of the smaller (triangle) are all the sides
of a scalene quadrilateral.



Integral cyclic quadrilaterals

The sum of the products of the sides and (the product) of the uprights
is the gun. a. The sum of the products of the side (of one triangle) and
the (upright) of the other is the other gun. a. The gun. as separately
multiplied by the two diagonal of the smaller (triangle) are the
diagonals of the quadrilateral. The diagonal of smaller (triangle)
multiplied by the (product of) the diagonals (of the two triangles) is the
(circum) diameter and half of the product of the diagonals of the
quadrilaterals is the exact area of the quadrilateral.”

[The smaller and the greater gun. as multiplied separately by the greater
and the smaller sides of the smaller rectangle (triangle), respectively
are the perpendiculars and those multiplied separately, by the smaller
and the greater sides are the Pı̄t.has (i.e,, complements) of the
segments). Pı̄t.has subtracted from the base, are the Sandhis (i.e.,
links)].

[Portion in square bracket is not in the text. It has been reconstructed
by P. Singh based on the formulae used in the example solved by
Narayana following the above rule.]



Integral cyclic quadrilaterals
Let (r2

− s2)(= b2), 2rs(= a2), (r2 + s2)(= c2) be the base, upright and the diagonal of
the smaller triangle and (p2

− q2)(= b1), 2pq(= a1) and (p2 + q2)(= c1) be those of
the bigger triangle in order. According to the rule, a scalene (unequal sides) quadrilateral
can be formed such that its:

face = (r2 + s2)2(p2
− q2), base = (r2 + s2)2 2pq

flank sides = (r2 + s2)(p2 + q2)(r2
− s2) and 2rs(r2 + s2)(p2 + q2)

diagonals = (r2+s2)[4pqrs+(r2
−s2)(p2

−q2)] and (r2+s2)[2pq(r2
−s2)+2rs(p2

−q2)]

(So far, an extra factor (r2 + s2) was not necessary to make the sides and diagonals
integral (by choosing r , s, p, q integral). But this extra factor in the sides and diagonals is
necessary to make the perpendiculars and the segments integral.)

B(r2 + s2)22pq

(r2 + s2)(p2+ q2)(r2− s2)

(r2 + s2)(p2− q2)

(r2 + s2)(p2+ q2)2rs

A E

C
D

p1

(r2 + s2)[(r2− s2)(p2− q2)]

(r2 + s2)2pq(r2− s2)
(r2 + s2)(4pqrs)

(r2 + s2)2rs(p2− q2)

Cyclic quadrilateral constructed according to the rule.



Integral cyclic quadrilaterals
The perpendiculars are given to be;

p1 = (r2
−s2)[2pq(r2

−s2)+2rs(p2
−q2)] and p2 = 2rs[(p2

−q2)(r2
−s2)+4pqrs]

P̄ıt.has (complements of the segment) are given to be:

s1 = 2rs[2pq(r2
−s2)+2rs(p2

−q2)] s2 = (r2
−s2)[(r2

−s2)(p2
−q2)+4pqrs]

Links are (these are appropriate base s1 or s2, that is the other segment)

l1 = 2pq(r2 + s2)2
− [2pq(r2

− s2) + 2rs(p2
− q2)] · 2rs

(i.e.,) s1 + l1 = AB = (r2 + s2)2
· 2pq

l2 =?

circumdiameter = (r2 + s2)2(p2 + q2)2

Area =
1
2
[2pq(r2

− s2) + 2rs(p2
− q2)][(r2

− s2)(p2
− q2) + 4pqrs](r2 + s2)2

Exercise: Verify the expansion for p1 and work out AE ,EB using AD and BD

and then find the circumdiameter. Verify the expression for the area. From the

expression for the circumdiameter figure out which are the sides / diagonals

involved in p2 and indicate it. Find l2.



Construction of rational triangles, whose sides differ by
unity

The following rule gives the procedure;

Rule 118.;�a.dõ :gua:Nea:�:�a.ma:�:kx +.tya.a ;�a�a:h� .a:na:ya.a:�Ma ..
a ta:tkx +.	a.ta:�/�a.~:�a:gua:Na.a Á.sEa:k+a mUa:lM ;�a.dõ :gua:NMa BUaH .sEa:k+ea:na.aY:	a.Da:k+a ba.a:hu H Á Á 118 Á Á
“Divide twice an optional number by the square of the optional number less
3. Add 1 to thrice the square (of the quotient). Twice the square root of the
sum is the base. 1 added to and subtracted (from the base) are the flank
sides.”

C

A B

y

E

x+ 1x− 1

xx
2
− 2 x

2
+ 2

Rational triangle whose sides differ by unity.

We can conceive of the triangle as above, with the sides AB = x,AC = x − 1 and

BC = x + 1. The perpendicular CE = y divides the base AB into segments AE =
x

2
− 2

and EB =
x

2
+ 2. We want the perpendicular and to segments also to be the rational.



Rational triangles whose sides differ by unity

We should have,

(x − 1)2
−

(x
2
− 2

)2
= (x + 1)2

−

(x
2
+ 2

)2
= y2

This leads to
3
4

x2
− 3 = y2

Choose: y =
3 · 2n

(n2
− 3)

, n an integer.

∴ x = 2

[

3
(

2n
n2

− 3

)2

+ 1

]1/2

=

[

12n2 + (n2
− 3)2

(n2
− 3)2

]1/2

= 2
[

n4 + 6n2 + 9
(n2

− 3)2

]1/2

= 2
(

n2 + 3
n2

− 3

)

.

The solution for x is as stated in the rule. Clearly, x is rational.



Rational triangles whose sides differ by unity

Rule 119-120.:pra:Ta:mMa .$a.a:tya.�ya:~åò:Ma ;�a�a:l+}ba:kM BUa:.
a:tua:Sk+.ma:sma.a:�a Á.$a.a:tya.a:nyua:tpa:dùÅ;a:nteaY:na:nta.a:nyea:k+ea.�a.=;Bua.$a.a:
a.na Á Á 119 Á Á;�a�a:gua:Na.a BUa:�a.maH .~va.a:�a.d:ma:l+}ba:yua:ta.a l+}ba:k:H .sa:l+}ba:ma:h� .a Á;�a.dõ :gua:Na.a BUa:�a.maH :pua.=;ta ;�/�a.~:�a:Bua.$Ma .$a.a:tyMa Ba:vea:de :va:m,a Á.sa:veRa:Sa.Ma ;�a�a:Bua.$a.a:na.Ma O;:k+ea:na:yua:ta.a ma:h� .a ba.a:hu H Á Á 120 Á Á
“3 being the length of the perpendicular and 4, the base of the first
right angled triangle, and its infinite (pairs of) right angled triangles
are produced in which sides increase by unity. (In these), the
perpendiculars from the vertex to the respective base is the sum of
thrice the previous base added to the still previous perpendicular
and the base is twice the sum of the previous perpendicular added
to the previous base. Triangles in opposition (in such triangles) are
right-angled and in all such triangles, 1 added to and subtracted
from the base, are the flank and the sides.”



Rational triangles

We want solutions for the equation 3
4x2 − 3 = y2, where x is the

base, and y is the perpendicular. Let the solutions for the base
be written as x1, x2, · · · and the corresponding perpendiculars
y1, y2, · · · . Suppose we have found xj and yj , up to j = i − 1.
Then it is stated that new solution xi , yi can be found using

xi = 2(xi−1 + yi−1) and yi = 3xi−1 + yi−2.

This is a ‘bhāvanā’ or a ‘composition law’. (Samāsa bhāvanā in
this particular case). From these xi+1, yi+1 can be found, and so
on. The simplest integer is ‘0’ and this is not a solution for
triangle. Next is x1 = 4, y1 = 3, which is a trivial solution. Then
we can generate an infinite number of triangles.



“Integral Triangles” whose sides differ by unity

Proof: We have to solve
3
4

x2
− 3 = y2. Let x = xi−1, y = yi−1 satisfy this, that

is:
3
4

x2
i−1 − 3 = y2

i−1

Now take xi = 2(xi−1 + yi−1) and yi = 2
(

yi−1 +
3
4

xi−1

)

= 2yi−1 +
3
2

xi−1

3
4

x2
i − 3 =

3
4
(4x2

i−1 + 4y2
i−1 + 8xi−1yi−1)− 3

Using
3
4

x2
i−1 − 3 = y2

i−1,

We have,
3
4

x2
i − 3 = 7y2

i−1 + 6xi−1yi−1 + 9

y2
i = 4y2

i−1 +
9
4

x2
i−1 + 6xi−1yi−1

Again using the relation between xi−1 and yi−1

y2
i = 7y2

i−1 + 6xi−1yi−1 + 9

Hence,
3
4

x2
i − 3 = y2

i , so the equation is satisfied.



Integral traingles

Now the recurrence relation for

xi = 2(xi−1 + yi−1) is correct.

Recurrence relation for yi , we have used yi = 2
(
yi−1 +

3
4xi−1

)

yi = 2
[

2
(

yi−2 +
3
4

xi−2

)]

+
3
2

xi−1

= yi−2 + 3(yi−2 + xi−2) +
3
2

xi−1

= yi−2 +
3
2

xi−1 +
3
2

xi−1

∴ yi = 3xi−1 + yi−2

This is the recurrence relation, as stated in the rule.



Generating the triangles

Generating the triangles.

Take x0 = 2, y0 = 0. These satisfy the equation.

∴ x1 = 2(x0 + y0) = 4 y1 = 2(y0 +
3
4

x0) = 3

So, x = x1 = 4, y = y1 = 3. The other sides are x − 1 = 3,

x + 1 = 5 and the segments are
x
2
− 2 = 0,

x
2
+ 2 = 4.

Next x2 = 2(x1 + y1) = 14, y2 = 3x1 + y0 = 12

So, x = x2 = 14, y = y2 = 12 (perpendicular). The other sides

are x − 1 = 13, x + 1 = 15, and the segments are
x
2
− 2 = 5,

x
2
+ 2 = 9



Generating the triangles

Next x3 = 2(x2 + y2) = 52, y3 = 3x2 + y1 = 45

So, x = x3 = 52 (base), y = y3 = 45 (perpendicular). The other sides

are x − 1 = 51, x + 1 = 53, and the segments are
x
2
− 2 = 24,

x
2
+ 2 = 28.

These are depicted in the figure below:

First three triangles with sides differing by unity, generated by the algorithm
stated in Rule 119-120.

These are integral solutions (for sides differing by unity, as well as the
perpendicular and the segments). Clearly there are an infinite number
of solutions.



Combinatorics
Chapter 13 on aṅkapāśa or ‘combinatorics’ is a very elaborate one, containing
many new results on permutations and combinations. We first consider the
generalised ‘Fibonacci’ sequence described here.

The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 12, · · · . If Pn denotes the nth term
in the sequence, where we start with n = 0, it satisfies the recursion relation:

Pn = Pn−1 + Pn−2

They are related to the number of ordered partitions of a number into parts
containing 1 and 2 only. P0 = 1, by convention. We have

1 = 1,P1 = 1

2 = 1 + 1 = 2,P2 = 2,

3 = 1 + 1 + 1 = 1 + 2 = 2 + 1,P3 = 3,

4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2,P4 = 5,

5 = 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 2 = 1 + 1 + 2 + 1

= 1 + 2 + 1 + 1 = 2 + 1 + 1 + 1

= 1 + 2 + 1 + 1 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1,P5 = 8,

and so on.



Nārāyan. a’s Sāmāsik̄ı sequence

It can be shown that

Pn = nC0 +
n−1C1 +

n−2C2 + · · ·+ n−mCm,

where m =
n
2

if n is even, and m =
n − 1

2
if n is odd. One can

check that the numbers Pn satisfy the recursion relation
mentioned earlier.

The Fibonacci numbers in fact appeared six hundred earlier in
the work Vr. ttajātisamuccaya of Virahāṅka (c.600), who arrived at
the recurrence relation Pn = Pn−1 + Pn−2, in the context of his
discussion of Mātrā-vr. ttas or moric metres. Nārāyan. a’s Sāmāsik̄ı

sequence is essentially a generalisation of the sequence
discovered by Virahāṅka in the context of prosody. It is
essentially a generalised Fibonacci sequence, where one
considers the partitions of a number n when all the digits from 1
upto q take part in the partitions. This is denoted by Pq

n .



Sāmāsik̄ı sequence

We have the relations:

Pq
0 = Pq

1 = 1,

Pq
n = Pq

0 + Pq
1 + · · ·Pq

n−1, 2 ≤ n ≤ q,

Pq
n = Pq

n−q + Pq
n−q+1 + · · · + Pq

n−1,n > q.

When q = 2, we have the Fibonacci numbers: 1, 1, 2, 3, 5, 8,
· · · . When q = 3, the Sāmāsik̄ı sequence would be 1, 1, 2, 4, 7,
13, 24, 44, · · · . The members of this sequence satisfy the
recurrence relation:

P3
n = P3

n−1 + P3
n−2 + P3

n−3



Generalisations of binominal coefficients

Generalisations of the binomial coefficients: The binomial coefficients
nCr can be defined through:

(1 + x)n =
∑

nCr x r
,

where the summation is from r = 0 to n.

The binomial coefficients are generalised to ‘polynomial coefficients’
which we write as u(p, q, r), in Gan. itakaumud̄ı. They are defined
through what amounts to the formula:

(1 + x + x2 + · · ·+ xq−1)p =
∑

u(p, q, r) x r
,

where the summation is from r = 0 to r = (q − 1)p. He also gives
methods to generate u(p, q, r). It is obvious that when

q = 2, u(p, 2, r) = pCr



Sāmāsik̄ı sequence and polynominal coefficients

Various meru’s associated with these co-efficients are discussed
in the text. Nārāyan. a also gives the relations among the
generalised Fibonacci numbers and the polynomial coefficients:

Pq
0 = 1 = u(0,q,0)

Pq
1 = 1 = u(1,q,0)

Pq
2 = u(2,q,0) + u(1,q,1)

. . . . . .

Pq
t = u(t ,q,0) + u(t − 1,q,1) + · · ·+ u(t − s,q, s),

, where s ≤
q − 1

q
t .
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Dvivedi, 2 Vols, Varanasi, 1936, 1942.
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