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◮ Crucial role of trigonametry in astronomy problems
◮ Indian sines, cosines, bhujajyā, kot.ijyā, sine tables
◮ Interpolation formulae
◮ Determination of the exact value of 24 sines
◮ Bhāskara’s jyotpatti - sin(18◦), sin(36◦)



Non-uniform motion of planets

Ancients had observed regularity in the motion of celestial
bodies ( Stars, Sun, Moon and Planets) in the sky. Stars :
Extremely regular. Others : Not Completely. Departures from
complete regularity observed over millenia. Ancients : Sun ,
Moon also considered as planets. So : Non-uniform Motion of
Planets.

Trigonometry is needed to explain the non-uniform motion of the
planets. This was the historical context for developing
trigonometry both in Indian and Greek astronomy.

Now, we know that the planets move in elliptical orbits around
the Sun. Moon moves in an elliptical orbit around the Earth. In a
geocentric framework, One can say that the Sun moves in an
elliptical orbit around the Earth. So, the orbits have an
eccentricity. How was this taken into account in ancient
astronomy?



Epicycle model
One had an ‘epicycle’ model for the motion of a planet both in Indian and
Greek astronomy. The details are different, but the basic idea is as follows:
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Epicycle model for the eccentricity correction.

P0 : Mean planet moving aound O at a uniform rate in a circle called the
‘Kakśyāvr. tta’ or ‘ Deferent’. Γ is a reference line (like the direction of the first
point of ‘Mes.a’ rāśi.)

ΓÔP = θ0 is called the ‘mean planet’.



Finding the true planet

To find the true position of the planet, draw a circle of radius r
around P0 (the radius of the Deferent is R.) This is the ‘epicycle,
or ‘Mandavr. tta’. Now there is what is known as the direction of
the ‘apogee’ shown as OA in the figure. A is called the
‘mandocca’ in Indian texts: Draw a line P0P parallel to OA,
intersecting the epicycle (Mandavr. tta) at P. Then O is the true
position of the planet. ΓÔA is the longitude of the ‘apogee’ and
M = AÔP0 = ΓÔP0 − ΓÔA = θ0 − ΓÔA, is called the
‘Mandakendra’.

True Longitudeθ = ΓÔP = ΓÔP0 − P0ÔP = θ0 −∆θ

where ∆θ is the correction to be applied to θ0, the mean
longitude to obtain the true longitude. It is called the “Equation of
Centre.”



Appearence of Sine function, Enter Trigonometry

Let K = OP. This is called the manda-karn. a. Extend P0 to Q such that PQ is
perpendicular to P0Q. As P0P is parallel to OA (by construction), PP̂0Q = M
and PM = r sin M.

In triangle POQ,PÔQ = PÔP0 = ∆θ, and so,

OP sin∆θ = PQ = r sin M

∴ K sin∆θ = r sin M

∴ sin∆θ =
r
K

sin M =
r
K

sin(θ0 − A)

∴ ∆θ = sin−1
( r

K
sin M

)

= sin−1
( r

K
sin(θ0 − A)

)

where K = OP = [(R + r cos M)2 + r2 sin2 M]1/2.

To know the correction ∆θ, one needs the sine function. One should also know
how to find the inverse sine function, that is to find the arc from the sine.

This is how the trigonometric functions enter astronomy.

To find ∆θ for any θ0 and A, we should know sin(θ0 − A) = sin M, either by
explicit construction or tabulated values.



Shadows and Trigonometry

Again, to find the time from the shadow of a gnomon.

Shadow of a gnomon.

The light rays are slanted at an angle z to the vertical. z is the ‘Zenith
distance’ of the sun. g is the “gnomon” height and S is the shadow.

S = g tan z = g
sin z
cos z

z depends upon how much time has elapsed since the Sun has
crossed the meridian, through the ‘hour angle’ H.



Time from shadows: Spherical Trigonometry

S

z

z
P

φ

90 - φ

S
δ

z

Diurnal path of theSun
Equator

H

Sun at zenith distance z on the celestial sphere.

In the figure, the position of the Sun in the sky is shown. z is the Zenith
distance of the Sun, H is its hour angle, which indicates how much time has
elapsed from the ‘noon’ when the Sun crosses the meridian. φ is the latitude of
the place and δ is Sun’s declination (how much it is above or below the
equator). One can show, using spherical trigonometry that

cos z = sinφ sin δ + cosφ cos δ cos H.

So, one determines z from the shadow, and H from the above relation. So lot

of trigonometry (plane and spherical) are involved! So determination of sine

and cosine functions very critical to calculation in astronomy.



Indian jyā
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The Indian Jyā.

In Indian astronomical and mathematical works, the
circumference of a circle is taken to be 360◦ = 21600′. The
radius R = (21600′/2π) ≈ 3438′. This is the ‘Trijyā’. Then for an
angle θ, or an arc Rθ, the jyā or j̄ıvā is AB = R sin θ as shown in
the figure. OB = R cos θ is the kot.ijyā or kojyā and
BD = R(1 − cos θ) is called Utkramajyā or Versed R Sine, or
‘Śara’.



The Greek Chord and the Indian Sine

Greeks worked with the chords. Indians, with the Rsines, as defined
just now.
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Chord and Sine

AC = Chord (2θ) = 2AB = 2R sin(θ)

In all calculations, it is the sine the appears. The Indian sine is
perfectly suited for writing formulae and performing calculations. The
chord is far less so.



The terms ‘Sine’, ‘Cosine’, can be traced to India

jyā: Also, j̄ıvā. Adopted by the Arabs.

J̄ıvā → j̄ıbā → In Arabic, read as ‘jayb’.

‘Jayb’ (‘pocket’ or ‘fold’): Translated into Latin as
‘Sinus’→ Sine.

So the term ‘Sine’ is derived from Indian ‘j̄ıvā’.

Now in India, the complement of the jyā is kot.ijyā.

So complement of Sine → Cosine.



24-fold division of the quadrant
For a Sine table, the quadrant is divided into n equal divisions. Typically, in
most texts n = 24, that is, the quadrant is divided into 24 parts. Each segment

corresponds to
90◦

24
= 3◦45′ or 225’. In the following figure, the points

Pi(i = 1,2, 3, · · · , 24) represent the end points of the 24 segments. The set of
jyās, Ji = PiNi(i = 1, 2, · · · , 24) corresponding to the Cāpas P0Pi are explicitly
stated in many texts, such as Āryabhat. ı̄ya, Sūryasiddānta, Tantrasaṅgraha
etc. Later values of n other than 24 are also discussed in some works. for
instance, we will consider n = 30 or 90, as discussed by Bhāskara-II in his
‘Jyotpatti’ section of ‘Siddhāntaśiromani’.

O

P24 P23
P22

P3

P2

P1

P0
N23 N22 N3 N2

N1

jyā’s corresponding to arc lengths wjich are multiples of 225’.

In the 24-fold division, we have to find R sin iα, where x = 225′ = 3◦45′ and

i = 1,2, · · · , 24.



Āryabhat.̄ıya: Finding Rsine

In his Āryabhat. ı̄ya, Āryabhat.a gives the following second-order
difference equation for finding R sin iα:

R sin{(i+1)α}−R sin(iα) ≈ R sin(iα)−R sin{(i−1)α}− R sin iα
R sinα

The whole table of sines can be generated from this, with
R sinα = Rα = 225 (as α is small), as the only input. For
instance, R sin 2α = 449,R sin 3α = 671 from this (We have to

divide by R =
21600

2π
≈ 3438 to get the modern sine.)

It is amazing that Āryabhat.a realised that the second-order
difference is proportional to R sine itself, as far back 499 CE
itself. The second order relation is essentially the equivalent of

d2 sin x
dx2 = − sin x



Correct difference equation, Nı̄lakan. t.ha

The correct finite difference equation of the second order is

R sin{(i +1)α}−R sin(iα) = R sin(iα)−R sin{(i −1)α}−2(1− cosα)R sin iα

while 2(1 − cosα) = 0.0042822,
1

R sinα
=

1
225

= 0.0044444

The exact recursion relation is stated in Nı̄lakan. t.ha’s Tantrasaṅgraha (1500
CE.) He also uses a better value for 2(1 − cosα). Also the first sine, R sinα is
taken to be 224′50′′ or (224 + 50

60 )′. This is based on the better approximation

sinα ≈ α− α3

3! .

(For α = 225′, we have 2(1 − cosα) ≈ 0.004282153). This is approximated in
the text by 1

233 1
2
≈ 0.004282655).

Obviously, Nı̄lakan. t.ha gets a much better sine table. The topic of sine tables

generated in this manner will be taken up separately.



Sine of an intermediate angle, Interpolation
What about sines of angles which are not multiplies of α, that is, intermediate
angles? This is done by interpolation, as stated:
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Figure: Rsine of an intermediate angle.

R sin θ = R sin θi + R(θ − θi)

[

R sin(θi+1)− R sin(θi)

R(θi+1 − θi)

]

(θi = iα)

In his Khan. d. akhādyaka, Brahmagupta gives a second order interpolation

formula in the context of sine and cosine functions, but which is valid for an

arbitrary function too.



Second order Interpolation due to Brahmaguptaga;ta;Ba;ea;gya;Ka;Nq+.k+:a;nta:=+d;l+.
a;va;k+:l+.Ga;a;ta;Za;tEa;nRa;va;Æa;Ba:=+a;�a;ya;a Áta;dùÅ;au ;�a;ta;d;lM yua;ta;ea;nMa Ba;ea;gya;a;dU ;na;a;�a;Da;kM Ba;ea;gya;m,a Á Á
“Multiply the residual arc left after division by 900’ (α)
by half the difference of the tabular difference passed
over and that to be passed over and divide by 900’ (α);
by the result increase or decrease, as the case may be,
half the sum of the same two tabular differences; the
result which, less or greater than the tabular difference
to be passed, is the true tabular difference to be passed
over.”

Suppose one is given f [(i − 1)α], f (iα), f [(i + 1)α] etc.
(Brahmagupta : α = 900

′

. Residual arc left after division by
900

′

= βα).



Second order Interpolation

Then, according to the interpolation formula,

f (iα+ βα) = f (iα) +
βα

α

[

∆i+1 +∆i

2
+

β(∆i+1 −∆i)

2

]

where
∆i+1 = f [(i + 1)α]− f (iα)

∆i = f (iα)− f [(i − 1)α].

Compare with Taylor series:

f (iα+ βα) = f (iα) +
df
dx

∣

∣

∣

∣

x=iα
βα+

1
2

d2f
dx2

∣

∣

∣

∣

x=iα
β2α2



Second order Interpolation

So Brahmagupta is taking

df
dx

=
1
2

(

∆i+1

α
+

∆i−1

α

)

=
1
2

[

f [(i + 1)α]− f (iα)
α

+
f (iα) − f [(i − 1)α]

α

]

(Average of the rate of change at (i + 1)α and iα) and

d2f
dx2 =

∆i+1 −∆i

α2

=

[

f [(i + 1)α]− f (iα)
α

− f (iα)− f [(i − 1)α]
α

]

α

(“Derivative” of rate of change.) as should it be.



Exact values of Sines
Exact values of Sines.
Apart from finding Sines from the second order difference equation,
there is a method of finding the 24 Rsines exactly.
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Fig.19. Finding sin 30◦ and sin 45◦.

One knows that a regular hexagon inscribed in a circle has a side
which is equal to the radius of the circle, and that the angle subtended
by a side at the centre is 60◦, half of it which is 30◦. Then in Fig. 19 a,

r sin 30◦ =
r
2

∴ sin 30◦ =
1
2



Exact values of Sines

Similarly, if we take a right triangle whose sides are 1 and 1 and
the hypotenuse

√
2, then from Fig. 19 b,

sin 45◦ =
1√
2
.

Also it was known that sin2 θ + cos2 θ = 1. So, if one knows sin θ

cos θ =

√

1 − sin2 θ

In particular, in the 24-fold division, if we know the ith Rsine, that
is R sinα, We also know (24 − i)th Rsine, that is R sin[(24 − i)α],
as 24α = 90◦, and

R sin[(24 − i)α] = R sin[90◦ − iα] = R cos iα =

√

R2 − R2 sin2 iα



Finding Rsin(θ/2) from Rsin(θ)

It was realised that we can find R sin(θ/2) from R cos θ which can be
found from R sin θ. In his Brāhmasphut.asiddhānta, Brahmagupta says:o+.tkÒ +:ma;sa;ma;Ka;Nq+.gua;Na;v.ya;a;sa;a;t,a A;Ta;va;a ..
a;tua;TRa;Ba;a;ga;a;Q.�a;m,a Ákx +:tva;a o+.�+:Ka;Nq+.k+:a;�a;na .$ya;a:;dÄâ ;Ra;na;ya;nMa na;l+.Gva;sma;a;t,a Á Á

“The square root of the fourth part of the Versed Rsine of an
arc multiplied by the diameter is the Rsine of half that arc.”

That is,

R sin
(

θ

2

)

=

√

D
4

R(1 − cos θ) =

√

R
2

R(1 − cos θ) (D = 2R)

or sin2
(

θ

2

)

=
1
2
(1 − cos θ)



Rsin(θ/2) from Rsin(θ): Varāhamihira

In fact, this had been stated by Varāhamihira earlier in his
Pañcasiddhāntikā in Verse 5, Chapter 4, thus :I+.�;Ma;Za;
a;dõ ;gua;Na;ea;na;
a:�a;Ba:$ya;ya;ea;na;a �a;ya;~ya ..
a;a;pa:$ya;a Á:Sa;
a;�;gua;Na;a .sa;a k+.=+N�a;a ta;ya;a ;Drua;va;ea;na;a.Y;va;Zea;Sa;~ya Á Á

“Twice any desired arc is subracted from three signs
(i.e. 90◦),the Rsine of the remainder is subtracted from
the Rsine of three signs. The result multiplied by sixty is
the square of the Rsine of that arc.”

Here, he is again essentially saying :

(R sin θ)2 =
R
2

R(1 − cos θ),

with R = 120.



Finding the 24 Rsines

With the knowledge of the 8th sine which is sin 30◦ = 1/2, the
12th sine which is sin 45◦ = 1√

2
, (i/2)th sine from the i th sine,

(24 − i)th sine from the i th sine, the whole table of Rsines can be
generated. This is indicated thus, from the 8th sine:

8 → 16,

8 → 4,20; 4 → 2,22; 2 → 1,23; 22 → 11,13;

20 → 10,14; 10 → 5,19, 14 → 7,17

From the 12th sine

12 → 6,18; 6 → 3,21; 18 → 9,15

Of course R sin(24α) = R. So, 24 Rsines are found.

There would be lots of square roots on the way. So the method
is exact, but cumbersome.



Bhāskara’s jyotpatti: Finding sin(18◦)

Bhāskara’s ‘Jyotpatti’ (Generation of Rsines) is a part of
‘Golādhyāya’ which ia a part of ‘Siddhāntaśiroman. i’. It gives the
value of sin 18◦ and sin 36◦.

Verse 9.;
a:�a:$ya;a;kx +:t�a;a;Sua;Ga;a;ta;a;t,a mUa;lM ;
a:�a:$ya;ea;�a;na;tMa ..
a;tua;TRa;Ba;�+:m,a ÁA;�;a;d;Za;Ba;a;ga;a;na;Ma .$�a;a;va;a .~å.pa;�;a Ba;va;tyea;va;m,a Á Á
“Deduct the radius from the square root of the product
of the square of radius and 5 and divide the remainder
by 4; the quotient thus found will give the exact Rsine of
18◦.”

So, it states:

R sin 18◦ = R
[
√

5 − 1]
4



Proof of expression for sin(18◦)
Proof: Refer to the following figure, (with circle of radius R), where AÔB = 36◦,
and OÂB = OB̂A = 72◦. Let AD (D on OB) bisect the angle OÂB. So,
OÂD = 36◦. Both the triangles AOD and DAB are isosceles triangles, so

OD = AD = AB

O
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F
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36◦
36◦

72◦
72◦

108◦

Finding sin 18◦

OF bisects the angle AÔB = 36◦. OF is perpendicular to AB, AÔF = 18◦. Let
x = R sin 18◦.

AB = 2AF = 2R sin 18◦ = 2x

Now triangle, ABD is similar to the triangle OAB.

∴
AB
BD

=
OA
AB

∴ AB2 = OA.BD.



Proof of expression for sin(18◦)

Now, BD = OB − OD = OB − AB = R − 2x .

OA = R

∴ (2x)2 = R(R − 2x)

4x2 + 2Rx − R2 = O

∴ x =
−2R +

√
4R2 + 16R2

2 · 4
= R

[
√

5 − 1]
4

Hence,

R sin 18◦ = R
[
√

5 − 1]
4



sin(36◦) in jyotpatti

In Verse 7 of Jyotpatti, Bhāskara says:;
a:�a:$ya;a;kx +:t�a;a;Sua;Ga;a;ta;a;t,a ;
a:�a:$ya;a;kx +:�a;ta;va;gRa;pa:úãÁ*.a;Ga;a;ta;~ya ÁmUa;l+.ea;na;a;t,a A;�;&+.ta;a;t,a mUa;lM :Sa;	a;æÅÅò÷*M +.Za;dM ;Za:$ya;a Á Á
“Deduct the square root of five times the fourth power of
the radius, from 5 times the square of radius, and divide
the remainder by 8; the square root of the quotient will
be the Rsine of 36◦.”



sin(36◦) in jyotpatti

So, he says: R sin 36◦ =

√

5R2 −
√

5R4

8

or sin 36◦ =

√

5 −
√

5
8

This can be easily understood as follows:

sin 36◦ =

√

1
2
(1 − cos 72◦) =

√

1
2
(1 − sin 18◦)

=

√

√

√

√

1
2

{

1 −
√

5 − 1
4

}

=

√

4 − (
√

5 − 1)
8

=

√

5 −
√

5
8
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5. Brāhmasphut.asiddhānta of Brahmagupta, edited with
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