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Outline

I Review of the Cakravāla method
I Analysis of the Cakravāla method by Krishnaswami

Ayyangar
I History of the solution of the so called “Pell’s Equation”

X 2 − D Y 2 = 1
I Solution of “Pell’s equation” by expansion of

√
D into a

simple continued fraction.
I Bhāskara semi-regular continued fraction expansion of

√
D

I Optimality of the Cakravāla method.
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Cakravāla according to Bhāskara

In 1930, Krishnaswami Ayyangar showed that the cakravāla
procedure always leads to a solution of the vargaprakr. ti
equation with K = 1. He also showed that the kut.t.aka condition
(I) is equivalent to the simpler condition

(I′) Pi + Pi+1 is divisible by Ki

Thus, we shall use the cakravāla algorithm in the following form:

To solve X2 − D Y2 = 1 : Set X0 = 1,Y0 = 0,K0 = 1, P0 = 0.

Given Xi , Yi , Ki such that X 2
i − D Y 2

i = Ki

First find Pi+1 > 0 so as to satisfy:

(I′) Pi + Pi+1 is divisible by Ki

(II) |P2
i+1 − D| is minimum.
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Cakravāla according to Bhāskara

Then set

Ki+1 =
(P2

i+1−D)

Ki
Yi+1 =

(Yi Pi+1+Xi )
|Ki |

= aiYi + εi Yi−1

Xi+1 =
(Xi Pi+1+D Yi )

|Ki |
= Pi+1Yi+1− sign(Ki)Ki+1Yi = aiXi + εiXi−1

These satisfy X 2
i+1 − D Y 2

i+1 = Ki+1

Iterate till Ki+1 = ±1, ±2 or ±4, and then use bhāvanā if
necessary.

Note: We also need ai =
(Pi+Pi+1)
|Ki|

and εi =
(D−P2

i )

|D−P2
i |

with ε0 = 1

4



Bhāskara’s Example: X 2 − 67 Y 2 = 1

i Pi Ki ai εi Xi Yi
0 0 1 8 1 1 0
1 8 -3 5 1 8 1
2 7 6 2 1 41 5
3 5 -7 2 1 90 11
4 9 -2 9 -1 221 27
5 9 -7 2 -1 1,899 232
6 5 6 2 1 3,577 437
7 7 -3 5 1 9,053 1,106
8 8 1 16 1 48,842 5,967

488422 − 67. 59672 = 1

5



Analysis of the Cakravāla Process

In 1930, Krishnaswami Ayyangar presented a detailed analysis of the
cakravāla process. He explained how it is different from the Euler-
Lagrange process based on the simple continued fraction expansion
of
√

D. He also showed, for the first time, that the cakravāla process
always leads to a solution of the vargaprakr. ti equation with K = 1.

Let us consider the equations

X 2
i − D Y 2

i = Ki

P2
i+1 − D.12 = P2

i+1 − D

By doing bhāvanā of these, we get[
(XiPi+1 + D Yi )

|Ki |

]2

− D
[

(YiPi+1 + Xi )

|Ki |

]2

=
(P2

i+1 − D)

Ki

If we assume that Xi ,Yi and Ki are mutually prime, and if we choose
Pi+1 such that Yi+1 =

[
(Yi Pi+1+Xi )
|Ki |

]
is an integer, then it can be shown

that Xi+1 =
[
(Xi Pi+1+D Yi )

|Ki |

]
and Ki+1 =

(P2
i+1−D)

Ki
are both integers.
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Analysis of the Cakravāla Process

Further, we have

Xi+2 =

[
(Xi+1Pi+2 + D Yi+1)

|Ki+1|

]
= Xi+1

[
(Pi+2 + Pi+1)

|Ki+1|

]
+

Xi (D − P2
i+1)

|Ki | |Ki+1|
= ai+1 Xi+1 + εi+1 Xi

and similarly for Yi+2.

Therefore, instead of using the kut.t.aka process for finding Pi+2,
we can use the condition that

(I′) Pi+1 + Pi+2 is divisible by Ki+1.
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Analysis of the Cakravāla Process

Krishnaswami Ayyangar, then proceeds to a study of the quadratic
forms (Ki , Pi+1, Ki+1) which satisfy

P2
i+1 − Ki Ki+1 = D.

The form (Ki+1, Pi+2, Ki+2), which is obtained from (Ki , Pi+1, Ki+1)
by the cakravāla process, is called the successor of the latter.

Ayyangar defines a quadratic form

(A, B, C) ≡ Ax2 + 2Bxy + Cy2

to be a Bhāskara form if

A2 +

(
C2

4

)
< D and C2 +

(
A2

4

)
< D

He shows that the successor of a Bhāskara form is also a Bhāskara

form and that two different Bhāskara forms cannot have the same
successor.
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Analysis of the Cakravāla Process

Krishnaswami Ayyangar considers the general case when we
start the cakravāla process with an arbitrary initial solution

X 2
0 − D Y 2

0 = K0

He shows that if |K0| >
√

D, then the absolute values of the
successive Ki decrease monotonically, till say Km, after which
we have |Ki| <

√
D for i > m. He also shows that |Pi| < 2

√
D

for i > m.

Since |Ki | cannot go on decreasing, for some r > m we have
|Kr+1| > |Kr |. It can then be shown that (Kr , Pr+1, Kr+1) and
all the succeeding forms will be Bhāskara forms.

It can also be shown that the Pi ’s do not change sign and they
can all be taken to be positive.
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Analysis of the Cakravāla Process

If we start with X0 = 1, Y0 = 0 and K0 = 1, then we see that cakravāla
process leads to P1 = X1 = d , where d > 0 is the integer such that
d2 is the square nearest to D. Also Y0 = 1 and K1 = d2 − D.

Ayyangar shows that (K0, P1, K1) ≡ (1, d , d2 − D) is a Bhāskara
form. So is the form (d2 − D,d ,1) equivalent to it.

Since the values of Ki , Pi are bounded, the Bhāskara forms will have
to repeat in a cycle and the first member of the cycle is the same as
the first Bhāskara form which is obtained in the course of cakravāla.

Finally, Ayyangar shows that two different cycles of Bhāskara forms
are non-equivalent, and that all equivalent Bhāskara forms belong to
the same cycle. To show this, he sets up an association between a
Bhāskara form (Ki , Pi+1, Ki+1) and an equivalent Gauss form

(K
′

i , P
′

i+1, K
′

i+1), which satisfies
√

D − P
′

i+1 < |K
′

i | <
√

D + P
′

i+1.
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Analysis of the Cakravāla Process

If Pi+1 <
√

D, then

(K
′

i , P
′

i+1, K
′

i+1) ≡ (Ki ,Pi+1, Ki+1)

If Pi+1 >
√

D, then

K
′

i = Ki , P
′

i+1 = Pi+1 − |Ki | and K
′

i+1 = 2Pi+1 − |Ki | − |Ki+1|

In this way a Bhāskara cycle can be converted to a unique
Gauss cycle and vice versa, from which the above results
follow.

Thus, whatever initial solution we may start with, the cakravāla
process takes us to a cycle of equivalent Bhāskara forms and
since the Bhāskara form (d2 − D, d ,1) is in this equivalence
class, the cakravāla process invariably leads to a solution
corresponding to K = 1.
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Fermat’s Challenge to British Mathematicians (1657)
In February 1657, Pierre de Fermat (1601-1665) wrote to Bernard
Frenicle de Bessy asking him for a general rule “for finding, when any
number not a square is given, squares which, when they are
respectively multiplied by the given number and unity added to the
product, give squares.” If Frenicle is unable to give a general solution,
Fermat said, can he at least give the smallest values of x and y which
will satisfy the equations 61x2 + 1 = y2 and 109x2 + 1 = y2.

At the same time Fermat issued a general challenge, addressed to
the mathematicians in northern France, Belgium and England:

“...I propose the following theorem to be proved or problem
to be solved... Given any number whatever which is not a
square, there are also given infinite number of squares
such that, if the square is multiplied into the given number
and unity is added to the product, the result is a square.

Eg. Let it be required to find a square such that, if the
product of the square and the number 149, or 109, or 433
etc. be increased by 1, the result is a square.”
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Brounker-Wallis Solution

Fermat’s Challenge was addressed to William Brouncker (1620-1684)
and John Wallis (1616-1703). Brouncker’s first response merely
contained rational solutions and this led to Fermat complaining (in a
letter to the interlocutor Kenelm Digby in August 1657) that they were
no solutions at all to the problem that he had posed.

Brouncker then worked out his method of integral solutions which he
sent to Wallis to be communicated to Fermat. Wallis describes the
method of solution in two letters dated December 17, 1657 and
January 30, 1658. Later in 1658, Wallis published the entire corres-
pondence as Commercium Epistolicum. He also outlined the method
in his Algebra published in English in 1685 and in Latin in 1693.

We do not know what method Fermat had for the solution of the
problem he posed. Of course, he communicated to the English
mathematicians that he “willingly and joyfully acknowledges” the
validity of their solutions. He however wrote to Huygens in 1659 that
the English had failed to give “a general proof”, which according to
him could only be obtained by the “method of descent”.
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Euler-Lagrange Method of Solution

In a paper “De solution problematum Diophanterum per numerous
integros” written in 1730, Euler describes Wallis method, but ascribes
it to John Pell. He also shows that from one solution of “Pell’s
equation” an infinite number of solutions can be found and also
remarks that they give good approximations to square-roots.

In a paper, read in 1759 but published in 1767, entitled “De Usu novi
algoritmi in problemate Pelliano solvendo”, Euler describes the
method of solving X 2 − DY 2 = 1 by the simple continued fraction
expansion of

√
D. He gives a table of partial quotients for all

non-square integers from 2 to 120 and also notes their various
properties.

In a paper which was published earlier in 1764 Euler proved the
bhāvanā principle and called it “Theorema Elegantissimum”.

In a set of three papers presented to the Berlin Academy in 1768,
1769 and 1770, Joseph Louis Lagrange (1736-1813) worked out the
complete theory of simple continued fractions and their applications
to “Pell’s equation” along with all the necessary proofs.
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Relation with Continued Fraction Expansion

A simple continued fraction (ai are positive integers for i > 0)

a0 +
1

a1 +
1

a2 +
1
. . .

is also denoted by [a0, a1, a2, . . .] or by a0 + 1
a1+

1
a2+

. . .

Given any real number α, to get the continued fraction expansion,
take a0 = [α], the integral part of α.

Let α1 = 1
(α−[α]) . Then we take a1 = [α1]

Let α2 = 1
(α1−[α1])

. Then we take a2 = [α2], and so on.

a0, a1, a2, . . . are called partial quotients; α1, α2, . . . are the complete
quotients.
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Relation with Continued Fraction Expansion
The j-th convergent of the continued fraction

[a0, a1, a2, a3, . . .]

is given by
Aj

Bj
= [a0, a1, a2, a3, . . . ,aj ]

Aj , Bj satisfy the recurrence relations:

A0 = a0,A1 = a1a0 + 1,
Aj = ajAj−1 + Aj−2 for j ≥ 2
B0 = 1, B1 = a1,

Bj = ajBj−1 + Bj−2 for j ≥ 2

The convergents also satisfy

Aj Bj−1 − Aj−1Bj = (−1)j−1
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Relation with Continued Fraction Expansion

Example:
149
17

= [8,1,3,4]

The convergents are A0
B0

= 8
1 ,

A1
B1

= 9
1 ,

A2
B2

= 35
4 ,

A3
B3

= 149
17

We have A3 B2 − A2 B3 = 149.4− 35.17 = 1

This is very similar to the kut.t.aka method for solving
149x − 17y = 1.

Note: The simple continued fraction expansion of a real
number does not terminate if the number is irrational. For
instance

(1 +
√

5)

2
= [1,1,1,1, ...]

e = [2,1,2,1,1,4,1,1,6,1,1,8,1,1, . . .]
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Relation with Continued Fraction Expansion
It was noted by Euler that the simple continued fraction of

√
D is

always periodic and is of the form
√

D = [a0,a1, . . . ,ah−1,ah−1, . . . ,a1,2a0] if k = 2h − 1,
√

D = [a0,a1, . . . ,ah−1,ah,ah−1, . . . ,a1,2a0] if k = 2h,

where k is the length of the period, and that the associated
convergents Ak−1, Bk−1 satisfy

A2
k−1 − DB2

k−1 = (−1)k

Further, all the solutions of, X 2 − D Y 2 = 1 can be obtained by
composing (bhāvanā) of the above solution with itself.

These results were later proved by Lagrange.

Example: To solve X 2 − 13 Y 2 = 1

√
13 = 3 +

1
1+

1
1+

1
1+

1
1+

1
6+

A4
B4

= 18
5 and we have 182 − 13.52 = −1

Doing bhāvanā of this solution with itself, we get 6492 − 13.1802 = 1
18



Semi-Regular Continued Fractions

A semi-regular continued fraction is of the form

a0 +
ε1

a1+

ε2

a2+

ε3

a3+
. . .

where εi = ±1, ai ≥ 1 for i ≥ 1, and ai + εi+1 ≥ 1 for i ≥ 1.

Then the convergents satisfy the relations

A0 = a0, A1 = a1a0 + ε1,

Aj = aj Aj−1 + εjAj−2 for j ≥ 2
B0 = 1, B1 = a1,

Bj = ajBj−1 + εjBj−2 for j ≥ 2

19



Bhāskara Semi-Regular Continued Fractions

Krishnaswami Ayyangar showed that the cakravāla method of
Bhāskara corresponds to a periodic semi-regular continued function
expansion √

D = a0 +
ε1

a1+

ε2

a2+

ε3

a3+
. . .

where
ai = (Pi + Pi+1)/| Ki |, εi = (D − P2

i )/| D − P2
i |

and the convergents are related to the solutions Aj = Xj+1 and
Bj = Yj+1.

Note: The Simple Continued Fraction and the Nearest Integer
Continued Fraction can also be generated by a cakravāla type of
algorithm if we replace the condition II respectively by

(II’) D− P2
i+1 > 0 and is minimum

(II”) | Pi+1 −
√

D | is minimum
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Euler-Lagrange Method for X 2 − 67Y 2 = 1
i Pi Ki ai εi Xi Yi

0 0 1 8 1 1 0
1 8 -3 5 1 8 1
2 7 6 2 1 41 5
3 5 -7 1 1 90 11
4 2 9 1 1 131 16
5 7 -2 7 1 221 27
6 7 9 1 1 1678 205
7 2 -7 1 1 1899 232
8 5 6 2 1 3577 437
9 7 -3 5 1 9053 1106

10 8 1 16 1 48842 5967

The cakravāla algorithm is significantly more optimal than the
Euler-Lagrange algorithm as it skips several steps of the latter.

In the above table the steps which are skipped in cakravāla are
highlighted.
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Euler-Lagrange Method for X 2 − 67Y 2 = 1

The corresponding simple continued fraction expansion is
√

67 = 8 + 1
5+

1
2+

1
1+

1
1+

1
7+

1
1+

1
1+

1
2+

1
5+

1
16+

The Bhāskara nearest square continued fraction is given by
√

67 = 8 + 1
5+

1
2+

1
2+
−1
9+
−1
2+

1
2+

1
5+

1
16+
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Euler-Lagrange Method for X 2 − 61Y 2 = 1

i Pi Ki ai εi Xi Yi
0 0 1 7 1 1 0
1 7 -12 1 1 7 1
2 5 3 4 1 8 1
3 7 -4 3 1 39 5
4 5 9 1 1 125 16
5 4 -5 2 1 164 21
6 6 5 2 1 453 58
7 4 -9 1 1 1070 137
8 5 4 3 1 1523 195
9 7 -3 4 1 5639 722

10 5 12 1 1 24079 3083
11 7 -1 14 1 29718 3805
12 7 12 1 1 440131 56353

The steps which are skipped in cakravāla are highlighted.
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Euler-Lagrange Method for X 2 − 61Y 2 = 1

i Pi Ki ai εi Xi Yi
13 5 -3 4 1 469849 60158
14 7 4 3 1 2319527 296985
15 5 -9 1 1 7428430 951113
16 4 5 2 1 9747967 1248098
17 6 -5 2 1 26924344 3447309
18 4 9 1 1 63596645 8142716
19 5 -4 3 1 90520989 11590025
20 7 3 4 1 335159612 42912791
21 5 -12 1 1 1431159437 183241189
22 7 1 14 1 1766319049 226153980

The Corresponding simple continued fraction expansion is√
61 = 7 + 1

1+
1

4+
1

3+
1

1+
1

2+
1

2+
1

1+
1

3+
1

4+
1

1+
1

14+

The Bhāskara nearest square continued fraction is given by√
61 = 8 + −1

5+
1

4+
−1
3+

1
3+
−1
4+

1
5+

−1
16+
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Bhāskara or Nearest Square Continued Fraction

In the continued fraction development of
√

D, the complete
quotients are quadratic surds which may be expressed in the
standard form (P+

√
D)

Q , where P, Q and (D−P2)
Q are integers

prime to each other.

If a =
[
(p+
√

D)
Q

]
is the integral part of (P+

√
D)

Q , then we can have

(P +
√

D)

Q
= a +

Q
′

(P ′ +
√

D)
(1)

(P +
√

D)

Q
= (a + 1)− Q

′′

(P ′′ +
√

D)
(2)

where the surds in the rhs are also in the standard form.
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Bhāskara or Nearest Square Continued Fraction

In the Bhāskara or nearest square continued fraction develop-
ment we choose a as the partial quotient if

(i) | P ′2 − D | < | P ′′2 − D |, or
(ii) | P ′2 − D | = | P ′′2 − D | and Q < 0.

Then we set ε = 1.

Otherwise, we choose a + 1 and set ε = −1.

Note: If we start with
√

D, we always have Pi ≥ 0 and Qi > 0
and Ki = (−1)iε1ε2 . . . εi Qi
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Bhāskara or Nearest Square Continued Fraction
Krishnaswami Ayyangar showed that the Bhāskara or nearest square
continued fraction of

√
D is of the form

√
D = a0 +

ε1

a1+

ε2

a2+

ε3

a3+
. . .

εk−1

ak−1+

εk

2a0+

where k is the period. It has the following symmetry properties:

Type I: There is no complete quotient of the form

[p + q +
√

(p2 + q2)]

p
,

where p > 2q > 0 are mutually prime inters. Then, the Bhāskara
continued fraction for

√
D has same symmetry properties as in the

case of simple continued fraction expansion.

aν = ak−ν , 1 ≤ ν ≤ k − 1,
Qν = Qk−ν , 1 ≤ ν ≤ k − 1,
εν = εk+1−ν , 1 ≤ ν ≤ k ,
Pν = Pk+1−ν , 1 ≤ ν ≤ k .
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Bhāskara or Nearest Square Continued Fraction

Examples of Type I

√
61 = 8 +

−1
5+

1
4+

−1
3+

1
3+

−1
4+

1
5+

−1
16+

√
67 = 8 +

1
5+

1
2+

1
2+

−1
9+

−1
2+

1
2+

1
5+

1
16+

Type II: There is a complete quotient of the form

[p + q +
√

(p2 + q2)]

p

where p > 2q > 0 are mutually prime integers. In such a case,
the period k ≥ 4 and is even, and there is only one such
complete quotient which occurs at k

2 .
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Bhāskara or Nearest Square Continued Fraction

The symmetry properties are same as for Type I, except that

a k
2

= 2, ε k
2

= −1, ε k
2+1 = 1, a k

2−1 = a k
2+1 + 1, P k

2
6= P k

2+1

Examples of Type II

√
29 = 5 +

1
3+

−1
2+

1
2+

1
10+

√
53 = 7 +

1
4+

−1
2+

1
3+

1
14+

√
58 = 8 +

−1
3+

−1
2+

1
2+

−1
16+

√
97 = 10 +

−1
7+

−1
3+

−1
2+

1
2+

−1
7+

−1
20+

Clearly Type II situation is possible only when D is of the form
(p2 + q2) with p > 2q.
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Mid-point Criteria

In the case of simple continued fraction expansion of
√

D, the
mid-point criteria were given by Euler:

If Qh−1 = Qh (or | Kh−1 | = | Kh | ), then the period k = 2h − 1
and

Ak−1 = Ah−1 Bh−1 + Ah−2 Bh−2

Bk−1 = B2
h−1 + B2

h−2

which satisfy A2
k−1 − DB2

k−1 = −1

If Ph = Ph+1, then the period k = 2h and

Ak−1 = Ah−1Bh + Ah−2Bh−1

Bk−1 = Bh−1(Bh + Bh−2)

which satisfy A2
k−1 − DB2

k−1 = 1
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Mid-point Criteria

Recently, Mathews, Robertson and White (2010) have worked out
the mid-point criteria for the Bhāskara continued fraction expansion
of
√

D:

If Qh−1 = Qh (or | Kh−1 | = | Kh |) then the period k = 2h − 1 and

Ak−1 = Ah−1 Bh−1 + εh Ah−2 Bh−2

Bk−1 = B2
h−1 + εh B2

h−2

which satisfy A2
k−1 − DB2

k−1 = −εh

If Ph = Ph+1, then the period k = 2h and

Ak−1 = Ah−1 Bh + εh Ah−2 Bh−1

Bk−1 = Bh−1 (Bh + εh Bh−2)

which satisfy A2
k−1 − DB2

k−1 = 1

In the Type I case, the mid-point will invariably satisfy one of the
above two criteria.
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Mid-point Criteria

In the Type II case, the following is the mid-point criterion:

When Qh = |Kh | is even and

Ph = Qh +
(1

2

)
Qh−1 = | Kh |+

(1
2

)
| Kh−1 | and εh = 1,

then k = 2h and

Ak−1 = Ah Bh−1 − Bh−2(Ah−1 − Ah−2)

Bk−1 = 2B2
h−1 − Bh Bh−2

which satisfy A2
k−1 − DB2

k−1 = 1

These mid-point criteria serve to further simplify the
computation of the solution.
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Optimality of the Cakravāla Method

We have already remarked that the cakravāla process skips
certain steps in the Euler-Lagrange process. Sometimes the
period of the Euler-Lagrange continued fraction expansion
could be double (or almost double) the period of Bhāskara
expansion. This is seen for instance, for D=13, 44, 58:

BCF:
√

13 = 4 + −1
2+

1
2+
−1
8+

SCF:
√

13 = 3 + 1
1+

1
1+

1
1+

1
1+

1
6+

BCF:
√

44 = 7 + −1
3+
−1
4+
−1
3+

−1
14+

SCF:
√

44 = 6 + 1
1+

1
1+

1
1+

1
2+

1
1+

1
1+

1
1+

1
12+

BCF:
√

58 = 8 + −1
3+
−1
2+

1
2+

−1
16+

SCF:
√

58 = 7 + 1
1+

1
1+

1
1+

1
1+

1
1+

1
1+

1
14+
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Optimality of the Cakravāla Method

I We may note that whenever there is a ‘unisequence’
(1,1,...,1) of partial quotients of length n, the Bhāskara

process skips exactly n
2 steps if n is even, and (n+1)

2 steps
if n is odd.

I Selenius has shown that the cakravāla process is ‘ideal’ in
the sense that, whenever there is such a ‘unisequence’,
only those convergents Ai

Bi
are retained for which

Bi | Ai − Bi
√

D | are minimal.
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Optimality of the Cakravāla Method

Mathews et al have shown that the period of Bhāskara or nearest
square continued fraction is the same as that of the nearest integer
continued fraction. They estimate that the ratio of this period to that of
simple continued fraction is log

[
(1+
√

5)
2

]
≈ 0.6942419136 . . .

n Π (n) P (n) Π (n)/P (n)

1,000,000 152,198,657 219,245,100 0.6941941
2,000,000 417,839,927 601,858,071 06942499
3,000,000 755,029,499 1,087,529,823 0.6942609
4,000,000 1,149,044,240 1,655,081,352 0.6942524
5,000,000 1,592,110,649 2,293,328,944 0.6942356
6,000,000 2,078,609,220 2,994,112,273 0.6942322
7,000,000 2,604,125,007 3,751,067,951 0.6942356
8,000,000 3,165,696,279 4,559,939,520 0.6944208
9,000,000 3,760,639,205 5,416,886,128 0.6942437

10,000,000 4,387,213,325 6,319,390,242 0.6942463

Π(n) is the sum of the NSCF period lengths of
√

D up to n, D not a
square, and P(n) is the same for RCF.
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