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Yuktibhās. ā of Jyes.t.hadeva

The most detailed exposition of upapattis in Indian mathematics is
found in the Malayalam text Yuktibhās. ā (1530) of Jyes.t.hadeva.

At the beginning of Yuktibhās. ā, Jyes.t.hadeva states that his purpose is
to present the rationale of the results and procedures as expounded
in the Tantrasaṅgraha. Many of these rationales have also been
presented (mostly in the form of Sanskrit verses) by Śaṅkara Vāriyar
(c.1500-1556) in his commentaries Kriyākramakar̄ı (on L̄ılāvat̄ı) and
Yuktid̄ıpikā (on Tantrasaṅgraha)

Yuktibhās. ā has 15 chapters and is naturally divided into two parts,
Mathematics and Astronomy. In the Mathematics part, the first five
chapters deal with logistics, arithmetic of fractions, the rule of three
and the solution of linear indeterminate equations. Chapter VI
presents a detailed derivation of the Mādhava series for π, his
estimate of the end-correction terms and their use in transforming the
series to ensure faster convergence. Chapter VII discusses the
derivation of the Mādhava series for Rsine and Rversine. This is
followed by derivation of various results on cyclic quadrilaterals and
the surface area and volume of a sphere.
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Yuktibhās. ā Estimation of Samaghāta-Saṅkalita
The derivation of the Mādhava series for π crucially involves the
estimation, for large n, of the so called sama-ghāta-saṅkalita, which is
the sum of powers of natural numbers

S(k)
n = 1k + 2k + . . . nk

Firstly, it is noted that the mūla-saṅkalita

S(1)
n = 1 + 2 + . . . n =

n(n + 1)
2

≈ n2

2
for large n

Then, we are asked to write the varga-saṅkalita as

S(2)
n = n2 + (n − 1)2 + . . .+ 12

and subtract it from

n S(1)
n = n [n + (n − 1) + . . .+ 1]

and get
n S(1)

n − S(2)
n = 1.(n − 1) +2.(n − 2) +3.(n − 3) + . . . +(n − 1) .1

= (n − 1) +(n − 2) +(n − 3) + . . . +1
+(n − 2) +(n − 3) + . . . +1

+(n − 3) + . . . +1 + . . .
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Estimation of Samaghāta-Saṅkalita

Thus,

n S(1)
n − S(2)

n = S(1)
n−1 + S(1)

n−2 + S(1)
n−3 + . . . .

Since we have already estimated S(1)
n ≈ n2

2 , it is argued that

n S(1)
n − S(2)

n ≈ (n − 1)2

2
+

(n − 2)2

2
+

(n − 3)2

2
+ . . .

n S(1)
n − S(2)

n ≈
S(2)

n−1

2

Therefore

S(2)
n ≈ n3

3
for large n.
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Estimation of Samaghāta-Saṅkalita

Similarly it is shown that

S(3)
n ≈ n4

4
for large n.

Then follows an argument based, on mathematical induction, to
demonstrate the same estimate in the case of a general
sama-ghāta-saṅkalita.

First it is shown that the excess of n S(k−1)
n over S(k)

n can be
expressed in the form

n S(k−1)
n − S(k)

n = S(k−1)
n−1 + S(k−1)

n−2 + S(k−1)
n−3 + . . .
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Estimation of Samaghāta-Saṅkalita

If the lower order saṅkalita S(k−1)
n has already been estimated to be,

S(k−1)
n ≈ nk

k , for large n, then the above relation leads to

n S(k−1)
n − S(k)

n ≈ (n − 1)k

k
+

(n − 2)k

k
+

(n − 3)k

k
+ . . .

≈
(

1
k

)
S(k)

n−1

[Note: C. T. Rajagopal and co-workers have pointed out that the
above argument may be made more rigorous by using an argument
analogous to the one used in the proof of the Cauchy- Stolz Theorem]

Thus we get the estimate

S(k)
n ≈ nk+1

(k + 1)
for large n.
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Yuktibhās. ā Estimation of Vārasaṅkalita

The proof of the Mādhava series for Rsine and Rcosine
functions, depends crucially on the estimate, for large n, of the
general repeated sum V (r)

n (saṅkalitaikya or vārasaṅkalita) of
natural numbers, given by

V (1)
n = 1 + 2 + 3 + ...+ n =

n(n + 1)
2

V (r)
n = V (r−1)

1 + V (r−1)
2 + . . .+ V (r−1)

n

In Gan. itakaumud̄ı (c.1356) of Nārāyan. a Pan. d. ita, we find the
formula

V (r)
n =

n(n + 1) . . . (n + r)
(r + 1)!

The above result is also known to the Kerala Astronomers, but
they prefer to derive the estimate for V (r)

n , for large n, by
mathematical induction.

8



Estimation of Vārasaṅkalita

Now,

V (1)
n =

n(n + 1)
2

≈ n2

2
for large n.

We can express V (2)
n in the form

V (2)
n = V (1)

n + V (1)
n−1 + . . .

≈ n2

2
+

(n − 1)2

2
+ . . . =

S(2)
n

2

Using the estimate

S(2)
n ≈ n2

3
,

we get

V (2)
n ≈ n3

6
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Estimation of Vārasaṅkalita

Similarly, if we write the general repeated sum as

V (r)
n = V (r−1)

n + V (r−1)
n−1 + . . .

And, if we have already obtained

V (r−1)
n ≈ nr

(r)!
,

then we get,

V (r)
n ≈ nr

(r)!
+

(n − 1)r

(r)!
+ . . .

≈ S(r)
n

(r)!

≈ nr+1

(r + 1)!
for large n.
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Yuktibhās. ā Derivation of Mādava Serires for π
Yuktibhās. ā has presented the following derivation of the Mādhava
series for the ratio of the circumference of a circle to its diameter. For
this purpose consider the quadrant OEAS of the square which
circumscribes the circle of radius r . The eastern side of the quadrant
is divided into a large number n of equal parts AiAi+1 = r

n .

Join the hypotenuses (karn. as) O A1, O A2, . . . which meet the circle
at C1, C2, . . . Drop the perpendiculars, AiPi and CiQi onto OAi+1.
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Derivation of Mādhava Series for π

If we note that the triangles AiPiAi+1 and OEAi+1 are similar
and that the triangles OCiQi and OAiPi are similar, then we get

CiQi = AiPi

(
OCi

OAi

)
= AiAi+1

(
OE

OAi+1

)(
OCi

OAi

)
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Derivation of Mādhava Series for π
We shall approximate the arc-bits CiCi+1, by the corresponding
Rsines, CiQi . It is noted that larger the n the more accurate will be
the result.

If we denote the hypotenuse OAi as ki , then we get

C
8
≈
( r

n

)[( r2

k0k1

)
+

(
r2

k1k2

)
+ . . .+

(
r2

kn−1kn

)]
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Derivation of Mādhava Series for π
It is noted that when n is large,

1
kiki+1

≈
(

1
2

)[
1
k2

i
+

1
k2

i+1

]
and that the earlier sum for the circumference can be replaced by

C
8
≈
( r

n

)[( r2

k2
1

)
+

(
r2

k2
2

)
+ . . .+

(
r2

k2
n

)]
If we note that

k2
i = r2 +

(
ir
n

)2

then we get

C
8
≈
( r

n

) r2(
r2 +

( r
n

)2
)
+

 r2(
r2 +

( 2r
n

)2
)
+ . . .+

(
r2

r2 +
( nr

n

)2

)
Note: The above expression is essentially the integral of the arc-tan
function from 0 to π

4 .
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Derivation of Mādhava Series for π
Each of the terms in the above sum for the circumference can be
expanded as a binomial series (which has been derived earlier in
Yuktibhās. ā) and we get, on regrouping the terms,

C
8

=
( r

n

)
[1 + 1 + . . . . . .+ 1]

−
( r

n

)( 1
r2

)[( r
n

)2
+

(
2r
n

)2

+ . . .+
(nr

n

)2
]

+
( r

n

)( 1
r4

)[( r
n

)4
+

(
2r
n

)4

+ . . .+
(nr

n

)4
]

− . . . . . .

Now, each of the sama-ghāta-saṅkalita or sums of powers of integers
can be estimated (when n is large) in the manner explained earlier
and we obtain the Mādhava series

C
4d

= 1− 1
3
+

1
5
− . . .+ (−1)n 1

(2n + 1)
+ . . .
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Yuktibhās. ā Derivation of the End-Correction Terms

The Mādhava series (or the so called Leibniz series) for the
circumference of a circle (in terms of odd numbers p = 1,3,5, . . . )

C = 4d
[
1− 1

3
+ . . .+ (−1)

(p−1)
2

1
p
+ . . .

]
is an extremely slowly convergent series. Adding fifty terms of the
series will give the value of π correct only to the first decimal place.

In order to facilitate computation, Mādhava has given a procedure of
using end-correction terms (antya-sam. skāra), of the form

C = 4d
[
1− 1

3
+ . . .+ (−1)

(p−1)
2

1
p
+ (−1)

(p+1)
2

1
ap

]
Both Yuktibhās. ā and Kriyākramakar̄ı give a derivation of the
successive end correction terms given by Mādhava, which involve a
careful estimate of the inaccuracy (sthaulya) at each stage in terms of
inverse powers of the odd number p.
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Derivation of the End-Correction Terms

Now, if the end-correction is made after the odd-number p − 2,

C = 4d
[
1− 1

3
+ . . .+ (−1)

(p−3)
2

1
(p − 2)

+ (−1)
(p−1)

2
1

ap−2

]
If the end-correction were exact, comparing the two equations, we
would have

1
ap−2

+
1
ap

=
1
p

It is noted that the above equation cannot be satisfied by the trivial
choice

ap = ap−2 = 2p

This is because if ap = 2p, then ap−2 will have to be 2(p − 2); or, if
ap−2 = 2p, then ap will have to be 2(p + 2).

The method of Yuktibhās. ā is therefore to iteratively solve for ap so as
to minimise the inaccuracy (sthaulya) given by

E(p) =
1

ap−2
+

1
ap
− 1

p
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Derivation of the End-Correction Terms

The first approximation to the correction divisor is

ap = 2p + 2

Then the inaccuracy will be

E(p) =
1

(2p − 2)
+

1
(2p + 2)

− 1
p

=
1

(p3 − p)

In fact, if we choose any other form for ap which is linear in p,
such as ap = 2p + 3 or ap = 2p − 1 etc., E(p) will pick up a p
term in the numerator also, so that for large p our inaccuracy
will be much larger than in the case of ap = 2p + 2.
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Derivation of the End-Correction Terms
Now, the next choice for the correction divisor should be such that we
add a number less than one to the earlier correction-divisor. We try

ap = (2p + 2) +
A

2p + 2

If we choose the correction-divisor in the form

ap = (2p + 2) +
4

(2p + 2)

then we get the end-correction given by Mādhava

1
ap

=

{
(p+1)

2

}
{(p + 1)2 + 1}

The corresponding inaccuracy can be shown to be

E(p) =
−4

(p5 + 4p)

Again, if we choose A = 3 or 5 (or any other number), we find that the
inaccuracy E(p) will pick up a p term in the numerator also.
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Derivation of the End-Correction Terms

The finer end-correction given by Mādhava corresponds to the
correction-divisor

ap = (2p + 2) +
4{

(2p + 2) + 16
(2p+2)

}
The corresponding inaccuracy

E(p) =
2304

(64p7 + 448p5 + 1792p3 − 2304p)

=
36

[(p3 − p){(p − 1)2 + 5}{(p + 1)2 + 5}]

Again, if we choose 15, 17 (or any other number) instead of 16,
we find that the inaccuracy E(p) will pick up a p2 term in the
numerator.
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Derivation of the End-Correction Terms

Carrying this process further, we find that the end-correction
term 1

ap
can be expressed as a continued fraction:

1
ap

=
1

(2p + 2) +
22

(2p + 2) +
42

(2p + 2) +
62

(2p + 2) + . . .
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Yuktibhās. ā Derivation of the Mādhava Sine Series
Given an arc EC = s = Rx , divide it into n equal parts. The
pin. d. a-jyās Bj = CjPj , kot.i-jyās Kj = OPj and śaras Sj = PjE , with
j = 0, 1 . . ., are given by

Bj = R sin
(

jx
n

)
,Kj = R cos

(
jx
n

)
,Sj = Rvers

(
jx
n

)
= R

[
1− cos

(
jx
n

)]
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Yuktibhās. ā Derivation of the Mādhava Sine Series
Let CjCj+1 be the (j + 1)-th arc-bit. Let Mj+1 be the mid-point of the
arc-bit CjCj+1 and similarly Mj the mid-point of the previous (j-th)
arc-bit. Let the full-chord of the equal arc-bits s

n be denoted α. We
can easily see that the triangles Cj+1FCj and Mj+1GMj are similar to
OQj+1Mj+1 and OPjCj respectively.
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Derivation of the Mādhava Sine Series

We can thus show,

Bj+1 − Bj =
(α

R

)
Kj+ 1

2
and Kj− 1

2
− Kj+ 1

2
= Sj+ 1

2
− Sj− 1

2
=
(α

R

)
Bj

Therefore, the second order Rsine differences (jyā-khan. d. āntaras) are
given by

(Bj − Bj−1)− (Bj+1 − Bj) =
(α

R

)(
Sj+ 1

2
− Sj− 1

2

)
=
(α

R

)2
Bj

Hence

Sn− 1
2
− S 1

2
=

(α
R

)
(B1 + B2 + . . .+ Bn−1)

Bn − n B1 = −
(α

R

)2
[B1 + (B1 + B2) + . . .+ (B1 + B2 + . . .+ Bn−1)]

= −
(α

R

)(
S 1

2
+ S 3

2
+ . . .+ Sn− 1

2
− nS 1

2

)
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Derivation of the Mādhava Sine Series
The above relations are exact. Now, if B and S are the jyā and śara of
the arc s, in the limit of very large n, we have

Bn ≈ B, Sn− 1
2
≈ S, S 1

2
≈ 0, α ≈ s

n
and hence

S ≈
( s

nR

)
(B1 + B2 + . . .+ Bn−1)

B − n B1 ≈ −
( s

nR

)2
[B1 + (B1 + B2) + . . .+ (B1 + B2 + . . .+ Bn−1)]

In the above relations, we first approximate the Rsines (jyā-khan. d. as)
by the arcs (cāpas), Bj ≈ js

n , and make use of the estimates for sums
and repeated sums of natural numbers for large n, to get

S ≈
(

1
R

)(s
n

)2
(1 + 2 + . . .+ n − 1) ≈ s2

2R

B ≈ n
(s

n

)
−
(

1
R

)2 (s
n

)3
[1 + (1 + 2) + . . .+ (1 + 2 + . . .+ n − 1)]

≈ s − s3

6R2
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Derivation of the Mādhava Sine Series
We now substitute the above second approximation for jyā-cāpāntara

Bj ≈
js
n
−

(
js
n

)3

6R2

Then we get the next approximation

S ≈ s2

2R
− s4

24R2

B ≈ s − s3

6R2 +
s5

120R4

The above more refined approximation for jyā-cāpāntara is again fed
back into our original equations for B and S, and so on. In this way,
we are led to the series given by Mādhava for Rsine and Rversine

R sin
( s

R

)
= R

[( s
R

)
−
( s

R

)3

3!
+

( s
R

)5

5!
− . . .

]

R − R cos
( s

R

)
= R

[( s
R

)2

2!
−
( s

R

)4

4!
+

( s
R

)6

6!
− . . .

]
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Upapatti and “Proof”

The following are some of the important features of upapattis in
Indian mathematics:

1. The Indian mathematicians are clear that results in
mathematics, even those enunciated in authoritative texts,
cannot be accepted as valid unless they are supported by
yukti or upapatti. It is not enough that one has merely
observed the validity of a result in a large number of
instances.

2. Several commentaries written on major texts of Indian
mathematics and astronomy present upapattis for the
results and procedures enunciated in the text.

3. The upapattis are presented in a sequence proceeding
systematically from known or established results to finally
arrive at the result to be established.
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Upapatti and “Proof”

4. In the Indian mathematical tradition the upapattis mainly
serve to remove doubts and obtain consent for the result
among the community of mathematicians.

5. The upapattis may involve observation or experimentation.
They also depend on the prevailing understanding of the
nature of the mathematical objects involved.

6. The method of tarka or ”proof by contradiction” is used
occasionally. But there are no upapattis which purport to
establish existence of any mathematical object merely on
the basis of tarka alone. In this sense the Indian
mathematical tradition takes a ”constructivist” approach to
the existence of mathematical objects.
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Upapatti and “Proof”

7. The Indian mathematical tradition did not subscribe to the
ideal that upapattis should seek to provide irrefutable
demonstrations establishing the absolute truth of
mathematical results.

8. There was no attempt made in Indian mathematical
tradition to present the upapattis in an axiomatic framework
based on a set of self-evident (or arbitrarily postulated)
axioms which are fixed at the outset.

9. While Indian mathematicians made great strides in the
invention and manipulation of symbols in representing
mathematical results and in facilitating mathematical
processes, there was no attempt at formalization of
mathematics.

29



Lessons from History

“However vagaries of the external world were not by them-
selves responsible for the failure of Greek mathematics to
advance materially beyond Archimedes. There were also
internal factors that suffice to explain this failure. These
impeding factors centred on the rigid separation in Greek
mathematics between geometry and arithmetic (or algebra),
and a one-sided emphasis on the former. Their analysis dealt
solely with geometrical magnitudes – lengths, areas, volumes –
rather than numerical ones, and their manipulation of these
magnitudes was exclusively verbal or rhetorical, rather than
analytic (or algebraic as we would say today).” ...
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Lessons from History

“It is somewhat paradoxical that this principal shortcoming of
Greek mathematics stemmed directly from its principal virtue –
the insistence on absolute logical rigour. The Greeks imposed
on themselves standards of exact thought that prevented them
from using and working with concepts that they could not
completely and precisely formulate. For this reason they
rejected irrationals as numbers, and excluded all traces of the
infinite, such as explicit limit concepts, from their mathematics.
Although the Greek bequest of deductive rigour is the
distinguishing feature of modern mathematics, it is arguable
that, had all succeeding generations also refused to use real
numbers and limits until they fully understood them, the
calculus might never have been developed, and mathematics
might now be a dead and forgotten science.” 1

1C. H. Edwards, The Historical Development of the Calculus, Springer,
1979, p.78-79.
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Lessons from History

“It is high time that the full story of Indian mathematics from vedic
times through 1600 became generally known. I am not minimizing the
genius of the Greeks and their wonderful invention of pure mathe-
matics, but other peoples have been doing math in different ways,
and they have often attained the same goals independently. Rigorous
mathematics in the Greek style should not be seen as the only way to
gain mathematical knowledge. In India where concrete applications
were never far from theory, justifications were more informal and
mostly verbal rather than written. One should also recall that the
European enlightenment was an orgy of correct and important but
semi-rigorous math in which Greek ideals were forgotten. The recent
episodes with deep mathematics flowing from quantum field theory
and string theory teach us the same lesson: that the muse of
mathematics can be wooed in many different ways and her secrets
teased out of her. And so they were in India...”2

2David Mumford, Review of Kim Plofker, Mathematics in India, Notices of
AMS 2010, p.390.
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Lessons from History

Ever since the seminal work of Needham, who showed that till
around the sixteenth century Chinese science and technology
seem to have been more advanced than their counterparts in
Europe, it has become fashionable for historians of science to
wonder “Why modern science did not emerge in non-western
societies?”

In the work of the Kerala School, we notice clear anticipations
of some of the fundamental discoveries which are associated
with the emergence of modern science, such as the mathe-
matics of infinite series and the development of new
geometrical models of planetary motion.
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Lessons from History

It seems therefore more appropriate to investigate “Why
science did not flourish in non-western societies after the 16th
Century?”

It would be worthwhile to speculate “What would have been the
nature of modern science (and the modern world) had sciences
continued to flourish in non-western societies?” In this way we
could gain some valuable insights regarding the sources and
the nature of creativity of geniuses such as Srinivasa
Ramanujan, Jagadish Chandra Bose, Prafulla Chandra Roy,
Chandrasekhara Venkata Raman, and others, in modern India.
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Lessons from History
“Japanese have been looking to the West ever since the middle of the
Edo period [1603-1868]. This not only holds true with the Western
culture in general, but in particular in the fields of science and tech-
nology. Certainly the discipline of modern science originated in the
seventeenth century in Western countries. Before that, however,
perspectives of nature, as well as approaches to it, differed
considerably according to place, nationality and time. This fact
suggests that the modern-scientific view of, and approach to, nature
is neither unique nor absolutely correct, and that there are alter-
natives as to the direction modern science should take.

We hope that the study of the history of sciences in India, China, and
Korea, which have all had a great influence upon the Japanese cul-
ture including the indigenous science, will make us consider the past,
present, and future of our own culture (and) science and enhance our
understanding of neighbouring countries. It is with this view in mind
that we are studying the history of exact science such as mathematics
and astronomy from East-Asian and South-Asian countries.”3

3Prof. Takao Hayashi, Science and Engineering Research Institute,
Doshisha University http://engineering.doshisha.ac.jp/english/kenkyu/-
labo/scie/sc-01/index.html.
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5. Tantrasaṅgraha of Nı̄lakan. t.ha with Yuktid̄ıpikā of Śaṅkara
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