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I Vārasaṅkalita of Nārāyan. a Pan.d. ita (c.1356)
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I Mādhava Series for π and end-correction terms
I A history of approximations and exact expressions for π
I Nı̄lakan. t.ha’s formula for instantaneous velocity (c.1500)

I Proofs in Indian Mathematics
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Mahāv̄ırācārya on the all-pervasiveness of Gan. ita

l;Ea:�a.k+.ke ;vEa:�a.d:ke va.a:�a.pa ta:Ta.a .sa.a:ma.a:
a.ya:ke Y:�a.pa yaH Á
v.ya.a:pa.a.=;~ta.�a .sa:vRa.�a .sMa:K.ya.a:na:mua:pa:yua.$ya:tea Á Á
k+a:ma:ta.n:�eaY:TRa:Za.a:~:�ea ..ca ga.a:nDa:veRa na.a:f:ke Y:�a.pa va.a Á
.sUa:pa:Za.a:~:�ea ta:Ta.a ;vEa:dùÅ;ae va.a:~tua:�a.va:dùÅ;a.a:�a.d:va:~tua:Sua Á Á
C+nd.eaY:l+ñÍöÐÅÅ*:;a.=;k+a:v.yea:Sua ta:kR +.v.ya.a:k+=;Na.a:�a.d:Sua Á
k+.l;a:gua:Nea:Sua .sa:veRa:Sua :pra:~tua:tMa ga:�a.Na:tMa :pa.=;m,a Á Á
.sUa:ya.Ra:�a.d:g{a:h:.ca.a:=e ;Sua g{a:h:Nea g{a:h:sMa:yua:ta.Ea Á
;�a�a:pra.(îéae ..ca:ndÒ ;vxa.�a.Ea ..ca .sa:vRa.�a.a:ñÍç ÅÅ*:� ;a:kx +.tMa ;�a.h ta:t,a Á Á
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Mahāv̄ırācārya on the all-pervasiveness of Gan. ita

dõ� .a:pa:sa.a:ga.=;ZEa:l;a:na.Ma .sMa:K.ya.a:v.ya.a:sa:pa:�a=;�a.[a:paH Á
Ba:va:na:v.ya:nta.=:$ya.ea:	a.ta:l;eRa:k+.k+.�pa.a:	a.Da:va.a:�a.sa:na.a:m,a Á Á
na.a.=;k+a:Na.Ma ..ca .sa:veRa:Sa.Ma (rea:N�a.a:ba:nDea:ndÒ ;k+ea:tk+=:aH Á
:pra:k� +a:NRa:k+.pra:ma.a:Na.a:dùÅ;a.a bua:Dya:ntea ga:�a.Na:tea:na .tea Á Á
:pra.a:�a.Na:na.Ma ta.�a .sMa:~Ta.a:na:ma.a:yua.=;�:gua:Na.a:d:yaH Á
ya.a.�a.a:dùÅ;a.aH .sMa:�a.h:ta.a:dùÅ;a.a:(ãÉa .sa:veRa .tea ga:�a.Na:ta.a:(ra:ya.aH Á Á
ba:hu :�a.Ba:�a.vRa:pra:l;a:pEaH ;�a.kM :�Ea:l;ea:k�+.ae .sa:.ca.=:a:.ca:=e Á
ya:��a.tkM +.
a..ca:�a.dõ :~tua ta:tsa:v a ga:�a.Na:tea:na ;�a.va:na.a na ;�a.h Á Á 1

1ma:h.a:v�a.a.=:a:.ca.a:yRa:�a.va.=;
a..ca:ta-ga:�a.Na:ta:sa.a.=;sa:ñÍç ÅÅ*:" +hH 1.9-16
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Mahāv̄ırācārya on the all-pervasiveness of Gan. ita

“All activities which relate to worldly, vedic or religious affairs
make use of enumeration (saṅkhyāna). In the art of love,
economics, music, dramatics, in the art of cooking, in medicine,
in architecture and such other things, in prosody, in poetics and
poetry, in logic, grammar and such other things, and in relation
to all that constitute the peculiar value of the arts, the science of
calculation (gan. ita) is held in high esteem. In relation to the
movement of the sun and other heavenly bodies, in connection
with eclipses and conjunction of planets, and in the determina-
tion of direction, position and time (tripraśna) and in (knowing)
the course of the moon – indeed in all these it (gan. ita) is
accepted (as the sole means).”
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Mahāv̄ırācārya on the all-pervasiveness of Gan. ita

“The number, the diameter and perimeter of the islands,
oceans and mountains; the extensive dimensions of the rows of
habitations and halls belonging to the inhabitants of the world,
of the interspaces between the worlds, of the world of light, of
the world of the Gods and of the dwellers in hell, and other
miscellaneous measurements of all sorts all these are
understood by the help of gan. ita. The configuration of living
beings therein the length of their lives, their eight attributes and
other similar things, their staying together, etc. – all these are
dependent on gan. ita.

Why keep talking at length? In all the three worlds involving
moving and non-moving entities, there is nothing that can be
without the science of calculation (gan. ita).”2

2Gan. itasārasaṅgraha of Mahāv̄ırācārya (c.850), 1.9-16.
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Gan. ita: Indian Mathematics of Computation
ga:Nya:tea .sMa:K.ya.a:ya:tea ta:d, ga:�a.Na:ta:m,a Á ta:tpra:	a.ta:pa.a:d:k+.tvea:na ta:tsMa:¼Ma
Za.a:~:�a:mua:.cya:tea Á

As noted by Gan. eśa Daivajña, in his commentary Buddhivilāsin̄ı
(c.1540) on L̄ılāvat̄ı (c.1150), Gan. ita (Indian Mathematics) is
the science (art) of computation. Indian Mathematical Texts
give rules to describe systematic and efficient procedures of
calculation.

Here is an ancient rule for squaring as cited by Bhāskara I
(C.629 AD)

A:ntya:pa:d:~ya va:g a kx +.tva.a ;�a.dõ :gua:NMa ta:de :va ..ca.a:ntya:pa:d:m,a Á
Zea:Sa:pa:dE .=:a:h:nya.a:t,a o+tsa.a:ya.eRa:tsa.a:yRa va:gRa:�a.va:Da.Ea Á Á
In the process for calculating the square, the square of the
last digit is found (and placed over it). The rest of the digits
are multiplied by twice the last digit (and the results placed
over them). Then (omitting the last digit), moving the rest by
one place each, the process is repeated again and again.
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Gan. ita: Indian Mathematics of Computation

An Example: To calculate 1252

1 5 6 2 5
25 52 = 25

4 20 22 = 4, 5.2.2 = 20
1 4 10 12 = 1, 2.2.1 = 4, 5.2.1 = 10
1 2 5

Note: This ancient rule for squaring, uses n(n−1)
2 multiplications

for squaring an n-digit number.

The modern word algorithm derives from the medieval word
algorism, which referred to the Indian methods of calculation
based on the place value system. The word algorism itself is a
corruption of the name of the Central Asian mathematician al
Khwarizmi (c.825) whose Hisab al Hindi was the source from
which the Indian methods of calculation reached the Western
world.
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Śāstras: Present Systematic Procedures

Most of the canonical texts on different disciplines (́sāstras) in
Indian tradition do not present a series of propositions; instead
they present a series of rules, which serve to characterize and
carry out systematic procedures to accomplish various ends.

These systematic procedures are variously referred to as vidhi,
kriyā or prakriyā, sādhana, karma or parikarma, karan. a, etc., in
different disciplines.

These rules are often formulated in the form of sūtras or kārikās.
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Śāstras: Present Systematic Procedures

Pān. ini’s As.t.ādhyāȳı is acknowledged to be the paradigmatic
example of a canonical text in Indian tradition. All other
disciplines, especially mathematics, have been deeply
influenced by its ingenious symbolic and technical devices,
recursive and generative formalism and the system of
conventions governing rule application and rule interaction. In
recent times it has had a deep influence on modern linguistics
too.

“Modern linguistics acknowledges it as the most com-
plete generative grammar of any language yet written
and continues to adopt technical ideas from it”.3

3P. Kiparsky, Pān. inian Linguistics, in Encyclopaedia of Language and
Linguistics, VI, 1994
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Pān. ini and Euclid

“In Euclid’s geometry, propositions are derived from axioms with the
help of logical rules which are accepted as true. In Pān. ini’s grammar,
linguistic forms are derived from grammatical elements with the help
of rules which were framed ad hoc (i.e. sūtras)....

Historically speaking, Pān. ini’s method has occupied a place
comparable to that held by Euclid’s method in Western thought.
Scientific developments have therefore taken different directions in
India and in the West....

In India, Pān. ini’s perfection and ingenuity have rarely been matched
outside the realm of linguistics. Just as Plato reserved admission to
his Academy for geometricians, Indian scholars and philosophers are
expected to have first undergone a training in scientific linguistics....”4

Note: The word “derived” means “demonstrated” in the case of
Euclidean Geometry; it means “generated” in the case of Pān. ini’s
Grammar (upapatti and nis.patti)

4J. F. Staal, Euclid and Pān. ini, Philosophy East and West, 15, 1965,
99-116
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Development of Indian Mathematics I
Ancient Period (Prior to 500 BCE)

I Śulvasūtras (prior to 800 BCE): The oldest texts of
geometry. They give procedures for construction and
transformation of geometrical figures and alters (vedi)
using rope (rajju) and gnomon (́saṅku).

I The ancient astronomical siddhāntas are from this period.

Early Classical Period (500 BCE - 500 CE)
I Pervasive influence of the methodology of Pān. ini’s

As.t.ādhyāȳı

I Piṅgala’s Chandah. sūtra (c.300 BCE) and the development
of binary representation and combinatorics

I Mathematical ideas in Bauddha and Jaina Texts
I The notion of zero and the decimal place value system
I Mathematics and Astronomy in Āryabhat.ı̄ya (c.499 CE):

Most of the standard procedures in arithmetic, algebra,
geometry and trigonometry are perfected by this time.
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Baudhāyana-Śulvasūtra (Prior to 800 BCE)

I Units of measurement (Bhūmiparimān. a)
I Marking directions and construction of a square of a given

side (Samacaturaśra-karan. a)
I Construction of a rectangle and isosceles trapezium of

given sides

I Construction of
√

2 (Dvikaran. ı̄),
√

3 and
(

1√
3

)
times a

given length
I The square of the diagonal of a rectangle is the sum of the

squares of its sides (Bhujā-Kot.i-Karn. a-Nyāya – Oldest
Theorem in Geometry)

d� .a:GRa:.ca:tua.=;(ra:~ya.a:[Na:ya.a.=:êêÁ*.au H :pa.a.(õ;Ra:ma.a:n�a.a ;	a.ta:yRa.ñÍíéÁÁ*+;.a:n�a.a ..ca ya:t,a :pxa:Ta:gBUa:tea
ku +�+.ta:~ta:du :Ba:yMa k+=:ea:	a.ta Á
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Baudhāyana-Śulvasūtra

◮ Construction of squares which are the sum and difference of
two squares

◮ Transforming a square into a rectangle, isosceles trapezium,
isosceles triangle and a rhombus of equal area and vice
versa

◮ Approximate conversion of a square of side a into a circle of
radius

r ≈
(a

3

)

(2 +
√

2). [π ≈ 3.0883]

◮ An approximation for (2)
1
2 (dvikaran. ı̄):

√
2 ≈ 1 +

1
3
+

1
3.4

− 1
3.4.34

= 1.4142156

◮ Positions, relative distances and areas of altars. Shapes of
different altars and their construction.



Kātyāyana-Śulvasūtra

To construct a square which is n-times a given square

ya.a:va:tpra:ma.a:Na.a:
a.na .sa:ma:.ca:tua.=;(ra.a:Nyea:k� +a:k+.t ua ;
a..ca:�a.k+.SeRa:t,a O;:k+ea:na.a:
a.na ta.a:
a.na
Ba:va:�//�a.nta ;	a.ta:yRa:k, ;�a.dõ :gua:Na.a:nyea:k+.ta O;:k+a:	a.Da:k+a:
a.na Á �ya:
a.~åò:a:BRa:va:	a.ta
ta:~yea:Sua:~ta:tk+=:ea:	a.ta Á (k+a:tya.a:ya:na:Zua:�ba:sUa.�a:m,a 6.7)
As many squares as you wish to combine into one, the
transverse line will be one less than that. Twice the side will
be one more than that. That will be the triangle. Its arrow
(altitude) will produce that.

AD2 = AB2 − BD2

=

[
(n + 1)a

2

]2

−
[
(n − 1)a

2

]2

= na2.
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Varn. a-Meru of Piṅgala

The number of metrical forms with r gurus (or laghus) in the
prastāra of metres of n-syllables is the binomial coefficient nCr .

Halāyudha’s commentary (c.950) on Piṅgala-sūtras (c.300
BCE) explains the basic rule for the construction of the above
table, which is the recurrence relation

nCr =
n−1 Cr−1 +

n−1 Cr
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Decimal Place Value System

The Indian Mathematicians developed the decimal place value
system along with the notion of the zero-number.

The place value system is essentially an algebraic concept:

5203 = 5.103 + 2.102 + 0.10 + 3 is analogous to 5x3 + 2x2 + 0x + 3

It is this algebraic technique of representing all numbers as
polynomials of a base number, which makes all the calculations
systematic and simple.

The algorithms developed in India for multiplication, division and
evaluation of square, square-root, cube and cube-root, etc., have
become the standard procedures. They have contributed immensely
to the simplification and popularisation of mathematics the world over.

Sometimes, the Indian texts also discuss special techniques of
calculation which are based on the algebraic formalism underlying
the place value system. For instance, the Buddhivilāsin̄ı (c.1540)
commentary of Gan. eśa Daivajña discusses the “vertical and
cross-wise” (vajrābhyāsa) technique of multiplication.

18



Development of Decimal Place Value System
I The Yajurveda-Sam. hitā talks of powers of 10 up to 1012

(parārdha).
I The Upanis.ads talk of zero (́sūnya, kha) and infinity (Pūrn. a).
I Pān. ini’s As.t.ādhyāȳı uses the idea of zero-morpheme (lopa).
I The Bauddha and Naiyāyika philosophers discuss the notions of

śūnya and abhāva.
I Piṅgala’s Chandah. śāstra uses zero as a marker (Rupe śūnyam).
I Philosophical works such as the works of Vasumitra (C.50 CE)

and Vyāsabhās.ya on Yogasūtra refer to the way the same symbol
acquires different meanings in the place value system.

ya:TEa:k+a :=e ;Ka.a Za:ta:~Ta.a:nea Za:tMa d:Za:~Ta.a:nea d:Za O;:k+a ..ca O;:k+.~Ta.a:nea ya:Ta.a
..cEa:k+.tvea:�a.pa .~:��a.a ma.a:ta.a ..ca.ea:.cya:tea du :�a.h:ta.a ..ca .~va:sa.a ..cea:	a.ta Á

I Amongst the works whose dates are well established, decimal
place value system occurs for the first time in the
Vr. ddhayavanajātaka (c.270 CE) of Sphūj̄ıdhvaja.

I Āryabhat.ı̄ya (499 CE) of Āryabhat.a presents all the standard
methods of calculation based on the place value system.
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Development of Decimal Place Value System

An eighth century inscription in a Vis.n. u Temple in Gwalior,
depicting the number 270 in decimal place value format. There
are inscriptions of early 7th century in Southeast Asia which
depict numbers in place value format.
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Indian Place Value System Acclaimed Universally

“I will omit all discussion of the science of the Hindus, a people
not the same as Syrians, their subtle discoveries in the science
of astronomy, discoveries that are more ingenious than those of
the Greeks and the Babylonians; their computing that
surpasses description. I wish only to say that this computation
is done by means of nine signs. If those who believe because
they speak Greek, that they have reached the limits of science
should know these things, they should be convinced that there
are also others who know something.”5

5Syrian Monophysite Bishop Severus Sebokht (c.662)
21



Indian Place Value System Acclaimed Universally

“By the time I was ten I had mastered the Koran and a great
deal of literature, so that I was marveled at for my
aptitude. . . Now my father was one of those who has responded
to the Egyptian propagandist (who was an Ismaili); he, and my
brother too, had listened to what they had to say about the
Spirit and the Intellect, after the fashion in which they preach
and understand the matter. . . Presently they began to invite me
to join the movement, rolling on their tongues talk about
philosophy, geometry, Indian arithmetic: and my father sent me
to a certain vegetable-seller who used the Indian arithmetic, so
that I might learn it from him.”6

6From The Autobiography of the Islamic Philosopher Scientist Ibn Sina
(980-1037)
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Indian Place Value System Acclaimed Universally

“It is India that gave us the ingenious method of expressing all
numbers by means of ten symbols, each symbol receiving a
value of position as well as an absolute value; a profound and
important idea which appears so simple to us now that we
ignore its true merit. But its very simplicity and the great ease
which it has lent to all computations put our arithmetic in the
first rank of useful inventions; and we shall appreciate the
grandeur of this achievement the more when we remember that
it escaped the genius of Archimedes and Apollonius, two of the
greatest men produced by antiquity.”7

“To what height would science now have been if Archimedes
made that discovery [place value system]!”8

7Pierre-Simon Laplace
8Carl Friedrich Gauss
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Gan. itapāda of Āryabhat.ı̄ya (499 CE)

The following topics are dealt with in 33 verses of Gan. itapāda of
Āryabhat.ı̄ya:

I Sam. khyāsthāna: Place values.
I Vargaparikarma, ghanaparikarma: Squaring and cubing.
I Vargamūlānayana: Obtaining the square-root.
I Ghanamūlānayana: Obtaining the cube-root.
I Area of a triangle and volume of an equilateral tetrahedron.
I Obtaining the area of a circle, volume of a sphere.
I Obtaining the area of a trapezium.
I Chord of a sixth of the circumference.
I Approximate value of the circumference (π ≈ 3.1416)
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Gan. itapāda of Āryabhat.ı̄ya

I Jyānayana: Computing table of Rsines
I Chāyā-karma: Obtaining shadows of gnomons.
I Karn. ānayana: Square of the hypotenuse is the sum of the

squares of the sides.
I Śarānayana: Arrows of intercepted arcs
I Śred. h̄ı-gan. ita: Summing an AP, finding the number of

terms, repeated summations
I Varga-ghana-saṅkalanānayana: Obtaining the sum of

squares and cubes of natural numbers.
I Mūlaphalānayana: Interest and principal
I Trairāśika: Rule of three
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Gan. itapāda of Āryabhat.ı̄ya

I Bhinna-parikarma: Arithmetic of fractions.
I Pratiloma-karan. a: Inverse processes
I Samakaran. a-uddeśaka-pradarśana: Linear equation with

one unknown
I Yogakālānayana: Meeting time of two bodies
I Kut.t.ākāra-gan. ita: Solution of linear indeterminate equation

Thus, by the time of Āryabhat.ı̄ya, Indian mathematicians had
systematised most of the basic procedures of arithmetic,
algebra, geometry and trigonometry that are generally taught in
schools to-day, and many more that are more advanced (such
as kut.t.aka and sine-tables) and are of importance in astronomy.
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Computation of Sines From Second Order
Sine-Differences

Computation of Rsine-table (accurate to minutes in a circle of
circumference 21,600 minutes), by the method of second-order
Rsine-differences, in Āryabhat.ı̄ya of Āryabhat.a (c.499)

:pra:Ta:ma.a:�a.a:pa.$ya.a:Da.Ra:dùÅ;aE .�+nMa Ka:�//�a.Nq+tMa ;�a.dõ :t�a.a:ya.a:DRa:m,a Á
ta:tpra:Ta:ma.$ya.a:Da. a:ZEa:~tEa:~tEa.�+na.a:
a.na Zea:Sa.a:�a.Na Á Á

Bj = Rsin(jh), j = 1,2, . . . ,24,h = 225′

4j = Bj+1 − Bj

Rsines are to be computed from the relations:

4j+1 −4j = −Bj

[
(41 −42)

B1

]
≈
−Bj

B1

B1 ≈ 225′
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Āryabhat.a’s Sine Table
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Development of Indian Mathematics II
Later Classical Period (500 CE - 1250 CE)

I Works of Varāhamihira: Pañcasiddhāntikā (c.505). Br. hatsam. hitā

I Works of Bhāskara I (c.629): Āryabhat.ı̄yabhās.ya,
Mahābhāskar̄ıya and Laghubhāskar̄ıya

I Works of Brahmagupta: Brāhmasphut.asiddhānta (c.628 CE)
Khan. d. a-khādyaka (c.665): Mathematics of zero and negative
numbers. Development of algebra.

I Bakhshāl̄ı Manuscript (c. 7-8th century?)

I Works of Śr̄ıdhara, Lalla (c.750), Govindasvāmin (c.800)

I Gan. itasārasaṅgraha of Mahāv̄ırācārya (c.850)

I Works of Pr.thūdakasvāmin (c.860), Muñjāla (c.932),
Āryabhat.a II (c.950), Śr̄ıpati (c.1039) and Jayadeva (c.1050)

I Works of Bhāskarācārya II (c.1150): L̄ılāvat̄ı, Bı̄jagan. ita, and
Siddhānta-Śiroman. i: They became the canonical texts of Indian
mathematics and astronomy. Upapattis (proofs) in Bhāskara’s
Vāsanābhās.yas
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Gandhayukti of Varāhamihira
Chapter 76 of the great compilation Br. hatsam. hitā of Varāhamihira
(c.550) is devoted to a discussion of perfumery. In verse 20, Varāha
mentions that there are 1,820 combinations which can be formed by
choosing 4 perfumes from a set of 16 basic perfumes

(
16C4 = 1820

)
.

:Sa.ea:q+Za:ke dÒ ;v.ya:ga:Nea ..ca:tua:�a.vRa:k+.�pea:na ;�a.Ba:dùÅ;a:ma.a:na.a:na.a:m,a Á
A:�.a:d:Za .ja.a:ya:ntea Za:ta.a:
a.na .sa:�a.h:ta.a:
a.na ;�a.vMa:Za:tya.a Á Á

In verse 22, Varāha gives a method of construction of a meru (or a
tabular figure) which may be used to calculate the number of
combinations. This verse also very briefly indicates a way of
arranging these combinations in an array or a prastāra.

:pUa:veRa:Na :pUa:veRa:Na ga:tea:na yua:�M .~Ta.a:nMa ;�a.va:na.a:ntyMa :pra:va:d:�//�a.nta .sa:*ñÍËÉ ùÁ+;a.a:m,a Á
I+.cC;a:�a.va:k+.�pEaH kÒ +.ma:Za.eaY:�a.Ba:n�a.a:ya n�a.a:tea ;
a.na:vxa:�a�aH :pua:na.=;nya:n�a.a:	a.taH Á Á
Bhat.t.otpala (c.950) in his commentary has explained both the
construction of the meru and the method of los. t.aprastāra of the
combinations.

30



Gandhayukti of Varāhamihira
16
15 120
14 105 560
13 91 455 1820
12 78 364 1365
11 66 286 1001
10 55 220 715

9 45 165 495
8 36 120 330
7 28 84 210
6 21 56 126
5 15 35 70
4 10 20 35
3 6 10 15
2 3 4 5
1 1 1 1

In the first column the natural numbers are written. In the second
column, their sums, in the third the sums of sums, and so on. One
row is reduced at each step. The above meru is based on the relation.

nCr =
n−1 Cr−1 +

n−2 Cr−1 + . . . . . .+r−1 Cr−1
31



Brāhmasphut.asiddhānta of Brahmagupta (c.628)

Topics dealt with in Chapter XII, Gan. itādhyāya (Arithmetic and
Geometry)

I Arithmetic of fractions
I Cube root
I Reduction of fractions
I Rule of three
I Interest problems
I Area of a triangle, diagonals and area of cyclic

quadrilateral
I Rational triangles and cyclic quadrilaterals
I Circumference, area and chords of a circle
I Excavations, piles etc
I Shadow problems
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Brāhmasphut.asiddhānta of Brahmagupta
Topics dealt with in Chapter XVIII, Kut.t.akādhyāya (Algebra)

I Solutions of linear indeterminate equations by kut.t.aka process
and its applications in astronomical problems

I Rule of signs and arithmetic of zero

I Surds (karan. ı̄)

I Operations with unknowns (varn. a-s.ad. vidha or avyakta-s.ad. vidha)

I Equations with single unknown (ekavarn. a-s.amı̄karan. a)

I Elimination of middle term in quadratic equations
(madhyamāharan. a)

I Equations with several unknowns (anekavarn. a-samı̄karan. a)

I Equations with products of unknowns (bhāvita)

I Vargaprakr. ti: Second order indeterminate equation
x2 − Dy2 = 1. Bhāvanā and applications to finding rational and
integral solutions.

I Various problems
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Brahmagupta’s Formulae for Cyclic Quadrilaterals

The diagonals e, f are given in terms of the sides a,b,c,d, by the
formulae

e =

√
(ab + bc)(ac + bd)

ab + cd
, f =

√
(ab + cd)(ac + bd)

ad + bc

The area is given by

A = [(s − a)(s − b)(s − c)(s − d)]
1
2 with s =

(a + b + c + d)
2
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Brahmagupta’s Bhāvanā

mUa:lM ;�a.dõ :Dea:�:va:ga.Ra:d, gua:Na:k+.gua:Na.a:�a.d:�:yua:ta:�a.va:h� .a:na.a:�a Á
A.a:dùÅ;a:va:Da.ea gua:Na:k+.gua:NaH .sa:h.a:ntya:Ga.a:tea:na kx +.ta:ma:ntya:m,a Á Á
va.j"a:va:DEa:k�+.aM :pra:Ta:mMa :pra:[ea:paH [ea:pa:va:Da:tua:�yaH Á
:pra:[ea:pa:Za.ea:Da:k+.&+tea mUa:le :pra:[ea:pa:ke .�+pea Á Á

If X 2
1 − D Y 2

1 = K1 and X 2
2 − D Y 2

2 = K2 then

(X1X2 ± D Y1 Y2)
2 − D(X1Y2 ± X2Y1)

2 = K1K2

In Particular given X 2 − DY 2 = K , we get the rational solution

[(X 2 + DY 2)/K ]2 − D[(2XY )/K ]2 = 1

Also, if one solution of the equation X 2 − DY 2 = 1 is found, an
infinite number of solutions can be found, via

(X ,Y )→ (X 2 + DY 2,2XY )
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Cakravāla Algorithm of Bhāskarācārya II (c.1150)

To solve X2 − DY2 = 1

Set Xo = 1,Y0 = 0,K0 = 1 and P0 = 0.

Given Xi ,Yi ,Ki such that X 2
i − DY 2

i = Ki

First find Pi+1 so as to satisfy:

(I) Pi + Pi+1 is divisible by Ki

(II) |Pi+1
2 − D| is minimum.

Then set

Ki+1 =
(Pi+1

2 − D)

Ki

Yi+1 =
(YiPi+1 + Xi)

|Ki |
, Xi+1 =

(XiPi+1 + DYi)

|Ki |

These satisfy Xi+1
2 − D Yi+1

2 = Ki+1

Iterate till Ki+1 = ±1,±2 or ±4, and then use bhāvanā if necessary.
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Bhāskara’s Example: X 2 − 61Y 2 = 1

i Pi Ki ai εi Xi Yi
0 0 1 8 1 1 0
1 8 3 5 -1 8 1
2 7 -4 4 1 39 5
3 9 -5 3 -1 164 21

To find P1 : 0 + 7,0 + 8,0 + 9 . . . divisible by 1. Of them 82 closest to
61. Hence, P1 = 8,K1 = 3

To find P2 : 8 + 4,8 + 7,8 + 10 . . . divisible by 3. Of them 72 closest to
61. Hence, P2 = 7,K2 = −4

After the second step, we have: 392 − 61× 52 = −4

Since K = −4, we can use bhāvanā principle to obtain

X = (392 + 2)
[( 1

2

)
(392 + 1)(392 + 3)− 1

]
= 1,766,319,049

Y =
( 1

2

)
(39× 5)(392 + 1)(392 + 3) = 226,153,980

17663190492 − 61× 2261539802 = 1
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Tātkālika-gati: Instantaneous Velocity of a Planet

◮ Approximate formula for velocity (manda-gati) in terms of
Rsine-differences was given by Bhāskara I (c.630) and he
also comments on its limitation (Laghu-bhāskar̄ıya 2.14-15).

◮ True velocity (sphut.a-manda-gati) in terms of Rcosine (as
the derivative of Rsine) is given in Laghu-mānasa of Muñjāla

(c. 932) and Mahā-siddhānta of Āryabhat.a II (c. 950).
◮ Bhāskara II (c.1150) discusses the notion of instantaneous

velocity (tātkālika-gati) and contrasts it with the so-called
true daily motion. He also evaluates the manda-gati and
ś̄ıghra-gati (Vāsanā on Siddhānta-Śiroman. i 2.37-39).

◮ Bhāskara II notes the relation between maximum equation
of centre (correction to displacement) and the vanishing of
velocity correction (Vāsanā on Siddhānta-śiroman. i, Gola

4.3).



Development of Indian Mathematics III
Medieval Period (1250 -1850)

I Gan. itasārakaumud̄ı (in Prakrita) of T. hakkura Pherū (c.1300) and
other works in regional languages such as Vyavahāragan. ita (in
Kannada) of Rājāditya and Pāvulūrigan. itamu (in Telugu) of
Pāvulūri Mallana.

I Gan. itakaumud̄ı and Bı̄jagan. itāvatam. sa of Nārāyan. a Pan.d. ita
(c. 1350)

I Mādhava (c.1350): Founder of the Kerala School. Infinite series
for π, sine and cosine functions and fast convergent approxima-
tions to them.

I Works of Parameśvara (c.1380-1460)
I Works of Nı̄lakan. t.ha Somayāj̄ı (c.1444-1540): Revised planetary

model
I Systematic exposition of Mathematics and Astronomy with

proofs in Yuktibhās. ā (in Malayalam) of Jyes.t.hadeva (c.1530) and
commentaries Kriyākramakar̄ı and Yuktid̄ıpikā of Śaṅkara
Vāriyar (c.1540).
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Development of Indian Mathematics III (contd.)

Medieval Period (1250 - 1850)

I Works of Jñānarāja (c.1500), Gan. eśa Daivajña (b.1507),
Sūryadāsa (c.1541) and Kr.s.n. a Daivajña (c.1600):
Commentaries with upapattis

I Works of Mun̄ı́svara (b.1603) and Kamalākara (b.1616)
I Mathematics and Astronomy in the Court of Savai

Jayasim. ha (1700-1743). Translation from Persian of Euclid
and Ptolemy.

I Works of later Kerala astronomers Acyuta Pis.ārat.i
(c.1550-1621), Putumana Somayāj̄ı (c.1700) and
Śaṅkaravarman (c. 1830)

I Candraśekhara Sāmanta of Orissa: All the major lunar
inequalities (1869)
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Nārāyan. a Pan.d. ita on Vārasaṅkalita (c.1350)
Āryabhat.ı̄ya, gives the sum of the sequence of natural numbers

1 + 2 + . . .+ n =
n(n + 1)

2
as also the result of first order repeated summation:

1.2
2

+
2.3
2

+ . . .+
n(n + 1)

2
=

n(n + 1)(n + 2)
6

Āryabhat.a’s result for repeated summation was generalised to
arbitrary order by Nārāyan. a Pan.d. ita (c.1350). Let

1 + 2 + 3 + . . .+ n =
n(n + 1)

2
= V (1)

n

Then, Nārāyan. a’s result is

V (r)
n = V (r−1)

1 + V (r−1)
2 + . . .+ V (r−1)

n

=
[n(n + 1) . . . (n + r)]

[1.2 . . . (r + 1)]
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Nārāyan. ā’s Folding Method for Samagarbha (4nx4n)
Magic Squares

.sa:ma:ga:BeRa :dõe k+a:yeRa C;a:d:k+.sMa:¼Ma ta:ya.ea:BRa:vea:de :k+.m,a Á
C;a:dùÅ;a.a:�a.Ba:Da.a:na:ma:nya:tk+=;sMa:pua:f:va:�a .sMa:pua:f.ea ¼ea:yaH Á Á
I+�.a:d� .a:�:.ca:ya.a:ñÍöÐÅÅ*:;a Ba:dÒ ;�a.ma:ta.a mUa:l+pa:�a.ñÍï Ùôå ÅÅ*:+sMa:¼a.a:dùÅ;a.a Á
ta:dõ :d:B�a.a:�///�a.psa:ta:mua:Ka:.ca:ya:pa:�a.ñÍï Ùôå ÅÅ*:+(ãÉa.a:nya.a :pa.=:a:K.ya.a .~ya.a:t,a Á Á
mUa:l;a:K.ya:pa:�a.ñÍï Ùôå ÅÅ*:+ya.ea:ga.ea:
a.na:tMa :P+lM :pa.=;sa:ma.a:sa:sMa:Ba:�+.m,a Á
l+b.Da:h:ta.a :pa.=;pa:�a.ñÍï Ùôå ÅÅ*:+gRua:Na.ja.a:K.ya.a .sa.a Ba:vea:t,a :pa:�a.ñÍï Ùôå ÅÅ*:H Á Á
mUa:l+gua:Na.a:K.yea :pa:ñÍï Ùôå ÅÅ*:� ;a yea .tea Ba:dÒ :a:DRa:ta:~tua :pa:�a=;vxa.�ea Á
�+.DvRa:�////�a.~Ta:tEa:~ta:d:ñÍöÐÅÅ*:E +ZC;a:d:k+.sMa:C;a:dùÅ;a:ya.eaH :pxa:Ta:gya.a:
a.na Á Á
;	a.ta:yRa:ëÐÅëÐÁ*:+ea:�:a:nya.a:dùÅ;ae Y:nya:ta.=;�///////�a.sma:�Ua:DvRa:ga.a:
a.na k+ea:�:a:
a.na Á
Ba:dÒ ;~ya.a:D a kÒ +.ma:gEa.�+.tkÒ +.ma:gEaH :pUa.=;yea:d:DRa:m,a Á Á
Ba:dÒ :a:Na.a:�a.ma:h:sa:}å.pua:f:�a.va:	a.Da.�+.�+ea nxa:h:�a=;ta:na:yea:na Á
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Nārāyan. a’s Folding Method

Nārāyan. a’s Example: To construct 4x4 square adding to 40

Choose a mūlapaṅkti: 1, 2, 3, 4

Choose a parapaṅkti: 0, 1, 2, 3

The find the gun. a = [40−(1+2+3+4)]
[0+1+2+3] = 5

Form the gun. apaṅkti by multiplying the parapaṅkti by gun. a:
0,5,10,15

Then form the chādya (covered) and chādaka (coverer) squares:

2 3 2 3
1 4 1 4
3 2 3 2
4 1 4 1

5 0 10 15
10 15 5 0

5 0 10 15
10 15 5 0
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Nārāyan. a’s Folding Method

To construct 4x4 square adding to 40

Samput.ı̄karan. a (folding) gives

2+15 3+10 2+0 3+5
1+0 4+5 1+15 4+10
3+15 2+10 3+0 2+5 =
4+0 1+5 4+15 1+10

17 13 2 8
1 9 16 14
18 12 3 7
4 6 19 11

Nārāyan. a also displays the other square which is obtained by
interchanging the coverer and the covered.

Note: This method leads to a pan-diagonal magic square. That
is, the broken diagonals also add up to the same magic sum.
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Mādhava Series for π and End-correction Terms
The following verses of Mādhava are cited in Yuktibhās. ā and
Kriyākramakar̄ı, which also present a detailed derivation of the
relation between diameter and the circumference:

v.ya.a:sea va.a:�a=;	a.Da:
a.na:h:tea .�+pa:&+tea v.ya.a:sa:sa.a:ga.=:a:�a.Ba:h:tea Á
;�a�a:Za.=:a:�a.d:�a.va:Sa:ma:sa:*ñÍËÉ ùÁ+;a.a:Ba:�+.mxa:NMa .~vMa :pxa:Ta:k, kÒ +.ma.a:t,a ku +.ya.Ra:t,a Á Á 1 Á Á
ya:tsa:*ñÍËÉ ùÁ+;a:ya.aY.�a h.=;Nea kx +.tea ;
a.na:vxa.�a.a &+	a.ta:~tua .ja.a:�a.ma:ta:ya.a Á
ta:~ya.a �+.DvRa:ga:ta.a ya.a .sa:ma:sa:*ñÍËÉ ùÁ+;a.a ta:�;lM gua:Na.eaY:ntea .~ya.a:t,a Á Á 2 Á Á
ta:dõ :ga.eRa .�+pa:yua:ta.ea h.a.=:ea v.ya.a:sa.a:�/�a.b.Da:Ga.a:ta:taH :pra.a:gva:t,a Á
ta.a:Bya.a:ma.a:�Ma .~va:mxa:Nea kx +.tea ;Da:nea [ea:pa O;:va k+=;N�a.a:yaH Á Á 3 Á Á
l+b.DaH :pa:�a=;	a.DaH .sUa:[ma.ea ba:hu :kx +.tva.ea h.=;Na:ta.eaY:	a.ta:sUa:[maH .~ya.a:t,a Á Á 4 Á Á

The first verse gives the Mādhava series

Paridhi = 4×Vyāsa×
(

1− 1
3
+

1
5
− 1

7
+ . . . . . .

)
45



Mādhava Series for π and End-correction Terms
The Mādhava series for the circumference of a circle (in terms of odd
numbers p = 1,3,5, . . .) can be written in the form

C = 4d
[
1− 1

3
+ . . .+ (−1)

(p−1)
2

1
p
+ . . .

]
This is an extremely slowly convergent series. In order to facilitate
computation, Mādhava has given a procedure of using end-correction
terms (antya-sam. skāra), of the form

C = 4d
[
1− 1

3
+ · · ·+ (−1)

(p−1)
2

1
p
+ (−1)

(p+1)
2

1
ap

]
In fact, the famous verses of Mādhava, which give the relation
between the circumference and diameter, also include an
end-correction term

C = 4d
[
1− 1

3
+ . . .+ . . . (−1)

(p−1)
2

1
p

]

+(−1)
(p+1)

2

{
p+1

2

}
{(p + 1)2 + 1}
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Mādhava Series for π and End-correction Terms

Mādhava has also given a finer end-correction term

A:ntea .sa:ma:sa:*ñÍËÉ ùÁ+;a.a:d:l+va:gRaH .sEa:k+ea gua:NaH .sa O;:va :pua:naH Á Á
yua:ga:gua:�a.Na:ta.ea .�+pa:yua:taH .sa:ma:sa:*ñÍËÉ ùÁ+;a.a:d:l+h:ta.ea Ba:vea:d, h.a.=H Á

C = 4d
[
1− 1

3
+ . . .+ . . . (−1)

(p−1)
2

1
p

]

+(−1)
(p+1)

2

[(
p+1

2

)2
+ 1
]

[
((p + 1)2 + 5)

(
(p+1)

2

)]
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Mādhava Series for π and End-correction Terms

To Mādhava is attributed a value of π accurate to eleven
decimal places which is obtained by just computing fifty terms
with the above correction.

;�a.va:bua:Da:nea.�a:ga.ja.a:�a.h:hu :ta.a:Za:na:�a�a:gua:Na:vea:d:Ba:va.a.=;Na:ba.a:h:vaH Á
na:va:
a.na:Ka:vRa:�a.ma:tea vxa:	a.ta:�a.va:~ta:=e :pa:�a=;	a.Da:ma.a:na:�a.ma:dM .ja:ga:du :bRua:Da.aH Á Á

The π value given above is:

π ≈ 2827433388233
9× 1011 = 3.141592653592 . . .
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A History of Approximations to π

Approximation to π Accuracy Method Adopted
(Decimal
places)

Rhind Papyrus - Egypt 256
81 = 3.1604 1 Geometrical

(Prior to 2000 BCE)
Babylon (2000 BCE) 25

8 = 3.125 1 Geometrical
Śulvasūtras (Prior to 3.0883 1 Geometrical
800 BCE)
Jaina Texts (500 BCE)

√
(10) = 3.1623 1 Geometrical

Archimedes (250 BCE) 3 10
71<π<3 1

7 2 Polygon doubling
(6.24 = 96 sides)

Ptolemy (150 CE) 3 17
120 = 3.141666 3 Polygon doubling

(6.26 = 384 sides)
Lui Hui (263) 3.14159 5 Polygon doubling

(6.29 = 3072 sides)
Tsu Chhung-Chih 355

113 = 3.1415929 6 Polygon doubling
(480?) 3.1415927 7 (6.29 = 12288 sides)
Āryabhat.a (499) 62832

20000 = 3.1416 4 Polygon doubling
(4.28 = 1024 sides)
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A History of Approximations to π

Approximation to π Accuracy Method Adopted

(Decimal

places)

Mādhava (1375) 2827433388233
9.1011 11 Infinite series with

= 3.141592653592 . . . end corrections

Al Kasi (1430) 3.1415926535897932 16 Polygon doubling

(6.227 sides)

Francois Viete (1579) 3.1415926536 9 Polygon doubling

(6.216 sides)

Romanus (1593) 3.1415926535 . . . 15 Polygon doubling

Ludolph Van Ceulen 3.1415926535 . . . 32 Polygon doubling

(1615) (262 sides)

Wildebrod Snell 3.1415926535 . . . 34 Modified Polygon doubling

(1621) (230 sides)

Grienberger (1630) 3.1415926535 . . . 39 Modified Polygon doubling

Isaac Newton (1665) 3.1415926535 . . . 15 Infinite series
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A History of Approximations to π

Abraham Sharp (1699) 3.1415926535 . . . 71 Infinite series

for tan−1
(

1√
3

)
John Machin (1706) 3.1415926535 . . . 100 Infinite series relation

π
4 = 4tan−1

(
1
5

)
−

tan−1
(

1
239

)
Ramanujan (1914), 17 Modular Equation

Gosper (1985) Million

Kondo, Yee (2010) 5 Modular Equation

Trillion
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A History of Exact Results for π

Mādhava (1375) π/4 = 1− 1/3 + 1/5− 1/7 + . . .

π/
√

12 = 1− 1/3.3 + 1/32.5− 1/33.7 + . . .

π/4 = 3/4 + 1/(33 − 3)− 1/(53 − 5) + 1/(73 − 7)− . . .

π/16 = 1/(15 + 4.1)− 1/(35 + 4.3) + 1/(55 + 4.5)− . . .

Francois Viete (1593) 2
π

=
√

[1/2]
√

[1/2 + 1/2
√

(1/2)]√
[1/2 + 1/2

√
(1/2 + 1/2

√
(1/2))] . . . (infinite product)

John Wallis (1655) 4
π

=
(

3
2

)(
3
4

)(
5
4

)(
5
6

)(
7
6

)(
7
8

)
. . . (infinite product)

William Brouncker 4
π

= 1 + 12

2+
32

2+
52

2+ . . . (continued fraction)

(1658)

Isaac Newton (1665) π = 3
√

3
4 + 24

[
1
12 −

1
5.32 −

1
28.128 −

1
72.512 − . . .

]
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A History of Exact Results for π

James Gregory (1671) tan−1(x) = x − x3

3 + x5

5 − . . .

Gottfried Leibniz π
4 = 1− 1

3 + 1
5 −

1
7 + . . .

(1674)

Abraham Sharp π√
12

= 1− 1
3.3 + 1

32.5
− 1

33.7
+ . . .

(1699)

John Machin (1706) π
4 = 4tan−1

(
1
5

)
− tan−1

(
1

239

)
Ramanujan (1914)

1
π
=

2
√

2
9801

∞∑
k=0

(4K )!(1103 + 26390k)
(k !)43964k
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Nı̄lakan. t.ha’s Formula for Instantaneous Velocity

Instead of basing the calculation of instantaneous velocity on
the approximate form of manda-correction, Nı̄lakan. t.ha Somayāj̄ı
uses the exact form of the manda correction

µ = m + Rsin−1
[( r0

R

)( 1
R

)
Rsin(m − α)

]
In his treatise Tantrasaṅgraha, Nı̄lakan. t.ha gives the correct
formula for the correction to the mean velocity which involves
the derivative of the arc-sine function.
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Nı̄lakan. t.ha’s Formula for Instantaneous Velocity

..ca:ndÒ ;ba.a:hu :P+l+va:gRa:Za.ea:	a.Da:ta:�a�a.$ya:k+a:kx +.	a.ta:pa:de :na .sMa:h:=e ;t,a Á
ta.�a k+ea:	a.f:P+l+
a.l+	a.�a:k+a:h:ta.Ma :ke +.ndÒ ;Bua:	a.�+.�a=;h ya:�a l+Bya:tea Á Á
ta:�a.dõ :Za.ea:Dya mxa:ga.a:�a.d:ke ga:teaH ;�a.[a:pya:ta.a:�a.ma:h tua k+.kR +.f.a:�a.d:ke Á
ta:;�ÂåÅ ;vea:t~å.Pu +f:ta.=:a ga:	a.ta:�a.vRa:Da.eaH A:~ya ta:tsa:ma:ya.ja.a .=;vea.=;�a.pa Á Á

Nı̄lakan. t.ha gives the derivative of the second term above in the
form 

(( r0
R

)
Rcos(m − α)

)
(

R2 −
( r0

R

)2 Rsin2(m − α)
) 1

2

[( d
dt

)
(m − α)

]
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Upapattis in Indian Mathematics

While there have been several extensive investigations on the
history and achievements of the Indian mathematics, there has
not been much discussion on the Indian mathematicians’ and
philosophers’ understanding of the nature and validation of
mathematical results and procedures, their views on the nature
of mathematical objects, and so on.

Traditionally, such issues have been dealt with in the detailed
bhās.yas or commentaries, which continued to be written till
recent times and played a vital role in the traditional scheme of
learning. It is in such commentaries that we find detailed
upapattis or “proofs” of the results and procedures, apart from a
discussion of methodological and philosophical issues.

Amongst the available texts of Indian mathematics, a discus-
sion of the way of validating the results (pratyayakaran. a), or of
demonstrating them (upapatti) is found first in the
Āryabhat.ı̄yabhās.ya of Bhāskara I (c.629)
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Yuktibhās. ā of Jyes.t.hadeva (c.1530)

The most detailed exposition of upapattis in Indian mathematics
is found in the Malayalam text Yuktibhās. ā of Jyes.t.hadeva, a
student of Dāmodara.

At the beginning of Yuktibhās. ā, Jyes.t.hadeva states that his
purpose is to present the rationale of the procedures given in
the Tantrasaṅgraha. Many of these rationales have also been
presented (mostly in the form of Sanskrit verses) by Śaṅkara
Vāriyar (c.1500-1556) in his commentaries Kriyākramakar̄ı (on
L̄ılāvat̄ı) and Yuktid̄ıpikā (on Tantrasaṅgraha)

Yuktibhās. ā comprising 15 chapters is naturally divided into two
parts, Mathematics and Astronomy.
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Yuktibhās. ā of Jyes.t.hadeva

In the Mathematics part, the first five chapters deal with
logistics, arithmetic of fractions, the rule of three and the
solution of linear indeterminate equations.

Chapter VI presents a derivation of the Mādhava series for π,
his estimate of the end-correction terms and their use in
transforming the series to ensure faster convergence.

Chapter VII discusses the derivation of the Mādhava series for
Rsine and Rversine, followed by a derivation of various results
on cyclic quadrilaterals and the surface area and volume of a
sphere.

The Astronomy part of Yuktibhās. ā gives a detailed derivation of
all the spherical trigonometrical results used in spherical
astronomy.
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Bhāskara on Upapatti (c.1150)
In Siddhāntaśiroman. i, Bhāskarācārya II (1150) presents the raison
d’être of upapatti in the Indian mathematical tradition:

ma:Dya.a:dùÅ;aM dùÅ;au :sa:d.Ma ya:d.�a ga:�a.Na:tMa ta:~ya.ea:pa:pa:�a�Ma ;�a.va:na.a

:pra.Ea:	a.QM :pra.Ea:Q;sa:Ba.a:sua .nEa:	a.ta ga:Na:k+ea ;
a.naHsMa:Za:ya.ea na .~va:ya:m,a Á

ga.ea:le .sa.a ;�a.va:ma:l;a k+=:a:ma:l+k+.va:t,a :pra:tya:[a:ta.ea dx :Zya:tea
ta:sma.a:d:s}yua:pa:pa:�a�a:ba.ea:Da:�a.va:Da:yea ga.ea:l+pra:ba:nDa.ea:dùÅ;a:taH Á Á

Without the knowledge of upapattis, by merely mastering
the calculations (gan. ita) described here, from the madhya-
mādhikāra (the first chapter of Siddhāntaśiroman. i) onwards,
of the [motion of the] heavenly bodies, a mathematician will
not be respected in the scholarly assemblies; without the
upapattis he himself will not be free of doubt (nih. sam. śaya).
Since upapatti is clearly perceivable in the (armillary)
sphere like a berry in the hand, I therefore begin the
Golādhyāya (section on spherics) to explain the upapattis.
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Gan. eśa on Upapatti (c.1540)
The same has been stated by Gan. eśa Daivajña in the introduction to
his commentary Buddhivilāsin̄ı (c.1540) on L̄ılāvat̄ı of Bhāskarācārya

v.ya:�e va.a:v.ya:�+.sMa:¼ea ya:du :�a.d:ta:ma:
a.Ka:lM na.ea:pa:pa:�a�Ma ;�a.va:na.a ta:t,a

;
a.na:Bra.Ra:nta.ea va.a �+tea ta.Ma .sua:ga:Na:k+.sa:d:�a.sa :pra.Ea:Q;ta.Ma .nEa:	a.ta ..ca.a:ya:m,a Á

:pra:tya:[Ma dx :Zya:tea .sa.a k+=;ta:l+k+.
a.l+ta.a:d:ZRa:va:t,a .sua:pra:sa:�a.a
ta:sma.a:d:g{ya.ea:pa:pa:�a�Ma ;
a.na:ga:�a.d:tua:ma:
a.Ka:l+m,a o+tsa:he bua:
a;dÄâ :vxa.;dÄùÅ;aE Á Á

Thus, according to the Indian mathematical texts, the purpose of
upapatti is mainly:

i To remove confusion and doubts regarding the validity and
interpretation of mathematical results and procedures; and,

ii To obtain assent in the community of mathematicians.

This is very different from the ideal of “proof” in the Greco-European
tradition which is to irrefutably establish the absolute truth of a
mathematical proposition.
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Upapatti and “Proof”

The following are some of the important features of upapattis in
Indian mathematics:

1. The Indian mathematicians are clear that results in
mathematics, even those enunciated in authoritative texts,
cannot be accepted as valid unless they are supported by
yukti or upapatti. It is not enough that one has merely
observed the validity of a result in a large number of
instances.

2. Several commentaries written on major texts of Indian
mathematics and astronomy present upapattis for the
results and procedures enunciated in the text.

3. The upapattis are presented in a sequence proceeding
systematically from known or established results to finally
arrive at the result to be established.
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Upapatti and “Proof”

4. In the Indian mathematical tradition the upapattis mainly
serve to remove doubts and obtain consent for the result
among the community of mathematicians.

5. The upapattis may involve observation or experimentation.
They also depend on the prevailing understanding of the
nature of the mathematical objects involved.

6. The method of tarka or “proof by contradiction” is used
occasionally. But there are no upapattis which purport to
establish existence of any mathematical object merely on
the basis of tarka alone.
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Upapatti and “Proof”

7. The Indian mathematical tradition did not subscribe to the
ideal that upapattis should seek to provide irrefutable
demonstrations establishing the absolute truth of
mathematical results.

8. There was no attempt made in Indian mathematical
tradition to present the upapattis in an axiomatic framework
based on a set of self-evident (or arbitrarily postulated)
axioms which are fixed at the outset.

9. While Indian mathematicians made great strides in the
invention and manipulation of symbols in representing
mathematical results and in facilitating mathematical
processes, there was no attempt at formalisation of
mathematics.
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The Genius of Srinivasa Ramanujan (1887-1920)

In a recent article commemorating the 125th birth-day of
Ramanujan, Bruce Berndt has presented the following overall
assessment of the results contained in his notebooks (which
record his work prior to leaving for England in 1914):

“Altogether, the notebooks contain over three thousand claims,
almost all without proof. Hardy surmised that over two-thirds of
these results were rediscoveries. This estimate is much too
high; on the contrary, at least two-thirds of Ramanujan’s claims
were new at the time that he wrote them, and two-thirds more
likely should be replaced by a larger fraction. Almost all the
results are correct; perhaps no more than five to ten are
incorrect.”
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The Genius of Srinivasa Ramanujan

“The topics examined by Ramanujan in his notebooks fall
primarily under the purview of analysis, number theory and
elliptic functions, with much of his work in analysis being
associated with number theory and with some of his discoveries
also having connections with enumerative combinatorics and
modular forms. Chapter 16 in the second notebook represents
a turning point, since in this chapter he begins to examine the
q-series for the first time in these notebooks and also to begin
an enormous devotion to theta functions.”9

9B. Berndt, Notices of AMS 59, December 2012, p.1533.
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Ongoing Work on Ramanujan’s “Lost Notebook”

The manuscript of Ramanujan discovered in the Trinity College
Library (amongst Watson papers) by G. E. Andrews in 1976, is
generally referred as Ramanujan’s “Lost Notebook”. This
seems to pertain to work done by Ramanujan during 1919-20
in India. This manuscript of about 100 pages with 138 sides of
writing has around 600 results. G. E. Andrews and B. Berndt
have embarked on a five volume edition of all this material.
They note in the preface of the first volume that:
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Ongoing Work on Ramanujan’s “Lost Notebook”

“...only a fraction (perhaps 5%) of the notebook is devoted to
the mock theta functions themselves. A majority of the results
fall under the purview of q-series. These include mock theta
functions, theta functions, partial theta function expansions,
false theta functions, identities connected with the Rogers-Fine
identity, several results in the theory of partitions, Eisenstein
series, modular equations, the Rogers-Ramanujan continued
fraction, other q-continued fractions, asymptotic expansions of
q-series and q-continued fractions, integrals of theta functions,
integrals of q-products, and incomplete elliptic integrals. Other
continued fractions, other integrals, infinite series identities,
Dirichlet series, approximations, arithmetic functions, numerical
calculations, Diophantine equations, and elementary
mathematics are some of the further topics examined by
Ramanujan in his lost notebook.”
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The Enigma of Ramanujan’s Mathematics

For the past hundred years, the problem in comprehending and
assessing Ramanujan’s mathematics and his genius has
centred around the issue of “proof”. In 1913, Hardy wrote to
Ramanujan asking for proofs of his results. Ramanujan
responded by asserting that he had a systematic method for
deriving all his results, but that could not be communicated in
letters.

Ramanujan’s published work in India, and a few of the results
contained in the note books have proofs, but they have often
been said to be sketchy, not rigorous or incomplete. Ramanujan
had never any doubts about the validity of his results, but still
he was often willing to wait and supply proofs in the necessary
format so that his results could be published. But, all the time,
he was furiously discovering more and more interesting results.
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The Enigma of Ramanujan’s Mathematics
The Greco-European tradition of mathematics does almost
equate mathematics with proof, so that the process of
discovery of mathematical results can only be characterised
vaguely as “intuition”, “natural genius” etc. Since mathematical
truths are believed to be non-empirical, there are no systematic
ways of arriving at them except by pure logical reason. There
are some philosophers who have argued that this philosophy of
mathematics is indeed barren: it seems to have little validity
when viewed in terms of mathematical practice–either in history
or in our times.

In the Indian mathematical tradition, as is known from the texts
of the last two to three millennia, mathematics was not equated
with proof. Mathematical results were not perceived as being
non-empirical and they could be validated in diverse ways.
Proof or logical argumentation to demonstrate the results was
important. But proofs were mainly for the purpose of obtaining
assent for one’s results in the community of mathematicians.
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Ramanujan: Not a Newton but a Mādhava

In 1913, Bertrand Russell had jocularly remarked about Hardy
and Littlewood having discovered a “second Newton in a Hindu
clerk”. If parallels are to be drawn, Ramanujan may indeed be
compared to the legendary Mādhava.

It is not merely in terms of his methodology and philosophy that
Ramanujan is clearly in continuity with the earlier Indian
tradition of mathematics. Even in his extraordinary felicity in
handling iterations, infinites series, continued fractions and
transformations of them, Ramanujan is indeed a successor, a
very worthy one at that, of Mādhava, the founder of the Kerala
School and a pioneer in the development of calculus.
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Lessons from History
“It is high time that the full story of Indian mathematics from
vedic times through 1600 became generally known. I am not
minimizing the genius of the Greeks and their wonderful
invention of pure mathematics, but other peoples have been
doing math in different ways, and they have often attained the
same goals independently. Rigorous mathematics in the Greek
style should not be seen as the only way to gain mathematical
knowledge. In India where concrete applications were never far
from theory, justifications were more informal and mostly verbal
rather than written. One should also recall that the European
enlightenment was an orgy of correct and important but semi-
rigorous math in which Greek ideals were forgotten. The recent
episodes with deep mathematics flowing from quantum field
theory and string theory teach us the same lesson: that the
muse of mathematics can be wooed in many different ways and
her secrets teased out of her. And so they were in India...”10

10David Mumford, Review of Kim Plofker, Mathematics in India, Notices of
AMS 2010, p.390.
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Lessons from History

Ever since the seminal work of Needham, who showed that till
around the sixteenth century Chinese science and technology
seem to have been more advanced than their counterparts in
Europe, it has become fashionable for historians of science to
wonder “Why modern science did not emerge in non-western
societies?”

In the work of the Kerala School, we notice clear anticipations
of some of the fundamental discoveries which are associated
with the emergence of modern science, such as the mathe-
matics of infinite series and the development of new
geometrical models of planetary motion.
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Lessons from History

It seems therefore more appropriate to investigate “Why
science did not flourish in non-western societies after the 16th
Century?”

It would be worthwhile to speculate “What would have been the
nature of modern science (and the modern world) had sciences
continued to flourish in non-western societies?” In this way we
could gain some valuable insights regarding the sources and
the nature of creativity of geniuses such as Srinivasa
Ramanujan, Jagadish Chandra Bose, Prafulla Chandra Roy,
Chandrasekhara Venkata Raman, and others, in modern India.
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Summary
The most striking feature of the long tradition of Indian mathematics is
the efficacy with which complex mathematical problems were handled
and solved.

The basic theorems of plane geometry had already been discovered
in Śulvasūtras.

By the time of Āryabhat.ı̄ya (c.499), a sophisticated theory of
numbers including the concepts of zero, and negative numbers had
also been established and simple algorithms for arithmetical
operations had been formulated using the place-value notation. By
then, the Indian tradition of mathematics was aware of all the basic
mathematical concepts and procedures that are today taught at the
high school level and much more.

By the 11th century sophisticated problems in algebra, such as
quadratic indeterminate equations, were solved.

By the 14th century, infinite series for trigonometric functions like sine
and cosine were written down. By the same time, irrational character
of π was recognised, and its value was determined to very high levels
of approximation.
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Summary
The reason for this spectacular success of the Indian mathematicians
probably lies in the explicitly algorithmic and computational nature of
Indian mathematics.

Indian mathematicians were not trying to discover the ultimate
axiomatic truths in mathematics; they were interested in finding
methods of solving specific problems that arose in the astronomical
and other contexts.

Therefore, Indian mathematicians were prepared to work with simple
algorithms that may give only approximate solutions to the problem at
hand, and to evolve theories of error and recursive procedures so that
the approximations may be kept in check.

This algorithmic methodology persisted in the Indian mathematical
consciousness till recently. Srinivasa Ramanujan in the twentieth
century seems to have made his impressive mathematical
discoveries through the use of this traditional Indian methodology.

It is important that we teach at least the highlights of this great
tradition of mathematics to all our students in Schools and
Colleges.
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