
Lecture - XXXII The abelianization of the fundamental group

In this lecture we shall establish a basic result relating the fundamental group π1(X, x0) and the first
homology group H1(X). The result is elegant and states that H1(X) is the abelianization of π1(X, x0)
when X is a path connected space. Further, the abelianization map is natural in the following sense.
Suppose that f : (X, x0) −→ (Y, y0) is a continuous map we have the following commutative diagram:

π1(X, x0)
f∗−−−→ π1(Y, y0)

ΠX

y
yΠY

H1(X)
H1(f)−−−→ H1(Y )

(32.1)

where ΠX : π1(X, x0) −→ H1(X) and ΠY : π1(Y, y0) −→ H1(Y ) are the quotient maps onto the
respective abelianizations. We shall prove the main theorem (32.1) through a series of lemmas.

Theorem 32.1: Let X be a path connected topological space. There is a surjective group homo-
morphism

ΠX : π1(X, x0) −→ H1(X) (32.2)

whose kernel is the commutator subgroup [π1(X, x0), π1(X, x0)]. Thus

H1(X) = π1(X, x0)/[π1(X, x0), π1(X, x0)] (32.3)

Before taking up the proof which will be completed in several steps, we set up the map ΠX . Note
that if γ is a loop in X based at x0 then γ is a one cycle, that is to say γ ∈ Z1(X) and we denote its
homology class in the quotient H1(X) by γ. This suggests that we define ΠX : π1(X, x0) −→ H1(X)
as

ΠX : [γ] 7→ γ (32.4)

We shall show that the map is a well-defined surjective group homomorphism and determine its kernel.
We do each of these as a separate lemma. Since homotopy of loops is a map from the square [0, 1]×[0, 1]
whereas a singular two simplex is a map from ∆2 to X we must first set up some standard maps from
∆2 to the square with specific properties. The usual proofs seem slightly tricky and we shall try an
approach that would be useful in the next lecture.

Divide the square [0, 1] × [0, 1] into two triangles by drawing a diagonal from (0, 0) to (1, 1). Let
Ti (i = 1, 2) be two affine homeomorphisms mapping ∆2 onto the these two triangles given by

T1(ê1) = (0, 0), T2(ê1) = (0, 0),

T1(ê2) = (1, 0), T2(ê2) = (0, 1),

T1(ê3) = (1, 1), T2(ê3) = (1, 1).

We shall regard the maps Ti (i = 1, 2) as maps from ∆2 into I2 and use them to prove the following:
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Figure 22:

Lemma 32.2: The map ΠX given by (32.4) is well defined.

Proof: Let γ1 and γ2 be two homotopic loops based at x0 and let F : I × I −→ X be the homotopy
fixing the base point x0. Then σi = F ◦ Ti (i = 1, 2) are two singular two simplicies. It is an exercise
to compute the boundary of these two singular simplicies and we find easily

∂(σ1) = ∂(F ◦ T1) = εx0 + γ1 − F (t, t)

∂(σ2) = ∂(F ◦ T2) = εx0 + γ2 − F (t, t).

The one chain γ1 − γ2 is the boundary of the two chain σ1 − σ2 whence γ1 = γ2.

Lemma 32.3: The map ΠX given by (32.4) is a group homomorphism.

Proof: Let γ1 and γ2 be two loops in X based at x0. We have to show that the one chain

γ1 + γ2 − γ1 ∗ γ2

is a boundary of some singular two chain σ. The idea behind the construction is simple. We first
define a map F̃ : I × I −→ X whose restrictions to the four sides of the square are γ1, γ2, εx0 and
γ1 ∗ γ2. As in the previous lemma we shall employ the maps T1, T2 to construct our two chain σ.

We proceed as in lecture 7 by defining F̃ from the boundary of I×I to [0, 1], using Tietze’s theorem
to extend it to the whole of I × I and then composing with γ1 ∗ γ2. So we define

F̃ (0, s) =
s

2

F̃ (t, 1) =
t+ 1

2

F̃ (t, 0) = t

F̃ (1, s) = 1

and extend it continuously to I × I. Let F : I × I −→ X be given by F = (γ1 ∗ γ2) ◦ F̃ . The figure
below depicts F along the boundary of I2:
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Figure 23:

It is now an easy matter to verify that the boundary of the two chain σ given by

σ = F ◦ T1 − F ◦ T2

is the one chain
γ1 + γ2 − εx0 − γ1 ∗ γ2 (32.5)

Now, if σ′ : ∆2 −→ X be the constant map taking value x0 then ∂σ′ = εx0 whereby we conclude that

γ1 + γ2 − γ1 ∗ γ2 = ∂σ + ∂σ′, (32.6)

which implies ΠX([γ1][γ2]) = ΠX([γ1 ∗ γ2]) = ΠX([γ1]) + ΠX([γ2]). �

Lemma 32.4: The map ΠX given by (32.4) is surjective.

Proof: Let λ be a singular one cycle say λ =
∑
njγj, where nj ∈ Z and γj : [0, 1] −→ X. Since

∂λ = 0,
k∑

j=1

nj(γj(1) − γj(0)) = 0. (32.7)

The idea is to complete each of the paths γj into a loop at x0 by means of paths joining x0 to the ends
γj(0) and γj(1). The only non-trivial part is the book-keeping which has to be done carefully. Let S
denote the set of endpoints

S = {γj(1), γj(0)/ j = 1, 2 . . . , k}.
For each p ∈ S, if mp denotes the sum of the coefficients of p in (32.7) then mp must be zero. Taking
a path βp in X joining x0 and p ∈ S we construct for each j a loop ηj in X based at x0 namely,

ηj = βγj(0) ∗ γj ∗ β−1
γj(1)

.

Finally

ΠX(ηn1
1 ∗ ηn2

2 ∗ · · · ∗ ηnk

k ) =
k∑

j=1

njγj −
k∑

j=1

nj(βγj(1) − βγj(0)) = λ

since
k∑

j=1

nj(βγj(1) − βγj(0)) =
∑

p∈S

mpβp = 0.
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Lemma 32.5: Suppose G is a group and x1, x2, . . . , xk are distinct elements of G such that xi 6= x−1
j

if i 6= j. Let w be a word involving integer powers of x1, x2, . . . , xk such that the sum of the exponents
of each xi is zero. Then w lies in the commutator subgroup of G.

Proof: We leave the easy proof for the student to work out.

Lemma 32.6: The kernel of the map ΠX is the commutator subgroup [π1(X, x0), π1(X, x0)].

Proof: Since the ΠX is a map into an abelian group, its kernel contains the commutator subgroup.
To prove the converse suppose that γ is a loop based at x0 such that [γ] ∈ Ker ΠX . When considered
as a singular one cycle it is a boundary of a singular two chain

∑
njσj where σj : ∆2 −→ X. Writing

the boundary ∂σj as a sum of its faces

∂σj = λj + µj + νj

we see that
k∑

j=1

nj∂σj =
k∑

j=1

nj(λj + µj + νj) = γ. (32.8)

We proceed as in lemma (32.4). Let S be the set distinct singular one simplicies in the list

λj, µj, νj j = 1, 2, . . . , k. (32.9)

and choose auxiliary paths βp joining x0 and the endpoints p of each of the one simplicies in S. The
loop γ also appears in the list (32.9) but since its ends are both x0 there is no need to take the auxiliary
paths β in this case. As in lemma (32.4), for each θ in the list (32.9), we denote by mθ the sum of the

Figure 24:
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coefficients of θ in (32.8) so that,

mθ =

{
0 if θ 6= γ
1 if θ = γ

(32.10)

For each two simplex σj we have the three loops (suppressing the subscript j)

βλ(0) ∗ λ ∗ β−1
λ(1), βµ(0) ∗ µ ∗ β−1

µ(1), βν(0) ∗ ν ∗ β−1
ν(1),

whose juxtaposition ηj is easily seen to be homotopic to the trivial loop. For proving this one uses the
equations λ(1) = µ(0), µ(1) = ν(0) and ν(1) = λ(0). Corresponding to (32.8) we form the loop

ηn1
1 ∗ ηn2

2 ∗ · · · ∗ ηnk

k ∗ γ−1 (32.11)

which is homotopic to γ−1 since the piece ηn1
1 ∗ ηn2

2 ∗ · · · ∗ ηnk

k is a juxtaposition of loops homotopic to
the constant loop. On the other hand if we write out the expression (32.11) completely, we see that for
each θ in the list (32.9), the factor β ∗ θ ∗β−1 appears, probably in several positions, but the sum of its
exponents is mθ. In view of (32.10) and lemma (30.5) we see that the element of π1(X, x0) represented
by (32.11) lies in the commutator subgroup, that is to say, [γ]−1 lies in the commutator subgroup of
π1(X, x0). The proof is complete.

Definition 32.1 (Natural transformation): Given a pair of functors π : T −→ G and H : T −→
G, a natural transformation T between π and H is a function which assigns to each object X of T a
morphism ηX : π(X) −→ H(X) such that for each morphism f : X −→ Y in T , the following diagram
commutes

π(X)
π(f)−−−→ π(Y )

ηX

y
yηY

H(X)
H(f)−−−→ H(Y )

(32.12)

The notation used in this definition is quite suggestive. The Poincaré-Hurewicz map provides a natural
transformation between the functors π1 and H1.

Exercises

1. Verify the displayed results for ∂σ1 and ∂σ2 in lemma (32.2).

2. By writing out the boundary formula in detail verify equations (32.5) and (32.6).

3. Prove lemma (32.5).

4. Verify the naturality of ΠX by proving that the diagram (32.1) commutes.

5. Determine the first homology group of the Klein’s bottle.

6. Determine the first homology groups of all the spaces described in the exercises to lecture 26.

123


