
Lecture - XXV Adjunction Spaces

The notion of push-outs in the category Top leads to an important class of spaces known as
adjunction spaces. We shall see that most of the important spaces encountered are adjunction spaces.
This lecture may be regarded as one on important examples of topological spaces.

Definition 25.1: Given a topological space X, a closed subset A and a continuous map A −→ B
we define an equivalence relation on the disjoint sum (coproduct) X t B as follows

b ∼ x if and only if x ∈ A and f(x) = b.

Thus a point x ∈ A is identified with its image f(x) ∈ B. There are no other identifications besides
this. The quotient space under this equivalence relation is called the adjunction space or the space
obtained by attaching X to B via the map f . The space is denoted by X tf B. Thus

X tf B = (X t B)/ ∼
The situation may be pictorially described as

Figure 16: Adjunction Space

Example 25.1: Take X = S1, A = {1} ⊂ X, B = S1 and f : A −→ B as f(1) = 1. The resulting
space is the wedge of two circles S1 ∨ S1.

Example 25.2 We now take X = E2 the closed unit disc in the plane, A = S1 the boundary of
E2, B = {1} and f to be the constant map from S1 to the singleton set B. The adjunction space is
obtained by collapsing the boundary of E2 to the single point B. The resulting space is S2.

Before discussing further examples we relate this to the push-out construction.
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Figure 17: Wedge of two circles

Theorem 25.1: Let X and B be topological spaces, A be a closed subspace of X and f : A −→ B
be a continuous map. Then the space X tf B is the push-out for the following diagram

A
i−−−→ X

f

y
B

where i : A −→ X denotes the inclusion map.

Proof: We first define the associated maps h1 : X −→ X tf B and h2 : X −→ X tf B. Let
η : X t B −→ X tf B be the quotient map and iX : X −→ X t B and iB : B −→ X t B denote the
inclusions. Then the associated maps h1 and h2 given by

h1 = η ◦ iX , h2 = η ◦ iB. (25.1)

For any a ∈ A we have

h1 ◦ i(a) = η(iX(a)) = η(a), h2 ◦ f(a) = η(iB(f(a))) = η(f(a))

Recalling the identifications we see that h1 ◦ i = h2 ◦ f . We now check the universal property. Suppose
Z is a topological space and g1 : X −→ Z, g2 : B −→ Z are continuous maps such that

g1 ◦ i = g2 ◦ f (25.2)

Define the continuous map φ : X t B −→ Z as

φ(x) =

{
g1(x) if x ∈ X
g2(x) if x ∈ B.

Condition (25.2) now shows that there is a unique map φ : (X tf B)/ ∼ −→ Z such that

φ ◦ η = φ. (25.3)
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The universal property of the quotient implies that φ is continuous. Equations (25.1)-(25.3) immedi-
ately give

φ ◦ h1 = g1, φ ◦ h2 = g2. (25.4)

thereby completing the verification of the universal property.

Corollary 25.2: The square

A
i−−−→ X

f

y
yh1

B
h2−−−→ X tf B

is a push-out where h1 and h2 are defined as in (25.1).

Proof: This is just a summary of the details of the maps involved.

Definition 25.2: An n−cell is any space that is homeomorphic to the closed unit ball En in Rn.
Thus the square I2 is an example of a two cell and the hemisphere

{(x1, x2, . . . , xn) ∈ Sn−1/xn ≥ 0}

is an n− 1 cell.

Example 25.3 (The torus and the Klein’s bottle): We now show that the Klein’s bottle and
the torus are obtained by attaching a two cell to the figure eight space S1 ∨ S1. In both cases we take
X = I2 to be the two cell, A = İ2 the boundary of I2 and B = S1 ∨S1 regarded as a subset of S1 ×S1

namely (S1 × {1}) ∪ ({1} × S1). The distinguishing factor is that the attaching map f : A −→ B is
different in the two cases.

1. For the torus we define f : A −→ B to be the continuous surjection

f(x, 1) = f(x, 0) = (e2πix, 1), x ∈ [0, 1]

f(1, y) = f(0, y) = (1, e2πiy), y ∈ [0, 1]

It is geometrically clear that X tf B is a torus but we demonstrate this formally owing to the
importance of the type of argument involved. Let p : I2 −→ S1 × S1 be the quotient map,
iX : X −→ X t B the inclusion map and η : X t B −→ X tf B the quotient map. The map

φ : S1 × S1 −→ X tf B

given by φ(exp(2πix), exp(2πiy)) = (η ◦ iX)(x, y) is well-defined, bijective and its continuity
follows from the fact that φ ◦ p = iX ◦ η and iX ◦ η is continuous. Finally the compactness of
S1 × S1 and the fact that X tf B is Hausdorff shows that φ is a homeomorphism.
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2. The argument for the Klein’s bottle proceeds along similar lines and we merely indicate the
attaching map f : I2 −→ S1 ∨ S1 namely,

f(x, 1) = f(x, 0) = (e2πix, 1), x ∈ [0, 1]

f(1, y) = f(0, 1 − y) = (1, e2πiy), y ∈ [0, 1].

3. It is sometimes convenient to take the closed unit disc E2 as the two cell. But the attaching map
f : S1 −→ S1 ∨ S1 would be slightly more complicated to write down. For the Klein’s bottle the
attaching map is given by

f(z) =





(z4, 1) 0 ≤ arg z ≤ π/2
(1, z4) π/2 ≤ arg z ≤ π
(−z4, 1) π ≤ arg z ≤ 3π/2
(1,−z4) 3π/2 ≤ arg z ≤ 2π

(25.5)

For the torus the attaching map is obtained from (25.5) by suppressing the negative signs in the
last two expressions. The student is invited to work out a similar construction for the double
torus as well.

Example 25.4 (The projective plane): This is obtained by attaching a two cell to the circle.
For the two cell we take the closed unit disc E2 in the complex plane and its boundary as A. The
attaching map is given by f(z) = z2. We leave it to the reader to prove that the resulting adjunction
space is indeed RP 2.

Example 25.5 (Real projective spaces): We take the space X to be the closed unit disc En in Rn

and A as its boundary. The space B is the lower dimensional projective space RP n−1. The attaching
map is the quotient map p : Sn−1 −→ RP n−1. We leave the proof of the following result to the reader.

Theorem 25.3: The space En tp RP n−1 is homeomorphic to the real projective space RP n. Thus
RP n is obtained from RP n−1 by attaching an n-cell.

Definition 25.3 (The cone over a space): Let X be a topological space. The cone C(X) over X
is the quotient space

C(X) = (X × [0, 1])/(X × {0})
We have an obvious inclusion map i : X −→ C(X) given by i(x) = [x, 1] where the square bracket

Figure 18: Cone over a space

refers to the image of (x, 1) ∈ X × [0, 1] in the quotient C(X).
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Theorem 25.5: A continuous map f : X −→ Y is homotopic to a constant map if and only if f
extends continuously to a map F : C(X) −→ Y namely F ◦ i = f .

Proof: The proof writes itself out. Suppose that G : X × [0, 1] −→ Y is a homotopy between f and
the constant map taking the value y0 say,

G(x, 1) = f(x), G(x, 0) = f(y0), for all x ∈ X.

The second equation in (25.12) says that G respects the identification made on X × [0, 1] to yield
(X × [0, 1])/(X × {0}) whereby we conclude the existence of a map F : C(X) −→ Y satisfying
F ◦ η = G. This map F is continuous by the universal property and the first equation in (25.12) gives
F [x, 1] = G(x, 1) = f(x). The proof of necessity is complete.

Conversely suppose given a continuous map f : X −→ Y such that there is a G : C(X) −→ Y with
F ◦ i = G. Denoting by η the quotient map X × [0, 1] −→ C(X), the map G ◦ η provides a homotopy
between f the constant map. �

Exercises

1. We have obtained S2 by attaching E2 to a singleton with the attaching map as the constant map
on the boundary of E2. Discuss how would you obtain Sn analogously as an adjunction space.

2. Show that if X and B are connected/path-connected then X tf B is connected/path-connected.

3. Describe the push out resulting from the diagram

Sn−1 i1−−−→ En

i2

y
En

4. Show that Sm × Sn results from attaching an n + m cell to Sn ∨ Sm. Hint: Let I denote [0, 1]
and define a map f : ∂(In × Im) −→ Sn ∨ Sm as follows

f(z) =

{
(η1(x), y0) if x ∈ ∂In

(x0, η2(y)) if y ∈ ∂Im

and η1 : In −→ Sn and η2 : Im −→ Sm are the quotient maps of exercise 1.

5. Prove theorem (25.3).

6. Fill in the details in examples (25.4) and (25.5).
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