
Lectures - XXIII and XXIV Coproducts and Pushouts

We now discuss further categorical constructions that are essential for the formulation of the Seifert
Van Kampen theorem. We first discuss the notion of coproducts which is a prerequisite for a proof
of the existence of push-outs. The coproduct is popularly known as the free product in the context
of groups but we shall also use the term coproduct which seems more appropriate from a categorical
point of view ([11], p. 71). The notion of coproducts has already been introduced in the exercises
to lecture 7 for the categories Top and AbGr where it is popularly known as the disjoint union and
the direct sum respectively. However the construction is more complicated in the category Gr. The
coproduct is defined in terms of a universal property.

Definition 23.1: Given two groups G1 and G2, their coproduct is a group G together with a pair
of group homomorphisms i1 : G1 −→ G and i2 : G2 −→ G such that given any group H and group
homomorphisms f1 : G1 −→ H and f2 : G2 −→ H there exists a unique homomorphism φ : G −→ H
such that

φ ◦ i1 = f1, φ ◦ i2 = f2 (23.1)

summarized in the following diagram (k = 1, 2.):
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The definition immediately generalizes to any arbitrary (not necessarily finite) collection of groups.
The uniqueness clause in the definition is important and the following theorem hinges upon it.

Theorem 23.1: If the coproduct (free product) exists then it is unique upto isomorphism. Denoting
the coproduct by G1 ∗ G2, the maps i1 and i2 are injective and so G1 and G2 may be regarded as
subgroups of G1 ∗G2.

Proof: To establish uniqueness, suppose that G′ is another candidate for the coproduct with the
associated homomorphisms j1 : G1 −→ G′ and j2 : G2 −→ G′ satisfying the universal property.
Taking f1 = j1 and f2 = j2 in the definition, there exists a homomorphism φ : G −→ G′ such that

φ ◦ i1 = j1, φ ◦ i2 = j2.

But since G′ is also a coproduct we obtain reciprocally a group homomorphism ψ : G′ −→ G such that

ψ ◦ j1 = i1, ψ ◦ j2 = i2.
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Combining the two we get (ψ◦φ)◦ i1 = i1 and (ψ◦φ)◦ i2 = i2. We see that the identity map idG as well
as ψ ◦ φ satisfy the universal property with H = G, f1 = i1 and f2 = i2. The uniqueness clause in the
definition of the coproduct gives ψ ◦ φ = idG Interchanging the roles of G and G′ we get φ ◦ ψ = idG′ .
We leave it to the student to show that the maps i1 and i2 are injective.

Theorem 23.2: Coproducts exist in the category Gr.

Proof: We shall merely provide a sketch of the argument. Let G1 and G2 be two given groups. A
word is by definition a finite sequence (x1, x2, . . . xn) such that each xi (i = 1, 2 . . . , n) belongs to one
of the groups, no pair of adjacent terms of the sequence belong to the same group and none of the xi
is the identity element of either of the groups. We call the integer n the length of the word and also
include the empty word of length zero. Denoting by W is the set of all words, the idea is to define a
binary operation of juxtaposition of words. The empty word would serve as the identity and the inverse
of a word (x1, x2, . . . , xn) would be the word (x−1

n , x−1
n−1, . . . , x

−1
1 ). One would hope that the operation

of juxtaposition would make W a group. This however would not quite suffice. The juxtaposition of
two words (x1, x2, . . . , xn) and (y1, y2, . . . , ym) may result in a sequence that does not qualify to be
called a word for the simple reason that xn and y1 may belong to the same group. When this happens
we may try to replace the juxtaposed string by the smaller string

(x1, x2, . . . , xn−1, z, y2, . . . , ym)

where z = xny1. If z is not the unit element we do get a legitimate word but if z is the unit element
of one of the groups we must drop it altogether obtaining instead the still smaller string

(x1, x2, . . . , xn−1, y2, . . . , ym)

If xn−1 and y2 belong to the same group the above process must continue and thus in finitely many
steps we obtain a legitimate word that ought to be the product of the two given words. To check that
we do get a group that qualifies as the coproduct of the given groups can be tedious. The reader may
consult [11], pp 72-73.

We now introduce the notion of a direct sum of abelian groups which will play a crucial role in the
second part of the course.

Definition 23.2 (Coproduct of abelian groups or the direct sum): Given a family of abelian
groups {Gα / α ∈ Λ}, their coproduct or direct sum is an abelian group G together with a family of
group homomorphisms {ια : Gα −→ G / α ∈ Λ} such that the following universal property holds.

Given any abelian group A and a family of group homomorphisms fα : Gα −→ A, there exists a
unique group homomorphism φ : G −→ A such that each of the diagrams commutes:

Gα
ια

//

fα
  

AA
AA

AA
AA

G

φ
����

��
��

��

A

Theorem 23.3: Coproducts exist in the category AbGr and it is unique.
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Proof: We use the additive notation and shall use the same symbol 0 to denote the identity element
of all the groups. The cartesian product

∏
Gα is a group with respect to component-wise addition

and we consider the subgroup
⊕

Gα given by
⊕

α∈Λ

Gα =
{

(xα)α ∈
∏

α∈Λ

Gα / xα = 0 for all but finitely many indices α
}
.

For each β ∈ Λ we define the standard inclusion map

ιβ : Gβ −→
⊕

α∈Λ

Gα

such that ιβ(x) has entry x in position β and all other coordinates are zero. We leave it to the reader
to check that the group

⊕
αGα together with the family {ια : Gα −→ G / α ∈ Λ} satisfies all the

requirements.

Definition 23.3 (free groups): The coproduct in the category Gr (known as the free product) of
k copies of Z is called the free group on k generators.

We shall denote a free group on k generators by Fk or if there is a need to specify the generators
a1, a2, . . . , ak we shall use the notation F [a1, a2, . . . , ak].

Theorem 23.4: Any group H having k generators is a homomorphic image of Fk.

Proof: Let H be generated by x1, x2, . . . , xk and for each j = 1, 2, . . . , k let Gj be the infinite cyclic
group with generator aj, regarded as a subgroup of Fk. Applying the definition of the coproduct to
the collection of group homomorphisms fj : Gj −→ H defined by

fj(aj) = xj, j = 1, 2 . . . , k,

we get a group homomorphism φ : Fk −→ H such that φ(aj) = fj(aj) = xj. It is clear that φ is
surjective and the proof is complete.

Generators and relations: Denoting by B the set of generators a1, a2, . . . , ak of Fk, any collection
S of words

an1
i1
an2
i2
. . . , a

np

ip
, aij ∈ B, nj ∈ Z, 1 ≤ j ≤ p. (23.2)

gives rise to a group Fk/〈S〉 where 〈S〉 denotes the normal subgroup generated by S. Conversely, let H
be a finitely generated group and φ be as in the theorem. We take a set R of words (23.2) generating
the kernel of φ and write

H = Fk/〈R〉. (23.3)

The elements of R are called relators and the set of equations

an1
i1
an2
i2
. . . , a

np

ip
= 1 (21.4)

obtained by setting each relator to 1 are called the relations for the group with respect to φ. The list
of generators {a1, a2, . . . , ak} and relations among them uniquely specifies H through equation (23.3).
If a relation in the list (23.4) is a consequence of others, for example if one of them is the product of
two others, we may clearly drop it from the list thereby shortening the list. In practice one would try
to keep the list of relations down to a minimum. Such a description of H is called a presentation of
the group H through generators and relations. A group in general has many presentations and it is
usually very difficult to decide whether or not two presentations represent the same group.
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Example 23.1 (Presentation of some groups): We describe some of the commonly occurring
groups in terms of generators and relations. Some of these would appear as fundamental groups of
spaces that we have already encountered or would do so in the next few lectures.

1. If we take the free group on two generators a, b and take H = Z × Z then every commutator
ambna−mb−n is a relator and hence each of the equations ambna−mb−n = 1 is a relation. However,
all of them may be derived from the single relation aba−1b−1 = 1. For example, we derive the
relation a2ba−2b−1 = 1 as follows

a2ba−2b−1 = a(aba−1b−1)ba−1b−1 = aba−1b−1 = 1.

Thus Z × Z has presentation
Z × Z = 〈a, b | ab = ba〉 (23.5)

2. The cyclic group of order n has presentation

Zn = 〈a | an = 1〉 (23.6)

3. Recall from lecture 20 that the fundamental group of the Klein’s bottle is given by the presen-
tation

Z n Z = 〈a, b | aba = b〉 (23.7)

4. This example is from [15], p. [?]. Let us consider the group G given by the presentation

G = 〈a, b | a2 = b4 = 1, bab = a〉 (23.8)

To understand this group concretely, let us derive some consequences of the three displayed
relations. Multiplying bab = a on the left/right by a gives the relations (ab)2 = 1 and (ba)2 = 1.
Further,

ab3 = (ab)b2 = b3(bab)b2 = b3ab2 = ba.

We conclude from this that G consists of the elements

{1, a, b, b2, b3, ab, ba, ab2} (23.9)

This however does not preclude further simplifications to a group of smaller order though it
seems unlikely. The group has atleast three elements of order two and so if the elements listed
in (21.9) are distinct then G must be the dihedral group D4 of order eight if it is non-abelian
or else must be an abelian group. In any case there must be atleast five elements of order two
(why?). It is easy to see that ab2 has order two. The map f : a, b −→ D4 given by

f(a) = (13), f(b) = (1234)

respects the given relations since (13)2 = 1, (1234)4 = 1 and (1234)(13)(1234) = (13). Hence f
extends to a surjective group homomorphism f : F2 −→ D4. Since the kernel contains a2, b4 and
bab we get a surjective group homomorphism G −→ D4 and we conclude that G is indeed D4.

Push-outs: The notion of push-outs is a convenient generalization of the coproduct and in the
context of groups is also known as the free-product with amalgamation. In topology it is often referred
to as the adjunction space though some authors in analogy with groups call it the amalgamated sum.
We formulate this notion in general terms.
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Definition 23.4: Suppose given a pair of morphisms j1 : C −→ A1 and j2 : C −→ A2 in a category
C, represented as a diagram:

C
j1−−−→ A1

j2

y
A2

a push out is an object P in C together with a pair of morphisms f1 : A1 −→ P and f2 : A2 −→ P
satisfying the following two conditions:

(i) f1 ◦ j1 = f2 ◦ j2
(ii) Universal property: Given any pair of morphisms g1 : A1 −→ E and g2 : A2 −→ E satisfying

g1 ◦ j1 = g2 ◦ j2

there exists a unique morphism φ : P −→ E such that

φ ◦ f1 = g1, φ ◦ f2 = g2.

Remark: If P is a push-out for the pair j1 : C −→ A1 and j2 : C −→ A2 the commutative diagram

C
j1−−−→ A1

j2

y
yf1

A2
f2−−−→ P

is also known as a cocartesian square.

Theorem 23.5: If the push out for the pair j1 : C −→ A1 and j2 : C −→ A2 exists in a given
category, then it is unique.

Proof: If P ′ with morphisms f ′
1 : A1 −→ P ′ and f ′

2 : A2 −→ P ′ is another candidate we may apply
the universal property to get a map φ : P −→ P ′ such that

φ ◦ f1 = f ′
1, φ ◦ f2 = f ′

2.
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Reciprocally since P ′ is a push out, there is a map ψ : P ′ −→ P such that

ψ ◦ f ′
1 = f1, ψ ◦ f ′

2 = f2.

Combining we see that (ψ ◦ φ) ◦ f1 = f1 and (ψ ◦ φ) ◦ f2 = f2. We see that both ψ ◦ φ and idP satisfy
the universal property with E = P , g1 = f1 and g2 = f2. The uniqueness clause in the definition gives
ψ ◦ φ = idP . Likewise we get φ ◦ ψ = idP ′ and the proof is complete.

Example: Let us now work in the category Top and recast the gluing lemma in terms of the push-out
construction. Take a pair of open sets G1, G2 in a topological space X and the inclusions

j1 : G1 ∩G2 −→ G1, j2 : G1 ∩G2 −→ G2.

The push out for this pair is the space G1 ∪G2 together with inclusion maps

i1 : G1 −→ G1 ∪G2, i2 : G2 −→ G1 ∪G2

To see this suppose that Y is a topological space and f1 : G1 −→ Y and f2 : G2 −→ Y are a pair of
continuous maps such that f1 ◦ j1 = f2 ◦ j2 then

f1

∣∣∣
G1∩G2

= f2

∣∣∣
G1∩G2

The gluing lemma now says that there exists a unique map ψ : G1 ∪G2 −→ Y such that

ψ
∣∣∣
G1

= f1, ψ
∣∣∣
G2

= f2

which means ψ ◦ i1 = f1 and ψ ◦ i2 = f2 as desired. Instead of a pair of open subsets of a topological
space one could choose a pair of closed sets.

Existence of push outs: We begin with the coproduct of A1 and A2 and perform some identifi-
cations. We examine the three categories Gr, AbGr and Top and show that the push-out exists in
each of them. It may be noted that the popular term for the push out in the category of groups is free

product with amalgamation.

Theorem 23.6: Push-outs exist in the categories Gr, AbGr and Top.

Proof: Let us begin with Gr and a given pair of morphisms j1 : C −→ A1 and j2 : C −→ A2. Let
G be the coproduct of the groups A1 and A2. We regard A1 and A2 as subgroups of G. Let N be the
normal subgroup of G generated by

{j1(c)j2(c)−1/c ∈ C}
and η : G −→ G/N be the quotient map. We claim that G/N qualifies as the push-out with the
associated homomorphisms

f1 = η ◦ i1, f2 = η ◦ i2
where i1 and i2 are the inclusions of A1, A2 in G. Since η(j1(c)) = η(j2(c)), we see that f1 ◦ j1 = f2 ◦ j2.
To check the universal property, let g1 : A1 −→ H and g2 : A2 −→ H be a pair of morphisms such
that

g1 ◦ j1 = g2 ◦ j2 (23.10)
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Aside from (23.10), by definition of coproduct, there exists a unique homomorphism ψ : G −→ H
such that ψ ◦ i1 = g1 and ψ ◦ i2 = g2 from which follows easily that the kernel of ψ contains N . Let
ψ : G/N −→ H be the unique map such that ψ ◦ η = ψ. Then

ψ ◦ η ◦ i1 = ψ ◦ i1 = g1, ψ ◦ η ◦ i2 = g2.

which means ψ ◦ f1 = g1 and ψ ◦ f2 = g2. That completes the job of verifying that G/N is indeed
the push-out. Note that we have only used the definition of coproducts and the most basic property
of quotients. As a result the proof goes through verbatim for the other two situations as we shall see.
Leaving aside the case of abelian groups we pass on to the category Top.

Well, changing notations to suit the need, let h1 : Z −→ X and h2 : Z −→ Y be a pair of continuous
functions and X t Y be the disjoint union of X and Y , and i1 : X −→ X t Y , i2 : Y −→ X t Y be
the canonical inclusions. For each z ∈ Z we identify the points (i1 ◦ h1)(z) and (i2 ◦ h2)(z) in X t Y
and W be the quotient space with the projection map

η : X t Y −→W = (X t Y )/ ∼
We claim that W qualifies to be the push-out with associated morphisms f1 = η ◦ i1 : X −→ W and
f2 = η ◦ i2 : Y −→ W . To check the first condition observe that since (i1 ◦ h1)(z) and (i2 ◦ h2)(z) are
identified, η(i1(h1(z))) = η(i2(h2(z))) which means f1 ◦ h1 = f2 ◦ h2. Turning now to the universal
property let g1 : X −→ T and g2 : Y −→ T be two continuous maps such that

g1 ◦ h1 = g2 ◦ h2. (23.11)

Aside from (23.11), since XtY is the coproduct in Top, there is a unique continuous map ψ : XtY −→
T such that ψ ◦ i1 = g1 and ψ ◦ i2 = g2. Now (23.11) implies that ψ respects the identification and
so there is a unique ψ : (X t Y )/ ∼ −→ T such that ψ ◦ η = ψ. By the universal property of the
quotient, ψ is continuous and

ψ ◦ f1 = ψ ◦ η ◦ i1 = ψ ◦ i1 = g1,

and likewise ψ ◦ f2 = g2. That suffices for a proof.

Exercises

1. Show that the maps i1 and i2 in definition (23.1) are injective and that the images of i1 and i2
generate G1 ∗G2. Hint: Use the universal property with H = G1, f1 = i1 and i2 = 1.

2. Show that abelianizing a free group on k generators results in a group isomorphic to the direct
sum of k copies of Z. Use the fact that the coproduct in AbGr is the direct sum.

3. Is there a surjective group homomorphism from the direct sum Z× Z onto Z2 × Z2 ×Z2? Prove
that if k and l are distinct positive integers, the free group on k generators is not isomorphic to
the free group on l generators.

4. Show that 〈a, c | a2c2 = 1〉 is also a presentation of the fundamental group of the Klein’s bottle.

5. Construct the push-out for the pair j1 : C −→ A1 and j2 : C −→ A2 in the category AbGr?

6. Suppose that C is the trivial group in the definition of push-out in the category Gr, show that
the resulting group is the coproduct of the two given groups. What happens in the category
AbGr? Describe explicitly the construction of the group specifying the subgroup that is being
factored out.
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