
Lecture X - Brouwer’s Theorem and its Applications.

In this lecture we shall prove the Brouwer’s fixed point theorem and deduce some of its consequences
such as the Perron-Frobenius’ theorem. The one dimensional Brouwer’s theorem follows from the
intermediate value property as is indicated in the exercises of lecture 3. We also include a proof of the
fact that the spheres Sn have trivial fundamental group when n ≥ 2. This result has been included
here to demonstrate why the fundamental group is insufficient to prove the Brouwer’s fixed point
theorem in dimension three or higher.

We begin by defining the fixed point property for a space. Here we require the fixed point property
to hold for all continuous functions of the space into itself. Note that in analysis the spaces considered
are somewhat special and so are the maps whose fixed point property are sought. A classic example
of such a restricted fixed point theorem is the Banach’s fixed point theorem.

Definition 10.1: A space X is said to have the fixed point property if every continuous map f :
X −→ X has a fixed point namely, there exists p ∈ X such that f(p) = p.

Theorem 10.1: The fixed point property is a topological property. That is, if X and Y are homeo-
morphic and X has the fixed point property then so does Y .

Proof: Suppose that X has the fixed point property and h : X −→ Y is a homeomorphism. Let g :
Y −→ Y be an arbitrary continuous map. Applying the fixed point property to the map f = h−1◦g◦h
we get a point p ∈ X such that f(p) = p. The fixed point of g is seen to be h(p).

Examples 10.1: (i) The closed unit interval [0, 1] has the fixed point property (exercise 1, lecture
3).

(ii) A non-trivial topological group does not have the fixed point property.
(iii) The space RP 2n has the fixed point property but we are not yet ready to prove this.
(iv) The open unit disc U = {z ∈ C/|z| < 1} does not have the fixed point property. For if a is a

non-zero complex number with |a| < 1 then the map f : U −→ U given by

f(z) =
z − a

1 − az

has no fixed points in U . The reader must first check that f maps the open unit disc to itself and
examine if it has any fixed points.

Theorem 10.2 (Brouwer’s fixed point theorem): Every continuous function f : E2 −→ E2 has
a fixed point where E2 = {x ∈ R2 | ‖x‖ ≤ 1}.
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Proof: We assume the contrary, that is to say a continuous function f of the closed unit disc into
itself exists which has no fixed points. We produce a retraction from E2 onto S1 which would be a
contradiction. The ray emanating from f(x) ∈ E2 and passing through x ∈ E2 namely

Figure 11: E2 is not a retract of S1

tx + (1 − t)f(x), t ≥ 0,

meets the circle S1 at a point denoted by r(x) = t0x+(1− t0)f(x) where, t0 is a root of the quadratic

〈tx+ (1 − t)f(x), tx + (1 − t)f(x)〉 = 1. (10.1)

We recast this quadratic as

t2(|f(x) − x|2) − 2tf(x) · (f(x) − x) − (1 − |f(x)|2) = 0. (10.2)

Since the coefficient of t2 is never zero, the roots are continuous functions of x and they are real.
Moreover the roots differ in sign or one of the roots is zero. Take t0 to be the larger root for constructing
r(x). From (10.1) we see that r maps E2 to S1. Note that if |x| = 1 then t = 1 satisfies the quadratic
and so must be the larger root. Hence we conclude r(x) = x if |x| = 1 and we get a retraction of E2

onto S1 which is a contradiction. �

Remark: Note that the proof merely used the fact that π1 functor is trivial on discs and nontrivial
on circles. Any functor with this property may be used to prove the Brouwer’s fixed point theorem.

Theorem 10.3 (Perron-Frobenius): A 3×3 matrix with strictly positive real entries has a positive
eigen-value. The corresponding eigen-vector has non-negative entries.

Proof: Let A be a 3 × 3 matrix with strictly positive real entries and S be the part of the sphere

S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, x ≥ 0, y ≥ 0, z ≥ 0}
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Then S is homeomorphic to the closed unit disc in the plane (why?) and so has the fixed point
property. If v is any unit vector with non-negative entries then the entries of Av are non-negative and
at-least one of the entries must be positive. Hence the map f : S −→ S given by f(v) = Av/‖Av‖ is
continuous. By Brouwer’s fixed point theorem, f has a fixed point v0 which means Av0/‖Av0‖ = v0

from which we infer that ‖Av0‖ is an eigen-value of A and this must be positive.

Fundamental groups of spheres: We close this lecture with a proof of the fact that π1(S
n) = {1}

when n ≥ 2. The student ought to try and figure out intuitively why is this so.

Theorem 10.4: If U and V are simply connected open subsets of X such that X = U ∪V and U ∩V
is path connected then X is simply connected.

Proof: Let us choose a base point x0 ∈ U ∩ V and γ be an arbitrary loop in X based at x0. The
open cover {γ−1(U), γ−1(V )} of [0, 1] has a Lebesgue number ε. Choose a partition

{t0 = 0 < t1 < t2 < · · · < tn = 1}.

such that the length of each sub-interval is less than ε. Then γ maps each [tj, tj+1] into U or V . If γ
maps two adjacent intervals into U or into V then drop the abutting point of the two intervals thereby
coarsening the partition. Thus may arrange it such that for each j = 1, 2, . . . , n − 1, the point γ(tj)
lies in U ∩ V . We now choose a path σj joining x0 and γ(tj) such that the image of σj lies entirely
in U ∩ V . This is possible since U ∩ V is path connected and x0 ∈ U ∩ V . Also let γj denote the
restriction of γ to the sub-interval [tj−1, tj] (j = 1, 2, . . . , n). We may reparametrize γj (retaining the
name) so that its domain is [0, 1]. Now

γ ∼ γ1 ∗ σ−1
1 ∗ σ1 ∗ γ2 ∗ σ−1

2 ∗ σ2 ∗ γ3 ∗ · · · ∗ σ−1
n−1 ∗ σn−1 ∗ γn

Now each of the loops γ1∗σ−1
1 , σ1∗γ2∗σ−1

2 ,. . . , σn−1∗γn based at x0 lies in one of the simply connected
open sets U or V and so each of them is homotopic to the constant loop via a homotopy Fj. These
homotopies Fj may be juxtaposed to provide a homotopy between

γ1 ∗ σ−1
1 ∗ σ1 ∗ γ2 ∗ σ−1

2 ∗ σ2 ∗ γ3 ∗ · · · ∗ σ−1
n−1 ∗ σn−1 ∗ γn

and the constant loop. The proof is complete.

Theorem 10.5: For n ≥ 2, the sphere Sn is simply connected.

Proof: Let U be the sphere minus the north pole and V be the sphere minus the south pole. Using
the stereo-graphic projections, we see that U and V are simply connected open subsets of Sn and it is
easily verified that U ∩ V is path connected. The result follows from the previous theorem.

Exercises

1. Suppose that a space X has the fixed point property, is it necessary that it be connected? Does
it have to be path-connected?

2. Explain why a non-trivial topological group cannot have the fixed point property.
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3. Prove the Brouwer’s fixed point theorem for the closed unit ball in Rn given that that there
exists a functor T from the category Top to the category AbGr such that T (X) is the trivial
group for every convex subset X of a Euclidean space and T (Sn−1) is a non-trivial group.

4. Show that the Brouwer’s fixed point theorem implies the no retraction theorem.

5. Explain how the homotopies Fj in the proof of theorem 10.4 can be juxtaposed.

6. Show that the circle S1 is not a retract of the sphere S2.
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