
Lecture - XXXIII Homotopy invariance of homology

Homotopy of maps is one of the most important notions in topology and it is of interest to know
what is its effect on the induced maps in homology. The result is simple and direct namely, if f :
X −→ Y and g : X −→ Y are a pair of homotopic maps then they induce the same maps in homology
in every dimension. The further advantage here is that no base points are involved unlike the situation
encountered in lecture 11 with the fundamental group. However the proof is not direct as one must
algebraize the notion of homotopy in the context of chain maps. This leads to the notion of chain

homotopy that we first define. We establish the purely algebraic result that a pair of chain homotopic
maps induce equal maps in homology. We then proceed to relate the topological notion of homotopy
of a pair of continuous maps f, g as above with the chain homotopy between the induced chain maps
f] : Sn(X) −→ Sn(Y ) and g] : Sn(X) −→ Sn(Y ). Some of these ideas have been implicitly used
in the last lecture in the construction of the singular two chain σ in lemma (32.2). We shall follow
the treatment in the book by T. Dieck7 defining first the notion of the cross product which seems
more transparent. The student who is familiar with differential forms may notice some similarities
with wedge products and the exterior derivative. As in the theory of differential forms where the
construction of the exterior derivative d is forced upon us through some of its properties, the cross
product is determined by its properties described in theorem (33.1), as soon as one chooses for each
pair (p, q) a model chain namely, the p+ q chain z in (33.4).

The cross product: This construction lies at the heart of the proof of Kunneth formula which
relates the homology groups of X × Y in terms of the homologies of X and Y . The first step would
be to relate the singular chain complex of X × Y with those of X and Y . This construction will be
carried out naturally. Given a zero simplex x ∈ X and a q simplex σ : ∆q −→ Y in Y , x× σ denotes
the singular q simplex in X × Y given by

x× σ : ∆q −→ X × Y

t 7→ (x, σ(t)).

Likewise given a q simplex τ in X and a zero simplex y in Y , one defines a q simplex τ × y in X × Y .
For a pair of singular simplices σ ∈ ∆p(X) and τ ∈ ∆q(Y ) we call p + q the total degree of the pair
(σ, τ).

Theorem 33.1: There exists a bilinear map

Sp(X) × Sq(Y ) −→ Sp+q(X × Y )

(σ, τ) 7→ σ × τ,

7See also R. Stöcher and H. Zeischang, Algebraische Topologie, B. G. Teubner, Stuttgart (1988) 306-325.
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with the following properties

(i) For zero simplices x ∈ X, y ∈ Y and singular simplices σ : ∆p −→ X and τ : ∆q −→ Y the
products x× τ , σ × y are already defined above.

(ii) Naturality: Suppose that f : X −→ X ′ and g : Y −→ Y ′ are two continuous maps and
f × g : X × Y −→ X ′ × Y ′ denotes the product map (f × g)(x, y) = (f(x), g(y)), then

(f × g)](σ × τ) = f](σ) × g](τ) (33.1)

(iii) Generalized Leibnitz’ rule: If σ ∈ Sp(X) and τ ∈ Sq(Y ) then

∂(σ × τ) = ∂σ × τ + (−1)p(σ × ∂τ) (33.2)

Proof: The construction proceeds by induction on the total degree p + q on pairs (σ, τ). It has
already been carried out for the case when one of σ or τ is a zero simplex and in particular when the
total degree p + q is zero. Further, and for this case, conditions (ii) and (iii) hold trivially. Assume
that the cross product

Sp(X) × Sq(Y ) −→ Sp+q(X × Y ) (33.3)

has been defined for all pairs (p, q) such that p+ q < k satisfying (ii) and (iii). Now if σ ∈ Sp(X) and
τ ∈ Sq(Y ) are such that p+ q = k then the right hand side of the formula in (iii) already makes sense
and in particular this is so with the pair ιp and ιq. Thus we need a singular p+ q chain z such that

∂z = ∂ιp × ιq + (−1)p(ιp × ∂ιq). (33.4)

Applying Leibnitz rule again to the right hand side one checks that it is a cycle. Since ∆p × ∆q is
convex this cycle is also a boundary and so (33.4) has a (non-unique) solution z ∈ Sp+q(∆p × ∆q).
Once this choice is made the construction proceeds further as follows. Each σ ∈ Sp(X) can be realized
as σ](ιp) where σ : ∆p −→ X and likewise for a singular q simplex τ in Y . But now equation (33.1)
forces upon us the definition

σ × τ = σ](ιp) × τ](ιq) = (σ × τ)](ιp × ιq) = (σ × τ) ◦ z, (33.5)

where the σ × τ appearing on the extreme left of (33.5) is the object we are defining whereas the σ
and τ appearing in the middle and on the extreme right of (33.5) denote the functions σ : ∆p −→ X
and τ : ∆q −→ Y . The easy verification of (33.1) is left for the reader. Proof of (33.2) runs as follows:

∂(σ × τ) = ∂
(
(σ × τ)](ιp × ιq)

)

= (σ × τ)]∂(ιp × ιq)

= (σ × τ)]∂z

= (σ × τ)]

(
∂ιp × ιq + (−1)p(ιp × ∂ιq)

)

Applying (33.1), which holds by induction hypothesis, and using the pair of equations σ]∂ = ∂σ],
τ]∂ = ∂τ] we continue with our calculation:

∂(σ × τ) = σ](∂ιp) × τ](ιq) + (−1)p(σ](ιp) × τ](∂ιq))

= ∂σ × τ + (−1)p(σ × ∂τ).

Having defined σ × τ for singular simplices σ and τ , we can extend it as a bilinear map Sp(X) ×
Sq(Y ) −→ Sp+q(X × Y ) since Sp(X) and Sq(Y ) are free abelian groups.
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Homotopy and chain homotopy: Chain homotopy is the algebraization of the topological notion
of homotopic maps. Let F : I×X −→ Y be a homotopy between two continuous functions f : X −→ Y
and g : X −→ Y . We use this map to define a sequence of maps

Ln : Sn(X) −→ Sn+1(Y ) (33.6)

satisfying the condition
∂ ◦ Ln + Ln−1 ◦ ∂ = f] − g]. (33.7)

Let u : ∆1 −→ I be the unique one simplex. For a singular n simplex σ in X, define

Ln(σ) = F](u× σ).

Then we compute using (33.1)-(33.2),

∂(Ln(σ)) = F](∂u× σ) − F](u× ∂σ)

= F](∂u× σ) − Ln−1(∂σ)

∴ ∂(Ln(σ)) + Ln−1(∂σ) = F]({1} × σ) − F]({0} × σ)

∴ ∂(Ln(σ)) + Ln−1(∂σ) = F (1, σ(·))− F (0, σ(·)).

So we have the important equation

∂(Ln(σ)) + Ln−1(∂σ) = g](σ) − f](σ), σ ∈ Sn(X). (33.8)

completing the proof of (33.7). The reader must go back to lemma (32.2) to observe some analogies.
After these preparations we are ready to prove the following important result. Unlike theorems (11.2)
- (11.5) we do not have to worry here about base points which makes life a lot easier.

Theorem 33.2: Homotopic maps f : X −→ Y and g : X −→ Y induce equal maps in homology.
That is to say for each n we have

Hn(f) = Hn(g). (33.9)

Proof: Taking σ ∈ Zn(X) in (33.8), the term Ln−1(∂σ) drops out and we immediately see that the
cycles f](σ) and g](σ) differ by a boundary. The proof is complete.

We see that equation (33.7) is the algebraic analogue of homotopy of continuous maps. As this
phenomenon would recur often, we give a formal definition and a name for it.

Definition 33.1: Given chain maps φn : Cn −→ Dn and ψn : Cn −→ Dn (n = 1, 2, . . . ) between
chain complexes C and D, a chain homotopy between φ and ψ is a sequence Ln : Cn −→ Dn+1 of
group homomorphisms such that

∂ ◦ Ln + Ln−1 ◦ ∂ = φn − ψn (33.10)

It is easy to see that that chain homotopy is an equivalence relation on the family of chain maps.
Recalling now the definition of homotopy equivalence (see lecture 11, definition 11.2) we state the very
useful result which follows immediately from theorem (33.2).
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Corollary 33.3: If X and Y have the same homotopy type, then Hn(X) = Hn(Y ) for n = 0, 1, 2, . . . .

Exercises

1. Show that the p + q − 1 chain on the right hand side of (33.4) is a cycle.

2. Check that σ × τ as defined by equation (33.5) satisfies (33.1).

3. Show that the product in theorem (33.1) defines a bilinear map Hp(X)×Hq(Y ) −→ Hp+q(X×Y ).

4. Determine explicitly the two/three chain z satisfying (33.4) when

(i) p = 1 and q = 1.

(ii) p = 1 and q = 2.

Hint: In the proof of lemma (32.2), we chopped the square into two triangles. When q = 2 we
need to chop a prism into three pieces and map ∆3 affinely onto each of them.

5. Use the map ΠX of the previous lecture to calculate the generators of H1(S
1 × S1).

6. Use equation (33.1) to determine the image of the pair of generating one cycles of the previous
exercise under the map H1(S

1) ×H1(S
1) −→ H2(S

1 × S1).
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