
Lecture - XXXVI Maps of spheres

We are now in a position to prove the general Brouwer’s fixed point theorem as well as a few other
surprising results concerning maps of spheres. As demonstrated in lecture 10, these higher dimensional
analogues were inaccessible via the theory of the fundamental group. We shall introduce the notion of
the degree of a map of spheres generalizing the notion introduced in lectures (12-13).

Theorem 36.1 (No retraction theorem): The sphere Sn−1 is not a retract of the closed unit ball
En.

Proof: Assume n ≥ 2. A retraction r : En −→ Sn−1 would imply that Hn−1(r) : En −→ Sn−1 is
surjective which is plainly false since Hn−1(E

n) = {0} whereas Hn−1(S
n−1) = Z. The case n = 1 is

left to the reader.

Corollary 36.2 (Brouwer’s fixed point theorem): Every continuous map f : En −→ En has a
fixed point.

Proof: The proof is similar to the one given in lecture 10 for the case n = 2.

Degree of a map: We now generalize the notion of the degree of a map f : S1 −→ S1 that we
have defined earlier in lectures 12-13. We shall show later that for each n ∈ N, there is a continuous
function having degree n.

Definition 36.1: For n ≥ 1, the degree of a continuous map f : Sn −→ Sn is defined to be the
integer m such that

Hn(f)(η) = m η (36.1)

where η is a generator for the infinite cyclic group Hn(S
n). Since Hn(f) : Hn(S

n) −→ Hn(S
n) is a

group homomorphism the choice of either of the two generators would yield the same result.

Theorem 36.3: Suppose that f : S1 −→ S1 is a continuous map such that f(1) = 1 then the degree
of f as defined above agrees with the notion of degree as defined in lectures (12-13). Moreover the
generator for the group H1(S

1) is the homology class of the cycle

η : t 7→ exp(2πit), 0 ≤ t ≤ 1. (36.2)

Note that we have tacitly identified the standard one simplex ∆1 with [0, 1].
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Proof: Since π1(S
1, 1) is abelian, the abelianization Π : π1(S

1, 1) −→ H1(S
1) is an isomorphism and

hence maps a generator of π1(S
1, 1) to a generator of H1(S

1). Since (36.2) represents a generator for
π1(S

1, 1) we infer that the cycle (36.2) is a generator for H1(S
1). We deduce from the diagram (32.1)

that
f∗ = Π−1 ◦H1(f) ◦ Π. (36.3)

From (12.6) and (36.3) we see that

H1(f)Π[η] = (Π ◦ f∗)[η] = Π((deg f)[η]) = (deg f)Π[η].

Appealing to the definition (36.1) we see that m = deg f .

Corollary 36.4: The map f : S1 −→ S1 given by f(x, y) = (x,−y) has degree −1.

Proof: The induced map f∗ : π1(S
1, 1) −→ π1(S

1, 1) is multiplication by −1.

Theorem 36.5: The degree satisfies the following properties.

(i) The degree of the identity map Sn −→ Sn is +1.

(ii) If f and g are two continuous maps from Sn to itself then deg (g ◦ f) = (deg g)(deg f).

(iii) Homotopic maps from Sn into itself have the same degree.

(iv) If f : Sn −→ Sn is a homotopy equivalence then degree of f is ±1.

(v) Any map homotopic to the constant map has degree zero.

(vi) Any two maps Sn −→ Sn having the same degree are homotopic (Theorem of H. Hopf).

Proof: The first five are easy exercises for the reader. We shall not prove (vi).

The anti-podal map and its properties: Let us now calculate the degree of the anti-podal map
A : Sn −→ Sn given by A(x) = −x. The anti-podal map is the composite of reflections in the
coordinate hyperplanes and so it suffices to compute the degree of one of them say

Rn : (x1, x2, . . . , xn+1) 7→ (−x1, x2, . . . , xn, xn+1). (36.4)

Theorem 36.6: The degree of the map (36.4) is −1 and hence the degree of the antipodal map
A : Sn −→ Sn is (−1)n+1.

Proof: From corollary (36.4) the case n = 1 follows (exercise 1). The general case is done by
induction. Let us consider the covering {U, V } where U = Sn − {en+1}, and V = Sn − {−en+1}. The
map Rn fixes U and V but when restricted to the equator Sn−1 gives Rn−1. The naturality of the
Mayer Vietoris sequence gives us the commutative diagram

Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V )

Hn−1(r)−−−−−→ Hn−1(S
n−1)

Hn(Rn)

y
yHn(Rn)

yHn−1(Rn−1)

Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V )

Hn−1(r)−−−−−→ Hn−1(S
n−1).
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The map Hn−1(r) is isomorphism induced by the retraction of U ∩ V onto the equator Sn−1. The
connecting homomorphisms δn are isomorphisms as we have seen in the last lecture. Since the map
Hn−1(Rn−1) : Z −→ Z on the extreme right is given by multiplication by −1, the same is the case with
the map Hn(Rn) on the extreme left whereby we conclude that Rn has degree −1.

Corollary 36.7: The antipodal map A : Sn −→ Sn is homotopic to the identity map if and only if
n is odd.

Proof: If n is even then the identity map and the anti-podal map have different degrees and so
cannot be homotopic. The converse is done in exercise 3.

Theorem 36.8: If f and g are a pair of continuous maps from Sn to itself such that f(x) 6= g(x)
for every x ∈ Sn. Then g is homotopic to A ◦ f .

Proof: Since f(x) 6= g(x) the reader may verify that tAf(x) + (1 − t)g(x) 6= 0 for any t ∈ [0, 1].
Normalizing we get the desired homotopy:

F : (t,x) 7→ tAf(x) + (1 − t)g(x)

‖tAf(x) + (1 − t)g(x)‖ , t ∈ [0, 1], x ∈ Sn.

Corollary 36.9: If n is odd then any continuous map f : Sn −→ Sn has a fixed point or sends a
point to its antipode. Hence the pair {f(x),x} cannot be linearly independent for every x ∈ Sn.

Proof: Suppose f(x) 6= x for any x ∈ Sn, we see by theorem (36.8) that f is homotopic to the
antipodal map. Further, if also f(x) 6= −x for every x ∈ Sn, theorem (36.8) implies f is homotopic to
the identity map. This contradicts corollary (36.7).

Corollary 36.10 (Hairy ball theorem): If n is even, any continuous tangent vector field on Sn

must have a zero.

Proof: A continuous, non-vanishing tangent vector field upon normalization yields a continuous map
f : Sn −→ Sn such that the pair of vectors {f(x), x} is every where orthonormal which contradicts
corollary (36.9).

Suspension: Given a topological space X, the suspension of X denoted by ΣX, is obtained from
X × [0, 1] by passing to a quotient (see the figure that follows equation (36.6)):

ΣX = (X × [0, 1])/(X × {0} ∪X × {1})

Using polar coordinates we can see that ΣSn−1 ∼= Sn via the homeomorphism φ : Sn−1 × [0, 1] −→ Sn

(ω, t) 7→ ((sin πt) ω, cos πt), t ∈ [0, 1], ω ∈ Sn−1 ⊂ Rn. (36.5)

With this identification, given f : Sn−1 −→ Sn−1 continuous we define Σf : Sn −→ Sn by

(Σf)((sin πt) ω, cos πt) = ((sin πt)f(ω), cosπt) (36.6)
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Figure 27: Suspension

Theorem 36.11: Given a continuous map f : Sn −→ Sn, the degree of Σf equals deg f . For every
m ∈ Z there is a continuous map f : Sn −→ Sn with degree m.

Proof: The argument parallels the one used to prove theorem (36.6) and is left for the reader.

Exercises

1. Show that if R′ and R′′ are two reflections (each with respect to a coordinate plane) then they
are conjugate by a homeomorphism. Deduce that both R′ and R′′ have degree −1.

2. Show that if a continuous map f : Sn −→ Sn misses a point of Sn then f is homotopic to the
constant map and so has degree zero.

3. Show that if n is odd then the antipodal map of Sn is homotopic to the identity map. Hint:
Do it first for the case n = 1 and show that the homotopy may be achieved via a continuous
rotation. The general case follows along similar lines by working with pairs of coordinates.

4. Show that RP 2n has the fixed point property.

5. Let η : S2n −→ RP 2n be the covering projection. Show that H2n(η) is the zero map.

6. Show that the map (36.5) is a homeomorphism and (36.6) defines a continuous map. More
generally given a continuous map f : X −→ Y show that the composite

X × [0, 1]
f×id−−−→ Y × [0, 1] −−−→ ΣY

induces a map Σf : ΣX −→ ΣY . Imitate the computation in theorem [//] of lecture [//] to
show that Hn+1(ΣX) = Hn(X) when n ≥ 1. What happens when n = 0?

7. Prove theorem (36.11). Note that the map f : S1 −→ S1 given by f(z) = zm has degree m.

8. Determine the degree of a polynomial as a map from S2 to itself. Reprove the fundamental
theorem of algebra.
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