
Lecture - XXXIV Small simplicies

Recall that the Goursat lemma in complex analysis is proved by subdividing a triangle into four
smaller triangles determined by the midpoints of the sides of the given triangle. The integral over
the given triangle is then the sum of the integrals over the four little pieces. Likewise, in the proof
of the classical Green’s theorem (of which Cauchy’s theorem is really a special case) one employs a
subdivision into tiny squares. The contributions to the integral from an edge common to a pair of
abutting triangles/squares cancel out.

A similar idea underlies the method of small simplicies where we perform a systematic subdivision
operation known as barycentric subdivision. The barycentric subdivision enables us to replace a singu-
lar chain by a homotopic one in which the constituent singular simplicies are small. A �small simplex
is one whose image lies in an open set belonging to a prescribed open cover of the space. One achieves
this through iterated barycentric subdivisions a process reminiscent of one used in the proof of the
Goursat lemma. The fundamental theorem on small simplicies quickly leads us to the two fundamental
results on algebraic topology - the excision theorem discussed in lecture 39 and the Mayer Vietoris
sequence that we shall derive here and use in the next lecture.

Affine simplicies and barycentric subdivision: Given points v1,v2, . . . ,vp+1 in the standard
n−simplex ∆n, the continuous map σ : ∆p −→ ∆n given in terms of the barycentric coordinates

p+1∑

i=1

λiei 7→
p+1∑

i=1

λivi (34.1)

is called an affine p−simplex and is denoted by [v1,v2, . . . ,vp+1]. Note that the given need not be
affinely independent. Each such σ is an element of Sp(∆n) and the subgroup generated by them is
called the group of affine p−simplicies in ∆n denoted by Ap(∆n). Thus Ap(∆n) is the set of all formal
linear combinations with integer coefficients of affine simplicies. Since the face maps (29.1) are affine
maps we conclude from exercise 2 that the boundary homomorphism ∂p : Sp(∆n) −→ Sp−1(∆n) maps
Ap(∆n) into Ap−1(∆n) and so we get a subcomplex {Ap(∆n)/p = 0, 1, 2, . . .} with boundary maps as
the restrictions of ∂p to Ap(∆n).

If b ∈ ∆n is a given point the cone over the affine simplex σ = [v1,v2, . . . ,vp+1] with vertex apex
b is denoted by Kbσ and is defined as

Kbσ = [b,v1,v2, . . . ,vp+1] (34.2)

The cone Kbσ is thus an affine p + 1 simplex. If we start with a zero simplex namely, a point
v ∈ Sn(∆n), the cone over it is the line segment [b,v]. Since Ap(∆n) is a free abelian group generated
by the affine p simplicies, we obtain by extension a group homomorphism Kb : Ap(∆n) −→ Ap+1(∆n).
As in the proof of theorem (29.7) it is easy to compute the boundary of the cone Kbσ for any affine p
simplex.
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For a zero simplex σ = [v] we evidently have ∂1Kb(σ) = σ− [b]. We now calculate the faces of the
affine p+ 1 simplex Kb(σ). If j ≥ 1,

(Kbσ ◦ Φp
j)(λ1, λ2, . . . , λp+1) = Kbσ(λ1, . . . , λj, 0, λj+1, . . . , λp+1)

= [b,v1, . . . ,vj−1,vj+1, . . . ,vp+1].

This is the cone over the j−th face of [v1,v2, . . . ,vp+1]. Turning to the case j = 0,

(Kbσ ◦ Φp
0)(λ1, λ2, . . . , λp+1) = Kbσ(0, λ1, . . . , λp+1) = [v1, . . . ,vp+1].

Using equation (29.4) we immediately get the following result.

Theorem 34.1: The boundary of the cone Kbσ = [b,v1,v2, . . . ,vp+1] is given by

∂Kbσ = σ −Kb∂σ (34.3)

Hitherto the choice of the apex b of the cone was arbitrary but now we shall specialize it to be the
barycenter of [v1,v2, . . . ,vp+1] that we now define.

Definition 34.1 (Barycenter of an affine simplex): (i) The barycenter of a zero simplex, that
is a point, is the zero simplex itself.

(ii) The barycenter of an affine p-simplex [v1,v2, . . . ,vp+1] is the point

1

p+ 1

(
v1 + v2 + · · · + vp+1

)
(34.4)

The barycenter of a one simplex is its midpoint and the barycenter of a two simplex is the centroid of
the triangle determined by the vertices. Roughly speaking, the barycentric subdivision of a one simplex
is obtained by subdividing the segment at its midpoint, or equivalently constructing the cone of each
of the two endpoints with apex as the barycenter. To subdivide a two simplex, we first subdivide
each of its three sides resulting in six one simplicies and taking the cone of each of the six pieces with
apex as the barycenter of the two simplex. Figure below depicts these subdivisions. More precisely

Figure 25:

the result of subdividing an affine p−simplex is a p−chain. The rough description above suggests an
inductive definition.

Definition 34.2: The subdivision map B : Ap(∆n) −→ Ap(∆n) is defined inductively as follows:
(i) For a zero simplex σ we define Bσ = σ.
(ii) For p ≥ 1, we assume that B is defined on Ak(∆n) for each k ≤ p−1. For a p−simplex σ define

Bσ = Kb(B(∂σ)), (34.5)

the cone over the chain B(∂σ) with apex b as the barycenter of σ.
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Theorem 34.2: The map B : Ap(∆n) −→ Ap(∆n) is a chain map which is chain homotopic to the
identity map.

Proof: If p = 0 and σ is a zero chain then B∂σ = 0 whereas ∂Bσ = ∂σ = 0. To handle the case
p > 0 we assume inductively that for any k−chain σ with k ≤ p− 1, the equation ∂Bσ = B∂σ holds.
To prove it for p chains, let σ be an arbitrary affine p−simplex. Equations (34.5) and (34.3) combine
to give

∂Bσ = ∂Kb(B∂σ) = B∂σ −Kb(∂B∂σ) = B∂σ −Kb(B∂∂σ) = B∂σ.

Note that induction hypothesis justifies ∂B∂σ = B∂∂σ. We have now shown that for every p chain σ,

B∂σ = ∂Bσ. (34.6)

We now construct a chain homotopy J : Ap(∆n) −→ Ap+1(∆n) between B and the identity map.
Equation (34.3) suggests a formula of the type

Jσ = Kbf(σ),

where b is the barycenter of σ and f : Ap(∆n) −→ Ap(∆n) is to be determined. The condition that J
is a chain homotopy between B and the identity now forces

f(σ) −Kb∂f(σ) = Bσ − σ − J(∂σ). (34.7)

Clearly f(σ) = 0 for a zero simplex σ. If we assume inductively that J : Ak(∆n) −→ Ak+1(∆n) has
already been defined for k ≤ p− 1, the right hand side of (34.7) is then a known function. Let us refer
to the term Kb∂f(σ) in equation (34.7) as junk. Exercise 3 invites the reader to check that retaining
the junk term is unnecessary. We set it equal to zero and define formally for a p−simplex σ,

Jσ =

{
0 if p = 0,
Kb(Bσ − σ − J(∂σ)) if p ≥ 1.

Let us now verify that this formula does the job. The case p = 0 is trivial and let us assume

∂Jσ + J(∂σ) = Bσ − σ

for any k chain such that k ≤ p− 1. Using the formula of J we see that

∂Jσ = Bσ − σ − J(∂σ) −Kb(∂Bσ − ∂σ − ∂J(∂σ)). (34.8)

By induction hypothesis ∂J(∂σ) = −J(∂∂σ) +B(∂σ)− ∂σ. Inserting this in (34.8) we get the desired
result

∂Jσ = Bσ − σ − J(∂σ). (34.9)

We shall now transfer the barycentric subdivision operator and the chain homotopy J to a chain map
B : Sp(X) −→ Sp(X) and a chain homotopy J : Sp(X) −→ Sp+1(X). This will be unique subject to
naturality.
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Theorem 34.3: For each topological space X, there exists a unique chain map BX : Sp(X) −→
Sp(X) and a chain homotopy JX : Sp(X) −→ Sp+1(X) between B and the identity map, which
satisfies the following two conditions.

(i) For a continuous map f : X −→ Y between topological spaces X and Y ,

B ◦ f] = f] ◦ B, J ◦ f] = f] ◦ J .

(ii) B and J when restricted to the affine simplicies reduce to B and J respectively.

Proof: Let ιp be the element of Ap(∆p) given by the identity map from ∆p to itself. Since an
arbitrary σ ∈ Sp(X) can be written as σ = σ]ιp, condition (i) forces

Bσ = (B ◦ σ])ιp = σ](Bιp) = σ]Bιp (34.10)

since Bιp = Bιp by (ii). Thus the conditions (i) and (ii) determine B uniquely on the generators of the
free abelian group Sp(X). The same argument applies to J .

We use (34.10) and (34.5) to show that B and B agree on any affine simplex σ ∈ Ap(∆n). Denoting
by g the barycenter of ιp and by b the barycenter of σ,

Bσ = σ]Bιp = σ](Kg(∂pιp)).

Using exercise 2, this may be rewritten as

Bσ = Kσ(g)(σ](∂pιp)) = Kb(∂pσ]ιp) = Kb(∂pσ) = Bσ.

The verification for J is similar. We now run through the proof that B is a chain map, which is now
automatic. For an arbitrary σ ∈ Sp(X), ∂Bσ = ∂(σ]Bιp) = σ](∂Bιp). Since ∂ιp is an affine chain and
B is a chain map on the subcomplex of affine chains we get ∂Bιp = B∂ιp. Applying σ] to this gives
∂Bσ = σ](B∂ιp). Working from the other end using the fact that σ] is a chain map and B satisfies (i),
we get

B∂σ = B∂(σ]ιp) = B(σ]∂ιp) = σ]B(∂ιp) = σ]B(∂ιp).

Finally we show that J is a chain homotopy between B and the identity operator. For σ ∈ Sp(X),

J ∂σ = J ∂σ]ιp = J σ]∂ιp = σ]J ∂ιp = σ]J∂ιp

∂J σ = ∂J σ]ιp = ∂σ]J ιp = σ]∂J ιp = σ]∂Jιp.

We have used (i) and (ii) and the fact that σ] is a chain map. Subtracting and using (34.9) we get the
desired result. �

Theorem 34.4: (i) The diameter of an affine p−simplex σ = [v1,v2, . . . ,vp+1] is the length of its
longest side namely,

max
i6=j

‖vi − vj‖.

(ii) The diameter of any constituent simplex in the chain Bσ is
( p

p+ 1

)
diam (σ).

131



Proof: We leave (i) as an exercise for the reader. To prove (ii) we use induction on p setting aside
the cases p = 1, 2 for the reader to investigate. Denoting by b the barycenter of σ, the reader may
check that ‖b−x‖ ≤ p(p+1)−1(diam σ) for any point x of σ. Let τ be one of the simplicies appearing
in the chain Bσ. Then the diameter of τ equals ‖w− z‖ where w and z are two vertices of τ . If one of
these is b then the result follows from the assertion in the previous sentence. If neither w nor z is b
then they are both vertices of a face τ ′ of τ lying on a face σ′ of σ. But τ ′ is then a constituent (p− 1)
simplex of B(σ′) and by induction hypothesis, the result follows (how?). �

Definition 34.3: Given an open covering U of X, S U
n (X) denotes the subgroup of Sn(X) generated

by all the singular simplicies σ : ∆n −→ X such that σ(∆n) ⊂ Uσ for some open set Uσ in the covering
U . That is to say, S U

n (X) is the free abelian group generated by small simplicies, namely those with
images contained in one of the open sets in the given covering. It is clear that that the boundary
homomorphism ∂n maps S U

n (X) into S U
n−1(X) and the resulting subcomplex is denoted by S U(X).

The homology groups of the complex S U(X) will be denoted by H U
n (X).

Lemma 34.5: (i) Given an open cover U of X and a singular simplex σ ∈ Sp(X), there exists a
k ∈ N such that Bkσ ∈ S U

p (X). In other words each of the simplicies occurring in Bkσ has its image
in one of the open sets of the cover U .

(ii) If σ is a singular p simplex whose image lies in an open set U ∈ U then J σ ∈ S U
p+1(X) where

J is the chain homotopy constructed in theorem (34.3).

Proof: (i) Choose a Lebesgue number for the open cover {σ−1(U) /U ∈ U}. According to theorem
(34.3), the images of the simplicies occurring in the chain Bkσ are the same as the images under σ of
the affine simplicies occurring in Bkιp, where ιp is the identity map of ∆p. However, theorem (34.4)
states that the simplicies occurring in Bkιp have diameters less than (p(p+ 1)−1)k. Thus, if we choose
k sufficiently large the image of each of the simplicies in Bkσ would lie in one of the open sets of U .

To prove (ii) we use the naturality of J and proceed as in the proof of theorem (34.4). Let
σ : ∆p −→ X have its image in U ∈ U . Then J σ = σ](Jιp). But we see immediately from the
definition of J in theorem (34.3) that Jιp is a Z−linear combination:

Jιp =
∑

ckλk

where each λk is a (degenerate) affine (p+1) simplex contained in ∆p and hence σ](λk) is a singular
(p+ 1) simplex with image contained in U . �

Theorem 34.6: The inclusion maps S U
n (X) −→ Sn(X) (n = 0, 1, 2, . . . ) define a chain map of

complexes. Further, these inclusion maps induce isomorphisms in homology:

H U
n (X)

∼=−−−→ Hn(X), n = 0, 1, 2, . . .

Proof: The first assertion follows from the comments preceding lemma (34.5). To show that the
inclusion maps induce an injective map on homologies, let σ ∈ S U

p (X) be a singular chain such that
σ = ∂η for some η ∈ Sp+1(X). Choose k ∈ N such that Bkη ∈ S U

p+1(X). We have to show that Bkη
is a boundary in S U . By exercise 5, Bk is chain homotopic to the identity via a homotopy Tk say.
Applying ∂ to

Bkη − η = Tk∂η + ∂Tkη,
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we see that ∂(Bkη)−σ = ∂Tkσ. By (ii) of lemma (34.5), ∂Tkσ ∈ S U
p (X) which means σ is a boundary

in S U
p (X). To prove surjectivity, let σ be a cycle in S(X) and k ∈ N be such that Bkσ ∈ S U(X).

From Bkσ − σ = ∂Tkσ we conclude that σ is homologous to the cycle Bkσ in S U(X). �

Theorem 34.7 (Mayer Vietoris sequence): (i) Let {U, V } be an open covering of X,

κ′ : Hk(U ∩ V ) −→ Hk(U), κ′′ : Hk(U ∩ V ) −→ Hk(V )

be the maps induced by inclusions. Further, let qn : Hn(U) ⊕Hn(V ) −→ Hn(U ∪ V ) be the map:

(a, b) 7→ j1∗a+ j2∗b,

where j1∗ and j2∗ are induced by the respective inclusions j1 : U −→ U ∪ V and j2 : V −→ U ∪ V .
Then, the following long exact sequence known as the Mayer Vietoris sequence holds:

−−−→ Hn(U ∩ V )
(κ′,−κ′′)−−−−−→ Hn(U) ⊕Hn(V )

qn−−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→

(ii) A cycle ζ ∈ Zn(U ∪V ) may be represented (modulo boundaries) as ζ = ζ1 +ζ2 for some ζ1 ∈ Sn(U)
and ζ2 ∈ Sn(V ) and the connecting homomorphism δn is given by

δn : ζ 7→ ∂ζ1 = −∂ζ2.

Proof: In the diagrams below, the Left hand square depicts a push-out square of inclusions which
goes over to a push-out square of complexes on the right:

U ∩ V i1−−−→ U

i2

y
yj1

V
j2−−−→ U ∪ V

S(U ∩ V )
i1−−−→ S(U)

i2

y
yj1

S(V )
j2−−−→ S U(U ∪ V )

The reader may check that the latter may be recast as a short exact sequence of chain complexes
namely

0 −−−→ S(U ∩ V )
(i1,−i2)−−−−→ S(U) ⊕ S(V )

j1+j2−−−→ S U(U ∩ V ) −−−→ 0. (34.11)

The corresponding long exact sequence in homology gives

−−−→ Hn(U ∩ V )
(κ′,−κ′′)−−−−−→ Hn(U) ⊕Hn(V )

Qn−−−→ H U
n (U ∪ V )

Dn−−−→ Hn−1(U ∩ V ) −−−→

The definition of κ′, κ′′ and exercise 6 enables us to replace Qn and Dn by the composites

qn : Hn(U) ⊕Hn(V )
Qn−−−→ H U

n (U ∪ V )
λ−−−→ Hn(U ∪ V )

δn : Hn(U ∩ V )
λ−1

−−−→ H U
n (U ∪ V )

Dn−−−→ Hn(U ∩ V ) (34.12)

where λ is the isomorphism given by theorem (34.6). The final result is the Mayer Vietoris sequence
stated in the theorem. The second part is clear from (29.18). �
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Theorem 34.8 (Naturality of the Mayer Vietoris sequence): Given a continuous map of pairs
f : (U, V ) −→ (A,B) where {U, V } and {A,B} are open coverings of topological spaces, the following
diagram commutes where the vertical maps are induced by f .

−−−→ Hn(U ∩ V ) −−−→ Hn(U) ⊕Hn(V ) −−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→y

y
y

y
−−−→ Hn(A ∩B) −−−→ Hn(A) ⊕Hn(B) −−−→ Hn(A ∪ B)) −−−→ Hn−1(A ∩ B) −−−→

(34.13)

Proof: The proof is left for the reader. The non-trivial part concerns only the squares involving the
connecting homomorphism for which (ii) of the previous theorem may be employed. �

Exercises

1. Show that the map defined by (34.1) is the restriction to ∆p of an affine map. Note: An affine
map is the composition of a linear map and a translation.

2. Suppose T : Rn+1 −→ Rm+1 is an affine map such that T (∆n) ⊂ ∆m, then T] maps the subgroup
Ap(∆n) into Ap(∆m) and is a chain map from the complex {Ap(∆n)} to {Ap(∆m)}. Further
prove the following:

(i) If b ∈ ∆n and σ ∈ Ap(∆n) then T](Kbσ) = KTb(T]σ).

(ii) If b is the barycenter of σ then b is the barycenter of T]σ.

What happens if we consider a degenerate two simplex where the points v1,v2,v3 are not affinely
independent? Discuss the case of the two simplex [v1,v2,v2].

3. Examine what happens if the term referred to as junk in equation (34.7) is retained.

4. Complete the details of the proof of theorem (34.4).

5. Show that Bk is chain homotopic to the identity map. What is the chain homotopy?

6. Suppose that the maps g and h in the exact sequence

A −−−→ B
g−−−→ C

h−−−→ D −−−→ E

are replaced by the composites

g̃ : B
g−−−→ C

λ−−−→ X, h̃ : X
λ−1

−−−→ C
h−−−→ D

the result is again an exact sequence.

7. Fill in the details in the proof of theorem (34.8). See exercise 6 of lecture 29.
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