
Lecture V - Topological Groups

A topological group is a topological space which is also a group such that the group operations
(multiplication and inversion) are continuous. They arise naturally as continuous groups of symmetries
of topological spaces. A case in point is the group SO(3,R) of rotations of R3 about the origin which
is a group of symmetries of the sphere S2. Many familiar examples of topological spaces are in fact
topological groups. The most basic example of-course is the real line with the group structure given
by addition. Other obvious examples are Rn under addition, the multiplicative group of unit complex
numbers S1 and the multiplicative group C∗.

In the previous lectures we have seen that the group SO(n,R) of orthogonal matrices with determi-
nant one and the group U(n) of unitary matrices are compact. In this lecture we initiate a systematic
study of topological groups and take a closer look at some of the matrix groups such as SO(n,R) and
the unitary groups U(n).

Definition 5.1: A topological group is a group which is also a topological space such that the
singleton set containing the identity element is closed and the group operation

G×G −→ G

(g1, g2) 7→ g1g2

and the inversion j : G −→ G given by j(g) = g−1 are continuous, where G×G is given the product
topology.

We leave it to the reader to prove that a topological group is a Hausdorff space. It is immediate
that the following maps of a topological group G are continuous:

1. Given h ∈ G the maps Lh : G −→ G and Rh : G −→ G given by Lh(g) = hg and Rh(g) = gh.
These are the left and right translations by h.

2. The inner-automorphism given by g 7→ hgh−1 which is a homeomorphism.

Note that the determinant map is a continuous group homomorphism from GLn(R) −→ R−{0}. The
image is surjective from which it follows that GLn(R) is disconnected as a topological space.

Theorem 5.1: The connected component of the identity in a topological group is a subgroup.

Proof: Let G0 be the connected component of G containing the identity and h, k ∈ G0 be arbitrary.
The set h−1G0 is connected and contains the identity and so G0 ∪ h−1G0 is also connected. Since G0

is a component, we have G0 ∪ h−1G0 = G0 which implies h−1G0 ⊂ G0. In particular h−1k belongs to
G0 from which we conclude that G0 is a subgroup.

Interesting properties of topological groups arise in connection with quotients:

Theorem 5.2: Suppose that G is a topological group and K is a subgroup and the coset space G/K
is given the quotient topology then

1. If K and G/K are connected then G is connected.

2. If K and G/K are compact then G is compact.
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Proof: If G is connected then so is G/K since the quotient map η : G −→ G/K is a continuous
surjection. To prove the converse suppose that K and G/K are connected and f : G −→ {0, 1} be
an arbitrary continuous map. We have to show that f is constant. The restriction of f to K must be
constant and since each coset gK is connected, f must be constant on gK as well taking value f(g).
Thus we have a well defined map f̃ : G/K −→ {0, 1} such that f̃ ◦η = f . By the fundamental property
of quotient spaces, it follows that f̃ is continuous and so must be constant since G/K is connected.
Hence f is also constant and we conclude that G is connected. �

Since we shall not need (2), we shall omit the proof. A proof is available in [12], p. 109.

Theorem 5.3: The groups SO(n,R) are connected when n ≥ 2.

Proof: It is clear that SO(2,R) is connected (why?). Turning to the case n ≥ 3, we consider the
action of SO(n,R) on the standard unit sphere Sn−1 in Rn given by

(A,v) 7→ Av,

where A ∈ SO(n,R) and v ∈ Sn−1. It is an exercise for the student to check that this group action
is transitive and that the stabilizer of the unit vector ên is the subgroup K consisting of all those
matrices in SO(n,R) whose last column is ên. The subgroup K is homeomorphic to SO(n− 1,R) and
so, by induction hypothesis, is connected. By exercise 3, the quotient space SO(n,R) is homeomorphic
to Sn−1 which is connected. So the theorem can be applied with G = SO(n,R), H = SO(n − 1,R)
and G/H is the sphere Sn−1 with n ≥ 2. �

Theorem 5.4: If G is a connected topological group and H is a subgroup which contains a neigh-
borhood of the identity then H = G. In particular, an open subgroup of G equals G.

Proof: Let U be the open neighborhood of the identity that is contained in H and h ∈ H be
arbitrary. Since multiplication by h is a homeomorphism, the set Uh = {uh/u ∈ U} is also open and
also contained in H. Hence the set

L =
⋃

h∈H

Uh

is open and contained in H. Since U contains the identity element, H ⊂ L and we conclude that H is
open. Our job will be over if we can show that H is closed as well. Let x ∈ H be arbitrary. Since the
neighborhood Ux of x contains a point y ∈ H, there exists u ∈ U such that y = ux which, in view of
the fact that U ⊂ H, implies x ∈ H. Hence H = H. �

Theorem 5.5: Suppose G is a connected topological group and H is a discrete normal subgroup of
G then H is contained in the center of G.

Proof: Since H is discrete, the identity element is not a limit point of H and so there is a neighbor-
hood U of the identity such that U ∩H = {1}. We may assume U has the property that if u1, u2 are
in U then the product u−1

1 u2 is in U . This follows from the continuity of the group operation and a
detailed verification is left as an exercise. It is easy to see that if h1 and h2 are two distinct elements
of H then

Uh1 ∩ Uh2 = ∅.
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Fix h ∈ H and consider now the set K given by

K = {g ∈ G / gh = hg}

We shall show that the subgroup K contains a neighborhood of the identity. Pick a neighborhood V
of the identity such that V = V −1 and (hV h−1V )∩H = {1}. Then for any g ∈ V , we have on the one
hand

hgh−1g−1 ∈ hV h−1V

and on the other hand hgh−1g−1 ∈ H since H is normal. Hence hgh−1g−1 ∈ (hV h−1V ) ∩ H = {1}
which shows that g belongs to K and K contains a neighborhood of the unit element. We may now
invoke the previous theorem. �

Remark: The result is false if the hypothesis of normality of H is dropped. For example consider a
cube in R3 with center at the origin and H be the subgroup of G = SO(3,R) that map the cube to
itself. Then H is the symmetric group on four letters (proof?). Clearly H is not in the center of G.

Exercises

1. Show that in a topological group, the connected component of the identity is a normal subgroup.

2. Show that the action of the group SO(n,R) on the sphere Sn−1 given by matrix multiplication
is transitive. You need to employ the Gram-Schmidt theorem to complete a given unit vector to
an orthonormal basis.

3. Suppose a group G acts transitively on a set S and x, y are a pair of points in S and y = gx.
Then the subgroups stab x and stab y are conjugates and g−1(stab y)g = stab x.

(i) Show that the map φ : G/stab x −→ S given by φ(g) = gx is well-defined, bijective and
φ ◦ η = φ.

(ii) Suppose that S is a topological space, G is a topological group and the action G×S −→ S
is continuous. Show that the map φ is continuous.

(iii) Deduce that if G is compact and S is Hausdorff then G/stab x and S are homeomorphic.

4. Examine whether the map φ : SU(n)×S1 −→ U(n) given by φ(A, z) = zA is a homeomorphism.

5. Show that the group of all unitary matrices U(n) is compact and connected. Regarding U(n−1)
as a subgroup of U(n) in a natural way, recognize the quotient space as a familiar space.

6. Show that the subgroups SU(n) consisting of matrices in U(n) with determinant one are con-
nected for every n.

7. Suppose G is a topological group and H is a normal subgroup, prove that G/H is Hausdorff if
and only if H is closed.
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