
Lectures - XXIX/XXX The singular chain complex and homology groups

The program of developing a calculus of chains is now formalized in this lecture. We introduce
a new algebraic category of chain complexes and maps between them and prove the fundamental
theorem about these algebraic gadgets. In particular, to each chain complex is associated a sequence
of groups called the homology groups. Given a topological space X we associate a chain complex to
it and obtain the homology functors from the category Top to the category AbGr. Thus we lay in
this lecture the foundations for a systematic calculus of chains and cycles putting the heuristic ideas
of the last lecture on a rigorous footing.

Definition 29.1 (The standard simplex): The standard n−simplex denoted by ∆n is the con-
vex hull of the n + 1 the standard unit vectors in Rn+1. Denoting the standard unit vectors by
e1, e2, . . . , en+1, their convex hull is the set

∆n = {(t1, t2, . . . , tn+1), t1 ≥ 0, t2 ≥ 0, . . . , tn+1 ≥ 0, t1 + t2 + · · ·+ tn+1 = 1}.

We take the standard zero simplex ∆0 to be the point e1.
Thus ∆2 is the equilateral triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) and the one simplex

∆1 is the line segment in R2 joining the points (1, 0) and (0, 1).
Note that ∆2 contains three copies of ∆1 namely the sides of the equilateral triangle. Likewise

∆3 contains four copies of ∆2, the four faces of the regular tetrahedron. To formalize this idea, we
introduce (n + 1) affine maps ∆n−1 −→ ∆n called the face maps. For i = 1, 2, 3, the i−th face of
∆2 is the face opposite to vertex ei and consists of all points (t1, t2, t3) with non-negative entries and
t1 + t2 + t3 = 1 such that the i−th coordinate ti vanishes.

Now suppose that (t1, t2, . . . , tn+1) denotes denotes a typical point on the last face of ∆n. Then
since tn+1 vanishes, we see that (t1, t2, . . . , tn) is a typical point on ∆n−1. Turning the argument around
we define the map

∆n−1 −→ ∆n

(t1, t2, . . . , tn) 7→ (t1, t2, . . . , tn, 0),

where the ti are all non-negtive and
∑
ti = 1, and call it the standard n-th face map. The i−th face

map (0 ≤ i ≤ n) would be

Φn
i : ∆n−1 −→ ∆n

(t1, t2, . . . , tn) 7→ (t1, t2, . . . , ti−1, 0, ti, . . . , tn), (29.1)

We leave it to the reader to write down explicitly the maps Φn
j ◦ Φn−1

i : ∆n−2 −→ ∆n and prove the
following result:
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Lemma 29.1: Suppose that 0 ≤ j < i ≤ n then

Φn
j ◦ Φn−1

i−1 = Φn
i ◦ Φn−1

j (29.2)

Definition 29.2 (Singular chains): A singular n−simplex in a topological space X is a continuous
map σ : ∆n −→ X. The free abelian group generated by the set of all singular n−simplices in X is
called the group of singular n−chains in X. This group is denoted by Sn(X) and a typical element of
Sn(X) is thus a formal sum

n1σ1 + n2σ2 + · · ·+ nkσk, (29.3)

where the coefficients n1, n2, . . . , nk are integers. For convenience we define S−1(X) to be the zero
group.

The most important notion in homology theory is the algebraization of the notion of a boundary
which applies to arbitrary singular simplices in an arbitrary topological space and not merely polyhedra
in Euclidean spaces obtained by gluing together affine simplices. It is precisely this algebraization which
provides considerable flexibility towards applications of homology theory.

Definition 29.3 (Boundary of a singular simplex): Given a singular n−simplex σ : ∆n −→ X,
its j−th singular boundary is the singular (n− 1) simplex σ ◦ Φn

j and the boundary ∂nσ of σ is then
the (n− 1) chain given by the algebraic sum of its singular faces:

∂nσ =

n∑

j=0

(−1)j(σ ◦ Φn
j ). (29.4)

The map ∂n then extends as a group homomorphism σn : Sn(X) −→ Sn−1(X). When n = 0 we define
the boundary map ∂0 to be the zero map.

The most important property of the maps ∂n is the vanishing of ∂n−1 ◦ ∂n which we now prove.

Theorem 29.2: For each n ≥ 1, we have

∂n−1 ◦ ∂n = 0. (29.5)

Proof: It clearly suffices to check the result on the generators of Sn(X). So let σ be an arbitrary
singular n simplex. Using equation (29.4),

(∂n−1 ◦ ∂n)σ = ∂n−1

( n∑

i=0

(−1)iσ ◦ Φn
i

)
=

n∑

i=0

n−1∑

j=0

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j ).

To use lemma (29.1) we break the double sum in two pieces and write

(∂n−1 ◦ ∂n)σ =
∑

i≤j

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j ) +
∑

j<i

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j )

Using (29.2) in the second piece we get

(∂n−1 ◦ ∂n)σ =
∑

i≤j

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j ) +
∑

j<i

(−1)i+jσ ◦ (Φn
j ◦ Φn−1

i−1 )
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It may be noted that each of the two pieces is a sum of n(n+ 1)/2 terms (why?). Renaming i− 1 as
k in the second sum gives

(∂n−1 ◦ ∂n)σ =
∑

i≤j≤n−1

(−1)i+jσ ◦ (Φn
i ◦ Φn−1

j ) +
∑

j≤k≤n−1

(−1)k+j−1σ ◦ (Φn
j ◦ Φn−1

k ) = 0

as desired.
Now suppose that X and Y are two topological spaces and f : X −→ Y is a continuous map then

f ◦ σ is a singular n−simplex in Y whenever σ is a singular n−simplex in X.

Definition 29.4: Given a continuous map f : X −→ Y , the map f] : Sn(X) −→ Sn(Y ) is the group
homomorphism which is defined on singular n simplices σ via the prescription

f](σ) = f ◦ σ, (29.6)

and extended as a group homomorphism from Sn(X) to Sn(Y ). We ought to denote this map by fn]
but we shall suppress the superscript to enhance readability.

Theorem 29.3: (i) For a continuous map f : X −→ Y , the maps f] : Sn(X) −→ Sn(Y ) satisfy

∂n ◦ f] = f] ◦ ∂n (29.7)

The f] on the right hand side obviously refers to the map Sn−1(X) −→ Sn−1(Y ) and ∂n refers to the
boundary operator on Sn(Y ) on the left hand side whereas it refers to the boundary operator on Sn(X)
on the right hand side.

(ii) If f : X −→ Y and g : Y −→ Z are two continuous maps then the maps f] : Sn(X) −→ Sn(Y )
and g] : Sn(Y ) −→ Sn(Z) satisfy

(g ◦ f)] = g] ◦ f] (29.8)

Proof: We shall only prove (29.7). It suffices to check these on singular simplices. So let σ : ∆n −→ X
be a singular n simplex in X. Using (29.4) we get

(f] ◦ ∂n)σ = f]

( n∑

i=0

(−1)iσ ◦ Φn
i

)
=

n∑

i=0

(−1)i((f ◦ σ) ◦ Φn
i ) = ∂n(f ◦ σ) = ∂n(f](σ)) = (∂n ◦ f])σ.

The category of chain complexes: We have associated to each topological space X a sequence
{Sn(X)} of free abelian groups and group homomorphisms ∂n : Sn(X) −→ Sn−1(X) satisfying (29.7).
It is useful to describe these in an abstract setting where the groups in question need not be free
abelian and prove some general results about them. This paragraph serves as an algebraic prerequisite
for the study homology theory.

Definition 29.5: (i) A differential chain complex is a sequence {Gn/n = 0, 1, 2 . . . } of abelian groups
together with a sequence of group homomorphism ∂n : Gn −→ Gn−1 called the boundary operator

satisfying the condition
∂n ◦ ∂n+1 = 0, n = 0, 1, 2, . . . (29.9)

with the convention G−1 = {0} and ∂0 = 0. We shall use the letter G to denote this chain complex.
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(ii) For a chain complex G, we define the subgroup Zn(G) of n-cycles to be the kernel of ∂n namely,

Zn(G) = {z ∈ Gn/∂n(z) = 0} (29.10)

and the subgroup of n-boundaries as the image of ∂n+1 namely

Bn(G) = {∂n+1(x)/x ∈ Gn+1}. (29.11)

From (29.9) it is clear that Bn(G) ⊂ Zn(G) and also Z0(G) = G0.
(iii) The quotient group

Hn(G) = Zn(G)/Bn(G) (29.12)

is called the n-th homology of the chain complex G. If zn ∈ Zn(G) is a cycle the symbol zn refers
to the coset of zn in the quotient group Hn(G), called the homology class of zn. We shall simplify
notations whenever feasible and write Zn in place of Zn(G), Bn instead of Bn(G) and sometimes ∂z
in place of the cumbersome ∂n(z).

Given two chain complexes G and K one would like to study maps between them. These are the
chain maps which we now define.

Definition 29.6: Given two chain complexes G and K with boundary maps ∂ ′ : Gn −→ Gn−1 and
∂′′ : Kn −→ Kn−1, a chain map φ : G −→ K is a sequence of group homomorphisms φn : Gn −→ Kn

(n = 0, 1, 2, . . . ) such that
∂′′n ◦ φn = φn−1 ◦ ∂′n (29.13)

Equation (29.13) may be summarized by declaring that the following diagram commutes:

Gn
∂′n−−−→ Gn−1

φn

y
yφn−1

Kn
∂′′n−−−→ Kn−1

(29.14)

Theorem 29.4: A chain map φ : G −→ K induces for each n = 0, 1, 2, . . . , a group homomorphism
Hn(φ) : Hn(G) −→ Hn(K) given by

x 7→ φn(x).

Proof: Thanks to (29.7), φn maps Zn(G) into Zn(K) and Bn(G) into Bn(K). Thus the map induced
on the quotient groups is a well defined group homomorphism.

Theorem 29.5: Suppose given a pair of chain maps φ : L −→ G and G −→ K, then the composite
ψ ◦ φ : L −→ K is a chain map and

Hn(ψ ◦ φ) = Hn(ψ) ◦Hn(φ), n = 0, 1, 2, . . . (29.15)

In other words for each n we get a covariant functor Hn from the category of chain complexes to the
category AbGr.
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Proof: For each x ∈ Zn(L),

Hn(ψ ◦ φ)(x) = ψn ◦ φn(x) = Hn(ψ)(φn(x)) = Hn(ψ) ◦Hn(φ)(x).

We shall at some point as we go along, drop the primes and denote both sets of boundary maps by ∂n
or even ∂. Observe that if z ∈ ker φn then

φn−1(∂nz) = ∂n−1φn(z) = 0,

whereby we conclude that ∂n maps ker φn into ker φn−1 and we get a chain complex

−−−→ ker φn+1
∂n+1−−−→ ker φn

∂n−−−→ ker φn−1 −−−→
which we denote by ker φ. Likewise we get the chain complex

−−−→ Im φn+1
∂n+1−−−→ Im φn

∂n−−−→ Im φn−1 −−−→
which we denote by Im φ. It is clear from (29.13) that ∂n maps Im φn into Im φn−1.

The long exact homology sequence: We are now ready to prove the most basic result on chain
complexes and their homologies. The symbol 0 in any diagram involving chain complexes refers to the
zero chain complex in which all groups are zero and the boundary maps are all zero.

Definition 29.7: A short exact sequence of chain complexes consists of three chain complexes of
abelian groups L,G and K and chain maps f : L −→ G and g : G −→ K such that

(i) For each n, the map fn is injective.

(ii) For each n, the map gn is surjective.

(iii) For each n, ker gn =Im fn.

Thus for each n we have the diagram

{0} −−−→ Ln
fn−−−→ Gn

gn−−−→ Kn −−−→ {0} (29.16)

We now write out two more parallel rows with n replaced by n− 1 and n+ 1 and the boundary maps
going across the rows:

y
y

y

0 −−−→ Ln+1
fn+1−−−→ Gn+1

gn+1−−−→ Kn+1 −−−→ 0y∂n+1

y∂n+1

y∂n+1

0 −−−→ Ln
fn−−−→ Gn

gn−−−→ Kn −−−→ 0y∂n

y∂n

y∂n

0 −−−→ Ln−1
fn−1−−−→ Gn−1

gn−1−−−→ Kn−1 −−−→ 0y
y

y

We now state and prove the fundamental result.
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Theorem 29.6: A short exact sequence of complexes (29.16) induces a long exact sequence in
homology

−−−→ Hn(L)
Hn(f)−−−→ Hn(G)

Hn(g)−−−→ Hn(K)
δn−−−→ Hn−1(L) −−−→ (29.17)

where the map δn : Hn(K) −→ Hn−1(L) known as the connecting homomorphism is given by the
formula

δnkn = f−1
n−1∂ng

−1
n (kn), kn ∈ Zn(K) (29.18)

Here kn refers to the homology class of kn ∈ Zn(K) and g−1(kn) refers to any pre-image of kn.

Proof: We must first show that displayed formula (29.18) gives a well-defined map since several
choices are being made. First, for kn ∈ Zn(K) surjectivity of gn shows that there exists xn ∈ Gn such
that gn(xn) = kn. Applying the boundary map ∂n we see that gn−1(∂xn) = ∂kn = 0 which, by virtue
of exactness of (29.16) and injectivity of fn−1, shows there is a unique yn−1 ∈ Ln−1 such that

fn−1(yn−1) = ∂xn. (29.19)

We have to now show that yn−1 is a cycle in L. This is clear if n = 1 and so we assume n ≥ 2.
Applying the boundary map to (29.19) gives fn−2(∂yn−1) = 0 from which we conclude, since fn−2 is
injective, that yn−1 ∈ Zn−1(L). Hence the assignment

kn 7→ yn−1, kn ∈ Zn(K) (29.20)

is well defined once we show that it is independent of the choice of xn ∈ g−1
n (kn).

Second, we suppose that for a given kn ∈ Zn(K), x′n and x′′n are two members of g−1
n (kn) then

x′n − x′′n ∈ ker gn = im fn.

So there is a un ∈ Ln such that x′n−x′′n = fn(un). On the other hand, for these two choices there exist
y′n−1 and y′′n−1 in Ln−1 such that (29.19) holds and so

fn−1(y
′
n−1) − fn−1(y

′′
n−1) = ∂(x′n − x′′n) = ∂fn(un) = fn−1(∂un).

Injectivity of fn−1 implies y′n−1 and y′′n−1 differ by a boundary and so define the same homology class.
Third, we must show that the same homology class results if we begin with two homologous cycles

k′n and k′′n. In this there exists vn+1 ∈ Kn+1 and xn+1 ∈ Gn+1 such that

k′n − k′′n = ∂vn+1 = ∂gn+1(xn+1) = gn(∂xn+1).

Let x′n and x′′n be chosen from g−1
n (k′n) and g−1

n (k′′n) respectively so that gn(x
′
n − x′′n − ∂xn+1) = 0. By

exactness of (29.16) there is a wn ∈ Ln such that x′n − x′′n − ∂xn+1 = fn(wn). Applying ∂ to this and
and recalling (29.19) we see that the corresponding cycles y ′n−1 and y′′n−1 satisfy

fn−1(y
′
n−1 − y′′n−1) = ∂fn(wn) = fn−1(∂wn).

Since fn−1 is injective we see that the cycles y′n−1 and y′′n−1 are homologous.
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Exactness of (29.17): We first check the exactness at the junction Hn(G). Since (29.15) implies
Hn(g) ◦Hn(f) = 0, it suffices to prove ker Hn(g) ⊂ im Hn(f). So let gn(xn) = ∂n+1kn+1 for some xn ∈
Zn(G) and kn+1 ∈ Kn+1. Since gn+1 is surjective we can find xn+1 ∈ Gn+1 such that kn+1 = gn+1(xn+1)
and

gn(xn) = ∂n+1gn+1(xn+1) = gn(∂n+1xn+1),

from which we conclude there exists yn ∈ Ln such that xn−∂n+1xn+1 = fn(yn). Applying the operator
∂n and using injectivity of fn−1 we see that yn ∈ Zn(L) and the result is established.

We now turn to the exactness at the junction Hn(K). It is clear from (29.18) that δn(gnxn) = 0
for any xn ∈ Zn(G) so that δn ◦Hn(g) = 0. To prove ker δn(g) ⊂ im Hn(g) let kn ∈ Zn(K) such that
δn(kn) = 0. Equation (29.18) then implies, for any xn ∈ g−1

n (kn) there is ln ∈ Ln such that

f−1
n−1∂nxn = ∂nln.

From this we get xn − fn(ln) = x′n ∈ Zn(G). Applying gn we see that kn = gn(xn) = gn(x
′
n) whereby

we conclude kn ∈ im Hn(g).
Finally we come to the exactness at the junction Hn−1(L). From (29.18) follows Hn−1(f) ◦ δn = 0.

To show ker Hn−1(f) ⊂ im δn, pick a cycle ln−1 such that fn−1(ln−1) is a boundary say ∂nxn for some
xn ∈ Gn. Applying gn−1 to the equation

fn−1ln−1 = ∂nxn

gives a cycle kn = gn(xn) ∈ Zn(K). From (29.18) we infer δn(kn) = ln−1 and this suffices for a proof.

Exercises

1. Sketch ∆n for n = 1, 2, 3. Show that ∆n is a compact and connected subspace of Rn+1.

2. Discuss the continuity of the maps (29.1). Prove lemma (29.1). what about the cases i ≤ j?

3. Verify equation (29.8).

4. Determine the values of n (n = 1, 2, . . . ) for which a constant function ∆n −→ X an n−cycle.

5. Show that the family of all chain complexes forms a category in which the set of morphisms
Mor(G,K) between any two chain complexes G and K is the set of all chain maps from G to K.

6. Naturality of (29.17)-(29.18). Assume given a commutative diagram of chain complexes with
exact rows:

0 −−−→ L
f−−−→ G

g−−−→ K −−−→ 0yφ

yψ

yη

0 −−−→ L′ f ′−−−→ G′ g′−−−→ K ′ −−−→ 0

Denoting by δn and δ′n the connecting homomorphisms, sketch relevant diagrams and prove that

δ′n ◦Hn(η) = Hn(ψ) ◦ δn
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