
Lecture XXII - Fundamental group of SO(3,R) and SO(4,R)

For many applications, it is important to know The fundamental groups of the classical groups.
We shall discuss in detail the orthogonal groups SO(3,R) and SO(4,R) since their underlying topo-
logical spaces are easily described. Indeed SO(3,R) is the three dimensional real projective space and
SO(4,R), as a topological space, is the product of the three dimensional real projective space and the
three dimensional sphere S3. To unravel the structure of these spaces it is convenient to use quater-
nions. We shall assume some basic familiarity with quaternions (see [1]). We shall also use some basic
facts from multi-variable calculus. The student who is unfamiliar with these parts of multi-variable
calculus may omit these parts of the proof.

Theorem 22.1 The unit sphere S3 is the double cover of the space SO(3,R) and as a topological
space is homeomorphic to RP 3. In particular π1(SO(3,R)) is the cyclic group of order two.

The proof will be split into several lemmas. We begin by setting up a few notations which would
remain in force throughout the lecture. We shall regard S3 as the set of all unit quaternions forming
a subgroup of the multiplicative group of non-zero quaternions.

Definition 22.1: A pure quaternion is one whose real part is zero. Thus a quaternion is pure q if
and only if q = −q, where the bar denotes the conjugate of q. We denote the set of all pure quaternions
by Π. Thus Π is a three dimensional real vector space with the Euclidean norm inherited from R4.

We now list three lemmas whose proofs are left for the reader as easy exercises in linear algebra. It
is useful to recall that a linear map of Rn to itself which preserves the Euclidean norm is an orthogonal
transformation.

Lemma 22.2: If q is a pure quaternion then so is x−1qx for any non-zero quaternion x.
Thus, each non-zero quaternion x defines a non-singular linear map Tx : Π −→ Π namely

Tx(q) = x−1qx (22.1)

Lemma 22.3: The linear map Tx : R4 −→ R4 given by equation (22.1) preserves the Euclidean norm
and so defines an element of O(4,R). Its restriction to Π still denoted by Tx maps Π onto itself and
so may be identified as an element of O(3,R). The map

ψ : x 7→ Tx (22.2)

is a group homomorphism from the multiplicative group of non-zero quaternions into O(4,R).
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Lemma 22.4: The kernel of ψ is the set of non-zero real numbers. In particular the kernel of the
map

ψ : S3 −→ O(3,R) (22.3)

obtained by restricting ψ to S3 is the two element group ±1.

Lemma 22.5: The image of ψ : S3 −→ O(3,R) is a compact connected subgroup of SO(3,R).

Proof: Since S3 is compact and connected, the image of the map ψ : S3 −→ O(3,R) is a compact
and connected subgroup of O(3,R). Now O(3,R) is disconnected with two components and so the
image must lie entirely in one of these components. Since ψ(1) is the identity map this connected
subgroup meets SO(3,R) and so must be contained entirely in SO(3,R).

Slightly more difficult is the proof that the image of S3 under ψ is the whole of SO(3,R). It is
possible to give an argument which uses only linear algebra but we prefer to follow a slightly more
sophisticated approach using the inverse function theorem. The student who is uncomfortable may
merely skim through the argument and take the result on faith.

Lemma 22.6: The group homomorphism ψ : S3 −→ SO(3,R) is surjective and is a covering projec-
tion. As a topological space, SO(3,R) is homeomorphic to RP 3.

Proof: Once we show that ψ : S3 −→ SO(3,R) is surjective it follows from lemma (22.4) and the
definition of real projective spaces that SO(3,R) and RP 3 are homeomorphic.

To prove the surjectivity of ψ, note that S3 and SO(3,R) are three dimensional manifolds and ψ
is a smooth map. We show that the derivative Dψ(1) is an invertible linear map and so by the inverse
function theorem the image must contain a neighborhood of the identity. We merely have to recall
from lecture 5 that if a subgroup H of a connected topological group G contains a neighborhood of
the identity then H = G.

We now turn to the proof that Dψ(1) is a surjective linear transformation. We shall regard ψ as
a map from R4 to SO(3,R) ⊂ M(3,R) and compute its derivative at 1. For a quaternion h with
sufficiently small norm,

ψ(1 + h)v − ψ(1)v = ‖1 + h‖−2(v + hv + vh) − v +O(‖h‖2) = −2h0v + hv + vh+O(‖h‖2),

where h0 denotes the real part of h. We see that Dψ(1) is the linear map R4 −→M(3,R) given by

h 7→ −2h0(·) + h(·) + (·)h. (22.4)

The kernel of this linear map contains 1 and so is at-least one dimensional. It is exactly one dimensional
since Dψ(1)i, Dψ(1)j and Dψ(1)k are linearly independent (skew-symmetric) matrices.

Remark: The curves σ1, σ2 and σ3 given by

σ1(t) = cos t+ i sin t, σ2(t) = cos t + j sin t, σ3(t) = cos t + k sin t

lie on S3 and pass through the point 1. Differentiating and setting t = 0 confirms that the vectors
i, j, k span the tangent space to S3 at 1. Thus Dψ(1)i, Dψ(1)j and Dψ(1)k span the image of Dψ(1).
We leave it to the reader to check, by calculating the derivatives of ψ ◦ σj (j = 1, 2, 3) at t = 0, that
Dψ(1)i, Dψ(1)j and Dψ(1)k are linearly independent.
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Topological structure of SO(4,R): Regard L ∈ SO(4,R) as a linear transformation on the space
R4 of all quaternions. In particular, L(1) is a non-zero quaternion and we may define the linear map
L′ : R4 −→ R4 via the prescription

L′(x) = L(x)L(1)−1, x ∈ R4.

Lemma 22.7: The map L′ preserves Euclidean distance and maps Π to itself.

Proof: The fact that it is distance preserving is clear so that it is an orthogonal transformation.
Since L′ also fixes the real axis by orthogonality it must map Π to itself.

Theorem 22.8: As a topological space, SO(4,R) is homeomorphic to the product S3 × SO(3,R).

Proof: We show that the map φ : SO(4,R) −→ S3 × O(3,R) given by φ(L) = (L(1), L′), where L′

is defined as in the previous lemma, is a homeomorphism. The map L′ is an element of O(3,R) since
it maps Π to itself and preserves Euclidean norm. Further, L(1) is obviously a unit quaternion. The
image of φ is a compact connected subspace of S3 ×O(3,R) and sends the identity element to the pair
(1, id) which means the image must be contained in S3 × SO(3,R). It is an exercise that the map is
bijective. Since the space SO(4,R) is compact and S3 × SO(3,R) is Hausdorff, it follows that φ is a
homeomorphism.

Corollary 22.9: The fundamental group of SO(4,R) is the cyclic group of order two. �

Exercises

1. Show that the sphere S3 is isomorphic (as a topological group) to SU(2,C).

2. Show that the center of the group of non-zero quaternions is the set of non-zero real numbers.
In the light of this explain why kerDψ(1) in lemma (22.6) is non-trivial.

3. Explain why the map φ defined in theorem (22.8) is bijective.

4. Verify the properties of the map TA in the proof of theorem (22.10). Also fill in the details
concerning the properties of the map φ (except for the claims made concerning its derivative).

5. Use exercise 4 to find a generator of π1(SO(3,R)). Let i : SO(2,R) −→ SO(3,R) be given by

A 7→
(
A 0
0 1

)
, A ∈ SO(2,R).

Show that i∗ : π1(SO(2,R)) −→ π1(SO(3,R)) is surjective.
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