Lecture V - Topological Groups

A topological group is a topological space which is also a group such that the group operations
(multiplication and inversion) are continuous. They arise naturally as continuous groups of symmetries
of topological spaces. A case in point is the group SO(3,R) of rotations of R® about the origin which
is a group of symmetries of the sphere S?. Many familiar examples of topological spaces are in fact
topological groups. The most basic example of-course is the real line with the group structure given
by addition. Other obvious examples are R™ under addition, the multiplicative group of unit complex
numbers S' and the multiplicative group C*.

In the previous lectures we have seen that the group SO(n,R) of orthogonal matrices with determi-
nant one and the group U(n) of unitary matrices are compact. In this lecture we initiate a systematic
study of topological groups and take a closer look at some of the matrix groups such as SO(n,R) and
the unitary groups U(n).

Definition 5.1: A topological group is a group which is also a topological space such that the
singleton set containing the identity element is closed and the group operation
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and the inversion j : G — G given by j(g) = g~! are continuous, where G x G is given the product
topology.

We leave it to the reader to prove that a topological group is a Hausdorff space. It is immediate
that the following maps of a topological group G are continuous:

1. Given h € G the maps Ly, : G — G and R, : G — G given by L,(g) = hg and Ry(g) = gh.
These are the left and right translations by h.

2. The inner-automorphism given by g — hgh~! which is a homeomorphism.
Note that the determinant map is a continuous group homomorphism from GL,(R) — R —{0}. The
image is surjective from which it follows that GL,(R) is disconnected as a topological space.

Theorem 5.1: The connected component of the identity in a topological group is a subgroup.

Proof: Let Gy be the connected component of G' containing the identity and h, k € G be arbitrary.
The set h~'Gy is connected and contains the identity and so Gy U h~'Gy is also connected. Since G
is a component, we have Gy U h™'Gy = G, which implies h~'Gy C Gy. In particular h~'k belongs to
Gy from which we conclude that Gy is a subgroup.

Interesting properties of topological groups arise in connection with quotients:

Theorem 5.2: Suppose that G is a topological group and K is a subgroup and the coset space G/ K
is given the quotient topology then

1. If K and G/K are connected then G is connected.

2. If K and G/K are compact then G is compact.
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Proof: If G is connected then so is G/K since the quotient map n : G — G/K is a continuous
surjection. To prove the converse suppose that K and G/K are connected and f : G — {0,1} be
an arbitrary continuous map. We have to show that f is constant. The restriction of f to K must be
constant and since each coset gK is connected, f must be constant on gK as well taking value f(g).
Thus we have a well defined map f : G /K — {0, 1} such that fon = f. By the fundamental property
of quotient spaces, it follows that f is continuous and so must be constant since G/K is connected.
Hence f is also constant and we conclude that G is connected. U
Since we shall not need (2), we shall omit the proof. A proof is available in [12], p. 109.

Theorem 5.3: The groups SO(n,R) are connected when n > 2.

Proof: It is clear that SO(2,R) is connected (why?). Turning to the case n > 3, we consider the
action of SO(n,R) on the standard unit sphere S™~! in R™ given by

(A, v) — Av,

where A € SO(n,R) and v € S"~!. Tt is an exercise for the student to check that this group action
is transitive and that the stabilizer of the unit vector &, is the subgroup K consisting of all those
matrices in SO(n, R) whose last column is &,,. The subgroup K is homeomorphic to SO(n —1,R) and
so, by induction hypothesis, is connected. By exercise 3, the quotient space SO(n,R) is homeomorphic
to S™! which is connected. So the theorem can be applied with G = SO(n,R), H = SO(n — 1,R)
and G/H is the sphere S"~! with n > 2. O

Theorem 5.4: If G is a connected topological group and H is a subgroup which contains a neigh-
borhood of the identity then H = G. In particular, an open subgroup of GG equals G.

Proof: Let U be the open neighborhood of the identity that is contained in H and h € H be
arbitrary. Since multiplication by h is a homeomorphism, the set Uh = {uh/u € U} is also open and
also contained in H. Hence the set

L=|]JUn

heH

is open and contained in H. Since U contains the identity element, H C L and we conclude that H is
open. Our job will be over if we can show that H is closed as well. Let = € H be arbitrary. Since the
neighborhood Ux of x contains a point y € H, there exists u € U such that y = ux which, in view of
the fact that U C H, implies x € H. Hence H = H. O

Theorem 5.5: Suppose G is a connected topological group and H is a discrete normal subgroup of
G then H is contained in the center of G.

Proof: Since H is discrete, the identity element is not a limit point of H and so there is a neighbor-
hood U of the identity such that U N H = {1}. We may assume U has the property that if uq,us are
in U then the product u; 'us is in U. This follows from the continuity of the group operation and a
detailed verification is left as an exercise. It is easy to see that if h; and hy are two distinct elements
of H then

Uhy NUhy = 0.

25



Fix h € H and consider now the set K given by
K ={g€G/gh=hg}

We shall show that the subgroup K contains a neighborhood of the identity. Pick a neighborhood V'
of the identity such that V' =V ~! and (hVh~'V)N H = {1}. Then for any g € V, we have on the one
hand

hgh™tg™' € hWWh™ 'V

and on the other hand hgh™'g™! € H since H is normal. Hence hgh™'g~' € (RVh™ V)N H = {1}
which shows that g belongs to K and K contains a neighborhood of the unit element. We may now
invoke the previous theorem. O

Remark: The result is false if the hypothesis of normality of H is dropped. For example consider a
cube in R3 with center at the origin and H be the subgroup of G = SO(3,R) that map the cube to
itself. Then H is the symmetric group on four letters (proof?). Clearly H is not in the center of G.

Exercises

1. Show that in a topological group, the connected component of the identity is a normal subgroup.

2. Show that the action of the group SO(n,RR) on the sphere S"~! given by matrix multiplication
is transitive. You need to employ the Gram-Schmidt theorem to complete a given unit vector to
an orthonormal basis.

3. Suppose a group G acts transitively on a set S and x,y are a pair of points in S and y = gz.
Then the subgroups stab x and stab y are conjugates and g~'(stab y)g = stab .

(i) Show that the map ¢ : G/stab 2 — S given by ¢(g) = gz is well-defined, bijective and
dpon=o¢.

(ii) Suppose that S is a topological space, G is a topological group and the action G X S — S
is continuous. Show that the map ¢ is continuous.

(iii) Deduce that if G is compact and S is Hausdorff then G//stab « and S are homeomorphic.
4. Examine whether the map ¢ : SU(n) x S* — U(n) given by ¢(A, z) = zA is a homeomorphism.

5. Show that the group of all unitary matrices U(n) is compact and connected. Regarding U(n—1)
as a subgroup of U(n) in a natural way, recognize the quotient space as a familiar space.

6. Show that the subgroups SU(n) consisting of matrices in U(n) with determinant one are con-
nected for every n.

7. Suppose G is a topological group and H is a normal subgroup, prove that G/H is Hausdorff if
and only if H is closed.
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