
Lectures XII - XIII The fundamental group of the circle.

We have already stated the fact that the fundamental group of the circle is the group of integers
and derived some important consequences form it. The importance of this result is attested by the
fact that the Brouwer’s fixed point theorem for a disc follows immediately from it. In this lecture will
provide a detailed proof that π1(S

1, 1) = Z. Some of the ideas of the proof would appear again later
in a general context of covering spaces. Though this result is a special one from the theory of covering
spaces it is worthwhile looking at this important special case without reference to the general theory
but rather as a preview to it. This topic will be covered in two lectures but the numbering will be as
that of lecture 12. We begin with an algebraic lemma [14] (p. [//]).

Lemma 12.1: Suppose S is a set on which two binary operations ∗ and ∗′ are defined such that

(a) Both ∗ and ∗′ have a common two sided unit.

(b) The binary operations ∗ and ∗′ are mutually distributive. That is,

(f1 ∗ g1) ∗′ (f2 ∗ g2) = (f1 ∗′ f2) ∗ (g1 ∗′ g2), f1, f2, g1, g2 ∈ S.

Then,

(i) both ∗ and ∗′ are associative and commutative.

(ii) f ∗ g = f ∗′ g for all f, g ∈ S.

Proof: Denoting the common two sided identity by 1,

(f ∗ g) = (f ∗′ 1) ∗ (1 ∗′ g) = (f ∗ 1) ∗′ (1 ∗ g) = f ∗′ g

which proves (ii). Next we prove commutativity:

g ∗ f = (1 ∗′ g) ∗ (f ∗′ 1) = (1 ∗ f) ∗′ (g ∗ 1) = f ∗′ g = f ∗ g.

Finally, using (ii) we prove associativity:

(f ∗ g) ∗ h = (f ∗ g) ∗′ (1 ∗ h) = (f ∗′ 1) ∗ (g ∗′ h) = f ∗ (g ∗′ h) = f ∗ (g ∗ h)
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Corollary 12.2: If X is a topological group with unit element e then π1(X, e) is abelian. Moreover,
if γ1, γ2 are two loops based at e define the binary operation ◦ on π1(X, e) by3

[γ1] ◦ [γ2] = [γ1(t) · γ2(t)]

where γ1(t) · γ2(t) denotes the group multiplication in X. Then

[γ1] ◦ [γ2] = [γ1][γ2],

the right hand side being the product in π1(X, e). In other words, γ1(t) · γ2(t) ∼ γ1 ∗ γ2.

Proof: Let ē denote the homotopy class of the constant loop based at e. We first show that the
operation ◦ is well defined. If γ ′1 ∼ γ′′1 and γ′2 ∼ γ′′2 via the respective homotopies F,G : I × I −→ X,
it is easily checked that the map F ·G : [0, 1] × [0, 1] −→ X given by

F ·G(s, t) = F (s, t) ·G(s, t),

the product on the right denoting with group multiplication in X, is a homotopy between γ ′
1(t)γ

′
2(t)

and γ′′1 (t)γ′′2 (t). We conclude that ◦ is a well defined binary operation on π1(X, e) with a two sided unit
ē. Clearly, ē is a common two sided unit element for both binary operations on π1(X, e). To invoke
the lemma we show that the two binary operations are mutually distributive. Let γ ′

1, γ
′
2γ

′′
1 , γ

′′
2 be loops

based at e
( [γ′1][γ

′′
1 ] ) ◦ ( [γ′2][γ

′′
2 ] ) = [ (γ′1 ∗ γ′′1 )(t) · (γ′2 ∗ γ′′2 )(t) ]

We first verify through direct calculation that (γ ′
1 ∗ γ′′1 ) · (γ′2 ∗ γ′′2 ) = (γ′1 · γ′2) ∗ (γ′′1 · γ′′2 ). Well,

(γ′1 ∗ γ′′1 )(t) · (γ′2 ∗ γ′′2 )(t) = γ′1(2t)γ
′
2(2t), if 0 ≤ t ≤ 1

2

= γ′′1 (2t− 1)γ′′2 (2t− 1), if
1

2
≤ t ≤ 1.

∴ [(γ′1 ∗ γ′′1 )(t) · (γ′2 ∗ γ′′2 )(t)] = [γ′1(t) · γ′2(t)][γ′′1 (t) · γ′′2 (t)]

So finally
([γ′1][γ

′′
1 ]) ◦ ([γ′2][γ

′′
2 ]) = [γ′1(t)γ

′
2(t)][γ

′′
1 (t)γ′′2 (t)] = ([γ′1] ◦ [γ′2])([γ

′′
1 ] ◦ [γ′′2 ])

Thus lemma (12.1) is applicable for the binary operations ∗ and ◦ and the proof is complete.

Theorem 12.3: π1(S
1, 1) = Z and the group is generated by homotopy class of the loop

t 7→ exp(2πit), 0 ≤ t ≤ 1

Proof: The proof is broken into several steps. We shall employ the exponential map ex: R −→ S1

given by
ex(t) = e2πit. (12.1)

The function ex maps (−1
2
, 1

2
) homeomorphically onto S1 − {−1} and we denote its inverse by

lg : S1 − {−1} −→ (
−1

2
,

1

2
) (12.2)

which is also a homeomorphism.

3To avoid introducing more notation we are being notationally imprecise. The expression γ1(t) · γ2(t) inside the
brackets refers to the map t 7→ γ1(t) · γ2(t).
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Lemma 12.4 (The lifting lemma): Let X be a compact subset of Rn that is star shaped with
respect to origin. Let f : X −→ S1 be a continuous function such that f(0) = ex(t0) for some t0 ∈ R.
Then, there exists a continuous function f̃ : X −→ R such that

exf̃(x) = f(x), f̃(0) = t0 (12.3)

Moreover the function f̃ satisfying (12.3) is unique and is called the lift of f with respect to ex.

Proof: Invoking the uniform continuity of f with ε = 2, there exists δ > 0 such that

‖x− y‖ < δ ⇒ |f(x) − f(y)| < 2

which in turn implies that f(x) 6= −f(y). Now choose n ∈ N such that n−1‖x‖ < δ for all x ∈ X
which is possible since X is compact. This n is now fixed for the rest of the discussion. For x ∈ X
and j = 0, 1, . . . , n− 1 ∥∥∥ j

n
x− (j + 1)

n
x
∥∥∥ < δ,

whereby,

f(
j + 1

n
x) 6= −f(

j

n
x).

From this we conclude that the function given by

lg
(f( j+1

n
x)

f( j
n
x)

)
, x ∈ X

is continuous with respect to x. We now claim that

f̃(x) = t0 +

n−1∑

j=0

lg
(f( j+1

n
x)

f( j
n
x)

)

is the required continuous function. Observe that lg(1) = 0, f̃(0) = t0 and

exf̃(x) = (ex(t0)) ·
f( 1

n
x)

f(0)
· f( 2

n
x)

f( 1
n
x)

· · · f(n
n
x)

f(n−1
n
x)

= f(x).

Turning to the proof of uniqueness of the lift f̃ , suppose f̃1, f̃2 : X −→ R are two continuous functions
such that f̃1(0) = f̃2(0) = t0 and exf̃1(x) = exf̃2(x) = f(x). Then ex(f̃1(x)− f̃2(x)) = 1, which implies
f̃1(x) − f̃2(x) ∈ Z (see note below). Since both functions are continuous, agree at the origin and X is
connected, we conclude that

f̃1(x) ≡ f̃2(x). �

Note: The properties of the exponential function used here must be established using power series
expansions. Specifically prove using power series the following:

(i) ex(z1 + z2) = ex(z1) · ex(z2)

(ii) There exists a unique positive real root of cos(x) = 0 in [0, 2] (via the real power series for the
cosine function) and we denote this root by π/2.

(iii) cos(2π + x) = cos x, sin(2π + x) = sin x (using addition formula for sin and cos following (i) )

(iv) If cos x = cos y, sin x = sin y then there exists k ∈ Z such that x− y = 2πik.
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Definition 12.1: Let γ : [0, 1] −→ S1 be a loop based at 1. By the lifting lemma there exists unique
lift γ̃ : [0, 1] −→ R such that γ̃(0) = 0, exγ̃(1) = 1. Thus, γ̃(1) ∈ Z and we call this integer the degree
of the loop γ.

Lemma 12.5: If γ1 and γ2 are two homotopic loops based at 1. then degγ1 = degγ2. Thus the map
φ : π1(S

1, 1) −→ Z given by [γ] 7→ deg γ is well-defined.

Proof: Let F : I × I −→ S1 be the homotopy between γ1 and γ2. Since I × I is star shaped with
respect to (0, 0) and F (0, 0) = 1 = ex(0), the lifting lemma gives a unique lift F̃ : I × I −→ R with
F̃ (0, 0) = 0. The image F (s, 0) is a connected subset of R as s runs from 0 to 1 and expF̃ (s, 0) =
F (s, 0) = 1 for all s ∈ [0, 1]. So F̃ (s, 0) is integer valued and hence constant. From F̃ (0, 0) = 0 we
conclude that F̃ (s, 0) = 0 for all s ∈ [0, 1]. In particular the lifts γ̃1 and γ̃2 both start at the origin
and so

deg γ1 = γ̃1(1), deg γ2 = γ̃2(1).

Our job will be over if we show that γ̃1(1) = γ̃2(1). Well, F̃ must map the connected set {(s, 1)/0 ≤
s ≤ 1} onto a connected subset J of R and since

exF̃ (s, 1) = F (s, 1) = 1,

this connected subset J must be a subset of Z and hence reduces to a singleton which means

F̃ (s, 1) = F̃ (0, 1), for all s ∈ [0, 1]

Setting s = 0 and 1 we see that

γ̃2(1) = F̃ (1, 1) = F̃ (0, 1) = γ̃1(1),

thereby completing the proof that the map φ : [γ] 7→ degγ is well defined.

Lemma 12.6: The map φ defined in lemma (12.5) is a group isomorphism.

Proof: Suppose γ1 and γ2 are two loops at 1 with lifts γ̃1, γ̃2 starting at origin. Then the path γ̃
given by γ̃(t) = γ̃1(t) + γ̃2(t) also starts at the origin and satisfies

ex γ̃(t) = ex γ̃1(t) · ex γ̃2(t) = γ1(t) · γ2(t).

Hence γ̃ is the unique lift of γ1(t) · γ2(t) whereby,

deg(γ1(t)γ2(t)) = γ̃(1) = γ̃1(1) + γ̃2(1) = deg γ1 + deg γ2.

Thus φ([γ1 · γ2]) = φ([γ1]) + φ([γ2]). From corollary (12.2), [γ1 · γ2] = [γ1 ∗ γ2] = [γ1][γ2] whence
φ([γ1][γ2]) = φ([γ1]) + φ([γ2]) which means that φ is a group homomorphism.

Surjectivity of φ is easy to see. Let n ∈ Z be arbitrary and γ̃(t) = nt. Then γ̃ is the unique
lift of γ(t) = exγ̃(t) starting at the origin so that φ([γ]) = γ̃(1) = n. We now show that the group
homomorphism φ is injective. Suppose γ1, γ2 are two loops at 1 in S1 such that deg γ1 = deg γ2. Then
γ̃1(1) = γ̃2(1), where γ̃1 and γ̃2 are the lifts of γ1 and γ2 starting at the origin. Since R is convex and
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the two curves γ̃1 and γ̃2 have common end points, they are homotopic. That is to say, there exists a
continuous function F̃ : I × I −→ R such that

F̃ (0, t) = γ̃1(t), F̃ (1, t) = γ̃2(t); for all t ∈ [0, 1]

F̃ (s, 0) = 0, F̃ (s, 1) = γ̃1(1) = γ̃2(1), for all s ∈ [0, 1].

The function F : [0, 1] × [0, 1] given by

F (s, t) = exF̃ (s, t)

is then a homotopy between γ1 and γ2 and we have shown that deg γ1 = deg γ2 implies [γ1] = [γ2].
This suffices for a proof.

Corollary 12.7 (Generators for π1(S
1, 1)): (1) The generators for π1(S

1, 1) are given by the loops

η : t 7→ exp(±2πit) (12.4)

(2) The loops (12.4) also generate the group π1(C − {0}, 1).

Proof: The lifts of these starting at the origin are ±1 so that these loops have degrees ±1 respectively.
The second conclusion follows from the fact that a deformation retraction induces an isomorphism of
fundamental groups. �

Definition 12.2 (Degree of a map): Suppose that f : S1 −→ S1 is a continuous map such that
f(1) = 1, the degree of f is defined to be the degree of the loop

f ◦ η : t 7→ f(exp(±2πit)), 0 ≤ t ≤ 1. (12.5)

Theorem 12.8: For a continuous map f : S1 −→ S1 with f(1) = 1, the degree satisfies the equation

f∗[η] = (deg f)[η] (12.6)

where the group operation on π1(S
1, 1) is viewed additively.

Proof: Since [η] generates π1(S
1, 1), writing the group operation additively, we have

f∗[η] = c[η] (12.6)

We have to show that c = deg f . By definition, f∗[η] = [f ◦ η] which is mapped to deg f by the
isomorphism φ of lemma (12.5). But this isomorphism maps [η] to 1 and hence applying φ to (12.6)
we get the result. �

Theorem 12.9 (The Borsuk Ulam Theorem): Suppose f : Sn −→ Rn is a continuous map.
Then there exists a pair of antipodal points x,−x such that f(x) = f(−x)
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Proof for the case n = 2: We follow the elegant proof given in [17] (p. 109). We first show that any
continuous function g : E2 −→ S1 maps a pair of antipodal points on the boundary of E2 to the same
point. That is there exists z ∈ E2 such that |z| = 1 and g(z) = g(−z). Since E2 is a compact convex
set, by lemma (12.4) we see that any continuous map g : E2 −→ S1 has a continuous lift g̃ : E2 −→ R.
Since the real valued map

θ 7→ g̃(e2πiθ) − g̃(e−2πiθ), 0 ≤ θ ≤ 1,

changes sign we see that there is a pair of antipodal points z,−z ∈ S1 such that g̃(z) = g̃(−z) and
hence g(z) = g(−z). Turning now to a continuous map f : S2 −→ R2, assume f(x) 6= f(−x) for every
x ∈ S2. We construct the continuous function g : E2 −→ S1

g(z) = h(z)/|h(z)|
where

h(x1, x2) = f(x1, x2,
√

1 − x2
1 − x2

2) − f(−x1,−x2,−
√

1 − x2
1 − x2

2), (x1, x2) ∈ E2.

Since |h(z)| = |h(−z)|, we infer that there is no z ∈ E2 satisfying |z| = 1 and g(z) = g(−z) resulting
in a contradiction.

Corollary 12.10: S2 is not homeomorphic to any subset of R2

Proof: The Borsuk Ulam theorem shows that a continuous function S2 −→ R2 cannot be injective.

Theorem 12.11 (Fundamental theorem of algebra): Every non-constant polynomial with com-
plex coefficients has a complex root.

Proof: If the polynomial p(z) = zn + a1z
n−1 + · · · + an has no zeros, then in particular, p(1) 6= 0.

For t 6= 0, we define

p(z/t)tn =
(
zn + a1z

n−1t+ · · · + ant
n
)
.

The right hand side makes sense even when t = 0 and we denote the right hand side by g(z, t). Observe
that g(z, 0) = zn and g(z, 1) = p(z). However we need a homotopy of maps of S1 preserving the base
point 1. To this end we modify it consider instead the map F : S1 × [0, 1] −→ S1 given by

F (z, t) =
g(z, t)

|g(z, t)|
|g(1, t)|
g(1, t)

. (12.7)

Clearly g(z, 0) 6= 0 for any z ∈ S1 and if 0 < t ≤ 1 then again g(z, t) = p(z/t)tn 6= 0. Thus (12.7) is a
base point preserving homotopy between the function f : S1 −→ S1 given by

f(z) =
p(z)

|p(z)|
|p(1)|
p(1)

(12.8)

and the map z 7→ zn. We conclude that degree of f is n. However we have a base point preserving
homotopy between (12.8) and the constant map namely, G : S1 × [0, 1] −→ S1 given by

G(z, s) =
p(sz)

|p(sz)|
|p(s)|
p(s)

.

We now conclude that degree of (12.8) is zero and we have a contradiction.

56



Exercises:

1. Formulate and prove the Borsuk Ulam theorem for continuous maps from S1 to the real line.

2. Use the Borsuk Ulam theorem to prove that a pair of homogeneous polynomials of odd degree
in three real variables have a common non-trivial zero.

3. For the following three maps f : S1 −→ S1 compute the induced map f∗ : π1(S
1, 1) −→ π1(S

1, 1).
All three maps preserve the base point 1.

(i) f(z) = zn

(ii) f(z) = z̄.

(iii) f(z) =
z2−z+ 3

2

|z2−z+ 3
2
|
. Hint: Is (z2 − z)t + 3/2 = 0 for any z ∈ S1 and 0 ≤ t ≤ 1?

4. Let X be the union of the sphere S2 and one of its diameters. Use exercise 1 of lecture 8 to
determine a generator for π1(X, x0), where x0 is a point on the sphere.

5. Determine the generators of the group π1(S
1 × S1, (1, 1)). Determine the generators for the

fundamental group of the space X of example 11.3.

6. Compute f∗ : π1(C − {0}, 1) −→ π1(C − {0}, 1) for the function f(z) = zk.
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