
Lecture - XXXI The homology groups and their functoriality

Having laid the algebraic foundations in the previous lecture we shall formally define the homology
functors Hn, n = 0, 1, 2, . . . from the category Top to the category AbGr. We shall discuss H0(X)
completely and show that H0(X) is free abelian of rank equal to the number of path components of
X. The groups Hn(X) (n ≥ 1) vanish when X is a convex subset of Rn. We shall prove this result
using a technique that would be be considerably generalized in lecture 33. However the special case
proved here for convex subsets would be needed in lecture 33. In the next lecture we shall see examples
of topological spaces X for which H1(X) is non-trivial. However the reader would have to wait till
lecture 34 to see more interesting examples.

The homology groups Hn(X): Definitions (29.3)-(29.6) and theorems (29.2)-(29.5) from the pre-
vious lecture show that given a topological space X, the sequence of groups Sn(X) and group homo-
morphisms ∂n : Sn(X) −→ Sn−1(X) provide an example of a chain complex called the singular chain

complex. If f : X −→ Y is a continuous function, the sequence f] : Sn(X) −→ Sn(Y ) (n = 0, 1, 2, . . . )
defines a chain map from the chain complex S(X) to S(Y ). The general results on chain complexes
when applied to this special case gives us the homology functors from Top to AbGr.

Definition 31.1: (i) The homology groups Hn(X) of the space X are by definition the homology
groups of the chain complex S(X) namely

Hn(X) = Zn(X)/Bn(X),

where Zn(X) is the kernel of the homomorphism ∂n : Sn(X) −→ Sn−1(X) and Bn(X) is the image of
the homomorphism ∂n+1 : Sn+1(X) −→ Sn(X).

(ii) Given a continuous map f : X −→ Y , the induced maps Hn(f) : Hn(X) −→ Hn(Y ) in
homology are the homomorphisms

Hn(f) : σ 7→ f](σ), σ ∈ Zn(X).

Theorem (29.5) in this context is reproduced below:

Theorem 31.1: (i) Suppose f : X −→ Y and g : Y −→W are continuous functions,

Hn(g ◦ f) = Hn(g) ◦Hn(f), n = 0, 1, 2, . . . .

The identity map on X induces the identity map on Hn(X):

Hn(idX) = idHn(X)

In other words the {Hn/n = 0, 1, 2, . . .} is a sequence of covariant functors from Top to AbGr. An
immediate consequence is the following result.
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Corollary 31.2: Suppose X and Y are homeomorphic, the groups Hn(X) and Hn(Y ) are isomorphic
for every n = 0, 1, 2, . . . .

Another important consequence is the following result that parallels lemma (9.3).

Theorem 31.3: Suppose r : X −→ A is a retraction, then for every n = 0, 1, 2, . . .

Hn(r) : Hn(X) −→ Hn(A)

is surjective and
Hn(j) : Hn(A) −→ Hn(X)

is injective, where j : A −→ X is the inclusion map.

The augmentation map ε : S0(X) −→ Z : Since the standard Euclidean simplex ∆0 is a singleton,
each singular zero simplex ∆0 −→ X can be identified with a point of X namely the image of the
singular zero simplex. Thus we may think of a singular zero chain as an element of the free abelian
group generated by the points of X, that is a formal expression

c1p1 + c2p2 + · · · + ckpk, (31.1)

where p1, p2, . . . , pk are points of X and the coefficients c1, c2, . . . , ck are integers.

Definition 31.2: The augmentation map ε : S0(X) −→ Z is the group homomorphism given by

c1p1 + c2p2 + · · ·+ ckpk 7→ c1 + c2 + · · · + ck.

If X is non-empty, the augmentation map is surjective. Since by definition, ∂0 is the zero map and
Z0(X) = S0(X), we have to determine B0(X). The following theorem provides the answer.

Theorem 31.4: Suppose X is a path connected space then B0(X) = ker ε. That is to say a singular
zero chain (31.1) is a boundary if and only if the sum of its coefficients is zero. Thus, for a path
connected space X,

H0(X) ∼= Z.

Proof: We shall denote the ends of ∆1 by a and b. If σ : ∆1 −→ X is a singular one simplex then
∂1σ = σ(b) − σ(a) which is obviously in ker ε and we conclude that B0(X) ⊂ ker ε. To prove the
reverse inclusion, let σ be an arbitrary element of ker ε given by (31.1). That is, the coefficients satisfy
c1 + c2 + · · ·+ ck = 0. Pick any point p ∈ X and for each j let σj : ∆1 −→ X be a path in X joining
p and pj. We claim that σ is the boundary of the one chain τ = c1σ1 + c2σ2 + · · ·+ ckσk.

∂1τ = c1(σ1(b) − σ1(a)) + c2(σ2(b) − σ2(a)) + · · ·+ ck(σk(b) − σk(a))

= (c1p1 + c2p2 + · · · + ckpk) − (c1 + c2 + · · ·+ ck)p = σ.

The last part follows from the fundamental theorem on group homomorphisms.

Theorem 31.5: If {Xα/α ∈ Λ} is the family of path components of a topological space, then for
each k = 0, 1, 2, . . .

Hk(X) =
⊕

α∈Λ

Hk(Xα)
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Proof: We shall only sketch the proof leaving the details as an exercise. Note that if σ is a singular
k−simplex, the image of σ must be contained in one of the components Xα ofX and so may be regarded
as a singular k−simplex in Xα. This gives a natural decomposition of Sk(X) as a direct sum of the
family Sk(Xα). To see that the boundary map ∂k respects the decomposition note that the boundary
of a singular simplex σ is a sum of finitely many k− 1 singular simplexes each of which must map into
the same component as σ. It is easy to deduce from this the decompositions Zk(X) =

⊕
Zk(Xα) and

Bk(X) =
⊕

Bk(Xα).

Convex sets and barycentric coordinates: Let v1,v2, . . . ,vk ∈ Rn be given points. The convex
hull of these points is the set consisting of all convex combinations t1v1 + t2v2 + · · ·+ tkvk, that is the
coefficients t1, t2, . . . , tk are non-negative and t1 + t2 + · · · + tk = 1. The convex hull of these points
is clearly a convex set. The points v1,v2, . . . ,vk ∈ Rn are said to be affinely independent if the k − 1
vectors v1 − vk,v2 − vk, . . . ,vk−1 − vk are linearly independent (see exercise 4). The convex hull of a
set of k affinely independent points is called the affine k− simplex spanned by these points. The proof
of the following result is left as an exercise.

Theorem 31.6: If v1,v2, . . . ,vk ∈ Rn are affinely independent then every point x in the convex hull
of v1,v2, . . . ,vk can be uniquely expressed as

x = t1v1 + t2v2 + · · · + tkvk, (31.2)

where the coefficients tj (1 ≤ j ≤ k) are non-negative and t1 + t2 + · · ·+ tk = 1. These coefficients are
called the barycentric coordinates of x.

We consider the standard n simplex ∆n in Rn+1 with summit S = en+1. The figure below depicts
a general point Q on the face ∆n−1 opposite to S and P an arbitrary point on the line segment joining
Q and S. The reader may check that if λ1, λ2, . . . , λn+1 are the barycentric coordinates of P then the
coordinates of Q are given by the n−tuple

U(λ1, . . . , λn+1) =
( λ1

1 − λn+1

,
λ2

1 − λn+1

, . . . ,
λn

1 − λn+1

)
(31.3)

Note that U is bounded but not continuous when λn+1 −→ 1. As P approaches S the pyramid with

Figure 21:

base ∆n−1 and summit P fills up ∆n. We are now in a position to prove the following theorem.
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Theorem 31.7: Suppose X is a convex subset of a Euclidean space, Hk(X) = 0 for k ≥ 1.

Proof: Choose a point x0 ∈ X and F : X×[0, 1] −→ X be the homotopy F (x, t) = (1−t)x+tx0. We
shall define a group homomorphism T : Sn−1(X) −→ Sn(X) satisfying a certain property (31.6) below.
This is a special case of a chain homotopy that we shall encounter later in a more general context.
Since Sn−1(X) is a free abelian group generated by singular (n − 1) simplicies, it suffices to define T
these. For a singular (n − 1) simplex σ : ∆n−1 −→ X, define the continuous map Tσ : ∆n −→ X in
terms of the barycentric coordinates using the expression (31.3) namely

(Tσ)(λ1, . . . , λn+1) = F ((σ ◦ U)(λ1, . . . , λn+1), λn+1). (31.4)

The continuity of Tσ is left as an exercise. Let us calculate the boundary of Tσ using equations (29.1)
and (29.4). Recalling the notations used in lecture 29, one checks that (Tσ) ◦ Φn

n = σ.
For 0 ≤ j ≤ n− 1, the j−th singular face is given by

(Tσ) ◦ Φn
j (t1, . . . , tn) = F ((σ ◦ U)(t1, . . . , tj−1, 0, tj, . . . , tn), tn). (31.5)

On the other hand when 0 ≤ j ≤ n− 1,

T (σ ◦ Φn−1
j )(t1, . . . , tn) = T

(
σ
( t1

1 − tn
, . . . ,

tj−1

1 − tn
, 0,

tj
1 − tn

, . . . ,
tn−1

1 − tn

)
, tn

)
,

which may be rewritten as T ((σ ◦ U)(t1, . . . , ti−1, 0, ti, . . . , tn−1), tn), in agreement with the right hand
side of (31.5). From equation (29.4) it follows that for n ≥ 1,

∂n(Tσ) − T (∂nσ) = σ, σ ∈ Sn(X), (31.6)

whereby we conclude that if σ ∈ Zn(X) then σ = ∂n(Tσ) ∈ Bn(X). That is Zn(X) = Bn(X).

Exercises

1. Prove theorem (31.3).

2. Show that for a path connected space X, every singleton {p} with p ∈ X is a basis for H0(X).

3. Complete the proof of theorem (31.5).

4. Show that the set v1,v2, . . . ,vk ∈ Rn is affinely independent if the vectors

v1 − vj, . . . ,vj−1 − vj,vj+1 − vj, . . . ,vk−1 − vk

are linearly independent for any j (1 ≤ j ≤ k).

5. Prove theorem (31.6). Show that the barycentric coordinates are continuous functions of x. All
but the j-th barycentric coordinates of vj vanish. The set of points in (31.2) obtained by setting
tj = 0 and varying the other coefficients is called the j−th face of the simplex spanned by the
given points.

6. Check the continuity of the map Tσ in theorem (31.7).
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