
Lecture XV - Covering Projections

The theory of covering projections sets a common stage for the development of diverse branches
of mathematics. In this course we develop the theory of covering projections only to the extent that
is relevant for the computation of the fundamental group. It may be useful for the student to review
the proof that π1(S

1) = Z. In fact one of the paradigms for a covering projection is the map

t 7→ exp(2πit)

wrapping the real line onto the circle.

Definition 15.1: A covering projection is a triple (X̃,X, p) where X̃, X are connected topological
spaces and a continuous map p : X̃ −→ X satisfying the following properties:

(i) The map p is surjective

(ii) Each x ∈ X has a neighborhood U such that the inverse image p−1(U) is a disjoint union of a
collection open subsets {Uα} of X̃.

(iii) Each Uα is mapped onto U homeomorphically by p.

The neighborhood U described in the definition above is called an evenly covered neighborhood of x,
the open sets Uα are referred to as sheets lying above U and for x ∈ X, the subset p−1(x) of X̃ is called
the fiber over x. This terminology will be used frequently. We shall also say that X̃ is a covering space
of X when it is fairly clear what the map p is.

Figure 12: Covering projection

Remark: It is NOT sufficient that each Uα be homeomorphic to U but the homeomorphism must
be given by the restricting p to Uα.
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Examples 15.1: We now present four examples to illustrate the concept of a covering projection.

1. As indicated in the beginning the most basic example is the map ex : R −→ S1 given by

ex(t) = exp(2πit)

For each point z on the circle take an arc U centered at z and of length say π/2. The reader
may check that the inverse image of U under ex is a disjoint union of open intervals on the line.

2. Consider the map T : C − {0} −→ C − {0} given by T (z) = z2. If we pick a point z ∈ C − {0}
and a small disc U centered at z not containing a pair of antipodal points then T−1(U) is a
disjoint union of two open sets each of which is mapped bijectively onto U by T .

3. Consider the map p : C − {±1,±2} −→ C − {±2} given by

p(z) = z3 − 3z

The equation p(z) = w has three distinct roots for each w ∈ C − {±2} and the roots are
continuous functions of w. For a sufficiently small neighborhood U of w, p−1(U) is a disjoint
union of three open sets each of which is mapped onto U homeomorphically onto U by the open
mapping theorem. Several examples of this type related to complex analysis are discussed in [6].

4. Consider the quotient map η : Sn −→ RP n. We show that η is a covering projection. Let U1 be
an open subset of Sn not containing a pair of anti-podal points and

U2 = {−x/x ∈ U1}.

Then, η(U1) = η(U2). Denoting these images by U , we see that η−1(U) = U1 ∪ U2 which is an
open set in Sn and so U is open in RP n. Second, η maps each of U1 and U2 bijectively onto U .
To see that η maps each of U1 and U2 homeomorphically onto U , we merely have to show that
η is an open mapping. So let V1 be an open subset of U1 and V2 = {−x/x ∈ V1}. Then

η−1(η(V1)) = V1 ∪ V2

is open in Sn so that η(V1) is an open subset of RP n. Thus we have shown that η restricted to
each Uj is an open mapping and that suffices for a proof.

We now summarize the most basic properties of covering projections.

Theorem 15.1: Suppose that p : X̃ −→ X is a covering projection. Then

(i) The map p is a local homeomorphism (see exercise 7, lecture 3).

(ii) The function p is an open mapping.

(iii) The fibers p−1(x) are discrete for each x ∈ X.

60



Proof: Let x̃ ∈ X̃ be arbitrary and x = p(x̃). Choose an evenly covered neighborhood U of x and
Ũ be a sheet lying over U and containing x̃. Then Ũ is an open set in X̃ containing x̃ that is mapped
by p homeomorphically onto U . Thus p is a local homeomorphism and we have proved (i). Let G̃
be an arbitrary open set in X̃. Then G̃ can be covered by open sets Ũ such that p maps each Ũ
homeomorphically onto an evenly covered open subset U of X (why?). Then G = p(G̃) is the union of
such evenly covered neighborhoods U implying that G is an open set in X. Thus p is an open mapping.
Finally to prove (iii) suppose that z̃ ∈ X̃ is a limit point of p−1(x). Pick an arbitrary evenly covered
neighborhood U of z = p(z̃) and a sheet Ũ lying over U containing z̃. In particular the restriction of
p to the sheet Ũ is injective. But since z̃ is a limit point of p−1(x), this sheet must contain infinitely
many points of p−1(x) which means p restricted to Ũ cannot be injective which is a contradiction.

The lifting problem: Suppose that p : E −→ B is a surjective continuous map between topological
spaces and f : T −→ B is a given continuous map, a lift of f is by definition a continuous map
f̃ : T −→ E such that

p ◦ f̃ = f

The lifting problem involves giving sufficient conditions for the existence of the lift f̃ . The main point
here is of course the continuity of the lift. The significance of the problem can be understood from
complex analysis.

Example 15.2: Consider the exponential map exp : C −→ C− {0} and an open set Ω ⊂ C and the
inclusion map

j : Ω −→ C − {0}.
To say that the inclusion map j has a lift with respect to the exponential map means the existence of
a continuous j̃ : Ω −→ C such that

exp(j̃(z)) = z, for all z ∈ Ω.

In other words the existence of a lift of j is equivalent to the existence of a continuous branch of the
logarithm on Ω. We know from complex variable theory that such a continuous branch need not exist
in general such as for instance the case Ω = C − {0}.

In place of the exponential map we could consider the map S : C − {0} −→ C − {0} given by
S(z) = z2. The problem of lifting the inclusion map of a domain Ω ⊂ C−{0} is then equivalent to the
existence of a continuous branch of the square root function on Ω. We also know from complex analysis
that if the lift exists it need not be unique. Well, if a domain Ω ⊂ C−{0} admits a continuous branch
of the square root then it admits two branches. If it admits a continuous branch of the logarithm
then it admits infinitely many any two of which differ by an integer multiple of 2πi. On a connected
domain, the branch however is uniquely specified by specifying a value at a point of the domain. The
following theorem generalizes this in the context of covering spaces.

Theorem 15.2 (uniqueness of lifts): Suppose p : X̃ −→ X is a covering projection, T is a
connected topological space and f1 : T −→ X̃ and f2 : T −→ X̃ are two lifts of a given continuous
map f : T −→ X such that f1(t0) = f2(t0) for some t0 ∈ T . Then the two lifts agree on T namely,
f1(t) = f2(t) for all t ∈ T .
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Proof: Let G be the subset given by G = {t ∈ T/f1(t) = f2(t)}. The set G is non-empty since
t0 ∈ G. We shall show that G is both open and closed in T from which the result would follow since
T is connected. For t ∈ G pick an evenly covered neighborhood U of

x = p(f1(t)) = p(f2(t)).

and Ũ be the sheet lying over U and containing f1(t) = f2(t). The set

N = f−1
1 (Ũ) ∩ f−1

2 (Ũ)

is open and contains t. If z ∈ N then f1(z) and f2(z) both belong to Ũ and p(f1(z)) = p(f2(z)) = f(z).
But p restricted to Ũ is injective and so f1(z) = f2(z) for all z ∈ N and we conclude that N ⊂ G.
The proof that G is closed is left as an exercise. The student may assume that the spaces involved are
Hausdorff (see exercise 7 of lecture 2).

Exercises:

1. Explain why the map φ : C−{0, 1/2} −→ C−{−1/4} given by φ(z) = z(z−1) is not a covering
projection?

2. Show that the map f : S1 −→ S1 given by f(z) = zk is a covering projection for every k ∈ N.

3. Suppose p : X̃ −→ X is a covering projection and E is a closed subset of X. Is the map

p : X̃ − p−1(E) −→ X − E

a covering projection?

4. Find a discrete subset E of C such that sin : C − E −→ C − {−1, 1} is a covering projection.

5. Suppose that p : X̃ −→ X and q : Ỹ −→ Y are covering projections then the product map
(p, q) : X̃ × Ỹ −→ X × Y given by

(p, q)(z, w) = (p(z), q(w)), z ∈ X̃, w ∈ Ỹ ,

is a covering projection. In particular the plane R2 is a covering space of the torus S1 × S1.

6. Let Y be the infinite grid
Y = {(x, y) ∈ R2/x ∈ Z or y ∈ Z}

is a covering projection of the figure eight loop. Draw the figure eight loop on the torus.

7. Show that the set G in theorem (15.2) is closed without using the Hausdorff assumption on T .
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