
Lecture - XXVI Seifert Van Kampen theorem and knots

This is one of the most famous theorem concerning the fundamental group which serves as a tool
for computations and applications to combinatorial group theory. If U and V are path connected open
subsets of a topological space such that U ∩ V is path connected, the theorem provides information
on the geometry of U ∪ V in terms of the geometry of U , V and U ∩ V . In precise terms it states that
the π1 functor maps the push-out diagram of pointed topological spaces with x0 ∈ U ∩ V ,

(U ∩ V, x0)
i1−−−→ (U, x0)

i2

y
yj1

(V, x0)
j2−−−→ (U ∪ V, x0)

to the push-out diagram of groups:

π1(U ∩ V, x0)
i1∗−−−→ π1(U, x0)

i2∗

y
yj1∗

π1(V, x0)
j2∗−−−→ π1(U ∪ V, x0)

thereby giving a precise description of the group π1(U∪V, x0) in terms of the groups π1(U, x0), π1(V, x0)
and π1(U ∩V, x0). Thus π1(U ∪V, x0) is the free product of π1(U, x0) and π1(V, x0) amalgamated along
π1(U∩V, x0). The theorem enables us to calculate quickly the fundamental groups of several important
spaces.

Theorem 26.1 (Seifert and Van Kampen - version I): Let U , V be open path connected subsets
of a topological space such that U ∩ V is path connected. Let x0 ∈ U ∩ V and i1 : U ∩ V −→ U ,
i2 : U ∩ V −→ V denote the inclusion maps. Then π1(U ∪ V, x0) is the free product (coproduct) of
π1(U, x0) and π1(V, x0) amalgamated along π1(U ∩ V, x0) with respect to the maps i1∗ and i2∗. That
is to say if N is the normal subgroup

N = 〈i1∗[γ](i2∗[γ])−1 : [γ] ∈ π1(U ∩ V, x0)〉 (26.1)

then the fundamental group of U ∪ V is given by

π1(U ∪ V, x0) = π1(U, x0) ∗ π1(V, x0)/N. (26.2)

Considering π1(U, x0) and π1(V, x0) as subgroups of π1(U) ∗ π1(V ), their images in the quotient group
generate π1(U ∪ V, x0).

The result may be elegantly stated using a push-out diagram namely,
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Theorem 26.2 (Seifert and Van Kampen - version II): Let U , V be open path connected
subsets of a topological space such that U ∩V is path connected. Let x0 ∈ U ∩V and i1 : U ∩V −→ U ,
i2 : U ∩ V −→ V denote the inclusion maps. Then the push-out data

π1(U ∩ V, x0)
i1∗−−−→ π1(U, x0)

i2∗

y
π1(V, x0)

may be completed to yield the push-out square

π1(U ∩ V, x0)
i1∗−−−→ π1(U, x0)

i2∗

y
yj1∗

π1(V, x0)
j2∗−−−→ π1(U ∪ V, x0)

where the maps j1 : U −→ U ∪ V and j2 : V −→ U ∪ V are inclusions.
The proof is neatly presented on pages 110-113 of the book by J. Vick and need not be repeated

here. Instead we move on to its applications to the computation of the fundamental groups of certain
spaces.

Corollary 26.3: Suppose that U , V are open path-connected, simply connected subsets of a topo-
logical space such that U ∩ V is path connected then U ∪ V is simply connected.

Fundamental groups of spheres: An important example of this is the case U = Sn − {en} and
V = {en}. When n ≥ 2, the spaces U and V are homeomorphic to Rn via the stereo-graphic projection
and since U ∩ V is path connected we conclude that U ∪ V = Sn is simply connected.

Corollary 26.4: Suppose that U , V are open path-connected subsets of a topological space such
that U ∩ V is simply connected then

π1(U ∩ V, x0) = π1(U, x0) ∗ π1(V, x0).

Wedge of two circles: Let us consider the space S1 ∨S1 given by the union of two circles of radius
one in the plane touching each other externally at the origin. We take U and V to be the open sets
obtained by deleting one of the points of each lobe (not the common point!). Then the circle is a
deformation retract of both U and V and U ∩ V deformation retracts to the origin. Thus

π1(S
1 ∨ S1) = Z ∗ Z. (26.3)

The last clause in theorem (26.1) also provides the generators of the fundamental group. Assuming
the circles to centered at ±1, the generators are given by the homotopy classes of the loops

±1 + exp(2πit) (26.4)

The generalization to a wedge of n circles is left as an exercise.
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Corollary 26.5 Suppose that U , V are open path-connected subsets of a topological space such that
U ∩ V and U are simply connected then with a base point x0 ∈ U ∩ V ,

π1(U ∪ V, x0) = π1(V, x0).

We turn to an important example to illustrate the use of this corollary. Regard R3 as a subset of S3

via the stereo-graphic projection and K be a compact subset of R3 such that the complement R3 −K
is connected. We then have the following result.

Theorem 26.6: π1(S
3 −K) = π1(R3 −K).

Proof: Let p ∈ S3 denote the north-pole using which we project S3 − {p} stereo-graphically onto
R3. Since K is compact there is a neighborhood U of p in S3 homeomorphic to a ball which does not
intersect K. Taking V = S3−(K∪{p}) = R3−K, we see that U ∪V = S3−K and U ∩V deformation
retracts to S2. The result now follows from the previous theorem.

Corollary 26.7: Suppose that U , V are open path-connected subsets of a topological space such that
U is simply connected and i : U ∩ V −→ V is the inclusion map then, taking a base point x0 ∈ U ∩ V ,

π1(U ∪ V, x0) = π1(V, x0)/〈Im i∗〉,
where 〈Im i∗〉 denotes the normal subgroup generated by the image of i∗.

Proof: The subgroup N in (26.1) reduces to 〈Im i∗〉.

The projective plane: We work this example out in meticulous detail. Such details will be pro-
gressively cut down and left for the students to fill in as we go along. The projective plane RP 2 is
obtained by attaching a two cell E2 to S1 using the map given in complex form as f(z) = z2. Let p
denote the center of E2 and η : E2 −→ RP 2 be the quotient map. Taking U to be the interior of E2

and V = RP 2 − {p} we apply corollary (26.7). For computing the image of i∗ we take a generator for
the infinite cyclic group π1(U ∩ V, y0) with base point y0 = 1/2. The generator is the equivalence class
of the loop

γ(t) =
1

2
exp(2πit), 0 ≤ t ≤ 1. (26.5)

We also need a base point x0 sitting on the loop Γ given by

Γ(t) = η(exp(iπt)), 0 ≤ t ≤ 1, (26.6)

which generates π1(RP 2 − {p}, x0). Taking a path β joining y0 and x0 we get a generator for the
infinite cyclic group π1(RP 2 − {p}, y0) namely, the class of the loop β ∗ Γ ∗ β−1. Having set the stage
we are ready to compute i∗[γ] namely, the homotopy class of the loop γ in RP 2 − {p}. This loop γ
based at y0 is homotopic to the loop

β ∗ Γ ∗ Γ ∗ β−1. (26.7)

The required homotopy is η ◦ F where F is a map of a rectangle onto a suitable annulus (see exercise
(1)). Introducing a β−1 ∗ β we get

i∗[γ] = [β ∗ Γ ∗ β−1][β ∗ Γ ∗ β−1] (26.8)

or in additive notation it is the map Z −→ Z given by n 7→ 2n. We conclude from corollary (26.7)
that π1(RP 2) is the cyclic group of order two.
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Figure 19: Computing π1(RP 2)

The torus and the Klein’s bottle: We proceed along the same lines using the convenient form
(25.5). Denoting by X either the torus or the Klein’s bottle and p to be the origin, we see that X−{p}
deformation retracts to the figure eight loop and, in analogy with (26.6), the generators for the free
group π1(X − {p}) are given by

Γ1(t) = η(exp(iπt/2)), Γ2(t) = η(exp(iπ(t+ 1)/2)), 0 ≤ t ≤ 1

We take U to be the open unit disc, V to be X − {p} and the class of (26.5) as the generator for
π1(U ∩ V, y0) where the base point y0 is 1/2. Taking an auxiliary path β joining y0 and the point
x0 = 1 common to both Γ1(t) and Γ2(t), we get the generators

[β ∗ Γ1 ∗ β−1] and [β ∗ Γ2 ∗ β−1] (26.9)

for π1(X − {p}, y0). The deformation of the previous example (exercise (1)) can be employed here
again and this time we get

i∗[γ] = [β ∗ Γ1 ∗ β−1][β ∗ Γ2 ∗ β−1][β ∗ Γ−1
1 ∗ β−1][β ∗ Γ−1

2 ∗ β−1] (26.10)

for the torus whereas for the Klein’s bottle we get instead

i∗[γ] = [β ∗ Γ1 ∗ β−1][β ∗ Γ2 ∗ β−1][β ∗ Γ1 ∗ β−1][β ∗ Γ−1
2 ∗ β−1] (26.11)

One could also work with the other models described in example (25.3) where the spaces are obtained
by identifying the opposite edges of a square. The homotopy η ◦ F of the last example would have
to be modified to η ◦G ◦ F where G is a certain homeomorphism from the unit disc onto the square
[0, 1] × [0, 1].

Denoting the generators (26.9) of π1(V, y0) by S and T we are ready to apply corollary (26.7) since
(26.10) gives us the image of the map i∗. The fundamental group of the torus is then

〈S, T : ST = TS〉 ∼= Z × Z (26.12)

and the fundamental group of the Klein’s bottle is

〈S, T : TST = S〉 ∼= Z n Z. (26.13)
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The double torus: By writing out the attaching map S1 −→ S1 ∨ S1 ∨ S1 ∨ S1 akin to (25.5) or
else using the identification of the sides of a regular octagon as described in lecture 4, the reader is
invited to prove that the fundamental group of the double torus is

〈a, b, c, d | abcda−1b−1c−1d−1 = 1〉 (26.14)

Fundamental groups of some adjunction spaces: The method used in the last few examples
may be adapted to prove a general theorem about the fundamental group of the adjunction space
X tf Ek obtained by attaching Ek to a given space X via a map f : Sk−1 −→ X. As in the case of
the projective plane, Klein’s bottle and torus the crucial point is to obtain some specific information
about the induced map f∗. We shall merely state the result and suppress the proof.

Theorem 26.8: Let X tf Ek be the space obtained by attaching a k cell to a path connected space
X via a map f : Sk−1 −→ X. Then for any choice of base point in f(Sk−1),

(i) π1(X tf Ek, x0) = π1(X, x0) if k ≥ 3.

(i) π1(X tf E2, x0) = π1(X, x0)/〈im f∗〉.

Exercises

1. Fill in the details in the computation of the fundamental group of the projective plane, Klein’s
bottle and the torus done in the lecture by providing a careful proof of equations (26.8), (26.10)
and (26.11). Hint: Use polar coordinates. Continuously shrink the path β to the point x0.

2. Show that the fundamental group of the wedge of n copies of S1 is the free group on n generators.
Calculate the fundamental group of the truncated grid

{(x, y) ∈ R2/x ∈ Z or y ∈ Z, 0 ≤ x ≤ n, 0 ≤ y ≤ n}.

3. Determine the generators of double torus by expressing it as a union of open sets each of which
is a torus from which a tiny closed disc has been removed.

4. Let C be the union of the two unlinked circles

(x− 2)2 + y2 = 1, z = 0,

(x+ 2)2 + y2 = 1, z = 0.

in R3. Show that π1(R3 − C) is the free group on two generators.

5. Calculate the fundamental groups of the following spaces

(i) R4 minus a line.

(ii) R4 minus a two dimensional linear subspace.

(iii) R4 minus two parallel lines.

(iv) R4 minus two intersecting lines.

(v) R3 minus the coordinate axes

(vi) C2 − {(z1, z2)/z1z2 = 0}
(vii) R3 minus finitely many points.
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