
Lecture - XXXV The Mayer Vietoris sequence and its applications

The proof of Mayer Vietoris sequence is reminiscent of the Seifert Van Kampen theorem. While
the Seifert Van Kampen theorem enables us to relate the fundamental group of a union U ∪V in terms
of the fundamental groups of U, V and U ∩V , the situation here is slightly more involved. The precise
relationship between the homologies of U, V, U ∩ V and U ∪ V is described in terms of the long exact
sequence of theorem (34.7).

As in the Seifert Van Kampen theorem we obtain from a push-out diagram of topological spaces
a push out diagram of chain complexes which turns into a short exact sequence of complexes. The
corresponding long-exact sequence gives, after an application of the excision theorem of the last lecture,
the Mayer Vietoris sequence. It is one of the most efficient tools available for the computation of
homology groups. We restate here the theorem for convenience.

Theorem 35.1: Suppose U and V are subsets of a topological space such that Int U ∪ Int V = X.
Then there is a long exact sequence

−−−→ Hn(U ∩ V )
(κ′,−κ′′)−−−−−→ Hn(U) ⊕Hn(V )

qn−−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→

Interpretation of the connecting homomorphism: We use equation (29.18) to describe explic-
itly the connecting homomorphism in the Mayer Vietoris sequence. Take a representative cycle ζ in
Hn(U ∪ V ). Theorem (34.6) implies that an arbitrary element of Hn(U ∪ V ) can be represented as a
sum of chains

ζ = ζ1 + ζ2

where ζ1 ∈ Sn(U) and ζ2 ∈ Sn(V ). Note that we are resorting to an abuse notation in writing ζ1

instead of i](ζ1). We conclude that ∂ζ1 = −∂ζ2. Thus ∂ζ1 and ∂ζ2 are both cycles in U ∩V . According
to (29.18), the homomorphism δn is given by

δn(ζ) = ∂ζ1

Corollary 35.2: The homology groups of the spheres Sn (n ≥ 1) are given by

Hm(Sn) =

{
0 if m 6= 0, m 6= n
Z if m = 0, m = n

Proof: We take U = Sn− {en+1} and V = Sn−{−en+1} and note that U ∩ V deformation retracts
to Sn−1. Consider the portion of the Mayer Vietoris sequence

−−−→ Hn(U) ⊕Hn(V ) −−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→ Hn−1(U) ⊕Hn−1(V ) −−−→
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Since U and V are contractible spaces, we get for the case n ≥ 2,

0 −−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→ 0,

and hence Hn(S
n) ∼= Hn−1(S

n−1) (n ≥ 2). By induction the result would follow as soon as we prove it
for the case n = 1. For this case let us take a look at the end of the Mayer Vietoris sequence:

0 −−−→ H1(S
1)

δ1−−−→ H0(U ∩ V )
(κ′,−κ′′)−−−−−→ H0(U) ⊕H0(V ) −−−→ H0(U ∪ V ) −−−→

Since δ1 is injective,
H1(S

1) ∼= im δ1 = ker (κ′,−κ′′).
To understand the map (κ′,−κ′′) we take a basis of H0(U ∩ V ) consisting of a pair of points a ∈ U
and b ∈ V . The singleton {a} generates H0(U) and

k′(ma+ nb) = ma + nb = n(b− a) + (m + n)a

which is a boundary in H0(U) if and only if m + n = 0. Likewise k′′(ma + nb) = 0 in H0(V ) if and
only if m + n = 0. Thus the kernel of (κ′, κ′′) is the infinite cyclic group generated by the zero chain
a− b. Hence we get

H1(S
1) ∼= Z.

To calculate Hn(S
1) for n ≥ 2 we look at the portion of the Mayer Vietoris sequence

−−−→ Hn(U) ⊕Hn(V ) −−−→ Hn(U ∪ V )
δn−−−→ Hn−1(U ∩ V ) −−−→

and observe that since Hn(U) = Hn(V ) = Hn−1(U ∩ V ) = 0 when n ≥ 2,

Hn(S
1) = {0}, n ≥ 2.

Corollary 35.3: For m,n ∈ N with m < n, the spheres Sm and Sn are non-homeomorphic. Also
Rm and Rn are non-homeomorphic.

Proof: The first part follows from the fact that the homology groups Hn(S
m) and Hn(S

n) are non-
isomorphic. If Rm and Rm were homeomorphic then their one-point compactifications would also be
homeomorphic which means Sn and Sm would be homeomorphic leading to a contradiction.

Homology groups of adjunction spaces: We shall now consider the space Y = X tf Ek obtained
by attaching a k−cell En to X via an attaching map

f : Sk−1 −→ X.

We shall closely follow the method used in lecture 26 to compute the fundamental groups of the
projective plane and Klein’s bottle. We do not have to keep track of base points and use the Mayer
Vietoris sequence instead of the Seifert Van Kampen theorem. We shall use the same notations and
denote by p the center of Ek, the interior of Ek by U and the space Y − {p} by V . The space U ∩ V
deformation retracts to a space homeomorphic to Sk−1. Since V deformation retracts to X, the spaces
V and X have the same homology groups and Hn(U) = {0} when n ≥ 1. We are ready to prove the
following result:
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Figure 26: Adjucntion space

Theorem 35.4 Hn(X tf Ek) = Hn(X) if n 6= k, k − 1.

Proof: Looking at the portion of the Mayer Vietoris sequence

−−−→ Hn(U ∩ V ) −−−→ Hn(U) ⊕Hn(V ) −−−→ Hn(Y ) −−−→ Hn−1(U ∩ V ) −−−→

we get the result directly when n ≥ 2. If n = 1 then necessarily k ≥ 3 and we look at the portion of
the Mayer Vietoris sequence

−−−→ H1(U ∩ V ) −−−→ H1(U) ⊕H1(V ) −−−→ H1(Y ) −−−→ H0(U ∩ V )
∼=−−−→ H0(U) ⊕H0(V ).

Observe that H1(U ∩ V ) = {0} and we get the exact sequence

0 −→ H1(V ) −→ H1(Y ) −→ 0,

establishing the result when n = 1. �

The cases n = k, k − 1 are more technical and we shall merely state the relevant results.

Theorem 35.5: With notations as in theorem (35.4),

Hk−1(X tf Ek) = Hk−1(X)/im Hk−1(f), Hk(X tf Ek) = Hk(X) ⊕ ker Hk−1(f)

Corollary 35.6 (Homology groups of RP 2): H0(RP 2) = Z, H1(RP 2) = Z2. All other homology
groups vanish.

Proof: Recall example (25.4) that RP 2 arises from S1 by attaching a two cell using the attaching
map f : S1 −→ S1 given by f(z) = z2. Since H1(f) : Z −→ Z is given by n 7→ 2n the result
immediately follows from theorems (35.4)-(35.5).

Exercises

1. Prove that a homeomorphism En onto itself maps each boundary point of En to a boundary
point.

2. Determine the homology groups of the Klein’s bottle.
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3. Determine the homology groups of the double torus.

4. Establish the isomorphism H0(U ∩ V ) −→ H0(U) ⊕H0(V ) in the proof of theorem (35.4)

5. Let Ck be the disjoint union of k copies of S1 in R3. Determine the homology groups of the
complement R3 − Ck.

6. Determine the homology groups of RP 3. Try computing the homology groups of RP 4.

7. Determine the homology groups of Sn ∨ Sm. Use exercise 4 of lecture 25. to calculate the
homology groups of S2 × S4.
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