
Lecture XIX - Deck Transformations

Given a covering projection p : X̃ −→ X, the deck transformations are, roughly speaking, the
symmetries of the covering space. Thus it should not come as a surprise that they play a crucial part
in the theory of covering spaces. In this lecture all spaces are assumed to be connected and locally
path connected.

Definition 19.1 (Deck transformations): Let p : X̃ −→ X be a covering projection. A deck

transformation is a homeomorphism φ : X̃ −→ X̃ such that p ◦ φ = p, that is to say φ is a lift of p.

Examples 19.1: (i) For the covering space ex : R −→ S1 given by ex(t) = exp(2πit) the deck
transformations are the maps

Tn : R −→ R, Tn(x) = x+ n, n ∈ Z

(ii) For the two sheeted covering p : Sn −→ RP n the deck transformations are the identity map
and the antipodal map.

The following theorem summarizes the most basic properties of the group of deck transformations.

Theorem 19.1: Let p : X̃ −→ X be a covering projection and φ be a deck transformation. Then
(i) φ is uniquely determined by its value at one point of X̃
(ii) φ(x̃0) ∈ p−1(x0) whenever x̃0 ∈ x0.
(iii) If φ(x̃1) = x̃2, where x̃1, x̃2 ∈ p−1(x0) then

p∗π1(X̃, x̃1) = p∗π1(X̃, x̃2) (19.1)

(iv) Conversely if (1) holds then there exists a unique deck transformation φ such that φ(x̃1) = x̃2

Proof: Statement (i) follows from the uniqueness of lifts. Statement (ii) follows immediately from
the definition. To prove (iii) apply the lifting criterion (necessity) to both φ and φ−1. To prove (iv)

apply lifting criterion (sufficiency) to get continuous functions φ : X̃ −→ X̃ and ψ : X̃ −→ X̃ such
that

p ◦ φ = p, φ(x̃1) = x̃2; p ◦ ψ = p, ψ(x̃2) = x̃1.

Then φ ◦ ψ and ψ ◦ φ are both lifts of the map p : X̃ −→ X such that

φ ◦ ψ(x̃2) = x̃2, ψ ◦ φ(x̃1) = x̃1

The identity map on X̃ is also a lift of p with these initial conditions. By uniqueness, we see that
both φ ◦ψ and ψ ◦ φ must be the identity map on X̃ proving that φ and ψ are homeomorphisms. The
uniqueness clause follows from the uniqueness of lifts. �
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Remark: If φ : X̃ −→ X̃ is a continuous map such that p ◦φ = p, then prove that φ is a homeomor-
phism in the following cases:

(i) π1(X̃) is a finite group (ii) p∗π1(X̃, x̃0) has finite index in π1(X, x0) (iii) X̃ is a regular cover of
X. Is this true in general? The point is that if H is a subgroup of G and gHg−1 ⊂ H then it follows
gHg−1 = H in case H is finite or has finite index or is normal.

Definition 19.2: The set of deck transformations of a covering projection p : X̃ −→ X forms a
group under composition of maps denoted by Deck(X̃,X).

Action of Deck(X̃,X) on the fibers p−1(x0): We fix a base point x0 ∈ X. Since each deck
transformation is a bijection, it is a permutation of the fiber p−1(x0) and so acts on p−1(x0) as a group
of permutations:

(φ, x̃0) 7→ φ(x̃0)

We study this action closely and relate it to the action of π1(X, x0) on the fiber p−1(x0). We first look
at the case of regular coverings

Theorem 19.2: The covering p : X̃ −→ X is a regular covering if and only if the action of
Deck(X̃,X) is transitive on p−1(x0).

Proof: Let x̃1 and x̃2 be two arbitrary points of p−1(x0). The action of Deck(X̃,X) is transitive on

p−1(x0) if and only if there is a φ ∈Deck(X̃,X) carrying x̃1 to x̃2, which is the case if and only if (19.1)
holds. This in turn implies that the conjugacy class

{
p∗π1(X̃, x̃0) : x̃0 ∈ p−1(x0)

}

reduces to a singleton and conversely, in other words, if and only if the covering is regular. �

We now relate the (perhaps intransitive) action of Deck(X̃,X) on p−1(x0) with the transitive action

of π1(X, x0) on p−1(x0). Pick φ ∈ Deck(X̃,X) and φ(x̃1) = x̃2. Then on the one hand (19.1) must

hold while since p∗π1(X̃, x̃1) = stab x̃1 (for the action of π1(X, x0)), we have on the other hand

stab x̃1 = stab x̃2 = g(stab x̃1)g
−1, (19.2)

for some g ∈ π1(X, x0). In fact (19.2) states that g belongs to the normalizer

N(stab x̃1) = N(p∗(π1(X̃, x̃1)) ⊂ π1(X, x0).

This suggests that we must relate φ to the element g ∈ N(p∗(π1(X̃, x̃1)). However since there may be
several such elements g it is expedient to define the map in the opposite direction.

Let g ∈ N(p∗(π1(X̃, x̃1)) ⊂ π1(X, x0) and x̃1 ·g = x̃2. Then (19.1) holds since g is in the normalizer

of stab x̃1. There is a unique φg ∈ Deck(X̃,X) such that φg(x̃1) = x̃2 = x̃1 · g. The map

ψ : N(p∗(π1(X̃, x̃1)) −→ Deck(X̃,X), g 7→ φg (19.3)

is a homomorphism. To see that it is surjective, let φ ∈ Deck(X̃,X). There is a g ∈ π1(X, x0) such
that

x̃1 · g = φ(x̃1)
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then stab x̃1 and stab φ(x̃1) are conjugate by g but they are also equal by (iii) of Theorem (19.1),

whereby we conclude g is in the normalizer N(p∗(π1(X̃, x̃1)) and φ = φg. To determine the kernel of
ψ, observe that φg = id if and only if

φg(x̃1) = x̃1 · g
that is, if and only if g ∈ stab x̃1. But stab x̃1 = p∗(π1(X̃, x̃1)). Summarizing these observations,

Theorem 19.3: We the group isomorphism

Deck(X̃,X) ∼= N(p∗(π1(X̃, x̃1))/p∗(π1(X̃, x̃1)). (19.4)

Corollary 19.4: If p : X̃ −→ X is a regular covering then

Deck(X̃,X) ∼= π1(X, x0)/p∗(π1(X̃, x̃1)). (19.5)

Corollary 19.5: If X̃ is a simply connected covering of X then

Deck(X̃,X) ∼= π1(X, x0). (19.6)

Corollary 19.6: π1(S
1) ∼= Z and π1(RP n) ∼= Z2

Existence of a simply connected covering space: Despite being an important theme, we shall
not discuss this in any detail in this elementary course but make a few remarks about it. Most of the
spaces that we shall encounter are reasonably well-behaved and indeed many of them such SO(n,R), S3

and the projective spaces are smooth manifolds. Given the existence of a simply connected covering
- called a universal covering4, one can develop a Galois correspondence for covering spaces which
asserts the existence of a unique (upto isomorphism) covering corresponding to each conjugacy class
of subgroups of π1(X, x0).

Definition 19.3: Let us consider a fixed connected topological space X with a specified base point
x0 ∈ X. A homomorphism between two coverings p : (Y, y0) −→ (X, x0) and q : (Z, z0) −→ (X, x)) is
a surjective continuous map r : (Y, y0) −→ (Z, z0) such that q ◦ r = p or diagrammatically,

(Y, y0)
r

//

p
%%J

JJJJJJJJ
(Z, z0)

q
yyttttttttt

(X, x0)

The definition enables us to form a category of coverings of a given space X with a specified base point
x0 ∈ X. To obtain a satisfactory theory one must impose some additional assumption on X such as
local connectedness. In other words r is a lift of p with respect to the covering map q. The universal
covering is then defined in terms of a universal property.

4Actually the notion of a universal covering is more general than the notion of a simply connected coverings but the
two notions coincide for all reasonable spaces and certainly for all spaces that we shall deal with.
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Definition 19.4: The universal covering is a covering e : (E, e0) −→ (X, x0) such that for every
covering p : (Y, y0) −→ (X, x0) there is a unique homomorphism ψ : (E, e0) −→ (Y, y0), that is a
continuous surjection ψ such that p ◦ ψ = e.

The universal covering if it exists is unique and one can establish the existence of a universal
covering for a reasonable nice class of topological spaces X.

Exercises

1. Suppose that G and G̃ are topological groups and p : G̃ −→ G is a covering projection that is
also a group homomorphism then ker p = Deck(G̃, G).

2. Determine the deck transformations for the covering

sin : C −
{π

2
+ kπ : k ∈ Z

}
−→ C − {±1}

3. Determine the deck transformations for the covering

p : C −
{
± 1,±2

}
−→ C − {±2}

given by p(z) = z3 − 3z. Show that this covering is not regular. Hint: Use Riemann’s removable
singularities theorem to show that a deck transformation must be analytic on the whole plane.

4. If p is a prime, what can you say about the group of deck transformations of a p-sheeted covering
space?

5. Show using the universal property that the universal covering, if it exists is unique upto isomor-
phism of covering projections.
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