
Lecture II - Preliminaries from general topology:

We discuss in this lecture a few notions of general topology that are covered in earlier courses
but are of frequent use in algebraic topology. We shall prove the existence of Lebesgue number for a
covering, introduce the notion of proper maps and discuss in some detail the stereographic projection
and Alexandroff’s one point compactification. We shall also discuss an important example based on
the fact that the sphere Sn is the one point compactifiaction of Rn. Let us begin by recalling the basic
definition of compactness and the statement of the Heine Borel theorem.

Definition 2.1: A space X is said to be compact if every open cover of X has a finite sub-cover. If X
is a metric space, this is equivalent to the statement that every sequence has a convergent subsequence.

If X is a topological space and A is a subset of X we say that A is compact if it is so as a topological
space with the subspace topology. This is the same as saying that every covering of A by open sets
in X admits a finite subcovering. It is clear that a closed subset of a compact subset is necessarily
compact. However a compact set need not be closed as can be seen by looking at X endowed the
indiscrete topology, where every subset of X is compact. However, if X is a Hausdorff space then
compact subsets are necessarily closed. We shall always work with Hausdorff spaces in this course.
For subsets of Rn we have the following powerful result.

Theorem 2.1(Heine Borel): A subset of Rn is compact (with respect to the subspace topology) if
and only if it is closed and bounded.

The theorem provides a profusion of examples of compact spaces.

1. The unit sphere Sn−1 = {(x1, x2, . . . , xn) ∈ Rn | x2
1 + x2

2 + · · ·+ x2
n = 1} is compact.

2. The unit square I2 = [0, 1] × [0, 1] is compact.

3. The set of all 3× 3 matrices is clearly homeomorphic to R9. Then the set of all 3× 3 orthogonal
matrices, denoted by O(3,R) is is compact. That is to say the orthogonal group is compact. The
result readily generalizes to the group of n× n orthogonal matrices.

4. Think of the set of all n× n matrices with complex entries as Cn2
which in turn may be viewed

as R2n2
. The set of all n× n unitary matrices is then easily seen to be a compact space. These

matrices form a group known as the unitary group U(n).

5. The set of all n × n unitary matrices with determinant one is also a closed bounded subset of
Cn2

and so is compact. This is the special unitary group SU(n).

Theorem 2.2: Suppose that X is a compact topological space, Y is an arbitrary Hausdorff space
and f : X −→ Y is a continuous surjection then

1. Y is compact.

2. If A is a closed subset of X then f(A) is closed.

3. It f is bijective then f is a homeomorphism.
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Proof: The first assertion is proved in courses on point set topology. We remark that the Hausdorff
assumption is not necessary for (i). The second follows from the first and we shall prove the third
which will be of immense use in the sequel. Let g be the inverse of f and A be closed in X then
g−1(A) = f(A) is closed in Y from which continuity of g follows.

Definition 2.2 (The Lebsesgue number for a cover): Given an open covering {Gα} of a metric
space X, a Lebesgue number for the covering is a positive number ε such that every ball of radius ε is
contained in some member Gα of the cover.

Theorem 2.3: Every open covering of a compact metric space has a Lebesgue number.

Proof: The student is advised to draw relevant pictures as he reads on. Suppose that a cover {Gα}
has no Lebesgue number. Then for every n ∈ N, 1/n is not a Lebesgue number and so there is a point
xn ∈ X such that the ball of radius 1/n centered at xn is not contained in any of the open sets in
the covering. By compactness the sequence {xn} has a convergent subsequence converging to a point
p ∈ X. Choose an α such that Gα contains p and there is a δ > 0 such that the ball of radius δ around
p is contained in Gα. Now take n large enough that 1/n < δ/3 and xn is contained in the ball of radius
δ/3 centered at p.

Now, since the ball of radius 1/n with center xn is not contained in any of the open sets in our
covering, there exists yn ∈ X such that yn /∈ Gα and d(xn, yn) < 1/n. But

d(p, yn) ≤ d(p, xn) + d(xn, yn) < 2δ/3 < δ.

So yn is in the ball of radius δ centered at p and so yn ∈ Gα which is a contradiction.

Definition 2.3 (Locally compact spaces): A (Hausdorff) space X is said to be locally compact
if each point of X has a neighborhood whose closure is compact.

It is an exercise for the student to check that under this hypothesis each point of X has a local
base of consisting of compact neighborhoods.

Examples: The reader may easily verify the following.

1. Open subsets of Rn are locally compact.

2. Q is not locally compact.

Locally compact spaces are easily realized as dense open subsets of compact spaces. One has to merely
adjoin one additional point. The idea is important in many applications and is called Alexandroff’s
one point compactification.

One point compactification: Let X be a locally compact, non-compact Hausdorff space and
X̂ = X ∪ {∞} be the one point union of X with an additional point ∞. The topology T consists of
all the open subsets in X as well as all the subsets of the form {∞} ∪ (X −K), where K ranges over

all the compact subsets of X. The following theorem summarizes the properties of X̂ and the proof is
left for the reader.
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Theorem 2.4: (i) The collection of sets T is a topology on X̂.

(ii) The family of sets X̂−K, where K ranges over all compact subsets of X, forms a neighborhood
base of ∞.

(iii) X with the given topology is an open dense subset of X̂.

(iv) The space X̂ is compact.

Definition 2.4 (Proper maps): A map f : X −→ Y between topological spaces is said to be
proper if f−1(C) is a compact subset of X whenever C is a compact subset of Y .

Theorem 2.5: Suppose X and Y are locally compact spaces and f : X −→ Y is a continuous proper
map then it extends continuously as a map f̂ : X̂ −→ Ŷ between their one point compactifications.

Proof: Denote the adjoined points in X̂ and Ŷ as p and q respectively and extend the given map
by sending p to q. We need to show that the extension is continuous at p. Let C be any compact
subset of Y so that K = f−1(C) is compact in X. Then N = X̂ − K is a neighborhood of p in X̂

that is mapped by f̂ into the preassigned neighborhood Ŷ −C of q. This proves the continuity of the
extension.

The converse is not true as the constant map shows. However the following version in the reverse
direction is easy to see,

Theorem 2.6: Suppose X and Y are locally compact Hausdorff spaces and f : X̂ −→ Ŷ is a
continuous map such that f−1(q) = {p}, where p and q are as in the previous theorem, then the
restriction of f to X is a proper map.

Proof: If C is a compact subset of Y then f−1(C) being a closed subset of X̂ is compact. The
hypothesis says that f−1(C) does not contain p and hence is a compact subset of X itself.

Stereographic projection: Consider the sphere

Sn =
{

(x1, x2, . . . , xn+1) ∈ Rn+1 | x2
1 + x2

2 + · · ·+ x2
n+1 = 1

}

and the plane xn+1 = 0 of the equator. Let n = (0, 0, . . . , 0, 1) and x be a general point on the
equatorial plane. The line through n and x is described parametrically by (1− t)n+ tx and meets the
sphere at points corresponding to the roots of the quadratic equation

〈(1 − t)n + tx, (1 − t)n + tx〉 = 1.

The root t = 0 corresponds to the point n and the second root

t =
2(1 − n · x)

1 + ‖x‖2 − 2n · x

is continuous with respect to x and provides a point F (x) ∈ Sn − {n}. The map F is a bijective
continuous map between the plane xn+1 = 0 and Sn − {n}. Note that the origin is mapped to the
south pole by F . The inverse map G is called the stereographic projection. Let us now show that G
is also continuous whereby it follows that F is a homeomorphism.
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Well, let y be a point on the sphere minus the north pole n. The ray emanating from n and passing
through y meets the plane at the point

G(y) =
( y1

1 − yn+1
,

y2

1 − yn+1
, . . . ,

yn
1 − yn+1

)

We see that G is also continuous and so the sphere minus its north pole is homeomorphic to Rn.
It is useful to note that the stereographic projection takes points y close to the north pole to points

G(y) of Rn such that ‖G(y)‖ → +∞. We summarize the discussion as a theorem.

Theorem 2.7: The unit sphere in Sn is homeomorphic to the one point compactification of Rn.

Theorem 2.8: Suppose that T is a linear transformation of Rn into itself and not the zero map,
then T extends as a continuous map of Sn to itself if and only if T is non-singular.

Proof: Note that if T is non-singular, it is a proper map and so it extends continuously as a map of
Sn sending the point at infinity to itself. Conversely, if T fails to be bijective then there is a sequence
of points xn such that ‖xn‖ → +∞ but T (xn) = 0 for every n. Thus if T were to extend continuously
as a map of Sn we would be forced to map the point at infinity namely the north pole to (the point
of Sn corresponding to) the origin. On the other hand since T is not the zero map, pick a vector u
such that Tu 6= 0 and the sequence mu converges (as m → ∞) to the point at infinity on Sn. Thus
by continuity we would have limT (mu) = 0, as m → 0. Hence, m‖Tu‖ −→ 0 which is plainly false
since Tu 6= 0.

More important examples are furnished by regarding S2 as the one point compactification of the
plane C and using the field structure on the plane. The proof of the following is an exercise.

Theorem 2.9: Any non-constant polynomial is a proper map of C onto itself and so may be viewed
as a continuous map of S2 to itself fixing the point at infinity.

Exercises

1. Prove that a topological space is compact if and only if it satisfies the following condition known
as the finite intersection property. For every family {Fα} of closed sets with ∩αFα = ∅, there is
a finite sub-collection whose intersection is empty

2. Show that f : [0, 1] −→ [0, 1] is continuous if and only if its graph is a compact subset of I 2.

3. Examine whether the exponential map from C onto C − {0} is proper. What about the expo-
nential map as a map from R onto (0,∞)?

4. (Gluing Lemma) Suppose that
{
Uα

}
α∈Λ

is a family of open subsets of a topological space and

for each α ∈ Λ we are given a continuous function fα : Uα −→ Y . Assume that whenever
fα(x) = fβ(x) whenever x ∈ Uα ∩ Uβ. Show that there exists a unique continuous function

f :
⋃

α∈Λ

Uα −→ Y such that f(x) = fα(x) for all x ∈ Uα and for all α ∈ Λ. Show that the result

holds if all the Uα are closed sets and Λ is a finite set.
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5. How would you show rigorously that the closed unit disc in the plane is homeomorphic to the
closed triangular region determined by three non-collinear points? You are allowed to use results
from complex analysis, provided you state them clearly.

6. Prove that any two closed triangular planar regions (as described in the previous exercise) are
homeomorphic. Show that any such closed triangular region is homeomorphic to I 2.

7. Suppose that Z is a Hausdorff space and f, g : Z −→ X are continuous functions then the set
{z ∈ Z/f1(z) = f2(z)} is closed in Z.

8. Show that the space obtained by rotating the circle (x − 2)2 + y2 = 1 about the y−axis is
homeomorphic to S1 × S1.
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