
Lecture XI - Homotopies of maps. Deformation retracts.

We generalize the notion of homotopy of paths to homotopy of a pair of continuous maps between
topological spaces. This would be particularly useful in the second part of the course. It also leads to
a powerful notion of deformation retracts which is often useful in deciding whether two spaces have the
same fundamental group. Homotopy of maps is a useful coarsening of the notion of homeomorphism of
two spaces leading to the notion of homotopy equivalence of spaces. Over the decades homotopy has
proved to be the most important notion in topology, susceptible to considerable generalization with
wide applicability.

Definition 11.1 (Homotopies of maps): (i) Given continuous maps f, g : X −→ Y between
topological spaces we say that f and g are homotopic if there exists a continuous map F : X×[0, 1] −→
Y such that

F (x, 0) = f(x), F (x, 1) = g(x), for all x ∈ X (11.1)

We shall occasionally use the notation f ∼ g to indicate that f and g are homotopic. One can formulate
a notion for pairs of spaces:

(ii) Two continuous maps f, g : (X,A) −→ (Y,B) between pairs of topological spaces are said to
be homotopic if there exists F : (X× I, A× I) −→ (Y,B) such that in addition to (11.1) the following
condition holds:

F (a, t) ∈ B, for all a ∈ A, t ∈ [0, 1]. (11.2)

Condition (11.2) is a boundary condition which states that the intermediate functions

Ft : x 7→ F (x, t)

all map A into B. Note that when A = {x0} and B = {y0}, the condition says that all the intermediate
maps Ft are base point preserving. We leave it to the reader to prove the following two simple results.

Theorem 11.1: Homotopy is an equivalence relation.

Theorem 11.2: Suppose that f and g are homotopic maps of pairs (X, x0) and (Y, y0) then the
induced group homomorphisms f∗ and g∗ from π1(X, x0) to π1(Y, y0) are equal.

Now suppose that f and g are homotopic maps from X to Y such that for a base point x0 ∈ X,
f(x0) = g(x0) = y0 say, but the intermediate maps do not respect these base points. Then it is not
necessary that f∗ = g∗ as maps from π1(X, x0) to π1(Y, y0). The following theorem addresses this issue.

Theorem 11.3: Suppose that F is a homotopy between maps f, g : X −→ Y and for a point
x0 ∈ X, f(x0) = g(x0) = y0. Then the group homomorphisms f∗ and g∗ are conjugate by the
inner-automorphism generated by the loop

σ : t 7→ F (x0, t) (11.3)
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Proof: The idea of proof is simple. Observe that (11.3) is the image of the base point x0 under the
deformation suggesting the use of theorem (7.8). If we fix an intermediate time s ∈ [0, 1] then the
curve σs given by σs(t) = t 7→ σ(st) starts at y0 and we could use it to construct a loop at y0 namely

σs ∗ F (γ( . ), s) ∗ σ−1
s

In detail, for each loop γ(t) ∈ X based at x0, the homotopy φ : [0, 1] × [0, 1] −→ Y given by

φ(s, t) = σ(3st) if 0 ≤ t ≤ 1/3

= F (γ(3t− 1), s) if 1/3 ≤ t ≤ 2/3

= σ(3s− 3st) if 2/3 ≤ t ≤ 1.

establishes the equality of f∗[γ] and [σ](g∗[γ])[σ
−1].

Corollary 11.4: Suppose that F is a homotopy between maps f, g : X −→ Y and for a point
x0 ∈ X, f(x0) = g(x0) = y0. If π1(Y, y0) is abelian then the group homomorphisms f∗ and g∗ are
equal.

If we drop the hypothesis f(x0) = g(x0) in theorem 11.3 the proof still goes through but since σ is
no longer a loop we merely get that the induced maps f∗ and g∗ differ by a composition through the
isomorphism h[σ] encountered in theorem (7.8). We record the result as a theorem and the reader may
rework the proof of theorem 11.3 to fit it in the present context.

Theorem 11.5: Suppose that F is a homotopy between maps f, g : X −→ Y then for x0 ∈ X, the
induced maps f∗ : π1(X, x0) −→ π1(Y, f(x0)) and g∗ : π1(X, x0) −→ π1(Y, g(x0)) satisfy the relation

h[σ] ◦ f∗ = g∗ (11.4)

where h[σ] is the isomorphism
h[σ] : [γ] 7→ [σ ∗ γ ∗ σ−1] (11.5)

we have encountered earlier with σ being the curve F (x0, t) joining f(x0) and g(x0).

Definition 11.2 (Homotopy equivalence): (i) A map f : X −→ Y is said to be a homotopy
equivalence if there exists a map g : Y −→ X such that f ◦ g and g ◦ f are respectively homotopic to
the identity maps idY and idX respectively. Under this circumstance we say that the spaces X and Y
are homotopically equivalent or have the same homotopy type.

(ii) A space that is homotopy equivalent to a point is said to be contractible. This is equivalent to
the statement that the identity map on X is homotopic to a constant map.

The student may check that if X and Y are homotopy equivalent and Y and Z are homotopically
equivalent then X and Z are homotopy equivalent.

Theorem 11.6: If f : X −→ Y is a homotopy equivalence then the groups π1(X, x0) and π1(Y, f(x0))
are isomorphic.
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Proof: There exists g : Y −→ X such that f ◦ g and g ◦ f are respectively homotopic to idY and
idX . By theorem 11.5 f∗ ◦ g∗ differs from the identity map on π1(Y, (f ◦ g)(y0)) by a composition with
the isomorphism h[σ] where σ is a path joining f(g(y0)) and y0. In particular f∗ ◦ g∗ is bijective and
so f∗ is surjective and g∗ is injective. Likewise, working with g ◦ f one concludes that g∗ is surjective
and f∗ is injective. Hence f∗ is an isomorphism between π1(X, x0) and π1(Y, f(x0)).

Deformation retract: A subspace A of X is said to be a deformation retract if there exists a
continuous map r : X −→ A such that r ◦ j = idA and j ◦ r ∼ idX where j denotes the inclusion of A
into X. In particular, X and A have the same homotopy type.

Theorem 11.7: Suppose that A is a deformation retract of X via a map r : X −→ A. Then for
x0 ∈ A, the maps r∗ : π1(X, x0) −→ π1(A, x0) and i∗ : π1(A, x0) −→ π1(X, x0) are isomorphisms.

Proof: Let r : X −→ A be a retraction such that j ◦ r ∼ idX . By (the proof of) theorem 11.6,
r∗ is injective. But the composition r ◦ j = idA shows that r∗ is surjective. Hence r∗ establishes an
isomorphism between π1(X, x0) and π1(A, x0).

Example 11.1: The sphere Sn−1 is a deformation retract of Rn−{0}. A retraction r : Rn−{0} −→
Sn−1 is given by the formula r(x) = x/‖x‖. The homotopy between j ◦ r and the identity map on
Rn − {0} is provided by the convex combination

F (x, t) = tx + (1 − t)
x

‖x‖ (11.6)

The student must however check that F (x, t) omits the zero vector. From this we get the following
important result.

Theorem 11.8: (i) The fundamental group of the punctured plane is the additive group Z and the
homotopy class of the loop

t 7→ exp(2πit), 0 ≤ t ≤ 1 (11.7)

provides a generator for the group.
(ii) The fundamental group of Rn − {0} is the trivial group.

Example 11.2: Let X be the union of the sphere S2 and one of its diameters. Then X is homotopy
equivalent to the space S2 ∨ S1. While it is easy to construct the map f : X −→ S2 ∨ S1, the map g
in the opposite direction is not easy to write down. Exercise 6 shows how to get around the difficulty.

Example 11.3: Let L be the line {(0, 0, x3)/x3 ∈ R} in R3 and C be the circle

(x1 − 1)2 + x2
2 = 1/4, x3 = 0.

We show that the torus is a deformation retract of the space X = R3 − (L ∪ C). The idea is simple
but some details ought to be examined. Let us begin with the punctured half plane

H ′
0 = {(x1, 0, x3)/x1 > 0} − {(1, 0, 0)}
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which clearly deformation retracts to the circle C0 given by

C0 : (x1 − 1)2 + x2
3 = 1/4, x2 = 0.

The homotopy F : H ′
0 × [0, 1] −→ H ′

0 is simply given by the convex combination:

F (x, t) = (1 − t)x + t
(
e1 +

x − e1

‖x − e1‖
)
, e1 = (1, 0, 0).

The idea is to rotate the picture about the x3-axis. It is expedient to use spherical polar coordinates
given by

x1 = ρ cos θ sin φ, x2 = ρ sin θ sinφ, x3 = ρ cosφ, 0 < φ < π, θ ∈ R.

Let H ′
θ be the half plane bounded by the x3-axis making angle θ with H ′

0 and Rθ denote the rotation
about the x3-axis mapping H ′

θ onto H ′
0 namely,

Rθ(ρ cos θ sin φ, ρ sin θ sin φ, ρ cosφ) = (ρ sinφ, 0, ρ cosφ)

The homotopy we are looking for is then the map G : X × [0, 1] −→ X given by

G(x, t) = R−1
θ ◦ F (Rθ(x), t). (11.8)

It is easy to see using the properties of rotations, that

(i) G is well defined, that is the image of G avoids the circle C

(ii) Satisfies the requisite boundary conditions at t = 0 and t = 1.

However, the continuity of G is not automatic since the θ appearing in the definition of G depends also
on x and we know that θ cannot be defined as a continuous function of x on X. One can either write
a formula (which is easy) and see that θ occurs in (11.8) only as cos θ and sin θ which are continuous
functions on X or better still use the property of quotients. We leave the amusing details to the reader.

Corollary 11.9: The fundamental group of the complement of L ∪ C in R3 is Z × Z.

Exercises:

1. Check that the map φ constructed in the proof of theorem 11.3 is continuous and is indeed a
homotopy. Work out the proof of theorem 11.5.

2. Show that the boundary ∂M of the Möbius band M is not a deformation retract of M by taking
a base point x0 on the boundary and computing explicitly the group homomorphism

i∗ : π1(∂M, x0) −→ π1(M,x0).

3. Show that the boundary of the Möbius band is not even a retract of the Möbius band.

4. Fill in the details on the continuity of the map G in the example preceding corollary 11.9.

5. Show that the space R3 − {(x, y, z)/x2 + y2 = 1, z = 0} deformation retracts to a sphere with a
diameter attached to it.

6. Let X be the union of S2 and one of its diameters D, Y = S2 ∨ S1 and Z be the union of S2

with a punctured half disc contained in a half with edge along D. Show that X and Y are both
deformation retracts of Z and so they have the same homotopy type.
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