
Module 7 : Relative homology,exicism and the Jordan Brouwer separation theorem
Lecture 38 : Relative homology

 

 

 

The homology groups  we have hitherto been studying are called the absolute homology

groups. The relative homology groups  that we define here provide us a tool for

understanding the geometry of a space  in relation with its subspace . This is facilitated by a
long exact sequence in homology for the pair . For instance if  is a retract of , this

sequence breaks off into a bunch of short exact sequences each of which splits. The groups 
 are related to the absolute homology groups  for sufficiently well

behaved pairs  but we shall not get into this discussion here (see [16], p. 50).

Recall that if  is a subspace of  and  is a non-trivial cycle in  then it may be a

boundary when viewed as a cycle in . In other words, the inclusion map  need
not induce an injective map in homology. The relative homology group measures  the

deviation from injectivity of the map .

Definition 38.1:

(i) Given a topological space  and a subspace , may be regarded as a subgroup of 

 and the group  of relative chains is the quotient group .

(ii) For each . we define the boundary maps

as

 

It is readily verified that  leading to the quotient complex 

consisting of the sequence of groups  and the boundary maps (37.1). 

(iii) The homology groups of the quotient complex  are called the relative

homology groups and are denoted by the symbol .

For a slightly more explicit description of these groups we introduce the group  of

relative cycles and the group  of relative boundaries. The group



 

 is the subgroup of  consisting of chains  such that the boundary

 is a chain in .

That is, 

In keeping with the convention that  (see definition (29.5))

. . We see that  if and only if  is in the kernel of  .

Likewise the group  of relative boundaries is defined to be the subgroup of 

consisting of chains  such that

mod 

for some  . In other words there exists  and

 

Obviously  if and only if  belongs to the image of  whereby we conclude

 

 

Theorem 38.1:

We now consider the short exact sequence of complexes induced by the inclusion  and 

denoting the projection onto the quotient:

Equation (37.1) states that  is a chain map and exactness of this sequence is an easy exercise.

Theorem (29.6) now gives 

Theorem 38.2:
For a pair  of topological spaces there is a long exact sequence in homology:

We remark that the connecting homomorphism has a simple geometrical description in this case.
If we take a relative cycle namely an element  then  is an element of

 and is simply  viewed as a chain in . We summarize this observation

 



as a lemma:
   

 

Lemma 38.3:
For a pair  of spaces the connecting homomorphism

is given by 

Despite the notation,  in (37.4) is not a boundary in  since  is not a chain in 

 but a chain in . If  is a cycle in  then for sure, it is a cycle in  as well

but then it may be actually be a boundary , in other words  . This happens

precisely when  is in the image of  by exactness of (37.3). Figure below depicts a cycle in 

 (annulus) which is a boundary in  (the polygonal region)

Figure 28

The long exact sequence in the preceding theorem is natural in the following sense.

 

   
Theorem 38.4 
(Naturality): Given a map of pairs 

the followig diagram commutes 

(37.5)



 
Proof:

From theorem (29.6) or the specific description of  given above, (37.5) follows immediately.

Retraction:

We shall now define the notion of a split exact sequence and show that whenever  is a retract
of , the long exact sequence (37.3) breaks off into a bunch of short exact sequences each of
which splits.

 

   

 

Definition 38.2:

A short exact sequence of abelian groups/chain complexes

splits on the right if there exists a group homomorphism (respectively a chain map)
 such that    idk. The short exact sequence (37.6) splits on the left if

there exists group homomorphism (respectively a chain map)  such that  

 id.

Lemma 38.5:

Given a short exact sequence (37.6), the following are equivalent:

(i) The sequence splits on the left.
(ii) The sequence splits on the right.
(iii)  is isomorphic to im. 

 

   
Proof:

We begin by proving (ii) implies (iii). Note that  is injective and so im  is isomorphic to .

Let  be arbitrary and observe that

lies in the kernel of  and hence in the image of . Thus, 

im   im im

We leave it to the reader to check that the sum im im   is direct. It is easy to show that



 (iii) implies (i). We now show that (i) implies (ii). Let  and choose any  such that

. Define . To check that this is well defined, suppose that 

for a pair of elements  . There exists  such that . Applying

 to this equation we get 

from which we see that It is trivial to see that the map 

 that we have defined is a group homomorphism and satisfies the requirementg g o =id    

 

   

 

Theorem 38.6:

A retraction  gives for each  a short exact sequence

.

Each of these short exact sequences splits. Thus

Proof: 
We show that  for every  which would give us the sequences (37.7). For 

 we have the chains and .Now,

\Hence  is the boundary of the chain and so represents the zero element in . From

lemma (37.3) we conclude that  is the zero map. The short exact sequence (37.7) splits on the

left since  is the identity map on .

 

   
Example 38.1

Let us calculate the relative homology groups  where  is the Möbius band and 

is its boundary. Since the central circle is a deformation retract of , we see that



 

 when  and we infer from (37.3) that  when .

We now recall that the map  induced by inclusion is the group

homomorphism of  into itself given by . Since the fundamental groups are abelian the
map  and so the kernel of  is trivial. The portion of the exact sequence (37.3)

with  gives  . Finally since  is an

isomorphism (why?), we conclude from (37.3) (with ) that the map
 is surjective with kernel  . Hence .

 

   

 

Exercises

1. Verify that the diagram (37.5) commutes.
2. Determine  when  , and when  is a singleton and . What

happens if ?
3. Compute  and compare it with the absolute homology

 .

4. Compute  and compare it with .

5. In example (35.1), prove that  is homeomorphic to . Compare the groups 

 with the groups . Hint: To set up the homeomorphism note that

 maps each homeomorphically onto the chord

at height .
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