Lecture XIX - Deck Transformations

Given a covering projection p : X — X , the deck transformations are, roughly speaking, the
symmetries of the covering space. Thus it should not come as a surprise that they play a crucial part
in the theory of covering spaces. In this lecture all spaces are assumed to be connected and locally
path connected.

Definition 19.1 (Deck transformations): Let p : X — X bea covering projection. A deck
transformation is a homeomorphism ¢ : X — X such that p o ¢ = p, that is to say ¢ is a lift of p.

Examples 19.1: (i) For the covering space ex : R — S given by ex(t) = exp(2mit) the deck
transformations are the maps

T,.:R— R, T,(x)=x+n, neZ

(ii) For the two sheeted covering p : S™ — RP" the deck transformations are the identity map
and the antipodal map.
The following theorem summarizes the most basic properties of the group of deck transformations.

Theorem 19.1: Let p: X — Xbea covering projection and ¢ be a deck transformation. Then
(i) ¢ is uniquely determined by its value at one point of X
(i) ¢(Zo) € p~'(xo) whenever Ty € .
(111) If ¢(§31) = (Z’Q, where 531,1%2 S p_l(ZE()) then

pemi(X, 71) = pumi (X, 22) (19.1)

(iv) Conversely if (1) holds then there exists a unique deck transformation ¢ such that ¢(z;) = 72

Proof: Statement (i) follows from the uniqueness of lifts. Statement (ii) follows immediately from
the definition. To prove (iii) apply the lifting criterion (necessity) to both ¢ and ¢~'. To prove (iv)
apply lifting criterion (sufficiency) to get continuous functions ¢ : X — X and ¢ : X — X such
that

pog=p, ¢(T1) =T2; pot=p, Y(T2) = 71.
Then ¢ o1 and v o ¢ are both lifts of the map p : X — X such that

po)(Ta) = T2, Vod(T1) =17y

The identity map on X is also a lift of p with these initial conditions. By uniqueness, we see that
both ¢ o1 and 1) o » must be the identity map on X proving that ¢ and ¢ are homeomorphisms. The
uniqueness clause follows from the uniqueness of lifts. O
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Remark: If ¢: X — X is a continuous map such that po ¢ = p, then prove that ¢ is a homeomor-
phism in the following cases: B B

(i) m1(X) is a finite group (ii) p.m (X, Zo) has finite index in m (X, zo) (iii) X is a regular cover of
X. Is this true in general? The point is that if H is a subgroup of G and gHg~! C H then it follows
gHg ' = H in case H is finite or has finite index or is normal.

Definition 19.2: The set of deck transformations of a covering projection p : X — X forms a
group under composition of maps denoted by Deck(X, X).

Action of Deck(X,X) on the fibers p~!(z9): We fix a base point 2, € X. Since each deck
transformation is a bijection, it is a permutation of the fiber p~!(zy) and so acts on p~!(zg) as a group
of permutations:

(¢, Zo) — &(Z0)
We study this action closely and relate it to the action of 7 (X, zo) on the fiber p~*(zy). We first look
at the case of regular coverings

Theorem 19.2: The covering p : X — Xisa regular covering if and only if the action of
Deck(X, X) is transitive on p~*(zg).

Proof: Let #; and 2, be two arbitrary points of p~(x0). The action of Deck(X, X) is transitive on
p~Y(zp) if and only if there is a ¢ €Deck(X, X) carrying #; to Iy, which is the case if and only if (19.1)
holds. This in turn implies that the conjugacy class

{p*m()?, To) 1 T € p_l(xo)}

reduces to a singleton and conversely, in other words, if and only if the covering is regular. 0
We now relate the (perhaps intransitive) action of Deck(X, X) on p~!(zy) with the transitive action
of m (X, z9) on p~(xg). Pick ¢ € Deck(X, X) and ¢(Z;) = Zo. Then on the one hand (19.1) must

hold while since p#m( (X, Z1) = stab Z; (for the action of 71 (X, xg)), we have on the other hand
stab I = stab @y = g(stab ;)¢ ", (19.2)
for some g € 71 (X, zp). In fact (19.2) states that g belongs to the normalizer
N(stab #1) = N(p*(m1 (X, 7)) C m (X, z0).

This suggests that we must relate ¢ to the element g € N (px(m (X, 7). However since there may be
several such elements g it is expedient to define the map in the opposite direction.

Let g € N(p*(m (X, 21)) C m1(X, z0) and &1 - g = To. Then (19.1) holds since ¢ is in the normalizer
of stab ;. There is a unique ¢, € Deck()?, X) such that ¢,(Z1) = Ty = &1 - g. The map

¢ N(px(m(X,7)) — Deck(X, X), g ¢, (19.3)

is a homomorphism. To see that it is surjective, let ¢ € Deck(X, X). There is a g € m (X, x) such
that

T1-g=¢(71)
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then stab Z; and stab ¢(Z;) are conjugate by g but they are also equal by (iii) of Theorem (19.1),
whereby we conclude g is in the normalizer N (p*(my (X, #;)) and ¢ = ¢g4. To determine the kernel of
1, observe that ¢, = id if and only if

¢g(j1) == i'l g

that is, if and only if g € stab Z;. But stab #; = p*(m(X,Z1)). Summarizing these observations,

Theorem 19.3: We the group isomorphism

Deck(X, X) = N(px(m1(X, %)) /p*(m1 (X, &1)). (19.4)

Corollary 19.4: If p: X—Xisa regular covering then

Deck(X, X) 2 m1(X, zo) /p*(m1 (X, 1)) (19.5)

Corollary 19.5: If X is a simply connected covering of X then

Deck(X, X) 2 my (X, z0). (19.6)
Corollary 19.6: m(S') © Z and 7 (RP") & Z,

Existence of a simply connected covering space: Despite being an important theme, we shall
not discuss this in any detail in this elementary course but make a few remarks about it. Most of the
spaces that we shall encounter are reasonably well-behaved and indeed many of them such SO(n,R), S3
and the projective spaces are smooth manifolds. Given the existence of a simply connected covering
- called a universal covering*, one can develop a Galois correspondence for covering spaces which
asserts the existence of a unique (upto isomorphism) covering corresponding to each conjugacy class
of subgroups of m (X, o).

Definition 19.3: Let us consider a fixed connected topological space X with a specified base point
zo € X. A homomorphism between two coverings p : (Y,yo) — (X, 20) and q : (Z,20) — (X, x)) is
a surjective continuous map r : (Y, y9) — (Z, z0) such that g o r = p or diagrammatically,

(}/7 yO) - (Z7 ZO)

A

(X, 330)

The definition enables us to form a category of coverings of a given space X with a specified base point
xg € X. To obtain a satisfactory theory one must impose some additional assumption on X such as
local connectedness. In other words r is a lift of p with respect to the covering map ¢. The universal
covering is then defined in terms of a universal property.

4Actually the notion of a universal covering is more general than the notion of a simply connected coverings but the
two notions coincide for all reasonable spaces and certainly for all spaces that we shall deal with.
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Definition 19.4: The universal covering is a covering e : (E,ey) — (X, xo) such that for every
covering p : (Y,yo) — (X, o) there is a unique homomorphism ¢ : (E,eq) — (Y, 1), that is a
continuous surjection v such that po = e.

The universal covering if it exists is unique and one can establish the existence of a universal
covering for a reasonable nice class of topological spaces X.

Exercises

1.

Suppose that G and G are topological groups and p : G — G is a covering projection that is
also a group homomorphism then ker p = Deck(G, G).

Determine the deck transformations for the covering

sin:C—{g—i-k‘?T:kEZ}—NC—{:l:l}

Determine the deck transformations for the covering
p:C—{+£1,+£2} — C— {2}

given by p(z) = 2® — 32z. Show that this covering is not regular. Hint: Use Riemann’s removable
singularities theorem to show that a deck transformation must be analytic on the whole plane.

If p is a prime, what can you say about the group of deck transformations of a p-sheeted covering
space?

Show using the universal property that the universal covering, if it exists is unique upto isomor-
phism of covering projections.
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