
Lecture XVIII - The lifting criterion

We have already discussed the lifting problem and examined its significance in the light of complex
analysis. We have seen in connection with the exponential map/squaring map that the existence of a
lift of the inclusion map of a domain Ω into C−{0} is equivalent to the existence of a continuous branch
of the logarithm/square-root function on Ω. Thus it is desirable to have a necessary and sufficient
condition for the existence of lifts. We prove one such theorem in this lecture which provides an elegant
necessary and sufficient condition.

Theorem 18.1: Let X and Y be connected locally path connected spaces, p : (X̃, x̃0) −→ (X, x0) is
a covering projection and f : (Y, y0) −→ (X, x0) is a continuous function. A lift f̃ : Y −→ X̃ satisfying
f̃(y0) = x̃0 exists if and only if

f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)). (18.1)

In particular, if Y is simply connected, that is if π1(Y, y0) is trivial, then (18.1) holds and the lift
f̃ : Y −→ X̃ satisfying f̃(y0) = x̃0 exists.

Proof: To prove that the condition (18.1) is necessary, let us assume that a the lift exists. Then
p ◦ f̃ = f and p∗ ◦ f̃∗ = f∗ whereby,

f∗(π1(Y, y0)) = p∗

(
f̃∗(π1(Y, y0))

)
⊂ p∗(π1(X̃, x̃0)).

We now turn to the proof of sufficiency of (18.1). To construct the lift f̃ let y ∈ Y and γ be a path in
Y joining y0 and y. Take the lift of f ◦ γ : [0, 1] −→ X starting at x̃0 and we declare

f̃(y) = f̃ ◦ γ(1).

To show that the function f̃ is well-defined, take two paths γ1 and γ2 joining y0 and y in Y and form
the closed loop γ1 ∗ γ−1

2 at y0. Then f ◦ (γ1 ∗ γ−1
2 ) is a loop in X based at x0 and so

[f ◦ (γ1 ∗ γ−1
2 )] ∈ f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)).

Choose a loop σ in X̃ based at x̃0 such that p∗([σ]) = [f ◦ (γ1 ∗ γ−1
2 )]. In other words, the loop

(f ◦γ1)∗(f ◦γ−1
2 ) is homotopic to p◦σ. By the covering homotopy lemma, The lift of (f ◦γ1)∗(f ◦γ−1

2 )
starting at x̃0 which will be denoted by τ , is homotopic to σ. As a result, τ is also closed loop at x̃0.

Let f̃ ◦ γ1 be the lift of f ◦ γ1 starting at x̃0 and f̃ ◦ γ−1
2 be the lift of f ◦ γ−1

2 starting at the terminal

point f̃ ◦ γ1(1). Observe that

τ(t) =

{
f̃ ◦ γ1(2t) 0 ≤ t ≤ 1/2

f̃ ◦ γ−1
2 (2t− 1) 1/2 ≤ t ≤ 1
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We now look at the projection of the two paths τ(s/2) and τ
(

2−s
2

)
(0 ≤ s ≤ 1):

p ◦ τ(s/2) = f ◦ γ1(s), 0 ≤ s ≤ 1

and

p ◦ τ
(2 − s

2

)
= f ◦ γ2(s), 0 ≤ s ≤ 1.

The paths τ(s/2) and τ
(

2−s
2

)
(0 ≤ s ≤ 1) are thus lifts of f ◦ γ1 and f ◦ γ2, both starting at x̃0 since

τ is a closed loop. Hence

f̃ ◦ γ1(1) = τ(1/2) = f̃ ◦ γ2(1)

proving that f̃(y) is well-defined.

Continuity of the lift f̃ : Let y ∈ Y be arbitrary, and let f(y) = x and f̃(y) = x̃. Choose an evenly
covered neighborhood U of x and Ũ be the sheet containing x̃ lying above U . By continuity of f we
obtain a neighborhood V of y in Y such that f(V ) ⊂ U and hence f̃(V ) ⊂ p−1(U) (since p ◦ f̃ = f).

Now if we assume that f̃ maps the neighborhood V into Ũ , then the following would be valid:

f̃ =
(
p
∣∣∣
Ũ

)−1

◦ f, (18.2)

which would prove the continuity of f̃ . To prove that f̃(V ) ⊂ Ũ , we shall assume that the neighbor-
hoods U , V and Ũ are path connected and invoke the construction of f̃ . Choose a path γ in Y joining
y0 and y and for each z ∈ V pick a path η joining y and z and then we get the path γ ∗ η joining y0

and z. Lift f ◦ γ and f ◦ η to paths in X̃ starting at x̃0 and f̃ ◦ γ(1) respectively. Since f ◦ η lies in
U , its lift must lie entirely in Ũ and hence

f̃(z) = ˜f ◦ (γ ∗ η)(1) = f̃ ◦ η(1) ∈ Ũ .

Theorem 18.2 (Uniqueness of simply connected covers): Suppose that p1 : (X̃1, x̃1) −→
(X, x0) and p2 : (X̃2, x̃2) −→ (X, x0) are covering projections such that both X̃1 and X̃2 are simply
connected and locally path connected. Then there is a homeomorphism ψ : X̃1 −→ X̃2 such that

p2 ◦ ψ = p1. INSERTDIAGRAM

Proof: Since X̃1 is simply connected the map p1 has a lift φ1 : X̃1 −→ X̃2 with respect to the
covering projection p2 : X̃2 −→ X, such that φ1(x̃1) = x̃2. Likewise there exists a lift φ2 : X̃2 −→ X̃1

of the map p2 with respect to the covering p1 : X̃1 −→ X, such that φ2(x̃2) = x̃1. From p1 ◦ φ2 = p2

and p2 ◦ φ1 = p1 follows p1 ◦ (φ2 ◦ φ1) = p1 and (φ2 ◦ φ1)(x̃1) = x̃1. Thus, the identity map on X̃1 and
φ2 ◦ φ1 : X̃1 −→ X̃1 are both lifts of p1 : X̃1 −→ X with respect to itself. By uniqueness of lifts we
conclude that φ2 ◦ φ1 is the identity map on X̃1. Likewise φ1 ◦ φ2 is the identity map on X̃2. �

Example 18.1 (Some applications to complex analysis): (i) Let Ω be a simply connected open
subset of C − {0} and j : Ω −→ C − {0} be the inclusion and exp : C −→ C − {0} be the exponential
map. Then p is a covering projection with respect to which j has a lift j̃ : Ω −→ C which means

exp(j̃(z)) = z, z ∈ Ω (18.3)
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Thus there is a continuous branch of the logarithm on any simply connected open subset of C − {0}.
In the exercises the student is asked to show that any continuous lift is holomorphic.

(ii) Consider the map S : C − {0} −→ C − {0} given by S(z) = z2. Let Ω = C − [0, 1/2] and
f : Ω −→ C − {0} be given by

f(z) = z(2z − 1). (16.4)

Let us determine the induced map f∗ : π1(Ω, 1) −→ π1(C − {0}, 1). The group π1(Ω, 1) is the infinite
cyclic group generated by the homotopy class of the loop γ(t) = exp(2πit). Since C − {0} is a
topological group under multiplication of complex numbers, we may apply corollary (12.2) to get

[f ◦ γ(t)] = [γ(t)] + [2γ(t) − 1]. (18.5)

The additive notation is used for the infinite cyclic group. The last equation may be rewritten as

[f ◦ γ(t)] = [γ(t)] +
[
γ(t)

(
2 − 1

γ(t)

)]
= 2[γ(t)] +

[
2 − 1

γ(t)

]
= 2, (18.6)

since |γ(t)| = 1 and the loop
(
2 − 1

γ(t)

)
can be contracted to the constant loop in C − {0}. Hence

f∗(π1(C − [0, 1/2], 1) = 2Z = S∗(C − {0}, 1). (18.7)

The lifting criterion holds and f has a unique lift f̃ such that f̃(1) = 1. This lift is the continuous
branch of

√
z(2z − 1) defined on Ω. In exercise 3, the student is asked to show that the lift f̃ is

holomorphic. Note that the space Ω is not simply connected.
The next example is Picard’s theorem which is a corollary of the following highly non-trivial result.

Theorem 16.3: The open unit disc is a covering space for the plane with two points removed.

Theorem 16.4 (The Little Picard Theorem): An entire function that misses two or more points
is a constant.

Proof: Suppose an entire function f misses two points p and q. The map f : C −→ C − {p, q} lifts
to a map f̃ : C −→ {z ∈ C/|z| < 1}. As before the lift is holomorphic and hence is an entire function
taking its values in the unit disc. By Liouville’s theorem, f̃ is constant and so must f .

Exercises:

1. For the map S in example (18.3) show that S∗ is the map Z −→ Z given by x 7→ 2x.

2. Suppose G is a path connected topological group with unit element e and p : G̃ −→ G is a
covering map. For any choice of ẽ ∈ p−1(e) show that there is a group operation on G̃ with unit
element ẽ that makes G̃ into a topological group and p is a continuous group homomorphism.

3. Show that if Ω is an open subset of C − {0} on which a continuous branch of the logarithm
exists then this branch is automatically holomorphic. Likewise show that the continuous branch
of

√
z(2z − 1) on C − [0, 1/2] obtained in the lecture is holomorphic.

4. Use the fact that Sn−1 is not a retract of Sn to prove that RP n−1 is not a retract of RP n.

5. Show that any continuous map Sn −→ S1 is homotopic to the constant map if n ≥ 2. What
about maps from the projective spaces RP n −→ S1 (n ≥ 2)?
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