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Objectives

1
2

)
)
3) Transitivity of algebraic extensions.
4)

(1) Degree of a field extension and its multiplicative nature.
(2) A field extension of finite degree is algebraic.

(

(4) Compositum of two fields.
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Definition 3.1. Let F C K be a field extension. The dimension of the
F-vector space K, denoted by [K : F| is called the degree of the field

extension K/F.

For an algebraic element « € K, dimp F(a) = deg irr(a, F). If [K : F] < o0,

then F' C K is called a finite extension.

Proposition 3.2. A finite extension K/F is an algebraic extension.

Proof. Let [K : F] =nand § € K. Then 1,,..., 3" are linearly dependent
over F. Hence there exist ag, a1, ..., a,, not all zero in F' such that ag+a18+
-4 apB"=0. Let f(z) =ap+aiz+---+anx™. Then [ is a root of f(x).

Hence f is algebraic over F.

O
Corollary 3.3. Every irreducible polynomial over R has degree < 2.

Proof. Let f(x) € R[z] be irreducible and o« € C a root of f(z). Then
Rla] C C. If € R,deg f(z) = 1. If o ¢ R, then [R[a] : R] > 2. Thus
C =R|a]. Since [C: R] = 2,deg f(z) = 2.
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Example 3.4. (1) Since irr (i,R) = 22 +1,[C: R] = 2 as C ~ R(3).
(2) Since irr (¢, Q) =aP L+ 2P 2+ 4241, [Q(G) : Q =p— L.

(3) Algebraic extension of a field may not be finite. Consider the chain of
fields Q C Q(2'/2) C --- C Q(2'/2") C --. . Their union K contains the
algebraic numbers «,, = 21/2" for all n and a, is a root of the irreducible
polynomial f,(z) = 22" —2. Hence [K : Q] > 2" for all n. Thus [K : Q] = ooc.

(4) Quadratic Extensions: If [K : F] = 2 then K is called a quadratic
extension of F. Let o € K\ F then {1, a} is a basis of K over F. Hence a? =
aa+b for some a,b € F. Therefore f(z) = irr(a, F) = 22 —az —b. The roots

of f(x) are (a £ Va? + 4ab)/2 if char F # 2. Therefore K = F(va? + 4b).

Definition 3.5. A chain of fields F1 C F» C --- C F,, is called a tower of
fields if F; is a subfield of Fiy1, for alli=1,2,...,n— 1.

Proposition 3.6. If K C F C L is a tower of fields then
[L:F][F:K|=[L:K].

Proof. If either F/K or L/F are infinite dimensional, then L/K is also
infinite dimensional. Thus we may assume that F//K and L/F are finite.
Suppose that [F': K] = m and [L : F] = n. Let z1,x9,...,z, be a basis of
L over F and y1,y2, ..., Ym be a basis of F over K.

We claim that the set

B={zy;|i=1,2,...n, and j =1,2,...,m}

is a vector space basis of L over K. Let z € L. Thus z = fiz1+ - + faZn,
for some fi1,..., f, € F. We write f; = 7", k;jy;. Therefore

n n m
z = Zﬂﬂlfl = szlijyj-
=1

I=1 j=1
Thus B generates L as a K- vector space. Suppose E;n:l Yoy aixiy; = 0.
Then

n m
Z aijyj €Tr; — 0.
i=1 | j=1
Since x1 ...,z, are F-linearly independent. Therefore 2?21 a;;y; = 0 for

each . By linear independence of 1, ..., ¥y, to see that all the a;; =0. O
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Corollary 3.7. Let F C K be a finite field extension. Then deg irr(a, F')
divides [K : F|, for all o € K.

Proof. Since F' C F(«a) C K, we have
[K: F]=[K: F(a)][F(a): F].
Thus degirr(c, F') divides [K : F. O

Proposition 3.8. Let K/F be a field extension. If ay,az,...,a, € K are

algebraic over F then F(ayi,asz,...,a,) is a finite algebraic extension of F.

Proof. Since a; is algebraic over F| it is algebraic over F'(ai,az,...,a;—1).
Thus [F(ai,ag,...,a;) : F(ai,az,...,a;—1)] is finite for all i. Therefore the

field F(ai,aq,...,a,) is a finite extension of F. Hence it is algebraic. O

Corollary 3.9. Let E/F and K/E be algebraic extensions. Then K/F is

an algebraic extension.

Proof. Let a € K and let a be aroot of f(x) = ag+aiz+- - -+a, 12" 1 +a" €
E[z]. Consider the field L = F(ag,a1,...,an—1). Then a is algebraic over
L. Hence L(a) is a finite extension of L. Since ag, a1, ...,a,—1 are algebraic
over F, L is a finite extension of F. Hence L(a) is a finite extension of F.

Hence a is algebraic over F. O

Corollary 3.10. Let K/F be a field extension. Then the set of elements of
K which are algebraic over F is a subfield of K.

Proof. Let a,b € K be algebraic over F. Then F'(a,b) is a finite extension of
F. Hence all elements of F'(a,b) are algebraic over F. In particular, a +b, ab
and a/b if b # 0, are all algebraic over F. O

Compositum of fields: Let L/k be a field extensions and E/k and F/k be
intermediate field extensions. Then the smallest field containing E and F,
to be denoted by EF) is called the compositum of F' and F. Suppose E =

k(ai,as9,...,a,) and F is an extension of k. Then EF = F(ay,as,...,a,).

Example 3.11. Let m and n be co prime positive integers. Consider the
subfields £ = Q((,) and F' = Q((,) of C. Then the compositum of E and



13

F is Q((mn)- Indeed, as m and n are coprime, there exist p,q € N such that
mp + nq = 1. Therefore

Cmn = exp(2mi/mn) = exp(2pmi/n) exp(2qmi/m) = ()P (Cm)?.

We can estimate the degree of the compositum of two finite field exten-

sions in terms of their degrees.

Proposition 3.12. Let L/k be a field extension and E/k,F/k be interme-
diate finite extensions fields. Then

[EF : k] < [E:Kk][F: K]
If [E : k] and [F : k] are coprime then equality holds.

Proof. Let x1,29,..., 2y, and y1,s,...,yn be bases of the k-vector spaces
E and F respectively. Then it is easy to see that E = k(z1,22,...,Zm)
and F' = k(y1,y2,...Yn). Therefore EF = k(x1,x2,...,Tm;Y1,Y2,---Yn)-

We have the following diagram of field extensions:

L

N

Since EF = E(y1,92,...,Yn) we have [EF : F| < n. Since the degree is

multiplicative in a tower of finite extensions, we have
[EF : k] = [EF : E|[E : k| < mn.

Since m and n both divide [EF : k], and (m,n) = 1, we get mn | [EF : k.
Hence [EF : k] = mn. O



