
Lecture 18 : Cyclotomic Extensions II

Objectives

(1) Discriminant of Φp(x).

(2) Subfields of Q(ζp).

(3) Kronecker-Weber Theorem for quadratic extensions of Q.
(4) Algorithm for construction of primitive elements of subfields of Q(ζp).

(5) Subfields of Q(ζ7), Q(ζ13) and Q(ζ17).
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19. Subfields of Q(ζp)

A celebrated theorem of Kronecker and Weber states that a Galois extension

E of Q with abelian Galois group is contained in a cyclotomic extension (an

extension of Q obtained by adjoining roots of unity.) We will prove this

theorem for quadratic extensions of Q. For this purpose, we show that the

square root of the discriminant of Φp(x) is a primitive element of the unique

intermediate subfield of K of Q(ζp) so that [K : Q] = 2.

Lemma 19.1. Let p be an odd prime. Then disc (Φp(x)) = (−1)(
p
2)pp−2.

Proof. Let ζp be a primitive pth root of unity. Since xp − 1 = Φp(x)(x− 1),

and pxp−1 = Φp(x) + (x− 1)Φp(x), we have for each i = 1, 2, . . . , p− 1,

p(ζip)
p−1 = (ζip − 1)Φp(ζ

i
p).

Therefore
p−1∏
i=1

Φp(ζ
i
p) =

p−1∏
i=1

p(ζip)
p−1/(ζip − 1)

=
pp−1∏p−1

i=1 (ζip − 1)
=

pp−1

(−1)p−1Φp(1)
= pp−2.

Using the formula for discriminant in terms of derivatives, we get

disc (Φp(x)) = (−1)(
p
2)pp−2
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�

Proposition 19.2. The field Q(ζp) contains a unique quadratic extension

of Q, namely

Q
(√

disc (Φp(x))
)

= Q
(√

(−1)(
p
2)p

)
which is real if p ≡ 1(mod 4) and complex if p ≡ 3(mod 4).

Proof. The Galois groupG of Q(ζp) over Q is cyclic of order p−1.Hence there

is a unique subgroup of G having index 2. Thus there is a unique subfield

of Q(ζp) which is a quadratic extension of Q. As
√

disc (Φp(x)) ∈ Q(ζp)\Q
it generates the unique quadratic subfield of Q(ζp). �

Corollary 19.3. Every quadratic extension of Q is contained in a cyclo-

tomic extension.

Proof. If p ≡ 3(mod 4), then Q(
√
−p) ⊆ Q(ζp) and if p ≡ 1(mod 4) then

Q(
√
p) ⊆ Q(ζp). A quadratic extension of Q is of the form Q(

√
d) where

d is a squarefree integer. Suppose d = ±p1p2 . . . pr where p1, p2, . . . , pr are

distinct primes. Then Q(
√
d) ⊆ Q(ζp1 , ζp2 , . . . , ζpr , i).

�

Proposition 19.4. Let L ⊂ Q(ζp) be a subfield with [Q(ζp) : L] = 2. Then

L = Q(ζp + ζ−1p ).

Proof. As ζp is a root of x2− (ζp+ ζ−1p )x+1 = 0,
[
Q(ζp) : Q(ζp + ζ−1p )

]
≤ 2.

Since L = Q(ζp + ζ−1p ) ⊆ R, we conclude that [Q(ζp) : L] = 2. �

Proposition 19.5. Let p be a prime number. Let ζ be a primitive pth

root of unity. Let H be a subgroup of G = G(Q(ζ)/Q) = U(p). Put βH =∑
σ∈H σ(ζ). Then

EH = Q(βH).

Proof. Let τ ∈ H. Since H is finite, H = {τσ | σ ∈ H}. Hence τ(βH) = βH

for all τ ∈ H. Hence Q(βH) ⊆ Q(ζ)H . Let τ /∈ H. We show that τ(βH) 6= βH .

The set

B = {1, ζ, ζ2, . . . , ζp−2}
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is a basis of the Q-vector space Q(ζ). If τ(βH) = βH then ζ = τσ(ζ) for

some σ ∈ H. Hence τσ = 1 and so τ−1 = σ. Therefore τ ∈ H which is

a contradiction. If Q(βH) 6= Q(ζ)H , then by FTGT, there is a subgroup

M > H such that Q(βH) = Q(ζ)M ( Q(ζ)H . Hence βH is fixed by an

element τ ∈M \H. This is a contradiction.

�

Example 19.6. Let p = 7 and ζ7 = w. Then
[
Q(w + w−1) : Q

]
= 3 Let us

find the irreducible polynomial of w + w−1 = w + w6. To do this find the

orbit of w+w6 under the action of the Galois group G = G(Q(w)/Q). G is

is generated by the automorphism σ(w) = w2. Hence The orbit of w + w6

under the action of G is {β1 = w+w6, β2 = w2 +w5, β3 = w4 +w3}. Hence

irr (w + w6,Q) =
3∏
i=1

(x− βi) = x3 + x2 − 2x− 1.

Example 19.7. Put ζ13 = ζ. We list all subfields of E = Q(ζ) by using

the procedure in the proposition above. Since Galois group G of the Galois

extension E/Q is cyclic of oder 12 it has proper subgroups of orders 2, 3, 4,

and 6. The automorphism σ(ζ) = ζ2 generates G. The action of powers of

σ on ζ is described in the table:

i 1 2 3 4 5 6 7 8 9 10 11

σi(ζ) = ζ2 ζ4 ζ8 ζ3 ζ6 ζ12 ζ11 ζ9 ζ5 ζ10 ζ7

The unique quadratic extension of Q in E is Q(
√

13). The unique subfield of

degree 6 is Q(ζ + ζ12). The subgroup H of oder 4 is generated by σ3. Hence

H = {σ3, σ6, σ9, id}. Hence a primitive element of the degree 3 extension of

Q in E is

βH = ζ + σ3(ζ) + σ6(ζ) + σ9(ζ) = ζ + ζ8 + ζ12 + ζ5.

The subgroup K of G of order 3 is generated by σ4. Hence a primitive

element of Q(ζ)K is

βK = ζ + σ4(ζ) + σ8(ζ) = ζ + ζ3 + ζ9.

Hence the poset of intermediate subfields of Q(ζ) is
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E = Q(ζ)

ooooooooooo

OOOOOOOOOOO

EK = Q(βK) Q(ζ + ζ−1)

Q(
√

13)

OOOOOOOOOOOOO
EH = Q(βH)

ooooooooooooo

Q

Example 19.8. Let E be the splitting field of x17 − 1 over Q generated by

a primitive seventeenth root z of 1. So irr(z,Q) = x16 + x15 + · · · + x + 1

and E = Q(z). Therefore [E : Q] = 16. Thus |G(E/Q)| = |U(17)| = 16.

The multiplicative group of units mod 17 can be generated by 3+(17). Thus

η : z → z3 is a generator of G(E/Q) = {η, η2, . . . , η16 = 1}. The subgroups

of G and their orders are:

G = G1 = 〈η〉 ⊃ G2 = 〈η2〉 ⊃ G3 = 〈η4〉 ⊃ G4 = 〈η8〉 ⊃ {id}

|G1| = 16, |G2| = 8, |G3| = 4, and |G4| = 2.

The chain of intermediate subfields is:

EG = Q ⊂ EG2 ⊂ EG3 ⊂ EG4 ⊂ E.

We determine the generators for these fixed fields. Note that

η(z) = z3, η2(z) = z3
2
, . . . , ηi(z) = z3

i
.

Let

x1 =

8∑
i=1

(η2)i(z), y1 =

4∑
i=1

(η4)i(z) and z1 =

2∑
i=1

(η8)i(z).

The fixed fields are

EG2 = Q(x1) ⊂ EG3 = Q(x1, y1) ⊂ EG4 = Q(x1, y1, z1).


