
Lecture 26 : Polynomials with Galois Group Sn.

Objectives

(1) Tate’s proof of Dedekind’s theorem for computing Galois group

(2) Construction of polynomials with Galois group Sn.
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reduction modulo p Theorem, Tate’s proof.

It is in general difficult to calculate the Galois groups of polynomials with ra-

tional coefficients. We have learnt various methods of computing the Galois

groups of polynomials of degree ≤ 4.

In this section we learn a theorem of Dedekind which provides useful infor-

mation about Gf .

First we observe that the splitting field E of a monic polynomial f(x) with

rational coefficients is also a splitting field of a monic polynomial with integer

coefficients. In fact, let

f(x) = xn + a1x
n−1 + · · ·+ an

where ai = bi/d ∈ Q for i = 1, 2, . . . , n. Then
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Therefore

dnf
(x
d

)
= xn + b1x

n−1 + b2dx
n−2 + · · ·+ dn−1bn.

It is clear that splitting fields over Q of f(x) and dnf(xd ) coincide. Thus we

may confine our attention to monic polynomials with integral coefficients.

Theorem 26.1 (Dedekind). Let f(x) ∈ Z[x] be a monic polynomial of

degree n. Put fp(x) = f(x) mod p. Let f(x) and fp(x) be separable. Suppose

fp(x) is a product of irreducible polynomials of degree n1, n2, . . . , nr in Fp[x],

where n1 + n2 + · · · + nr = n. Then Gf contains a permutation which is a

product of disjoint cycles of length n1, n2, . . . , nr.
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We will illustrate the theorem with a few examples before we embark on

Tate’s elegant proof.

Example 26.2. We have shown that the Galois group of f(x) = x5−x+ 1

is S5. The irreducible factorization of f2(x) is

f2(x) = x5 − x+ 1 = (x2 + x+ 1)(x3 + x2 + 1).

Thus σ = (ij)(lmn) ∈ Gf . Hence σ3 = (ij) ∈ Gf . Next we observe that

f3(x) is irreducible over F3. There is no root of f3(x) in F3. If there were a

quadratic irreducible factor of f3(x) over F3 then x9−x and f3(x) will have

a common factor. Hence x(x9−x) = (x5−x)(x5 +x) and x5−x+ 1 have a

common factor in F3[x], which is a contradiction. Hence Gf has a 5-cycle.

Hence Gf = S5.

Lemma 26.3. A transitive subgroup G of Sn containing a transposition and

an (n− 1)-cycle in Sn.

Proof. After a suitable reordering, let σ = (12 . . . n − 1) ∈ G and (ij) ∈ G.

Since G is transitive τ(ij)τ−1 = (kn) for some τ ∈ G. Suppose k ≤ n − 2

then σ(kn)σ−1 = (k + 1 n). If k = n − 1 then σ(n − 1 n)σ−1 = (1n). Thus

(1n), (2n), . . . , (n− 1 n) ∈ G, whence G = Sn. �

Theorem 26.4. There exist an irreducible monic polynomial with integer

coefficients whose Galois group is Sn.

Proof. We use the fact that for each prime p there exists an irreducible

polynomial of degree n, for all n, in Fp[x]. We have already constructed

such polynomials for n ≤ 4.

Let n ≥ 5. Let g(x) ∈ F2[x] be irreducible monic polynomial of degree n,

h(x) ∈ F3[x] be irreducible monic polynomial of deg n− 1 and k(x) ∈ Fp[x]

be irreducible monic quadratic, where p ≥ n − 1. By Chinese Remainder

Theorem there exists a, b ∈ Z such that

a ≡ 1 (mod 2) and b ≡ 0 (mod 2)

≡ 0 (mod 3) ≡ 1 (mod 3)

≡ 0 (mod p) ≡ 0 (mod p).

Now consider the polynomial

f(x) = ag(x) + bxh(x) + (1− a− b)x(x+ 1)...(x+ n− 3)k(x).
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Then f(x) is monic and irreducible in Z[x], since f2(x) ≡ g(x) which is

irreducible mod 2. Since

f3(x) = xh(x) and

fp(x) = x(x+ 1) · (x+ n− 3)k(x),

using Dedekind’s Theorem, we see that Gf has an (n−1)-cycle and a trans-

position. But Gf is transitive. Hence Gf = Sn. �

Example 26.5. We construct a monic irreducible sextic polynomial in Z[x]

with Galois group S6 using the above theorem. Notice that

x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1, x+ 1, x

are all the monic irreducible polynomials of degree ≤ 3 over F2. None of

these divide f(x) = x6 + x4 + x2 + x+ 1. Hence f(x) is irreducible in F2[x].

Note that x5 + x4 − x+ 1 is irreducible modulo 3. Put

g(x) = x(x5 + x4 − x+ 1)

h(x) = x(x− 1)(x+ 1)(x+ 2)(x2 + 2)

F (x) = 15f(x) + 10g(x)− 24h(x).

Since F2(x) = f(x) is irreducible in F2[x], F (x) is irreducible over Q. Hence

GF has a 6-cycle. Since F3(x) = g(x) there exists a 5-cycle in GF . As

F5(x) = h(x) we see that there exists a 2-cycle in GF . Therefore GF = S6.

Theorem 26.6 (Dedekind). Let f(x) ∈ Z[x] be a monic polynomial of de-

gree n. Let E be the splitting field of f(x) over Q and let R = {r1, r2, . . . , rn}
be the set of roots of f(x) in E. Let Ep be the splitting field of fp(x) ∈ Fp(x)

where p is a prime such that disc (fp(x)) 6= 0. Let Rp = {s1, s2, . . . , sn} be

the set of roots of fp(x) in Ep Let D = Z[r1, r2, . . . , rn]. Then

(a) There exists a ring homomorphism ψ : D → Ep.

(b) Any ring homomorphism from D → Ep maps R onto Rp bijectively.

(c) The Galois group G(E/Q) acts transitively on Hom (D,Ep), i.e. if

ψ1, ψ2 : D → EP are ring homomorphisms, then there exists σ ∈ G(E/Q)

such that ψ2 = ψ1 ◦ σ.
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Proof. (John Tate) Since deg f(x) = n, we have

Z ⊂ D =
∑

0≤e1,...,en≤n−1

Zre11 r
e2
2 . . . renn .

It is easy to show that pD is a proper ideal of D. Let m ⊇ pD be a maximal

ideal of D. The field D/m is an extension of Fp generated by ri +m, for i =

1, 2, . . . , n over Fp. Hence D/m is a finite Fp- extension. Let v : D → D/m

be the natural map. Then

fp(x) = v(f(x)) =
n∏
i=1

(x− si).

Hence D/m is a splitting field of fp(x), whence D/m ' Ep. Thus we have

maps

D
v−→ D/m

φ−→ Ep.

Hence φ ◦ v : D → Ep is a ring homomorphism.

Next we show that any ring homomorphism ψ : D → Ep maps R to Rp

bijectively. Since ψ(Z) = Fp and

ψ(f(x)) = fp(x) =
n∏
i=1

(x− ψ(ri)).

Notice that fp(x) has distinct roots. Hence ψ(ri) are the roots of fp(x).

Since any σ ∈ G(E/Q) permutes the roots of f(x), it induces an automor-

phism of D. Let ψ : D → Ep be any ring homomorphism. If σ, τ ∈ G(E/Q),

then ψ ◦ σ and ψ ◦ τ restricted to R are bijections onto Rp. Hence they are

not equal. Let G(E/Q) = {σ1, σ2, . . . , σN}. We claim that

Hom (D,Ep) = {ψ ◦ σ1, . . . , ψ ◦ σN}.(1)

Let ψN+1 be different from ψi := ψ ◦ σi, for i = 1, 2, . . . , N. By Dedekind

independence theorem, ψ1, . . . , ψN+1 : D× → E×
p are Ep-independent. The

monomials re11 . . . renn , 0 ≤ e1, . . . , en ≤ n − 1 generate E/Q. Among them

we have N , Q-linearly independent monomials, say u1, u2, . . . , uN . Consider

the system of equations
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ψ1(u1) ψ1(u2) · · · ψ1(uN )

ψ2(u1) ψ2(u2) · · · ψ2(uN )
...

...
...

...

ψN+1(u1) ψN+1(u2) · · · ψN+1(uN )


t 

x1

x2
...

xN+1

 = 0.

Let (a1, a2, . . . , aN+1) ∈ EN+1
P be a nontrivial solution of the above system.

The monomials u1, u2, . . . , uN from a Z-basis of D. Any y ∈ D has a unique

expression, say y =
∑N

j=1 njuj , for n1, n2, . . . , nN ∈ Z. Hence

ψi(y) =
∑
j

njψi(uj)⇒
N+1∑
i=1

aiψi(y) =
∑
i,j

ainjψi(uj) = 0.

This contradicts the independence of ψi, ψ2, . . . , ψN+1. This establishes the

equality (1).

The Frobenious automorphism π : a 7−→ ap generates G(Ep/Fp). The map

π ◦ ψ is a homomorphism from D → Ep, for any ψ : D → Ep. Hence by (1)

there exists an automorphism, τ ∈ G(E/Q) such that π ◦ ψ = ψ ◦ τ .

Restrict ψ to R to get ψ−1 ◦ π ◦ ψ = τ. Hence thought of as permutations,

π and τ have same cycle structure. The permutation π acts on Rp and de-

composes it into orbits. Since 〈π〉 = G(Ep/Fp), the cycle decomposition of

π has disjoint cycles of lengths degf1, . . . ,deg fr where fp(x) = f1f2 . . . fr is

the unique factorization of fp(x) in Fp[x]. The automorphism τ also decom-

poses R into orbits. The orbits of Rp under π-action are mapped by ψ−1 into

orbits of R under the action of τ. This completes the proof of Dedekind’s

theorem. �


