
Lecture 12 : The Primitive Element Theorem

Objectives

(1) Factorization of polynomials over finite fields.

(2) The Primitive element theorem.

(3) Finite separable extensions have a primitive element.
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Example 12.1. We know that the polynomial xp
n − x is the product of

all the degree d monic irreducible polynomials in Fp[x] where d | n. This

is useful for constructing irreducible polynomials over Fp. Let us factorize

x16−x over F2. The irreducible quadratic polynomials are factors of x4−x =

x(x+1)(x2+x+1). Hence there is only one quadratic irreducible polynomial

over F2. The cubic irreducible are factors of

x8 − x = x(x7 + 1) = x(x+ 1)(x6 + x5 + x4 + x3 + x2 + x+ 1).

By Gauss’ formula N2(3) = 2. Therefore the irreducible cubics over F2 are

x3 +x2 + 1 and x3 +x+ 1. By Gauss’ formula, we count irreducible quartics

over F2 :

4N2(4) =
∑
d|4

µ(4/d)2d = µ(4)2 + µ(2)22 + µ(1)24 = −4 + 16 = 12.

Hence N2(4) = 3. These quartics are factors of x16 − x. The irreducible

factors of this polynomial have degrees 1, 2 and 4. Therefore the irreducible

quartics are factors of

x16 − x
x(x+ 1)(x2 + x+ 1)

= (x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1).

We end this section by an interesting application of finite fields.

Proposition 12.2. The polynomial x4 + 1 is irreducible in Z[x] but it is

reducible over Fp for every p.
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Proof. Let f(x) = x4 +1. Then f(x+1) is irreducible over Z by Eisenstein’s

criterion. For p = 2, we have x4 + 1 = (x + 1)4. Now let p be odd. Then

8 | p2 − 1. Hence

x4 + 1 | x8 − 1 | xp2−1 − 1 | xp2 − x.

The splitting field of xp
2 − x over Fp is the finite field F = Fp2 . Hence

[F : Fp] = 2. Therefore the roots of x4 +1 in F have degree 1 or 2. Therefore

x4 + 1 cannot have a cubic or quartic irreducible factor over Fp. Hence it is

reducible over Fp for each prime p.
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The Primitive Element Theorem

Since F×qn is a cyclic group, Fqn = Fq(α) where α is a generator of F×qn . We say

that α is primitive element of the field extension Fq ⊂ Fqn . In this section

we discuss existence of primitive elements in finite algebraic field extensions.

We will show that in a finite separable extension, primitive elements always

exist.

Definition 12.3. Let E/F be a field extension. An element α ∈ E is called

a primitive element of E over F if E = F (α).

Example 12.4. (1) Let f(x) = x3 − 2, α = 3
√

2 and ω = e2πi/3. Then

Q(α, ω) is a splitting field of f(x). Moreover [Q(α, ω) : Q] = 6. Since

Q(α) ⊆ R, α+ ω /∈ Q(α).
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We know that the number of ways id : Q → Q̄ can be extended to

an embedding σ : Q(α + ω) → Q̄ is deg irr(α + ω,Q) = [Q(α + ω) : Q].

Since degree irr(ω,Q(α)) = 2, id : Q(α) → Q̄ can be extended in two

ways: ω → ω2 or ω → ω. Restriction of this embedding to Q(α + ω) maps
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α + ω to α + ω2 or α + ω. In a similar way we can embed Q(α + ω) onto

Q(αω + ω),Q(αω + ω2), Q(αω2 + ω2) and Q(αω2 + ω). Thus [Q(α + ω) :

Q] = 6. So Q(α, ω) = Q(α+ ω). Therefore α+ ω is a primitive element.

(2) An algebraic extension need not have a primitive element. Let field k be

a field with char(k) = p and let u, v be indeterminates. Let E = k(u, v) and

F = k(up, vp). Then f(u, v)p ∈ F for any f(u, v) ∈ E. But [E : F ] = p2. If

y ∈ E is a primitive element of E/F then deg irr(y, F ) = p2. But yp ∈ F.
This is a contradiction.

Theorem 12.5 (The Primitive Element Theorem). Let E/k be a finite

extension.

(1) There is a primitive element for E/k if and only if the number of

intermediate subfields F such that k ⊂ F ⊂ E is finite.

(2) If E/k is a finite and separable extension then it has a primitive element.

Proof. (1) If k is a finite field then E is finite and hence E× is a cyclic group.

Thus E/k has a primitive element.

Let k be infinite and let E/k have finitely many intermediate fields. Suppose

α, β ∈ E. As c varies in k, k(α+ cβ) varies over finitely many intermediate

subfields of E/k. Hence, there are c1 6= c2 ∈ k such that k(α + c1β) =

k(α+ c2β) := L. Thus (c1− c2)β ∈ L. Therefore β ∈ L. Hence α ∈ L. Thus

k(α, β) = k(α+c1β). Proceed inductively to show that E = k(α1, . . . , αn) =

k(α1 + c2α2 + · · ·+ αncn) for some c2, . . . , cn ∈ k.

Conversely, let E = k(α) for some α ∈ E and f(x) = irr(α, k). Let k ⊂ F ⊂
E be a tower of fields. Set hF = irr(α, F ). Then hF | f(x) as F varies over

all the intermediate subfields of E/k.

Since hF is irreducible over F , it is also irreducible over F0, a subfield of F

generated by the coefficients of hF (x) over k. Since deg hF (x) = [E : F ] =

[E : F0], it follows that F = F0. Since there are finitely many divisors of

f(x), there can be only finitely many intermediate fields of E/k.

(2) Now let E/k be a finite separable extension. Then E = k(α1, α2, . . . , αn).

To show that E/k has a primitive element it is enough to find a primitive

element when n = 2 and then apply induction on n. So let E = k(α, β). We

look for a primitive element of the form α+ cβ where c ∈ k.
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Let [E : k] = n. If α+cβ generates E/k, then α+cβ must have n conjugates

(images of α + cβ under the action of n embeddings of E into ka). Hence

there exist n k-embeddings σ1, σ2, . . . , σn : E → k̄. which map α + cβ to

n distinct roots of p(x) = irr(α + cβ), k) in k̄. Thus α + cβ is a primitive

element if and only if there exist n embeddings σ1, . . . σn : E → k̄ such that

σi(α+ cβ) 6= σj(α+ cβ), for all i 6= j, if and only if∏
i<j

(σi(α)− σj(α)) + c(σi(β)− σj(β)) 6= 0

if and only if c is not a root of the polynomial

f(x) =
∏
i<j

(σi(α)− σj(α)) + x(σi(β)− σj(β)).

Since k is infinite and f(x) has finitely many roots, such a c exists. �


