Lecture 14 : Galois group of a Galois Extension 1

Objectives

(1) Galois extension and the Galois group of a Galois extension.

(2) Galois group of a finite extension of finite fields and quadratic ex-
tensions.

(3) Galois groups of biquadratic extension.

(4) Galois group of a separable cubic polynomial.

(5) Fundamental Theorem of Galois theory (FTGT).

Keywords and phrases: Biquadratic and cubic extensions, fundamental

theorem of Galois Theory.

Definition 14.1. A field extension E/F is called a Galois extension if it
is normal and separable. The Galois group of a Galois extension E/F
denoted by G(E/F) or Gal(E/F) is the group of all F-automorphisms of E

under composition of maps.

Proposition 14.2. The Galois group of the Galois extension Fyn /Fy is a
cyclic group of order n generated by the Frobenious automorphism ¢ : Fgn —
Fyn, defined as ¢(a) = a?.

Proof. Note that ¢ is an Fj,-automorphism since any a € [F, is a root of
29 — x. Let G = (¢). Then ¢"(x) = 29" = x. Therefore |G| < n. Suppose
|G| = d. Then ¢ = id, so ¢(z) = 7" = x. But 7" — x has atmost ¢* roots.
Thus d = n.

We now show that G(Fg» /Fy) = (¢). Since Fgn /I is a separable extension,

[Fgn : Fyls = n. Hence the number of Fy-automorphisms of Fyn is n whence
(@) = G(Fgn /Fy). O

Example 14.3. Quadratic extensions: Let K/F be a separable qua-
dratic extension. Then for any o € K \ F we have irr (o, F) = f(x) =
22 + bz + c. Let 3 be another root of f(z). Then a+ 3 = —b and aff = c
and f(z) = (z — a)(z — ) € Klz]. Hence K/F is a normal extension.
Let 0 : K = F(a) — K be a K- automorphism different from idp. Then

o(a) = . Thus G(K/F) = {idp,0} is a group of order 2.
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Example 14.4. Biquadratic extensions: A field extension K/F is called
biquadratic if [K : F] = 4 and K is generated by roots of two irreducible
quadratic separable polynomials. Let K = F(a, ) and irr(a, F) = 22 — a

and irr(B, F) = 2% — b.

Since [F(a,B) : F] = 4, 2% — a is irreducible over F(3) and x? — b is
irreducible over F'(a). Any F- automorphism of K maps «a to a or —a and
B to B or —3. Let o(a) = —a, o(f) = and 7(a) = a, 7(8) = —B. Then

o1 = 70 and 62 = 72 = id. Therefore
G(K/F) ={id,o, 7,01 =70}

is the Klein 4-group.

Example 14.5. The Galois group of a separable cubic : Let F be
a field of char # 2,3. Consider an irreducible cubic polynomial f(z) =
23+ px + q € F[z]. Thus f(x) has no root in F. Let us observe that f(z)
is separable over F. Since f’(z) = 322 + p we have

T 2p
f:§(3x2+p)+§x+q

and hence

ged(f, 1) = (251: +q,32% + p) :

Since f has no root in F, 2pxz/3 + ¢ does not divide f(z). Hence (f, f') =1
and so f(x) is separable. Thus a splitting field £ of f must have degree 3 or
6. Let £ = F(ay, ag,as) where ag, ag, ag are the roots of f(z) in E. Then

any F- automorphism o permutes the roots aq, as, as.

Define ¢ : G(E/F) — S3 by 9(c) = p, where p, is the corresponding

permutation. It is easy to check that v is an injective group homomorphism.



63

Hence G(E/F) ~ S5 or As. Let us see how disc (f(x)) determines the Galois
group. We identify G(FE/F') with a subgroup of S3. Let

0= (041 - 042)(042 — 043)(041 — 043).

Then §2 = disc (f(x)) = —(4p® + 27¢%) € F. Hence [F(6) : F] < 2. If
disc (f(z)) is not perfect square in F' then 2 | [E : F|. hence G(E/F) = Ss.
If disc (f) is a square in F then 6 € F' and hence G(K/F') cannot have any
odd permutations since these do not fix . Thus G(E/F') = As. For example,
if f(r) = 23+ 2 + 1, then disc (f) = —31. Therefore G(E/F) = S3. If
f(z) =23 — 3z + 1, then G(E/F) = A3z as disc (f) = 3%

The Fundamental Theorem of Galois Theory

Let F be a field. We know that a Splitting field £ of a polynomial
f(z) € Flz] is a normal extension of F. If f(z) is separable then E/F is
separable. Thus a splitting field of a separable polynomial f(z) € F|z] is a
Galois extension of F. Conversely if E/F is a finite Galois extension then
by the Primitive Element Theorem there is an a € E such that E = F(a).
Since E/F is normal, F is a splitting field of irr (a,F'). Thus a finite
extension E/F is Galois if and only if F is a splitting field of a separable
polynomial f(z) over F. We say in this case that G(E/F) is the Galois
group of f(z). Since any two splitting fields of f(z) are F-isomorphic, we
write G(E/F) = Gy.

Definition 14.6. Let G be a group of automorphism of a field E. Then
E¢={aecE|o(a)=aforal ocG}
is called the fixed field of G acting on F.

Theorem 14.7 (Fundamental Theorem of Galois Theory (FTGT)).
Let E/F be a finite Galois extension. Consider the sets:

I ={K | K is an intermediate field of E/F} and G={H |H < G(E/F)}.

(i) The maps:
K+ G(E/K) and H — E

give a one-to-one correspondence, called the Galois correspondence be-
tween I and G.
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(i) K/F is Galois if and only if G(E/K) < G(E/F) and in this case

G(K/F) ~ Gprid-

(i)) [E: K] = |G(E/K).

The FTGT will be proved in several steps. We shall prove parts of it for

infinite Galois extensions.

Theorem 14.8. Let E/F be a Galois extension with G = G(E/F). Then
(1) F=E°.

(2) Let K be an intermediate subfield of E/F. Then E/K is Galois and the
map K — G(E/K) is an injective map from L to G.

Proof. (1) Let a € E®. Let ¢ : F(a) — F be an F-embedding. Let 7 :
E — F be an extension of o. Since E/F is Galois, 7 is an automorphism
of E. Hence 7(a) = a. Therefore [F'(a) : F]s = 1. But E/F is separable, so
F(a)/F is also separable. Thus [F(a): F]s = [F(a): F] =1. So a € F.

(2) Let K be an intermediate subfield of E/F. Then E/K is separable as
E/F isso. Let 0 : E — K = F be a K-embedding. Then it is also an
F-embedding. As E/F is normal, ¢ is an automorphism of E. Thus E/K
is a Galois extension. Let H = G(E/K). Then by (1), we have K = Ff.
Let K and K’ be intermediate subfields of E/F. If H = G(E/K) and H' =
G(E/K') then K = E and K’ = E'. Hence the map K — G(E/K) is an
injective map.

O



