Lecture 2 : Algebraic Extensions 1

Objectives

(1) Main examples of fields to be studied.
(2) The minimal polynomial of an algebraic element.

(3) Simple field extensions and their degree.
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The main examples of fields that we consider are :

(1) Number fields: A number field F' is a subfield of C. Any such field

contains the field Q of rational numbers.

(2) Finite fields : If K is a finite field, we consider ¢ : Z — K, (1) = 1.
Since K is finite, ker ¢ £ 0, hence it is a prime ideal of Z, say generated by
a prime number p. Hence Z/pZ :=IF,, is isomorphic to a subfield of K. The
finite field I, is called the prime field of K.

(3) Function fields: Let x be an indeteminate and C(z) be the field of
rational functions, i.e. it consists of p(z)/q(x) where p(z),q(z) are poly-
nomials and ¢(x) # 0. Let f(x,y) € C[x,y] be an irreducible polynomial.

Suppose f(z,y) is not a polynomial in  alone and write
fl@,y) =y" + ar(@)y" ' + -+ an(@), ai(x) € Clz].

By Gauss’ lemma f(z,y) € C(x)[y] is an irreducible polynomial. Thus
(f(x,y)) is a maximal ideal of C(x)[y]/(f(z,y)) is a field. K is called the
function field of the curve defined by f(z,y) = 0 in C2.

Characteristic of a field : Let R be a commutative ring with identity e.
Define the ring homomorphism f : Z — R by f(n) = ne. Then ker f = (n)
for some integer n. If n = 0, then Z is isomorphic to a subring of R. In this
case we say that R has characteristic zero. If R is a domain then Z/(n)
is a domain as it is isomorphic to a subring of R. Hence n is a prime number,

say p. Therefore the finite field ), is isomorphic to a subfield of R. In this
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case, we say that R has characteristic p. Thus any field F' contains either

an isomorphic copy of Q or F,,.

Definition 2.1. (i) Let K be a subfield of a field F. We say F is an
extension field of K. We also say that K is a base field. We also write
this as F/ K.

(ii) An element a € F is called algebraic over K if there exists a nonzero
polynomial f(x) € Klx| such that f(a) = 0. If every element of F is algebraic

over K then we say that F' is an algebraic extension of K.

(iii) An element a € F which is not algebraic over K is called a transcen-

dental element over K.

Example 2.2. It is known that the base e of the natural logarithm and =«

2 mi is a root of 22 — 72 € R[z].

are transcendental over Q. Since (7i)? = —7
Hence mi is algebraic over R. However m¢ is not algebraic over Q. Thus the

property of being algebraic depends upon the base field.

Example 2.3. Let K be a finite field whose characteristic is a prime number
p. Then K has a subfield F' with p elements. Since K is finite, it is a finite
dimensional F-vector space. If dimp K = n then K has p™ elements. If a €
K then the set {1,a,a?,...,a"} is linearly dependent. Let by, by, ...,b, € F,
not all zero, so that by +b1a+---+b,a™ = 0. Hence a is a root of the nonzero
polynomial by + byx + - - - + b,x™. Therefore b is algebraic over F' and hence

K/F is an algebraic extension.

Proposition 2.4. Let F'/K be a field extension and o € F' be algebraic over
K. Then there ezists a unique monic irreducible polynomial f(x) € KJz]
such that f(a) = 0.

Proof. Define ¢ : K[z] — F by ¥(g(z)) = g(«). Since v is a ring homomor-
phism and « is algebraic, ker 1) = I is a nonzero ideal of K[x]. Since K|z]
is a PID and K|z]/I is isomorphic to a subfield of F', I is generated by an
irreducible polynomial h(x) € K[z].. If g(a) = 0 then g(z) = h(x)hi(z) for
some polynomial hi(z) € Klz|. If g is irreducible, then g = ah(z) for some
a € K* = K\ {0}. If g and h are taken to be monic, then g = h. O
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Definition 2.5. The irreducible monic polynomial in Fx] whose root is
a € K is denoted by irr(c, F') and it is called the irreducible monic poly-
nomial of « over F. The degree of irr (a, F) is called the degree of «

and it is written as degp a.

Example 2.6. (i) Vi € C satisfies f(z) = 2* + 1 = 0. Show that f(z) =
irr(v/4, Q). Consider the field Q(7) = smallest field containing Q and i. Then
irr (vi,Q(4)) = 2% — 1.

(ii) Let p be a prime number and ¢, = e?™i/P. Then 2P — 1 = 0 is satisfied
by (p. Since 2P —1 = (z — 1)(aP P+ 2P 2 + .- + 2+ 1) and Ppy(x) =
Pl + P72 4 ... + x + 1 is irreducible over Q, irr((p, Q) = @, ().

Simple field extensions: Let K C F be a field extension. Let o, 5 € F
be transcendental. Define ¢ : K[z] — F such that ¢(g(z)) = g(«). Then
kerty = {0}. Thus K[z] ~ K] and hence K (o) ~ K () by an isomorphism
o such that o(a) = 8 and o|g = idk. The situation is quite different for

algebraic elements.

Proposition 2.7. Let F' C K be a field extension and o € K be algebraic
over F and f(x) = irr (o, F). Let n = deg f. Then

(i) Fla] = F(a) ~ F[z]/(f(z)). (i) dimp F(a) =n and {1,q,...,a" "1} is
an F- basis of F(«).

Proof. Consider the substitution homomorphism

Y : Flz] — F|a] such that ¢ (z) = «, ¢|p =idp

Then kery = (f(x)) where f(z) = irr(a, F). Hence F[z|/(f(z)) ~ F|a].
since (f(z)) is a maximal ideal, F[a] is a field, so F[a] = F(a).

(ii) Let g(a) € Fla] and g(z) = f(x)q(z) + r(x) where ¢,r € Flz|, and
degr(z) < degf(z) or r(x) = 0. Then g(or) = r(a). Thus Fla] is an

n—1

F—vector space generated by 1,q,...,« where n = deg f(z). Suppose
that Z?:_ol a;a’ = 0. If a; are not all zero then Z?:_Ol a;x’ is a nonzero poly-
nomial of degree less than deg f(z) satisfied by «. This contradicts mini-
mality of deg f(x). Thus {1,a,a?,...,a" '} is an F- vector space basis of
F[a]. Hence dimp Fla] = deg irr (o, F).

O
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Proposition 2.8. Let K/F be a field extension and o € K be algebraic

over F. Then F(«)/F is an algebraic extension.

Proof. If 3 € F(a) and 3 # 0 then {1, 3, 3%,..., 4"} is a linearly dependent
subset of F(«) since dimp F'(a) = n. Hence there exist ag,a1,...,a, € F
not all zero so that ag+a18+---+a, 8" = 0. Hence (3 is algebraic. Therefore

F(a)/F is an algebraic extension. O

Proposition 2.9. Let o, 5 € K D F be algebraic over F'. Then there exists
an F-isomorphism ¢ : F(a) — F(B) such that ¥(«a) = [ if and only if
irr (o, F) = irr (B, F).

Proof. Let f(x) = irr (o, F') and g(x) = irr (B, F). Then¢(f(a)) = f(B) =
0. Thus g(z)|f(x). Since g, f are monic and irreducible, g(x) = f(x).

Conversely, suppose irr (a, F) = irr (8, F). Then F(«a) ~ Flz]/(f(x)) ~
F(pB) and the isomorphisms are F-isomorphisms. Hence F'(«) and F'(3) are
F-isomorphic. O

Proposition 2.10. Let ' C K, K’ be two field extensions of F. Let 1) :
K — K' be an F- isomorphism. Let a € K be a root of f(x) € Flx]. Then

Y(a) is a root of f(x).
Proof. ¢(f(a)) = f(¢(a)) =0 O

Example 2.11. (i) Let f(z) = 2® — 2 € Q[z]. By Eisenstein’s criterion
f(x) is irreducible over Q. The roots of f(zx) are a, aw, aw? where a is the

real cube root of 2 and w is the complex cube root of 1. Thus the fields
Q(a), Q(aw), Q(aw?) are Q—isomorphic.

(ii) Since irr (3, R) = 2? + 1, R[z]/(z? + 1) = R(:) = C.

(iii) The polynomial f(z) = 2% 4+ x + 1 is irreducible over Fo. Hence K =

Fo[z]/(f(x)) is a field which is a two dimensional Fo—vector space. Hence

K is a field with four elements.

(iv) The polynomial g(z,y) = y® — z(z + 1)(z — 1) is irreducible in C(z)[y]
by Eisenstein’s criterion. Hence C(x)[y]/(g(z,y)) is a simple field extension
of the function field C(z).



