
Lecture 14 : Galois group of a Galois Extension I

Objectives

(1) Galois extension and the Galois group of a Galois extension.

(2) Galois group of a finite extension of finite fields and quadratic ex-

tensions.

(3) Galois groups of biquadratic extension.

(4) Galois group of a separable cubic polynomial.

(5) Fundamental Theorem of Galois theory (FTGT).

Keywords and phrases: Biquadratic and cubic extensions, fundamental

theorem of Galois Theory.

Definition 14.1. A field extension E/F is called a Galois extension if it

is normal and separable. The Galois group of a Galois extension E/F

denoted by G(E/F ) or Gal(E/F ) is the group of all F -automorphisms of E

under composition of maps.

Proposition 14.2. The Galois group of the Galois extension Fqn/Fq is a

cyclic group of order n generated by the Frobenious automorphism φ : Fqn →
Fqn , defined as φ(a) = aq.

Proof. Note that φ is an Fq-automorphism since any a ∈ Fq is a root of

xq − x. Let G = 〈φ〉. Then φn(x) = xq
n

= x. Therefore |G| ≤ n. Suppose

|G| = d. Then φd = id, so φ(x) = xq
d

= x. But xq
d −x has atmost qd roots.

Thus d = n.

We now show that G(Fqn/Fq) = 〈φ〉. Since Fqn/Fq is a separable extension,

[Fqn : Fq]s = n. Hence the number of Fq-automorphisms of Fqn is n whence

〈φ〉 = G(Fqn/Fq). �

Example 14.3. Quadratic extensions: Let K/F be a separable qua-

dratic extension. Then for any α ∈ K \ F we have irr (α, F ) = f(x) =

x2 + bx + c. Let β be another root of f(x). Then α + β = −b and αβ = c

and f(x) = (x − α)(x − β) ∈ K[x]. Hence K/F is a normal extension.

Let σ : K = F (α) → K be a K- automorphism different from idF . Then

σ(α) = β. Thus G(K/F ) = {idF , σ} is a group of order 2.
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Example 14.4. Biquadratic extensions: A field extension K/F is called

biquadratic if [K : F ] = 4 and K is generated by roots of two irreducible

quadratic separable polynomials. Let K = F (α, β) and irr(α, F ) = x2 − a
and irr(β, F ) = x2 − b.
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Since [F (α, β) : F ] = 4, x2 − a is irreducible over F (β) and x2 − b is

irreducible over F (α). Any F - automorphism of K maps α to α or −α and

β to β or −β. Let σ(α) = −α, σ(β) = β and τ(α) = α, τ(β) = −β. Then

στ = τσ and σ2 = τ2 = id. Therefore

G(K/F ) = {id, σ, τ, στ = τσ}

is the Klein 4-group.

Example 14.5. The Galois group of a separable cubic : Let F be

a field of char 6= 2, 3. Consider an irreducible cubic polynomial f(x) =

x3 + px + q ∈ F [x]. Thus f(x) has no root in F . Let us observe that f(x)

is separable over F . Since f ′(x) = 3x2 + p we have

f =
x

3
(3x2 + p) +

2p

3
x+ q

and hence

gcd(f, f ′) =

(
2p

3
x+ q, 3x2 + p

)
.

Since f has no root in F, 2px/3 + q does not divide f(x). Hence (f, f ′) = 1

and so f(x) is separable. Thus a splitting field E of f must have degree 3 or

6. Let E = F (α1, α2, α3) where α1, α2, α3 are the roots of f(x) in E. Then

any F - automorphism σ permutes the roots α1, α2, α3.

Define ψ : G(E/F ) → S3 by ψ(σ) = pσ where pσ is the corresponding

permutation. It is easy to check that ψ is an injective group homomorphism.
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Hence G(E/F ) ' S3 or A3. Let us see how disc (f(x)) determines the Galois

group. We identify G(E/F ) with a subgroup of S3. Let

δ = (α1 − α2)(α2 − α3)(α1 − α3).

Then δ2 = disc (f(x)) = −(4p3 + 27q2) ∈ F . Hence [F (δ) : F ] ≤ 2. If

disc (f(x)) is not perfect square in F then 2 | [E : F ]. hence G(E/F ) = S3.

If disc (f) is a square in F then δ ∈ F and hence G(K/F ) cannot have any

odd permutations since these do not fix δ. Thus G(E/F ) = A3. For example,

if f(x) = x3 + x + 1, then disc (f) = −31. Therefore G(E/F ) = S3. If

f(x) = x3 − 3x+ 1, then G(E/F ) = A3 as disc (f) = 34.

The Fundamental Theorem of Galois Theory

Let F be a field. We know that a Splitting field E of a polynomial

f(x) ∈ F [x] is a normal extension of F. If f(x) is separable then E/F is

separable. Thus a splitting field of a separable polynomial f(x) ∈ F [x] is a

Galois extension of F. Conversely if E/F is a finite Galois extension then

by the Primitive Element Theorem there is an a ∈ E such that E = F (a).

Since E/F is normal, E is a splitting field of irr (a, F ). Thus a finite

extension E/F is Galois if and only if E is a splitting field of a separable

polynomial f(x) over F. We say in this case that G(E/F ) is the Galois

group of f(x). Since any two splitting fields of f(x) are F -isomorphic, we

write G(E/F ) = Gf .

Definition 14.6. Let G be a group of automorphism of a field E. Then

EG = {a ∈ E | σ(a) = a for all σ ∈ G}

is called the fixed field of G acting on E.

Theorem 14.7 (Fundamental Theorem of Galois Theory (FTGT)).

Let E/F be a finite Galois extension. Consider the sets:

I = {K | K is an intermediate field of E/F} and G = {H | H < G(E/F )}.

(i) The maps:

K 7→ G(E/K) and H 7→ EH

give a one-to-one correspondence, called the Galois correspondence be-

tween I and G.
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(ii) K/F is Galois if and only if G(E/K)CG(E/F ) and in this case

G(K/F ) ' G(E/F )
G(E/K) .

(iii) [E : K] = |G(E/K)|.

The FTGT will be proved in several steps. We shall prove parts of it for

infinite Galois extensions.

Theorem 14.8. Let E/F be a Galois extension with G = G(E/F ). Then

(1) F = EG.

(2) Let K be an intermediate subfield of E/F. Then E/K is Galois and the

map K 7→ G(E/K) is an injective map from I to G.

Proof. (1) Let a ∈ EG. Let σ : F (a) → F be an F -embedding. Let τ :

E → F be an extension of σ. Since E/F is Galois, τ is an automorphism

of E. Hence τ(a) = a. Therefore [F (a) : F ]s = 1. But E/F is separable, so

F (a)/F is also separable. Thus [F (a) : F ]s = [F (a) : F ] = 1. So a ∈ F.
(2) Let K be an intermediate subfield of E/F. Then E/K is separable as

E/F is so. Let σ : E → K = F be a K-embedding. Then it is also an

F -embedding. As E/F is normal, σ is an automorphism of E. Thus E/K

is a Galois extension. Let H = G(E/K). Then by (1), we have K = EH .

Let K and K ′ be intermediate subfields of E/F. If H = G(E/K) and H ′ =

G(E/K ′) then K = EH and K ′ = EH
′
. Hence the map K 7→ G(E/K) is an

injective map.
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