
Lecture 22 : Solvability by Radicals
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(2) Solvability by radicals and solvable Galois groups.

(3) A quintic polynomial which is not solvable by radicals.
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Let F be a field and f(x) ∈ F [x]. If there is a formula for the roots of f(x)

which involves the field operations and extraction of roots, then we say f(x)

is solvable by radicals over F. This can be made precise in field theory by

introducing the notion of a radical extension.

Definition 22.1. A field extension K/F is called a simple radical exten-

sion of F if K = F (a) where an ∈ F for some positive integer n. We say

that K/F is a radical extension if there is a sequence of field extensions

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = K

such that each Fi is a simple radical extension of Fi−1 for 1 = 1, 2, . . . , n. A

polynomial f(x) ∈ F [x] is called solvable by radicals over F if a splitting

field of f(x) over F is contained in a radical extension of F .

Proposition 22.2. Let E/F be a separable radical extension. Let L ⊃ E

be the smallest Galois extension of F so that L ⊂ F a. Then L is a radical

extension of F .

Proof. Since E/F is separable and [E : F ] = n, there are n F -embedding of

E into F a :

σ1, σ2, . . . , σn : E −→ F a.

Then L = σ1(E)σ2(E) · · ·σn(E) is the smallest Galois extension of F con-

taining E. Indeed, let E = F (a). Then the roots of fa(x) = irr (a, F )

in F a are σi(a) for i = 1, 2, . . . , n. Hence L = F (σ1(a), σ2(a), . . . , σn(a)) is

the splitting field of fa(x) over F. Since σi(E) ' E, σi(E)/F is a radical

extension for each i = 1, 2, . . . , n. Hence L/F is a radical extension. �
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Theorem 22.3. Suppose char F = 0. If f(x) ∈ F [x] is solvable by radicals

then Gf is a solvable group.

Proof. Let F = F0 ⊂ F1 ⊂ . . . ⊂ Fr = E be a sequence of simple radical

extension with Fi = Fi−1(ai) such that ani
i ∈ Fi−1, i = 1, 2, . . . , r and E

contains a splitting field K of f(x) over F. We may assume E/F is Galois

by the above proposition. Let n = n1n2 . . . nr and M be the splitting field

of xn − 1 over E.

E = Fr E(w) = Mr = M (e) = Hr

Fr−1

�
�
�

Fr−1(w) = Mr−1

�
�
�

G(Mr/Mr−1) = Hr−1

�
�
�

K

�����������������

FFFFFFFFF E = F1 F1(w) = M1 G(M1/M1) = H1

F = F0 F0(w) = M0 G(Mr/M0) = H0

Let w be a primitive nth root of unity. Then F (w) has primitive nthi root of

unity for i = 1, 2, . . . , r. Since E/F is Galois, E is a splitting field of some

polynomial g(x) over F . Then M is a splitting field of (xn − 1)g(x) over F .

Thus M is Galois over F . By the FTGT, G(K/F ) ' G(M/F )/G(M/K).

Hence it is enough to prove that G(M/F ) is solvable.

Each Mi/Mi−1 is a Galois extension. Hence Hi . Hi−1 for i = 1, 2, . . . r.

Moreover

Hi−1/Hi ' G(Mi/Mi−1).

Since Mi = Mi−1(ai) where ani
i ∈ Mi−1 and Mi−1 has a primitive nthi root

of unity, the group Hi−1/Hi is cyclic. Thus G(Mr/F ) is a solvable group.

Hence Gf is a solvable group. �

We will now construct a quintic f(x) ∈ Z[x] which is not solvable by radicals.

Proposition 22.4. A subgroup of S5 containing a 5-cycle and a transposi-

tion is S5.
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Proof. By renumbering we may assume G contains σ = (12) and τ =

(12345). Then G has τ(12)τ−1 = (23), τ(23)τ−1 = (34), τ(34)τ−1 = (45).

It is easy to show that 〈(12), (23), (34), (45)〉 = S5. �

Any irreducible quintic f(x) ∈ Q[x] which has exactly 3 real roots is the

polynomial we are looking for. Gf has an element of order 5 and the con-

jugation automorphism gives an element of order 2 in Gf . The polynomial

x(x2 − 4)(x2 + 4) = x5 − 16x = g(x) has exactly 3 real roots 0, 2,−2. Since

g(−1) = 15, g(1) = −15, f(x) = g(x) + 2 = x5 − 16x+ 2 have exactly 3 real

roots and it is irreducible over Q, Thus f(x) = 0 is not solvable by radicals

over Q.

Theorem 22.5 (Galois). Suppose F is a field of characteristic zero and

f(x) ∈ F [x]. If Gf solvable then f(x) is solvable by radicals over F.

L = K(w) (e) = Hk = G(L/E)

Ek−1 = LHk−1

�
�
�

Hk−1

�
�
�

E1 = LH1 H1

E = LH0 = F (w) H0 = G(L/E)

Proof. Let K be a splitting field of f(x) over F and [K : F ] = n. Let L be

a splitting field of xn− 1 over K and w be a primitive nth root of unity over

K. Then L = K(w). Put E = F (w). Then L is a splitting field of f(x) over

E. Since H = G(L/E) embeds into G(K/F ), H is also a solvable group. It

is enough to show f(x) is solvable by radicals over E. Consider an abelian

series for H.

H = H0 . H1 . · · · . Hk = (1)

By refining this we may assume Hi/Hi+1 is cyclic of order pi+1 for i =

0, 1, . . . , k − 1 where p1, p2, . . . , pk are primes numbers. Let Ei = LHi for

1, 2 . . . k. Then [Ei : Ei−1] = |Hi−1/Hi| = pi. Since Ei−1 has a primitive pthi
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root of unity for i = 1, 2, . . . , k, Ei/Ei−1 is a simple radical extension. Hence

L/F is a radical extension. Thus f(x) is solvable by radicals over F. �

Example 22.6. In this example we show that a splitting field of E over

a field F of a polynomial f(x) ∈ F [x] solvable by radicals need not be a

radical extension of F. Consider the polynomial f(x) = x3 − 3x+ 1 ∈ Q[x].

Let E be a splitting field of f(x) over Q. We argue that E is not a radical

extension of Q. Reducing f(x) modulo 2, we see that the reduced polynomial

has no root in F2. Hence f(x) is irreducible over Q. The discriminant of f(x)

is 81. Hence Gf = A3 and therefore f(x) is solvable by radicals by Galois’

theorem. Suppose that E/Q is a radical extension. Since [E : Q] = 3, there

is no proper intermediate subfield of E/Q. So E = Q(a) where an ∈ Q, for

some n. Let g(x) = irr (a,Q). Then E is a splitting field of g(x). Moreover

g(x) | xn−an. Hence any root r of g(x) satisfies rn = an. Since f(x) is a real

root, we may assume that E = Q(r). Hence r/a is a real nth root of unity.

Hence r = ±a. Hence g(x) has only two roots. This is a contradiction as

g(x) is a separable cubic polynomial.


