Lecture 20 : Cyclic Extensions and Solvable Groups

Objectives

(1) Cyclic extensions of degree p over fields with characteristics p.
(2) Solvable groups.
(3) Simplicity of S,, and A,,.
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tor, simple groups.

Structure of cyclic Galois extensions over fields of characteristic p

Let F be a field of positive characteristic p. We discuss the structure of
Galois extensions of F' of degree p. Consider the map § : F' — F defined by
d(a) = aP —a. Then 6 is a homomorphism of the additive group F. Moreover
F, = Ker 6. Note that 6 1(a) ={a+i|i=0,1,...,p—1}.

Theorem 20.1 (Artin-Schreier). (1) Let E/F be a cyclic Galois exten-
sion of degree p where char F = p, a prime number. Then E = F(a) where

a is a root of P —x — b for some b € F.

(2) Suppose that a ¢ FP — F. Then f(x) = aP —x — a is irreducible over F
and a splitting field of f(x) over F' is cyclic of degree p.

Proof. (1) Let G = G(E/F) = (o) and let T': E — E be the linear map of
the F-vector space E defined by T'(a) = o(a) — a. Then

KerT={a€ E|o(a)=a}=F.

Since TP = (0 — id)? = oP —id = 0, we have Im (TP~!) C Ker T = F. If
TP~! = 0 then there is a nontrivial F-linear relation among o~ !, 6?2, ... 0o, id.
This contradicts Dedekind’s theorem. Hence Im TP~! = Ker T = F. Let

b € E so that TP71(b) = 1. Set a = TP~2(b). Then T(a) = o(a) —a = 1.
Hence o(a) = a+ 1. Thus o%(a) = a+i for all i = 1,2,...,p— 1. Therefore

E = F(a).

Since o(of —a) = (a+ 1)’ — (a+1) = o — a, The element a = o — «a €

E¢ = F. Hence « is a root of 2P — x — a.
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(2) Conversely, suppose that a ¢ FP—F. Then we show that f(x) = 2P—z—a
is irreducible over F. If « is a root of f(z) then a4 is a root of f(x) for all
i=1,2,...,p— 1. Hence E = F(«) is a splitting field of f(x). If we assume
that f(z) is irreducible over F' then [FE : F] = p and the Galois group is
generated by the automorphims o(a) = a + 1.

Suppose that f(z) = g1(x)g2(x)...gn(xz) where each g; is irreducible over
F.If B is a root of g; then E = F(f) as shown above. Hence each g;(x) has
same degree r and so deg f(x) = p = rn. Thus r = p and n = 1. Hence f(z)
is irreducible over F.

O
Solvable groups
Definition 20.2. Let G be a group. A sequence of subgroups
(1) G=Gp2G12G22--2Gs41=1

is called a normal series for G if G; is a normal subgroup of G;_1 for
i =1,2,...,s. The normal series (1) is called abelian (resp. cyclic ) if
the quotients G;/Giy1 are abelian (resp. cyclic) for i = 0,1,...s. A group

having an abelian series is called a solvable group.

Example 20.3. (1) Any abelian group is solvable.
(2) The group Ss is solvable since S3 D Ag D 1 is an abelian series.
(4) The group Sy is solvable since

S4DADVyD1
is an abelian series where V3 = {(1), (12)(34), (13)(24), (14)(23)}.

Proposition 20.4. Any group G of order p™ where p is a prime number is

solvable.

Proof. Apply induction on n. If n = 1 then G is cyclic and hence solvable.
Let n > 2. Let C be the center of G. We know that o(C) > 1. Hence
0o(G/C) < o(G). By induction, we have an abelian series

G/C DG /CDG/CD---DGg/C=1
Since (G;/C)/(Gi+1/C) ~ G;/Gi41 for all i, we have an abelian series:

GODOG1 DGy D---DODGEOC DL
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Thus G is solvable.
O

Definition 20.5. Let G be a group. The commutator [g,h] of g,h € G
is defined as [g,h] = g~'h~'gh. The derived subgroup of G denoted by
G' is the subgroup generated by all the commutators in G. The k** derived
subgroup of G is defined inductively as G*) = (G*-1Y.

Proposition 20.6. Let f : G — H be a homomorphism of groups.
(1) f(G") C H'. If f is onto then f(G') = H'.

(2) If K <G then K' QG. In particular G' < G.

(3) If K < G then G/K is abelian if and only if G' C K.

Proof. (1). Let g,h € G. Then f([g, h]) = f(g)~' f(h) "' f(9)f(h) = [f(9), F(R)].
Hence f(G') C H'. Tt is clear that equality holds true if f is onto.

(2) Let a € G. The inner automorphism i, : G — G restricts to an automor-
phism of K as K < G. Hence i,(K’) = K'. Therefore K’ < G. Since G < G,
we have G’ < G.

(3) Let K < G. Then G/K is abelian < for all g,h € G, ghK = hgK &
h™lg7lhge K forall g,h € G & G' C K. O

Proposition 20.7. A group G is solvable if and only if G =1 for some
s e N.

Proof. Let G be solvable. Then there is an abelian series for G
1<G1 <G <Gy =G,

We show by induction on s that G(®) = 1. If s = 1, then G is abelian. Hence
[g,h] =1 for all g,h € G. Hence G’ = 1. Now let s > 1. Then

1<G1 <G <1Ggq

is an abelian series for G5_1. Hence Gg‘:l) = 1. Since G/G4_; is abelian,
G’ C G4_1. Hence
G¥ = (@)D el -1

Conversely suppose that G(*) =1 for some s. Then
GGV a@ps...g® =1

is an abelian series for G. Thus G is solvable. O
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Proposition 20.8. Let G be a group and H be a subgroup.

(1) If G is solvable then so is H.

(2) If f : G — H s a surjective group homomorphism and G is solvable
then H is so.

(3) If K <G and G/K are solvable then G is solvable.

Proof. (1) If G is solvable then G = 1 for some s. Since H®) ¢ G(®) =1,
we have H®) = 1. Thus H is solvable.
(2) Let G®) = 1. Since f is surjective, f(G®)) = H®) = 1. Hence H is
solvable.
(3) Let K <G and K and G/K be solvable. Then there exist s and ¢ such
that K(*) = 1 and (G/K)® = 1. Hence G®) ¢ K. Thus G+ ¢ K() = 1.
Hence G is solvable.

([

Lemma 20.9. The group A, is generated by 3-cycles. If n > 5 then all

3-cycles are conjugates in A,,.

Proof. Let o be an even permutation. Let (ij)(rs) occur in a decomposi-
tion of o as a product of transpositions. If (ij) and (rs) are disjoint then
(ij)(rs) = (ijr)(rsjg). If 5 = r then (ir)(rs) = (irs). Hence every even per-
mutation is a product of 3-cycles. Now suppose that n > 5. Let ¢ be any

permutation and (j1J2...jp) be a p-cycle. Then

o(jija--gp)o "t = (o()o(a) - . o(jp))-

Let (ijk) and (rst) be any two 3-cycles. Define v by (i) = r,v(j) =
s,v(k) =t and let y(u) = u for any u # i, j, k. Then

Y(igk)y ™t = (v(@)y(G)v(k)) = (rst).

If ~ is odd then put o = (ij)7y. Then o is even and

o(ijk)o™" = (ij)y(ijk)y~ " (if) = (rst).

Theorem 20.10. The groups S, and A, are not solvable for n > 5.
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Proof. Since S, /A, is abelian, S, C A,,. Note that since n > 5, any 3-cycle

is a commutator in view of :

(o), (ihr)] = (0k) (ki) ko) (ikr) = (vkj) (jiv) = (ikj).
Therefore S], = Al, = A,. Thus S,(f) = A,(f) = A, for all s. Hence A,, and

Sy, are not solvable for n > 5. O
Theorem 20.11 (Galois). The alternating group A, is simple for n > 5.

Proof. (S. Lang) Suppose A, is not simple for n > 5. Let N be a proper
normal subgroup of A, for some n > 5. Let 0 # 1 be a permutation in N
that has maximum number of fixed points. We say that j is a fixed point of
o if o(j) = j. Consider a decomposition of o as a product of disjoint cycles
of length at least two: 0 = 772 ... 7,. Suppose the length of each 7; is two.
Since o is an even permutation, g > 2. Suppose that o = (ij)(rs)73...7,.
Let k be different from i, j, r, s and set 7 = (rsk). Consider the commutator
v = [o,7] = 077 to7. Then 1 # v € N. Moreover (i) = i and v(j) = j.
This is a contradiction since o has maximum number of fixed points among
the permutations in N \ {1}.

Now suppose that for some a, 7, = (ijk...) has length at least 3. If o = (ijk)
then N has a 3-cycle and hence N = A,. If ¢ is not a 3-cycle then ¢ must
move at least two other elements r,s besides i,j, k. Put 7 = (rsk) and
consider v = [0, 7]. Then 1 # v € N. Moreover 7(j) = j and + fixes all the

elements that o fixes. This is a contradiction. O



