Lecture 18 : Cyclotomic Extensions I1

Objectives
(1) Discriminant of ®,(x).
(2) Subfields of Q((p).
(3) Kronecker-Weber Theorem for quadratic extensions of Q.
(4) Algorithm for construction of primitive elements of subfields of Q(,).
()

5) Subfields of Q(¢7), Q(¢13) and Q((17)-

Keywords and phrases : Discriminant of ®,(x), Kronecker-Weber The-
orem, subfields of Q((p).

19. SUBFIELDS OF Q((p)

A celebrated theorem of Kronecker and Weber states that a Galois extension
E of Q with abelian Galois group is contained in a cyclotomic extension (an
extension of Q obtained by adjoining roots of unity.) We will prove this
theorem for quadratic extensions of Q. For this purpose, we show that the
square root of the discriminant of ®,(z) is a primitive element of the unique
intermediate subfield of K of Q((,) so that [K : Q] = 2.

Lemma 19.1. Let p be an odd prime. Then disc (®p(z)) = (—1)(5)1917*2.

Proof. Let ¢, be a primitive p root of unity. Since 27 — 1 = ®,(z)(z — 1),
and prP~1 = &,(z) + (z — 1)®,(x), we have for each i = 1,2,...,p — 1,

p(G)P = (¢ — D@p(G).

Therefore
p—l . p—l . .
Mo = J[pcr/¢-1)
=1 =1

B pP1 o pP1 )
T G-y Corem Y

Using the formula for discriminant in terms of derivatives, we get

disc (®p(z)) = (—1)E)pr2
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Proposition 19.2. The field Q((,) contains a unique quadratic extension

of Q, namely

o (v e @) = @ (V-1 Op)

which is real if p = 1(mod 4) and complez if p = 3(mod 4).

Proof. The Galois group G of Q((,) over Q is cyclic of order p—1. Hence there

is a unique subgroup of G having index 2. Thus there is a unique subfield

of Q({p) which is a quadratic extension of Q. As / disc (®,(x)) € Q((p)\Q
it generates the unique quadratic subfield of Q((,). O

Corollary 19.3. Every quadratic extension of Q is contained in a cyclo-

tomic extension.

Proof. If p = 3(mod 4), then Q(v/—p) € Q(¢p) and if p = 1(mod 4) then
Q(/p) € Q(¢). A quadratic extension of Q is of the form Q(v/d) where
d is a squarefree integer. Suppose d = +pips...p, where p1,pa,...,p, are

distinct primes. Then Q(vVd) € Q(Cpy, Cpos - - -+ Gpy s 1)
U

Proposition 19.4. Let L C Q({p) be a subfield with [Q((p) : L] = 2. Then
L=QG+G"):

Proof. As (p is aroot of 2 — (G + ¢, Nz +1 =10, [Q(¢) : Q(G + ¢, )] < 2.
Since L = Q({p + Cp_l) C R, we conclude that [Q({p,) : L] = 2. O

Proposition 19.5. Let p be a prime number. Let ( be a primitive pt"
root of unity. Let H be a subgroup of G = G(Q(¢)/Q) = U(p). Put g =

Y e 0(C). Then
E" = Q(Bn).

Proof. Let 7 € H. Since H is finite, H = {70 | 0 € H}. Hence 7(8y) = fu
for all 7 € H. Hence Q(8y) C€ Q(¢). Let 7 ¢ H. We show that 7(8y) # Su.
The set

B = {15C7C27"‘7Cp_2}
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is a basis of the Q-vector space Q(¢). If 7(8y) = g then ¢ = 70(¢) for
some o0 € H. Hence 70 = 1 and so 7~! = o. Therefore 7 € H which is
a contradiction. If Q(Bg) # Q(¢)¥, then by FTGT, there is a subgroup
M > H such that Q(8y) = Q(O)M < Q(¢)¥. Hence By is fixed by an

element 7 € M \ H. This is a contradiction.
U

Example 19.6. Let p =7 and (7 = w. Then [Q(w + w™'): Q] = 3 Let us
find the irreducible polynomial of w + w~! = w + wb. To do this find the
orbit of w + w® under the action of the Galois group G = G(Q(w)/Q). G is
is generated by the automorphism o(w) = w?. Hence The orbit of w + w®
under the action of G is {1 = w +w", B2 = w? +w®, B3 = w* + w3}. Hence
3
irr (w4 w®, Q) = H<$_Bi) =234 2% 221
i=1
Example 19.7. Put (33 = ¢. We list all subfields of £ = Q(¢) by using
the procedure in the proposition above. Since Galois group G of the Galois
extension F/Q is cyclic of oder 12 it has proper subgroups of orders 2,3, 4,
and 6. The automorphism o(¢) = ¢? generates G. The action of powers of

o on ( is described in the table:

i 1 12 |3 (4 |5 |6 7 8 |9 |10 |11
O'z(C) — 42 €4 C8 C?) C6 €12 CH CQ C5 ClO C7
The unique quadratic extension of Q in E is Q(v/13). The unique subfield of
degree 6 is Q(C + ¢'2). The subgroup H of oder 4 is generated by o®. Hence

H = {03,050 id}. Hence a primitive element of the degree 3 extension of

Qin FE is

Bu=C+0%(C) + %) +0(¢) =C+C+ ¢+

The subgroup K of G of order 3 is generated by o*. Hence a primitive
element of Q(¢)X is

B =C+a' Q)+ () =¢+ P+

Hence the poset of intermediate subfields of Q(() is
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E=Q()
/ \
Q(Bx) Q¢ +¢)

(V13) Ef =Q
\@/

Example 19.8. Let E be the splitting field of 7 — 1 over Q generated by
a primitive seventeenth root z of 1. So irr(z,Q) = 2! + 2 + ...+ +1
and E = Q(z). Therefore [E : Q] = 16. Thus |G(E/Q)| = |U(17)| = 16.

EK

Q (Bu)

The multiplicative group of units mod 17 can be generated by 3+ (17). Thus
n:z— 2% is a generator of G(E/Q) = {n,n?,...,7'® = 1}. The subgroups
of G and their orders are:
G=Gi=(n)D>Ga=(n*) DGy = (n") D Ga=(1®) D {id}
|G1| = 16, |G2| = 8, |G3| = 4, and |G4| =2.

The chain of intermediate subfields is:
E¢=Qc EY% c E c E¢1 C E.
We determine the generators for these fixed fields. Note that

n(z) = 23,n%(2) = 232, coani(z) =25

Let
8 4 2

21 =Y (17)'(2), y1=> (n")(2) and z =Y _(n)(2).
i=1 i=1 =1
The fixed fields are

E% = Q(z1) € EY = Q(z1,11) € E% = Q(z1,y1,21).



