Lecture 26 : Polynomials with Galois Group S,,.

Objectives

(1) Tate’s proof of Dedekind’s theorem for computing Galois group

(2) Construction of polynomials with Galois group S,.
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It is in general difficult to calculate the Galois groups of polynomials with ra-
tional coefficients. We have learnt various methods of computing the Galois

groups of polynomials of degree < 4.

In this section we learn a theorem of Dedekind which provides useful infor-

mation about G/.

First we observe that the splitting field E of a monic polynomial f(x) with
rational coefficients is also a splitting field of a monic polynomial with integer

coefficients. In fact, let
fl)=a"+ a2z + - +a,

where a; = b;/d € Q for : = 1,2,...,n. Then
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Therefore
d" f (2) — " 4 by g byda™ 2 4 by,

It is clear that splitting fields over Q of f(x) and d" f(%) coincide. Thus we

may confine our attention to monic polynomials with integral coefficients.

Theorem 26.1 (Dedekind). Let f(z) € Z[z]| be a monic polynomial of
degree n. Put fp(x) = f(x) mod p. Let f(x) and fy(x) be separable. Suppose
fp(2) is a product of irreducible polynomials of degree ni,na, ..., n, inFy[z],
where ny +ng + -+ +n, = n. Then Gy contains a permutation which is a

product of disjoint cycles of length ni,na,...,n,.
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We will illustrate the theorem with a few examples before we embark on

Tate’s elegant proof.

Example 26.2. We have shown that the Galois group of f(z) =2° —2 +1

is S5. The irreducible factorization of fy(x) is
folr) =2 —z+1=(@+z+1)(® +22+1).

Thus ¢ = (ij)(Imn) € Gy. Hence 0> = (ij) € Gy. Next we observe that
f3(x) is irreducible over F3. There is no root of f3(z) in F3. If there were a
quadratic irreducible factor of f3(z) over F3 then 2° —z and f3(x) will have
a common factor. Hence z(2? —z) = (2% — z)(2° + ) and 2° — 2 + 1 have a
common factor in F3[z], which is a contradiction. Hence G¢ has a 5-cycle.
Hence Gy = Ss.

Lemma 26.3. A transitive subgroup G of S, containing a transposition and

an (n — 1)-cycle in Sy,.

Proof. After a suitable reordering, let 0 = (12...n— 1) € G and (ij) € G.
Since G is transitive 7(ij)7~! = (kn) for some 7 € G. Suppose k < n — 2
then o(kn)o~! = (k+1n). If k =n — 1 then o(n — 1 n)o~! = (In). Thus
(In),(2n),...,(n—1n) € G, whence G = S,,. O

Theorem 26.4. There exist an irreducible monic polynomial with integer

coefficients whose Galois group is Sy,.

Proof. We use the fact that for each prime p there exists an irreducible
polynomial of degree n, for all n, in F,[z]. We have already constructed

such polynomials for n < 4.

Let n > 5. Let g(x) € Fy[z] be irreducible monic polynomial of degree n,
h(x) € F3[z] be irreducible monic polynomial of deg n — 1 and k(x) € Fp[z]
be irreducible monic quadratic, where p > n — 1. By Chinese Remainder

Theorem there exists a,b € Z such that

a = 1(mod2)andb = 0 (mod 2)
= 0 (mod 3) 1 (mod 3)
0 (mod p) 0 (mod p).
Now consider the polynomial
f(z) = ag(x) + bzh(x) + (1 —a—b)x(x + 1)...(z +n — 3)k(z).
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Then f(z) is monic and irreducible in Z[z], since fo(x) = g(x) which is
irreducible mod 2. Since
fs(x) = zh(x) and
fp(z) = z(z+1)-(x+n—3)k(x),

using Dedekind’s Theorem, we see that Gy has an (n — 1)-cycle and a trans-

position. But G is transitive. Hence Gy = S,. O

Example 26.5. We construct a monic irreducible sextic polynomial in Z|x]

with Galois group Sg using the above theorem. Notice that
$2+m—|—1, m3+:v+1, :U3+x2+1, z+1, x

are all the monic irreducible polynomials of degree < 3 over Fo. None of
these divide f(z) = 2% + 2% + 2% + 2 + 1. Hence f(z) is irreducible in F[z].
Note that z° + 2% — z + 1 is irreducible modulo 3. Put

glz) = z(@®+a2t —2+1)
h(z) = x(z—1)(z+1)(z+2)(z? +2)
F(z) = 15f(z)+ 10g(x) — 24h(x).

Since Fy(z) = f(x) is irreducible in Fy[x], F(z) is irreducible over Q. Hence
Gr has a 6-cycle. Since F3(x) = g(x) there exists a 5-cycle in Gp. As
F5(x) = h(z) we see that there exists a 2-cycle in Gp. Therefore Gp = Sg.

Theorem 26.6 (Dedekind). Let f(x) € Z[x] be a monic polynomial of de-
gree n. Let E be the splitting field of f(x) over Q and let R = {ry,r2,..., 10}
be the set of roots of f(x) in E. Let E, be the splitting field of fy(x) € Fp(z)
where p is a prime such that disc (fy(x)) # 0. Let R, = {s1,52,...,5n} be
the set of roots of fy(x) in E, Let D = Z[r1,rs,...,rys). Then

(a) There exists a ring homomorphism ¢ : D — E,,.
(b) Any ring homomorphism from D — E, maps R onto R, bijectively.

(c) The Galois group G(E/Q) acts transitively on Hom (D, E,), i.e. if
Y1,%2 : D — Ep are ring homomorphisms, then there exists o € G(E/Q)
such that 1o = 11 o 0.
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Proof. (John Tate) Since deg f(x) = n, we have

7ZCD= Z Zri'rg? ..o

0<ei,...,en<n—1

It is easy to show that pD is a proper ideal of D. Let m 2 pD be a maximal
ideal of D. The field D/m is an extension of F,, generated by r; +m, for i =
1,2,...,n over F,. Hence D/m is a finite F)- extension. Let v : D — D/m

be the natural map. Then

(x — si).
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Hence D/m is a splitting field of f,(z), whence D/m ~ E,. Thus we have
maps

D-% D/m-% B,
Hence ¢ ov : D — E), is a ring homomorphism.

Next we show that any ring homomorphism ¢ : D — E, maps R to R,
bijectively. Since (Z) = F,, and

n

U(f(2) = fpla) = [J(x = v(r)).

i=1
Notice that fy(z) has distinct roots. Hence 1 (r;) are the roots of f,(x).

Since any o € G(E/Q) permutes the roots of f(z), it induces an automor-
phism of D. Let ¢ : D — Ej, be any ring homomorphism. If 0,7 € G(E/Q),
then 1 o o and 1 o 7 restricted to R are bijections onto R,. Hence they are
not equal. Let G(E/Q) = {o1,02,...,0n}. We claim that

(1) Hom (D, E,) = {¢ooi,...,po0on}.

Let ¥n11 be different from v¢; := ¥ ooy, fori=1,2,..., N. By Dedekind
independence theorem, ¢1,...,9n11: D* — E are Ep-independent. The
monomials r{* ...7r&", 0 < ey,...,e, < n — 1 generate E/Q. Among them
we have N, Q-linearly independent monomials, say w1, us, ..., uy. Consider

the system of equations
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Yi(u)  i(u2) oo Pi(un) 1
Pa(ur)  ha(ug) - ta(un) T2,
| Uni(w) Unga(u2) oo Ynpa(un) || ang |
Let (a1, as2,...,an+1) € Eg“ be a nontrivial solution of the above system.
The monomials ui, ue, ..., uy from a Z-basis of D. Any y € D has a unique
expression, say y = Z;\le njuj, for ni,na, ..., ny € Z. Hence
N+1

Gily) =Y i) = Y ani(y) = > aimjii(uy) =0,
7 =1 %,]

This contradicts the independence of ¥;, %2, ...,1¥n11. This establishes the
equality (1).

The Frobenious automorphism 7 : a — a” generates G(E,/F,). The map
7o) is a homomorphism from D — E,, for any ¢ : D — E,. Hence by (1)
there exists an automorphism, 7 € G(E/Q) such that mo¢ = orT.

Restrict 1) to R to get ¢¥~! o w01 = 7. Hence thought of as permutations,
m and 7 have same cycle structure. The permutation 7 acts on R, and de-
composes it into orbits. Since (1) = G(E,/F}), the cycle decomposition of
7 has disjoint cycles of lengths deg fi, ..., deg f, where fy(x) = fifo... fp is
the unique factorization of f,(x) in F,[z]. The automorphism 7 also decom-
poses R into orbits. The orbits of R, under m-action are mapped by ¥~ into
orbits of R under the action of 7. This completes the proof of Dedekind’s

theorem. 0



