
Lecture 23 : Solutions of Cubic and Quartic Equations

Objectives

(1) Cardano’s method for roots of cubic equations.

(2) Lagrange’s method for roots of quartic equations.

(3) Ferrari’s method for roots of quartic equations.
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In this section we present algorithms for finding roots of cubic and quartic

polynomials over any field F of characteristic different from 2 and 3. This

is to make sure that irreducible cubics and quartics are separable.

Cubic polynomials

Cardano published Tartaglia’s method to find roots of cubic polynomials

in 1545. This is known as Cardano’s method. We may assume that the

given cubic is of the form f(x) = x3 + px + q since a general cubic can be

transformed into this form without changing its splitting field. One begins

by introducing two unknowns u and v. Put x = u+ v into f(x) = 0 to get

u3 + v3 + 3u2v + 3uv2 + p(u+ v) + q = u3 + v3 + q + (3uv + p)(u+ v) = 0.

We set u3 + v3 + q = 0 and 3uv + p = 0. Hence v = −p/3u. Put this into

the first equation to get

u6 + qu3 − p3/27 = 0.

This is a quadratic equation in u3. Put D = −(4p3+27q2). By the quadratic

formula we get

u3 =
−q ±

√
q2 + (4p3/27)

2
= −q

2
±
√
−D/108.

Set A = −q/2 +
√
−D/108 and B = −q/2−

√
−D/108. By symmetry of u

and v, we set u3 = A and v3 = B. Let ω be a primitive cube root of unity.

Then

u =
3
√
A, ω

3
√
A, ω2 3

√
A, and v =

3
√
B, ω

3
√
B, ω2 3

√
B.
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We must choose cube roots of A and B in such a way that 3
√
A 3
√
B = −p/3.

Having chosen these we see that the three roots of f(x) are

3
√
A+

3
√
B, ω

3
√
A+ ω2 3

√
B, ω2 3

√
A+ ω

3
√
B.

Example 23.1. Consider the cubic f(x) = x3−3x+1. Reducing modulo 2,

we see that f(x) is irreducible over Q. The discriminant of f(x) is D = −81.

Hence

A = −q/2 +
√
−D/108 = exp(2πi/3), and B = exp(−2πi/3).

Substitute these values of A and B into the formula for the roots, we see

that the three roots of f(x) are 2 cos(2π/9), 2 cos(8π/9) and 2 cos(14π/9).

Let f(x) = x3 + px+ q ∈ R[x]. If disc (f) < 0, then cube roots of A and

B can be chosen to be real. In this case

r1 =
3
√
A+

3
√
B ∈ R,

r2 = −
3
√
A+ 3

√
B

2
+ i
√

3

(
3
√
A− 3

√
B

2

)
,

r3 = r2.

If D = disc (f(x)) > 0 then A = −q/2 + i
√
D/108 and B = A. Suppose

that 3
√
A = a+ ib then due to uv = −p/3 we have 3

√
B = a− ib. Hence the

roots of f(x) are r1 = 2a, r2 = −a− b
√

3 and r3 = −a+ b
√

3.

Notice that in this case, all the roots are real. However, they are expressed

in terms of complex numbers. It can be proved that the roots cannot be ex-

presseed in terms of real radicals. Historically, this is called the irreducible

case. This fact forced mathematicians to accept complex numbers.

Quartic polynomials

We present Lagrange’s method for the roots of a quartic polynomial. We

continue with the assumption that F has characteristics different from 2, 3.

Consider a general quartic polynomial f(x) = x4+ax3+bx2+cx+d. We put

y = x− a/4 to get the polynomial g(y) = y4 + py2 + qy+ r. Let r1, r2, r3, r4

be roots of g(y). Consider the quantities

θ1 = (r1 + r2)(r3 + r4), θ2 = (r1 + r3)(r2 + r4), θ3 = (r1 + r4)(r2 + r3).
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The cubic polynomial whose roots are θ1, θ2 and θ3 is called the resolvent

cubic of the quartic polynomial. It turns out to be the polynomial

h(x) = x3 − 2px2 + (p2 − 4r)x+ q2.

Using the relation r1 + r2 + r3 + r4 = 0 we get

r1 + r2 =
√
−θ1, r3 + r4 = −

√
−θ1

r1 + r3 =
√
−θ2, r2 + r4 = −

√
−θ2

r1 + r4 =
√
−θ3, r2 + r3 = −

√
−θ3.

One can show that
√
−θ1
√
−θ2
√
−θ3 = −q. Hence two of the square roots

determine the third. Adding the three equations on the left and using the

fact that r1 + r2 + r3 + r4 = 0, we get

2r1 =
√
−θ1 +

√
−θ2 +

√
−θ3,

2r2 =
√
−θ1 −

√
−θ2 −

√
−θ3,

2r3 = −
√
−θ1 +

√
−θ2 −

√
−θ3,

2r4 = −
√
−θ1 −

√
−θ2 +

√
−θ3.

This shows that the roots of the resolvent cubic determine the roots of the

quartic.

Proposition 23.2. The discriminant of the quartic g(y) = y4+py2+qy+r

and its resolvent cubic h(x) = x3 − 2px2 + (p2 − 4r)x+ q2 are equal.

Proof. The differences of the roots of the resolvent cubic are:

θ1−θ2 = (r2−r3)(r4−r1), θ1−θ3 = (r2−r4)(r3−r1), θ2−θ3 = (r3−r4)(r2−r1).

Hence the quartic and the resolvent cubic have same discriminant. �

Remark 23.3. In the literature, we find that the term resolvent cubic is

also used for the cubic whose roots are

t1 = r1r2 + r3r4, t2 = r1r3 + r2r4, and t3 = r1r4 + r2r3.

It can be shown that this cubic is r(x) = x3− px2− 4rx+ 4pr− q2 and h(x)

and r(x) have equal discriminant and the same splitting field over F.
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Ferrari’s method for solving quartic equations

Consider the general quartic equation

x4 + bx3 + cx2 + dx+ e = 0.

Rewrite this as x4 + bx3 = −cx2 − dx− e. Now complete the square to get(
x2 +

bx

2

)2

=

(
b2

4
− c
)
x2 − dx− e.

Let y be another variable and consider the equation:(
x2 +

bx

2
+
y

2

)2

=

(
b2

4
− c
)
x2 − dx− e+ y

(
x2 +

bx

2

)
+
y2

4

= x2
(
b2

4
− c+ y

)
+ x

(
by

2
− d
)

+
y2

4
− e(1)

The right hand side of the last equation is a square of a linear polynomial

in x if and only if its discriminant is zero. i.e.

(12by − d)2 − 4(14y
2 − e)(14b

2 − c+ y) = 0.

Therefore

y3 − cy2 + (bd− 4e)y − b2e+ 4ce− d2 = 0.

Let y be any root of this cubic and substitute it in the equation (1) to get

x2 +
1

2
bx+

1

2
y = ±mx+ n(2)

Notice that the roots of the equation (2) are the roots of the given quartic.

Proposition 23.4. Let x1, x2, x3, x4 be the roots of

f = x4 + bx3 + cx2 + dx+ e = 0.

Then y1 = x1x2 + x3x4, y2 = x1x3 + x2x4, y3 = x1x4 + x2x3 are roots of

resolvent cubic g(y) = y3 − cy2 + (bd− 4e)y − b2e+ 4ce− d2.


