
Lecture 8 : Algebraic Closure of a Field

Objectives

(1) Existence and isomorphisms of algebraic closures.

(2) Isomorphism of splitting fields of a polynomial.

Key words and phrases: algebraically closed field, algebraic closure, split-

ting field.

In the previous section we showed that all complex polynomials of positive

degree split in C[x] as products of linear polynomials in C[x]. While working

with polynomials with coefficients in a field F , it is desirable to have a field

extension K/F so that all polynomials in K[x] split as product of linear

polynomials in K[x].

Definition 8.1. A field F is called an algebraically closed field if every

polynomial f(x) ∈ F [x] of positive degree has a root in F.

It is easy to see that a field F is algebraically closed if and only if f(x) is

a product of linear factors in F [x]. The fundamental theorem of algebra

asserts that C is an algebraically closed field. Let us show that any field is

contained in an algebraically closed field.

Existence of algebraic closure

Theorem 8.2. Let k be a field. Then there exists an algebraically closed

field containing k.

Proof. (Artin) We construct a field K ⊇ k in which every polynomial of

positive degree in k[x] has a root. Let S be a set of indeterminates which

is in 1− 1 correspondence with set of all polynomials in k[x] of degree ≥ 1.

Let xf denote the indeterminate in S corresponding to f.

Let I = (f(xf ) | deg f ≥ 1) be the ideal generated by all the polynomials

f(xf ) ∈ k[S]. We claim that I is a proper ideal of k[S]. Suppose to the

contrary, I = k[S]. Then

1 = g1f1(xf1) + · · ·+ gnfn(xfn)(1)
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for some g1, g2, . . . , gn ∈ k[S]. The polynomial g1, g2, . . . , gn involve only

finitely many variables. Put xfi = xi for i = 1, 2, . . . , n and let xn+1, . . . , xm

be the remaining variables in g1, g2, . . . , gn. Then

n∑
i=1

gi(x1, x2, . . . , xn, xn+1, . . . , xm)fi(xi) = 1.

Let E/k be an extension field in which the polynomials f1(x1), . . . , fn(xn)

have roots α1, . . . , αn respectively. Putting xn+1 = . . . = xm = 0 and xi = αi

for all i = 1, 2, . . . , n in the equation 1 we get a contradiction. Hence I is a

proper ideal of k[S]. Let m be a maximal ideal of k[S] containing I. Then

K1 = k[S]/m is a field. We claim that xf + m is a root of f(x). Indeed,

f(xf +m) = f(xf ) +m = m. Thus each polynomial in k[x] has a root in K1.

Repeat the procedure on K1 to get K2 ⊃ K1 which has roots of all monic

polynomials in K1[x]. Let K = ∪∞i=1Ki. Then K is a field. If f(x) ∈ K[x]

then f(x) ∈ Kn[x] for some n. Hence f(x) has a root in Kn+1 ⊆ K. Thus

K is algebraically closed. �

Corollary 8.3. Let F be a Field. Then there exists a field K ⊃ F such that

K is algebraically closed and K is algebraic over F.

Proof. Let L ⊃ F be an algebraically closed field. Then the field

K = {a ∈ L | a is algebraic over F}

is algebraically closed and it is algebraic over F. �

Definition 8.4. Let F be a field. An extension K/F is called an algebraic

closure of F if K is algebraically closed and K/F is an algebraic extension.

Isomorphism of algebraic closures

We now show that if E1 and E2 are algebraic closures of a field F then they

are F−isomorphic. As a consequence we also prove that any two splitting

fields of a polynomial f(x) ∈ F [x] are F−isomorphic. Extensions of embed-

dings of fields is one of the main observations in various arguments in Galois

theory. The next result prepares us for the theorem about isomorphism of

algebraic closures of a field.
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Proposition 8.5. Let σ : k → L be an embedding of fields where L is

algebraically closed. Let α be algebraic over k and p(x) = irr(α, k). Let

p(x) =
∑
aix

i ∈ k[x] and pσ(x) =
∑
σ(ai)x

i. Then τ → τ(α) is a bijection

between the sets

{τ : k(α)→ L | τ is an embedding and τ |k = σ} ←→ {β ∈ L | pσ(β) = 0}.

Proof. Let τ : k(α)→ L be an embedding extending σ. Then

τ(p(α)) = pσ(τ(α)) = 0.

Hence τ(α) is a root of pσ(x). Conversely let β ∈ L and pσ(β) = 0. Define

τ : k(α)→ L by τ(f(α)) = fσ(β). We show that τ is well defined.

Suppose f(α) = g(α). Then (f − g)(α) = 0, so p(x) | (f(x)− g(x)). Hence

pσ(x) | (f − g)σ(x). Thus pσ(β) = (fσ(β) − gσ(β) = 0. Hence fσ(β) =

τ(f(α)) = gσ(β) = τ(g(α)). Thus τ is well-defined. Suppose that fσ(β) =

τ(f(α)) = 0. Then pσ(x) | fσ(x). Since σ is an embedding, p(x) | f(x).

Thus f(α) = 0.

�

Proposition 8.6. Let σ : k → L be an embedding of fields where L is

algebraically closed. Let E be an algebraic extension of k. Then there exists

an embedding τ : E → L extending σ. If E is an algebraic closure of k and

L is an algebraic closure of σ(k) then τ is an isomorphism extending σ.

Proof. Consider the set

S = {(F, τ) | k ⊆ F ⊆ E are fields and τ : F → L such that τ |k = σ}.

Since (k, σ) ∈ S, it is nonempty. Let (F, τ) and (F ′, τ ′) ∈ S. Define

(F, τ) ≤ (F ′, τ ′) if and only if F ⊆ F ′ and τ ′|F = τ.

Then S is a partially ordered inductive set. Indeed, if {(Fα, τα)}α∈I is a

chain in S then F = ∪α∈IFα is a subfield of E. Define τ : F → L as

τ(x) = τα(x) if x ∈ Fα. Then τ is well-defined.

By Zorn’s Lemma there exists a maximal element (F, τ) ∈ S. We claim

that F = E. Suppose there exists α ∈ E \ F . Since α is algebraic over

F, τ : F → L can be extended to F (α)→ L. This contradicts maximality of

(F, τ). Thus E = F. Hence σ can be extended to an embedding of E into L.
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Now suppose E is an algebraic closure of k and L is an algebraic closure of

σ(k). Since τ(E) is algebraically closed and L is algebraic over τ(E), L =

τ(E). Thus τ : E → L is an isomorphism. �

Theorem 8.7. If E1 and E2 are algebraic closures of a field k then they

are k−isomorphic.

Proof. The identity map k → E2 can be extended to τ : E1 → E2 by the

above proposition, τ is a k−isomorphism. �

Theorem 8.8. Let E and F be splitting fields of polynomial f(x) ∈ k[x]

where k is a field. Then they are k-isomorphic.

Proof. Let F a be an algebraic closure of F. Then it is also an algebraic

closure of k. Thus there exists an embedding τ : E → ka extending idk :

k → ka. Let f(x) = (x− α1) · · · (x− αn) be a factorization of f(x) in E[x].

Then

f τ (x) = (x− τ(α1)) · · · (x− τ(αn)) ∈ F a[x].

Thus F = k(τ(α1), . . . , τ(αn)) = τ(E) as ka contains a unique splitting field

of any polynomial in k[x]. �


