
Lecture 2 : Algebraic Extensions I

Objectives

(1) Main examples of fields to be studied.

(2) The minimal polynomial of an algebraic element.

(3) Simple field extensions and their degree.
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The main examples of fields that we consider are :

(1) Number fields: A number field F is a subfield of C. Any such field

contains the field Q of rational numbers.

(2) Finite fields : If K is a finite field, we consider ψ : Z → K,ψ(1) = 1.

Since K is finite, ker ψ 6= 0, hence it is a prime ideal of Z, say generated by

a prime number p. Hence Z/pZ := Fp is isomorphic to a subfield of K. The

finite field Fp is called the prime field of K.

(3) Function fields: Let x be an indeteminate and C(x) be the field of

rational functions, i.e. it consists of p(x)/q(x) where p(x), q(x) are poly-

nomials and q(x) 6= 0. Let f(x, y) ∈ C[x, y] be an irreducible polynomial.

Suppose f(x, y) is not a polynomial in x alone and write

f(x, y) = yn + a1(x)yn−1 + · · ·+ an(x), ai(x) ∈ C[x].

By Gauss’ lemma f(x, y) ∈ C(x)[y] is an irreducible polynomial. Thus

(f(x, y)) is a maximal ideal of C(x)[y]/(f(x, y)) is a field. K is called the

function field of the curve defined by f(x, y) = 0 in C2.

Characteristic of a field : Let R be a commutative ring with identity e.

Define the ring homomorphism f : Z → R by f(n) = ne. Then ker f = (n)

for some integer n. If n = 0, then Z is isomorphic to a subring of R. In this

case we say that R has characteristic zero. If R is a domain then Z/(n)

is a domain as it is isomorphic to a subring of R. Hence n is a prime number,

say p. Therefore the finite field Fp is isomorphic to a subfield of R. In this
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case, we say that R has characteristic p. Thus any field F contains either

an isomorphic copy of Q or Fp.

Definition 2.1. (i) Let K be a subfield of a field F . We say F is an

extension field of K. We also say that K is a base field. We also write

this as F/K.

(ii) An element a ∈ F is called algebraic over K if there exists a nonzero

polynomial f(x) ∈ K[x] such that f(a) = 0. If every element of F is algebraic

over K then we say that F is an algebraic extension of K.

(iii) An element a ∈ F which is not algebraic over K is called a transcen-

dental element over K.

Example 2.2. It is known that the base e of the natural logarithm and π

are transcendental over Q. Since (πi)2 = −π2, πi is a root of x2−π2 ∈ R[x].

Hence πi is algebraic over R. However πi is not algebraic over Q. Thus the

property of being algebraic depends upon the base field.

Example 2.3. Let K be a finite field whose characteristic is a prime number

p. Then K has a subfield F with p elements. Since K is finite, it is a finite

dimensional F -vector space. If dimF K = n then K has pn elements. If a ∈
K then the set {1, a, a2, . . . , an} is linearly dependent. Let b0, b1, . . . , bn ∈ F,
not all zero, so that b0+b1a+ · · ·+bnan = 0. Hence a is a root of the nonzero

polynomial b0 + b1x+ · · ·+ bnx
n. Therefore b is algebraic over F and hence

K/F is an algebraic extension.

Proposition 2.4. Let F/K be a field extension and α ∈ F be algebraic over

K. Then there exists a unique monic irreducible polynomial f(x) ∈ K[x]

such that f(α) = 0.

Proof. Define ψ : K[x]→ F by ψ(g(x)) = g(α). Since ψ is a ring homomor-

phism and α is algebraic, ker ψ = I is a nonzero ideal of K[x]. Since K[x]

is a PID and K[x]/I is isomorphic to a subfield of F , I is generated by an

irreducible polynomial h(x) ∈ K[x].. If g(α) = 0 then g(x) = h(x)h1(x) for

some polynomial h1(x) ∈ K[x]. If g is irreducible, then g = αh(x) for some

α ∈ K× = K \ {0}. If g and h are taken to be monic, then g = h. �
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Definition 2.5. The irreducible monic polynomial in F [x] whose root is

α ∈ K is denoted by irr(α, F ) and it is called the irreducible monic poly-

nomial of α over F. The degree of irr (α, F ) is called the degree of α

and it is written as degF α.

Example 2.6. (i)
√
i ∈ C satisfies f(x) = x4 + 1 = 0. Show that f(x) =

irr(
√
i,Q). Consider the field Q(i) = smallest field containing Q and i. Then

irr (
√
i,Q(i)) = x2 − i.

(ii) Let p be a prime number and ζp = e2πi/p. Then xp − 1 = 0 is satisfied

by ζp. Since xp − 1 = (x − 1)(xp−1 + xp−2 + · · · + x + 1) and Φp(x) :=

xp−1 + xp−2 + · · ·+ x+ 1 is irreducible over Q, irr(ζp,Q) = Φp(x).

Simple field extensions: Let K ⊂ F be a field extension. Let α, β ∈ F
be transcendental. Define ψ : K[x] → F such that ψ(g(x)) = g(α). Then

kerψ = {0}. Thus K[x] ' K[α] and hence K(α) ' K(β) by an isomorphism

σ such that σ(α) = β and σ|K = idK . The situation is quite different for

algebraic elements.

Proposition 2.7. Let F ⊂ K be a field extension and α ∈ K be algebraic

over F and f(x) = irr (α, F ). Let n = deg f . Then

(i) F [α] = F (α) ' F [x]/(f(x)). (ii) dimF F (α) = n and {1, α, . . . , αn−1} is

an F - basis of F (α).

Proof. Consider the substitution homomorphism

ψ : F [x]→ F [α] such that ψ(x) = α, ψ|F = idF

Then kerψ = (f(x)) where f(x) = irr(α, F ). Hence F [x]/(f(x)) ' F [α].

since (f(x)) is a maximal ideal, F [α] is a field, so F [α] = F (α).

(ii) Let g(α) ∈ F [α] and g(x) = f(x)q(x) + r(x) where q, r ∈ F [x], and

deg r(x) < degf(x) or r(x) = 0. Then g(α) = r(α). Thus F [α] is an

F−vector space generated by 1, α, . . . , αn−1 where n = deg f(x). Suppose

that
∑n−1

i=0 aiα
i = 0. If ai are not all zero then

∑n−1
i=0 aix

i is a nonzero poly-

nomial of degree less than deg f(x) satisfied by α. This contradicts mini-

mality of deg f(x). Thus {1, α, α2, . . . , αn−1} is an F - vector space basis of

F [α]. Hence dimF F [α] = deg irr (α, F ).

�
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Proposition 2.8. Let K/F be a field extension and α ∈ K be algebraic

over F. Then F (α)/F is an algebraic extension.

Proof. If β ∈ F (α) and β 6= 0 then {1, β, β2, . . . , βn} is a linearly dependent

subset of F (α) since dimF F (α) = n. Hence there exist a0, a1, . . . , an ∈ F
not all zero so that a0+a1β+· · ·+anβn = 0. Hence β is algebraic. Therefore

F (α)/F is an algebraic extension. �

Proposition 2.9. Let α, β ∈ K ⊇ F be algebraic over F . Then there exists

an F -isomorphism ψ : F (α) → F (β) such that ψ(α) = β if and only if

irr (α, F ) = irr (β, F ).

Proof. Let f(x) = irr (α, F ) and g(x) = irr (β, F ). Then ψ(f(α)) = f(β) =

0. Thus g(x)|f(x). Since g, f are monic and irreducible, g(x) = f(x).

Conversely, suppose irr (α, F ) = irr (β, F ). Then F (α) ' F [x]/(f(x)) '
F (β) and the isomorphisms are F -isomorphisms. Hence F (α) and F (β) are

F -isomorphic. �

Proposition 2.10. Let F ⊆ K,K ′ be two field extensions of F . Let ψ :

K → K ′ be an F - isomorphism. Let α ∈ K be a root of f(x) ∈ F [x]. Then

ψ(α) is a root of f(x).

Proof. ψ(f(α)) = f(ψ(α)) = 0 �

Example 2.11. (i) Let f(x) = x3 − 2 ∈ Q[x]. By Eisenstein’s criterion

f(x) is irreducible over Q. The roots of f(x) are α, αw, αw2 where α is the

real cube root of 2 and w is the complex cube root of 1. Thus the fields

Q(α), Q(αw), Q(αw2) are Q−isomorphic.

(ii) Since irr (i,R) = x2 + 1, R[x]/(x2 + 1) = R(i) = C.

(iii) The polynomial f(x) = x2 + x + 1 is irreducible over F2. Hence K =

F2[x]/(f(x)) is a field which is a two dimensional F2−vector space. Hence

K is a field with four elements.

(iv) The polynomial g(x, y) = y3 − x(x+ 1)(x− 1) is irreducible in C(x)[y]

by Eisenstein’s criterion. Hence C(x)[y]/(g(x, y)) is a simple field extension

of the function field C(x).


