Lecture 7 : Symmetric Polynomials II

Objectives
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Discriminant in terms of power-sum symmetric polynomials.
Discriminant of a cubic.

(1)
(2)
(3) Existence of a splitting field of a polynomial.
(4)

Fundamental theorem of algebra via symmetric polynomials.
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Discriminant of a polynomial: We discuss a method to calculate the

discriminant of a polynomial by employing Newton’s identities.

Definition 7.1. Let uq,uo, ..., uy,x be indeterminate and
f@)=(z—w)(z—u2)...(x — uy).
The discriminant of f(x) is the symmetric function
disc (f(z)) = Hicj(u; — uj)2

It is clear that f(x) has a repeated root if and only if disc (f) = 0.
Since disc (f) is a symmetric polynomial with integer coefficients, by the
fundamental theorem for symmetric polynomials, there exists a polynomial
9(X1,...,X,) € Z[X1, Xo,...,X,] such that disc (f) = g(o1,02...,00).

The van der Monde matrix

1 1 1
U U2 Un,
M=| u? u3 u?
-1 n—1 n—1
L U Ug Un _

has determinant det M = II;» j(u; — u;). Hence
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n o w; W Wp_1
wy  ws  wg - Wy,

disc (f) =det(MM!") =| w2 w3 wg -+ Wyl

Wp—-1 Wnp Wpi1 - Wop—2

Example 7.2. Using Newton’s identities, we calculate the discriminant of
the polynomial p(x) = 23 + pz + q. We have o1 = 0,09 = p,03 = —¢q and
3 w1 w2
MM t— w1 w2 wWs

w2 w3 W4

Newton’s identities in this case are

wp = o01=0

Wy = U% — 209 = —2p

w3 = o1we — owi + 303 = —3¢q

Wy = 01wW3— oWz + o3w = 2p2

Therefore
3 0 —2p
disc (f) =det MM'=| 0 —2p -3¢ |=—4p®—27¢*

—2p —3q 2p?

In this section we construct a field extension K/F which contains all the
roots of a given polynomial f(z) € F[z]. For simplicity, we want K to be

the smallest field containing F' with respect to this property.

Definition 7.3. Let F' be a field and f(x) € Fx] be a monic polynomial
of degree n. A field K O F is called a splitting field of f(z) over F
if there exist r1,72,...,1n € K so that f(x) = (x —r1)...(x — ry) and
K =F(ri,re,... ).

Example 7.4. (i) Let f(x) = 2% + ax + b € F[z]. If f(z) is reducible then
F is a splitting field of f(x). If f(x) is irreducible then (f(z)) is a maximal
ideal of F[x]. Hence F(z)/(f(x)) ~ F(r) is a field, where r = x + (f(z)). If
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s is another root of f(z), then s +r = —a, so s = —a —r € F(r). Hence
F(r) is a splitting field of f(x) over F.

(ii) Consider the irreducible polynomial f(z) = 23 + x + 1 € Falz]. Let
r=x+ (f(z)) € Folz]/(f(z)) = Fa(r). Since [Fa(r) : Fa] = 3, Fa(r) has 8
elements. A basis of the Fy—vector space Fo(r) is {1,7,72}. Hence

Fo(r) ={0,1, 7,72, 1+, 1+ 7% r + 1% 141 + 12}
and we have the relation 7> = 1+4r. Check that f(r?) = f(r*) = 0. Therefore
B rr+1l=(x+r)(z+r)(z+rh).

Thus F,(r) is a splitting field of 23 + 2 + 1 over Fa.

We will later see that if f(z) € Fylz], where F, is a finite field with ¢
elements, then F,[x]/(f(x)) is a splitting field of f(x), if f(z) is an irreducible

polynomial over [F,.

Existence of Splitting field

Theorem 7.5. Let F be a field. Then any polynomial f(x) € F|x] of positive
degree has a splitting field.

Proof. Apply induction on deg f. If deg f = 1 then F is the splitting field
of f over F. Suppose deg f > 1. If f(x) splits as a product of linear factors
in Flx] then F is the splitting field of f(x) over F. Suppose g(x) is an
irreducible factor of f(x) with degg > 2. Then r = z + (g(x)) € K :=
F[z]/(g(x)) is a root of g(x) and hence of f(x). Since f(z) = (z — r)h(x)
for some h(x) € K[z] and degh(z) < deg f(z). By induction h(z) has a
splitting field L over K. Let ro,r3,...,r, € L be the roots of h(x). Then
L=K(ro,r3,...,7) = F(r1,7r2,...,7r,) is the required splitting field. O

We end this section by presenting a proof of the fundamental theorem of

algebra due to Gauss.

Theorem 7.6 (The Fundamental Theorem of Algebra). Every com-

plex polynomial of positive degree has a complex root.

Proof. We shall use the following facts:

(i) Every odd degree polynomial with real coefficients has a real root.
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ii) Every quadratic polynomial in C[x]| has a complex root.
iii) The fundamental theorem for symmetric polynomials.

(

(

(iv) Every polynomial f(z) has a splitting field.

(i) This is a consequence of the Intermediate Value Theorem.
(

ii) It is enough to show that complex numbers have a complex square root.
Indeed, let z = a + bi € C, where a,b € R and (c + di)?> = a + bi. Then
c? — d? +2cdi = a + bi. Thus a = ¢ — d? and b = 2cd. Therefore

a2+ = (A +d%)?
A+d = Va2+beR

Therefore ¢ = 1[a + Va2 + %] > 0 and d® = $[Va® + b2 — a] > 0. Thus
c,d € R.

The polynomial g(z) = f(z)f(z) € R[z]. Here f denotes the polynomial
whose coefficients are conjugates of the coefficients of f(x). If g(z) has a
complex root z then either f(z) =0 or f(z) = 0. If f(z) =0, then f(2) = 0.
Thus by replacing f by g, we may assume that f(z) is a monic polynomial

with real coefficients.

Let d = deg f = 2™q, where ¢ is odd. We apply induction on n. If n = 0,
then f is a real odd degree polynomial, hence it has a real root. Now let
n > 1. Let K = C(ay,...,as2), be a splitting field of f(z), over C, where

aq,...,oq are the roots of f(z) in K. Consider the elements
Yij = o + o + royag,

where r € R is fixed and 1 < i < j < d. There are (dgl) such pairs (i, j).

Hence

degh(z) = H (x —yij) = <d; 1) = 2" lg(d+1).

1<i<j<d

The coeflicients of h(z) are elementary symmetric polynomials in y;;’s. So
they are symmetric polynomials in oy, ag, ..., ay. Hence they are polynomi-
als in the coefficients of f(z). Hence h(x) € R[z]. By induction on n, h(x)
has a complex root say z,. Since all the roots of h(z) € K and 2, € C C K,

Zr = Qi(r) + Qi(r) T TG (r) Qi(r)
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for some pair (i(r),j(r)) so that 1 <i(r) < j(r) < d. Define

p:R—={(0,7) |1 <i(r) <j(r) <d} = P, o(r) = (i(r), j(r)).

Since R is infinite and P is finite, there exists ¢ # d € R such that
(i(0), j(e)) = (i(d), j(d)) = (a,b). Therefore,

Ze = Qi) T Qj(e) T T Aj(e) = Qo T Qp + COp = 24 = Qg + ap + dagp.

Therefore (d — ¢)agap = zq — 2. € C. Hence a,ap € C so that o, + oy € C.

But «, and «4 are roots of
22 — (g + o)z + gy € Cla].

Hence oy, ap € C. Therefore f(z) has a complex root. O



