
Lecture 3 : Algebraic Extensions II

Objectives

(1) Degree of a field extension and its multiplicative nature.

(2) A field extension of finite degree is algebraic.

(3) Transitivity of algebraic extensions.

(4) Compositum of two fields.

Key words and phrases: Simple field extension, degree of a field exten-

sion, compositum of fields.

Definition 3.1. Let F ⊆ K be a field extension. The dimension of the

F -vector space K, denoted by [K : F ] is called the degree of the field

extension K/F.

For an algebraic element α ∈ K, dimF F (α) = deg irr(α, F ). If [K : F ] <∞,

then F ⊆ K is called a finite extension.

Proposition 3.2. A finite extension K/F is an algebraic extension.

Proof. Let [K : F ] = n and β ∈ K. Then 1, β, . . . , βn are linearly dependent

over F. Hence there exist a0, a1, . . . , an, not all zero in F such that a0+a1β+

· · ·+ anβ
n = 0. Let f(x) = a0 + a1x+ · · ·+ anx

n. Then β is a root of f(x).

Hence β is algebraic over F .

�

Corollary 3.3. Every irreducible polynomial over R has degree ≤ 2.

Proof. Let f(x) ∈ R[x] be irreducible and α ∈ C a root of f(x). Then

R[α] ⊆ C. If α ∈ R,deg f(x) = 1. If α /∈ R, then [R[α] : R] ≥ 2. Thus

C = R[α]. Since [C : R] = 2, deg f(x) = 2.

�
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Example 3.4. (1) Since irr (i,R) = x2 + 1, [C : R] = 2 as C ' R(i).

(2) Since irr (ζp,Q) = xp−1 + xp−2 + · · ·+ x+ 1, [Q(ζp) : Q] = p− 1.

(3) Algebraic extension of a field may not be finite. Consider the chain of

fields Q ⊆ Q(21/2) ⊆ · · · ⊆ Q(21/2
n
) ⊆ · · · . Their union K contains the

algebraic numbers αn = 21/2
n

for all n and αn is a root of the irreducible

polynomial fn(x) = x2
n−2. Hence [K : Q] ≥ 2n for all n. Thus [K : Q] =∞.

(4) Quadratic Extensions: If [K : F ] = 2 then K is called a quadratic

extension of F. Let α ∈ K \F then {1, α} is a basis of K over F . Hence α2 =

aα+b for some a, b ∈ F. Therefore f(x) = irr(α, F ) = x2−ax−b. The roots

of f(x) are (a±
√
a2 + 4ab)/2 if char F 6= 2. Therefore K = F (

√
a2 + 4b).

Definition 3.5. A chain of fields F1 ⊂ F2 ⊂ · · · ⊂ Fn is called a tower of

fields if Fi is a subfield of Fi+1, for all i = 1, 2, . . . , n− 1.

Proposition 3.6. If K ⊆ F ⊆ L is a tower of fields then

[L : F ][F : K] = [L : K].

Proof. If either F/K or L/F are infinite dimensional, then L/K is also

infinite dimensional. Thus we may assume that F/K and L/F are finite.

Suppose that [F : K] = m and [L : F ] = n. Let x1, x2, . . . , xn be a basis of

L over F and y1, y2, . . . , ym be a basis of F over K.

We claim that the set

B = {xjyj | i = 1, 2, . . . n, and j = 1, 2, . . . ,m}

is a vector space basis of L over K. Let z ∈ L. Thus z = f1x1 + · · ·+ fnxn,

for some f1, . . . , fn ∈ F . We write fi =
∑m

j=1 kijyj . Therefore

z =

n∑
l=1

xlfl =

n∑
l=1

m∑
j=1

xlkljyj .

Thus B generates L as a K- vector space. Suppose
∑m

j=1

∑n
i=1 aijxiyj = 0.

Then
n∑

i=1

 m∑
j=1

aijyj

xi = 0.

Since x1 . . . , xn are F -linearly independent. Therefore
∑n

j=1 aijyj = 0 for

each i. By linear independence of y1, . . . , yn to see that all the aij = 0. �
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Corollary 3.7. Let F ⊆ K be a finite field extension. Then deg irr(α, F )

divides [K : F ], for all α ∈ K.

Proof. Since F ⊆ F (α) ⊆ K, we have

[K : F ] = [K : F (α)][F (α) : F ].

Thus deg irr(α, F ) divides [K : F ]. �

Proposition 3.8. Let K/F be a field extension. If a1, a2, . . . , an ∈ K are

algebraic over F then F (a1, a2, . . . , an) is a finite algebraic extension of F.

Proof. Since ai is algebraic over F, it is algebraic over F (a1, a2, . . . , ai−1).

Thus [F (a1, a2, . . . , ai) : F (a1, a2, . . . , ai−1)] is finite for all i. Therefore the

field F (a1, a2, . . . , an) is a finite extension of F. Hence it is algebraic. �

Corollary 3.9. Let E/F and K/E be algebraic extensions. Then K/F is

an algebraic extension.

Proof. Let a ∈ K and let a be a root of f(x) = a0+a1x+· · ·+an−1x
n−1+xn ∈

E[x]. Consider the field L = F (a0, a1, . . . , an−1). Then a is algebraic over

L. Hence L(a) is a finite extension of L. Since a0, a1, . . . , an−1 are algebraic

over F, L is a finite extension of F. Hence L(a) is a finite extension of F.

Hence a is algebraic over F. �

Corollary 3.10. Let K/F be a field extension. Then the set of elements of

K which are algebraic over F is a subfield of K.

Proof. Let a, b ∈ K be algebraic over F. Then F (a, b) is a finite extension of

F. Hence all elements of F (a, b) are algebraic over F. In particular, a± b, ab
and a/b if b 6= 0, are all algebraic over F. �

Compositum of fields: Let L/k be a field extensions and E/k and F/k be

intermediate field extensions. Then the smallest field containing E and F,

to be denoted by EF, is called the compositum of F and F. Suppose E =

k(a1, a2, . . . , an) and F is an extension of k. Then EF = F (a1, a2, . . . , an).

Example 3.11. Let m and n be co prime positive integers. Consider the

subfields E = Q(ζm) and F = Q(ζn) of C. Then the compositum of E and
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F is Q(ζmn). Indeed, as m and n are coprime, there exist p, q ∈ N such that

mp+ nq = 1. Therefore

ζmn = exp(2πi/mn) = exp(2pπi/n) exp(2qπi/m) = (ζn)p(ζm)q.

We can estimate the degree of the compositum of two finite field exten-

sions in terms of their degrees.

Proposition 3.12. Let L/k be a field extension and E/k, F/k be interme-

diate finite extensions fields. Then

[EF : k] ≤ [E : k][F : k].

If [E : k] and [F : k] are coprime then equality holds.

Proof. Let x1, x2, . . . , xm and y1, y2, . . . , yn be bases of the k-vector spaces

E and F respectively. Then it is easy to see that E = k(x1, x2, . . . , xm)

and F = k(y1, y2, . . . yn). Therefore EF = k(x1, x2, . . . , xm; y1, y2, . . . yn).

We have the following diagram of field extensions:

L

EF

{{
{{

{{
{{

CC
CC

CC
CC

E

CC
CC

CC
CC

F

{{
{{

{{
{{

k

Since EF = E(y1, y2, . . . , yn) we have [EF : F ] ≤ n. Since the degree is

multiplicative in a tower of finite extensions, we have

[EF : k] = [EF : E][E : k] ≤ mn.

Since m and n both divide [EF : k], and (m,n) = 1, we get mn | [EF : k].

Hence [EF : k] = mn. �


