Lecture 19 : Abelian and Cyclic Extensions

Objectives
(1) Infinitude of primes p =1 ( mod n ).
(2) Inverse Galois problem for finite abelian groups.

(3) Structure of some cyclic extensions.
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The Inverse Galois Problem for Finite Abelian Groups

A Galois extension E/F is called abelian (resp. cyclic) if G(E/F) is
abelian (resp. cyclic). In this section we will show that any finite abelian
group is the Galois group of a Galois extension of Q. In other words, any
finite abelian group is the Galois group of a polynomial with rational coef-
ficients. A proof of this theorem requires the theorem from number theory
that there are infinitely many primes p = 1( mod n). We shall prove this
using cyclotomic polynomials. This is a special case of Dirichlet’s theorem
about infinitude of primes in the arithmetic progression a+nb where a, b are
coprime natural numbers and n = 1,2,3,.... We will also construct cyclic

extensions of fields having enough roots of unity.

Lemma 19.1. Let p be a prime number and n be relatively prime to p. Let
®,,(z) have a root in Fp. Then p =1 (modn).
Proof. Let k € Z, k € F, and ®,,(k) = 0. Then p | ®,,(k). Hence p | k" — 1.

Thus k" = 1(mod p). We claim that o(k) = n in the group (F,)*. Suppose
o(k) =m < n. Then k™ = 1. Hence

=1 = [[Palz) = u(z) [] Palx)

din d<n

= &) [ [ Pa@)n(x)

dlm
= &,(x)(@™ —1)h(x)
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Hence k" — 1 = ®,,(k)(k™ — 1)h(k). This means 2" — 1 has a multiple root

in F),. This is a contradiction. Hence o(k) = n. Hence n | p — 1. Thus

p=1mod n. 0
Theorem 19.2. There are infinitely many primes p =1 (mod n).

Proof. Suppose to the contrary, p1,p,...,py are all such primes. Let m =
npip2 . ..pg. Since $p(x) € Z[x], is monic, lim, o Ppy(ma) = oco. Hence
there exists k such that ®,,(mk) > 2. Let p be a prime factor of ®,,(mk).
Then p | (mk)™ — 1. Hence p does not divide mk. Hence (p,n) = 1 and
p # pi,...,pn. Moreover ®,,(mk) = 0. Hence p = 1(mod n). This is a

contradiction. O

Theorem 19.3. Let G be a finite abelian group. Then there is a Galois
extension K/Q such that G(K/Q) = G.

Proof. We may assume that |G| > 2. Then G ~ C, x --- x C, . where
|G| = n =ning...ng and ni|ng| - - - |ng. There exist infinitely many primes
pi =1 (mod n;) fori =1,2,... k. We can find subgroups H; < U(p1), H2 <
U(p2),-..,Hr < U(pg) such that

Ul(p1) Ul(p2)
H, H,

~ Cny,

~ Chyy ey

U(p1) x U(p2) x --- x U(px)
H1><H2X-"><Hk

~ Cpy X oo X Cp,.
Let H < U(n) and H ~ Hy x Hy x --- x Hy. Then 20 ~ G. By the FTGT

GQG)"/Q) = U](}” ~G.

Cyclic Galois Extensions

In this section we discuss cyclic extensions of degree n if F' has a primitive
n'" root of unity or when I has characteristic p > 0 and E/F has degree p.
There is no simple description of cyclic extensions of QQ or fields devoid of
roots of unity. We need a theorem of Dedekind about linear independence

over K of automorphims of a field K.
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Definition 19.4. Let G be a group and K a field. By a character of
G in K we mean a homomorphism x : G — K>*. We say that characters
X1, X255, Xn : G — K* are linearly independent if for a1,...,a, € K
aix1+ asxe + -+ apxn =0 if and only if a; =0 fori=1,2,...,n.

Theorem 19.5 (Dedekind). Let x1,x2,--.,Xn be distinct characters of a
group G in o field K. Then x1, X2, -- -, Xn are linearly independent.

Proof. Apply induction on n. If n =1, then x;1 : G — K* is clearly linearly
independent. Let n > 2. Let n be the smallest positive integer such that

there exist a1,...,a, € K, not all zero with
(1) aix1+-+anxn = 0.

Then a; # 0, for all 7. Since x; # X2, there exists z € G such that x1(z) #
x2(z). Hence for all x € G,

(2) aix1(zz) + agx2(zz) + - + apxn(zz) = 0

(3) arx1(z)x1 + azx2(z)x2 + - + anxn(2)xn = 0.
Multiply (1) by x1(z) and subtract (3) to get the relation :
(X1(2) = x2(2))azxz + (x1(2) — x3(2))asxs + - - - + (x1(2) = Xn(2))anxn = 0.

The above relation has smaller length, which is a contradiction.
O

Lemma 19.6. Let F be a field containing a primitive n'* root of unity C.
Suppose that E/F is a Galois extension of degree n and G = G(E/F) = (o).

Then (¢ is an eigenvalue of o.

Proof. The field E is an n-dimensional F-vector space. Since o has order n,
o satisfies 2 — 1 = 0. If o is a root of a polynomial f(x) € F[x] of degree
m < n then o,02,...,0™ are linearly dependent over F. This contradicts
Dedekind’s Theorem. Hence the minimal and the characteristic polynomials
of o are equal to ™ — 1. Hence ( is an eigenvalue of o.

O

We now describe the structure of cyclic extensions of degree n over a field

th

having a primitive n*” root of unity.
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Theorem 19.7. Let E/F be a cyclic extension of degree n with G =
G(E/F) = (o) and let ¢ € F be a primitive n'* root of unity. Then there
exists a b € F so that E = F(a) where a = b.

Proof. Since ( is an eigenvalue of o, there exists an eigenvector a € E* so
that o(a) = Ca. Hence o%(a) = (‘a for all i = 1,2,...,n. Hence a has at
least n conjugates in E. As E/F is a Galois extension of degree n, and E
contains a splitting field of f(z) = irr (a, F), it follows that £ = F(a) and

a™ € F since o(a™) = ("a™ = a". O

Intermediate subfields of a cyclic Galois extension

Let E/F be a cyclic Galois extension of degree n where F has a primitive n!”

root of unity. We have proved that E = F(a) where a” € F. The number of
subgroups of the Galois group G = G(E/F) is d(n), the number of divisors
of n. Each of these subgroups is cyclic. Hence there are d(n) intermediate
subfields of E/F. We show that they are F(a?) where d is a divisor of n.

Proposition 19.8. Let E/F be a cyclic Galois extension of degree n where
F has a primitive n'" root of unity. Let E = F(a) where a® € F. Then The
intermediate subfields of E/F are F(a®) where d is a divisor of n.

Proof. The Galois group G has unique subgroup of order d for every divisor
d of n. Hence E//F has a unique subfield of degree d for each divisor d of n.
Consider the subfield KX = F(a?). Then a is a root of #¢ — a? € K|[x]. Thus
[E : F(a%)] < d. Since a” € F, we have (a?)*/? € F. Hence [F(a%) : F] < n/d.
It follows that [E : F(a?)] = d. Hence the intermediate subfields of E/F are
F(a%) where d varies over the divisors of n.

O



