
Lecture 6 : Symmetric Polynomials I

Objectives

(1) Examples of symmetric polynomials.

(2) The fundamental theorem of symmetric polynomials.

(3) Newton’s identities for power sum symmetric polynomials.
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Our next goal is to prove the Fundamental Theorem of Algebra : Ev-

ery polynomial of positive degree with complex coefficients has a complex

root. You must have seen its topological and complex analytic proofs. We

will present a proof which uses symmetric polynomials and the construc-

tion of the splitting field of a polynomial. We will learn about symmetric

polynomials in this section and splitting fields of polynomials in the next

section.

Let R be a commutative ring with identity and S = R[u1, u2, . . . , un] be the

polynomial ring in n variables over R. Let φ ∈ Sn, the symmetric group

of all permutations of {1, 2, . . . , n}. A permutation φ ∈ Sn gives rise to an

automorphism gφ : S → S, defined as

gφ(f(u1, . . . , un)) = f(uφ(1), . . . , uφ(n)).

Definition 6.1. A polynomial f ∈ S is called a symmetric polynomial

if for all φ ∈ Sn

f(u1, . . . , un) = f(uφ(1), . . . , uφ(n)).

Example 6.2. (1) Consider the general polynomial

f(x) = (x− u1)(x− u2) . . . (x− un)

= xn − σ1xn−1 + σ2x
n−2 + · · ·+ (−1)nσn
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where

σ1 = u1 + · · ·+ un, σ2 =
∑
i<j

uiuj , . . . , σn = u1u2 · · ·un.

It is easy to verify that σ1, . . . , σn are symmetric. These are called the

elementary symmetric polynomials in u1, u2, . . . , un.

(2) The symmetrization of a monomial uα1
1 . . . uαn

n is defined as

S(uα1
1 · · ·u

αn
n ) =

∑
α∈Sn

uα1

σ(1)u
α2

σ(2) . . . u
αn

σ(n).

It is clear that S(uα1
1 · · ·uαn

n ) is a symmetric polynomial. The symmetriza-

tion of u21u2 is

S(u21u2) = u21u2 + u21u3 + u22u3 + u23u1 + u23u2 + u22u1.

(3) For each k the polynomials wk = uk1 + uk2 + · · · + ukn are symmetric

polynomials.

(4) Let hm denote the sum of all monomials of degree m in u1, u2, . . . , un.

It is called the complete homogeneous symmetric polynomial of degree m.

Fundamental Theorem for symmetric polynomials

Example 6.3. Consider the symmetric polynomial

f(u1, u2, u3) = u21u2 + u21u3 + u22u1 + u22u3 + u23u1 + u23u2.

Then f(u1, u2, 0) = u21u2 + u22u1 = u1u2(u1 + u2) = σ01σ
0
2, where

σ01 = σ1(u1, u2, 0) = u1 + u2 and σ02 = σ2(u1, u2, 0) = u1u2.

Consider f − σ1σ2 = g. Then g|u3=0 = 0. Thus u3 | g. Since g is symmetric

u1u2u3 = σ3 | g. This gives f − σ1σ2 = −3u1u2u3 = −3σ3 and therefore

f = σ1σ2 − 3σ3.

Theorem 6.4 (Newton). Let R be a commutative ring. Then every sym-

metric polynomial in R[u1, u2, . . . , un] is a polynomial in the elementary

symmetric polynomials in a unique way. In other words if f(u1, u2, . . . , un)

is symmetric then there exists a unique polynomial g ∈ R[x1, . . . , xn] such

that

g(σ1, σ2, . . . σn) = f(u1, u2, . . . , un).
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Proof. Apply induction on n. The n = 1 case is clear. Let the theorem be

true for symmetric polynomials in n − 1 variables. To prove the theorem

in R[u1, u2, . . . , un], apply induction on deg f . If deg f = 0 then f is a

constant. It is clear in this case. Consider f(u1, u2, . . . , un−1, 0) = f0 ∈
R[u1, u2, . . . , un−1]. Then f0 is symmetric. By induction hypothesis we have

f0 = g(σ01, σ
0
2, . . . , σ

0
n−1). Then f − g(σ1, σ2, . . . , σn−1) = f1 is symmetric

and f1(u1, . . . , un−1, 0) = 0. Thus un | f1 and hence σn | f1, by symmetry.

So f1 = σnh(u1, . . . , un). Since σn is not a zerodivisor in R[u1, . . . , un], h is

symmetric. Since deg h < deg f , by induction hypothesis h is a polynomial

in σ1, . . . , σn, hence f is so. Therefore f is a polynomial in σ1, . . . , σn.

Uniqueness : Use induction on n. the n = 1 case is obvious. Let us first

prove that the map

φ : S = R[z1, z2, . . . , zn]→ R[σ1, σ2, . . . , σn] such that

φ(zi) = σi, i = 1, 2, . . . , n and φ|R = idR

is an isomorphism. If it is not an isomorphism, we pick a nonzero polynomial

f(z1, z2, . . . , zn) ∈ S of least degree such that

f(σ1, σ2, . . . , σn) = 0.

Write f as a polynomial in zn with coefficients in R[z1, z2, . . . , zn−1] :

f(z1, z2, . . . , zn) = f0(z1, z2, . . . , zn−1) + · · ·+ fd(z1, z2, . . . , zn−1)z
d
n.

Then f0 6= 0. If so, then f = zng where g ∈ S. Then σng(σ1, . . . , σn) = 0.

Hence g(σ1, . . . , σn) = 0. This contradicts the minimality of deg f. Therefore

we have

0 = f0(σ1, . . . , σn−1) + · · ·+ fd(σ1, . . . , σn−1).σ
d
n.

In this relation put un = 0 to get

f0((σ1)0, (σ2)0, . . . , (σn−1)0) = 0.

This is a nontrivial relation among the elementary symmetric polynomials

in u1, u2, . . . , un−1. This is a contradiction. �

Newton’s identities for power sum symmetric polynomials

By the Fundamental Theorem for symmetric polynomials the symmetric

polynomials wk = uk1 + · · · + ukn, k = 1, 2, 3, . . . are polynomials in the
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elementary symmetric polynomials. Isaac Newton found identities which

express wk in terms of σ1, σ2, . . . , σn.

Theorem 6.5 (Newton).

wk = σ1wk−1 − σ2wk−2 + · · ·+ (−1)kσk−1w1 + (−1)k+1σkk if k ≤ n,

= σ1wk−1 − σ2wk−2 + · · ·+ (−1)n+1σnwk−n if k ≥ n.

Proof. Let z, y be indeterminate. Then

(y − u1)(y − u2) · · · (y − un) = yn − σ1yn−1 + σ2y
n−2 + · · ·+ (−1)nσn

Put y = 1/z to get

(1− u1z)(1− u2z) · · · (1− unz) = 1− σ1z + σ2z
2 + · · ·+ (−1)nσnz

n := σ(z)

Consider the generating function of w1, w2, . . .

w(z) = w1z + w2z
2 + w3z

3 + · · · =
∞∑
k=1

wkz
k

=

∞∑
k=1

n∑
i=1

uki z
k =

n∑
i=1

∞∑
k=1

(uiz)
k

=
n∑
i=1

uiz

1− uiz

Since σ(z) = (1− u1z) · · · (1− unz),

σ′(z) = −
n∑
i=1

uiσ(z)

1− uiz
and hence w(z) =

n∑
i=1

uiz

1− uiz
=
−zσ′(z)
σ(z)

This implies that

w(z)σ(z) = −z(−σ1 + σ2(2z)− σ3(3z2) + · · ·+ (−1)nnσnz
n−1)

= σ1z − 2σ2z
2 + 3σ3z

3 + · · ·+ (−1)n+1nσnz
n

if k ≤ n, equating the coefficient of zk we get

(−1)k+1kσk = wk − σ1wk−1 + wk − 2σ2 + · · ·+ (−1)kw1σk−1.
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Hence

wk = σ1wk−1 − σ2wk−2 + · · ·+ (−1)k+1σkk.

If k > n, equate coefficient of zk to get

wk − wk−1σ2 − · · ·+ (−1)nσnwk−n = 0.

Therefore

wk = σ1wk−1 − σ2wk−2 + · · ·+ (−1)n+1σnwk−n.

�


