
Lecture 19 : Abelian and Cyclic Extensions
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(1) Infinitude of primes p ≡ 1 ( mod n ).

(2) Inverse Galois problem for finite abelian groups.

(3) Structure of some cyclic extensions.
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The Inverse Galois Problem for Finite Abelian Groups

A Galois extension E/F is called abelian (resp. cyclic) if G(E/F ) is

abelian (resp. cyclic). In this section we will show that any finite abelian

group is the Galois group of a Galois extension of Q. In other words, any

finite abelian group is the Galois group of a polynomial with rational coef-

ficients. A proof of this theorem requires the theorem from number theory

that there are infinitely many primes p ≡ 1( mod n). We shall prove this

using cyclotomic polynomials. This is a special case of Dirichlet’s theorem

about infinitude of primes in the arithmetic progression a+nb where a, b are

coprime natural numbers and n = 1, 2, 3, . . . . We will also construct cyclic

extensions of fields having enough roots of unity.

Lemma 19.1. Let p be a prime number and n be relatively prime to p. Let

Φ̄n(x) have a root in Fp. Then p ≡ 1 (mod n).

Proof. Let k ∈ Z, k̄ ∈ Fp and Φ̄n(k̄) = 0. Then p | Φn(k). Hence p | kn − 1.

Thus kn ≡ 1(mod p). We claim that o(k̄) = n in the group (Fp)
×. Suppose

o(k̄) = m < n. Then k̄m = 1. Hence

xn − 1 =
∏
d|n

Φd(x) = Φn(x)
∏
d<n

Φd(x)

= Φn(x)
∏
d|m

Φd(x)h(x)

= Φn(x)(xm − 1)h(x)
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Hence k̄n − 1 = Φn(k̄)(k̄m − 1)h(k̄). This means xn − 1 has a multiple root

in Fp. This is a contradiction. Hence o(k̄) = n. Hence n | p − 1. Thus

p ≡ 1 mod n. �

Theorem 19.2. There are infinitely many primes p ≡ 1 (mod n).

Proof. Suppose to the contrary, p1, p2, . . . , pg are all such primes. Let m =

np1p2 . . . pg. Since Φm(x) ∈ Z[x], is monic, limx→∞Φm(mx) = ∞. Hence

there exists k such that Φm(mk) ≥ 2. Let p be a prime factor of Φm(mk).

Then p | (mk)m − 1. Hence p does not divide mk. Hence (p, n) = 1 and

p 6= p1, . . . , pn. Moreover Φ̄m(mk) = 0. Hence p ≡ 1(mod n). This is a

contradiction. �

Theorem 19.3. Let G be a finite abelian group. Then there is a Galois

extension K/Q such that G(K/Q) = G.

Proof. We may assume that |G| ≥ 2. Then G ' Cn1 × · · · × Cnk
. where

|G| = n = n1n2 . . . nk and n1|n2| · · · |nk. There exist infinitely many primes

pi ≡ 1 (mod ni) for i = 1, 2, . . . , k. We can find subgroups H1 < U(p1), H2 <

U(p2), . . . ,Hk < U(pk) such that

U(p1)

H1
' Cn1 ,

U(p2)

H2
' Cn2 , . . . ,

U(pk)

Hk
' Cnk

.

U(p1)× U(p2)× · · · × U(pk)

H1 ×H2 × · · · ×Hk
' Cn1 × · · · × Cnk

.

Let H < U(n) and H ' H1×H2×· · ·×Hk. Then U(n)
H ' G. By the FTGT

G(Q(ζn)H/Q) =
U(n)

H
' G.

�

Cyclic Galois Extensions

In this section we discuss cyclic extensions of degree n if F has a primitive

nth root of unity or when F has characteristic p > 0 and E/F has degree p.

There is no simple description of cyclic extensions of Q or fields devoid of

roots of unity. We need a theorem of Dedekind about linear independence

over K of automorphims of a field K.
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Definition 19.4. Let G be a group and K a field. By a character of

G in K we mean a homomorphism χ : G → K×. We say that characters

χ1, χ2, . . . , χn : G → K× are linearly independent if for a1, . . . , an ∈ K
a1χ1 + a2χ2 + · · ·+ anχn = 0 if and only if ai = 0 for i = 1, 2, . . . , n.

Theorem 19.5 (Dedekind). Let χ1, χ2, . . . , χn be distinct characters of a

group G in a field K. Then χ1, χ2, . . . , χn are linearly independent.

Proof. Apply induction on n. If n = 1, then χ1 : G→ K× is clearly linearly

independent. Let n ≥ 2. Let n be the smallest positive integer such that

there exist a1, . . . , an ∈ K, not all zero with

a1χ1 + · · ·+ anχn = 0.(1)

Then ai 6= 0, for all i. Since χ1 6= χ2, there exists z ∈ G such that χ1(z) 6=
χ2(z). Hence for all x ∈ G,

a1χ1(xz) + a2χ2(xz) + · · ·+ anχn(xz) = 0(2)

a1χ1(z)χ1 + a2χ2(z)χ2 + · · ·+ anχn(z)χn = 0.(3)

Multiply (1) by χ1(z) and subtract (3) to get the relation :

(χ1(z)−χ2(z))a2χ2 + (χ1(z)−χ3(z))a3χ3 + · · ·+ (χ1(z)−χn(z))anχn = 0.

The above relation has smaller length, which is a contradiction.

�

Lemma 19.6. Let F be a field containing a primitive nth root of unity ζ.

Suppose that E/F is a Galois extension of degree n and G = G(E/F ) = (σ).

Then ζ is an eigenvalue of σ.

Proof. The field E is an n-dimensional F -vector space. Since σ has order n,

σ satisfies xn − 1 = 0. If σ is a root of a polynomial f(x) ∈ F [x] of degree

m < n then σ, σ2, . . . , σm are linearly dependent over F. This contradicts

Dedekind’s Theorem. Hence the minimal and the characteristic polynomials

of σ are equal to xn − 1. Hence ζ is an eigenvalue of σ.

�

We now describe the structure of cyclic extensions of degree n over a field

having a primitive nth root of unity.
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Theorem 19.7. Let E/F be a cyclic extension of degree n with G =

G(E/F ) = (σ) and let ζ ∈ F be a primitive nth root of unity. Then there

exists a b ∈ F so that E = F (a) where an = b.

Proof. Since ζ is an eigenvalue of σ, there exists an eigenvector a ∈ E× so

that σ(a) = ζa. Hence σi(a) = ζia for all i = 1, 2, . . . , n. Hence a has at

least n conjugates in E. As E/F is a Galois extension of degree n, and E

contains a splitting field of f(x) = irr (a, F ), it follows that E = F (a) and

an ∈ F since σ(an) = ζnan = an. �

Intermediate subfields of a cyclic Galois extension

Let E/F be a cyclic Galois extension of degree n where F has a primitive nth

root of unity. We have proved that E = F (a) where an ∈ F. The number of

subgroups of the Galois group G = G(E/F ) is d(n), the number of divisors

of n. Each of these subgroups is cyclic. Hence there are d(n) intermediate

subfields of E/F. We show that they are F (ad) where d is a divisor of n.

Proposition 19.8. Let E/F be a cyclic Galois extension of degree n where

F has a primitive nth root of unity. Let E = F (a) where an ∈ F. Then The

intermediate subfields of E/F are F (ad) where d is a divisor of n.

Proof. The Galois group G has unique subgroup of order d for every divisor

d of n. Hence E/F has a unique subfield of degree d for each divisor d of n.

Consider the subfield K = F (ad). Then a is a root of xd − ad ∈ K[x]. Thus

[E : F (ad)] ≤ d. Since an ∈ F, we have (ad)n/d ∈ F. Hence [F (ad) : F ] ≤ n/d.
It follows that [E : F (ad)] = d. Hence the intermediate subfields of E/F are

F (ad) where d varies over the divisors of n.

�


