
Lecture 9 : Separable Extensions I

Objectives

(1) Criterion for multiple roots in terms of derivatives

(2) Irreducible polynomials are separable over fields of characteristic

zero.

(3) Characterization of perfect fields of positive characteristic,
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Let F be a field. We have seen that the discriminant of a polynomial

f(x) ∈ F [x] vanishes if and only if f(x) has a repeated root. Calculation

of discriminant can be difficult. In this section we discuss an effective cri-

terion in terms of derivatives of polynomials whether certain root of f(x) is

repeated. We will also study fields F so that no irreducible polynomial in

F [x] has repeated roots.

Let E be a splitting field of a monic polynomial f(x) ∈ F [x] of degree n.

Write in E[x] the unique factorization of f(x).

f(x) = (x− r1)e1(x− r2)e2 · · · (x− rg)en .

where r1, . . . , rg ∈ E and e1, e2, . . . , eg are positive integers.

Definition 9.1. The numbers e1, e2, . . . , en are called the multiplicities of

r1, r2, . . . , rn respectively. If ei = 1 for some i, then ri is called a simple

root. If ei > 1 then ri is called a multiple root. A polynomial f(x) with no

multiple roots is called a separable polynomial.

Proposition 9.2. The numbers of roots and their multiplicities are inde-

pendent of a splitting field chosen for f(x) over F.

Proof. Let E and K be splitting fields of f(x) over F. Then there is an

F−isomorphism σ : E → K. This isomorphism gives rise to an isomorphism

φσ : E[x]→ K[x], ϕσ

(∑
i

aix
i

)
=
∑
i

σ (ai)x
i.
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Let f(x) =
∏g
i=1(x− ri)ei be the unique factorization of f(x) ∈ E[x]. Then

φσ(f(x)) =
∏g
i=1(x − σ(ri))

ei . Since K[x] is UFD, σ(r1), . . . , σ(rg) are the

roots of φσ(f(x)) = f(x) with multiplicities e1, . . . , eg in K respectively. �

The derivative criterion for multiple roots

Let f(x) = a0 + a1x + · · · + anx
n ∈ F [x]. We can define derivative of f(x)

without appealing to limits. This is preferable since F may not be equipped

with a distance function.

The derivative of f(x), is defined by f ′(x) :=
∑m

i=0 iaix
i−1. It is easy to

check that the usual formulas for (f(x)±g(x))′, (f(x)g(x))′ and (f(x)/g(x))′

where g(x) 6= 0 hold for derivatives of polynomials.

Theorem 9.3. Let f(x) ∈ F [x] be a monic polynomial.

(1) If f ′(x) = 0 then every root of f(x) is a multiple root.

(2) If f ′(x) 6= 0 then f(x) has simple roots if and only if gcd(f, f ′) = 1.

Proof. (1) Let f(x) = (x− r)g(x). Then

0 = f ′(x) = g(x) + (x− r)g′(x).

Thus g(x) = −(x− r)g′(x), so r is a root of g(x). Hence r is a multiple root.

(2) (⇐) Let gcd(f, f ′) = 1 and let r be a multiple root of f(x). Then

f(x) = (x− r)2g(x) in some splitting field E of f(x) over F. Thus

f ′(x) = (x− r)2g′(x) + 2(x− r)g(x).

Hence f ′(r) = 0. If d(x) = gcd(f(x), f ′(x)) ∈ F [x] then

d(x) = p(x)f(x) + q(x)f ′(x)

for some p(x), q(x) ∈ F [x]. Hence d(r) = 0. Therefore, deg d(x) ≥ 1, so

gcd(f, f ′) 6= 1, which is a contradiction. Therefore f(x) has only simple

roots.

(⇒). Let r1, r2, . . . , rn be the roots of f(x) and assume that they are simple.

Then

f(x) = (x− r1)(x− r2) · · · (x− rn) and f ′(x) =
∑n

i=1
f(x)

(x−ri) .

Therefore (x − ri) does not divide f ′(x) any i. Hence f and f ′ have no

common root. Therefore gcd(f, f ′) = 1.
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Proposition 9.4. (1) Let f(x) ∈ F [x] be an irreducible polynomial. Then

f(x) is separable if and only if f ′ 6= 0.

(2) Irreducible monic polynomials over a field of characteristic zero are sep-

arable.

Proof. (1) (⇒) If f ′ = 0, then every root of f(x) is a multiple root.

(⇐) Suppose r is a multiple root of f(x). Then f ′(r) = 0. Since f(x)

is irreducible, f(x) | f ′(x). But this is a contradiction since deg f ′(x) <

deg f(x). Therefore f(x) is separable.

(2) If char F = 0, and f(x) is of positive degree, then f ′(x) 6= 0. �

Proposition 9.5. Let F be a field of positive characteristic p. Then xp−a ∈
F [x] is either irreducible in F [x] or a ∈ F p.

Proof. Suppose f(x) = xp − a = g(x)h(x) where 1 ≤ deg g = m < p

Let b be a root of f(x) in a splitting field E of f(x). Then a = bp, so

f(x) = (x− b)p. Hence b is also a root of g(x). Thus g(x) = (x− b)m Then

bm ∈ F. Since (p,m) = 1, there exists x, y ∈ Z such that px+my = 1. Hence

b = bpx+my = ax(bm)y ∈ F. Thus bp = a ∈ F p. �

Example 9.6. We construct an irreducible polynomial with a multiple root.

Let F = Fp(t) be the quotient field of the polynomial ring Fp[t]. Let f(x) =

xp − t ∈ F [x]. Then t /∈ F p. Suppose t is a pth power and

t =
g(t)p

h(t)p
=

(∑
i ait

i
)p

(
∑

i bit
i)p

.

Then t(
∑
bpi t

ip) =
∑

i a
p
i t
ip. Hence ai = bi = 0 for all i. Thus xp − t

is irreducible. Another way to see that xp − t is irreducible is to apply

Eisenstein’s Criterion with t as a prime element. Let E be a splitting field

of f(x) over F and u be a root of f(x). Then up = t so xp − t = (x − u)p,

Hence f(x) has only one root in E.

Proposition 9.7. Let f(x) ∈ F [x] where char F = p, be an irreducible

polynomial. If f(x) is not separable then there exists g(x) ∈ F [x] such that

f(x) = g(xp).
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Proof. Since f(x) =
∑

i aix
i is irreducible and inseparable, we have f ′(x) =∑

(iai)x
i−1 = 0. Therefore i = pti for some ti ∈ N. Hence

f(x) =
∑
aptix

pti =
∑
api(x

p)ti .

�

Perfect Fields

We have seen that irreducible polynomial over fields of characteristic 0 are

separable. But over a field of positive characteristic, irreducible polynomial

may not be separable. We now discuss a condition on a field F of positive

characteristic which will ensure that irreducible polynomials in F [x] are

separable.

Definition 9.8. Let F ⊆ K be a field extension. An algebraic element

α ∈ K is a called separable element over F if irr(α, F ) is separable.

We say K/F is a separable algebraic extension if each element of K

is separable. We say F is a perfect field if each algebraic extension is

separable.

Any field of characteristic zero is perfect. By the previous example Fp(t) is

not perfect. This is basically due to t not being a pth power in Fp(t).

Theorem 9.9. Let F be a field of positive characteristic p. Then F is perfect

if and only if

F = F p = {ap | a ∈ F}.

Proof. Suppose a ∈ F \F p. Then xp−a ∈ F [x] is irreducible and inseparable.

Hence F is not perfect.

(⇐) Let F = F p and f(x) ∈ F [x] be an irreducible polynomial. If f(x) is

inseparable, then f(x) = g(xp) =
∑
ai(x

p)i =
∑

(bi)
p(xp)i = (

∑
bix

i)p for

some bi ∈ F. This contradicts irreducibility of f(x). Hence f(x) is separable.

�

Corollary 9.10. Every finite field is perfect.

Proof. Let |F | = pn. By Lagrange theorem applied to the multiplicative

group F× we get αp
n−1 = 1 for all α ∈ F×. Hence αp

n
= α for all α ∈ F.

Therefore α = (αp
n−1

)p. �


