
Lecture 7 : Symmetric Polynomials II

Objectives

(1) Discriminant in terms of power-sum symmetric polynomials.

(2) Discriminant of a cubic.

(3) Existence of a splitting field of a polynomial.

(4) Fundamental theorem of algebra via symmetric polynomials.

Key words and phrases: Discriminant of a polynomial, splitting field,

fundamental theorem of algebra.

Discriminant of a polynomial: We discuss a method to calculate the

discriminant of a polynomial by employing Newton’s identities.

Definition 7.1. Let u1, u2, . . . , un, x be indeterminate and

f(x) = (x− u1)(x− u2) . . . (x− un).

The discriminant of f(x) is the symmetric function

disc (f(x)) = Πi<j(ui − uj)2

It is clear that f(x) has a repeated root if and only if disc (f) = 0.

Since disc (f) is a symmetric polynomial with integer coefficients, by the

fundamental theorem for symmetric polynomials, there exists a polynomial

g(X1, . . . , Xn) ∈ Z[X1, X2, . . . , Xn] such that disc (f) = g(σ1, σ2 . . . , σn).

The van der Monde matrix

M =



1 1 · · · 1

u1 u2 · · · un

u21 u22 · · · u2n
...

...
...

...

un−1
1 un−1

2 · · · un−1
n


has determinant detM = Πi>j(ui − uj). Hence
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disc (f) = det(MM t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

n w1 w2 · · · wn−1

w1 w2 w3 · · · wn

w2 w3 w4 · · · wn+1

...
...

...
...

...

wn−1 wn wn+1 · · · w2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Example 7.2. Using Newton’s identities, we calculate the discriminant of

the polynomial p(x) = x3 + px+ q. We have σ1 = 0, σ2 = p, σ3 = −q and

MM t =

 3 w1 w2

w1 w2 w3

w2 w3 w4


Newton’s identities in this case are

w1 = σ1 = 0

w2 = σ21 − 2σ2 = −2p

w3 = σ1w2 − σ2w1 + 3σ3 = −3q

w4 = σ1w3 − σ2w2 + σ3w1 = 2p2

Therefore

disc (f) = detMM t =

∣∣∣∣∣∣∣
3 0 −2p

0 −2p −3q

−2p −3q 2p2

∣∣∣∣∣∣∣ = −4p3 − 27q2.

In this section we construct a field extension K/F which contains all the

roots of a given polynomial f(x) ∈ F [x]. For simplicity, we want K to be

the smallest field containing F with respect to this property.

Definition 7.3. Let F be a field and f(x) ∈ F [x] be a monic polynomial

of degree n. A field K ⊇ F is called a splitting field of f(x) over F

if there exist r1, r2, . . . , rn ∈ K so that f(x) = (x − r1) . . . (x − rn) and

K = F (r1, r2, . . . , rn).

Example 7.4. (i) Let f(x) = x2 + ax+ b ∈ F [x]. If f(x) is reducible then

F is a splitting field of f(x). If f(x) is irreducible then (f(x)) is a maximal

ideal of F [x]. Hence F (x)/(f(x)) ' F (r) is a field, where r = x+ (f(x)). If
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s is another root of f(x), then s + r = −a, so s = −a − r ∈ F (r). Hence

F (r) is a splitting field of f(x) over F .

(ii) Consider the irreducible polynomial f(x) = x3 + x + 1 ∈ F2[x]. Let

r = x + (f(x)) ∈ F2[x]/(f(x)) = F2(r). Since [F2(r) : F2] = 3, F2(r) has 8

elements. A basis of the F2−vector space F2(r) is {1, r, r2}. Hence

F2(r) = {0, 1, r, r2, 1 + r, 1 + r2, r + r2, 1 + r + r2}

and we have the relation r3 = 1+r. Check that f(r2) = f(r4) = 0. Therefore

x3 + x+ 1 = (x+ r)(x+ r2)(x+ r4).

Thus Fr(r) is a splitting field of x3 + x+ 1 over F2.

We will later see that if f(x) ∈ Fq[x], where Fq is a finite field with q

elements, then Fq[x]/(f(x)) is a splitting field of f(x), if f(x) is an irreducible

polynomial over Fq.

Existence of Splitting field

Theorem 7.5. Let F be a field. Then any polynomial f(x) ∈ F [x] of positive

degree has a splitting field.

Proof. Apply induction on deg f. If deg f = 1 then F is the splitting field

of f over F. Suppose deg f > 1. If f(x) splits as a product of linear factors

in F [x] then F is the splitting field of f(x) over F. Suppose g(x) is an

irreducible factor of f(x) with deg g ≥ 2. Then r = x + (g(x)) ∈ K :=

F [x]/(g(x)) is a root of g(x) and hence of f(x). Since f(x) = (x − r)h(x)

for some h(x) ∈ K[x] and deg h(x) < deg f(x). By induction h(x) has a

splitting field L over K. Let r2, r3, . . . , rn ∈ L be the roots of h(x). Then

L = K(r2, r3, . . . , rn) = F (r1, r2, . . . , rn) is the required splitting field. �

We end this section by presenting a proof of the fundamental theorem of

algebra due to Gauss.

Theorem 7.6 (The Fundamental Theorem of Algebra). Every com-

plex polynomial of positive degree has a complex root.

Proof. We shall use the following facts:

(i) Every odd degree polynomial with real coefficients has a real root.
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(ii) Every quadratic polynomial in C[x] has a complex root.

(iii) The fundamental theorem for symmetric polynomials.

(iv) Every polynomial f(x) has a splitting field.

(i) This is a consequence of the Intermediate Value Theorem.

(ii) It is enough to show that complex numbers have a complex square root.

Indeed, let z = a + bi ∈ C, where a, b ∈ R and (c + di)2 = a + bi. Then

c2 − d2 + 2cdi = a+ bi. Thus a = c2 − d2 and b = 2cd. Therefore

a2 + b2 = (c2 + d2)2

c2 + d2 =
√
a2 + b2 ∈ R.

Therefore c2 = 1
2 [a +

√
a2 + b2] ≥ 0 and d2 = 1

2 [
√
a2 + b2 − a] ≥ 0. Thus

c, d ∈ R.

The polynomial g(x) = f(x)f̄(x) ∈ R[x]. Here f̄ denotes the polynomial

whose coefficients are conjugates of the coefficients of f(x). If g(x) has a

complex root z then either f(z) = 0 or f̄(z) = 0. If f̄(z) = 0, then f(z̄) = 0.

Thus by replacing f by g, we may assume that f(x) is a monic polynomial

with real coefficients.

Let d = deg f = 2nq, where q is odd. We apply induction on n. If n = 0,

then f is a real odd degree polynomial, hence it has a real root. Now let

n ≥ 1. Let K = C(α1, . . . , α2), be a splitting field of f(x), over C, where

α1, . . . , αd are the roots of f(x) in K. Consider the elements

yij = αi + αj + rαiαj ,

where r ∈ R is fixed and 1 ≤ i ≤ j ≤ d. There are
(
d+1
2

)
such pairs (i, j).

Hence

deg h(x) =
∏

1≤i≤j≤d

(x− yij) =

(
d+ 1

2

)
= 2n−1q(d+ 1).

The coefficients of h(x) are elementary symmetric polynomials in yij ’s. So

they are symmetric polynomials in α1, α2, . . . , αd. Hence they are polynomi-

als in the coefficients of f(x). Hence h(x) ∈ R[x]. By induction on n, h(x)

has a complex root say zr. Since all the roots of h(x) ∈ K and zr ∈ C ⊆ K,

zr = αi(r) + αj(r) + rαi(r)αj(r)
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for some pair (i(r), j(r)) so that 1 ≤ i(r) ≤ j(r) ≤ d. Define

ϕ : R→ {(i, j) | 1 ≤ i(r) ≤ j(r) ≤ d} = P, ϕ(r) = (i(r), j(r)).

Since R is infinite and P is finite, there exists c 6= d ∈ R such that

(i(c), j(c)) = (i(d), j(d)) := (a, b). Therefore,

zc = αi(c) + αj(c) + rαi(c)αj(c) = αa + αb + cαaαb = zd = αa + αb + dαaαb.

Therefore (d− c)αaαb = zd − zc ∈ C. Hence αaαb ∈ C so that αa + αb ∈ C.

But αa and αb are roots of

x2 − (αa + αb)x+ αaαb ∈ C[x].

Hence αa, αb ∈ C. Therefore f(x) has a complex root. �


