Lecture 6 : Symmetric Polynomials I

Objectives

(1) Examples of symmetric polynomials.
(2) The fundamental theorem of symmetric polynomials.

(3) Newton’s identities for power sum symmetric polynomials.
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Our next goal is to prove the Fundamental Theorem of Algebra : Ev-
ery polynomial of positive degree with complex coefficients has a complex
root. You must have seen its topological and complex analytic proofs. We
will present a proof which uses symmetric polynomials and the construc-
tion of the splitting field of a polynomial. We will learn about symmetric
polynomials in this section and splitting fields of polynomials in the next

section.

Let R be a commutative ring with identity and S = R[uj,ug, ..., u,] be the
polynomial ring in n variables over R. Let ¢ € S,, the symmetric group
of all permutations of {1,2,...,n}. A permutation ¢ € S,, gives rise to an

automorphism g4 : S — S, defined as
9o (f(ur, - un)) = f(ugy, - - Ugn))-
Definition 6.1. A polynomial f € S is called a symmetric polynomial
if for all ¢ € Sy,
flur, .. un) = f(ugy, - - Ugm))-

Example 6.2. (1) Consider the general polynomial

fl) = (z—u)(xr—u2)...(x —up)

= 2" — oz f " 2 4 (=1)"0,
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where
o1 =u1+ -+ Uy, O2 = g Uiy ooy Op = ULUL * * * Up.
1<J
It is easy to verify that o1,...,0, are symmetric. These are called the
elementary symmetric polynomials in uy,us, ..., uy,.

(2) The symmetrization of a monomial u{" ... uS" is defined as
a n\ o a an
Suit--upn) = Z ua(ll)uafz) Ul
a€ES,
It is clear that S(uj"---u2") is a symmetric polynomial. The symmetriza-

tion of ufus is

S(udug) = udug + udus + udus + udug + udug + udug.
(3) For each k the polynomials wy, = u¥ + uf + --- 4+ uf are symmetric

polynomials.

(4) Let hy, denote the sum of all monomials of degree m in uy,ug,..., uy.

It is called the complete homogeneous symmetric polynomial of degree m.

Fundamental Theorem for symmetric polynomials
Example 6.3. Consider the symmetric polynomial

fur, ug, uz) = udug + udug + udur + udus + udug + vdus.

Then f(u1,uz,0) = udug + udu; = uyuz(uy + ug) = o0y, where

0 0
oi = o1(u1,u2,0) = uy + ug and oy = oa(uy, u2,0) = uyus.

Consider f — o102 = g. Then g|y;—0 = 0. Thus u3 | g. Since g is symmetric
ujugug = o3 | g. This gives f — 0109 = —3ujuguz = —303 and therefore

f = 0109 — 30‘3.

Theorem 6.4 (Newton). Let R be a commutative ring. Then every sym-
metric polynomial in Rluy,us,...,u,] is a polynomial in the elementary
symmetric polynomials in a unique way. In other words if f(uy,usa, ..., uy)
is symmetric then there exists a unique polynomial g € Rlxq,...,zy] such
that

g(o1,09,...00) = f(ur,ug, ..., up).
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Proof. Apply induction on n. The n = 1 case is clear. Let the theorem be
true for symmetric polynomials in n — 1 variables. To prove the theorem

in R[ui,us,...,u,], apply induction on deg f. If degf = 0 then f is a

constant. It is clear in this case. Consider f(u1,us,...,up_1,0) = f0 €
R[ui,us, ..., u,—_1]. Then f0is symmetric. By induction hypothesis we have
O =g(0%03,...,00 |). Then f — g(o1,00,...,00_1) = f1 is symmetric

and fi(u1,...,un—1,0) = 0. Thus u, | fi and hence o, | fi, by symmetry.
So f1 = onh(u1,...,uy). Since g, is not a zerodivisor in Ruy,...,uy], h is
symmetric. Since degh < deg f, by induction hypothesis h is a polynomial

in 01,...,0p, hence f is so. Therefore f is a polynomial in oy, ..., 0,.

Uniqueness : Use induction on n. the n = 1 case is obvious. Let us first

prove that the map

¢:S=R[z1,29,...,2,] = R|o1,009,...,0,] such that
d(z) =0;, i=1,2,....,n and ¢|gr = idp
is an isomorphism. If it is not an isomorphism, we pick a nonzero polynomial
f(z1,29,...,2,) € S of least degree such that
flo1,09,...,04) =0.
Write f as a polynomial in z, with coefficients in R[z1, 22, ..., 2n—1] :
flz1,22, 0 2m) = fo(z1, 22, 2na1) + oo+ fal21, 22, 21 20

Then fy # 0. If so, then f = z,g where g € S. Then o,9(01,...,0,) = 0.
Hence g(01,...,0,) = 0. This contradicts the minimality of deg f. Therefore

we have
0= fO(Ula s ao'nfl) ++ fd(alv s 70-n71)-0.2-
In this relation put u, = 0 to get
fo((a1)o, (02)0, -+, (0n-1)0) = 0.

This is a nontrivial relation among the elementary symmetric polynomials
in uy,ug,...,u,—1. This is a contradiction. ([
Newton’s identities for power sum symmetric polynomials

By the Fundamental Theorem for symmetric polynomials the symmetric

polynomials wy = ulf + o+ u’fL, k = 1,2,3,... are polynomials in the
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elementary symmetric polynomials. Isaac Newton found identities which

express wy in terms of 01,09, ..., 0p.

Theorem 6.5 (Newton).

W, = O1Wh_] — O9Wh_9 + -+ + (—1)kak_1w1 + (—1)k+lakk: if k<n,

= owp_1 — oowp_g + -+ (=) "Mopwp_, if k>n.

Proof. Let z,y be indeterminate. Then

(y—w)(y —u2) - (y —un) =y" — o1y + o2y 2 4+ (—1)"0
Put y =1/z to get
(1—u12)(1—ugz) - (1 —upz) =1 — o1z + 0222 + -+ -+ (=1)"0,2" := 0(2)

Consider the generating function of wi, ws, ...

o0
w(z) = wiz+ woz? + w3z + - = Zwkzk
k=1
oo n n oo
B S 3 3 S
k=1 i=1 i=1 k=1

n
>
a 1 —wu;z
i=1 v

Since 0(z) = (1 —u1z) -+ - (1 — up2),

b wo(2) = wz —20'(2)
o'(z) = —; T us and hence w(z) = Zz; —uz - o(2)

This implies that

w(z)o(z) = —z(—01 +02(22) —03(322) + - + (=1)"no,2" 1)
= o012—2092° + 3032+ + (—1)"+1nanz”

if k < n, equating the coefficient of z* we get

(=) koy = wy — orwg—1 + wg — 202 + - -+ + (= 1) wiop_1.
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Hence
W = 01Wg—1 — 02Wk—2 + -+ + (—1)k+10kk.

If k > n, equate coefficient of 2* to get
W — Wg—109 — -+ + (—1)"0nwk,n = 0.
Therefore

1
Wy = O1Wg—1 — O2Wg—2 + - -+ + (—1)" T opwy_p.



