Lecture 8 : Algebraic Closure of a Field

Objectives

(1) Existence and isomorphisms of algebraic closures.

(2) Isomorphism of splitting fields of a polynomial.

Key words and phrases: algebraically closed field, algebraic closure, split-
ting field.

In the previous section we showed that all complex polynomials of positive
degree split in C[z] as products of linear polynomials in C[z]. While working
with polynomials with coefficients in a field F', it is desirable to have a field
extension K/F so that all polynomials in K[z] split as product of linear

polynomials in K[x].

Definition 8.1. A field F is called an algebraically closed field if every
polynomial f(x) € Flz| of positive degree has a root in F.

It is easy to see that a field F' is algebraically closed if and only if f(z) is
a product of linear factors in F[x]. The fundamental theorem of algebra
asserts that C is an algebraically closed field. Let us show that any field is

contained in an algebraically closed field.
Existence of algebraic closure

Theorem 8.2. Let k be a field. Then there exists an algebraically closed
field containing k.

Proof. (Artin) We construct a field K 2O k in which every polynomial of
positive degree in k[z] has a root. Let S be a set of indeterminates which
is in 1 — 1 correspondence with set of all polynomials in k[z] of degree > 1.

Let z; denote the indeterminate in S corresponding to f.

Let I = (f(xy) | deg f > 1) be the ideal generated by all the polynomials
f(x¢) € k[S]. We claim that I is a proper ideal of k[S]. Suppose to the
contrary, I = k[S]. Then
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for some gi1,g2,...,9n € k[S]. The polynomial g1, go,...,g, involve only
finitely many variables. Put xy, = x; fort =1,2,...,n and let x,41,..., 2,

be the remaining variables in g1, g2, ..., 9n. Then
n
> g, ma, . Ty g, T filw) = 1.
i=1

Let E/k be an extension field in which the polynomials fi(z1),..., fn(Zn)
have roots ay, .. ., ay, respectively. Putting 41 =... =2, =0and z; = o
for all = 1,2,...,n in the equation 1 we get a contradiction. Hence [ is a
proper ideal of k[S]. Let m be a maximal ideal of k[S] containing I. Then
Ki = k[S]/m is a field. We claim that xy + m is a root of f(x). Indeed,
f(xg+m) = f(xf) +m = m. Thus each polynomial in k[z] has a root in K.
Repeat the procedure on K; to get Ko O K which has roots of all monic
polynomials in Kj[z]. Let K = U°,K;. Then K is a field. If f(z) € KJ[z]
then f(x) € K,[x] for some n. Hence f(z) has a root in K,+1 C K. Thus
K is algebraically closed. ([

Corollary 8.3. Let F' be a Field. Then there exists a field K O F such that

K is algebraically closed and K is algebraic over F.
Proof. Let L D F be an algebraically closed field. Then the field
K ={a € L | ais algebraic over F'}
is algebraically closed and it is algebraic over F. O

Definition 8.4. Let F be a field. An extension K/F is called an algebraic

closure of F' if K is algebraically closed and K/F' is an algebraic extension.

Isomorphism of algebraic closures

We now show that if £y and E» are algebraic closures of a field F' then they
are F'—isomorphic. As a consequence we also prove that any two splitting
fields of a polynomial f(z) € F[z]| are F'—isomorphic. Extensions of embed-
dings of fields is one of the main observations in various arguments in Galois
theory. The next result prepares us for the theorem about isomorphism of

algebraic closures of a field.
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Proposition 8.5. Let 0 : k — L be an embedding of fields where L is
algebraically closed. Let a be algebraic over k and p(x) = irr(a, k). Let
p(r) =Y a;x* € klx] and p°(x) = 3. o(a;)x'. Then T — () is a bijection

between the sets
{r:k(a) = L | 7 1is an embedding and 7|, = o} «— {f € L|p°(B) = 0}.
Proof. Let 7 : k(o) — L be an embedding extending o. Then

7(p(@)) = p”(7(@)) = 0.

Hence 7(«) is a root of p?(x). Conversely let § € L and p?(f) = 0. Define
7:k(a) = L by 7(f()) = f7(B). We show that 7 is well defined.

Suppose f(a) = g(a). Then (f — g)() = 0, o p(z) | (f(x) — g(x)). Hence
(@) | (f = 9)7(2). Thus p°(8) = (f(8) — ¢7(8) = 0. Hence f7(8) =
7(f(a)) = ¢°(B) = 7(9()). Thus 7 is well-defined. Suppose that f7(5) =
7(f(a)) = 0. Then p?(x) | f7(x). Since o is an embedding, p(z) | f(z).
Thus f(a) =0.

O

Proposition 8.6. Let 0 : k — L be an embedding of fields where L is
algebraically closed. Let E be an algebraic extension of k. Then there exists
an embedding T : E — L extending o. If E is an algebraic closure of k and

L is an algebraic closure of o(k) then T is an isomorphism extending o.

Proof. Consider the set
S={(F,7) |k CF CFE are fields and 7 : F' — L such that 7|, = o}.
Since (k,0) € S, it is nonempty. Let (F,7) and (F’,7’) € S. Define
(F,7) < (F',7') if and only if F C F" and 7'|p = 7.

Then S is a partially ordered inductive set. Indeed, if {(Fu,7Ta)}acr is a
chain in S then F' = U,crF, is a subfield of E. Define 7 : F — L as
7(z) = 7o(z) if z € F,. Then 7 is well-defined.

By Zorn’s Lemma there exists a maximal element (F,7) € S. We claim
that ' = E. Suppose there exists a € E \ F. Since « is algebraic over
F,7: F — L can be extended to F'(«) — L. This contradicts maximality of
(F,7). Thus E = F. Hence o can be extended to an embedding of E into L.
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Now suppose F is an algebraic closure of £ and L is an algebraic closure of
o(k). Since 7(E) is algebraically closed and L is algebraic over 7(E),L =
7(E). Thus 7 : E — L is an isomorphism. O

Theorem 8.7. If Ey and Es are algebraic closures of a field k then they

are k—isomorphic.

Proof. The identity map k — FEs can be extended to 7 : E1 — FEs by the

above proposition, 7 is a k—isomorphism. O

Theorem 8.8. Let E and F be splitting fields of polynomial f(x) € k[z]
where k is a field. Then they are k-isomorphic.

Proof. Let F® be an algebraic closure of F. Then it is also an algebraic
closure of k. Thus there exists an embedding 7 : F — k% extending id}, :
k— k% Let f(x) =(zr —aq) - (z — ay) be a factorization of f(x) in E[z].
Then

(@) = (@ —7(a1)) - (x — 7(an)) € F*[z].
Thus F = k(7(a1),...,7(an)) = 7(F) as k* contains a unique splitting field
of any polynomial in k[x]. O



