
Lecture 20 : Cyclic Extensions and Solvable Groups

Objectives

(1) Cyclic extensions of degree p over fields with characteristics p.

(2) Solvable groups.

(3) Simplicity of Sn and An.
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tor, simple groups.

Structure of cyclic Galois extensions over fields of characteristic p

Let F be a field of positive characteristic p. We discuss the structure of

Galois extensions of F of degree p. Consider the map δ : F → F defined by

δ(a) = ap−a. Then δ is a homomorphism of the additive group F. Moreover

Fp = Ker δ. Note that δ−1(a) = {a+ i | i = 0, 1, . . . , p− 1}.

Theorem 20.1 (Artin-Schreier). (1) Let E/F be a cyclic Galois exten-

sion of degree p where char F = p, a prime number. Then E = F (a) where

a is a root of xp − x− b for some b ∈ F.

(2) Suppose that a /∈ F p − F. Then f(x) = xp − x− a is irreducible over F

and a splitting field of f(x) over F is cyclic of degree p.

Proof. (1) Let G = G(E/F ) = (σ) and let T : E → E be the linear map of

the F -vector space E defined by T (a) = σ(a)− a. Then

Ker T = {a ∈ E | σ(a) = a} = F.

Since T p = (σ − id)p = σp − id = 0, we have Im (T p−1) ⊂ Ker T = F. If

T p−1 = 0 then there is a nontrivial F -linear relation among σp−1, σp−2, . . . , σ, id.

This contradicts Dedekind’s theorem. Hence Im T p−1 = Ker T = F. Let

b ∈ E so that T p−1(b) = 1. Set α = T p−2(b). Then T (α) = σ(α) − α = 1.

Hence σ(α) = α+ 1. Thus σi(α) = α+ i for all i = 1, 2, . . . , p− 1. Therefore

E = F (α).

Since σ(αp − α) = (α + 1)p − (α + 1) = αp − α, The element a = αp − α ∈
EG = F. Hence α is a root of xp − x− a.
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(2) Conversely, suppose that a /∈ F p−F. Then we show that f(x) = xp−x−a
is irreducible over F. If α is a root of f(x) then α+ i is a root of f(x) for all

i = 1, 2, . . . , p− 1. Hence E = F (α) is a splitting field of f(x). If we assume

that f(x) is irreducible over F then [E : F ] = p and the Galois group is

generated by the automorphims σ(α) = α+ 1.

Suppose that f(x) = g1(x)g2(x) . . . gn(x) where each gi is irreducible over

F. If β is a root of gi then E = F (β) as shown above. Hence each gi(x) has

same degree r and so deg f(x) = p = rn. Thus r = p and n = 1. Hence f(x)

is irreducible over F.

�

Solvable groups

Definition 20.2. Let G be a group. A sequence of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gs+1 = 1(1)

is called a normal series for G if Gi is a normal subgroup of Gi−1 for

i = 1, 2, . . . , s. The normal series (1) is called abelian (resp. cyclic ) if

the quotients Gi/Gi+1 are abelian (resp. cyclic) for i = 0, 1, . . . s. A group

having an abelian series is called a solvable group.

Example 20.3. (1) Any abelian group is solvable.

(2) The group S3 is solvable since S3 ⊃ A3 ⊃ 1 is an abelian series.

(4) The group S4 is solvable since

S4 ⊃ A4 ⊃ V4 ⊃ 1

is an abelian series where V4 = {(1), (12)(34), (13)(24), (14)(23)}.

Proposition 20.4. Any group G of order pn where p is a prime number is

solvable.

Proof. Apply induction on n. If n = 1 then G is cyclic and hence solvable.

Let n ≥ 2. Let C be the center of G. We know that o(C) > 1. Hence

o(G/C) < o(G). By induction, we have an abelian series

G/C ⊃ G1/C ⊃ G2/C ⊃ · · · ⊃ Gs/C = 1

Since (Gi/C)/(Gi+1/C) ' Gi/Gi+1 for all i, we have an abelian series:

G ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gs ⊃ C ⊃ 1.
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Thus G is solvable.

�

Definition 20.5. Let G be a group. The commutator [g, h] of g, h ∈ G
is defined as [g, h] = g−1h−1gh. The derived subgroup of G denoted by

G′ is the subgroup generated by all the commutators in G. The kth derived

subgroup of G is defined inductively as G(k) = (G(k−1))′.

Proposition 20.6. Let f : G→ H be a homomorphism of groups.

(1) f(G′) ⊆ H ′. If f is onto then f(G′) = H ′.

(2) If K CG then K ′ CG. In particular G′ CG.

(3) If K CG then G/K is abelian if and only if G′ ⊆ K.

Proof. (1). Let g, h ∈ G. Then f([g, h]) = f(g)−1f(h)−1f(g)f(h) = [f(g), f(h)].

Hence f(G′) ⊆ H ′. It is clear that equality holds true if f is onto.

(2) Let a ∈ G. The inner automorphism ia : G→ G restricts to an automor-

phism of K as K CG. Hence ia(K ′) = K ′. Therefore K ′ CG. Since GCG,

we have G′ CG.

(3) Let K C G. Then G/K is abelian ⇔ for all g, h ∈ G, ghK = hgK ⇔
h−1g−1hg ∈ K for all g, h ∈ G ⇔ G′ ⊆ K. �

Proposition 20.7. A group G is solvable if and only if G(s) = 1 for some

s ∈ N.

Proof. Let G be solvable. Then there is an abelian series for G

1CG1 CG2 C · · ·CGs = G.

We show by induction on s that G(s) = 1. If s = 1, then G is abelian. Hence

[g, h] = 1 for all g, h ∈ G. Hence G′ = 1. Now let s > 1. Then

1CG1 CG2 C · · ·CGs−1

is an abelian series for Gs−1. Hence G
(s−1)
s−1 = 1. Since G/Gs−1 is abelian,

G′ ⊆ Gs−1. Hence

G(s) = (G′)(s−1) ⊆ G(s−1)
s−1 = 1.

Conversely suppose that G(s) = 1 for some s. Then

GBG(1) BG(2) B · · ·BG(s) = 1

is an abelian series for G. Thus G is solvable. �
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Proposition 20.8. Let G be a group and H be a subgroup.

(1) If G is solvable then so is H.

(2) If f : G → H is a surjective group homomorphism and G is solvable

then H is so.

(3) If K CG and G/K are solvable then G is solvable.

Proof. (1) If G is solvable then G(s) = 1 for some s. Since H(s) ⊂ G(s) = 1,

we have H(s) = 1. Thus H is solvable.

(2) Let G(s) = 1. Since f is surjective, f(G(s)) = H(s) = 1. Hence H is

solvable.

(3) Let K CG and K and G/K be solvable. Then there exist s and t such

that K(s) = 1 and (G/K)(t) = 1. Hence G(t) ⊂ K. Thus G(t+s) ⊂ K(s) = 1.

Hence G is solvable.

�

Lemma 20.9. The group An is generated by 3-cycles. If n ≥ 5 then all

3-cycles are conjugates in An.

Proof. Let σ be an even permutation. Let (ij)(rs) occur in a decomposi-

tion of σ as a product of transpositions. If (ij) and (rs) are disjoint then

(ij)(rs) = (ijr)(rsj). If j = r then (ir)(rs) = (irs). Hence every even per-

mutation is a product of 3-cycles. Now suppose that n ≥ 5. Let σ be any

permutation and (j1j2 . . . jp) be a p-cycle. Then

σ(j1j2 . . . jp)σ
−1 = (σ(j1)σ(j2) . . . σ(jp)).

Let (ijk) and (rst) be any two 3-cycles. Define γ by γ(i) = r, γ(j) =

s, γ(k) = t and let γ(u) = u for any u 6= i, j, k. Then

γ(ijk)γ−1 = (γ(i)γ(j)γ(k)) = (rst).

If γ is odd then put σ = (ij)γ. Then σ is even and

σ(ijk)σ−1 = (ij)γ(ijk)γ−1(ij) = (rst).

�

Theorem 20.10. The groups Sn and An are not solvable for n ≥ 5.
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Proof. Since Sn/An is abelian, S′n ⊂ An. Note that since n ≥ 5, any 3-cycle

is a commutator in view of :

[(jkv), (ikr)] = (vkj)(rki)(jkv)(ikr) = (vkj)(jiv) = (ikj).

Therefore S′n = A′n = An. Thus S
(s)
n = A

(s)
n = An for all s. Hence An and

Sn are not solvable for n ≥ 5. �

Theorem 20.11 (Galois). The alternating group An is simple for n ≥ 5.

Proof. (S. Lang) Suppose An is not simple for n ≥ 5. Let N be a proper

normal subgroup of An for some n ≥ 5. Let σ 6= 1 be a permutation in N

that has maximum number of fixed points. We say that j is a fixed point of

σ if σ(j) = j. Consider a decomposition of σ as a product of disjoint cycles

of length at least two: σ = τ1τ2 . . . τg. Suppose the length of each τj is two.

Since σ is an even permutation, g ≥ 2. Suppose that σ = (ij)(rs)τ3 . . . τg.

Let k be different from i, j, r, s and set τ = (rsk). Consider the commutator

γ = [σ, τ ] = σ−1τ−1στ. Then 1 6= γ ∈ N. Moreover γ(i) = i and γ(j) = j.

This is a contradiction since σ has maximum number of fixed points among

the permutations in N \ {1}.

Now suppose that for some a, τa = (ijk...) has length at least 3. If σ = (ijk)

then N has a 3-cycle and hence N = An. If σ is not a 3-cycle then σ must

move at least two other elements r, s besides i, j, k. Put τ = (rsk) and

consider γ = [σ, τ ]. Then 1 6= γ ∈ N. Moreover γ(j) = j and γ fixes all the

elements that σ fixes. This is a contradiction. �


