
Lecture 15 : Galois group of a Galois Extension II

Objectives

(1) Artin’s Theorem about fixed field of a finite group of automorphisms.

(2) Behavior of Galois group under isomorphisms.

(3) Normal subgroups of the Galois groups and their fixed fields.

Keywords and phrases: Fixed field, Galois correspondence, normal sub-

groups of Galois group.

The next theorem is perhaps the most important ingredient of the Funda-

mental Theorem of Galois Theory (FTGT). We will need the following

Lemma 15.1. Let E/F be a separable algebraic extension. suppose that for

all α ∈ E,deg irr (α, F ) ≤ n. Then [E : F ] ≤ n.

Proof. Let β ∈ E be such that deg irr(β, F ) is maximal among deg irr(α, F )

for α ∈ E. We claim that E = F (β). Suppose E 6= F (β) and choose

α ∈ E \F (β). Then F (α, β) is a finite separable extension. By the Primitive

Element Theorem, there exists η ∈ F (α, β) such that F (α, β) = F (η). But

then deg η > deg β. �

The above lemma is not true without separability assumption. For example,

degF α ≤ p for all α ∈ k(u, v), where F = k(up, vp), where k is a field of

char p > 0. But [k(u, v) : k(up, vp)] = p2.

Theorem 15.2 (Emil Artin). Let E be a field and G a finite group of

automorphisms of E. Then

(1) E/EG is a finite Galois extension.

(2) G(E/EG) = G. (3) [E : EG] = |G|.

Proof. (1) Let α ∈ E and G = {σ1, σ2, . . . , σn} and S = {σ1(α), . . . , σn(α)}.
Suppose |S| = r. Without loss of generality let S = {σ1(α), . . . , σr(α)}. If
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τ ∈ G then τσ1(α), . . . , τσr(α) are distinct. Hence S = τ(S). So τ restricted

to S is a permutation of S. Consider the polynomial

f(x) = (x− σ1(α))(x− σ1(α))(x− σ2(α)) · · · (x− σr(α)).

The coefficient of f(x) are elementary symmetric functions of σ1(α) . . . , σr(α).

Since τ(S) = S these elementary symmetric functions are in EG. Thus

f(x) ∈ EG[x] is a separable polynomial and f(α) = 0. Hence E/EG is a sep-

arable and normal extension. Moreover for all α ∈ E, deg irr (α,EG) ≤ |G|.
Hence [E : EG] ≤ |G|. Thus E/EG is a finite Galois extension.

(2) and (3) : Since E/EG is a finite separable extension, [E : EG] is the

number of EG-embeddings of E → Ea. These embeddings are automor-

phisms of E as E/EG is a normal extension. Using (1) and the fact that

G ⊆ G(E/EG), we get

|G| ≤ |G(E/EG)| = [E : EG] ≤ |G|.

Thus |G| = |G(E/EG)| = [E : EG] and so G = G(E/EG). �

Theorem 15.3. Let E/F be a Galois extension with Galois group G. Let

K1 and K2 be intermediate subfields of E/F and H1 = G(E/K1), H2 =

G(E/K2). Let (H1, H2) denote the smallest subgroup containing H1 and H2.

Then

K1K2 = EH1∩H2 , K1 ∩K2 = E(H1,H2), and K1 ⊆ K2 ⇐⇒ H1 ⊇ H2.

Proof. Since E/Ki is Galois for i = 1, 2, we have Ki = EHi ⊂ EH1∩H2 for

i = 1, 2. Therefore K1K2 ⊂ EH1∩H2 . Conversely, if σ ∈ G fixes K1K2 then it

fixes K1 and K2, consequently σ ∈ H1 ∩H2. Hence G(E/K1K2) ⊆ H1 ∩H2.

Hence K1K2 ⊇ EH1∩H2 . The remaining statements are obvious. �

Behavior of Galois groups under isomorphisms

Proposition 15.4. Let E/F be a Galois extension. Let λ : E → λ(E) be

an isomorphism of fields. Then

(1) λ(E)/λ(F ) is a Galois extension.

(2) G(λ(E)/λ(F )) = λG(E/F )λ−1 ' G(E/F ).
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Proof. (1) Since E/F is Galois, E is a splitting field of a family of separable

polynomials {fi(x) ∈ F [x] | i ∈ Λ}. Then λ(E) is a splitting field of of the

family of polynomials: {fλi (x) ∈ λ(F )[x] | i ∈ Λ}. Hence λ(E) is a Galois

extension of λ(F ).

(2) Define ψ : G(E/F )→ G(λE/λF ) by the rule σ 7→ λσλ−1.

λ(E)
λ−1

// E
σ // E

λ // λ(E)

λ(F )
λ−1

// F // F
λ // λ(F )

The inverse of ψ is given by the rule τ 7→ λ−1τλ. Hence ψ is an isomorphism.

�

Theorem 15.5. Let E/F be a Galois extension. Let K be an intermediate

subfield of E/F . Then

(1) K/F is Galois if and only if G(E/K)CG(E/F ).

(2) If K/F is Galois, then G(K/F ) ' G(E/F )/G(E/K)

Proof. (1) and (2) : Let K/F be Galois. Define

ψ : G(E/F )→ G(K/F ) by ψ(σ) = σ|K .

Since K is a normal extension of F, σ|K ∈ G(K/F ). Since

Kernel ψ = {σ ∈ G(E/F ) | σ|K = idK} = G(E/K),

G(E/K) is a normal subgroup of G(E/F ).

Conversely, let G(E/K)CG(E/F ). Let λ : E → E be any F -automorphism.

We show that λK = K. Now

λG(E/K)λ−1 = G(E/λK) = G(E/K),

provided λ ∈ G(E/F ). Thus λK = K. Let σ : K → F a be an F -embedding.

Then σ can be extended to an embedding τ : E → F a. Since E/F is Galois,

τ(E) = E. Thus σ(K) = K. Hence K/F is Galois.
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