
Lecture 21 : Galois Groups of Composite Extensions

Objectives

(1) Galois group of composite extensions

(2) Galois closure of a separable field extension.

Keywords and Phrases : Composite extensions, normal closure.

LetK be a field andK be an algebraic closure ofK. Let E,F be intermediate

subfields of K/K. Recall that the compositum of E and F denoted by

EF is the smallest subfield of K containing E and F. In this section we

will discuss Galois groups of composite extensions and normal closure of an

algebraic field extension.

Proposition 21.1. If E/K is a Galois extension and F/K is a field exten-

sion, then EF/F is Galois. If F/K is Galois then EF/K and E ∩F/K are

Galois.

Proof.
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Consider the diagram above. As E/K is a separable and normal extension,

it is a splitting field of a family {fi(x)} of separable polynomials over K.

Then EF/F is the splitting field of the same family of polynomials. Hence

EF/F is a Galois extension. If F/K is Galois then it is a splitting field of
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a family of polynomials {gj(x)} over K. Hence EF/K is a splitting field of

the polynomials {fi(x)} ∪ {gj(x)}. Hence EF/K is Galois.

Now we show that if E/K and F/K are Galois then E ∩ F/K are Galois.

Let σ : E ∩F → K be a K-embedding. Let τ : EF → K be an extension of

σ. Then τ(E) = E and τ(F ) = F since E/K and F/K are Galois. Therefore

τ(E ∩ F ) ⊆ E ∩ F. Since E ∩ F/K is algebraic, τ(E ∩ F ) = E ∩ F. Hence

E ∩ F/K is a Galois extension.

�

Proposition 21.2. Let E/K be a Galois extension and F/K be a field

extension so that E,F ⊂ K. Then the map ψ : G(EF/F ) → G(E/K)

defined by ψ(σ) = σ|E is injective and it induces an isomorphism:

G(EF/F ) ' G(E/E ∩ F ).

Proof. Since σ is an F -automorphism of EF, it is also a K-automorphism.

Hence σ|E ∈ G(E/K). If σ|E = idE then σ = idEF . Hence ψ is an injective

group homomorphism.

The image of ψ is a subgroupH ofG(E/K). By Artin’s TheoremG(E/EH) =

H. Hence E ∩F ⊂ EH . Let a ∈ E \ (E ∩F ). Then a ∈ EF \F. Hence there

is a σ ∈ G(EF/F ) so that σ(a) 6= a. Hence a /∈ EH . Therefore EH = E ∩F
and we conclude that G(E/E ∩ F ) = H ' G(EF/F ). �

Corollary 21.3. Let E/K be a finite Galois extension and F as above.

Then

[EF : F ] = [E : E ∩ F ].

In particular, [EF : K] = [E : K][F : K] if and only if E ∩ F = K.

Proof. Since G(EF/F ) ' G(E/E ∩ F ), we obtain

|G(EF/F )| = [EF : F ] = |G(E/E ∩ F )| = [E : E ∩ F ].

Therefore we have:

[EF : K] = [E : E ∩ F ][F : K] =
[E : K][F : K]

[E ∩ F : K]
.

The conclusion follows from the equation above. �
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Theorem 21.4. Let E/K and F/K be finite Galois extensions so that

E,F ⊂ K. Then the homomorphism

ψ : G(EF/K) −→ G(E/K)×G(F/K), ψ(σ) = (σ|E , σ|F )

is injective. If E ∩ F = K then ψ is an isomorphism.

Proof. It is clear that ψ is a group homomorphism. The kernel of ψ consists

of σ ∈ G(EF/K) so that σ(a) = a for all a ∈ E and for all a ∈ F. Hence

such σ = idEF . Thus ψ is injective.

Suppose that E ∩ F = K. Then by Corollary 21.3,

|G(EF/K)| = [EF : E ∩ F ] = [F : K][E : K] = |G(E/K)||G(F/K)|.

This shows that ψ is an isomorphism. �

The Normal Closure of an Algebraic Extension

Let K/F be an algebraic extension and K ⊂ F . The normal closure of

K/F in K is the splitting field N over F of the polynomials { irr (a, F ) | a ∈
K}. It is clear that N is a normal extension of F containing K. Moreover

any normal extension N ′ ⊂ F of F containing K must contain the splitting

fields of { irr (a, F ) | a ∈ K}. Hence N = N ′. If K = F (a1, a2, . . . , an) then

N is the splitting field of the polynomials irr (ai, F ) for all i = 1, 2, . . . , n.

If K/F is separable then N/F is a separable extension as it is obtained by

adjoining roots of separable polynomials over F. Hence the normal closure

of K/F when K/F is separable, is a Galois extension.

Let K/F be a separable extension that is not normal. Let N be a normal

closure of K/F. Put H = G(N/K). Then K = NH . Let H ′ < H be a normal

subgroup of G = G(N/F ). Then NH′
> NH = K and NH′

/F is a normal

extension of K. Thus NH′
= N by minimality of N. Hence H ′ = (id).


