Lecture 12 : The Primitive Element Theorem

Objectives

(1) Factorization of polynomials over finite fields.
(2) The Primitive element theorem.

(3) Finite separable extensions have a primitive element.
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factorization.

Example 12.1. We know that the polynomial 2P" — z is the product of
all the degree d monic irreducible polynomials in [, [x] where d | n. This
is useful for constructing irreducible polynomials over F,. Let us factorize
x'%— 2z over Fy. The irreducible quadratic polynomials are factors of 2% —z =
x(x+1)(2?+2+1). Hence there is only one quadratic irreducible polynomial

over 5. The cubic irreducible are factors of
B—z=z@ +1)=z@+1)+2+2t + 23+ 22+ +1).

By Gauss’ formula N2(3) = 2. Therefore the irreducible cubics over Fq are
22422+ 1 and 22 + 2 + 1. By Gauss’ formula, we count irreducible quartics

over Fy :

ANy (4) = p(4/d)2% = p(4)2 + p(2)2° + p(1)2* = —4 + 16 = 12.
dl4
Hence N2(4) = 3. These quartics are factors of 716 — x. The irreducible
factors of this polynomial have degrees 1,2 and 4. Therefore the irreducible
quartics are factors of
6 —x
x4+ 1) (22 4+2+1)

=@+ D@+ B3+ )@ 32+ 1).

We end this section by an interesting application of finite fields.

Proposition 12.2. The polynomial z* + 1 is irreducible in Z[x] but it is

reducible over F), for every p.
54
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Proof. Let f(x) = x*41. Then f(z +1) is irreducible over Z by Eisenstein’s
criterion. For p = 2, we have 2% + 1 = (z + 1)*. Now let p be odd. Then
8| p> — 1. Hence

:L‘4—|—1|x8—1|xp2_1—1\1‘p2—x.

The splitting field of 2P’ — x over [, is the finite field F' = F,2. Hence
[F : Fp] = 2. Therefore the roots of z* +1 in F have degree 1 or 2. Therefore
z* + 1 cannot have a cubic or quartic irreducible factor over F,. Hence it is

reducible over IF;,, for each prime p.
O

The Primitive Element Theorem

Since }F;n is a cyclic group, Fyn = F,(a) where a is a generator of IF;”. We say
that « is primitive element of the field extension F; C Fy». In this section
we discuss existence of primitive elements in finite algebraic field extensions.
We will show that in a finite separable extension, primitive elements always

exist.

Definition 12.3. Let E/F be a field extension. An element o € E is called
a primitive element of E over F if E = F(«).

Example 12.4. (1) Let f(z) = 2° — 2, a = /2 and w = ¢*™/3. Then
Q(a,w) is a splitting field of f(x). Moreover [Q(a,w) : Q] = 6. Since
Q) CR,a+w ¢ Qa).

Q(a,w)
~
Q(a) Qo +w)
/ id \
Q Q

We know that the number of ways id : Q — Q can be extended to
an embedding ¢ : Q(a + w) — Q is degirr(a + w, Q) = [Q(a + w) : Q.
Since degree irr(w,Q(a)) = 2, id : Q(a) — Q can be extended in two

ways: w — w? or w — w. Restriction of this embedding to Q(a + w) maps
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a+w to a+w? or a+ w. In a similar way we can embed Q(a + w) onto
Qlaw + w), Q(aw + w?), Q(aw? + w?) and Q(aw? + w). Thus [Q(a + w) :
Q] =6. So Q(a,w) = Q(a + w). Therefore o + w is a primitive element.

(2) An algebraic extension need not have a primitive element. Let field k be
a field with char(k) = p and let u, v be indeterminates. Let E = k(u,v) and
F = k(uP,vP). Then f(u,v)? € F for any f(u,v) € E. But [E : F] = p?. If
y € E is a primitive element of F/F then degirr(y, F) = p?. But y? € F.

This is a contradiction.

Theorem 12.5 (The Primitive Element Theorem). Let E/k be a finite

extension.

(1) There is a primitive element for E/k if and only if the number of
intermediate subfields F' such that k C F' C E is finite.

(2) If E/k is a finite and separable extension then it has a primitive element.

Proof. (1) If k is a finite field then E is finite and hence E* is a cyclic group.

Thus E/k has a primitive element.

Let k be infinite and let E'/k have finitely many intermediate fields. Suppose
o, € E. As ¢ varies in k, k(a + ¢f3) varies over finitely many intermediate
subfields of E/k. Hence, there are ¢; # c2 € k such that k(a + ¢18) =
k(o + caf) := L. Thus (¢; — ¢2)5 € L. Therefore 5 € L. Hence a € L. Thus
k(a, B) = k(a+c18). Proceed inductively to show that E = k(aq,...,a,) =

E(ar + cace + - - - + ancy) for some ca, ..., cp € k.

Conversely, let E' = k(a) for some « € E and f(x) = irr(a, k). Let k C F C
E be a tower of fields. Set hp = irr(a, F'). Then hp | f(x) as F varies over
all the intermediate subfields of E/k.

Since hp is irreducible over F, it is also irreducible over Fy, a subfield of F'
generated by the coefficients of hp(z) over k. Since deghp(x) = [E : F| =
[E : Fpl, it follows that ' = Fj. Since there are finitely many divisors of
f(z), there can be only finitely many intermediate fields of E/k.

(2) Now let E'/k be a finite separable extension. Then E = k(ay, ag, ..., ap).
To show that E/k has a primitive element it is enough to find a primitive
element when n = 2 and then apply induction on n. So let E = k(«, 5). We

look for a primitive element of the form a + ¢ where ¢ € k.



57

Let [E : k| = n. If a+c¢f generates E/k, then a+¢3 must have n conjugates
(images of a + ¢f under the action of n embeddings of E into £%). Hence
there exist n k-embeddings o1,09,...,0, : E — k. which map o + ¢ to
n distinct roots of p(x) = irr(a + ¢f),k) in k. Thus a + ¢ is a primitive
element if and only if there exist n embeddings o1, ...0, : E — k such that
oi(a+cB) # oj(a+cp), for all i # j, if and only if

[1(ei(@) = aj(a)) + c(0i(8) — 05(8)) # O

1<j
if and only if ¢ is not a root of the polynomial

f@) = T](oi(@) = oj(@)) + x(0i(B) — 0;(8)).
1<j

Since k is infinite and f(x) has finitely many roots, such a c exists. O



