
Lecture 16 : Applications and Illustrations of the FTGT

Objectives

(1) Fundamental theorem of algebra via FTGT.

(2) Gauss’ criterion for constructible regular polygons.

(3) Symmetric rational functions.

(4) Galois group of some binomials.

Keywords and phrases: Fundamental theorem of algebra, constructible

regular polygons, symmetric rational functions.

The Galois correspondence between the set of subfields of a finite Galois

extension E/F and the set of subgroups of the Galois group G(E/F ) con-

verts problems about roots of a separable polynomial to problems about the

Galois group of its splitting field. We shall see that difficult problems about

polynomials are converted into much simpler problems about finite groups.

The Galois correspondence is perhaps the first example of a well-established

technique in mathematics: find a suitable formulation for a problem in one

branch of mathematics in another branch where the problem becomes much

easier to solve.

We will see that the Galois correspondence is powerful enough to provide

new ways to prove old results and solve new problems as well. This will

be demonstrated here by giving a new proof of the fundamental theorem of

algebra. We will also finish the proof of Gauss’ criterion for constructibility

of regular polygons. We shall derive an expression for cos 2π/17 in terms

of square roots which proves that a seventeen sided regular polygon is con-

structible by ruler and compass.

We will provide concrete examples of Galois correspondence for some poly-

nomials. In later sections we will derive formulas for the roots of cubic and

quartic polynomials as a consequence of the Galois correspondence. Let us

begin by proving:

The Fundamental Theorem of Algebra
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Theorem 16.1. The field of complex numbers is algebraically closed.

Proof. Let f(x) =
∑
aix

i ∈ C[x]. Write f̄(x) =
∑
āix

i where − denotes the

complex conjugation. Then g(x) = f(x)f̄(x) ∈ R[x]. Hence it is enough to

prove g(x) has a complex root.

The splitting field E of g(x) over C is a splitting field of (x2 + 1)g(x) over

R. Hence E/R is a Galois extension. Since 2 | [E : R], the Galois group

G = G(E/R) has a 2- Sylow subgroup say S. If S < G then E ⊃ ES ⊃ R.

We know [E : ES ] = |S|. Thus [ES : R] is odd. But R admits no proper odd

degree algebraic extensions. Hence S = G. Thus G is a 2-group. If |G| = 2,

then E = C and we are done. If |G| = 4, then [E : C] = 2. But C admits

no quadratic extension. Thus |G| ≥ 8. Let H < G(E/C) of index 2. Then

[EH : C] = 2, which is a contradiction. Hence E = C. �

Gauss’ Criterion for Constructible Regular Polygons

Lemma 16.2. Let m,n be coprime natural numbers. If regular polygons of

m sides and n sides are constructible then so is a regular mn-gon.

Proof. There exist integers x, y so that xm+ yn = 1. Hence

2π

mn
=

2πx

n
+

2πy

m
.

Since 2πx/n and 2πy/m are constructible, so is 2π/mn. �

Proposition 16.3. Let ζ be a complex primitive pth root of unity where p

is a prime number. Then G(Q(ζ)/Q) is a cyclic group of order p− 1.

Proof. If σ ∈ G, then σ restricted to the cyclic group U = (ζ) is an auto-

morphism. Hence σ(ζ) = ζiσ for some i = 1, 2, . . . , p − 1. Define a group

homomorphism ψ : G → U(Z/pZ) = {1, 2, . . . , p − 1} by ψ(σ) = iσ. It is

easy to see that ψ is an isomorphism. �

Theorem 16.4 (Gauss). A regular polygon of n sides is constructible if

and only if n = 2rp1p2 . . . ps where r ∈ N and p1, p2, . . . , ps are distinct

Fermat primes.

Proof. We have already proved the necessity. For sufficiency, note that by

the above lemma and the fact that angles can be bisected by ruler and

compass, it is enough to prove that if p is a Fermat prime then cos(2π/p)
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is a constructible real number. Let ζ be a primitive pth root of unity. Then

[Q(ζ) : Q] = p − 1 = 2t for some t, the Galois group G = G(Q(ζ)/Q) is

cyclic of order 2t. Hence every intermediate subfield of Q(ζ)/Q is a Galois

extension of Q. In particular K = Q(cos 2π/p) is a Galois extension of Q
of degree 2t−1. Since G(K/Q) is a 2-group of order 2t−1, there a chain of

subgroups Gi having order 2i for i = 0, 1, . . . , t− 1. Hence

Q ⊂ KGt−2 ⊂ KGt−3 ⊂ · · · ⊂ KG0 = K

is a tower of real quadratic extensions terminating with K. Hence cos 2π/p

is a constructible real number. �

Example 16.5. Let K be a splitting field of x4 − 2 over Q. We find the

Galois group G = G(K/Q) and show how to find subfields of K/Q.

The polynomial f(x) = x4−2 is irreducible over Q by Eisenstein’s criterion.

Let a = 4
√

2 be the real 4th root of 2. Then the roots of f(x) in C are

a,−a, ia,−ia. The splitting field of f(x) over Q is Q(a, i) and [K : Q] = 8.

Hence G = G(K/Q) is a group of order 8. An automorphism in G maps a

to one of the four roots of f(x) and it maps i to either i or −i. Let τ be the

conjugation map and σ be defined by σ(a) = ia. Check that

o(σ) = 4, o(τ) = 2 and στστ = id.

The lattice of the subgroups of G is:

G

mmmmmmmmmmmmmm

QQQQQQQQQQQQQQQ

{1, σ2, τ, σ2τ}

qqqqqqqqqq

PPPPPPPPPPPP
{1, σ, σ2, σ3} {1, σ2, στ, σ3τ}

mmmmmmmmmmmmm

OOOOOOOOOOO

{1, τ}

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW {1, σ2τ}

PPPPPPPPPPPPPP
{1, σ2} {1, στ}

mmmmmmmmmmmmmmm
{1, σ3τ}

ggggggggggggggggggggggggggggggg

{1}

By Galois correspondence, there are 10 intermediate subfields of K/Q. These

are all fixed fields of the subgroups displayed above. Set H = {1, σ, σ2, σ3}.
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Since [K : KH ] = o(H) = 4 we see that [KH : Q] = 2. Since i is fixed

by each element of H, we conclude that KH = Q(i). Set L = {1, τ}. Since

[K : KL] = o(L) = 2, we see that [KL : Q] = 4. Since τ(a) = a, KL = Q(a).

Set M = {1, στ}. Since [K : KM ] = o(M) = 2, [KM : Q] = 4. The orbit

of a under the action of M is {a, ia}. Adding the elements of this orbit we

get b = a + ia. Hence a + ia ∈ KM . To find g(x) = irr (b,Q), we find

all the conjugates of b by applying the automorphisms in G. This way we

see that the orbit of b under the action of G is {b,−b, a − ia,−a + ia}.
Hence degQ(b) = 4. Hence KM = Q(b). The other fixed fields can be found

similarly.

Example 16.6. We discuss the Galois group of xp − 2, where p is an odd

prime, We will show that it is isomorphic to the group

G =

{[
a b

0 1

]
: a, b ∈ Fp and a 6= 0

}
.

Put ω = e2πi/p and α = p
√

2. The roots of xp − 2 are α, αω, αω2, . . . , αωp−1.

Thus K = Spl(xp− 2,Q) = Q(α, ω) and [K : Q] = p(p− 1). If σ ∈ G(K/Q),

then σ(α) = αωi(σ) and σ(ω) = ωj(σ), where 1 ≤ j(σ) ≤ (p − 1) and

i(σ) = 0, 1, . . . , (p− 1). Define

ψ : G(K/Q)→ G by ψ(σ) =

[
j(σ) i(σ)

0 1

]
.

Define σ, τ ∈ G(K/Q) by

τ(α) = αωa, τ(ω) = ωb, σ(α) = αωc, and σ(ω) = ωd.

Therefore

ψ(σ) =

[
d c

0 1

]
, ψ(τ) =

[
b a

0 1

]
, ψ(σ)ψ(τ) =

[
bd c+ ad

0 1

]
.

Since

τσ(α) = τ(αωa) = αωc+ad

τσ(ω) = τ(ωd) = ωbd
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we have

ψ(τσ) =

[
bd c+ ad

0 1

]
= ψ(τ)ψ(σ).

Therefore ψ is a group homomorphism. As

Ker ψ = {σ : d = 1 and c = 0} = {id},

we conclude that ψ is an isomorphism.

Example 16.7. Let x1, x2, . . . , xn be indeterminates over a field F . The

symmetric group Sn acts on E = F (x1, x2, . . . , xn), the fraction field of the

ring of polynomials F [x1, . . . , xn]. If σ ∈ Sn then φσ : E → E defined

by φσ(xi) = xσ(i) is an automorphism of E. If σ1, σ2 ∈ Sn then φσ1σ2 =

φσ1φσ2 . Thus G = {φσ : σ ∈ Sn} is a group of automorphism of E and it is

isomorphic to Sn. Let x be a variable over E and consider the polynomial

ring E[x]. Then

g(x) = (x− x1)(x− x2) · · · (x− xn) ∈ E[x]

= xn − σ1xn−1 + σ2x
n−2 − · · ·+ (−1)nσn

Where σi’s are the elementary symmetric functions of x1 . . . , xn. The auto-

morphism φσ : E → E can be extended to E[x] by fixing x which we again

denote by φσ. Therefore

φσ(g(x)) = (x− xσ(1))(x− xσ(2)) · · · (x− xσ(n)) = g(x)

Thus φσ(σi) = σi for all i = 1, 2, . . . , n. Hence F (σ1, σ2, · · · , σn) ⊂ EG.

Notice that E = F (σ1, . . . , σn, x1, . . . xn). So E is a splitting field of g(x)

over F (σ1, . . . , σn) and g(x) is separable. If π ∈ G(E/F (σ1, . . . , σn)) then

π permutes the roots of g(x), hence π = φσ for some σ. Thus G =

G(E/F (σ1 . . . , σn)). Therefore symmetric rational functions are rational

functions of symmetric functions.


