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N-stage transition probability

Consider the following, i.e., at time  the process is at state , (say state number ), while at time 
, it is at state , (say state number ). Then the probability that from state number  to

state number  is given by , where

Pictorially we have the following diagram (Figure 1.16) to illustrate the one dimensional stochastic
process.

Figure 1.16: Illustration of concept of transition matrix

Here the blue lines are  or  as

the case may be, while the red line denotes, , which can be expressed as one

stage transition probability values as the case may be. Finally the green line denotes , and in order
to avoid confusion we consider the initial and final states as i and j ONLY.
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Few relevant information which is important

Consider Bi are mutually exclusive and exhaustive events, such that , which is the sure

event, i.e., technically the whole of the sample space and also assume ,  is true.

Now suppose  and  are events, such that we write  as . Then what

may be of interest to us is to find 

Now due to the fact that  is true, we can write the following, i.e., 

, so with conditional probability  now becomes

Pictorially we can denote this as following as shown in Figure 1.17.

Figure 1.17: Illustration of the concept of conditional
probability and joint distribution

Hence we can write

as
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Hence: .
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So generalizing we can write

, ,  and so on.

Figure 1.18: Movement from  to  state through an arbitrary 
 position at any point of time between  such that 

Figure 1.18 thus shows how the stochastic process starts at  state at time  and finally goes to 
 state at time . What is interesting to note it how does this transition takes place. A general
understanding of the stochastic process movement would make it clear that the process could have
arbitrarily been at  state at say any point of time  between  and , i.e., , and
the colour scheme of red, blue and green should make this arbitrary movement clear.

Using matrix notation we already have , such that , where it

means the element in the  matrix and not that we simply multiply pij X pij. Thus it means that 

. Similarly we have , hence .Thus generalizing we

have  and also .Here it must be

remember that we are considering there is no structural breaks or change in the underlying distribution
i.e., . If that occurs then some where we would have the transition probability matrix

general structures as different, i.e., for t = m, m+1,…, m* we have  as the underlying distribution,

and afterwards from t = m*+1, m*+2,…, m*+n the distribution is 

Hence the basic thing required is to know the one step transition matrix is pij.

If  and  are given then , i.e.,

, i.e.,

,

Thus we have the probability in terms of intermittent probability and the transition matrix
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Classification of the states of a Markov Chain

In this classification we will mention state j as being accessible from another state i, i.e.,  if 

 for some , here  denotes the  stage transition. In case if it not, then the state j

is not accessible from state i.

Example 1.12

Let us consider a conditional probability matrix as given below

.

Few observations from Example 1.12

Then if the question is asked, is state 3 accessible from state 1, the answer is No.
No state can be reached from state 1, i.e., state 1 is like a sink as  and it is called the
absorbing state. Similarly once you reach state 4 you remain in that state for ever as 
 and it is also called the absorbing state.
Similarly .
It is possible to go from state 3 to state 1, i.e., 3 to 2 to 1, but reverse is not possible.
In case we have  as well as , then the two states are communicating between
themselves. So in the example given above we have

 as 2 leads to 3 and also  as 3 leads to 2, hence state 2 and state 3 are
communicating states.
A set of states in a Markov chain is said to be closed if pij = 0 for i Î C and j Ï C, what ever the
set C be.
If a subset of a Markov chain is closed then the subset also forms a Markov chain
If a Markov chain has no closed subset, i.e., if the Markov chain is itself not closed, then the
Markov chain is said to be irreducible.
Further more if  and , it implies that , which means we are only required to

show that  for some .

Note
Now suppose we know that  and  and since , then from Chapman

Kolmorogrov equations we can show that , is true, i.e.,  as  and  are

both true and this statement that  is true will hold for some n ³ 1. For the interested readers we
would advice that rather than panic they should wait till we cover the simple proof of Chapman
Kolmorogrov equations.

Consider a fixed, but arbitrary state  and suppose at time  it is at state , i.e., X0 = i, and also
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define , i.e., at the  step I am back at state
i.
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Recurrence

Consider an arbitrary state, , which is fixed, such that for all integers, , we define: 

, which is basically the probability that after having

started from the  state it comes back to  state for the first time ONLY at the 

 transition. The definition makes it clear that  and  for , and
we also define  Now let us consider the simple illustrations (Figure 1.19 and Figure 1.20).

Figure 1.19: Movement from  state back to  state considering that
there may or may not be any reoccurrence or visits to  state during

the time period 

Figure 1.20: Movement from  state back to  state considering that
there may or may not be any reoccurrences or visits at  state in

between

From both the figures (Figure 1.19 and Figure 1.20) it is clear that  and  and the first

return to state  occurs at  transition. If this return is denoted by event , then the events  

 are mutually exclusive.

Now the probability of the event that the first return is at the  transition is  which we already

know. Now for the remaining  transitions we will only deal with those such that  holds

true. In case it does not, we will not consider that.
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So we have

 for   and we also have 

Hence

 as 
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Let us pictorially illustrate the concept in Figure 1.21, where we start at  state at time  and after
 time it come back to  state. If one observes closely the main difference with Figure 1.18 is the

fact that here we denote the states while in Figure 1.18 it was the time which was depicted along the
line.
 

Figure 1.21: Illustration of return of the stochastic process to 
 state exactly at end of  time

The colour scheme in Figure 1.21 is quite easy to understand if we concentrate on the fact that it can
be green line starting at  position at  and returning to  position at  for the first time.
While the blue would denote that reaches  position once at  time and then again the stochastic
process continues till it reaches  position at  for the second time. Continuing with the same
logic we can have such visits to  position many number of times but remembering that  position is
reached at , i.e., .

Then we have

, from which it is easy to note that

 for  

 for .

Utilizing this two formulae we easily get

Furthermore through simple induction we can show that

So the probability that the systems ever returns to its original state  is given 

Hence
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fi = 1 Þ that the system returns to state  in a certain number of steps

fi = 0 Þ that the system never returns to state 

fi < 1 Þ that the system may or may not returns to state i in a certain number of steps

One can understand that these transitional probabilities are dependent on (i) initial and final states and

(ii) time of transition from the initial to the final states, i.e., , where  is of some

function form of ,  as well as difference in time periods.
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Wald's Equations

Consider  be the sum of random numbers random variables (r.v's), i.e.,  and remember

that  are i.i.d random variables (r.v's), then . The basic concepts of Wald

are the founding stones based on which the rich branch of Sequential Analysis (Sequential Estimation,
Sequential Interval Estimation and Sequential Hypotheses) have developed.
Now if we have , then . Without repetition we would like to mention that for

the interested readers we would advice that rather than panic they should wait till we cover the simple
proof of Wald's equations. Remember the importance of this equation stems from the fact that one

can also find variance which is given by .

Stationary transition probability

When the one state transition probabilities are independent of time, i.e., , we say we have a Markov
process which has stationary transition probabilities.

Thus if , then we all know the transition probability matrix is denoted as 

, i.e.,  and this is the Markov matrix or the transition probability

matrix of the process. So generally the  row of  denotes the distribution or the collection of
realized values of  under the condition that . If the number of states are finite then the

transition probability matrix, , is a square matrix. Also it would be true that we have

(i) , 

(ii) , 

Now the whole process, i.e.,  is known if we know the value of 

, or more generally the probability distribution of the process.

Assume , given which we want to calculate  which is

any probability involving ,such that  using the axioms of probability.

Thus

(1.1)

By definition of Markov process we also have

(1.2)

Substituting (1.2) in (1.1) we have
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Further more in the next step we have

 

Using induction we finally have

 

To make things better for understanding and also to bring into light the usefulness
of Markov chains we give few more examples which we are sure would be appreciated by the readers.
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Examples 1.13

Let  be discrete random variables such that the realized values of , are non-negative integer

values, such that  and  We must remember that the observations are

independent. From this  we define two Markov processes which are.

Case 1: Consider , such that  and assume (which is not at all difficult to do

so considering that is the initial conditions for any process which is known beforehand) , then

the Markov matrix is given by , where the fact that each row is exactly equal due to

the simple fact that the random variable  is independent of 

Case 2: Another class of important Markov chains is seen when we consider the successive partial
sums,  of , , i.e., . By definition we have . Then the

process  is a Markov chain and we can easily calculate the transition probability matrix as

Here we use the independence of 

Thus writing the transition probability matrix we have it of the following form, which is

If the possible values of the random variables are permitted to be both positive as well as negative
integers, then instead of labeling the states by non-negative integers, as we usually do, we may denote
them with the totality of the state space, which will make the transition matrix look more symmetric in
nature, such that we denote it like

,
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where ,  and 
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Examples 1.14

Consider a one dimensional random walks, whose state space is a finite or infinite subset 
 of integers, such that a particle at state  can in a single transition move to  or  state or it
can remain at the same state, . Now all these three movements has some probability such that we 

, , and . It is also true that . So that we have (i) 

, (ii)  and . It is obvious that , 

 and , hence given these set of information one can write the transition matrix as below

Let us consider a gamble as an example of simple random walk. Suppose that we have two persons,
say Ram and Shyam with initial amounts of A and B INR with them respectively. Consider the
probability of Ram winning one unit from Shyam is  and the corresponding of losing one unit is ,

where  and . So in case if we denote  the fortune of Ram after n such change in

position, then  clearly denotes a random walk. It is very easy to see that once the state reaches

either 0 or , the process remains in that state. This process is known as the gambler's ruin, and

in that case the transition probability matrix is given as shown below

Different variants of this game can be constructed so that we have different examples of random walk,
some of which are briefly discussed below in order to motivate the reader in the application aspect of
random walks.
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Case 1: Suppose that Ram has A amount of money and Shyam has infinite amount of money and
they play this gamble using an unbiased coin. In that case the transition probability matrix looks as
given below

Case 2: Suppose that Ram has A amount of money and Shyam has B amount of money and they
play this gamble using an biased coin, such that the probability of Ram winning one unit of money is 
 and losing one unit of money is . In that case the transition probability matrix looks as given below

Case 3: Suppose that Ram has A amount of money and Shyam has B amount of money and they
play this gamble using an biased die, such that the probability of Ram winning one unit of money is
when numbers 1 or 2 come, losing one unit of money is when numbers 5 or 6 come, and the outcome
of the game being a draw when numbers 3 and 4 come. In that case the transition probability matrix
looks as given below
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Examples 1.15

The significance of random walks is not only apparent in different examples of gambling, but also is also
evident (due to the reasonable and good discrete approximations) to many physical process which are
to do with diffusion of particles, or particles which are continuously colliding and being randomly
bombarded, say for example gas particles in a gas chamber which we can for theoretical situation
considering as adiabatic (i.e., no heat is being transferred into or out of the system) process, such that
when a particle collides with another particle or with the wall of the container it rebounds with the same
level of total energy. Thus as the particles are subjected to collisions and random impulses then its (any
single particle) position fluctuates randomly but it does describe a continuous path. For simplicity if we
consider the future position to be dependent on the present position, then the process denoted by 

 is such that  is Markovian, where  is the time. A discrete approximation to such a continuous

motion corresponds to a random walk. A classical example is the symmetric random walk, where the
state space is denoted is the totality of all integers and if the general transition probability matrix values

or elements is given by ,  where , , , and for the

symmetric random walk we

have , 

Now the question which is apparent is the fact that why are random walks so useful? Apart from the
above examples which are all related to gambling, can we find some interesting examples of random
walks? The answer is yes. Apart from gambling (which by itself is very interesting and exciting), random
walks are frequently used as approximations to describe a variety of physical process, e.g., diffusion of
particles. Let us give an example where we consider a gas particle in a box as shown in Figure 1.21,
whose initial position is A (xA, yA, zA) which are given by the Cartesian coordinate system X, Y and Z.

Now consider after some time the gas particle is at position B (xB, yB, zB).
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Figure 1.21: A gas molecule moving randomly inside the chamber
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As this particle is subjected to random collision and impulses, which happens due to the particle being
bombarded by all other gas particles, as well as the wall of the container, hence its position changes
randomly, though the particle as such can be described by its continuous path of movement. With the
important assumption that the future position of the particle, i.e., say B depends only on its present
position, say A, then the process denoted by  is such that  is Markovian, and  here is the

time. A discrete approximation of this continuous process is provided by the random walk, and a
classical discrete version of the Brownian motion is provided by the symmetric random walk. A
symmetric random walk is a Markovian chain where the state space is the continuous real line (we
consider a simple example here on), and the transition probability is given as below, i.e.,

,  where , , , and for the symmetric

random walk we have , 

What is important to note about the stochastic process is the initial condition, based on which we can
find all the characteristics of the process. Now consider the transition probability matrix given as

,such that in case

, and , then state 0 is the absorbing state, such that once the process reaches state 0 it

continues staying there. Now when  then state 0 acts as a reflecting state, like a
molecule rebounding after hitting the wall (Figure 1.22).
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Figure 1.22: A gas molecule moving randomly inside the chamber but
rebounding from the walls
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Transition probability matrices of a Markov chain

A Markov is completely defined by one step transition matrix and the specifications of a probability
distribution on the state of the process at time t=0. Given this, what is of main concern is to calculate

the n-step transition probability matrix, i.e., , where  is the probability that the process

goes from state  to state  in  transitions, thus we have and remember

this is a stationary transition probability.

Theorem 1.1

If one step probability matrix of a Markov chain is , then  for any fixed pair of

nonnegative integers  and , satisfying , where we define

 

Proof of Theorem 1.1

The proof is very simple. Consider the case when, , i.e., the event when we move from state  to
 in two transitions in mutually exclusive ways such that the first transition takes place from  to 

 state and then from  to  state. Here . Now because of Markovian assumption the

probability of first transition from state  to state  is , and that of moving from state  to  is .

If the probability of the process initially being at state  is , then the probability of the process being

at state  at time  is given by . What is of main interest to us is to find 

, and for doing that we need to describe few important properties of Markov chain, which we

now again do in order to have a better understanding of this process.

Properties

State  is accessible from state  if for some integers , , which means that state

 is accessible from state  if there is positive probability that in a finite transitions state  can
be reached starting from state .

Two states,  and , are each accessible to each other then the two states are said to
communicate and the notation is as follows, i.e., . In case two states do not

communicate then either (i)  for all  or (ii)  for all  or both are true.

Property of communicative (one should remember that communicative property is an
equivalence relationship)

Reflexivity : , i.e., 
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Symmetry : In case  then 

Transitivity : In case  and , then . Now as  is true hence

there exists an integer n, such that . Also  being true, there exists an

integer m, such that . Consequently we have 
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Examples 1.16

Let us consider the example given below

 0 1 2 3 4 5
0 1 0 0 0 0 0
1 ½ 0 ½ 0 0 0
2 0 ½ 0 ½ 0 0
3 0 0 ½ 0 ½ 0
4 0 0 0 ½ 0 ½
5 0 0 0 0 0 1

From the matrix above we can easily find out the equivalence classes as: .

Examples 1.17

In case the matrix is of the following form as shown below:

 0 1 2 3 4 5
0 0 1 0 0 0 0
1 ½ 0 ½ 0 0 0
2 0 ½ 0 ½ 0 0
3 0 0 ½ 0 ½ 0
4 0 0 0 ½ 0 ½
5 0 0 0 0 1 0

Then the equivalence class is only one and it is 

Equivalence class and Irreducible Markov chain

Let us now partition the totality of the states into equivalence classes, such that the states in
equivalence class are those that communicate with each other. A Markov chain is irreducible if the
equivalence property or relation induces only one class, i.e., all states communicate. Thus in
irreducible Markov chain all the states communicate with each other. For the example given below,

i.e.,

We have three equivalence classes, which are , , , such that 
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1)                                     true     
                                                                                                                                 
2)                            true                                                               
                                  
3)                                     false                           
                                                                                                           
4)                           false                                                               
                                  
5)            true                          
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Periodicity

If we denote the period of state  as , then it denotes the greatest common divisor (also known

as HCF) of all integers  for which . In case , , then we define .

For the case when the transition probability matrix is denoted by

, such that , then periodicity of each state is two (2).

Now in case if due to some reason  for some , then periodicity of every state, , is one (1)

The periodicity of the following case, where the transition probability matrix is as given

 has the periodicity of each state as n.
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Theorem 1.2

1) If , then 

2) If any state  has the value of periodicity as , then there exists an integer N (depending on ),

such that for all integers , 

3) If , then  for all n (positive integer) sufficiently large

A Markov chain for which each state has periodicity of one (1) is called aperiodic.

Generating functions

Let us first define the concept of general generating function. In case we have a sequence, , then

the generating function, , is defined as  for the case when . Hence in a

similar manner the generating function for the sequence , , is given by , 

We know that if we have (i) ,  and (ii) , , then we can

write the product of  as given below, i.e.,

 

 

 

, where 

Let us identify  with the  and the  with the  and if we compare 

 for  with  we immediately obtain  for 

 or  for 

One should remember that  for  is not valid for n = 0 and using simple

arguments we have
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 for 

where  is the probability that the first passage from state  to state  occurs at the  transition.

Again  , and utilizing , we can easily show that 

 for  can be written as , 

We say a state  is recurrent iff , i.e., a state is recurrent iff the probability is 1 so that

starting at state  it will return to state  after a finite number of transitions. A non-recurrent state is
said to be transient.
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Before we proceed with some proves relevant for our stochastic processes we need to see and
understand two important proves, which are stated as Lemmas (Lemma 1.1 (a) and Lemma 1.1 (b))
below.

Lemma 1.1 (a)

If  converges (i.e., ) then it implies (i.e., ) 

Proof of Lemma 1.1 (a)

What we will prove here is  (see carefully this is what we have to prove as

written above)

Since  converges then for any  one can find  such that  holds true for all

values of , then choose that N and write

 

Now for  we have

 

 

, where 

 being sufficiently close to 1 we have

 [this can be arbitrarily done considering any combination of  and , such

that  can be made lesser and lesser to ].

Now we need to find the second term which is , hence we have
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Look carefully and we immediately note that the first term is bounded by , while the

second term is bounded by . Hence we have 

Combining these two we have , provided  being sufficiently close to 1.
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Lemma 1.1 (b)

(b) If  and , then 

Proof of Lemma 1.1 (b)

Since  for , hence the case of  is obvious. In case , then by

our hypothesis  for , hence  for . Now as  is a

monotone increasing function in , hence it has a finite limit which will be equal to . Here remember
we utilize the result proved from (a).
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