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Solution Methodology

Reliability search algorithms are characterized by the use of analytical techniques to find a particular
point (Most Probable Point (MPP) of failure) in the feasible space which can be related to the
probability of the system failure, defined by the limit state. The solution methodology proceeds as
follows. We first transform the input vector  into the standard normal space 

, where , , and F-1 is the inverse of the normal

distribution function. This transformation maintains the distribution functions being identical in both X
and U space respectively. Thus the MPP, now in U space, is the minimum distance point from the

constraint boundary  to the origin, and this minimum distance is .

Now in an inverse reliability problem, the required reliability  is given, and the percentile performance

corresponding to  is to be evaluated, such that one needs to defined ßj (reliability index), which is

given by . Thus the MPP becomes the tangent point of a hyper

sphere in the U space with the radius ßj and the contour of gj(ux, d, up), such that at MPP one

achieves optimality. The type of optimization, i.e., maximization (minimization) achieved at MPP depends
on which part of the tail of the distribution MPP corresponds to, and as such the right (left) position of
MPP signifies that one achieves maximization (minimization) at those points respectively. So for (12.5)
we consider the MPP corresponding to the left tail. Likewise for the maximization problem, when we
have the objective function as maximum of , we formulated it accordingly and solve it
to obtain the MPP.
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Reliability Based Optimization Method

Performance Measure Approach (PMA) and Reliability Index Approach (RIA)
methods

One of the most challenging issues of implementing the probabilistic design is associated with intense
computational demand of uncertainty analysis. To capture the probabilistic characteristic of a system
performance from a design perspective, we need to perform a number of deterministic analyses around
the nominal point. One of the existing reliability based optimization methods is the decoupled method,
where in, there are two loops, namely the (i) optimization synthesis or the outer loop that optimizes
the original objective function based on the fact that the reliability constraints are formulated as
deterministic constraints that approximate MPP and (ii) reliability assessment or the inner loop
(there are two approaches used for solving this inner loop which are (i) Performance Measure
Approach (PMA) method (Figure 12.7) and (ii) Reliability Index Approach (RIA) method (Figure
12.8) about we will discuss briefly), that finds the equivalent deterministic version of each probabilistic
constraint by formulating and solving an optimization problem. It must be remember that these two
loops, which are decoupled from one another, are applied one after another in a sequence. Since this
decoupled loop method does not conduct the expensive MPP search at each step, its time efficiency is
very high, but as it performs an approximation at each step, hence this may not guarantee that the
results would always be optimal. But this decoupled method does generates a solution, even if sub-
optimal, for maximum of the complex optimization problem formulations.
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In PMA we calculate the MPP by formulating a minimization problem of the form: Minimize gj(ux, d,

up), s.t.  and this MPP is identified as the percentile performance level, calculated by 

, i.e., the gj function evaluated at MPP. There are several methods to

solve the MPP problem using PMA method, and that includes optimization techniques, traditional MPP
search algorithm based on steepest ascent direction, the diagonal direction method and gradient based
method, etc. On the other hand using RIA the MPP is calculated by finding a point which is on the
constraint curve in the U-space and is nearest to the origin. The problem formulation corresponding to
RIA approach is as follows: Minimize  s.t. gj(ux, d, up) = 0. Here we ignore the desired

reliability index ßj and the minimum U vector on the constraint boundary is found. Afterwards this point

thus found is compared with ßj to get the optimal point.

Figure 12.7 and Figure 12.8, give a pictorial illustration of both PMA and RIA methods, where the
interesting fact to note is how the minimization is achieved. In PMA the constraint boundary (or one side
of the hyper plane in n dimension space) at each iteration moves, which is shown by the red lines,
while in RIA it is the boundary of the circle (or hyper sphere) which moves, that is again shown by the
red lines. Hence reliability optimization problem involves two steps, which are (i) the requisite
optimization technique to solve the problem and (ii) the reliability assessment method which is required
to incorporate the uncertainty in the variables. In recent times the Sequential Optimization
Reliability Assessment (SORA), a form of decoupled solution method has gained importance for
reliability based optimization.
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Sequential Optimization and Reliability Assessment (SORA)

Sequential Optimization and Reliability Assessment (SORA) works in a way in which a
series of cycles of optimization task and reliability assessment are employed and in each such cycle,
the optimization and reliability assessments are decoupled from one another i.e., no reliability
assessment is required within optimization and the reliability assessment is conducted only after
optimization process is complete. The key concept of the method is to shift the boundaries of the
violated deterministic constraints to the feasible direction based on the information gained in the
previous cycle such that both the optimization and reliability loops are repeated until convergence is
achieved. Thus the three important steps for SORA are, (i) use -percentile formulation to evaluate the

design feasibility only at the desired reliability level , (ii) employ equivalent deterministic optimization
(first loop) to reduce the number of reliability assessments and (iii) use efficient MPP search algorithm
for the reliability assessments loop. Note should made of the fact that the use of -percentile
formulation instead of the original reliability assessment is based on the fact that, closer the reliability is
to 1.0, more is the computational effort needed. Thus for using MPP based methods, higher reliability
would mean higher search regions in the standard normal space to locate the MPP and it is more likely
that more functional evaluations are required. Our concern for a probabilistic constraint is not to find the
actual reliability of the limit state function, but to determine whether it is probabilistically feasible, as
some probabilistic constraint(s) may never be active whose reliability is close to one, and if these
constraint(s) is/are least critical, then the evaluation of this/these reliability/reliabilities may dominate the
computational effort. Thus use of -percentile is performed to improve the efficiency of the overall
process. Thus based on the relevant equations obtained after the MPP search is performed, the model
given by (12.2) can be rewritten as shown in (12.6):Sequential Optimization and Reliability
Assessment (SORA)
Sequential Optimization and Reliability Assessment (SORA) works in a way in which a
series of cycles of optimization task and reliability assessment are employed and in each such cycle,
the optimization and reliability assessments are decoupled from one another i.e., no reliability
assessment is required within optimization and the reliability assessment is conducted only after
optimization process is complete. The key concept of the method is to shift the boundaries of the
violated deterministic constraints to the feasible direction based on the information gained in the
previous cycle such that both the optimization and reliability loops are repeated until convergence is

achieved. Thus the three important steps for SORA are, (i) use -percentile formulation to evaluate

the design feasibility only at the desired reliability level , (ii) employ equivalent deterministic

optimization (first loop) to reduce the number of reliability assessments and (iii) use efficient MPP search

algorithm for the reliability assessments loop. Note should made of the fact that the use of -

percentile formulation instead of the original reliability assessment is based on the fact that, closer the
reliability is to 1.0, more is the computational effort needed. Thus for using MPP based methods, higher
reliability would mean higher search regions in the standard normal space to locate the MPP and it is
more likely that more functional evaluations are required. Our concern for a probabilistic constraint is not
to find the actual reliability of the limit state function, but to determine whether it is probabilistically
feasible, as some probabilistic constraint(s) may never be active whose reliability is close to one, and if
these constraint(s) is/are least critical, then the evaluation of this/these reliability/reliabilities may

dominate the computational effort. Thus use of -percentile is performed to improve the efficiency of

the overall process. Thus based on the relevant equations obtained after the MPP search is performed,
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the model given by (12.2) can be rewritten as shown in (12.6) :

SORA has been repeated twice. The second one is error free

           
(12.6)

where , , , and 

 are the corresponding mean value vectors and the MPP vectors for the

decision and parameter variables respectively. Thus, (12.6) establishes the relation between a
probabilistic optimization and a deterministic optimization since the original constraint functions 

 are used to evaluate the design feasibility using the inverse MPPs corresponding to

desired reliability . One can refer to Figure 12.9 to understand how a probabilistic constraint is

converted to equivalent deterministic constraint.
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Figure 12.9: Shifting of the constraint boundary

Figure 12.9, corresponds to two different co-ordinate systems, viz (i)  vs  (random space) and (ii) µ1

vs µ2 (design variables) and if we do not consider any uncertainty, then g(µ1, µ2) = 0 is the constraint

boundary in the deterministic design, while for the uncertainty case, the constraint boundary is 

. The probabilistic constraint feasible region is a reduced region in comparison to

the deterministic constraint as the reliability of probabilistic constraint is much higher than that achieved
for the deterministic constraint. Determining probabilistic constraint boundary requires reliability analysis,

since  is equivalent to gj(xMPP, d, pMPP) = 0, where (xMPP, pMPP) is the

inverse MPP point and evaluating a probabilistic constraint at (µ1,µ2) is equivalent to evaluating the

deterministic constraint at the inverse MPP point. The employment of the equivalent deterministic
optimization formulation allows us to use an effective single loop strategy and with this strategy,
deterministic optimization and reliability assessment are conducted in sequential series. In Figure 12.9,
what is also interesting is to note the red and blue (dotted and the continuous) joint distribution

functions, , where the bold (dotted) curves signify the non-normal (normal)

distributions, such that the corresponding probability of failure and hence the MPP points would
definitely dependent on the joint distributions.
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The flow chart of SORA is given in Figure 12.10, where in each cycle, the deterministic optimization is
performed first, followed by reliability checking of gj(xMPP, d, pMPP) = 0. If all of the probability

constraints simultaneously fail to fulfill  the reliability requirements, then the MPP information obtained in
the current cycle will be used to formulate the deterministic optimization in the next cycle. This
procedure is repeated until convergence is achieved. The number of function evaluations would be
reduced, as the reliability assessment is now equal to the number of optimization cycles. To explain the
strategy of separating deterministic optimization and reliability assessment while ensuring that both the
segments work together to bring the design solution quickly to a feasible and optimal point, we consider
Figure 12.9. As shown, Figure 12.9, if at the result of the deterministic optimization, the reliability
constraint is not feasible, then its boundary, gj(xMPP, d, pMPP) = 0, in the optimization model is shifted

towards the feasible region by a small distance, s = (s1,…, sJ), where , based on

the MPP recently found, so that this shift is performed in a manner that the MPP is moved onto the
deterministic boundary, and the constraint in the deterministic optimization model are reformulated as 

  , . The procedure is repeated until the objective converges

and the reliability requirement is achieved when the shifting distances, ,  become

zero. In order to improve the efficiency of SORA method, one may consider the starting point of inverse
MPP search in any iteration as the MPP point obtained in previous iterations, and moreover similar
starting point concept can be applied to the optimization cycle, where the optimal point of previous cycle
is taken as the starting point.
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Figure 12.10: Flow Chart for SORA

So the stopping criteria for SORA method are based on the following two criteria, which are, (i)
difference in the objective function between two consecutive cycles is less than a small  e value,
specified by the designer and (ii) all reliability requirements are satisfied. From the procedure of the
SORA method we see that the reliability loop is completely decoupled from the optimization loop and in
the optimization formulation, equivalent deterministic form of constraints, corresponding to the specified
reliabilities, are used. As a result the computation requirements are reduced as compared to other
methods.
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Use of MCMC
We already know that when an item is put to use it will definitely fail after some time, and then it will be
replaced by a new item of the same type and the time concept for finding the failure rate for the item
will start again. The question we need to answer in such cases is what happens then when we need to
find the best estimate of the time to failure and also the parameter values of the distribution based on
which the items function. In case if we have bulbs, each of which have a time to failure given by the
exponential distribution, then our main concern is to calculate the parameter,  of that
distribution and also  which would be the time to failure. This time to failure denotes when the first item
(say A in Figure 12.11) fails such that the whole component fails. It may also be the case when we
need to find the failure times for two items say E and F (Figure 12.11) such that the system stops
functioning.

Figure 12.11: General set up for a system with series and parallel components

Based on this concept we have the competing-risk model which refers to a situation where a system (or
organism) is exposed to two or more causes of failure (or death) but its eventual failure (or death)
can be attributed to exactly one of the causes of failure. The basic information available in the
competing-risks situation is the time to failure (T) of the system, and the corresponding cause of
failure ( ).
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Assume a (replaceable) component or unit has 'k' different ways it can fail. Then these are called
failure modes and underlying each failure mode is a failure mechanism. The competing risk model
evaluates component reliability by "building up" from the reliability models for each failure mode.
Typically the following three assumptions hold for such models:

Each failure mechanism leading to a particular type of failure (i.e., failure mode) proceeds
independently (a very restrictive assumption in the practical sense) of every other mode, at
least until a failure occurs. If we assume X1, X2,….,Xk as the latent lifetimes due to cause 

 respectively when the system is exposed to these risks independently, then 
 is the time to failure of the system. Obviously in a simplistic sense it

means we consider a series circuit, such that any one component failing mean the whole system
stops functioning and as an illustration one should refer to Figure 12.12.

Figure 12.12: Series system

The component fails when the first of all the competing failure mechanisms reaches a failure
state and the system is said to fail due to cause, . The cause is denoted by ,

j = 1, 2, …., J. In case if we do not have the information about the cause of failure of the system
then the data is said to be masked/censored.

Each of the k failure modes has a known life distribution model given by Fk(t).
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If Sc(t), Fc(t), and hc(t), are the hazard rate function or failure rate function, then 

 denote the reliability, cumulative distribution function and

failure rate for the component, respectively. On the other hand Si(t), Fi(t) and hi(t) are the reliability,

distribution function and failure rate for the ith failure mode, respectively. Thus the competing risk

model formulas for the component is given by ,  and 

. Now suppose  identical units are subject to failure by any one of the  competing risks, then the

likelihood function for the observations ( ) where  and ,

i =1, 2,….., n is given by .

Note : We would like to draw the attendtion of the readers on the first and second part of the
likelihood function. Each of them signify two different things. For e.g., let the distribution be exponential,

then             and , then the likelihood function is, 

. Now consider there are several mechanisms due to which a system

can fail. Since the mechanisms are assumed to be independent to each other, one cannot know
beforehand that the system will fail because of which cause, until the system has really failed and the
component which fails first causes the system to fail. Under these conditions the component reliability is
the product of the failure mode reliabilities and the component failure rate is the sum of failure mode
rates. This holds true for any model as long as the condition of 'independence' and the concept of first
mechanism failure causes the system to fail is true.

Here for our discussion we analyze both (i) Generalized Exponential distribution (GED) and and
Lognormal distribution (LN) cases.

Let the number of causes be J (for our study ). Let  denote the lifetime of ith subject due to

cause j (j = 1, 2), where i = 1, 2…..,n. It is assumed that  are independent for all i and j, and they

are identically distributed for all  given a value of . The corresponding distribution function, density

function, survival function and hazard function are given as , , 

 and  respectively, where  are the real valued parameters for each j. The observed

lifetime of ith subject is given by , i.e., the system will fail due to the cause which

happens earlier or which occurs first. Our task is to estimate the parameters for these causes assuming
they follow a particular density function and find the confidence intervals for these parameter estimates.
In a real time situation we can then analyze these causes and their behaviour and try to improve the
system.
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Case 1: (Generalized Exponential Distribution (GED)) non-Bayesian case

Generalized Exponential (GE) distribution is a three parameter distribution in general. Out of the
three parameters, the two parameters for GE distribution are the same as in Gamma and Weibull
distribution and they are the scale ( ) and the shape ( ) parameters. Gamma distribution has been
extensively used for analyzing the lifetime data both for its increasing as well as decreasing failure rates
which depends upon the shape parameter ( ), but the non existence of any closed form expression for
its distribution function resulted in Weibull distribution being used more frequently, since the latter has a
closed form expression for its corresponding distribution function. Furthermore GE distribution was given
as an option for the Gamma and Weibull distributions and the interesting fact is that this distribution
function has closed form expression. GE distribution has likelihood ratio ordering with respect to the
shape parameter when the scale parameter is constant, this property is same as that for the Gamma
distribution.

The the three parameter GE along with its survival and hazard function formulae are given as follows

 for , where are the respective parameters for the

distribution. When  = 1 it is defined as Generalized Exponential (GE) distribution which has the
following distribution function ; 

The density function is , where  is the shape parameter,  is

the scale parameter and finally  is the location parameter.
The corresponding survival function for the GE distribution is given by 

The hazard function is given as 
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Example of GED with Complete data

Suppose we have a two component system connected in series. The failure distribution for component
1 and component 2 are given by  and  respectively. We assume that the scale parameter (

) for both the components as same and the shape parameters are  for component 1 and  for

component 2 respectively. Consider we have n such systems which are identical to each other. We

assume that  are independent random variables for i=1, 2,…,n and j=1,2 and they are distributed

according to Generalized Exponential distribution with parameters ( ).  and are the time to

failure for the ith system due to component 1 and component 2 respectively and  denote the

cause of failure for the ith system where =1, 2. Then, the time to failure for the ith system will be the

minimum of the two, i.e., . Then the expected lifetime of the system due to cause 1

is , where  is evaluated using the method of

moments  and is given by  = , where  is the digamma function. The

relative risk rate ( ) due to cause 1 is  an similarly .Suppose that out

of the n systems  fail due to cause 1 and  fail due to cause 2. Then the likelihood function for the

observed data is given by

 

            (12.7)

and the log Likelihood Function ( ) is given by

(12.8)

The corresponding likelihood equations can be obtained by taking the partial derivatives with respect to
the parameters  and remembering the fact that for evaluating the MLEs of 

we have to simultaneously solve the set of equations (12.7) and (12.8). As they do not have a closed
form solution, hence we use the multidimensional Newton Raphson Method to numerically solve the
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Likelihood equations to get the MLE estimates .
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Case 1: (Generalized Exponential Distribution (GED)) Bayesian case

In our model we utilize certain priors to obtain the Bayesian estimates for the GE distribution in the
competing risks setup for complete data. Suppose we have a two component system connected in
series. The failure distribution for component 1 and component 2 are given by  and

respectively.We assume that the scale parameter ( ) for both the components are same and the

shape parameters are  and  for component 1 and component 2 respectively.Let us consider n

such systems which are identical to each other. 

As usual we assume that  are distributed according to GE distribution for i=1,2,…n.

We already know that  and  are the time to failure for the ith system due to component 1 and

component 2 respectively and  denote the cause of failure for the ith system where  =1, 2.

Then, the time to failure for the ith system will be the minimum of the two,i.e. 

The likelihood function for the observed data 

*

Since both  and  are non negative, we assume priors for  to be gamma priors.In

many situations, the information about the shape and scale of the sampling distribution is available in
an independent manner, and in the similar line we assume that the parameters of are
independent a priori.

Hence the joint density function is given by

Therefore the Bayes estimator of any function of , say g( ) is given by

Since it is not possible to compute the function analytically, we use the Markov Chain Monte Carlo
(MCMC) method to approximate this function.
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Results using MCMC
Using MCMC we obtain the average values of , variance and bias for the GE distribution.

We also report the bootstrap values of the confidence intervals. For calculating the average values of 

 we consider a sample size n of 200 and conduct 200 runs for all the models. Thus in Table

12.1, 12.2 we report our simulation runs results using MCMC method.

Table 12.1: Average values, variance and bias of 

GED complete data without EM and using MCMC

 =1  =2 =1.5

Average 1.009 2.001 1.501
Variance 0.009 0.027 0.016

Bias 0.073 0.134 0.097

    

GED incomplete data without EM and using MCMC

 =1  =2 =1.5

Average 1.010 1.999 1.521

Variance 0.008 0.023 0.009

Bias 0.074 0.126 0.080

Table 12.2: Bootstrap-1 and bootstrap-1 confidence intervals for ,  and  for
both complete and masked data using EM algorithm and without EM algorithm

and using MCMC

GED incomplete data without using EM and using MCMC
 

Bootstrap-1 1.053(0.842) 2.164(0.898) 1.894(0.869)
Bootstrap-2 0.910 (0.827) 2.053(0.853) 1.667(0.784)

GED incomplete data using EM and using MCMC
 

Bootstrap-1 1.063(0.835) 2.413(0.872) 2.149(0.838)
Bootstrap-2 0.861(0.827) 2.218(0.847) 2.051(0.816)
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