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Theorem 1.3

A state  is recurrent iff 

Proof of Theorem 1.3

Assume state  is recurrent then we must have must have , which is what we need to

prove. Now pay close attention to the concept of generating function from where we see that, 

,  and this is the generic form,from which we have (i) , 

, i.e., (ii) ,  (proof given above),would also imply 

, which would immediately prove that ,

as  for  (refer above prove). Now using the second proof which is: if 

 and ,

 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/courses/introduction_stochastic_process_application/lecture3/3_3.html[9/30/2013 12:47:44 PM]

 Module 1:Concepts of Random walks, Markov Chains, Markov Processes
 Lecture 3:Markov Chains

 

This is the necessary condition. Now we need to concentrate on the sufficient condition prove.

Assume the  state is transient, i.e., . Using the two stated facts given

below :

(i) if  converges then 

and

(ii)  for 

we can infer .Again utilizing the fact that if  and , then 

 which leads us to  being true. On seeing this we can immediately

conclude that it contradicts our hypothesis based on which we started, i.e.,  state is transient. Hence 
 state is not transient.
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Corollary based on Theorem 1.3

Is the following holds true, i.e., , and if  is recurrent, then  is also recurrent.

Proof of corollary based on Theorem 1.3

If , then there exists , such that we have  and . Now if , which is

arbitrary, we can obtain , which we utilize to sum up, which leads us to 

. Now if  diverges, so does . Now we

already know that a state  is recurrent iff , hence it would immediately lead us to the fact

that  is recurrent if  is recurrent.
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Note/Remark

Recurrence and periodicity are class property, which means that all states in an equivalence
class are either recurrent or non-recurrent.

The expected number of returns to state , given that  is given by , hence a state 

 is recurrent iff the expected number of returns is infinite.

Let us define two power series

(a) , where  

(b) , where 

With these definitions we can now make the following claim which is

 

 

Now we also know that , i.e., 

Hence we have: , i.e.,  
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Few more examples of recurrent Markov Chains

Example 1.18

Consider again the simple case when a drunkard is moving one step right with probability , and one
step to the left with probability , such that 

Hence we have:

(i) , 

(ii)
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If one pays attention to (i), then this formulae would change the moment we have the following diagram
,which is given below

such that 

Now going back to our original problem we solve using Stirling's formula or approximation
(whichis ) we obta

 

Now  and the value of  is maximum iff when . Remember that this can be extended

to
the case of .
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Let us pay attention to the fact that  and this lead us to the fact that 

 for the case when , else the rate of convergence of  is . So now we have the sequence

, , …., and the sum, i.e.,  iff . Thus the one dimension random walk is

recurrent iff , else it is transient, i.e., we have convergence.

Example 1.19

Can you say something of two dimensional random walk of the form, which is illustrated below, in the
case when we have

(i) Probability of moving up is 

(ii) Probability of moving down 

(iii)Probability of moving right 

(iv)Probability of moving left 
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Such that , and  

Consider a battery operated car which can move randomly along the tracks in right, left, up, down with
some fixed probability, where these probabilities do not change. Also consider the floor or plane to be
infinite, i.e., there are infinite number of such states, or places the car can move. If 

, we will see whether the origin from where the car starts is recurrent or not.

Now if the car moves  units to right,  units to left,  units to up and finally  units to down, such
that, ,  then we have the following

(i) , and

(ii) , 

Here we apply multinomial distribution to find the second term given above.
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Note:

Can you guess what happens in general when we have , and the movements are 

 units to right,  units to left,  units to up and  units to down, such that, .
Comment intelligently on this problem.

Again let us continue with the problem which we were discussing. So we have

 as 

Using Stirling's formula or approximation, which is , we have 

. Again let us pay attention to the fact that  when , hence the rate

of convergence for  is not zero, else the rate of convergence of  is 0. So

now we have the sequence , , …., and the sum, i.e.,  iff .

Thus the two dimension random walk is recurrent iff .
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Example 1.20 
Can you say something of three dimensional random walk of the form, which is illustrated below, in the
case when we have

(i) Probability of moving up 

(ii) Probability of moving down 

(iii) Probability of moving right 

(iv) Probability of moving left 

(v) Probability of moving front 

(vi) Probability of moving back 

Such that , and 
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Consider again the simple case where a molecule (in a n adiabatic enclosure is randomly fluctuating all
around the chamber or box, such that it rebounds from the walls and all other molecules without any
loss of total energy. Consider the chamber has infinite dimension, such that there are infinite number of
such states for the molecule. This problem of stating that the molecules have infinite states to visit is not
impractical, as we can consider the chamber of finite size, but considering the size of the molecule it
can take visit pr occue at infinite states. We can prove this formulae (which we will find out soon) for the

case when 
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(i) , 

(ii) 

Thus we have

The above result can be obtained if we note that . Now this fact

that  is true for this case as ,

else we have to rework the whole problem.

Again going back to , we see that for 

 being a large value we have  when , i.e., . Thus we

have

, and again using Stirling's formula or approximation, which

is , we have the right hand side as , when . But

if we have to find , , …., then the sum, i.e., , which is the
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Now refer to the statement that recurrence and periodicity are class property, which means that all
states in an equivalence class are either recurrent or non-recurrent. So for one dimension and two
dimension all the states in that class are recurrent, but in three dimension it means that once the
particle leaves the origin, it never returns to that state.

Few classifications of the states and their corresponding limit theorems

The states of a Markov chain can be classified into distinct types depending on their respective limiting
behavior. Suppose the Markov chain's initial state is  and its final state is . So if the ultimate return
of the Markov chain to this  is a certain event then that state, , is called a recurrent state and the
time of return for the first time, which is obviously a random variable is called the recurrent time. In
case the mean recurrence time for the first time return to the  state, provided the Markov chain
started from the  state, is finite, then the state is called positive recurrent, else if it is infinite then
the state is non-recurrent. Also we already know that in case the ultimate return to the  state has a
probability of less than one, then the state is called transient.
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Few definitions which are useful are

Ephemeral state : A state  is called ephemeral state if , , i.e., this state cannot

be reached from any other state. Now if we think rationally, the Markov chain can only be in the
ephemeral state initially (because the process has not yet started) and pass out of the ephemeral state
after the first transition, i.e., after . Now if the characteristics of the ephemeral state are to be
understood from the transition probability matrix point of view, then we have the ephemeral state as
denoted by that state for which in the transition probability matrix all the probability values
corresponding to that state (denoted by the corresponding column) are zeros as shown in the matrix P.

Let us suppose that the Markov chain is initially at state , also let  be the probability that the next

occurrence of state  is at time , i.e.,  and for , we have 

, which implies that the probability that based on the

condition that the Markov chain started at  state at time , and would again be at  state at
time , provided it did not ever come to the  state at any of the times . This 

 is the first return probability for time . Similarly first passage probability, , as the

conditional probability that state  is avoided at times, , and entered at time ,

given that  state is occupied initially. Thus we should have  and for , we have 

,
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For the recurrent state, the mean recurrence time value is given by , and if  is

infinite then the state  is null recurrent, and in case  is finite then the state  is positive

recurrent. We must remember that ,  are the corresponding probabilities that state  is

revisited after the first, second, third, etc., transition times. In a similar line, , i.e., the sum

of the probabilities that the state after starting from the  state goes to  state after  time.

So as  is the first passage probability, hence mean of the first passage time is given by 

.

Suppose a Markov chain starts at the  state and comes back to the  state again, but only after
time periods of  and , then state  is periodic, with a periodicity of  (where this  is the

largest integer with this property). This would imply that  apart from when , .

A state which is not periodic is called aperiodic. Just note that for a aperiodic state the periodicity is 1.
An aperiodic state which is positive recurrent is called ergodic state. Below for our own convenience we
summarize the definitions for a Markov chain
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Assignment 1.1

A psychological subject can make one of the two responses marked by  and , and associated with
each response are a set of  stimuli, i.e., . Each stimulus is conditioned to one of the
responses. A single stimulus is sampled at random and all possibilities are equally likely and the subject
responds according to the stimulus sampled. Reinforcement occurs at each trial with probability, 

 independence of the previous history of the process. When reinforcement occurs, the
stimulus sampled does not alter its conditioning state. In the contrary event the stimulus becomes
conditioned to the other response. Consider the Markov chain whose state variable is the number of
stimuli conditioned to responseA1 . Determine the transition probability matrix for this Markov chain.

Solution of Assignment 1.1

Let  denote the number of stimuli conditioned to the response A1 at the nth trial. Clearly, 
 represent the Markov chain with discrete state space  and the

transition probabilities for this Markov chain are as followes.

and

  and

Hence the transition probability for this Markov chain is given as shown below:
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Assignment 1.2

(a) Suppose  are independent with the following probabilities, i.e.,  and 

, and .With , set , 

 and . If , then show that

.

(b) Now if we consider the bivariate process  as a random walk on the positive two dimension

lattice, then what is the probability that this random walk leaves the rectangle at the top?
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Assignment 1.3

Determine and derive the generating function of the recurrent time from state 0 to state 0

Solution of Assignment 1.3

Let pij
(n)  denotes the probability of transition from state i  to state j in exactly n steps, and fij(n)  denotes

the probability of arriving at state j at time n for the first time, given that the process starts at state i.

Let:

,  |s|<1

 ,   |s|<1

be the generating function of the sequence {p00
(n)} and {f00

(n)} respectively
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Assignments 1.4

Let , where , then prove that

Assignments 1.5

Consider a Markov chain and it has  number of states, then prove
(a) If a state  can be reached from state , then it can be reached in  steps or less.

(b) If  is a recurrent state, then there exits  such that , the probability that first

return to state  occurs after  transition is 
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Limit Theorem of Markov Chain and Applications

First let us consider few simple examples, which will motivate us about the idea why limiting theorems
for Markov chains are important and their implications with respect to renewal process.

Example 1.21

In order to obtain the pricing expressions for financial instruments, whose underlying asset may be
described through a simple continuous-time random walk (CTRW) market model, one may use renewal
equations pertinent to the renewal process to derive the expressions.

Example 1.22

Suppose one is interested to find the software reliability and the costs are both deterministic as well as
probabilistic. Then using the concepts of renewal process one can estimate the different metrics like
mean error free time, number of errors remaining in the software product, etc.

Example 1.23

Consider light bulbs are being replaced consecutively one after the another by a new one after the
previous one fuses, then one may be interested to find the expected number of light bulbs replaced in
some stipulated time, and for that one may use the concept of renewal process.

Having discussed these simple examples let us start with full earnestness the theorems necessary to
under Markov chains
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Theorem 1.4

Suppose ,  and  be three sequences indexed by . Also suppose the

following are true: (i) , (ii) , (iii) , (iv) , (v) ,

and that the greatest common divisor of the integer  for which  is 1.

Proof of Theorem 1.4

(a) If the renewal equation  for  is satisfied by a bounded

sequence  of real numbers, then (i)  and (ii)  exist.

(b) Furthermore if  (i.e., (ii)) then  [Note in case the denominator

is equal to infinity, i.e., , then the limit is still valid provided we can interpret or say that

Now before going into the proof we will give the general definition of a renewal process where the

equation would be of the form  for . So consider a light bulb

whose lifetime (obviously will be measured in discrete times) is a random variable, , where 

 for , , . Now if each bulb is replaced by a new one the

moment the old bulb fails (fuses), such that first bulb lasts until  time, the second bulb lasts until 

 time and so on and we must remember that  are each i.i.d. Let  denote the expected

number of renewals (replacements) up to time . So the first replacement occurs at time , then

the expected number of replacements in the remaining time upto to  is  and summing over all

possible values of  we have
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Now remember the first term,  is the expected number of bulbs replaced in time  if the first

bulb fails at time , and the probability of this event is , while the second sum is the sum

of the probability that the first bulb lasts a duration exceeding  time units.
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Few more example of Markov chain

Example 1.24

Suppose customers arrive at a service station/centre in a  queue system in accordance with

Poisson process with an average rate of  . As this is a single server, thus when customers arrive, if
they find the server in not being used they immediately go to the server and their respective job is
processes, else if the server is busy the customers wait. We are to plan out scheduling system in such
a way that we optimize on the metric which we consider as important to analyze how the queueing
system works. Some of the metric may be average waiting time for the jobs, average idle time of the
server, average processing time of the jobs, etc.

Example 1.25

In this second example consider you have  number of serves, such that that the queueing system is
now denoted by . Further more, consider that all the servers are machines which are

particular types of machines like shaper, planner, grinder, etc., such that each is capable of performing
only one operation. All the jobs are required to be machined by all of these  servers/machines, but in
any order. The arrival rate of the jobs is a Poisson process with an average rate of , and the

throughput of the servers/machines are  ,  . As evident from the first example stated

above, our plan for scheduling this queueing system can be based in a way that we optimize on the
metric which we consider as important to analyze how the queueing system works. Some of the metric
may be average waiting time for all the jobs, average idle time of all the servers/machines, average
processing time of all the jobs, ratio of average utilization between the most used server/machine with
respect to least used server/machine, etc.
Without any loss of generality let us discuss again the limit theorems for Markov chains
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Theorem 1.5

Let  be an arbitrary but fixed state, then

(i)  is transient iff the series  is convergent (i.e., ) and in this case  is

convergent for each .

(ii)  is recurrent iff the series  is divergent (i.e., ) and in this case  is

convergent for each  which communicates with .

Proof of Theorem 1.5

Let  be a recurrent state and let  be its mean recurrence time, also define 

 if 

(i) If  is periodic, then  and , where we already know that 

(ii) If  has a period , then  and for each state  which communicates with  

, where  is the smallest value of  for which 

Absorbing Markov Chains

Let us assume a hypothetical example where we have a Markov chain such that all the persistent
states ( ) of this Markov chain are absorbing, while  set of states of this same Markov chain are
transient. We rearrange the states in such a way (no one stops us from doing this as there is no set
pattern in which the states will be reached in the stochastic process), such that we have the transition

probability matrix as give: , and here  is a sub-matrix which corresponds to the

transition among states, , such that , while  the unit matrix corresponds to the transition
among state, , such that  and  is any matrix. Then calculate .

Example for better illustration: consider we have the transition matrix as given 
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Theorem 1.6

If  denotes the probability that the chain starting with a transient state,  eventually gets absorbed in

an absorbing state, . Let us denote the absorption probability matrix by , 

, then 

Proof of Theorem 1.6

Now we have since transition between absorbing states are impossible. Moreover 

. Since  is absorbing so once the chain reaches an absorbing state 

 after steps , thus 

This is true as  can be any state in the Markov chain.

Note: Now we utilize the concept of ascending order of a sequence and its results, i.e., 

 holds true for the case when . In case of descending order

of a sequence we have  holds true for the case when .

Hence utilizing this above fact we have 

Also the Chapman Kolmorogrov equation can be written as , remember the

summation is being done for only those  which are elements/members of .

Now (i)  and (ii)  iff  and 

Hence we have: 

 

, which in matrix notation is , i.e., 
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Theorem 1.7

Let a finite Markov chain with state space  be also martingle. Then

(i)  for  

(ii)  for  

(iii)  for  

Proof of Theorem 1.7

Before we go through this simple proof we illustrate the concept of a martingle. Now a stochastic

process  is said to be martingle process if (i)  for all  and (ii)

.Now taking expectation we have ,  i.e., 

 

(i) Let  be independent random variables with mean 0, and let , then 

 is a martingle

(ii) Let  be independent random variables with mean 1, and let , then 

 is a martingle

Now as this is a martingle as well as a Markov chain with transition probability matrix P, then we would

definitely have , , then it means that

, i.e., 

Now  is satisfied for  iff  and for  iff . Thus if a finite Markov

chain is also martingle, then its terminal states are absorbing.

Assuming that there are no further closed sets we get that the interior states, 1,2,…, (l-1) are all

transient, hence  for  and similarly we have   for 

 and  for 
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Example 1.26

Let us consider a single counter at the railway booking counter at IIT Kanpur gate, where people arrive
in order to buy/cancel railway tickets. Assume the time of arrivals are such that the server or the person
at the counter can serve at time of 0, 1, 2,…., and for simplicity assume that in the time interval 

 the number of customers is random which is denoted by  with ., which are i.i.d.

random variables with probability mass function of . Furthermore consider that due to
space limitation only  number of persons can be accommodated in the small railway booking counter
at the IIT Kanpur gate, where this  includes the person at the counter who is booking/cancelling
his/her ticket. In case if a passenger enters the booking counter and see that it is already full, then
he/she leaves without booking/cancelling his/her ticket. Consider  as the number of customer in the

booking counter at time ., then  can be defined as a Markov chain which has the state

space denoted by .

It is clear that we would have

and the probability transition matrix as

Now the probability distribution can easily be found out using the transition probability values, , so

that we can easily write
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Example 1.27

Let us consider the transition probability matrix as follows . So we first find the missing

values and then find the different probabilities of transition from one state to another.

Note

The transition probability matrix along with the initial distribution (initial conditions) completely specifies
the Markov chain.

Property

1. Strong Markov property : In case  is the stopping time for a Markov chain, and consider two
different events A and B, such that we have

then if we have , thus technically the evolution of the Markov chain

starts afresh and repeats itself after it has reached the state . Remember all discrete Markov chain

have this strong Markov property.

2. Markov chain of order : Consider a Markov chain,  and in case if we have s,

then it is a Markov chain of order . In general stock prices will be considered of order 1.

3. Markov chain of order 0: For a Markov chain if we have  for , then it is a Markov

chain of order 0.
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Graph representation of Markov chain

Steady state graphical representation of Markov chains (depending on
any order of the Markov chain)

Examples of (i) Graph colouring problem, (ii) stochastic network flows (oil flow, gas flow,
information/data flow, etc.), (iii) network flows (maximum flow, minimum cut etc.), etc.
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