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One may note that , ,  may be continuous, discrete, integer, binary, etc., depending on the scope of
the model. Stochasticity in (12.2) comes from two set of variables which are  and , and for a better
illustration of the same one should refer to Figure 12.5 which shows a hypothetical problem with two
stochastic inequality constraints (i.e., function of x1 and x2), where, typically the deterministic optimal

solution lies on a constraint boundary or at the intersection of more than one constraint, as shown by
the red dot (Figure 12.5).

In the event of uncertainties in the design/decision variables (i.e., x1 and x2 in this example), there

may be instances when the deterministic solution become infeasible, and to find a reliable solution
(meaning that there is a very small probability of instances producing an infeasible solution), the true
optimal solution is sacrificed and a solution (blue dot, Figure 12.5) in the interior of the feasible region
is chosen, such that the level of confidence inside the region marked with blue outline is actually at the
specified reliability level, say . Thus, for a reliability measure , it is desired to find the feasible
solution that will ensure that the probability of having an infeasible solution is at most . To incorporate
this uncertainty and find the reliable solution, the following probabilistic modification of (12.2), is
considered, where in the reliability concept is formulated as the probability of the constraint satisfaction, 

 greater than or equal to the desired probability aj. So the probabilistic counter part of

(12.2) is shown in (12.3).

Figure 12.5: Illustration of the concept of Reliability Based Design
Optimization (RBDO)

(12.3)
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An example in optimization and use of reliability based optimization

In optimization problems one tries to find the best possible allocation of resources amongst the probable
set of alternatives (feasible sets), to find a unique combination of the control/decision
variables, subject to some restrictions/constraints on the control/decision variables domain
space, in order to optimize the given objective function(s). Mathematically a generic optimization
problem can be stated as given in (12.2).

(12.2)

where (i)  is the objective function which may be linear/non-linear, single/multi-objective, (ii) 

, , are the inequality constraints, (iii) , , are the

equality constraints, (iv) , , is the vector of probabilistic control/decision variables,

(v) , , is the vector of deterministic control/decision variables, and (vi) , 

, is the vector of probabilistic exogenous parameters to the system.
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Concept of Markov Chain Monte Carlo (MCMC) method

A class of algorithms which are used for sampling from a particular population distribution whether of
parameter form or non-parametric form such that one can understand the population characteristics
using the concept of Markov chain is caled Markov chain Monte Carlo (MCMC) methods. One
must remember that MCMC methods include random walk Monte Carlo methods also. For this we use
the state of the Markov chain as a sample from the desired distribution, and to achieve this one has to
use a large number of steps/iterations to obtain a level of stability. So the quality of the sample improves
as a function of the number of steps. Thus in many of the MCMC methods it is advisable that the first
1000 to 5000 iterative run values are disregarded till consistency is achieved. Hence the number of such
iterative runs which are to be disregarded depends on the type of Markov chain one has, based on
which the sampling plan is being built.

Generally it is easy to know the properties of the Markov Chain, based on which the MCMC works. As
already mentioned the difficult part is to determine how many steps are needed to converge to the
stationary distribution within an acceptable level of error. A clever way is to start the MCMC method,
(based on some Markov chain concept) is to consider an arbitrary initial starting point at each run of the
MCMC method, and then allow the MCMC method to continue for  number of times. Repeat the
MCMC method with the same Markov chain, but now considering a different starting point, i.e., state.
Repeat this large number of times such that the general properties of the MCMC methods are obtained
in the long run. The importance of this can be judged from the fact that the states can have different
probability, and in the long run it dictates the efficacy of starting at a partcilar state, i. Thus one should

continue sampling from the stochastic random process such that one is able to ensure that  is

obtained. It is important to remember that we need to mix the chain in some manner so that stability is
achieved such that the values obtained are taken from the actual theoretical distribution, which is very
important to us. For the convenience of the reader a simple pseudo-code for the Markov chain
Monte Carlo (MCMC) is illustrsted in Figure 12.4.

Pseudo code for MCMC Method
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Figure 12.4: Pseudo-code for Markov chain Monte Carlo (MCMC)

Typical use of MCMC sampling can only approximate the target distribution, as there is always some
residual effect of the starting point/state. More sophisticated MCMC-based algorithms such as coupling
from the past can produce exact samples, at the cost of additional computation and an unbounded
(though finite in expectation) running time.

We know that random walk methods are a kind of random simulation or Monte Carlo method. An
important thing to note is the fact that the random samples generated during a conventional Monte
Carlo integration are statistically independent, but those used in MCMC are correlated.
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Simulated Annealing (based on Metropolis Algorithm)

Simulated annealing (SA) is a generalization of a Monte Carlo method for examining the equations
of state and frozen states of n-body systems. The concept is based on the manner in which liquids
freeze or metals recrystalize in the process of annealing. In an annealing process a metal, initially at
high temperature and in a disordered state is slowly cooled so that the system at any time is
approximately in thermodynamic equilibrium. As cooling proceeds, the system becomes more
ordered and approaches a frozen ground state at .Hence the process can be thought of as an
adiabatic approach to the lowest energy state. If the initial temperature of the system is too low or
cooling is done insufficiently slowly then the system may become quenched forming defects or freezing
out in metastable states (i.e., trapped in a local minimum energy state).

By analogy the generalization of this Monte Carlo approach to combinatorial problems is straight
forward. The current state of the thermodynamic system is analogous to the current solution to the
combinatorial problem, the energy equation for the thermodynamic system is analogous to at the
objective function, and the ground state is analogous to the global minimum. The major difficulty in
implementation of the algorithm is that there is no obvious analogy for the temperature  with respect to
a free parameter in the combinatorial problem. Furthermore, avoidance of entrainment in local minima
(quenching) is dependent on the "annealing schedule", (i) the choice of initial temperature, (ii)
how many iterations are performed at each temperature, and (iii) how much the
temperature is decremented at each step as cooling proceeds.

Simulated annealing has been used in various combinatorial optimization problems and has been
particularly successful in circuit design problems. Figure 12.3 gives the pseudo-code for the
Simulated Annealing (SA) process, which the reader is advised to understand for a better
understanding of the procedure.

Pseudo code for the Simulated Annealing (SA) method

Figure 12.3: Pseudo-code for Simulated Annealing (SA)
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The question which is important for us to answer is, what happens when the search is probabilistic or

stochastic. Let us consider the example for which we have  and , where 

 and . Let  denote the number of transitions one needs to go from state  to

state 1. So given the initial condition we have  and with the initial condition

that , we can obtain all the successive expected values.

Now if  where , then we can prove

(i) 

(ii) 

(iii) For large ,  follows a Poisson process with a mean of 
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It would be imperative to know what are the properties of LP and they are:
1)      Proportionality
2)      Additivity
3)      Certainty

The main question which is important to understand is the feasible space which if known can enhance
you search procedure to find the optimal point in the most efficient way. This feasible region/space
(ABCDE, Figire 12.1) may of different types some of which are shown through case 12.1, case 12.2 and
case 12.3. For this one can refer to Figure 12.2.

Case: 12.1

Case: 12.2
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Case: 12.3

Figure 12.2: Different examples of feasible region/space
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Thus we have from the table:  and . Here a colouring
scheme has been employed to make the concepts clear when one refers to the diagrams given later.
Finally the other constraints are:  and . Thus the problem is as given below and for
illustration the reader is requested to refer to Figure 12.1.

Maximize 

s.t:

(12.1a)

(12.1b)

(12.1c)

(12.1d)

 (12.1e)

Figure 12.1: A simple example of linear program in two dimension
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Application of Markov chain in trying to judge the efficiency of algorithms in
OR

In certain OR problems the idea is to search and determine the best amongst a set of  number of
search points so that at each point we find the objective function and try to ascertain whether we are
able to reach our optimum (whether minimum or maximum that is a different question). Now consider
that in a linear programming problem (LPP) if we have  number of corner points, then we have to
search  number of search points.

Let us illustrate that with a simple example.

Example 12.1
A paint company manufactures two different types of paints, P1 and P2, from the raw materials, M1 and

M2. The following table provides the basic data for our example

 Tons of raw materials per ton of Maximum daily
availability (tons)

Raw material M1 6 4 24
Raw material M2 1 2 6

Profit per ton (Rs. 1000) 5 4

A marketing survey indicates that the daily demand for  cannot exceed that of  by more than 1 ton.
Also the maximum daily demand of   is 2 tons. The company would like to determine the optimal mix
of the two paints in order to maximize its daily profit.

Step1: To determine the amount to be produced of  and  we denote  as the amount of  paint
and  as the amount of  paint.

Step 2: To construct the objective function the company wants to increase its profit as much as
possible. If we denote the profit function as z, then we need to maximize .

Step 3: The constraints, that restricts the raw materials and demand, is related by the fundamental
principle that 
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If  indicates , then it means that the constraint is feasible. With this

inverse reliability transformation, the original constraints that require reliability assessments are
converted to equivalent constraints that evaluate the aj-percentile performance. Hence instead of
checking the actual reliability, the location of  will now determine the feasibility of a constraint.
Applying the above concept to a portfolio optimization (considering minimization) problem gives us the
following two equations, namely (12.4) and (12.5).

           
(12.4)

(12.5)

Here the deterministic portfolio optimization problem, (12.4), and the reliable formulation, (12.5),
correspond to the general equations (12.2) and (12.3) respectively. N is the universe of assets from
which the portfolio is to be formed, Ω, the vector comprising the weights  for each of the

corresponding asset in the optimal portfolio, M, the vector consisting of the expected returns for the N
assets and finally, V, the variance-covariance matrix of the returns of the N assets. In (12.5) the
constraint on the returns means that the probability of returns being greater than a certain desired value
R* satisfies a given confidence level .
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Reliability Analysis

To illustrate (12.3) further, let us consider Figure 12.6 (a), in which  is plotted against 

 and the shaded area underneath the probability density function  depicts the

case when this area is greater than or equal to aj, i.e., , holds true. So logically

it implies that given  as the joint distribution function, the shaded area depicts the

reliability corresponding to the jth constraint, . To understand this further we discuss the
concept of reliability analysis which offers tools for making reliable decisions with the consideration
of uncertainty in design variables and/or parameters. Thus in reliability analysis, given a pre-
specified performance level, one is interested to find the probability/reliability greater or less than that
pre-specified performance. So in order to use (12.3) we need to evaluate the reliabilities of 

,  and in presence of these multiple constraints, some of them may never

be active and consequently their reliabilities are extremely high (i.e., almost 1.0). Although these
constraints are the least critical, the evaluations of these reliabilities will unfortunately dominate the
computational effort in probabilistic optimization. The solution to this, is to perform the reliability
assessment only up to the necessary level, hence, a formulation of percentile performance (inverse
reliability) is used and formulation of the same is as follows, i.e., , where,  is the aj-percentile

performance of , namely , where it indicates 

 is exactly equal to the desired reliability aj. This is illustrated in the Figure

12.6 (b), where the shaded area is again equal to the desired reliability aj, and  point is called the aj-

percentile of function .

Figure 12.6 (a) & (b): General representation of reliability constraint & aj-
percentile reliability constraint
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The Lecture Contains :

Application of Markov chain in trying to judge the efficiency of algorithms in OR

Simulated Annealing (based on Metropolis Algorithm)

Concept of Markov Chain Monte Carlo (MCMC) method

An example in optimization and use of reliability based optimization

Reliability Analysis
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