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Theorem 1.3

A state ; is recurrent iff ZE:‘ =

=l
Proof of Theorem 1.3

=]

Assume state j is recurrent then we must have must have Zf:: =1, which is what we need to
el
prove. Now pay close attention to the concept of generating function from where we see that,

A[s) Za w gt |S <1 and this is the generic form,from which we have (i) %.(S):if{;ﬂ W,

|,-_:.'|-;:1, e, (i) %.[3]:2%’5@”, [s <1 (proof given above)would also imply

H=ll

(Z fis ] lim &,{s}=1, which would immediately prove that lim 7 {s)= [i P:S”]
=1 =1 =1

=1 nall

1
as E;-{S}: - [S) for |3| <1 (refer above prove). Now using the second proof which is: if ¢, = 0

and ]Jm(z:akxs ] @ =00

i—=1-
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This is the necessary condition. Now we need to concentrate on the sufficient condition prove.

w
Assume the ;#* state is transient, i.e., lim [ngxs"} = =co. Using the two stated facts given

=3 1- bl
below :
w a W w
(i) Zak:J]E'rT > a, |if converges then lim Saxs =3 a, =a
kil N, kil kil Kol
and

1
(i) Bls)=— i) o <

we can infer 511_13711 By {5] €0 Again utilizing the fact that if ay, = (0 and ]m} (Z iy xsk] = =co, then
S—=1- kil

w Fi o
Z‘Ik=j]j.§1 [Zak] which leads us to Z}-‘;‘:‘ < o being true. On seeing this we can immediately
k=0 4 k) n-1

conclude that it contradicts our hypothesis based on which we started, i.e., ;# state is transient. Hence

;¥ state is not transient.
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Corollary based on Theorem 1.3

Is the following holds true, i.e., i « i, and if ; is recurrent, then  is also recurrent.

Proof of corollary based on Theorem 1.3

munz=zl

If i <+ j, then there exists , such that we have E{;‘ = (1 and P;“ = (). Now if 1. = 1, which is

arbitrary, we can obtain Pi’;‘”*" gﬁfxﬂjx%" which we utilize to sum up, which leads us to

o o o0 o0 o
ZPﬁ*”‘”” EZH‘: % _E:"x P{?.” = j—':‘::‘ x}-':;’ XZE:" . Now if Zﬁ‘:" diverges, so does ZP; . Now we
L=l L=l Lé=l] Lé=l] L=l
oo
already know that a state i is recurrent iff Z_F!‘:’ =3, hence it would immediately lead us to the fact
H=l
that j is recurrent if i is recurrent.
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Note/Remark

e Recurrence and periodicity are class property, which means that all states in an equivalence
class are either recurrent or non-recurrent.

=]
 The expected number of returns to state ;, given that X, =i is given by ZP;!” hence a state
Himl

i is recurrent iff the expected number of returns is infinite.

Let us define two power series

(@) P, ;(s) = B P, ;5™ where |g| < 1

(b) F(s) = Ya=0fir5" Where Is| <1

With these definitions we can now make the following claim which is
Fii(s)P;(s) = Py(s) —1

S R + BT T e+ PERD)S™ = PO + B (B IR TF) ™

n
PLL

Now we also know that P;;{s) =1 + 37—, Bls™ ie, 3 Pls"=P,(s) -1

Hence we have: F,.(s)P,;(s) = P;(s) — 1. i.e, Py(s) = {1_; rs}}
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Few more examples of recurrent Markov Chains
Example 1.18

Consider again the simple case when a drunkard is moving one step right with probability 2, and one
step to the left with probability ¢ , such that p+g4 =1

4 P\}/ﬂ \1

G- i (i+1)"

states ——— 5

Hence we have:

(i) Bl=0, n=012,...

2 |
(if) 7' = (;Jp"f = [ {EH}};’”Q”
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If one pays attention to (i), then this formulae would change the moment we have the following diagram

3 PL e Ps
2 =

i r”] i+l

.which is given below

fi-1)
states —

such that {z, + g, + ;) =1

Now going back to our original problem we solve using Stirling's formula or approximation

(whichis 1 "7 w a7 w w’ﬁ) we obta

(i) Bl=0,n=012..

(i) 23 = (e =— }xx—: _prgnatEel L
nt T zEn T eReT e~ I I v v
Now pg = :11 and the value of pg is maximum iff when p = g = % Remember that this can be extended
to
the case of py + -, +p,, = 1.
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(pgifztn n ) - 1
(pq) — 420" 2nd this lead us to the fact that Py~ —
Vmn W v

for the case when p =g = % else the rate of convergence of P[fﬁ” is §. So now we have the sequence

Let us pay attention to the fact that pﬂfﬁn p

. Thus the one dimension random walk is

0 gl i " i =g —
B+ Ry o and the sum, ie, » Fi=o iff p=g =
n=l

recurrent iff p = g = =, else it is transient, i.e., we have convergence.

b | =

Example 1.19

Can you say something of two dimensional random walk of the form, which is illustrated below, in the
case when we have

(i) Probability of moving up is P1
(ii) Probability of moving down g,
(iii)Probability of moving right g,

(iv)Probability of moving left g,
4|l Previous Next||p
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Suchthatpl+ﬁz+t?1+t?z=1,andp1:p2=q1=q2::1}

C=(0.5) B=(4.5)

0=(0,0) A=(4.0)

Consider a battery operated car which can move randomly along the tracks in right, left, up, down with
some fixed probability, where these probabilities do not change. Also consider the floor or plane to be
infinite, i.e., there are infinite number of such states, or places the car can move. If

1 . - .
PL=pP2=q1=qz= We will see whether the origin from where the car starts is recurrent or not.

Now if the car moves ; units to right, ; units to left, 7 units to up and finally  units to down, such
that, , 2i + 2 i = 2» then we have the following

(i) pA*l=q, »n=0,12,...and

i) = ¥ [ﬁ}[lf n=123,...

| abeib L4

Here we apply multinomial distribution to find the second term given above.
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Note:

Can you guess what happens in general when we have PLED RN EG and the movements are ;
units to right, 7 units to left, % wunits to up and j units to down, such that, i+ j+k+i=#n.
Comment intelligently on this problem.

Again let us continue with the problem which we were discussing. So we have

PGB

Pﬂ?‘z — 1
ing Stirling's formul imation, which i [’”1] have W
Using Stirling's formula or approximation, which is 3 , we have
g g PP pl=n 2 xexpl- n)xf2n

1
. Again let us pay attention to the fact that }-'S‘E” o~ [—] whenpy =p; =gy =gz = :1}, hence the rate
¥l

of convergence for py = p> =gy = g3

1. .
=3 is not zero, else the rate of convergence of ﬁ’]%’“l is 0. So

oo
now we have the sequence Eﬁ% E':lu ...., and the sum, i.e., Zﬁ’; =w iffpy=p, =gy =g, = i.

n=ll

Thus the two dimension random walk is recurrent iff py = p;, =gy = g, = :11.
d||Previous Next||p
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Example 1.20
Can you say something of three dimensional random walk of the form, which is illustrated below, in the
case when we have

(i) Probability of moving up p,
(ii) Probability of moving down p,
(iii) Probability of moving right g,
(iv) Probability of moving left g,
(V) Probability of moving front 4

(vi) Probability of moving back

1

Suchthatpy + pa+ @+ qrtn+tm=ladp =p; =g =g =1 =1 =
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.

III-I.I'I -

/

[/

Consider again the simple case where a molecule (in a n adiabatic enclosure is randomly fluctuating all
around the chamber or box, such that it rebounds from the walls and all other molecules without any
loss of total energy. Consider the chamber has infinite dimension, such that there are infinite number of
such states for the molecule. This problem of stating that the molecules have infinite states to visit is not
impractical, as we can consider the chamber of finite size, but considering the size of the molecule it
can take visit pr occue at infinite states. We can prove this formulae (which we will find out soon) for the

1

case when =0 =g =4, =r1=r2=(g]
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(i) B2 =0, n=012,.

]
(i) grr= % (2) V=123
g bt e | 10D bl |\ 6

Thus we have

an
» 2l 1
D N (21) [_]
v htir gehan)| E B b et L 6
> e WL fo
wi g i gk [ 31800l il | 6 nlY
in ) "
] P S R )
2 G LINIErS ET Y] E!XJIX{?@—I—J}I 3
CEES ORI
< omax 4— b 2w L1
i+ isn f!Xj!X(n —i— J}| 5 Y >

| M
The above result can be obtained if we note that { i }x[l] =1. Now this fact
L+ En IIKJIX{H_E _J}l

that Z ! % l =1 is true for this case as plzpzquijzq:;E:[l],
i b —i— )] L3 &

else we have to rework the whole problem.

Again going back to Pz" = max ! 1 ! , we see that for p
iji+jin 3|><J|><{ —3—j| H

being a large value we have ma ~|Z when i = j, ie, i= j=%k. Thus we
igid+gtn 3|><_Jr|>< H—i— | 3

have

|
B = ~
Zoled 2ol 2

1] I
SHEHG

is [”*l] i i 3 "‘E

= i1 } @ we have the right hand side as W
Er aEBTEtIt

2 XEXIJ[—H %
if we have to find Eﬂn' El_im, ...., then the sum, i.e., , Which is the

#
* , and again using Stirling's formula or approximation, which
]lXEQH e 3?! b

, when 3 _s gy . But
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@ @ <3
> By —
271'[%:?3

n=1 n=1

property of transient state and not recurrent state.
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Now refer to the statement that recurrence and periodicity are class property, which means that all
states in an equivalence class are either recurrent or non-recurrent. So for one dimension and two
dimension all the states in that class are recurrent, but in three dimension it means that once the
particle leaves the origin, it never returns to that state.

Few classifications of the states and their corresponding limit theorems

The states of a Markov chain can be classified into distinct types depending on their respective limiting
behavior. Suppose the Markov chain's initial state is ; and its final state is . So if the ultimate return
of the Markov chain to this ;* is a certain event then that state, ¢, is called a recurrent state and the
time of return for the first time, which is obviously a random variable is called the recurrent time. In
case the mean recurrence time for the first time return to the ;* state, provided the Markov chain
started from the ;* state, is finite, then the state is called positive recurrent, else if it is infinite then
the state is non-recurrent. Also we already know that in case the ultimate return to the ;* state has a
probability of less than one, then the state is called transient.

d||Previous Next||p
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Few definitions which are useful are

Ephemeral state : A state ;* is called ephemeral state if py=0, ¥iel, ie, this state cannot

be reached from any other state. Now if we think rationally, the Markov chain can only be in the
ephemeral state initially (because the process has not yet started) and pass out of the ephemeral state
after the first transition, i.e., after §=1. Now if the characteristics of the ephemeral state are to be
understood from the transition probability matrix point of view, then we have the ephemeral state as
denoted by that state for which in the transition probability matrix all the probability values
corresponding to that state (denoted by the corresponding column) are zeros as shown in the matrix P.

e R o B o B

L Y e B U T

Lo T S S s N s

CERT v T = T v I ==
o o o o

= o o o 9 O

Let us suppose that the Markov chain is initially at state ;, also let j;!.("} be the probability that the next
occurrence of state ¢ is at timer, i.e., j;!m =p, and for n= 2.3...., we have

ﬁzl_:”:' - p[}[ﬂ =L X, =i:r=12..n- 1|J{|:I = :'], which implies that the probability that based on the
condition that the Markov chain started at ;* state at time § = (), and would again be at ;#* state at
time £ =#, provided it did not ever come to the ;# state at any of the times £=1,2,...,#—1. This

_;:.z!:":' is the first return probability for time #= . Similarly first passage probability, j;?'.:”:', as the
conditional probability that state / is avoided at times, i =1,2,....,#—1, and entered at time { =3,

given that ;* state is occupied initially. Thus we should have uj‘;?'.:lj' = p and for » = 2.3...., we have

fim = P[Xn =5X, =i r=12,..n-1X = .;'],
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For the recurrent state, the mean recurrence time value is given by = Z(ﬂxj;g”:'), and if g is

H=1

infinite then the state j is null recurrent, and in case g is finite then the state j is positive

recurrent. We must remember that Jf;z!:"}, »n=12,... are the corresponding probabilities that state i is

revisited after the first, second, third, etc., transition times. In a similar line, j‘; =ZJ1‘;£”:', i.e., the sum
n-1

* state after ¢ =1,2,... time.

of the probabilities that the state after starting from the ;* state goes to ;

So as f{ig”:' is the first passage probability, hence mean of the first passage time is given by

oo

> (f’l % j;?[”:')

n=1

Suppose a Markov chain starts at the ;# state and comes back to the ;* state again, but only after
time periods of £,2,... and ¢ - 1, then state i is periodic, with a periodicity of { (where this ¢ is the
largest integer with this property). This would imply that p(* = (1 apart from when » = kx¢. ke Z*.
A state which is not periodic is called aperiodic. Just note that for a aperiodic state the periodicity is 1.

An aperiodic state which is positive recurrent is called ergodic state. Below for our own convenience we
summarize the definitions for a Markov chain

T'vpe of state

Definition of state with X, = i

Definition in words

Periodic

X, =fand X, =i, keZt

Return to state 1 only possible
at times t,2t,... and £ >1

Aperiodic

X =fand X =i keZ"

Not periodic

Recurrent

X, =land X _=i

Eventual return to state § 1s
certain

Transient

A,=Fand X_ =i

Eventual return to state 1 is
uncertain

Positive
recurrent

X =i and

f=3nx ) <o

m=l

Recurrent with finite value of
mean recurrence time

Wull recurrent

A =1 and

o

Recurrent with infinite value of
mean recurrence tims

Ergodic

Aperiodic and  positive
recurrent (i.e., recurrent with
finite value of mean recurrence
time)
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Assignment 1.1

A psychological subject can make one of the two responses marked by Ay and Ay and associated with
each response are a set of jy stimuli, i.e., {5, 5, ......,5,} Each stimulus is conditioned to one of the
responses. A single stimulus is sampled at random and all possibilities are equally likely and the subject
responds according to the stimulus sampled. Reinforcement occurs at each trial with probability,
p (0 < P = 1) independence of the previous history of the process. When reinforcement occurs, the
stimulus sampled does not alter its conditioning state. In the contrary event the stimulus becomes
conditioned to the other response. Consider the Markov chain whose state variable is the number of
stimuli conditioned to responseAl . Determine the transition probability matrix for this Markov chain.

Solution of Assignment 1.1

Let X, denote the number of stimuli conditioned to the response Al at the nth trial. Clearly,
{X,:n= 1,2.....} represent the Markov chain with discrete state space § = {(,1,2, ....., N} and the
transition probabilities for this Markov chain are as followes.

Py =PXp=ilX, =it =p

{(N—i)x(1-p)]

{ix(1—p]]
N

Pigs1 =Py =i+ 11X, =i} =

Pijo1 =Py =i —1X, =i} =
and

Pop = P{X,41 =01X, =0} =p
Pog1 =PXpi1=1X,=0=(010~-p)

and

P".'-,u".'- = P{Xn+1 = Nan = N} =p

i

P".'-,u".'-—l = P{Xn+1 =N—- 1|X?‘! = N} = (1 _p}

i

Hence the transition probability for this Markov chain is given as shown below:

(1-2) i-2) (v-10f1-p) g
N N

............... 0
00 0 (I-2) »
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Assignment 1.2

(a) Suppose X,,X,,... are independent with the following probabilities, i.e., P[Xp, = +1]: p and

Px,=-1=¢=0-p), andp=zg wih S,=0,  set 5 ={X+..+X)

M, =Max{5, 0=k=n}and ¥, =(M, -5} If Tla)=min{n & =a]}, then show that

F+l a
F 7 =:|P _|?
[nﬂfﬁa} *{y} q 7 ‘{_]

——G [ Y Pp#g
-(2)
g

(b) Now if we consider the bivariate process (MH}’;) as a random walk on the positive two dimension

lattice, then what is the probability that this random walk leaves the rectangle at the top?

r'y

M

L J

(0,0) z
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Assignment 1.3
Determine and derive the generating function of the recurrent time from state 0 to state 0

Solution of Assignment 1.3

Let pij(”) denotes the probability of transition from state i to state j in exactly n steps, and fij(”) denotes

the probability of arriving at state j at time n for the first time, given that the process starts at state i.

Let:

Poo(s) = Sy ey x st)} = 1+ B, {pie) x s(n)}. Isi<L

»

Foo(s) = S fes s} =i {fos’ x5} | e

be the generating function of the sequence {poo(™} and {foo™} respectively

4|l Previous
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Assignments 1.4

Let P= H 5 , where [} <, & <1, then prove that

a -a
-b b

(1-z-b)"

Pi=— A
b o ’ (z+5)

1 & a
[.fz+£:l)

Assignments 1.5

Consider a Markov chain and it has # number of states, then prove
(a) If a state i can be reached from state , then it can be reached in {r - 1] steps or less.

(b) If j is a recurrent state, then there exits ,;;g{lj o 1_} such that # = r , the probability that first
return to state j occurs after x transition is < *
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Limit Theorem of Markov Chain and Applications

First let us consider few simple examples, which will motivate us about the idea why limiting theorems
for Markov chains are important and their implications with respect to renewal process.

Example 1.21

In order to obtain the pricing expressions for financial instruments, whose underlying asset may be
described through a simple continuous-time random walk (CTRW) market model, one may use renewal
equations pertinent to the renewal process to derive the expressions.

Example 1.22

Suppose one is interested to find the software reliability and the costs are both deterministic as well as
probabilistic. Then using the concepts of renewal process one can estimate the different metrics like
mean error free time, number of errors remaining in the software product, etc.

Example 1.23

Consider light bulbs are being replaced consecutively one after the another by a new one after the
previous one fuses, then one may be interested to find the expected number of light bulbs replaced in
some stipulated time, and for that one may use the concept of renewal process.

Having discussed these simple examples let us start with full earnestness the theorems necessary to
under Markov chains
|| Previous Next||p
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Theorem 1.4

Suppose {ﬂ.:-,}’ {uk} and {E:uk} be three sequences indexed by i =0 +1+2 ¥ . Also suppose the
following are true: (i) a, = 0, (i) 3 a, =1, (i) Z|k|><a:k <, (V) 3 kxa, »0, (V) ZW <6,

and that the greatest common divisor of the integer i for which z, =0 is 1.

Proof of Theorem 1.4

Kom—m

(a) If the renewal equation {[L‘x - Zﬂx-x”s;] :f;.x} for » = 0,1 +2 ¥ is satisfied by a bounded

sequence {u_ } of real numbers, then (i) ltmzs, and (i) 11m 24, exist.
3o

H—p—io

2.5
if limz, =0 i ' —d_ kmwm ' i
(b) Furthermore if ;-H_.nu" (i.e., (ii)) then ]:_Elmﬂx — [Note in case the denominator
Z{ﬂ:xak]

Koty
o

is equal to infinity, i.e., Z{kx ﬂx} =3, then the limit is still valid provided we can interpret or say that
j -}

2.by
K=t =1

L=

Z{Fc Xak]

Kem—n
Now before going into the proof we will give the general definition of a renewal process where the
o
equation would be of the form {[HM—ZQH_E%]:&H} for » =012 K . So consider a light bulb
k=0

whose lifetime (obviously will be measured in discrete times) is a random variable, &, where

o0

P[éz k]: ap for b =012FK , a, =0, Z'ﬁ.t =1. Now if each bulb is replaced by a new one the
R=l)

moment the old bulb fails (fuses), such that first bulb lasts until & time, the second bulb lasts until
{§1+ 52] time and so on and we must remember that £, are each i.i.d. Let z, denote the expected
number of renewals (replacements) up to time # = » . So the first replacement occurs at time j , then
the expected number of replacements in the remaining time upto to » is u,_, and summing over all

possible values of i we have

b, = o1, )%, +0x D,
] Lmp1

n n
= Zun—k Ry +Zaﬁ:
=0 s
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Now remember the first term, (1 +”x-s;} is the expected number of bulbs replaced in time # if the first
bulb fails at time {0 <% =}, and the probability of this event is « , while the second sum is the sum

of the probability that the first bulb lasts a duration exceeding # time units.
|| Previous Next||p
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Few more example of Markov chain

Example 1.24

Suppose customers arrive at a service station/centre in a (M ! GH) gueue system in accordance with

Poisson process with an average rate of 3 . As this is a single server, thus when customers arrive, if
they find the server in not being used they immediately go to the server and their respective job is
processes, else if the server is busy the customers wait. We are to plan out scheduling system in such
a way that we optimize on the metric which we consider as important to analyze how the queueing
system works. Some of the metric may be average waiting time for the jobs, average idle time of the
server, average processing time of the jobs, etc.

Example 1.25

In this second example consider you have #: number of serves, such that that the queueing system is
now denoted by (Mfgfm). Further more, consider that all the servers are machines which are

particular types of machines like shaper, planner, grinder, etc., such that each is capable of performing
only one operation. All the jobs are required to be machined by all of these #: servers/machines, but in
any order. The arrival rate of the jobs is a Poisson process with an average rate of 31, and the

throughput of the servers/machines are i , i=1....m . As evident from the first example stated

above, our plan for scheduling this queueing system can be based in a way that we optimize on the
metric which we consider as important to analyze how the queueing system works. Some of the metric
may be average waiting time for all the jobs, average idle time of all the servers/machines, average
processing time of all the jobs, ratio of average utilization between the most used server/machine with
respect to least used server/machine, etc.

Without any loss of generality let us discuss again the limit theorems for Markov chains

|| Previous Next||p
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Theorem 1.5

Let x be an arbitrary but fixed state, then

. e ()
(i) i is transient iff the series ZP&; is convergent (i.e.,, F, {1] <ca) and in this case Z p,;-‘i is
Lt R

convergent for each .

(if) k- is recurrent iff the series Z PE:-,} is divergent (i.e., F {1] =co) and in this case ZPE'E} is
R ™"

convergent for each § which communicates with j- .

Proof of Theorem 1.5

— 1
Let i be a recurrent state and let &g = Z”fm{”} be its mean recurrence time, also define — =0

v L
if 'L.{R.zm
() If k is periodic, then Ejp@:i and lim pg.f:{%m
K

E;-‘s;(s] = E:;-'k,(s}"' F;‘x(S]Pﬁ(S}

. £ .
(i) If F has a period £, then llmp[gj:— and for each state ; which communicates with j
e Hy

}, where we already know that

i1
limn PEZ;*HIJ = {J—F’{}} , where 7., is the smallest value of r for which pﬁ:’ =0
b ] ."5'{.5:.

Absorbing Markov Chains

Let us assume a hypothetical example where we have a Markov chain such that all the persistent
states (&) of this Markov chain are absorbing, while T set of states of this same Markov chain are
transient. We rearrange the states in such a way (no one stops us from doing this as there is no set
pattern in which the states will be reached in the stochastic process), such that we have the transition

I 0
probability matrix as give: P:[R QJ and here (2 is a sub-matrix which corresponds to the

transition among states, i, such that ; =7, while F the unit matrix corresponds to the transition
among state, j, such that j= .5 and g is any matrix. Then calculate g*.

1 1 1
— - -0
o3 2
L1l
Example for better illustration: consider we have the transition matrix as given == % % 1
— - =10
& 3 2
o L 11
6 3 2
4| Previous Next||p

file:///E|/courses/introduction_stochastic_process_application/lecture3/3_24.html[9/30/2013 12:47:50 PM]



Objectives_template

Module 1:Concepts of Random walks, Markov Chains, Markov Processes

Lecture 3:Markov Chains

Theorem 1.6

If w;, denotes the probability that the chain starting with a transient state, ;j eventually gets absorbed in

an absorbing state, j- . Let us denote the absorption probability matrix by .4 = (.::tm),

feTke(s-T)) then A=(71-QY'R
Proof of Theorem 1.6

— LY . . . .
Now we have @i = Fy = Z Jii since transition between absorbing states are impossible. Moreover
v

F, = P[U{Xx = le,:, = 3}i| Since j is absorbing so once the chain reaches an absorbing state j-
Rl

after steps (;g +1),(;g + 2),1’1 , thus {XH = k} - {X?e-l = k} K

This is true as } can be any state in the Markov chain.

Note: Now we utilize the concept of ascending order of a sequence and its results, i.e.,

P{U A,}= ELP{A”} holds true for the case when 4 — 4, =¥ = A4 . In case of descending order

irl

irl N—Fw

of a sequence we have P{ﬂ_fﬂ!}= lim P[ﬂx] holds true for the case when 4 = 4 2K o A4,.

Hence utilizing this above fact we have a;, {U pm} pff:'
nrl

w+l 1 n
Also the Chapman Kolmorogrov equation can be written as P[k )= ZP( :IPE&:I, remember the
Jek

summation is being done for only those i which are elements/members of j.

Now () p{ =1 and (i pf_"l'iu iff jeT and peS—T
Hence we have: Pz[f :I _P: +ZP;; P[n:l

Jjel
lim bl < | 11'1'1;:[1 1m2p( )
J:J"
azx—p +Zpu s, which in matrix notation is A=R+Q4,ie, A={f-QY'R

je=r

4| Previous Next||p
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Theorem 1.7

Let a finite Markov chain with state space 5 = {D,l,K ,f} be also martingle. Then

0] Eﬁim?i(f}= 0for ;=12K {f— 1}

(i) lim iﬁ':@ for i =12, 7 -1]

(iii) 1imp§;3':1_[§] for i =12, 7 -1}

Proof of Theorem 1.7

Before we go through this simple proof we illustrate the concept of a martingle. Now a stochastic
process {X,,» =1} is said to be martingle process if (i) E{|Xx|} <co for all »# and (i)

E{Xx+1|X1=X2=K ,Xx}z X, Now taking expectation we have ,E{Xm} = E{XM} ie.
E{XMH} = E{Xl} br"g

(i) Let X, X, K. be independent random variables with mean 0, and let §, = Zn_'l}{! , then {Sx,n 21}

is a martingle -

(ii) Let KX K be independent random variables with mean 1, and let S, = ﬁj{! , then
-1

{Sx,m 3_?1} is a martingle !

Now as this is a martingle as well as a Markov chain with transition probability matrix P, then we would
definitely have E{XJXM_I = j} =1i,%s, then it means that

3= =), B
W T

Now ZJXP;[;':IZE is satisfied for ; = iff p[%} =1 and for ;=1 iff P;-E—l} =1. Thus if a finite Markov
=

chain is also martingle, then its terminal states are absorbing.

Assuming that there are no further closed sets we get that the interior states, 1,2,..., (I-1) are all

transient, hence lin pi(;‘:'=|:| for j:lQK(j-]) and similarly we have lirm .”:':[EJ for
row e amd [

i=12.K (-1) and limpf}’ = 1—(3 for i =12,K {1 —1)

d||Previous Next||p
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Example 1.26

Let us consider a single counter at the railway booking counter at IIT Kanpur gate, where people arrive
in order to buy/cancel railway tickets. Assume the time of arrivals are such that the server or the person
at the counter can serve at time of 0, 1, 2,...., and for simplicity assume that in the time interval

(32,22 + 1) the number of customers is random which is denoted by ¥, with » = 0,LK ., which are i.i.d.
random variables with probability mass function of P[}’x =”]=ﬁ'x- Furthermore consider that due to

space limitation only @ number of persons can be accommodated in the small railway booking counter
at the IIT Kanpur gate, where this # includes the person at the counter who is booking/cancelling
his/her ticket. In case if a passenger enters the booking counter and see that it is already full, then
he/she leaves without booking/cancelling his/her ticket. Consider X, as the number of customer in the

booking counter at time # ., then {Xx,n e D} can be defined as a Markov chain which has the state

space denoted by {U,l,E,K m}
It is clear that we would have

il X =0and 027, ={m-1)
X oa=1%, —1+7F, F 12X, Zmand 027, 2fm+1-X,)
B otherwise
Pon P -+ Pom

and the probability transition matrix as p.m F’.n pf’“

Fan Pl Fan

Now the probability distribution can easily be found out using the transition probability values, P SO

that we can easily write
PlX =a X =bK X _=iX =k}
= P{Xx = 'S‘T|Xx—1 = -Jr} XP{XM—I = kl“}{m—ﬂ = "’F} <K x P{Xl = b|XD = a‘}X P{Xﬂ = (I]'
= pu ¥ Pu* K K py, xP{X, = af
4|l Previous Next||p
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Example 1.27

1 l a
4
Let us consider the transition probability matrix as follows % % 7 |. So we first find the missing
o7 l
I 4

values and then find the different probabilities of transition from one state to another.
Note

The transition probability matrix along with the initial distribution (initial conditions) completely specifies
the Markov chain.

Property

1. Strong Markov property : In case AF is the stopping time for a Markov chain, and consider two
different events A and B, such that we have

[ l |

N

EE—

then if we have P{B|XN: 1 ﬂ}: P{B|X = 1_}, thus technically the evolution of the Markov chain

starts afresh and repeats itself after it has reached the state .Y,,. Remember all discrete Markov chain

have this strong Markov property.

2. Markov chain of order g: Consider a Markov chain, {Xm” = D,l,E,K} and in case if we have s,

then it is a Markov chain of order z. In general stock prices will be considered of order 1.

3. Markov chain of order 0: For a Markov chain if we have p . = p, for %i, then it is a Markov

chain of order 0.
d||Previous Next||p
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Graph representation of Markov chain

|

Pass)

Bs

|

Steady state graphical representation of Markov chains (depending on
any order of the Markov chain)

Examples of (i) Graph colouring problem, (ii) stochastic network flows (oil flow, gas flow,
information/data flow, etc.), (iii) network flows (maximum flow, minimum cut etc.), etc.

|| Previous Next||p
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