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 Module 6:Random walks and related areas
 Lecture 28:Random Walks in more than one dimension

The Lecture Contains:

One dimension random walks

Higher dimension random walks

Wiener Process
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 Lecture 28:Random Walks in more than one dimension

 

Definition : the Markov chain is irreducible if the equivalence reduces only to one class i.e., all state
communicate.

One dimension random walks

In one dimension random walk our variable is defined as , where the realized values are scalars
only and are defined as , ,…., ,……. Let us illustrate this with a simple example. Consider you
toss an unbiased coin repeatedly. Then Figure 6.8 shows how the random walk movement takes place
in the one dimension case considering the actual occurrences are either a head (H) or a tail (T).
Moreover one can define the outcomes occurring after each toss as a stage and the collection of all
different occurrences at any stage as states. Thus I, II, III, and so on represents the stages while the
outcomes in each stage is the corresponding states of that stage,

Figure 6.8: One dimension random walk with the example where you toss a
coin

One should note that the Central Limit Theorem (CLT) describes the important aspects of the
behavious of the simple random walk (in one dimension).
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Higher dimension random walks

Let us now consider a random walk with identically distrubuted, independent steps on a periodic lattice
of dimension . It must be noted that our aim is to analyze the random time it takes the particle to
return to its starting point.

Figure 6.9: Three dimension random walk (an example of higher dimension
random walk) with the example where a gas particle is moving inside an

enclosed cube
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For an ease of understanding let is refer to Figure 6.9, which illustrates the random movement of a
particle inside a chamber. The movement of the particle A happens as shown by the arrow.

Let the partile start at  and suppose it makes  steps. Let us also define the following
 = Probability that the particle moves a distance  which is independent of either  or  

 = Probability that the particle is at  (which is a vector of dimension )
 = Probability that the particle is at  for the first time

Thus we can show that . Now to solve  we introduce
the generating function and apply the discrete version of the convolution theorem.

Thus we have:

   

Now inverting the trsansform and using Taylor series expansion we get 

We can also find the eventualprobability that the particle returns to its original place from where it started
and that is already calculated by us.
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Wiener Process

In mathematics, the Wiener process is a continuous-time stochastic process named in honor of Norbert
Wiener, and this process is also called the standard Brownian motion, after Robert Brown. It is one of
the best known Lévy processes (stochastic processes with stationary independent increments) and is
quite frequently used in in pure and applied mathematics, economics, physics, finance, etc.

Let us characterize the Wiener process, , as given below

 has independent increments such that , where 

The basic properties of the Wiener process are as follows :

The unconditional probability density function at a fixed time  is given by , such

that we can easily prove that the following holds.
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