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The Lecture Contains :

Markov-Bernoulli Chain

Note

Assignments

Random Walks which are correlated

Actual examples of Markov Chains

Examples

Use of Eigen values and eigen vectors to calculate higher transition probabilities

Theorem

Simulated Annealing (based on Metropolis Algorithm)

Concept of Markov Chain Monte Carlo (MCMC) method
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Economics and finance : In finance and economics Markov chains are used to model a variety of
different phenomena, including asset prices and market crashes. Hamilton was the first person to use
this methodology successfully in finance where he found the conditional probability of regime switching
models or change points such that depending on the states of the process and the corresponding
transition probability values one can find the probability that the asset/option prices can be
forecasted/predicted with a high degree of accuracy.

Mathematical biology : Applications in biological modeling utilize Markov modeling where a
particularly population and its off springs can be models as Markov chain states and the probability that
the off springs survives is given by the corresponding transition probability matrix.

Gambling : Markov chains can be used to model many games of chance such as the well know game
of snakes and ladders

Concept of Eigen vector and Eigen value

Suppose ,  then . In that case the Eigen vectors (characteristics

equation) is given by 

If  is an eigen vector then we have the following set of equations given by:

 , which means that , where .

Now as , this implies that , i.e., .

Moreover , hence using simple calculation we can immediately find out that 

. Thus if  is the transition matrix then  is the n-step transition matrix.
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Example 1.28

Assume , for which we have the following transition diagram

What is of interest to us is the eigen value of . Using basic concepts we have det(P-l)=0,

i.e., , hence , which implies  and 

, i.e., for , , all eigen values are =1.

In case we are interested to find , we have  and as 

  .

Suppose we are at step 0, and we may be interested to find the expected time until we return to step 0.
Hence if T is the time until first return, then

,   ,  , 

  

  

  

 

Thus 
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Note in case you start at state 1, then the expected time until return is 3.5.
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Use of Eigen values and eigen vectors to calculate higher transition
probabilities

Suppose you have a Markov chain with  states, where  is finite, and it is also given that the

transition probability matrix is , then one can very easily calculate the  step transition

probability matrix, , such that we utilize the equation, , 

, where  and  for . Now our main intention of this discussion is to

utilize the concept of eigen values and eigen vectors to calculate .

One must remember that for a square matrix, , the characteristics roots of the

equation: ,

where  are called the eigen values, and they are given by . While 

, , is the right/left eigen vector, corresponding to 

, , such that the following equation (for ), s, i.e., 

, , i.e.,

 holds for 

, such that we will finally obtain 

, where the  column corresponds to the

eigen vector corresponding to the  characteristics root, .
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Now suppose  are the  eigen values or the characteristics roots of  and also assume

that  and 

 are the right and left eigen matrix of 

 respectively, then we can easily write: , where 

 and , such that 

, where  is a

scalar term, while  is a  matrix, such that the elements of 

 are given by , where we have

the matrix 
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Assignment 1.11

If  is the transition probability matrix, while  is the eigen matrix, then show that we can express 
, and also prove that .

Finite irreducible Markov chain

Stationary distribution: If for a Markov chain with a transition probability matrix, 

  and  holds, where  is a probability distribution such

that in general we have , , then what is of interest to us is to study the initial

conditions for which as ,  has a limiting value such that the initial state from which the

stochastic process starts does not affect the value, i.e.,  is independent of the initial state from

where we start. This would very simple mean that from where ever we start the limiting values of 
 would have identical rows. This property is know as the property of ergodicity and the Markov chain is
called ergodic.

From and  and for every state we find , , but  as when  we have

the initial condition.

Theorem 1.8

If state  is persistent, then from every state , we can reach .
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Theorem 1.9 [Ergodic theorem]

For every finite irreducible, aperiodic Markov chain, with transition probability matrix,  we

would have , where  and also remember this limiting distribution is equal

to the stationary distribution of the Markov chain.

Proof of Theorem 1.9 [Ergodic theorem]

Now for a Markov chain in which the states are aperiodic, persistent non-null, then for every pair, 

 we have , and as  is persistent, hence , which means that 

 and is independent of . Also the sums of rows should add up to 1 (in the

limiting sense), i.e., , where set , such that , such

that .

Moreover it is known that

(i) 

(ii)  are both true, hence we can write (ii) using (i) as

 

, this we get from Fatou's Lemma, which says that for a sequence of some

type of measurable function the integral (sum) of the limit of the infimum of a function is less than or
equal to the limit of the infimum of the integral (sum) of the function, i.e., 

.

Example for which we can check this is (i) , (ii) , where   is a natural

number, (ii)  where  is a natural number, (iii) 

 where  is a real number. Just for your convenience we state the greater than inequality when we

have , which is the reverse of Fatou's Lemma.
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Thus we have

 for all 

Now if the greater than sign only holds, which would mean that we have  for all ,

i.e.,  for all  would hold true. But ask yourself is that possible.

Remember that sum of the pdf/pmf values at each point which is the left hand side is stated to be
greater that the cumulative probability values (pdf/pmf) summed up after summing them up at teach
point. But that is not possible!! Why? Ask yourself.

Hence equality has to hold. Remember the distribution which we get in the limiting case is the
stationary distribution.

Remember that if a Markov chain is irreducible and aperiodic and if there exits a unique stationary

distribution for the Markov chain, the chain is ergodic and 
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Markov-Bernoulli Chain

Consider the transition probability matrix of two states as given by , 

with the initial distribution  and 

(i) For , the transition probability matrix is: , what does it mean?

(ii) For , the transition probability matrix is: , what does it mean?

(iii) For , again use the same fundamental principle where we can write

      , where  and 

.      Here we can easily prove that  and so for .

From this above result we easily get the following

(i) , in general the formulae would be

     , depending on the number of states, i.e., we have a multinomial

     distribution.

(ii) , 

      in general the formulae would be , depending on the number

of      states, i.e.,we have a multinomial distribution.

(iii)

       

     Now we already know that

, hence 
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If we extend this calculation for  we can easily see that

(iv)  and  for 
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Note

In case if one is interested to find the average, variance and covariance 

of  where , then we need to be careful as these trials are now dependent, unlike the

simple case we already know.
So now we have the following

(i) 

(ii) 

Now for the second term let us consider it separately, such that we have

 (use GP to find this summation

series)

Hence utilizing these two results we have
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Now remember the relationship between Binomial distribution when  and , 
such that  is a constant say, .
Note: Hence with,  we have the sequence of independent Bernoullis trails and in the
limiting case we get the Poisson process
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Assignment 1.6

Consider the same problem as given above and consider it having three (3) outcomes, such that the
outcomes of any trails are dependent on the outcomes of the previous trial. The transition probability

matrix is considered as . We also know that

there are three states given by 0, 1, 2, such that ,  and ,

and . With this information find (i) ,  and , (ii) 

 and .

Assignment 1.7

Consider a different problem where we also three (3) outcomes, such that the outcomes of any trails
are dependent on the outcomes of the previous trials. The transition probability matrix is given and it is 

. Assume that we know that there are three

states given by -1, 0, +1, such that ,  and , such

that . Given this set of information, find (i) ,  and , 

(ii)  and .
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Consider we have a sequence of random walks such that we have the transition probability matrix as

give, which is , but with the difference that we now have two states denoted as -1 and

+1 only, such that  and . Given this we are as usual

interested to find  and .

Hence: 

 

If we continue doing it we get

 and 

Given this we find

(i) ,

in general the formulae would be , 

depending on the number of states, such that there are even number 
of positives and equal number of negatives, i.e., 

and we will have the , such that 

(ii) 

 and in general the formulae would be ,

depending on the number of states such that there are even number of positives and 
equal number of negatives, i.e.,  and we will have the

,such that 

(iii) 

 

Random Walks which are correlated
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Now we already know that 

 and hence
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Note

Solve the problem for , in which case you will have

(i) 

(ii) , and
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Assignments 1.8

Consider the problem (you have already solved a part of it) as given, in which there are three (3)
outcomes, such that the outcomes of any trails are dependent on the outcomes of the previous trial, and

the transition probability matrix is given as .

There are three (3) states given by 0, 1, 2, such that ,  and 

, and . With this information find (i)  and , where 

.

Assignment 1.9

Consider the problem (you have already solved a part of it) as given, in which there are three (3)
outcomes, such that the outcomes of any trails are dependent on the outcomes of the previous trial, and

the transition probability matrix is given as .

There are three (3) states given by -1, 0, +1, such that ,  and 

, and . With this information find (i)  and , where 

.
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Assignment 1.10

Consider the problem (you have already solved a part of it) as given, in which there are three (3)
outcomes, such that the outcomes of any trails are dependent on the outcomes of the previous trial, and

the transition probability matrix is given as .

There are three (3) states given by 0, 1, 2, such that ,  and 

, and . With this information find (i) , (ii) 

, (iii)  and (iv) , where .

Assignment 1.11

Consider the problem (you have already solved a part of it) as given, in which there are three (3)
outcomes, such that the outcomes of any trails are dependent on the outcomes of the previous trial, and

the transition probability matrix is given as .

Assume that we know that there are three (3) states given by -1, 0, +1, such that , 

 and , such that . With this information find (i) 

, (ii) , (iii)  and (iv) , where 

.

Assignment 1.12

Assume we have a sequence of random walks such that the transition probability matrix is give as 

, such that the outcomes of any trails are

dependent on the outcomes of the previous trial and , . Also consider that 

, such that sum of the probability (at the initial stage, t=0) is exactly equal to 1,

i.e,,  (sum of row elements is exactly equal to 1), and it is also always true that the sum

of the realized values of the states at any t=n is exactly equal to six (6), i.e., , where 

. Given this set of information, find the general formulae for (i) , such that 

, (ii) , (iii) , (iv)  & , where .
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Actual examples of Markov Chains

Let us give a brief set of applications for Markov chains and the areas are:

Internet applications : Markov models can be used to generally understand the browsing
characteristics of surfers, such that the web page which appears, depending on the browsing
characteristics can be modeled as the state space of the browsing characteristics. Hence if we have 

number of web pages which can be visited by a surfer, and each internet page has  number of links,

then the transition probability can be given by the formulae  for all the pages that are

linked to and  for pages which are not linked to, where  is the transition probability

parameter, e.g., the parameter  for our earlier example.

Physics : A sample set of application of Markov process in physics are thermodynamics and
statistical mechanics. In general for these physical processes we try to represent the probability for the
unknown and hence for specific detail about the equational form of the details of the physical system
under study. For example in thermodynamics if we assume the variable, , to be dependent on time
then we may model it as a simple stochastic process where the outcome is dictated by both its state
and space, such that we can denote it as . Similarly in statistical mechanics we have the rate of

change of the process given as , where one may attempt to find the overall or

average property of movement of the particles or in whole of the whole body using stochastic differential
equations.

Queueing theory : Markov chains is also used for modeling various processes in queueing theory
and statistics. In mathematical theory of communication (consider a single step process) in which the
stage to which the information/communication moves can be considered as the states and the
corresponding probability of the information/communication being transmitted without any los of
information is given by the transition probability matrix. What we can do is to find the average rate of
information flow and the correlation that message/information/communication once passed/started
continues without any loss to a certain probability or certainty.

Chemistry : In crystal or carbon molecular growth (considering we are interested in finding some new
combination or a new drug) such that the addition or subtraction of one known molecule of carbon or
any other molecule can be consider the state and the probability that the molecule is added or
subtracted is considered using it transition probability matrix values.

Statistics : A very interesting application is the use of Markov chain Monte Carlo (MCMC) process.
In recent years this has revolutionized the practicability of Bayesian inference methods, allowing a wide
range of posterior distributions to be simulated and their parameters found numerically.

 
 
 
 
 
 
 
 
 
 
 
 

 

 


	4_1
	Local Disk
	Objectives_template


	4_10
	Local Disk
	Objectives_template


	4_11
	Local Disk
	Objectives_template


	4_11a
	Local Disk
	Objectives_template


	4_12
	Local Disk
	Objectives_template


	4_13
	Local Disk
	Objectives_template


	4_14
	Local Disk
	Objectives_template


	4_2
	Local Disk
	Objectives_template


	4_3
	Local Disk
	Objectives_template


	4_4
	Local Disk
	Objectives_template


	4_5
	Local Disk
	Objectives_template


	4_6
	Local Disk
	Objectives_template


	4_7
	Local Disk
	Objectives_template


	4_8
	Local Disk
	Objectives_template


	4_9
	Local Disk
	Objectives_template



