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Basic Introduction

We are all aware that in applied statistics after we collect the empirical data, a theoretical probability
distribution is fitted in order to extract more information from the data. If the fit is good (which depends
on some tests), then the properties of the set of data can be approximated by that of the theoretical
distribution. In a similar way, a real life process may have the characteristics of a stochastic process
(what we mean by a stochastic process will be made clear in due course of time), and our aim is to
understand the underlying theoretical stochastic processes which would fit the practical data to the
maximum possible extent. Hence a good knowledge of the characteristics and behaviour of stochastic
processes is required to understand many real life situations.

In general there are examples where probability models are suitable and very often a better way of
representation of the probability model would be to consider a collection or family of random variables
(r.v's) that are indexed by a parameter such as time or space. These models are what we define as
stochastic process or random or chance process.
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Thus a stochastic process is a family of random variables (r.v's)  indexed by the
parameter  .The values assumed by the stochastic process are called the states and the set of all
possible values is called state space. On the other hand the set of possible values of the indexing
parameter is called the parameter space, which can be either discrete or continuous. When the
indexing parameters are discrete we denote it by  and the stochastic process as  ,
and this process is what we call a stochastic sequence. In most physical problems time, , is the
natural index parameter. Other kinds of parameters such as space may also arise, e.g., number of
defects on a sheet of metal which can be considered as a stochastic process with the area as the
index parameter. But since time is the parameter used in majority of problems, we will use the
expression time parameter in a generic sense.

Remember, like the parameter space, the state space may also be either discrete or continuous,
hence the stochastic process may be any one of the following four (4) types shown in Table 1.1.

Table 1.1: Different types of Stochastic Processes

SNo. Parameter Space State Space Combination Examples
1 Discrete Discrete {Discrete, Discrete} Markov Chain
2 Discrete Continuous {Discrete, Continuous} Markov Process
3 Continuous Discrete {Continuous, Discrete}  
4 Continuous Continuous {Continuous, Continuous} Brownian Motion

Thus the nomenclature for denoting the stochactic processes # 1 and # 2 (Table 1.1) is usually, 
 while for # 3 and # 4 (Table 1.1), it is , but in general one uses the

latter representation, i.e., , to represent all the four types of stochastic processes, such
that, depending on the domain space of  , one can refer whether the process is discrete or
continuous. For example we can have  or  or 

 or  , etc. One should remember that the main emphasis for this lecture
series/course would be on Markov chain and Markov process, hence we will study # 1 and # 2 in
details.
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Basic Probability space, sample space concepts and order of a Stochastic
Process

We all know that for a given ,  is an random variable (r.v) on some probability space, denoted
by , where  is the sample space,  is the  field of subsets of  which generates the events,
and  the probability defined on . Thus one can view a stochastic process,  as a
family of random variables (r.v's),  on . Hence every fixed value of argument 

, i.e., every sample point,  depends only on  and is simply a function of one real
argument, so that for each fixed value of, ,  is a real valued function defined on . Furthermore
for a fixed ,  is a random variable (r.v) on  and is a function on . On the other hand for
fixed, ,  is a function of , which represents a possible observation of the stochastic process,
and this function  is said to be a realization or a sample function of the process. When several
quantities,  are required for the complete description of the state of the system at
a fixed parameter point , a generalization can be made accordingly.

For simplicity we will restrict ourselves to a single quantity  and  to be one dimension. Thus for a
given value of time parameter, , of the stochastic process, , it is a simple random variable (r.v)
and its probability distribution can be obtained as for any other random variable (r.v). But when  varies
in a space , the information about the process  is not provided by a simple distribution for a given
, but one needs the joint distribution of the basic random variables (r.v's) of the family  to

get the complete information about the process. Obtaining such a joint distribution is impossible if the
membership of the family is infinite in number. It then seems reasonable to assume that the behavior of
the process can be obtained by studying it at discrete sets of points and accordingly a joint distribution
function defined at these points seems reasonable.
So if  with  be such a discrete sets of points within , then the joint
distribution of the process  at these points can be defined as 

, and this distribution has the simplest form when the
random variables (r.v's) are independent.
The study of stochastic process does reduce to the study of simple random variable (r.v). However, in
most practical cases, we are faced with the problem of assuming some sort of dependence among the
random variables (r.v's). We shall restrict to the simplest type of dependence, called the first order
dependence  or Markov dependence, which may be understood with the example given below.
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Example 1.1
Consider we thrown an unbiased dice  number of times and note the number of times different faces,
i.e.,  occur, where  can be , etc. Now if a theoretical distribution fits
this experimental data set, then the expected frequencies/relative frequencies/probability and observed
expected frequencies/relative frequencies/probability are compared. In case the fit is good we use the
properties of the theoretical distribution to explain the characteristics of the experimental data.
Remember in this example we have a static process. Let us illustrate this example in more details, i.e.,
we have  which denotes the random variable (r.v) associated with the  throw of the dice such
that:

When we have a sequence of  we have a stochastic process which is denoted by 

. For the interested reader we would like to mention that this is a Bernoulli process, denoted by 
. Stated simply, what we have is a collection or family of random variables (r.v's)

which is a stochastic process. But in general to be more specific we have the concept of time also,
hence it is a dynamic process, such that a general stochastic process is denoted by , , where 

 is the parameter space.
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Example 1.2

Consider a PBX/EPBAX (Electronic Public Branch Automatic Exchange) where we denote , ,
as the number of incoming calls arriving during a particular time . Individually 

 are the realized values of a random variable (r.v). In case one is interested
to know how  changes as time, , changes then we look into a dynamic process, which can be termed
as a stochastic process.

In both these examples one would also be interested to know about the joint distribution of the members
of this family of random variables (r.v), and how many random variables (r.v's) are there, that depend on

. One should remember that this parameter space  may be discrete/denumerably infinite or non
denumerable infinite. Few examples for discrete parameter space are , 

. When  is discrete we usually use  to denote the parameter, e.g., 

 and call this a stochastic sequence. When  is continuous, say for example, 

, , we use  to denote the parameter, e.g., .

Measure theoretic approach

Before going into more detail about stochastic process we give here a very brief preview of measure
theoretical approach which is relevant for probability and statistics.Let X be a random variable (r.v) on 

, where, (i)  is the sample space, (ii)  is the sigma field, i.e., very simply stated it is the
subsets of  which defines a set of events having certain properties which is predefined and common,
(iii)  be the probability which is defined on , or in other words it is a function mapping from  to 
.
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Example 1.3

Consider the next example of tossing an unbiased coin, where the outcomes are either, a head, , or
tail, . The associated sample space for this example is , while  the random variable (r.v)
is denoted as  and . There is nothing sacrosanct of the fact that  or 

.Pictorially the mapping, which denotes the probability function, is denoted as shown in Figure
1.1.

Figure 1.1: Pictorial representation of probability function
mapping for the one dimension case

For the case when we toss two unbiased coins,  denotes the number of heads/tails appearing. So if
we use the same nomenclature for the random variable (r.v), then , , 

 and and this simple concept may be illustrated as shown in Figure 1.2.

Figure 1.1: Pictorial representation of probability function
mapping for the two dimension case

Hence this concept may be extended to the case of  dimensions also, which we omit for the reader to
read and clear their concepts from a good book in probability and measure theory.
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We already know that if  is the random variable (r.v), such that , , then 
 is the distribution function of the random variable (r.v) . Consider a finite collection of random
variables (r.v's) in , where . Then the joint distribution of 

 is given by . In
case  are independent, we have

.

In case they are independent and identically distributed, then the following is true
. For example  and  are

independent but not identical, while  and  are independent and identical, i.e.,
i.i.d.
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Definition of Stochastic Process

Defintion 1

As already mentioned a stochastic process is a function of two parameters which are from the sample
space and the parameter space respectively, i.e., , where  and , such that the
general nomenclature of denoting a stochastic process is . When the realized value is
observed or achieved then we say that the realization of the stochastic process has been observed and
it is denoted by .

Defintion 2

A Stochastic process is a family of random (r.v.) and they are usually indexed/identifies by say , i.e., its
representation is . Here one should remember that  is some index set in a way such that
all the elements of  are elements of . A realization (or a sample function) of a stochastic process 

 is an assignment to each  of a possible value of . Here  could be finite, countable
or uncountable finite. Let us illustrate this with a simple example.
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Example 1.4 

Consider you toss a coin  number of times. Denote the realization of head as , while that of a
tail is denoted as . Then the stochastic process is given as  where .
Diagrammatically it is shown below

Figure 1.3: Stochastic process depicting the occurrence of head
(H) or tail (T) when a coin is flipped  number of times

Now if  is the function which maps the relation between the sample space and the real line, [0, 1],
then we denote it by , i.e., , i.e., . Pictorially it is depicted as shown
in Figure 1.4 and Figure 1.5.

Figure 1.4: Probability mapping for a stochastic process from W
to
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This concept can be generalized for the multivariate case also, i.e., Figure 1.6 and Figure 1.7.

Figure 1.6: Probability mapping from sample space to real line
considering 

Figure 1.7: Probability mapping from sample space to real line
considering 
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For the ease of understanding we have a look at the bivariate case mapping which is shown in Figure
1.8.

Figure 1.8: Bivariate probability distribution functional mapping

If one considers the tossing of an unbiased coin then X(w) is either X(H) or X(T) and as per convention
(nothing sacrosanct in the notation as such), we denote X(H) = 1 and X(T) = 0. Then what would be the
value of P[X(H) = 1] or P[X(T) = 0] is what is the finally probability function (generally the distribution
function denoted by cumulative distribution function) which is of interest to us for both theoretical as well
as practical purposes. So for example (again the same example of tossing the unbiased die) we have 

, and we can have X(1) = X(2) = X(3) = 0 while X(4) = X(5) = (X(6) = 1. Later on we
have the mapping, such that P[X(1)] = …. = P[X(6)] = 1/6. This simple concept can be extended for the
higher dimension also and we can have the marginal, conditional as well as the joint distribution
functions mapped as required.
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Marginal Distributions

Let us again define two r.v., ,  such that the required probability space is . Let us also
define  and  as the probability measure induced by  and  respectively on the space, defined by

..Now if  are r.vs, such that they are defined on , where  and 
 are arbitrary Borel sets defined for  and  and  be the joint distribution function defined for
the r.v., , where  is true,then
 represents the probability that the variable  will take a value belonging to the area marked by 

, i.e., the probability , irrespective of the value of  (remember  can take any value in
the entire domain of Y, i.e., ). In a similar way we can define . We can write 

 and .

Thus the probabilities  (Figure 1.9) for varying values of  defines the marginal distribution
of  relative to the joint distribution of . In a very simple sense it means we project the mass of
the joint distribution on the sub-space of the variable . Similarly we can define the probabilities 

 (Figure 1.10) for varying values of  such that it defines the marginal distribution of 
 relative to the joint distribution of  and it implies that we project the mass of the joint distribution
on the sub-space of the variable .

Figure 1.9: Illustration of 
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Figure 1.10: Illustration of 

 



Objectives_template

file:///E|/courses/introduction_stochastic_process_application/lecture1/1_14.html[9/30/2013 12:41:28 PM]

 Module 1:Concepts of Random walks, Markov Chains, Markov Processes
 Lecture 1:Introduction to Stochastic Process

 
One may add that the marginal distributions of  an  relative to their joint distributions are
identical with the distributions of  and  taken individually one at a time, i.e.,

 

and  and  have the properties of the univariate distributions of X

and Y respectively.

In a similar way we can define the marginal distributions in the case when we have  number of r.v., 
, such that each has the required probability space is . Let us also define

,…,  as the probability measure induced by  respectively on the space, defined as 

, where . If  are r.v., such that they are defined on 

, where  are arbitrary Borel sets identifined for 

 then  be the joint distribution function defined for the r.v., 

, where . Then 

 represents the probability that the variable  will take a value

belonging to the area marked by , i.e., the probability , irrespective of the value of 

 (remember  can take any value in the entire domain of 
, i.e., , where ). In a similar way we can define 

 and one can write , ,

for some r.v., XI.

Thus the probabilities  for varying values of XI defines the m arginal

distribution of X1 relative to the joint distribution of . In a very simple

sense it means we project the mass of the joint distribution on the sub-space of the variable X1. In a

similar sense we can also say that the marginal distributions of XI on  relative to their joint

distribution is identical with the distribution of X1 taken individually one at a time, i.e.,

For a stochastic process we will consider the joint distribution, Thus given 
 we are interested to find the joint distribution of 

.

Note
We say a stochastic process is a stationary joint distribution if it is invariant to the shift of time,
i.e., if the joint distribution of  and  are
the same . This is usually called stationary of order n as we have n ordered time points. If a
stochastic process is said is said to be of order n for every value of , then the stochastic process
is called strictly stationary.
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Moments
Few important moments which are of interest to us for any theoretical as well as empirical distributions
are: mean, variance/standard deviation, covariance, skewnesss (3rd order moment), kurtosis (4th order
moments) and other higher moments. Now if E[X(t)] is independent of t, then we know that E[X(t)] is a
constant.

For moments we know the following

1st order moment is expected value or mean value or average value (we are being very
generous in our terminology is trying to define the 1st moment, even though in the strict sense
expected value, mean value, average value are slightly different concepts more pertaining to the
property of the population and sample). The symbol of the 1st moment is E(X)

2nd order moment is used to find variance and the variance is given by E[{X – E(X)}2]. The
concept of standard deviation, sample variance, standard error are also some metrics which can
be calculated using the 2nd moment.

3rd order moments can be used to find skewness, and the general formulae is E[{X - E(X)}3].

4th order moments can be used to find kurtosis and the general formulae is E[{X - E(X)}4].

rth order moment is denoted by E(Xr).

rth order central moment is denoted by E[{X - E(X)}r]. In this case the central moment is
calculated about the mean, E(X). In many cases we calculate the general moment called the

raw moment and we have E{X - a}r which is the moment of order , where this  can be any
point.

Similarly for a stochastic process we can find the expected value, variance as well as the higher
moments.Now the variance is given by

, while covariance is

given as .

Note

      1. If we take E[X(t)] as constant, then we have

 
 
      2. If we take E[X(t)] as zero, then we have

 , where  is a constant

 = , where  is a constant

       3. If  and  does not depend on t, then cov{X(t),X(s)} only depends on   and

is           called covariance stationary or weekly stationary or stationary and in the wide sense
                     stationary. We will discuss about these later on.
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Gaussian Process

A stochastic process is called Gaussian process if the joint distribution of  is
 variate normal distribution. Now a  variate normal distribution is specified by it mean vector

 and the variance-covariance matrix

Note

If a Gaussian process is covariance stationary, then it is strictly stationary.
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Example 1.5

Let  be a stochastic process with  and ,  n and uncorrelated
random variables (r.v's), then

Hence

, which implies that it is covariance stationary

Furthermore if the random variables (r.v's) are i.i.d, then the stochastic process is strictly stationary

Note : A stochastic process is not stationary in any sense is called evolutionary or non-stationary.

One should remember that modelling with continuous stochastic process is easier than working with
stochastic processes which are not continuous, i.e., discrete. For example one may consider stock

prices movement to be continuous. But in general the prices move in quantum of say  or  of a

Re. 1. So in real sense the stock price movement is not continuous, even though for all practical
purposes when trying to model stock prices or study them, we consider stock price movement as
continuous. We will study stochastic processes which are called diffusion processes, the illustration of
which is given below (Figure 1.11).

Figure 1.11: Diffusion process which may be used to define stock
price movements

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/courses/introduction_stochastic_process_application/lecture1/1_18.html[9/30/2013 12:41:29 PM]

 Module 1:Concepts of Random walks, Markov Chains, Markov Processes
 Lecture 1:Introduction to Stochastic Process

 

Random Walks

Let us start the discussion with a simple illustration and few practical examples.

Illustrative example for explaining the concept of random walk

Assume there is a particle which at time  is at any particular position or state, say , i.e., 
, and assume the movement of the particular is along the x-axis. This being the first simple example we
will consider the movement is along one dimension only. Now suppose at time , we are in the 
 position or state , i.e., . Assume the movement that the particle has from the  state to the 

 state in the time between  to  happened due to the fact that the particular had a jump or
moved a step, which we denote by . Furthermore at  assume the particular undergoes another
jump Z2, such that Z1 and Z2 are identically and independently distributed (i.i.d). For ease of

explanation consider the diagrams below (Figure 1.12 and Figure 1.13) which is self explanatory. In the
first figure (Figure 1.12) we see how the particle moves from the  state (which is occupies at )
to subsequent states denoted by , , ,  and so on at instances of time denoted by , , 

, , etc. The colour schemes makes it clear how the movement of the particle takes place at
each instance and these jumps or morevement are one step at a time. While on the other hand Figure
1.13 gives an arbitrary snapshot of the movement of the particle, and obviously there are other
combinations of movements of the particle also.

Figure 1.12: Illustration of random walk
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Figure 1.13: Arbitrary snapshot of the particle under going random
walk

In case we simplify the above notations then we consider the case where at the starting of the process,
i.e., , the particle is at any given point say, , such that . At time  the particle
undergoes a jump of quantum Z1 (which is a random variable with a particular distribution). Furthermore

at time  the same particle undergoes another jump Z2 where Z2 is independent of Z1 but has the

same distribution as Z1 . Thus the particle undergoes jumps in a manner that after end of the first time

period,  it is at the position , after the second time period,  it is at the position 
. Thus for ,  is a sequence of mutually independent

and identically distributed random variables.

More generally ,  and in case , or  or , then what is of interest
to
us is ,  and , such that 

. There may be instances where , in
which case we should have 
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Example 1.6

Consider we put an item into use and obviously it will fail after some time. When it fails it is replaced by
another item of the same type. We may safely assume that  which denotes the lives of the items
(they are all similar remember) are independent (a restrictive assumption) and each item fails at the 

 time with a probability denoted by , such that . Also let us consider that the
distribution,  is aperiodic such that . If  is the age of the item at time  (here
is where we bring the time concept as relevant for the Stochastic Process), i.e., the number of periods
(including the ) it has been in use, then we may assume  is a random walk (a good
example of Markov chain) with the transition probabilities which can be calculated using 

.

Example 1.7

Consider an insurance company has just started, say at time period , and the initial fixed capital
the company has is . In due course of time the company receives amounts Y1, Y2,..

in form of premiums and other incomes, while at the same time due to insurance claims and other
expenses it has to shelf out amounts denoted by W1, W2,…. . One should remember that these inputs

and outputs are happening at same instances of time, which are  Now the amount of money the
insurance company has at any point of time  is given by 

.
It is obvious that the insurance company goes bankrupt in case . Thus if we assume that 
 and  are two separate sequences then  is a random walk starting at  with jumps , 

 and so on. An interesting thing is the fact that for this random walk we have an absorbing
barrier at the origin such that the random walk is denoted by:
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Example 1.8

Let us now concentrate on an example from civil engineering. Let  represent the amount of water in a
dam at the end of  units of time. Suppose during day ,  units of water flows into the dam in form of
rainfall, supply from rivers, reservoirs, etc., and also assume that  has a particular statistical
distribution. As we all know any amount of water cannot be stored in a dam, hence water is discharged
from the dam based on the following rule which is, if  holds true then  amount of
water is dischared, where  is the capacity of the dam.
The situation may be represented as follows:

It is easy to note that the dam continues to remain full (i.e., with capacity ) until the first negative ,
i.e., the first subsequent day when the amount released exceeds the inflow. On the other hand it will
continue to remain empty until the first positive value of  If  is a sequence of mutually
independent and identically distributed random variables that may describe  as a simple random walk
on the interval  with two reflecting barriers at  and .

Example 1.9

The next example is from astronomy.Consider that during one revolution around the earth the satellite
under goes a change in its energy level. In each successive revolutions the quantum of energy change
is assumed to be identical and independently distributed and is denoted by . Thus with an initial
energy level of  for the satellite, the energy level at time  is given by .
The satellite escapes the earth¢s gravitational pull if its energy is more than a threshold value of  else
it falls to the earth if its energy level is less than . In that case the situation may be represented by:

  
Where  and  are the absorbing states for this random walk.
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Example 1.10

Define  

Now the question is, is the market persistent? To answer this we first denote the transition

probability matrix , where the 1st row & 1st column element which is ,

denotes what is the probability that provided price was at level 0 (this zero is just a notional concept
and has nothing to do with its actual value) today, it would continue to be at that price tomorrow also.
Similarly the other probabilities signify the other price movements. Now for any particular row (denoted
by the suffix ) we have ,  . Hence the corresponding probabilities of 1st row & 2nd
column or for that matter 2nd row & 1st column which are  and  can be easily found
given  and  values. This means that  and . Even
though a repetition we would like to again mention that as , hence 

.

Example 1.11

In line with example 1.9, let us conduct a simple thought experiment, where suppose we are given the
state of the prices of a particular stock for 3 consecutive days and assume the price fluctuations are
such that they are either 0 or 1. Then the transition probability matrix, P would be denoted as 

. The question which comes to anyone's mind at this stage is how do

we estimate the values of  or . In case we have the matrix , which is a sample instance

of the number of times of movement of stock prices, then the probability values in the long run may be
estimated as , , , . Another method to calculate the
values of  is by using the method of maximum likelihood estimation (MLE) principle, where we look
into the likelihood of the data and maximize the value, i.e., 

.

One would immediately recognize that  is a monotonic transformed function
of . Moreover based on the following facts that (i) , (ii) 

 and (iii)  we equate the equations , 

,  and  individually to zero and

solve them to find  and , utilizing their respective estimated values given by 

 and . To find the maximum or minimum value we verify the properties of the Hessian

matrix ( ), where  and  are functions of 

. For the benefit of the reader we would like to mention that  which is the
variance/covariance of  and  is asymptotically normal. One can also calculate the
standard errors of  and  using the MLE approach.
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Markov Chain

Consider the following where we have (i) State Space : , (ii) Index Set : 
 and (iii) event is occurring when  belongs to state . Figure 1.14 and Figure 1.15 give a
diagrammatic view of Markov chain for an ease of understanding of the reader.

Figure 1.14: Illustration of Markov chain

Figure 1.15: Illustration of Markov chain considering initial
state i and final state j

In Figure 1.14 it shows that the movements from state  to state  can take place through any direction
and they are continuous. But to make our life simple we consider the junps to be in discrete time and
the movements are also considered to be discrete, which is depicted in Figure 1.15.

The probability of  being in state  given that  is in state  (the concept of one step
transition probability) is given by . Using matrix notation it may be
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represented by the standard matrix representation as shown . Few importance

properties hold for this transition probability matrix and they are as follows:

1. ,  

2. ,  
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Claim: Given  (or its probability) and  , then the whole probabilistic structure of the process
is determined.

Proof: We need to compute ,   
Thus:

i.e., we use the concept of  
Now

Similarly we have:

Using this we can find the . Finally the probability of starting from the initial position will be given by
the problem or from the practical situation, based on which we have formulated our problem.
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Example 1.12 

The concept of transition probability values can be used quite nicely in finance domain, say for
example in interest calculation models. Consider the example where we have he interest rate at time
period  is given by , where  is the error. This is a simple model which is a pure
Markov chain example. Next assume , where  and  are constants while  is the
volatility. This is a simple AR(1) model. In the second model the volatility can change with respect to
time. Furthermore we can assume that this volatility term also follows a Markov chain process. In the
simple example we may model the volatility as follows :

Table 1.2: Scenarios of Volatility

 High Low 
High 
Low 

Different researchers have found methods to find the interest rate using different concepts of interest
rate calculations. Another method of calculating interest rate can be , where 
 is some index. We can bring more complication in this model by considering  as well as  also vary
with respect to time. A closer look at the equation will immediately reveal that when  the interest
rate will blow up. An important method named the unit root test method has quite a lot of
application in interest rate problem, using which we can test for the stationary/non-stationary of the time
series, especially interest rate or rate change of stock prices.

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/courses/introduction_stochastic_process_application/lecture1/1_26.html[9/30/2013 12:41:32 PM]

 Module 1:Concepts of Random walks, Markov Chains, Markov Processes
 Lecture 1:Introduction to Stochastic Process

 

Further definition of Markov Chain

A stochastic process with discrete state space and discrete parameter space is called a Markov
chain. Let us consider a stochastic process with , . Now if we have

 then the stochastic

process is called a Markov process of order .

Remember a homogeneous Markov chain of order one is also called a Markov chain, where we
denote it simply as 

Transition probability and transition matrix

Let us consider the following, i.e., , which

is the transition probability of the transition from ith to the jth state in a single step. If the transition
property is independent of , then it is called the homogeneous Markov chain.

One step transition probability

Now , denotes the probability

corresponding to the chance that the stochastic process will move from the ith to the jth state
considering that the ith to the jth states can be reached between any two consecutive positions, but
generally that may not always be the case. So without any further complication consider  is fixed

irrespective of , such that we have , which is the nth step

transition probability which denotes the transition of the particle or body as it goes from state  to state 
 after  steps. Here  denotes the time instance when the particle is at state  and n is the time units
after which it reaches state  from state . Hence the total time elaspsed is  periods.

Now if we bring in the concept of probability mass function, then we one easily add that 

 for for  (where I is the state space). Here , and . The second term which is 

 means that the process should definitely start from any one of the positions which is an
element of . Utilizing this concept for this simple case we can easily extend this and have the concept

of transition probability, which is given by , i, . Here one can deduce that

 and . If we extend the concept of transition probability we have the transition

probability matrix given by , such that in matrix formulation it is given as 

. One should remember that the row sum is 1, i.e., , which is very

intuitive. Thus if you are at any ith state then you can move to either 1st or 2nd or any other state,

including i th state (i.e., remains at the same position) and no where else. Another important thing to
remember about this matrix P, is the fact that it is not an symmetric matrix, as .
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Now 

i.e., , where  is the n step transition

probability matrix and , n times, where, , i.e., 
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