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2.4   SUCCESSIVE OVERRELAXATION (SOR) METHOD  
 
     We shall now consider SOR method for the system 
 
     Ax = y ………..(I) 
 
We take a scalar parameter ω ≠ 0 and multiply both sides of (I) to get an equivalent 
system, 
 
ωAx = ωy ………………(II)  
 
Now as before we split the given matrx as 
 

( )ULDA ++=  
 
We write (II) as 
 
(ωD + ωL + ωU)x = ωy, 
 
i.e. 
 

(ωD + ωL) = - ωUx + ωy 
 
i.e. 
 

(D + ωL)x + (ω-1) Dx = - ωUx +ωy 

 
i.e. 
 

(D + ωL)x = - [(ω – 1)D + ωU]x + ωy 
 
i.e. 

x = - (D + ωL)-1 [(ω-1)D + ωU]x + ω [D + ωL]-1y. 
 
We thus get the SOR scheme as 
 

( ) ( )

( )

1

0

ˆ

zero vector;  initial guess

k kx M x y

x

ω
+ = +

=
       ……………(III) 

 
where, 
 

( ) ( )[ ]uDLDM ωωωω +−+−= − 11
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and 

( ) yLDy ωω 1ˆ −+=  
 
Mω is the SOR matrix for the system. 
 
Notice that if ω = 1 we get the Gauss – Seidel scheme.  The strategy is to choose ω such 
that ,1<isM

spω  and is as small as possible so that the scheme converges as rapidly as 

possible.  This is easier said than achieved.  How does one choose ω?  It can be shown 
that convergence cannot be achieved if ω ≥ 2.  (We assume ω > 0).  ‘Usually’ ω is chosen 
between 1 and 2.  Of course, one must analyse 

sp
M ω  as a function of ω and find that 

value ω0 of ω for which this is minimum and work with this value of ω0. 
 
     Let us consider an example of this aspect. 
 
Example 6: 
 
     Consider the system given in example 5 in section 2.3. 
 
For that system, 
 
Mω = - (D +ω L)-1 [(ω-1) D +ωU] 
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and the characteristic equation is 
 

( ) ( ) ( )ωλωλωλωλω MC.................0112116 24224 =++−−+−  
 
Thus the eigenvalues of Mω are roots of the above equation.  Now when is λ = 0 a root?  
If λ = 0 we get, from (CMω),  

 
16(ω-1)4 = 0 ⇒ ω = 1,  i.e. as in the Gauss – Seidel case.  So let us take ω ≠ 1; so  

λ = 0 is not a root.  So we can divide the above equation (CMω) by ω4λ2 to get  
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Setting 
 

( )
λω

λωµ
2

2
2 1+−=   we get 

 

011216 24 =+− µµ  
 
which is the same as (CJ).  Thus 
 

.8090.0;3090.0 ±±=µ  
 
Now 
 

( ) 2
2

21 µ
λω

λω =+−
 = 0.0955  or  0.6545 ……….(*) 

 
Thus, this can be simplified as 
 

( ) ( ) 2

1

2222 1
4

1
1
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1


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

 −−±−−= ωωµµωωωµλ  

 
as the eigenvalues of Mω. 
 
     With ω = 1.2 and using the two values of µ2 in (*) we get, 
 
     λ = 0.4545, 0.0880, -0.1312 ± i (0.1509). 
 
as the eigenvalues.  The modulus of the complex roots is 0.2  
 
Thus 

sp
M ω  when ω = 1.2  is  0.4545 

 
which is less that 

sp
J = 0.8090  and  

sp
G = 0.6545 computed in Example 5 in section 

2.3. Thus for this system, SOR with ω = 1.2 is faster than Jacobi and Gauss – Seidel 
scheme. 
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We can show that in this example when ω = ω0 = 1.2596, the spectral radius 0ωM  is 

smaller than ωM  for any other ω.  We have 

 

  2596.1M  = 0.2596 

 
Thus the SOR scheme with ω = 1.2596 will be the method which converges fastest. 
 
Note: 
     We had  1 .2 0 .4 5 4 5

s p
M =   

      and 
             1.2596 0.2596

sp
M =  

 
Thus a small change in the value of ω brings about a significant change in the spectral 

radius sp
M ω . 


