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3.3  HERMITIAN MATRICES 
 
 Let A = (aij); be an nxn matrix.  We define the Hermitian conjugate of A, 
denoted by A* as ; ( )ijA a∗ ∗= where ij jia a∗ = . 

 
A* is the conjugate of the transpose of A. 
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Example 2: 







−

=
2

1

i

i
A  

 Transpose of  






 −
=

2

1

i

i
A  

 

  







−

=∴
2

1*

i

i
A  

 
Observe that in Example 1.  A* ≠ A, whereas in Example 2, A* = A. 
 
DEFINITION:  An nxn matrix A is said to be HERMITIAN if 
    A* = A. 
 
We now state some properties of Hermitian matrices. 
 
(1) If A = (aij) , A

* = (a*
ij), and A = A* , then aii = a*

ii =  aii  
 
Thus the DIAGONAL ENTRIES OF A HERMITIAN MATRIX ARE REAL. 
 

(2) Let 
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;  be any two vectors in Cn and A a Hermitian matrix. 
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We have 
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Thus IF A IS HERMITIAN THEN 
 (Ax, y) = (x, Ay) 
 FOR ANY TWO VECTORS x, y. 
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(3) Let λ be any eigenvalue of a Hermitian matrix A.  Then there is an x ∈  Cn, x ≠ 
θn such that 
  Ax = λx. 
Now, since A is Hermitian we have, 
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( )( ) ( ) nxxxButxx θλλ ≠≠=−∴ Q0,.0,  
 

λλλλ =∴=−∴ 0   ∴  λ is real. 
 
THUS THE EIGENVALUES OF A HERMITIAN MATRIX ARE ALL REAL. 
 
(4) Let λ, µ be two different eigenvalues of a Hermitian matrix A and x, y their 
corresponding eigenvectors.  We have, 
 
   Ax = λx  and  Ay = µy 
and λ, µ are real by (3). 
 
Now, 
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Hence we get 
( )( ) .0y,x =µ−λ  

µ≠λBut  
So we get (x,y) = 0  ⇒   x and y are orthogonal. 
 
THUS IF A IS A HERMITIAL MATRIX THEN THE EIGENVECTORS 
CORRESPONDING TO ITS DISTINCT EIGENVALUES ARE ORTHOGONAL. 


