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3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS  

 
3.1   EIGENVALUES AND EIGENVECTORS 
 We shall now review some basic facts from matrix theory. 
 Let A be an nxn matrix.  A scalar α is called an eigenvalue of A if there 
exists a nonzero nx1 vector x such that 
 
 Ax = αx 
 
Example: 
Let 
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Hence 1−=α  is such that there exists a nonzero vector x such that Ax = αx.  
Thus α is an eigenvalue of A. 
 

Similarly, if we take α = 3, 
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we find that  

Ax = αx.  Thus, α = 3 is also an eigenvalue of A. 
 
 Let α be an eigenvalue of A.  Then any nonzero x such that Ax = αx is 
called an eigenvector of A. 
 Let α be an eigenvalue of A. Let, 
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 { }xAx:CxW n α=∈=α  

Then  we have the following properties of αW : 

 (i) αW is nonempty, since the zero vector, (which we denote by θ ), is in 

αW , that is , nnn αθ=θ=θA . 

α

α
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(iii) For any constant k, we have 

α∈⇒
α=⇒

α=α=

 Wkx 

(kx)A(kx)

(kx)xkkAx

 

 
Thus αW is a subspace of Cn.  This is called the characteristic subspace or the 

eigensubspace corresponding to the eigenvalue α. 
 
 
Example:  Consider the A in the example on page 81.  We have seen that α = -1 
is an eigenvalue of A.  What is )1(W − , the eigensubspace corresponding to –1? 

 
 We want to find all x such that 
 
  Ax = -x, that is, 
           (A+I)x  = θ, that is, 
we want to find all solutions of the homogeneous system  Mx = θ ; where 
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We now can use our row reduction to find the general solution of the system. 

 

2 1
1

3 1

1

8

2

1 118 4 4 2 2
0 0 0 0 0 0

0 0 0 0 0 0

R R R

R R

M
− −

−

 − −−         →         

→  

 



 83

Thus, 321 x
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Thus the general solution of (A+I) x = θ is 
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where A1 and A2 are arbitrary constants. 
 
Thus  consists of all vectors of the form 
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Note: The vectors 
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dim )1(W − = 2. 

 

What is )3(W  the eigensubspace corresponding to the eigenvalue 3 for the above 

matrix? 

 

 We need to find all solutions of Ax = 3x, 

  i.e.,  Ax – 3x  = θ 

  i.e.,  Nx = θ 

where 
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Again we use row reduction 
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∴  The general solution is 
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Thus )3(W consists of all vectors of the form 
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Where κ  is an arbitrary constant. 
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Note:  The vector 
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 dim. )3(W = 1. 

 

 Now when can a scalar α be an eigenvalue of a matrix A of order n? We 
shall now investigate this question.  Suppose α is an eigenvalue of A. 

 

This  ⇒There is a nonzero vector x such that Ax = αx. 

 ⇒ θ=α− x)IA( and θ≠x  

 ⇒The system θ=α− x)IA( has at least one nonzero solution. 

 ⇒  nullity (A - αI) ≥ 1 

 ⇒  rank (A - αI) < n 

 ⇒  (A - αI) is singular 

 ⇒  det. (A - αI) = 0 

 

Thus, α is an eigenvalue of A ⇒  det. (A - αI) = 0. 

Conversely, α is a scalar such that det. (A - αI) = 0. 

 This ⇒  (A - αI) is singular 

         ⇒  rank (A - αI) < n 

      ⇒  nullity (A - αI) ≥ 1 

      ⇒  The system θ=α− x)IA( has nonzero solution. 

       ⇒  α is an eigenvalue of A. 
 
Thus, α is a scalar such that det. (A - αI) = 0 ⇒  α is an eigenvalue. 
Combining the two we get, 
 α is an eigenvalue of A 
⇔ det. (A - αI) = 0 
⇔ det. (αI - A) = 0 
 
Now let C(λ) = det. (λI - A) 
 
Thus we see that, 
      “The eigenvalues λ of a matrix A are precisely the roots of  

C(λ) = det. (λI - A)”. 
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We have, 
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Thus ; C(λ) is a polynomial of degree n.  Note the ‘leading’ coefficient of  C(λ) is 
one and hence C(λ) is a ‘monic’ polynomial of degree n.  This is called 
CHARACTERISTIC POLYNOMIAL of A.  The roots of the characteristic 
polynomial are the eigenvalues of A.  The equation C(λ)  = 0 is called the 
characteristic equation. 
 

  Sum of the roots of C(λ) = Sum of the eigenvalues of A 

        = a11 + . . . . . . + ann  , 
and this is called the TRACE of A. 
 
 Product of the roots of C(λ) =  Product of the eigenvalues of A 
             = det. A. 
 
In our example in page 81 we have 
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 ( )( )( )311 −++= λλλ  
 
 ( ) ( )31 2 −+= λλ  
 
Thus the characteristic polynomial is  

 ( ) ( )31)( 2 −+= λλλC  
 
The eigenvalues are –1 (repeated twice) and 3. 
 
Sum of eigenvalues = (-1) + (-1) + 3 = 1 
          = Trace A = Sum of diagonal entries. 
 
Product of eigenvalues = (-1) (-1) (3) = 3 = det. A. 
 
Thus, if A is an nxn matrix, we define the CHARACTERISTIC POLYNOMIAL as,     
 AIC −= λλ )(        . . . . . . . . . . . . .(1) 

and observe that this is a monic polynomial of degree n.  When we factorize this 
as, 

 ( ) ( ) ( ) ka
k

aaC λλλλλλλ −−−= KK21

21)( . . . . . . . .(2) 
 
where λ1, λ2, . . . . . ., λk are the distinct roots; these distinct roots are the distinct 
eigenvalues of A and the multiplicities of these roots are called the algebraic 
multiplicities of these eigenvalues of A.  Thus when C(λ) is as in (2), the distinct 
eigenvalues are λ1, λ2, . . . . . ., λk and the algebraic multiplicities of these 
eigenvalues are respectively, a1, a2, . . . . . , ak. 
 
 For the matrix in Example in page 81 we have found the characteristic 
polynomial on page 86 as 

 ( ) ( )31)( 2 −+= λλλC  
 
Thus the distinct eigenvalues of this matrix are λ1 = -1 ; and λ2 = 3 and their 
algebraic multiplicities are respectively a1 = 2 ; a2 = 1. 
 
 If λ i is an eigenvalues of A, the eigen subspace corresponding to λ i is 

i
Wλ  

and is defined as  
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The dimension of 

i
Wλ is called the GEOMETRIC MULTIPLICITY of the 

eigenvalue λ i and is denoted by gi. 
 
 Again for the matrix on page 81, we have found on pages 83 and 84 
respectively that, dim )1(W − = 2 ; and dim. )3(W = 1.  Thus the geometric 

multiplicities of the eigenvalues λ1 = -1 and λ2 = 3 are respectively g1 = 2 ; g2 = 1.  
Notice that in this example it turns out that a1 = g1 = 2 ; and a2 = g2 = 1. In 
general this may not be so.  It can be shown that for any matrix A having C(λ) as 
in (2), 
 
 1 ≤ gi ≤ ai   ;  1 ≤ i ≤ k          . . . . . . . . . . . .(3)    
 
i.e., for any eigenvalue iλ of A, that is, 
1 ≤ geometric multiplicity ≤ algebraic multiplicity for any eigenvalue. 
 
 We shall now study the properties of the eigenvalues and eigenvectors of 
a matrix.  We shall start with a preliminary remark on Lagrange Interpolation 
polynomials : 
 
 Let α1, α2, . . . . . . . ., αs  be s distinct scalars, (i.e., αi ≠ αj  if i ≠ j ). 
Consider, 
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Then pi(λ) are all polynomials of degree s-1. 
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We call these the Lagrange Interpolation polynomials.  If p(λ) is any polynomial 
of degree ≤ s-1 then it can be written as a linear combination of p1(λ),p2(λ), . . ., 
ps(λ) as follows: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )λαλαλαλ ss ppppppp +++= L2211   . . . . (6) 
 

( ) ( )∑
=

=
s

i
ii pp

1

λα  

 
 With this preliminary, we now proceed to study the properties of the 
eigenvalues and eigenvectors of an nxn matrix A. 
 
 Let λ1, . . . . , λk be the distinct eigenvalues of A.  Let φ1, φ2, . . . , φk be 
eigenvectors corresponding to these eigenvalues respectively ; i.e., φi are 
nonzero vectors such that 
  Aφi = λ iφi , i=1,2,…,k . . . . . . . . . . .(6) 
 
From (6) it follows that 
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and by induction we get 
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(We interpret A0 as I). 
 
Now, 
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be any polynomial.  We define p(A) as the matrix, 
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Thus, 

  

 

 
  
 Now we shall prove that the eigenvectors, φ1, φ2, . . . . , φk corresponding 
to the distinct eigenvalues λ1, λ2, . . . . , λk of A, are linearly independent . 
 
  In order to establish this linear independence, we must show that 
 

0212211 ====⇒=+++ KnKK CCCCCC KK θφφφ  . . . (8) 
 
Now if in (4) & (5) we take s = k ; αi = λ i, (I=1,2,..,s) then we get the Lagrange 
Interpolation polynomials as 
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 ( ) ijjip δλ =  …………(10) 

 
Now, 
 

nkkCCC θφφφ =+++ ....2211  
 
For  1≤ i ≤ k, 
 

 ( )[ ] ( ) nnikki ApCCCAp θθφφφ ==+++ ....2211  
 

( ) ( ) nkikii ApCApCApC θφφφ =+++⇒ ....)( 2211  
 

( ) ( ) ,....)( 222111 nkkikii pCpCpC θφλφλφλ =+++⇒  (by property I on page 86) 
 

;1; kiC ii ≤≤=⇒ θφ  by (10) 

kiCi ≤≤=⇒ 1;0  since φi are nonzero vectors 
 
Thus 
 

If λ i is any eigenvalue of A and φi is an eigenvector corresponding to λ i ,then 

for any polynomial p(λ) we have .)()( iii pAp φλφ =  

        PROPERTY I 
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 0........ 212211 ====⇒=+++ nnkk CCCCCC θφφφ proving (8).  Thus 
we have 
 
 
 
 
 
 

Eigen vectors corresponding to distinct eigenvalues of A are linearly 
independent. 

 
  PROPERTY II 


