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1.3   DETERMINANT EVALUATION 

We observe that even in the partial pivoting method we get matrices 
 
 M(k), M(k-1), …. ,M(1) such that 
 
M(k) M(k-1) …. M(1) A is upper triangular  
and  
therefore 
 
det M(k) det M(k-1) …. det M(1) det A = Product of the diagonal entries in the final 

 upper  triangular matrix. 
 
Now det M(i) = 1 if it refers to the process of nullifying entries below the diagonal 
to zero; and 
 
det M(i) = -1 if it refers to a row interchange necessary for a partial pivoting. 
 
Therefore det M(k) …. det M(1) = (-1)m where m is the number of row inverses 
effected in the reduction. 
 
Therefore det A = (-1)m product of the diagonal entries in the final upper 
triangular matrix. 
 
In our example 1 above, we had M(1), M(2), M(3), M(4) of which M(1) and M(3) 
referred to row interchanges.  Thus therefore there were two row interchanges 
and hence 
 

2 5 9
det ( 1) (2) 9.

2 5
A

  = − =  
  

 

In example 2 also we had M(1), M(3) as row interchange matrices and 
therefore det A = (-1)2 (0.215512) (0.361282) (0.188856) = 0.013608 
 
LU decomposition: 
 
 Notice that the M matrices corresponding to row interchanges are no 
longer lower triangular. (See M(1) & M(3) in the two examples.)  Thus, 
 
 M(k)  M(k-1)  . . . . .  M(1) 
 
is not a lower triangular matrix in general and hence using partial pivoting we 
cannot get LU decomposition in general. 
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1.4   GAUSS JORDAN METHOD 

 In this method we continue the partial pivoting method further to reduce, 
using Elementary Row Operations, the diagonal entries where the nonzero pivots 
are located to 1 and all other entries in the columns containing nonzero pivots to 
zero. The resulting matrix is called the Row Reduced Echelon (RRE) form of the 
given matrix, and is denoted by AR. These Elementary Row Transformations 
correspondingly reduce the vector y to a form which we denote by yR. This is the 
same as saying that the augmented matrix Aaug is reduced to the matrix (AR|yR)  
 
Remark: 
 
 In case in the reduction process at some stage if we get 

1 1 0,rr r r r na a a+ += = = =L  then even partial pivoting does not bring any nonzero 
entry to rth diagonal because there is no nonzero entry available.  In such a case 
A is singular matrix and we proceed to the RRE form to get the general solution 
of the system.  As observed earlier, in the case A is nonsingular, Gauss-Jordan 
Method leads to AR = In and the product of corresponding M(i) gives us A-1. 
 

1.5    L U DECOMPOSITIONS 

 We shall now consider the LU decomposition of matrices.  Suppose A is 
an nxn matrix.  If L and U are lower and upper triangular nxn matrices 
respectively such that A = LU, we say that this is a LU decomposition of A. Note 
that LU decomposition is not unique.  For example if A = LU is a decomposition 
then A = Lα Uα

  is also a LU decomposition where α ≠ 0 is any scalar and Lα = α 
L and Uα = 1/α U.  
 
 Suppose we have a LU decomposition A = LU. Then, the system, Ax = y, 
can be solved as follows: 
 
       Set Ux = z   …………… (1) 
 
 Then the system Ax = y can be written as, 
   
  LUx = y, 
i.e., 
  Lz = y       ……………..(2) 
 
Now (2) is a triangular system – infact lower triangular and hence we can solve it 
by forward substitution to get z.   
 
Substituting this z in (1) we get an upper triangular system for x and this can be 
solved by back substitution. 
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Further if A = LU is a LU decomposition then, det. A can be 
calculated as 

det. A = det. L . det. U 
           = l11 l22 ….lnn u11u22  …..unn 

 

where lii are the diagonal entries of L, and uii are the diagonal entries of U. 
 
 Also A-1 can be obtained from an LU decomposition as  A-1 = U-1 L-1. 
 
 Thus an LU decomposition helps to break a given system into Triangular 
systems; to find the determinant of a given matrix; and to find the inverse of a 
given matrix. 
 
 We shall now give methods to find LU decomposition of a matrix.  
Basically, we shall be considering three cases.  First, we shall consider the 
decomposition of a Tridiagonal matrix; secondly the Doolittles’s method for a 
general matrix, and thirdly the Cholesky’s method for a symmetric matrix. 
 

I. TRIDIAGONAL MATRIX 
 
Let 
 

1 2

1 2 3

2 3 4

2 1

1

0 0 .... 0

0 .... 0

0 .... 0

.... .... .... .... .... ....

.... .... .... .... .... ....

0 .... 0

0 .... .... 0
n n n

n n

b a

c b a

c b a
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c b a

c b
− −

−

 
 
 
 
 =  
 
 
 
 
 

 

 
be an nxn tridiagonal matrix. We seek a LU decomposition for this.  First we shall 
give some preliminaries. 
 
Let δi denote the determinant of the ith principal minor of A 
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Expanding by the last row we get, 

 
δi = bi δi-1 – ci-1 ai δi-2 ; i = 2,3,4, …….. 

       δ1 = b1      ……..(I) 

 
We define  δ0 = 1 
 
From (I) assuming that δi are all nonzero we get 
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Now we seek a decomposition of the form A = LU where, 
 

1

2

1

1 0 .... .... .... 0

1 0 .... .... 0

0 1 0 .... 0

.... .... .... .... .... ....

0 0 .... .... 1n

w

L w

w −

 
 
 
 =
 
 
 
 

  ;  























=

−

n

nn

u

u

u

u

U

0....00

....00

....................

0....0

0....0

1

32

21

α

α
α

 

 
i.e. we need the lower triangular and upper triangular parts also to be 
‘Tridiagonal’ triangular. 
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 Note that if A = (aij) then because A is Tridiagonal, aij is nonzero only when 
i and j differ by 1.  i.e. only ai-1i, aii, aii+1 are nonzero.  In fact, 
 
 ai-1i = ai 
 aii   = bi   …………….. (III) 
 ai+1i = ci 
 
In the case of L and U we have 
 

1i il + = iw  

iil = 1     …………….. (IV) 

ijl      = 0  if i) j>i or ii) j<i with i-j ≥ 2.  

 
 

1iiu +  = αi+1 

iiu     = iu      ……………………. (V) 

iiu    = 0  if i) i>j or ii) i<j with j-I ≥ 2. 
 
Now A = LU is what is needed. 
 
Therefore, 

      
1

a
n

ij ik kj
k

l u
=

=∑   …………….. (VI) 

Therefore  

      1 1
1

a
n

i i i k ki
k

l u− −
=

=∑  

 
Using (III), (IV) and (V) we get 
 
      1 1 1a i i i i i il u α− − −= =  
 
Therefore 
 
       αi = ai ………………….. (VII) 
 
This straight away gives us the off diagonal entries of U.   
 
From (VI) we also get 

 
1

a
n

ii ik ki
k

l u
=

=∑  
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        iiiiiiii ULUL += −− 11  
 
Therefore 
 
     1i i i ib w uα−= +   …………….. (VIII) 
 
From (VI) we get further, 
 

 1 1
1

a
n

i i i k k i
k

l u+ +
=

= ∑   

 

   1 1 1 1i i ii i i i il u l u+ + + += +   
 

         i i ic w u=     
 

Thus i i ic w u=    …………….. (IX) 
 
Using (IX) in (VIII) we get (also using αI = ai) 
 

i
i

ii
i u

u

ac
b +=

−

−

1

1
 

 
Therefore 
 

1

1

i i
i i

i

c a
b u

u
−

−

= +   …………….. (X) 

 
Comparing (X) with (II) we get 
 

1

i
i i

i

u k
δ

δ −

= =   …………….. (XI) 

 
 
using this in (IX) we get 
 

1i i i
i

i i

c c
w

u

δ
δ

−= =   …………….. (XII) 

 
From (VII) we get 
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iα = ai   …………….. (XIII) 
 
(XI), (XII) and (XIII) completely determine  the matrices L and U and hence 
we get the LU decomposition. 
 
Note : We can apply this method only when δI are all nonzero.  i.e. all the 
principal minors have nonzero determinant. 
 
Example : 

Let 























−
−
−−

−
−

=

13000

13900

02520

00112

00022

A  

 
Let us now find the LU decomposition as explained above. 
 

We have  

b1 = 2  b2 = 1  b3 = 5  b4 = -3  b5 = -1 
c1 = -2  c2 = -2  c3 = 9  c4 = 3 
a2 = -2  a3 = 1  a4 = -2  a5 = 1 

 
We have 
 δ0 = 1 
 δ1 = 2 
 δ2 = b2 δ1 – a2 c1 δ0 =  2-4 = -2 
 δ3 =  b3 δ2 – a3 c2 δ1 = (-10) – (-2) (2) = -6 
 δ4 = b4 δ3 – a4 c3 δ2 
     = (-3) (-6) – (-18) (-2) = -18 

δ5 = b5 δ4 – a5 c4 δ3 
      = (-1) (-18) – (3) (-6) 
     = 36. 
 
Note δ1,δ2,δ3,δ4,δ5 are all nonzero.  So we can apply the above method. 
 
Therefore by (XI) we get 
 

3
2

6
;1

2

2
;2

2

3
3

1

2
2

0

1
1 =

−
−==−=−====

δ
δ

δ
δ

δ
δ

uuu  
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From (XII) we get     
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From (XIII) we get 

222 −== aα  

133 == aα  

244 −== aα  

155 == aα  

 

Thus; 
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

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 In the above method we had made all the diagonal entries of L as 1.  This 
will facilitate solving the triangular system Lz = y (equation (2) on page 19).  
However by choosing these diagonals as 1 it may be that the ui, the diagonal 
entries in U become small thus creating problems in back substitution for the 
system Ux = z (equation (1) on page 19).  In order to avoid this situation 
Wilkinson suggests that in any triangular decomposition choose the diagonal 
entries of L and U to be of the same magnitude.  This can be achieved as 
follows: 

We seek 

A = LU 

where 

1
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 
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




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0....0
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iil  = il  

Now 1i il +  = iw  

 iil  = 0  if  i) j>i   or  ii) j<i   with   i-j ≥ 2 

 

 ii iu u=   

 

 1 1i i iu α+ +=  

 

  iju  = 0  if  i) i>j;   or  ii) j>i  with   j-i ≥ 2 

 

Now (VII), (VIII) and (IX) change as follows: 
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1 1 1 1 1 1
1

a
n

i i i i k ki i i i i i i
k

a l u l u l α− − − − − −
−

= = = =∑    

 

Therefore 

1i i ia l α−=   …………….. (VII`) 

 

1 1
1

a
n

i ii ik ki ii i i ii ii
k

b l u l u l u− −
−

= = = +∑  

 

1i i i iw l uα−= +  

Therefore 

1i i i i ib w l uα−= +  …………….. (VIII`) 

 

 

1ai i ic += 1
1

n

i k ki
k

l u+
−

= ∑  

      1i i iil u+=  

      iiuw=  

      iii uwc =   …………….. (IX`) 

 

From (VIII`) we get using (VII`) and (IX`) 

ii
i

i

i

i
i ul

l

a

u

c
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−−

−

11

1 .  

     ii
ii

ii ul
ul
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+=
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−
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1

1

i i
i i

i

a c
b p

p
−

−

= +   …………….. (X`) 
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where 

 pi = li ui 

 

Comparing (X`) with (II) we get 

 

 
1−

==
i

i
ii kp δ

δ
 

Therefore 

 
1−

=
i

i
iiul δ

δ
 

 

we choose 
1−

=
i

i
il δ

δ
  …………….. (XIV) 

 

        




=

−1
sgn

i

i
iu δ

δ
 

1−i

i
δ

δ
   …………….. (XV) 

 

Thus li and ui have same magnitude.  These then can be used to get wi and αi 
from (VII`) and (IX`).  We get finally, 

 

1−
=

i

i
il δ

δ
 ;     

11

.sgn
−−









=

i

i

i

i
iu δ

δ
δ
δ

    …………….. (XI`) 

i
i

i

cw u=      ……………... (XII`) 

1−
=

i

i
i l

aα   …………….. (XIII`) 

 

These are the generalizations of formulae (XI), (XII) and (XIII).  

 

Let us apply this to our example matrix  (on page 23). 

We get; 
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δ0 = 1  δ1 = 2  δ2 = -2  δ3 = -6  δ4 = -18  δ5 = 
36 

 

b1 = 2  b2 = 1 b3 = 5  b4 = -3  b5 = -1 

 

c1 = -2  c2 = -2 c3 = 9   c4 =  3 

 

a1 = -2  a3 = 1  a4 = -2  a5 = 1 

 

 We get   δ1/δ0 = 2 ;   δ2/δ1 = -1 ;   δ3/δ2 = 3 ;   δ4/δ3 = 3 ;   δ5/δ4 = -2 

 

Thus from (XI`) we get 

1 2l =   1 2u =  

2 1l =    2 1u = −  

3 3l =   3 3u =  

4 3l =   4 3u =  

 

From (XII`) we get 
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From (XIII`) we get 
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3

2

3

4
4

−==
l

aα  ; 
3

1

4

5
5 ==

l

aα  

 

Thus, we have LU decomposition, 

 

L
U

2 2 0 0 02 0 0 0 02 2 0 0 0
0 1 1 0 0

2 1 0 0 02 1 1 0 0
20 0 3 0

0 2 5 2 0 0 2 3 0 0 3
0 0 9 3 1 10 0 0 30 0 3 3 3 0

30 0 0 3 1
0 0 0 3 2 0 0 0 0 2

A

 −  −    −   − −      −  = =− −      −        −       − 1444442444443
144444424444443

 

 

in which the L and U have corresponding diagonal elements having the same 
magnitude. 


