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4.3  EIGENVALUES OF A REAL SYMMETRIC TRIDIAGONAL MATRIX 

 

 Let 
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be a real symmetric tridiagonal matrix. 

 

Let us find Pn (λ) = det [T - λI] 
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The eigenvalues of T are precisely the roots of Pn (λ) = 0 

 

(Without loss of generality we assume bi ≠ 0 for all i.  For if bi = 0 for some i then 
the above determinant reduces to two diagonal blocks of the same type and 
thus the problem reduces to that of the same type involving smaller sized 
matrices). 

 

We define Pi (λ) to be the ith principal minor of the above determinant.  We have 

 

 



 

 136

( )
( )
( ) ( ) ( ) ( )λλλλ

λλ
λ

21
2

1

11

0 1

−−− −−=

−=
=

iiiii PbPaP

aP

P

  …….. (I) 

 

W are interested in finding the zeros of ( )λnP .  To do this we analyse the 

polynomials ( ) ( ) ( )λλλ nPPP ,.....,, 10 . 

 

Let C be any real number.  Compute ( ) ( ) ( )CPCPCP n,.....,, 10  (which can be 

calculated recursively by (I)).  Let N (C) denote the agreements in sign between 
two consecutive in the above sequence of values, ( ) ( ) ( )CPCPCP n,.....,, 10 .  If for 

some i, ( ) 0=CPi , we assign to it the the same sign as that of ( )CPi 1− .  Then we 
have 

 

(F) There are exactly N (C) eigenvalues of T that are ≥ C. 

 

Example: 

 

 If for an example we have an 8 x 8 matrix T (real symmetric tridiagonal) 
giving use to, 
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Here the consecutive pairs, 
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65
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agree in sign. 

(Because since P6 (1) = 0 we assign its sign to be the same as that of P5 (1) . 

 

Thus three pairs of sign agreements are achieved.  Thus N (C) = 3; and there 
will be 3 eigenvalues of T greater than or equal to 1; and the remaining 5 
eigen values are < 1. 

 

 It is this idea of result (F) that will be combined with (A), (B), (C), (D) and 
(E)  of the previous section and clever repeated applications of (F) that will 
locate the eigenvalues of T.  We now explain this by means of an example. 

 

Example 7: 

 

 Let 
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Here we have 

 

Absolute Row sum 1 = 3 

Absolute Row sum 2 = 7 

Absolute Row sum 3 = 7 

Absolute Row sum 4 = 4 

 

and therefore, 
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(Note since T is symmetric we have MARS = MACS and therefore 
TTT ==

∞1
).  Thus by our result (C), we have that the eigenvalues are all in 

the interval –7 ≤ λ ≤ 7 

[                                                   ]
   

-7      -6      -5      -4     -3      -2      -1       0       1      2      3      4      5     6     7 

 

Now the Gerschgorin (discs) intervals are as follows: 

 

G1 : Centre 1 radius : 2  ∴  G1 : [-1, 3] 

G2 : Centre -1 radius : 6  ∴  G2 : [-7, 5] 

G3 : Centre 2 radius : 5  ∴  G3 : [-3, 7] 

G4 : Centre 3 radius : 1  ∴  G4 : [2, 4] 

 

We see that G1, G2, G3 and G4 all intersect to form one single connected region 
[-7, 7].  Thus by (E) there will be 4 eigenvalues in [-7, 7].  This gives therefore 
the same information as we obtained above using (C).  Thus so far we know 
only that all the eigenvalues are in [-7, 7].  Now we shall see how we use (F) to 
locate the eigenvalues. 

 

First of al let us see how many eigenvalues will be ≥ 0.  Let C = 0.  Find N (0) 
and we will get the number of eigenvalues ≥ 0 to be N (0). 

 

Now 
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Now, we have, 
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We have 
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                as three consecutive pairs having sign 

agreements. 

 

( ) 30 =∴ N  

 

∴  Three are three eigenvalues ≥ 0 

and hence one eigenvalue < 0. 

 

i.e. there are three eigenvalues in [0, 7] 

and there is one eigenvalue in [-7, 0] 

 

 

   One eigenvalue  3 eigenvalues 

 

               

-7      -6      -5      -4     -3      -2      -1       0       1      2      3      4      5     6     7  

 

Fig.1 

 

Let us take C = -1 and calculate N (C).  We have 
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Again we have N (-1) = 3.  ∴  There are three eigenvalues ≥ -1 Compare this 
with figure1.  We get 

 

 

 One eigenvalue   3 eigenvalues 

  

 

            

-7      -6      -5      -4     -3      -2      -1       0       1      2      3      4      5     6     7 

 

(Fig.2) 

 

Let us take the mid point of [-7, -1] in, which the negative eigenvalue lies. 

 

So let C = -4. 

 

P0 (-4) = 1  Again there are three pairs of sign agreements. 

P1 (-4) = 5  ∴  N (-4) = 3.  ∴  There are 3 eigenvalues ≥ -4. 

P2 (-4) = 11  Comparing with fig. 2 we get 

P3 (-4) = -14 

P4 (-4) = -109 

 

 

that the negative eigenvalue is in [-7, -4] ………..(*) 

 

Let us try mid pt. C = -5.5 

 

We have 
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P0 (-5.5) = 1    

P1 (-5.5) = + 6.5  ∴  N (-5.5) = 4.  ∴  4 eigenvalues ≥ -5.5. 

P2 (-5.5) = 25.25  Combining this with (*) and fig. 2 we get 

P3 (-5.5) = 85.375  that negative eigenvalue is in [-5.5 – 4]. 

P4 (-5.5) = 683.4375 

 

We again take the mid pt. C and calculate N (C) and locate in which half of this 
interval does this negative eigenvalue lie and continue this bisection process 
until we trap this negative eigenvalue in as small an interval as necessary. 

 

 Now let us look at the eigenvalues ≥ 0.  We have from fig. 2 three 
eigenvalues in [0, 7].  Now let us take C = 1 

 

P0 (1) = 1 

P1 (1) = 0  ∴  N (1) = 3 

P2 (1) = - 4  ∴  all the eigenvalues are ≥ 1 ………….. (**) 

P3 (1) = - 4 

P4 (1) = - 4 

 

C = 2 

 

P0 (2) = 1 

P1 (2) = -1  ∴  N (2) = 2 ∴  There are two eigenvalues 

P2 (2) = - 1  ≥ 2.  Combining this with (**) we get one 

P3 (2) = 16  eigenvalue in [1, 2) and two in [2, 7]. 

P4 (2) = 17 

 

C = 3 

 

P0 (3) = 1  ∴  N (3) = 1 ∴  one eigenvalue ≥ 3 

P1 (3) = -2  Combining with above observation we get 

P2 (3) = 4   one eigenvalue in [1, 2) 

P3 (3) = 28  one eigenvalue in [2, 3) 
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P4 (3) = - 4  one eigenvalue in [3, 7) 

Let us locate the eigenvalue in [3, 7] a little better.  Take C = mid point = 5 

 

P0 (5) = 1 

P1 (5) = - 4  ∴  N (5) = 1 

P2 (5) = 20  ∴  this eigenvalue is ≥ 5 

P3 (5) = 4 

P4 (5) = -28 

 

∴  This eigenvalue is in [5, 7] 

 

Let us take mid point C = 6 

 

P0 (6) = 1 

P1 (6) = - 5  ∴  N (6) = 0 

P2 (6) = 31  ∴  No eigenvalue ≥ 6 

P3 (6) = - 44  ∴  the eigenvalue is in [5, 6) 

P4 (6) = 101 

 

Thus combining all, we have, 

 

one eigenvalue in [-5.5, -4) 

one eigenvalue in [1, 2) 

one eigenvalue in [2, 3) 

one eigenvalue in [5, 6) 

 

Each one of these locations can be further narrowed down by the bisection 
applied to each of these intervals. 

 

 We shall now discuss the method of obtaining a real symmetric tridiagonal 
T similar to a given real symmetric matrix A. 

 

  


