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3.2  SIMILAR MATRICES 
 
     We shall now introduce the idea of similar matrices and study the properties 
of similar matrices. 
 
DEFINITION 
 
     An nxn matrix A is said to be similar to a nxn matrix B if there exists a 
nonsingular nxn matrix P such that, 
 
     P-1 A P = B 
 
We then write, 
 
     A ∼  B 
 
Properties of Similar Matrices 
 
(1)  Since I-1 A I = A it follows that A ∼  A 
 
(2)  A ∼  B ⇒  ∃  P, nonsingular such that., P-1 A P = B 
 
      ⇒  A = P B P-1 
 
      ⇒  A = Q-1 B P, where Q = P-1 is nonsingular 
 
      ⇒  ∃  nonsingular Q show that Q-1 B Q = A 
      ⇒  B ∼  A 
 
Thus 
 
      A ∼  B  ⇒   B ∼  A 
 
(3)  Similarly, we can show that 
 
      A ∼  B, B ∼  C ⇒   A ∼  C. 
 
(4) Properties (1), (2) and (3) above show that similarity is an equivalence 
relation on the set of all nxn matrices. 
 
(5) Let A and B be similar matrices.  Then there exists a nonsingular matrix P 
such that 
 
      A = P-1 B P. 
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Now, let CA(λ) and CB (λ) be the characteristic polynomials of A and B 
respectively.  We have, 
 

      ( ) BPPIAIC A
1−−=−= λλλ  

 

    BPPPP 11 −− −= λ  

 

    ( )PBIP −= − λ1  

 

    PBIP −= − λ1  

 

    I Bλ= −  since 1 1P P− =  

 
    = CB ( λ ) 
 
Thus “ SIMILAR MATRICES HAVE THE SAME CHARACTERISTIC 
POLYNOMIALS ”. 
 
(6) Let A and B be similar matrices.  Then there exists a nonsingular matrix P 
such that 
 
      A = P-1 B P 
 
Now for any positive integer k, we have 
 

      ( )( ) ( )
4444 34444 21

times k

111k BPP.....BPPBPPA −−−=  

 
  = P-1 Bk P (since PP-1=I) 
 
Therefore, 
 
      Ak = On ⇔  P-1 Bk P = On 
 
         ⇔  Bk = On 
 
“ Thus if A and B are similar matrices then Ak = On ⇔  Bk = On ”. 
 
7) Let A and B be any two square matrices of the same order, and let 
 p(λ) = a0 + a1λ + ….. + akλ be any polynomial. 
 
Then  
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 ( ) k
k AaAaIaAp +++= .....10  

 

          PBPaPBPaBPPaIa k
k

121
2

1
10 ..... −−− ++++=  

 
          [ ]PBaBaBaIaP k

k++++= − .....2
210

1  
 

          ( )PBpP 1−=  
 
Thus 
 

 ( ) ( ) nn OPBpPOAp =⇔= −1
 

 

            ( ) nOBp =⇔  
 
Thus “ IF A and B ARE SIMILAR MATRICES THEN FOR ANY POLYNOMIAL 
p(λ); p (A) = On ⇔  p (B) = On ”. 
 
(8) Let A be any matrix.  By A(A) we denote the set of all polynomials p(λ) such 
that 
 
 p(A) = On, i.e. 
 
 A (A) = {p(λ) : p(A) = On} 
 
Now from (6) it follows that, 
 
“ IF A AND B ARE SIMILAR MATRICES THEN A(A) = A (B) ”. 
 
 The set A (A) is called the set of “ ANNIHILATING POLYNOMIALS OF A ”.  
Thus similar matrices have the same set of annihilating polynomials. 
 
 We shall discuss more about annihilating polynomials later. 
 
We now investigate the following question?  Given an nxn matrix A, when is it 
similar to a “simple matrix”?  What are simple matrices?  The simplest matrix we 
know is the zero matrix On.  Now A ∼  On ⇔  There is a nonsingular matrix P such 
that A = P-1On P = On. 
 
 ∴   “ THE ONLY MATRIX SIMILAR TO On IS On ITSELF ”. 
 
 The next simple matrix we know is the identity matrix In.  Now A ∼  In ⇔  
there is a nonsingular P such that A = P-1 In P ⇔  A = In. 
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 Thus “THE ONLY MATRIX SIMILAR TO In IS ITSELF ”. 
Similarly the only matrix similar to a scalar matrix kIn , (where k is a scalar),is kIn 
itself. 
 
 The next class of simple matrices are the DIAGONAL MATRICES.  So we 
now ask the question “ Which type of nxn matrices are similar to diagonal 
matrices”? 
 
 Suppose now A is an nxn matrix; and A is similar to a diagonal matrix, 
 

D=
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λ
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O
   

(λ I not necessarily distinct). 
 
Then there exists a nonsingular matrix P such that 
 
 P-1 A P = D 
 
 ⇒  
 
 AP = PD ………..(1) 
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 denote the ith column of P. 
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Now the ith column of AP is 
 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

.....

.....

............................................

.....

i i n ni

i i n ni

n i n i nn ni

a p a p a p

a p a p a p

a p a p a p

+ + + 
 + + + 
 
 + + + 

 

 
which is equal to APi. 

Thus the ith column of AP, the l.h.s. of (1), is APi. 
 
Now the ith column of P D is 
 

1 1

2 2

i i i

i i i
i i i

ni i ni

p p

p p
P

p p

λ
λ

λ λ

λ

   
   
   = =
   
   
   

M M  

 
Thus the ith column of P D, the r.h.s. of (1), is λ i Pi.  Since l.h.s. = r.h.s. by (1) we 
have 
 
APi = λ i Pi  ;  i = 1, 2, …., n  ……………..(2) 
 
Note that since P is nonsingular no column of P can be zero vector.  Thus none 
of the column vectors Pi are zero.  Thus we conclude that, 
 
“IF A IS SIMILAR TO A DIAGONAL MATRIX D THEN THE DIAGONAL 
ENTRIES OF D MUST BE THE EIGENVALUES OF A AND IF P-1AP = D THEN 
THE ith COLUMN VECTOR OF P MUST BE AN EIGENVECTOR CORRESPON 
DING TO THE EIGENVALUE WHICH IS THE ith DIAGONAL ENTRY OF D”. 
 
Note: 
 
The n columns of P must be linearly independent since P is nonsingular and thus 
these n columns give us n linearly independent eigenvectors of A 
 
 Thus the above result can be restated as follows:  A is similar to a 
diagonal matrix D and P-1 A P = D ⇒  A has n linearly independent eigenvectors; 
taking these as the columns of P we get P-1 A P we get D where the ith diagonal 
entry of D is the eigenvalue corresponding to the ith eigenvector, namely the Ith 
column vector of P. . 
 



 96

 Conversely, it is now obvious that if A has n linearly independent 
eigenvectors then A is similar to a diagonal matrix D and if P is the matrix whose 
ith column is the eigenvector, then D is P-1 A P and ith diagonal entry of D is the 
eigenvalue corresponding to the ith eigenvector. 
 
 When does then a matrix have n linearly independent eigenvectors? It can 
be shown that a matrix A has n linearly independent eigenvectors ⇔  the 
algebraic multiplicity of each eigenvalue of A is equal to its geometric multiplicity.  
Thus  
 
A IS SIMILAR TO A DIAGONAL MATRIX ⇔  
FOR EVERY EIGENVALUE OF A, ITS ALGEBRAIC MULTIPLICITY IS                    
EQUAL TO ITS GEOMETRIC MULTPLICITY”. 
   
 

 RECALL; if ( ) ( ) ( ) ( ) ka
k

aaC λλλλλλλ −−−= .....21

21 where λ 1, λ 2, ….., 
λ k are the distinct eigenvalues of A, then ai is called the algebraic multiplicity of 
the eigenvalue λ i.  Further, let 
 
 { }xAxx ii λω == :  
 
be the eigensubspace corresponding to λ i.  Then gi = dim ωi is called the 
geometric multiplicity of λ i. 
 
 Therefore, we have, 
 
“ If A is an nxn matrix with 1

1( ) ( ) ( ) kaa
kC λ λ λ λ λ= − −L where λ 1, ….., λ k are the 

district eigenvalues of A, then A is similar to a diagonal matrix ⇔  ai = gi (=dimωi) 
;     1≤ i ≤ k”. 
 
Example: 
 
Let us now consider 
 


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449
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On page 87, we found the characteristic polynomial of A as 
 
C( λ ) = ( λ +1)2 ( λ  - 3) 
 
Thus λ 1 = -1 ; a1 = 2 
 λ 2 = 3 ; a2 = 1 
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On pages 83 and 84 we found, 
 
W1 = eigensubspace corresponding to λ  = -1 
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W2 = eigensubspace corresponding to λ  = 3 
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Thus dim W1 = 2     ∴  g1 = 2  
         dim W2 = 1    ∴  g2 = 1 
 
Thus a1 = 2 = g1  and hence A must be similar. 
         a2 = 1 = g2 
 
to a diagonal matrix.  How do we get P such that P-1AP is a diagonal matrix? 
Recall the columns of P must be linearly independent eigenvectors. From ω1 we 

get two linearly eigenvectors, namely, 

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Thus if we take these as columns and write, 
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 98

































−
−
−



















−
−−

−

=−

220

102

111

7816

438

449

112
2

112
2

101
1 APP  

 

       















−

−
=

300

010

001

 a diagonal matrix., whose diagonal entries are the 

eigenvalues of the matrix A. 
 
 
Thus we can conclude that A is similar to a diagonal matrix, i.e., P-1 AP = D  
⇒  A has n linearly independent eigenvectors namely the n columns of P. 
 
Conversely, A has n linearly independent eigenvectors.  
⇒  P-1 AP is a diagonal matrix where the columns of P are taken to be the n 
linearly eigenvectors. 
 
 We shall now see a class of matrices for which it is easy to decide 
whether they are similar to a diagonal matrix; and in which case the P-1 is easy to 
compute.  But we shall first introduce some preliminaries. 
 

 If  
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 are any two vectors in Cn, we define the INNER 

PRODUCT OF x with y (which is denoted by (x,y)) as, 

 ( ) nn yxyxyxyx +++= K2211,  

     ∑
=

=
n

i
ii yx

1
 

Example 1: 
 

If 





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
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
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
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


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; then, 

 

( )( ) ( )( )iiiiyx 1121.),( −+−++=  
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                 ( )( ) ( )( ) iiiii 51112 +=−−++++=  
 

Whereas ( ) ( )( ) ( )( ) iiiiixy 511211),( −=−++−+=  
 
We now observe some of the properties of the inner product, below: 
 

(1) For any vector x in Cn, we have 

( ) ,,
1

2

1
∑∑

==

==
n

i
i

n

i

ii xxxxx  

which is real ≥ 0.  Further, 

( ) ∑
=

=⇔=
n

i
ixxx

1

2
00,  

nix i ≤≤=⇔ 1;0  

nx θ=⇔  
  Thus,  
       (x,x) is real and ≥ 0 and (x,x)= 0 ⇔  x = θn  

  

 (2)  ( ) 









== ∑∑

==

n

i

ii

n

i
ii xyyxyx

11

,  

            ( )xy ,=  
  Thus, 

             ( ) ( )xyyx ,, =  
 

(3)  For any complex number α, we have, 

 ( ) ( ) ∑∑
==

==
n

i
ii

n

i
ii yxyxyx

11

, ααα  

            ( )yx ,α=  
 
Thus 
 (αx,y) = α (x,y) for any complex number α. 
 We note, 

 ( ) ( )xyyx ,, αα =    by (2) 

  ( ) ( ) ( )yxxyxy ,,, ααα ===  
 

 (4)  ( ) ( )∑
=

+=+
n

i

iii zyxzyx
1

,  
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            ∑ ∑
= =
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n

i
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             ( ) ( )zxyx ,, +=  
 
Thus 
 
 (x + y, z) = (x,z) + (y,z) and similarly 
 
 (x, y + z) = (x, y) + (x, z) 
 
We say that two vectors x and y are ORTHOGONAL if (x, y) = 0. 
 

Example (1)  If x = ,
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then,  

 ( ) ( ) ( ) ( )( )011, iiiyx −++−=  
 
  = -1 + 1 = 0 
Thus x and y are orthogonal. 
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∴ x, y orthogonal 
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