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UNIT 4 
EIGEN VALUE COMPUTATIONS 
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4.1 COMPUTATION OF EIGEN VALUES  

 

 In this section we shall discuss some standard methods for computing the 
eigenvalues of an nxn matrix.  We shall also briefly discuss some methods for 
computing the eigenvectors corresponding to the eigenvalues. 

 

 We shall first discuss some results regarding the general location of the 
eigenvalues. 

 

 Let A = (aij) be an nxn matrix; and let λ1, λ2, ….., λn be its eigenvalues 
(including multiplicities).  We defined 

 

 { }nxp
AP λλλ ,.....,,max 21==  

 

Thus if we draw a circle of radius P about the origin in the complex plane, then 
all the eigenvalues of A will lie on or inside this closed disc.  Thus we have 

 

(A) If A is an nxn matrix then all the eigenvalues of A lie in the closed disc 
{ }P≤λλ : in the complex plane. 

 

This result give us a disc inside which all the eigenvalues of A are located.  
However, to locate this circle we need P and to find P we need the eigenvalues.  
Thus this result is not practically useful.  However, from a theoretical point of 
view, this suggests the possibility of locating all the eigenvalues in some disc.  
We shall now look for other discs which can be easily located and inside which 
the eigenvalues can all be trapped. 

 

 Let A  be any matrix norm.  Then it can be shown that AP ≤ .  Thus if 

we draw a disc of radius A  and origin as center then this disc will be at least 

as big as the disc given in (A) above and hence will trap all the eigenvalues.  
Thus, the idea is to use a matrix norm, which is easy to compute.  For example 
we can use ∞

A  or 
1

A  which are easily computed as Maximum Absolute 

Row Sums (MARS) or Maximum Absolutr Column Sums (MACS) respectively, 
that is, 

{
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.  Thus we have, 

 

(B) If A is an nxn matrix then all its eigenvalues are trapped in the closed disc 
{ }

∞
≤ Aλλ :  or the disc { }

1
: A≤λλ .  (The idea is to use 

∞
A if it is smaller 

than 
1

A  , and 
1

A  if it is smaller than 
∞

A ). 

 

COROLLORY 

 

(C) If A is Hermitian, all its eigenvalues are real and hence all the eigenvalues 
lie in the intervals, 

 

 { }PP: ≤λ≤−λ   by (A) 

 

 
{ }
{ }

11
:

:

AA

AA

≤≤−

≤≤−
∞∞

λλ

λλ
  by (B). 

 

Example 1: 

 

 Let 















−

−
=

021

321

211

A  

 

Here ‘Row sums’ are P1 = 4  P2 = 6  P3 = 3 

 

 6==∴
∞

MARSA  

 

Thus the eigenvalues are all in the disc ; { }6: ≤λλ  

 

The ‘Column sums’ are C1 = 3, C2 = 5, C3 = 5. 
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 5
1

==∴ MACSA  

 

∴  The eigenvalues are all in the disc, { } ,5: ≤λλ  

 

In this example ;65
1

=<=
∞

AA  and hence we use 
1

A  and get the smaller 

disc { } ,5: ≤λλ inside which all eigenvalues are located. 

 

 The above results locate all the eigenvalues in one disc.  The next set of 
results try to isolate these eigenvalues to some extent in smaller discs.  These 
results are due to GERSCHGORIN. 

 

 Let A = (aij) be an nxn matrix. 

 

The diagonal entries are 

 

 ;111 a=ξ  ;222 a=ξ ….., ;nnn a=ξ   

 

Now let Pi denote the sum of the absolute values of the off-diagonal entries of A 
in the ith row. 

 

 iniiiiiii aaaaaP ++++++= +− .......... 1121  

 

Now consider the discs: 

 

 { }11111 P::Pradius;Centre:G ≤ξ−λλξ    

 

 { }222212 P::Pradius;Centre:G ≤ξ−λλξ    

and in general 

 

 { }iiiii P::Pradius;Centre:G ≤ξ−λλξ    
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Thus we get n discs G1, G2, ….., Gn.  These are called the GERSCHGORIN 
DISCS of the matrix A. 

 

 The first result of Gerschgorin is the following: 

 

(D) All  eigenvalue of A must lie within the union of these Gerschgorin discs. 

 

Example 2: 

 

 Let 
















−

−
=

513

140

011

A  

 

 

The Gerschgorin discs are found as follows: 

 

ξ1 = (1,0) ; ξ2 = (4,0) ; ξ3 = (-5,0) 

 

P1 = 1 ;  P2 = 1 ;  P3 = 4 

 

G1 : Centre (1,0) radius 1 

G2 : Centre (4,0) radius 1 

G3 : Centre (-5,0) radius 4. 

 

 

 

 

 

  

 

 

              G1 (1,0) G2 (4,0) 

                        G3 (-5,0) 
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Thus every eigenvalue of A must lie in one of these three discs. 

 

Example 3: 

 

 Let 
















−
=

2035.1

5.0101

1410

A  

 

(It can be shown that the eigenvalues are exactly λ1 = 8, λ2 = 12, λ3 = 20). 

 

Now for this matrix we have, 

 

 ξ1 = (10,0)  ξ2 = (10,0)  ξ3 = 20 

 P1 = 5   P2 = 1.5  P3 = 4.5 

 

Thus we have the three Gerschgorin discs 

 

 

{ }
{ }
{ }5.420:

5.110:

510:

3

2

1

≤−=

≤−=

≤−=

λλ
λλ
λλ

G

G

G

 

 

 

 

                                           

 

                                     

                                                       GG3                   

                              G1                                                                     G3 
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Thus all the eigenvalues of A are in these discs.  But notice that our exact 
eigenvalues are 8,12 and 20.  Thus no eigenvalue lies in G2; and one 
eigenvalue lie in G3 (namely 20) and two lie in G1 (namely 8 and 12). 

 

Example 4: 

 

 Let 















=

501

021

101

A  

 

Now, 

 

 ξ1 = (1,0)  ξ2 = (2,0)  ξ3 = (5,0) 

 P1 = 1   P2 = 1   P3 = 1 

 

The Gerschgorin discs are 

{ }
{ }
{ }15:

12:

11:

3

2

1

≤−=

≤−=

≤−=

λλ
λλ
λλ

G

G

G

 

 

 

 

G1 (1,0)                 G2 (2,0) 

 

 

  

                                                    G3 (5,0) 

 

 

 

 

 

Thus every eigenvalue of A must lie in the union of these three discs. 
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 In example 2, all the Gerschgorin discs were isolated; and in examples 3 
and 4 some discs intersected and others were isolated.  The next Gerschgoin 
result is to identify the location of the eigenvalues in such cases. 

 

(E) If m of the Gerschgorin discs intersect to form a common connected region 
and the remaining discs are isolated from this region then exactly m 
eigenvalues lie in this common region.  In particular if Gerschgorin disc is 
isolated from all the rest then exactly one eigenvalue lies in this disc. 

 

 Thus in example 2 we have all three isolated discs and thus each disc will 
trap exactly one eigenvalue. 

 

 In example 3; G1and G2 intersected to form the connected (shaded) region 
and this is isolated from G3.  Thus the shaded region has two eigenvalues and 
G3 has one eigenvalue. 

 

 In example 4, G1and G2 intersected to form a connected region (shaded 
portion) and this is isolated from G3.  Thus the shaded portion has two 
eigenvalues and G3 has one eigenvalue.   

REMARK: 

 

 In the case of Hermitian matrices, since all the eigenvalues are real, the 
Gerschgorin discs, { } { }iiiiii PPaG ≤−=≤−= ξλλλλ ::  can be replaced by the 

Gerschgorin intervals, 

 

{ } { }iiiiiii PPPG +≤≤−=≤−= ξλξλξλλ ::  

 

Example 5: 

 

 Let 
















−
−

−
=

2
101

051

111

A  

 

Note A is Hermitian.  (In fact A is real symmetric) 
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Here; ξ1 = (1,0)  P1 = 2 

 ξ2 = (5,0)  P2 = 1 

 ξ3 = (-1/2,0)  P3 = 1 

 

Thus the Gerschgorin intervals are 

 

 G1 : -1≤ λ ≤ 3 

 G2 : 4 ≤ λ ≤ 6 

 G3 : -3/2 ≤ λ ≤ ½ 

                 

                                                                                  
             -2      -1     0      1      2     3       4       5      6 

                                                                                                          

Note that G1 and G3 intersect and give a connected region, -3/2 ≤ λ ≤ 3; and this 
is isolated from G2 : 4 ≤ λ ≤ 6.  Thus there will be two eigenvalues in –3/2 ≤ λ ≤ 
3 and one eigenvalue in 4 ≤ λ ≤ 6. 

 

 All the above results (A), (B), (C), (D), and (E) give us a location of the 
eigenvalues inside some discs and if the radii of these discs are small then the 
centers of these circles give us a good approximations of the eigenvalues.  
However if these discs are of large radius then we have to improve these 
approximations substantially.  We shall now discuss this aspect of computing 
the eigenvalues more accurately.  We shall first discuss the problem of 
computing the eigenvalues of a real symmetric matrix. 

 

4.2 COMPUTATION OF THE EIGENVALUES OF A REAL SYMMETRIC 
MATRIX 

 

We shall first discuss the method of reducing the given real symmetric matrix to 
a real symmetric tridiagonal matrix which is similar to the given matrix and then 
computing the eigenvalues of a real symmetric tridiagonal matrix.  Thus the 
process of determining the eigenvalues of A = (aij), a real symmetric mtrix 
involves two steps: 

 

STEP 1: 

 

 Find a real symmetric tridiagonal matrix T which is similar to A. 
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STEP 2: 

 

 Find the eigenvalues of T.  (The eigenvalues of A will be same as those of 
T since A and T are similar). 

 

We shall first discuss step 2. 

  


