1.7 DOOLITTLE’S METHOD WITH ROW INTERCHANGES

We have seen that Doolittle factorization of a matrix A may fail the moment
at stage i we encounter a u;, which is zero. This occurrence corresponds to the

occurrence of zero pivot at the i stage of simple Gaussian elimination method.
Just as we avoided this problem in the Gaussian elimination method by
introducing partial pivoting we can adopt this procedure in the modified Doolittle’s
procedure. The Doolittle’s method which is used to factorize A as LU is used
from the point of view of reducing the system

Ax =y

to two triangular systems

Lz=y

Ux=1z

as already mentioned on page 19.

Thus instead of actually looking for a factorization A = LU we shall be
looking for a system,

A*X = y*
and for which A* has LU decomposition.

We illustrate this by the following example: The basic idea is at each stage
calculate all the u; that one can get by the permutation of rows of the matrix and
choose that matrix which gives the maximum absolute value for u;.

As an example consider the system

Ax =y
where
3 1 -2 -1 3
2 -2 2 3 -8
A= y =
1 5 -4 -1 3
3 1 2 3 -1

We want LU decomposition for some matrix that is obtained from A by row
interchanges.

We keep [, =1 foralli.

Stage 1:
1% diagonal of U. By Doolittle decomposition,

Upp=an =3

If we interchange 2™ or 3™ or 4" rows with 1% row and then find the uy for the
new matrix we get respectively u;; = 2 or 1 or 3. Thus interchange of rows does
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not give any advantage at this stage as we have already got 3, without row
interchange, for ua;.

So we keep the matrix as it is and calculate 1 row of U, by Doolittle’s method.
Uy =3 U, =&, =Lu,; =a,; = 2 u, =1
The first column of L:

a a; 1 a 3
.. =2l =2 = a :—l:—;l =4 "=
11 21 Ull 3 31 Ull 3 41 Ull 3
Thus
1 O 0 O
2% 1 0 0
L is of the form ; and
3 l,, 1 O
1 |42 |43 |44
3 1 -2 -1
. 0 u22 u23 u24 .
U is of the form ; Aand Y remaining unchanged.
0 0 Uy Uy,
O 0 0 wu,

Stage 2

We now calculate the second diagonal of U: By Doolittle’s method we have

Uy, =a,, _|21u12

(-

Suppose we interchange 2™ row with 3™ row of A and calculate u, : our new az
is 5.

But note that |, and |,; getinterchanged. Therefore new |, is 1/3.

Suppose instead of above we interchange 2™ row with 4™ row of A:
Newaz,=1 and newly =1 and thereforenewuz,=1-(1)(1)=0
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Of these 14/3 has largest absolute value. So we prefer this. Therefore we
interchange 2™ and 3" row.

3 1 -2 -1 3
NewA = 1 5 -4 —1_N 3
T2 -2 2 3 [T T g
3 1 2 3 -1
1 000 3 1 -2 -1
1 00 o 14 * %
NewL = % ‘NewU = A
3 710 o o * ~*
1 * * 1 O 0 0 =

Now we do the Doolittle calculation for this new matrix to get 2" row of U and 2™
column of L.

Uyy = Ay — U5

=Ca-(5)2=-2

3 3
Uy, =38y, — |21u14

= (0-(3)0=-2

3

2" column of L:

|32 = [asz - |31u12] = Uy,

- |22

4
7

I42 = [a42 - |41U12] Uy,

=[3- OO+ 5

=0




Therefore new L has form

'_\
~ O O
R O O O

%
% %

O *

New U has form

1 -2 -1
75 % %
0 * *

0 0 *

o O O Ww

This completes the 2" stage of our computation.

Note: We had three choices of uy, to be calculated, namely —8/3, 14/3, 0 before
we chose 14/3. It appears that we are doing more work than Doolittle. But this is
not really so. For, observe, that the rejected u,, namely — 8/3 and 0 when divided
by the chosen u,, namely 14/3 give the entries of L below the second diagonal.

r

3" Stage:
3'Y diagonal of U:

U = g3 — |31u13 - |32u23

w512

_10
:

Suppose we interchange 3™ row and 4™ row of new A obtained in 2" stage. We
get new az; = 2.

But in L also the second column gets 3" and 4™ row interchanges
Therefore new b3 =1 and new k=0
Therefore new Usz = azz — k1 U1z — ko Uss

=2-()-2)+(0[ -3

3
=4.




Of these two choices of uss we have 4 has the largest magnitude. So we
interchange 3" and 4™ rows of the matrix of 2" stage to get

3 1 -2 -1 3
1 5 -4 -1
NewA = NewY =
3 1 3 -
2 -2 2 3 -8
1 0 00 3 1 -2 -
1 00 o 14/ _10/ -_
NewL = % NewU = A A A
1 O 1 0 0O O 4 *
2 _
A s ox 1 0 0 0 *

Now for this set up we calculate the 3" stage entries as in Doolittle’s method:

Uy =85 — |31u14 - |32u24
=3-()-1)-(0f - 2)=4

|43 = (a43 - |41u13 - |4zuz3)+ Uss

g5

= 5/14.
1 0 00 3 1 -2 -1
0 Newl= o100 New= | ° Y 1% %
1 0 10 0O 0 4 4
% =Y A, 1 0 0 O *

Note: The rejected uss divided by chosen uss gives I3,
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4th Stage

Uy = [a44 =l = 1pUy = |43u34]

R e

= 13/7.
3 1 -2 -1 3
" 1 5 -4 -1 s 3
U NewA = A = NewY =Y =
3 1 2 3 -
2 -2 2 3 -8

New L = L*, New U = U*

1 0 0 O 3 1 -2 -1

1 0 1 o} 0 O 4 4 |

% =% Han o 0o o 1%
and A'=L'U

The given system Ax=y is equivalent to the system
A'x=y

and hence can be split into the triangular systems,
Lz=y

Ux=1z

Now L'z =y gives by forward substitution:
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21:3
1
§zl+z2 =3=>2,=3-1=2

Zi+23:_1:>23:_1_21:_4

2
521—722+—23+z4——8
2 4 5 _
2@+ (S ez =
52
:>Z4=_7
3
2
Oz= —4
52
4

A +AX, = A=K+ X, = 1=>% =-1-%, =3

therefore x3=3
14 10 2 _
?XZ _?XS _§X4 - 2
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B

= X, =2
3X + X, =2X; =X, =3

—3x +2-6+4-3=x =1

Therefore the solution of the given system is

Some Remarks:

The factorization of a matrix A as the product of lower and upper triangular
matrices is by no means unique. In fact, the diagonal elements of one or the
other factor can be chosen arbitrarily; all the remaining elements of the upper
and lower triangular matrices may then be uniquely determined as in Doolittle’s
method; which is the case when we choose all the diagonal entries of L as 1.
The name of Crout is often associated with triangular decomposition methods,
and in Crout’'s method the diagonal elements of U are all chosen as unity. Apart
from this, there is little distinction, as regards procedure or accuracy, between the
two methods.

As already mentioned, Wilkinson'’s (see Page 25), suggestion is to get a LU
decomposition in which |I;| =|u;[1<i<n.

We finally look at the Cholesky decomposition for a symmetric matrix:

Let A be a symmetric matrix.
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Let A= LU be its LU decomposition

Then AT = U" LT where the superscript T denotes the Transpose.
We have
U" is lower triangular and L' is upper triangular

Therefore U'L' is a decomposition of A" as product of lower and upper triangular
matrices. ButA" = A since A is symmetric.

Therefore LU= U'L"

We ask the question whether we can choose L as U'; so that
A=U'U (or same as LL")

In that case, determining U automatically gets L = U"

We now do the Doolittle method for this. Note that it is enough to determine the
rows of U.

Stage 1: 1% row of U:

n n
2
= = - .o —_ T
3, lekukl Zukl since I, =u,, ~L=U
k=1 k=1

:UﬂZ since U, = 0 for k>1 as U is upper triangular.

n n
a; = lekuki = Zukluki
k=1

k=1

= Uy, Uy since Uy = Ofork>1

ull = V ail
Ou,; =a;/u, determines the first row of U.

and hence the first column of L.

Having determined the 1% i-1 rows of U; we determine the i row of U as follows:

n n

_ _ 2 i _
a; = Z iUy = Z u,” since l;, =u,
k=1 k=1
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i
= > u,’sinceu, =0 for k >i
k=1

SN ,
= Z Ui~ + Uy
k=1

i-1
O ou= \/aii_ Z uki2 ;
k=1

( Note that uy are known for k < i -1,because 1% i-1 rows have already been

obtained).

n n
a; = kZ: Ly Uy = IZ, UgUy  Now we need uj for j>i
=1 =1

i
- Z Uy ukj Because u; =0 fork > i
k=1

k=1
Therefore
i—-1
Uy =|a; =D, UgUy |+u;
k=1
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( i1
_ 2
U = \/aii _Z Uy
k=1
i-1
Ui =1 & _Z Uiy | ~ Uy
k=1

determines the i row of U in terms of the previous rows. Thus we get U and L is
UL Thisis called CHOLESKY decomposition.

Example:

1 -1 1 1
Lot A= -1 5 -3 3
AT 3 3 1

This is a symmetric matrix. Let us find the Cholesky decomposition.
1% row of U
ull = all = 1

U, =a, ~Uu, =-1
U =83 ~Uy =1

Uy, =ay, ~Uuy =1

2" row of U

U, =8, —U%2 =4/5-1=2
Uz = (azs - u12u13) TUp = (_ 3- (_ 1)(1))+ 2=-1
Uy, = (a24 - u12u14)+ Uy = (3_ (_ 1)(1))+ 2=2

3" row of U
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{u33 :\/6133 —U%3 —U%s =+4/3-1-1=1
Uy = (as4 ~ Uzl — u23u24) Uy = (1_ (1)(1) - (_ 1)(2)) +1=2

4" row of U

Uy, :\/6144 —U%4 —U%4 —Ux :«/10—1—4—4 =1

1 -1 1 1 1 0 00
0 2 -12 ) -1 2 00
bu = Ou-=L= and
0O 0 1 2 1 -110
O 0 0 1 1 2 21
A =LU
=LLT
=U'U
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