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3.5  VECTOR AND MATRIX NORMS 
 
 Consider the space, 
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our  ‘usual’ two-dimensional plane.  If x = 
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 is any vector in this space we 

define its ‘usual’ ‘length’ or ‘norm’ as 
 

  2 2
1 2x x x= +  

 
We observe that 
 
  (i) 0≥x for every vector x in R2, 

       0x = if and only if x is θ; 

 
  (ii) xx αα =  for any scalar α; for any vector x. 

 
  (iii) yxyx +≤+ for any two vectors x and y. 

(The inequality (iii) is usually referred to as the triangle inequality). 
 
 We now generalize this idea to define the concept of a norm on Cn or Rn. 
 
 The norm can be thought of intuitively as a rule which associates with 
each vector x in V, a real number x , and more precisely as a function from the 

collection of vectors to the real numbers, satisfying the following properties: 
 
  (i)  0≥x for every x ∈  V and 

        0x = if and only if x = θ; 

 
  (ii)  xx  α=α for every scalar α and every vector x in V, 

 
  (iii)  yxyx +≤+ for every x, y in V. 
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Examples of Vector Norms on Cn and Rn 
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 be any vector x in Cn (or Rn) 

 
We can define various norms as follows: 
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In general for 1 ≤ p < ∞ we can define, 
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If we set p = 2 in (3) we get 

2
x as in (1) and if we set p = 1 in (3) we get 

1
x  as 

in (2). 
 

(4)  { }nxxxx ,.....,,.max 21=
∞  

 
All these can be verified to satisfy the above mentioned properties (i), (ii) and (iii) 
required of a norm.  Thus these give several types of norms on Cn and Rn. 
 
Example: 
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DEFINITION: 
 

 We say that the sequence { })( kx  of vectors CONVERGES to the vector x 

as k tends to infinity if the sequence of numbers, { }( )
1

kx  converges to the 

number x1; { }( )
2

kx  converges to x2, …., and { }( )k
nx  converges to xn i.e. 

 
As k → ∞;  ( )k

i ix x→  for every i=1, 2, …., n. 
 
Example: 
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xx k →∴ )(  
 
If { })(kx  is a sequence of vectors such that in some norm , the sequence of 

real numbers, xx k −)(  converges to the real number 0 then we say that the 

sequence of vectors converges to x with respect to this norm.  We then write, 
 

 xx k →)(  
 
 For example consider the sequence, 
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Also, 
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It can be shown that 
 “ IF A SEQUENCE { })(kx OF VECTORS IN Cn (or Rn) CONVERGES TO A 
VECTOR x IN Cn (or Rn) WITH RESPECT TO ONE VECTOR NORM THEN THE 
SEQUENCE CONVERGES TO x WITH RESPECT TO ALL VECTOR NORMS 
AND ALSO THE SEQUENCE CONVERGES TO x ACCORDING TO 
DEFINITION ON PAGE 113 .  CONVERSELY IF A SEQUENCE CONVERGES 
TO x AS PER DEFINITION ON PAGE 113 THEN IT CONVERGES WITH 
RESPECT TO ALL VECTOR NORMS”. 
 
 Thus when we want to check the convergence of a particular sequence of 
vectors we can choose that norm which is convenient to that sequence. 
 
MATRIX NORMS 
 
 Let M be the set of all nxn matrices (real or complex).  A matrix norm is a 
function from the collection of matrices to the real numbers, whose value at any 
matrix A is denoted by A  having the following properties: 

 (i)  0A ≥ for all matrices A 

       0=A if and only if A = On, 

 

 (ii)  AA  α=α  for every scalar α and every matrix A, 

 

 (iii) BABA +≤+  for all matrices A and B, 

 
 (iv)  BAAB  ≤ for all matrices A and B. 

 
Before we give examples of matrix norms we shall see a method of getting a 
matrix norm starting with a vector norm. 
 

 Suppose .  is a vector norm.  Then, consider 
x

Ax
 (where A is an nxn 

matrix); for x ≠ θn.  This given us an idea to by what proportion the matrix A has 
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distorted the length of x.  Suppose we take the maximum distortion as we vary x 
over all vectors.  We get 
 

 
nx θ≠

max

x

Ax
 

 
a real number.  We define 
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We can show this is a matrix norm and this matrix norm is called the matrix norm 
subordinate to the vector norm .  We can also show that 
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How hard or easy is it to compute these matrix norms?  We shall give some idea 
of computing 

1
A , 

∞
A and 

2
A  for a matrix A. 

 
Let  
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The sum of the absolute values of the entries in the ith column is called the 
absolute column sum and is denoted by Ci.  We have 
 

 ∑
=

=++++=
n

i
in aaaaaC

1
113121111 .....  

 ∑
=

=++++=
n

i
in aaaaaC

1
223222122 .....  

 ….. ….. ….. ….. ….. ….. ….. 

 ∑
=

=
n

i
ijj aC

1

 ; 1 ≤ j ≤ n 

 
Thus we have  n absolute column sums, C1 , C2, ….., Cn. 
 
Let 
 { }nCCCC ,.....,,.max 21=  
 
This is called the maximum absolute column sum.  We can show that, 
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For example, if 
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 Similarly we denote by Ri the sum of the absolute values of the entries in 
the ith row 
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and define R, the maximum absolute row sum as, 
 
 R = max {R1, ….., Rn} 
 
It can be show that, 
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For example, for the matrix 
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R1 = 1 + 2 + 3 = 6; 
R2 = 1 + 0 + 1 =2;  and R = max {6, 2, 9}= 9 
R3 = 3 + 2 + 4 = 9 
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 The computation of 1
A and ∞

A for a matrix are thus fairly easy.  

However, the computation of 
2

A  is not very easy; but somewhat easier in the 

case of the Hermitian matrix. 
 
 Let A be any nxn matrix; and 

 ( ) ( ) ( ) ka
k

aC λλλλλ −−= L1

1 , be its characteristic polynomial, where 

λ1, λ2, ….., λk are the distinct characteristic values of A. 
 
 Let  
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This is called the spectral radius of A and is also denoted by sp
A  

 
 It can be show that for a Hermitian matrix A, 
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which is Hermitian we found on page 106, the distinct eigenvalues as λ1 = 2; λ2 = 
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 If A is any general nxn matrix (not Hermitian) then let B = A* A.  Then               
B* = A* A = B, and hence B is Hermitian and its eigenvalues are real and in fact 
its eigenvalues are nonnegative.  Let the eigenvalues (distinct) of  B be µ1, µ2, 
….., µr.  Then let 
 
 µ = max {µ1, µ2, ….., µr} 
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We can show that 
 

 { }nA µµµ ,.....,max 12
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 If follows from the matrix norm definition subordinate to a vector norm, that 
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∴  For any x in Cn or Rn , we have, if x ≠ θn 
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and therefore 
  

 xAAx ≤  for all x ≠ θn 

 
But this is obvious for x = θn 
 
 Thus if A is a matrix norm subordinate to the vector norm x  then 

 

 xAAx ≤  

 
for every vector x in Cn (or Rn). 
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