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Tutorial on State Feedback, Part-1I
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@ Cyclic Design (Lecture slides 43 — 52)
@ Cyclic Design (Lecture slides 43 — 52)
© State Feedback Design for Multi-Input system

© State Feedback and Disturbance Rejection (Lecture Slides
27 — 36)

© Feedback Invariant of Nonlinear system

@ Linear Quadratic Regulator(LQR) (Lecture slides 53 — 62)
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Cyclic Design

Problem 1

Given a plant defined by (A, B) pair,
2 1
A=]10 -1 0 B=10 2
1 0

Is matrix A cyclic? Can a state feedback controller be designed using single
input variable controller design method?
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Solution to Problem 1

Recall (Lecture Slide 43)

A matrix A is called cyclic whenever the Jordan form of A has one and only
Jordan block associated with each distinct eigenvalue.

For

0 0 -1
The eigenvalues of A are {—1, -1, —1}, forming two Jordan blocks of size
(2 x 2) and (1 x 1). Therefore, A is not cyclic.
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Solution to Problem 1

Recall (Lecture Slide 43)

A matrix A is called cyclic whenever the Jordan form of A has one and only
Jordan block associated with each distinct eigenvalue.

For
-1 1 0

A=1]0 -1 0
0 0 -1
The eigenvalues of A are {—1, -1, —1}, forming two Jordan blocks of size
(2 x 2) and (1 x 1). Therefore, A is not cyclic.

Recall(Lecture slide 48)

If (4, B) is controllable, then for almost any p x n real constant matrix K, the
matrix (A — BK) has only distinct eigenvalues and is, consequently cyclic.
Further, we can also calculate the controllability matrix of the pair (A, B) as

21 -2 1 2 =3
¢=10 2 0 -2 0 2
10 -1 0 1 O

which has a rank equal to 3. Therefore, pair (A, B) is controllable.
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Solution to Problem 1

Recall(Lecture slide 48)

If (A4, B) is controllable, then for almost any p x n real constant matrix K, the
matrix (A — BK) has only distinct eigenvalues and is, consequently cyclic.

Suppose K is arbitrarily selected as

Then,
-1 1 0 2 1
(A-BK)=|0 -1 0|—-]0 2 [_11 8'2 ’11}
0 0 -1 1 0 ’
-2 —=0.8 1
=12 —2.6 -2
-1 =05 0
—-1.6 0 0
which can be written in the Jordan canonical form as 0 -2 0
0 0 -1

Therefore, (A — BK) is cyclic.
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Cyclic Design

Problem 2

Given a plant defined by (A, B) pair,

-1 1 0 2 1
A=(3 2 0 B=1|0 2
2 0 4 1 0

Is A cyclic? Comment on the controllability of (A, Bv) pair, where v = Lﬂ :
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Solution to Problem 2

Recall (Lecture Slide 43)

A matrix A is called cyclic whenever the Jordan form of A has one
and only Jordan block associated with each distinct eigenvalue.

Given,
-1 1 0
A=13 2 0
2 0 4
The eigenvalues of A are {4,2,—1}, forming 3 jordan blocks of
size (1 x 1). Therefore, A is cyclic as the sufficient condition is

satisfied.
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Solution to Problem 2

Recall(Lecture slide 44)

If the n-dimensional p-input pair (A, B) is controllable and if A is
cyclic, then for almost any p x [ vector v, the single-input pair
(A, Bv) is controllable.

The controllability matrix of pair (A, B) is given as

21 -2 1 8 6
¢=10 2 6 7 6 17
1 0 8 2 28 10

which has a rank = 3. Since pair (A, B) is controllable and A is
cyclic, it implies that (A, Bv) is also controllable.
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Solution to Problem 2

Numerically verifying the claim, we have the controllability matrix

of pair (A, Bv), where v = [(1]] equal to
2 =2 8
0 6 6
1 8 28

which also has a rank = 3.
Similarly, this theorem can also be verified for other values of v.
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State Feedback Design for Multi-Input system

Problem 3
0 1 00 0 0
0O 010 0 0
A= -3 1 2 3|’ 8= 1 2
2 1 0 0 0 2

Find two different constant matrices K such that (A — BK) has
eigenvalues —4 4+ 35 and —5 + 4j5.
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Solution to Problem 3

Given,
0 1 00 0 O]
0 0 1 0 0 0
A= -3 1 2 3|’ B = 1 2
2 1 0 0 0 2

Calculating the Controllability matrix of pair (4, B)

000 0 1 2 2 10]
c_ 001 2210 5 2
Tt 2 2 10 5 22 12 54

020 0 1 2 4 14

which has a rank= 4. Therefore the pair (A4, B) is controllable.
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Solution to Problem 3

The Jordan form of A matrix is then given as

0.3215 — 1.25811 0 0 0
0 0.3215 + 1.2581¢ 0 0
0 0 —1.3262 0
0 0 0 2.6833

Since all the Jordan blocks are of size 1 x 1, A is cyclic. Arbitrarily

selecting v as , we can calculate the controllability matrix of

2
pair (A, Bv) to find that it is also a controllable pair (having rank
=4).

We can now proceed forward to design the state feedback
controller for the reduced single-input system (A, Bv).
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Solution to Problem 3

The state feedback gain vector (k) for system defined by (A, Bv)
for eigenvalues —4 4 35 and —5 &+ 47, calculated by eigenvalue

placement method (equivalent to using place command in
MATLAB) is

[90.7152 10.5868 6.0939 —2.6174]
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Solution to Problem 3

The state feedback gain vector (k) for system defined by (A, Bv)
for eigenvalues —4 4 35 and —5 &+ 47, calculated by eigenvalue

placement method (equivalent to using place command in
MATLAB) is

[90.7152 10.5868 6.0939 —2.6174]
Then, the overall state feedback for the multi-input system is

u(t) = vu/(t), where u/(t) = —kx(t).
The gain matrix becomes

K, = vk = B] [90.7152 10.5868 6.0939 —2.6174]
- 90.7152 10.5868 6.0939 —2.6174
1= 1181.4304 21.1735 12.1878 —5.2348
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Solution to Problem 3

Selecting another arbitrary value of v as [(lﬂ , the state feedback

gain vector (k) for the same eigenvalues become:
[—168.9968 —62.8041 — 13.2899 — 2.0261]
and the multi-input system’s gain matrix becomes

0.8
-1

—135.1975 —50.2433 —-10.6319 —1.6209
168.9968  62.8041  13.2899  2.0261

Ky = vk = [ } [~168.9968 — 62.8041 — 13.2899 — 2.0261]
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State Feedback and Disturbance Rejection

Problem 4

Consider the system
—10 1 0
A= [—0.02 —2] b= [2] o= 9

@ Design a controller such that the desired eigenvalues are
located at s = —5 4 j and the output tracks a unit step input,
ie. r=1.

@ Plot the step response of the system under the effect of an
external step disturbance (w) as in

T = Az + bu + bw
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Solution to Problem 4

@ For the system

—10 1 0
A= [70.02 72] b= M o=t 0]
Firstly, we calculate the desired feedback gains for eigenvalues at
s=—-5=xj.
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Solution to Problem 4

@ For the system

A= [:0%82 712] b= m ,e=[L 0]

Firstly, we calculate the desired feedback gains for eigenvalues at
s=—-5=xj.

The characteristic equation of the closed-loop state feedback system
becomes

|sT — A+bk| =0

[s+10 _1]+m e kel =0

0.02 s+42 2

s+ 10 -1
0.02+2k1 s+ 2+ 2ko

= 5%+ (12 4 2kz) + 19.98 + 20ky — 2k = 0
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Solution to Problem 4

@ For the system

A= [:0%82 712] b= m ,e=[L 0]

Firstly, we calculate the desired feedback gains for eigenvalues at
s=—-5=xj.

The characteristic equation of the closed-loop state feedback system
becomes

|sT — A+bk| =0

[s+10 _1]+m e kel =0

0.02 s+42 2

s+ 10 -1
0.02+2k1 s+ 2+ 2ko

= 5%+ (12 4 2kz) + 19.98 + 20ky — 2k = 0

The desired characteristic equation is
(s+5+45)(s+5—7)=0
s°+10s+26 =0
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Solution to Problem 4

@ Comparing the desired and actual characteristic equations, we get

k=[1299 —1]
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Solution to Problem 4

@ Comparing the desired and actual characteristic equations, we get
k=[1299 —1]
Now, the transfer function of the closed-loop system becomes

G(s) = c(sI — A—bk)"'b

o ([ o[ nze ) ]

= §(s) =

The steady state value of output y(t) = §(0) = 5.
Since §(0) # (r(t) = 1), we will use p (feedforward gain) equal to
1

50 = 13 to make the output track the unit step input (r = 1).
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Solution to Problem 4

@ Consequently, the unit step response becomes:

08 —State Feedback with no disturbance

u(t)

2 4 6 8 10 e o2

4 5 6
N Time (seconds)
Time (sec)
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Solution to Problem 4

@ Adding a step disturbance at ¢ = 4 secs to the system, the
step response becomes

State Feedback with step
125 disturbance at t = 4 secs

u(t)
)

0 2 4 6 8 10 0 2 4 6
Time (seconds)

It is evident from the step response that the state feedback control
is unable to track the reference(r = 1) due to the effect of this
external disturbance.

8 10
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State Feedback and Disturbance Rejection

Problem 4, continued

@ Design a robust controller to reject the effect of disturbances.
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Solution to Problem 4

Recall (Lecture Slides 29)

In the above closed-loop control design, the output y will track
asymptotically and robustly any step reference input 7(¢) = a and
reject any step disturbance with unknown magnitude.
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Solution to Problem 4

@ Adding an integral control action to the closed-loop system,
the (A, b) pair becomes,

a= A0 el

Again, calculating the feedback gain vector kg, = [k ka], we
get
[12.99 2 —78]

where the last element represents the integral gain k, of the
controller.
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So

lution to Problem 4

@ The step response now becomes,

|
12 . L
10
0.8
State Feedback with Integral Control
8 with step di at t=4 secs
0.6
—~
6 =
=3
0.4
4
2 0.2
0 0
0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10

Time (seconds)

which clearly shows that the state feedback control with integral

action is capable of disturbance rejection.
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Feedback Invariant of Nonlinear system

Problem 5
Consider the non-linear system

i=f(z,u), x€R"ucR" (NLS)

and continuously differentiable function V' : R® — R with
V(0) = 0. Verify that the functional

() 2 - [P (e, ue)

is a feedback invariant as long as lim;_,~ (t) = 0.

!Hespanha Exercise 20.1
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Solution to Problem 5

Recall!

Recall from the lecture slide 56 , that a functional H (z(-), u(+)) that involves
system'’s input and state is a feedback invariant for a given dynamical system if
when computed along a solution to the system, its value depends only on the
initial condition and not on the specific input signal.
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Solution to Problem 5

Recall!

Recall from the lecture slide 56 , that a functional H (z(-), u(+)) that involves
system'’s input and state is a feedback invariant for a given dynamical system if
when computed along a solution to the system, its value depends only on the
initial condition and not on the specific input signal.

Given

@) = = [ 25 (0. utey) a
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Solution to Problem 5

Recall!

Recall from the lecture slide 56 , that a functional H (z(-), u(+)) that involves
system'’s input and state is a feedback invariant for a given dynamical system if
when computed along a solution to the system, its value depends only on the
initial condition and not on the specific input signal.
Given

OV (x(t)

@) u() == [ S50 f (@), u()) de
0

The derivative of V along the trajectories of (NLS) denoted by V (z), is given

by n n
. av . oV
Vi(z) = 2 87:1-% = ; O fi(z)

%
:[%’1 %’2 %] 2_ :%(I)

The derivative of V' along the trajectories of a system is dependent on the
system'’s equation.
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Solution to Problem 5

Consider

1 G0.u0) = [ O 0, uw)at




Solution to Problem 5

Consider

H(x

(), u(t)) dt

\\

(V (2(0)))
V(x( as Iong as lg& z(t) =0

Since H (z(-),u(-)) depends only on the initial state of the system,
it is a feedback invariant.
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Linear Quadratic Regulator(LQR)

Problem 6

Given a system

z1(t) = xa (1), z1(0) =
Zo(t) = —2x1(t) + Saa(t) + u(t), z2(0) =10

and the performance index (Pl)

J :% /Oo [223(t) + 621 (t)22(t) + 53(t) + 0.25u%(¢)] dt
0

obtain the feedback control law. Compare the performance for
different input and state weighting matrices.

!Naidu, Optimal Control Systems, Example 3.1
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Solution to Problem 6

From the given system and performance index, the various quantities are

0 1 0 2 3 1
TSR

It is easy to check that the system is unstable.
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Solution to Problem 6

From the given system and performance index, the various quantities are

0 1 0 2 3 1
e[l o-fieef g -t
It is easy to check that the system is unstable. Let P be the 2 X 2 symmetric
matrix
P {pn plz]
D21 P22
Then, the optimal control is given by

Ty
u = —r b Px"

where P is the solution of the algebraic Riccati equation

AP+PA+Q—Pbr 'v'P=0
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Solution to Problem 6

From the given system and performance index, the various quantities are

0 1 0 2 3 1
[l gl 3 e

It is easy to check that the system is unstable. Let P be the 2 X 2 symmetric
matrix

P {pn plz]

D21 P22

Then, the optimal control is given by

u* = —r ' Pz*
where P is the solution of the algebraic Riccati equation

AP+PA+Q—Pbr 'v'P=0

This equation can be solved using the care command in MATLAB.
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Solution to Problem 6

The next simulation results show the variation of the trajectories
for different weighting matrices

OQ:L:Q:[?) §:|,T1:T:O.25and

Q@ Qo =4Q and 1y =1 = 0.25.
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Solution to Problem 6

Simulations

25 M

Uq (t)

U2 (t)

10 b

5 I I I I I I I I I
0 1 2 3 4 5 6 7 8 & 10

Figure: Input trajectories (uy for Q1 and 71 and ugy for Q2 and r3)
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Solution to Problem 6

Simulations
12 T T T T T T T T T

ol —zi(t)]
E13 —m% (t) B
6 —:L‘% (t) B
a 23(t)| 1
2 4
ol
2 4
4l |
0 : 2 s 4 5 6 7 5 s

time (seconds)

Figure: State and trajectories (z} and z3 for Q1, 71 and 2% and 23 for
QQ and 7“2)
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