Linear Dynamical Systems

Tutorial on State-space solution and realization
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@ State Space representation of LTI systems(Lecture 1 Slides 4-7, 17)

@ Time-Domain Solution for LTI Systems (Lecturel, Slides 9-16; Lecture 3,
Slides 37-46)

© Realization of an LTI system (Lecture 5, Slides 63-71)

@ Equivalence of LTI systems (Lecture 4, Slides 50-55)

© State Space representation of LTV systems (Lecture 1 Slides 4-7, 17)
@ State Space representation of LTV systems (Lecture 1 Slides 4-7, 17)
@ Equivalence of LTV systems (Lecture 4, Slides 56-61)

@ Time-Domain Solution for LTV Systems (Lecture 2, Slides 23-31)
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State Space representation of LTI systems

Problem 1
Consider the circuit shown below:

T u(t) y(t)

Input ———

MU ulk]

Find the state-space representation for the given circuit.

- Output

ylk]
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Solution to Problem 1

it
+ L é’ +
6_16 i1(t) IR Zj@ G @
States:i;(t), ve(t)
Input:e; (t), ea(t)
e1(t) = Liy(t)dt + R(i1(t) — i2(t)) (1)
—eat) = R(ia(t) — ir (1)) + velt) (2)

—ea(t) = Ria(t) — Riy(t) + ve(t)




Solution to Problem 1

ex(t) = Lix(t)dt + R(ia (t) — ia(t)) e
—ea(t) = R(ia(t) — i1 (t)) + ve(t) @)

i (t) = ia(t) +

Substituting (3) in (1),

ei(t) = Lir(t) + R <i2(t) n chét) n GQT@ - ig(f))

il(t) _ elét) B ezl(jt) B vcét) ()

From (2),

_62(t) = RC’UC(t) - Ril(t) + vc(t)
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Solution to Problem 1

From (4) and (5),

| i = Ax(t) + Bul(t)
(A el R A
Taking y1(t) = i1(2), y2(t) = ic(t)

y(t) = Cz(t) + Du(t)




Time-Domain Solution for LTI Systems

Problem 2

Solve the state-space equations obtained in Problem 1 to obtain
the

(i) zero-state response and

(i) zero-input response of the system

(iii) overall response.

Assume R =2, L =1H, C = }F.

Take

as the initial state for (i)
and

= H u(t)

for (ii), where u(t) is the standard unit step signal.
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Solution to Problem 2

ol =i el [l + [ el )
C=1iF L=1H, R= 20
T A e e L

o) = o] = 3




Solution to Problem 2

(i) Zero Input Response:

Lecture Slides: 37

For a homogeneous LTI System,

d(t, tg) = A7) 1 > ¢,

yzi = Cle™'z(0)]

z(t) = e_Atx(O)

—2t
e
- [—26_%] » 820
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Solution to Problem 2

(ii) Zero State Response:

Lecture Slides: 39-41

For a non-homogeneous LTI System,

et =471 [(sI - A7

t
yzs(t) = C | AT Bu(r)dr + Du(t), t>to
to

Yos(t) = L7 [C(sI — A)'BU(s) + DU (s)]

Y.s = L1 [C(sI — A)T'BU(s) + DU(s)]
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Solution to Problem 2

Linear Dynamical Systems



Solution to Problem 2

1 -1 0
=L — _
<s2+3s+2 [ﬁzﬂ i { ]

—1
-1 ( [ 4(s+672J)r(;s—',-1)

2s(s+2)(s+1)
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Solution to Problem 2

Overall Response y(t) = y.; + Yzs

e .\ o2t _ ot
T —2e% % —2e7 2 4 %e‘t -3

- l:—2€2t + % —2e72 4 %e‘t -3
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Realization of an LTI system

Problem 3

Find the state-space realization of the Transfer Matrix given below:

G(s) 1 [s—i—l =5 ]

=s2—|—s+1 s —s%—s
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Solution to Problem 3

Given,

Lecture Slides: 67,68

Transfer matrix G(s) can be decomposed as |,

G(s) = G(00) + Gep(s).

where,
Gap(s) = ——[N(5)] = — [N18"™) + Nops™ + .. + Ny_y5 + N,]
sp d(S) d(S) 1 2 = P
and

dis)=s"+a1s" '+ - +a_15+a,
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Solution to Problem 3

Gls) = -+ [3“ 25]

2+s+1|] s —s°—s

(i(00) = lim G(s) = [0 0]

5§—00 0 - 1

oy 100 1 s+1 —s
G(S)_[O —l]+32+s+1[ s 1]

— G(S)=[8 _01]+32+13+1(B _()1]8+[(1) ﬂ)

and
d(s)=s*+s+1
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Solution to Problem 3

Lecture Slide: 68

_—Oqu OZQIp —Ozr_llp Ozrfp Ip
I 0 0 0 0
5= 0 i 0 0 z+ |0
| 0 0 i 0 | A
Y= [Nl Ny N,_1 NT} T+ G(oo)u
Using the above expressions,
-1 0 -1 0 10
. 0 -1 0 -1 0 1
= T=17 0 0 o0 T+ 0 ol (1)
0 1 0 0 0 0
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Solution to Problem 3

-1 0 -1 0 10
0 -1 0 -1 0 1
:>L—|:1 0 0 0‘|L+|i0 0‘|u (1)
0 1 0 0 00
1 -1 10 0 0
y[1 0 0 1]5”{0 —1}“ 2)

The above set of equations are a realization of G(s).
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Equivalence of LTI systems

Problem 4
Given a state-space representation with

A= 3] el

and another representation with

R

Prove the equivalence of these two systems.
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Solution to Problem 4

Given
0 -2 1 -1
a=[ 3 m=lo

R E R

2 -3 0 -3
Method 1 :
1 —1
B=1o —3/2}
R2 — 2R2
1 -1 _
B = _O _3] =B

Therefore, Transformation matrix : T = [(1) (2)]
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Solution to Problem 4

Verifying value of T matrix,

- - -1
[t o]fo —2][t o
AT = 0 2] 1 —3] [0 2}
_Jro]fo =2]f1 o
S0 2] (1 =3] |0 1/2
0 -1
2 73__‘4

Method 2 : For the two systems to be equivalent:
A=TAT ' B=TB

—1
N I R
— BB _TT_[O 3o —3/2
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Solution to Problem 4

S

2 0
— = [1.5 0.5]
detT # 0

Since, T is a non-singular matrix, the corresponding two state
equations are equivalent.
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State Space representation of LTV systems

Problem 5

If the Resistance(R), Inductance(L), and Capacitance(C) of the
circuit in Problem 1 are time-variant, find the state space
representation of the corresponding LTV system.

+ T1 — + T2 —
I I |
C C
Rl 1 U 2 Ll
$3 >

U1 R2

_|_

1
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Solution to Problem 5

i o
L(t) | c
6—16) i (t) DR(t)ig(t) ez
Taking R = R(t),L = L(t),C = C(t)
States:i;(t), ve(t)
Input:eq (), ea(t)
a(t) = S(LWHM) + ROGE - 20) 1)

—e(t) = R(t)(iz(t) — i1(2)) + ve(t) ()




Solution to Problem 5

er(t) = S (LORE) + RO — 200) m
—ex(t) = RO(ia(0) ~ i2(8) + (0 )

Substituting (3) in (1),

ex(t) = L{t)in(t) + i ()L (1) + R() (w) +

ve(t) ea(t) .
TOREON “(“)




Solution to Problem 5

—ea(t) = R(t)(i2(t) — i1 () + ve(t) )

From equation (2),

—ea(t) = R(t)(i2(t) — i1(t)) + ve(t)

~ealt) = B S (CWuelt) ~ ROi(D) + velt)

—e2(t) = R(t)C(t)ic(t) + R(t)oe(t)C(t) — R(t)ir(t) + ve(t)
—es(t) v (C(t)  welt) | ialt)

Ve(t) = R(t)C(1) C(t) - R(t)C(¥) + C(t) ®)




Solution to Problem 5

et aLE)  wvlt) eat)

R 70 R 70 R 7O R 0} &
o —e(t) we()C() ve(t) i1 (t)
D =Fmom - cw RHC® T o) ®)

From equation (4) and (5),

[?l(t)] - {_L;(lt()tg(t) ~[1C() + gll((?)]Cl(t)] [:)l((?)]

" [L_;(“ . R?L@_)lc@l@)} {28}
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State Space representation of LTV systems

Problem 6

Taking ¢(t)(the magnetic flux through the inductor), ¢(t)(the
charge on the capacitor) as the states, find the Time-Variant state
space representation of the circuit given in Problem 1.
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Solution to Problem 6

¢ q
L) cw |
e1(>) ) R (ea

11 (¢ ig(t)

Taking R = R(t), L = L(t),C = C(t)
States:¢(t), q(t)
Input:e; (), ea(t)

Cdt




O
S
<
o)
(©)
| .
(a1
(©)
4+
c
.9
=
=
(@)
V)]

R(t)(i2(t) — i1(t)) + ve(t)




Solution to Problem 6

RO
er(t) = 60) + 22000 _ Ryt )
—al) S0 ) _

Re) 1) cwr@m 10 @




Equivalence of LTV systems

Problem 7

Prove the equivalence of State Space models obtained in Problem
5and 6. Take: L(t) = 0.5t H, C(t) = 0.5t C, R = 240,

[l((?)] ) [_L;fgf(t) —C)+ f{lf(’?ﬂcl(t)] [l(é))]
+ 700 e o) 1)

[(qﬁg))] - [L—9<t> R-_1<Ct>c;@<t>] Bgﬂ*[é —R_—11<t>] [%ﬂ




Solution to Problem 7

Using L(t) = 0.5t H, C(t) = 0.5t C and R = 2Q

= e

A= [2(;75 :?ﬂ B = B —_0%5]

Lecture Slide: 56

(A, B) and (A, B) are equivalent if there exists a non-singular
matrix P(t) € R?>*2 such that:

A(t) = [P(OA®) + POIPTH(2) (1)
B(t) = P(t)B(t) ()
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Solution to Problem 7

s[4

t t
Rl — Rli’ RQ — R2§

1 -1 _
p—ﬂJ_B

Elementary Row Matrices:

Ei(t) = 4/2 (1)] Ea(t) = [(1) t?2}

0
P(t) = E\Ey — {%2 t%]
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Solution to Problem 7

To verify that P(t) is the algebraic equivalent transformation
matrix:

Substituting in (1),

At) = [P(t)A(t) + P(O)1PH(1)

RHS:
(15 el o S+ [5 as) [
v sl [
[0 _2/t]:A(t) — LHS. Hence Proved.

2/t —1/t
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Time-Domain Solution for LTV Systems

Problem 8
Comment on the realizability of::

#(t) = Az (t) + B(t)u(t)

A=l 2=l o

Use the concept of the fundamental matrix.

where,
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Solution to Problem 8

Given,
o =2/t
A=l —1/75]
R1 — R1 — 2R2
= [-4/t 0 ]
— A= 2/t —1/t)
A(t) = A(t)z(t)
[,él(t)] _ [~/ 0] [zl(t)]
L) T [ 2/t =1/t |z(t)

21(t) = —%zl(t)
Z'Q(t) = %2’1 (t) — %Zg(t)




Solution to Problem 8

Taking to = 0 and

21 (t) = Zl(to) + %Zl(t)
— () = 1_1%
Zg(t) = Zg(t()) — t%zl(t) + t%ZQ(t)
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Solution to Problem 8

Taking

21(t) = z1(to) + %m (t)
A0)(1 - ;12) -




Solution to Problem 8

L

1(t) + £2

Zg(t) = Zg(to) — t—Qz

Substituting value of z;(¢)

— Zz(t) = 1 1
T2
Fundamental Matrix Z(t):
20 = [20) 200 - Ay 0
— — 2 2
22(1)(t) 22(2)(75) (t2_2)2(12_1) t2t_1
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Solution to Problem 8

Converting back to the original system using:
X(t) = T71Z(t), where T is the elementary transformation matrix.

—1 t2
1 -2 — 1
X(t) = [O 1 ] [ 222;21 /2 ]
t2—-4)(t2-1) t2-1
12 (t2—5) 242
2_ 2_ 2 _
X(t) = [(t A= tt21]
Z—4H(2-1) -1
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Recall

Recall from the lecture slide 74 that the impulse response G (¢, 7)
is realizable iff it can be decomposed as
G(t,7)=M@)N(t)+D({t)o(t — 1)Vt > 1

The impulse response for the system under consideration is :

G(t,7) = CH) X)X 1 (r)B(1) + D(t)(t — 7)
= Xt)X ' (m)B(r)

Clearly, by comparison, M (t) = X(t), N(7) = X '(7)B(7) and
D(t) = 0 and hence the given impulse response is realizable.
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