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Outline

1 Solvability of Lyapunov equations (Lecture Slide 22)

2 BIBO and internal stability (Lecture slides 38− 43)

3 Lyapunov’s theory for linear systems (Lecture slide 30)

4 Margin of stability (Lecture slide 30)

5 Stability of linear time variant systems (Lecture slide 56)

6 Sampling and stability

7 Stability and Jordan canonical form (Lecture slides 53− 54 )
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Solvability of the Lyapunov matrix equation

Problem 1

Consider the system ẋ = Ax with

A =

[
0 1
−1 0

]
Comment on the solvability of the Lyapunov matrix equation
ATP + PA = −Q, Q = QT � 0.

Recall! -Lecture Slide 22

Let A ∈ Rn×n and let λ1, . . . , λn denote the (not necessarily
distinct) eigenvalues of A, then the equation

ATP + PA = −Q, Q = QT � 0

has a unique solution for P corresponding to each Q if and only if
λi 6= 0 , λi + λj 6= 0 for all i, j.

1Terrell, Page 76
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Solution to Problem 1

The eigenvalues of A are λ1, λ2 = ±j and therefore the required
condition is violated. Thus, the Lyapunov equation
ATP + PA = −Q does not possess a unique solution for a given
Q.

We now verify this for two specific cases:

When Q = 0 , we obtain:

ATP + PA =

[
0 −1
1 0

] [
p11 p12
p12 p22

]
+

[
p11 p12
p12 p22

] [
0 1
−1 0

]
=

[
−2p12 p11 − p22
p11 − p22 2p12

]
=

[
0 0
0 0

]
or p12 = 0 and p11 = p22. Therefore, for any a ∈ R, the
matrix P = aI is a solution of the Lyapunov matrix equation.
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Solution to Problem 1

When Q = 2I, we obtain:

ATP + PA =

[
−2p12 p11 − p22
p11 − p22 2p12

]
=

[
−2 0
0 −2

]
or p11 = p22 and p12 = 1 and p12 = −1, which is impossible.
Therefore, for Q = −2I the Lyapunov equation has no
solution at all.
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BIBO stability and internal stability

Problem 2

Consider the continuous time linear time invariant (CT-LTI) system

ẋ(t) =

−1 0 0
0 1 2
0 2 1

x(t) +

1
0
0

u(t)

y(t) =
[
1 1 −1

]
x(t)

with x(0) =
[
x10 x20 −1.5x20

]T
. Analyze the system for

internal and BIBO stability.

Linear Dynamical Systems
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Solution to Problem 2

Solution: BIBO stability

The dynamics can be written as:
ẋ1 = −x1 + u(t), ẋ2 = x2 + 2x3, ẋ3 = 2x2 + x3 thus,

x1(t) = e−tx10 + e−t
∫ t

0
eτu(τ)dτ

x2(t) = 0.5e−t (x20 + x30) + e3t (0.75x20 + 0.5x30)

x3(t) = −e−t (0.5x20 + 0.25x30) + e3t (0.5x20 + 0.25x3)

= −0.125e−t + 0.125e3t

y(t) =x1 + x2 − x3 = e−tx10 + e−t
(∫ t

0
eτu(τ)dτ

)
− 0.25e−tx20

It is easy to see that the output y(t) is bounded when u(t) is
bounded for all t. Thus, the system is clearly BIBO stable.
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Solution to Problem 2

Solution: Internal stability

The matrix A is given as :

A =

−1 0 0
0 1 2
0 2 1


which has the eigen values −1,−1 and 3 and thus the system is not
internally stable in the sense of Lyapunov (which requires the eigen
values to be negative). Note that the transfer function has a zero
at s = 3 and hence this pole-zero cancellation leads to the internal
instability of the system , although the system is BIBO stable.

Recall!-Lecture slides 38-43

This example illustrates the fact that

External stability 6=⇒ Internal stability (in the sense of Lyapunov)

although the vice versa is true that is

Internal stability (in the sense of Lyapunov) =⇒ External stability

The system considered is also not controllable and it is not possible
to find a u which results in the internal stabilization of the closed
loop system.

Linear Dynamical Systems
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Lyapunov’s theory of stability for linear systems

Problem 3

Assume that the origin of the system ẋ = Ax is asymptotically
stable. Then prove that the matrix A is similar to a matrix Ā
which satisfies Ā+ ĀT < 0.

In other words, the system ẋ = Ax is equivalent by a linear change
of coordinates to a system ż = Āz for which the Euclidean norm is
strictly decreasing along non-zero solutions.

Recall

This question is based on the lecture slide 30 which discusses the
Lyapunov’s theory of stability for linear systems

1Terrell, Theorem 3.7(d)
Linear Dynamical Systems



9

Lyapunov’s theory of stability for linear systems

Problem 3

Assume that the origin of the system ẋ = Ax is asymptotically
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Solution to Problem 3

Recall that since the matrix A is Hurwitz there exists positive definite
solution of the equation

ATP + PA+Q = 0 (1)

where Q is positive definite. Setting Q = I, there exists a
P > 0 : ATP + PA+ I = 0.

Also, there exists a positive definite matrix S such that S2 = P ; it is
natural to write S = P 1/2 and call it the positive square root of P .

The matrix P 1/2 is invertible and we can write P−1/2 ,
(
P 1/2

)−1
.

Multiplying (1) on the right and on the left by P−1/2 and rearranging it,
we obtain:

P−1/2ATP 1/2 + P 1/2AP−1/2 = −P−1

Note that the right hand side is negative definite.

Now with Ā , P 1/2AP−1/2, we see that A is similar to Ā and

Ā+ ĀT < 0 is negative definite. This completes the proof.
Linear Dynamical Systems
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Margin of stability

Problem 4

Let σ > 0 be a positive number, Q be a positive definite matrix,
and A a matrix of the same size as Q. Show that if there exists a
positive definite matrix P such that

ATP + PA+ 2σP = −Q

then every eigen values of A satisfies Re(λ) < −σ

Recall

This question is based on the lecture slide 30 which discusses the
Lyapunov’s theory of stability for linear systems

1Terrell, Exercise 3.17
Linear Dynamical Systems
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Solution to Problem 4

Let λ be a (possibly complex) eigenvlaue of A and v be the
corresponding eigenvector, then

v∗
(
ATP + PA+ 2σP

)
v = −v∗Qv

=⇒ (Av)∗ Pv + v∗P (Av) + 2σv∗Pv = −v∗Qv
=⇒ λ̄v∗Pv + λv∗Pv + 2σv∗Pv = −v∗Qv
=⇒

(
λ̄+ λ+ 2σ

)
v∗Pv = −v∗Qv

Since Q is positive definite matrix, the right hand side of the above
equation is negative definite. Also, since P is positive definite it is
necessary that(

λ̄+ λ+ 2σ
)
< 0 =⇒ 2Re(λ) < −2σ =⇒ λ < −σ

and since λ was an arbitrary eigenvalue pf A, every eigenvalue λ of
A must satisfy λ < −σ.

Linear Dynamical Systems



13

Stability of linear time variant systems

Problem 5

Consider the system

ẋ = A(t)x =

[
−1 e2t

0 −1

]
x, t ∈ (−∞,∞)

Analyze the system for stability.

Recall

This question is based on the lecture slide 57- “the fact that it is
not possible to comment on the stability of a linear time varying
system by merely computing the eigen values of the state matrix”.

1Terrell, Example 3.10
Linear Dynamical Systems
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ẋ = A(t)x =

[
−1 e2t

0 −1

]
x, t ∈ (−∞,∞)

Analyze the system for stability.

Recall

This question is based on the lecture slide 57- “the fact that it is
not possible to comment on the stability of a linear time varying
system by merely computing the eigen values of the state matrix”.

1Terrell, Example 3.10
Linear Dynamical Systems



14

Solution to Problem 5

For each t, the matrix A(t) has −1 as a repeated eigenvalue.

The solution for x2 is x2(t) = e−tx20. If we substitute this into the
equation for x1, then

x1(t) = e−tx10 + e−t
(∫ t

0
e3sx2(s)ds

)
= e−tx10 + e−t

(
e2sx20dss

)
= e−tx10 + e−t

1

2

(
e2tx20 − x20

)
= e−tx10 +

1

2
etx20 −

1

2
e−tx20

Because of the exponential growth term, if x20 6= 0 then
x1(t)→∞ as t→∞. Thus, negative real parts for all eigenvalues
is not a sufficient condition for asymptotic convergence of all
solutions to the origin in a linear time-varying system.

Linear Dynamical Systems
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Sampling and stability

Problem 6

Compare the stability of the system

ẋ = Ax

with A =

[
0 1
−2 −5

]
with its discrete time counterpart (obtained

using the Euler’s method) with a sampling time T = 0.5 and
T = 0.1.

Linear Dynamical Systems
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Solution to Problem 6

Stable CT system

The eigen values of A are computed as −0.4384 and −4.5616
which clearly shows that the system is internally stable.

Linear Dynamical Systems
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Solution to Problem 6

Discrete counterpart at T = 0.5

Using the Euler method the discrete system is given s:

ẋd(k + 1) = (TA+ I)xd(k) = Adxd(k)

where T is the sampling time With T = 0.5 the state matrix is
given as:

Ad =

[
1 0.5
−1 −1.5

]
with eigenvalues: −1.281 and 0.7808. Since one of the eigenvalue
has magnitude greater than 1, the system is unstable.

Linear Dynamical Systems
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Solution to Problem 6

Discrete counterpart at T = 0.1

With T = 0.1 the state matrix is given as:

Ad =

[
1 0.1
−0.2 0.5

]
with eigenvalues: 0.5438 and 0.9562. Since the eigenvalues have
magnitude less than 1, the system is stable.

Observation

It can be verified that the system obtained after discretizing
using Euler method is stable as long as T < 0.453.

Using another method of discretization or determining the
stability of the discrete-time state matrix obtained using
c2d-MATLAB command, the state matrix is always stable.

Linear Dynamical Systems
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Jordan forms stability and minimal polynomial

Problem 7

Comment on the stability of the system ẋ = Ax with

A =


−1 0 0 0 0
1 −1 0 0 −1
1 −1 0 0 −1
0 0 0 0 −1
−1 1 0 0 1

 .

Recall

This question is based on the lecture slide 53− 54 which discuss
relationship between stability, Jordan forms and minimal
polynomial.
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Solution to Problem 7

Jordan form computation

The Jordan form of a matrix can be computed using the concepts
of eigenvalues, eigenvectors and the generalized eigenvectors. Or
you can also use MATLAB command: J = jordan(A).

The eigenvalues of A are computed to be 0, 0, 0, 0,−1. For the
given A the Jordan form is computed to be:

J =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 0


Clearly the Jordan blocks corresponding the zero eigenvalues are
not 1× 1 and hence the system under consideration is not
marginally stable
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Solution to Problem 7

Minimal polynomial

The characteristic polynomial is given as s4(s+ 1) = 0.

Furthermore, it is easily verified that A satisfies A3(A+ I) = 0
and hence the minimal polynomial is s3(s+ 1) which has repeated
roots at s = 0 and hence the system is unstable.
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