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Linear Dynamical Systems
Tutorial on State Feedback, Part-II
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Outline

1 Cyclic Design (Lecture slides 43− 52)

2 Cyclic Design (Lecture slides 43− 52)

3 State Feedback Design for Multi-Input system

4 State Feedback and Disturbance Rejection (Lecture Slides
27− 36)

5 Feedback Invariant of Nonlinear system

6 Linear Quadratic Regulator(LQR) (Lecture slides 53− 62)
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Cyclic Design

Problem 1

Given a plant defined by (A,B) pair,

A =

−1 1 0
0 −1 0
0 0 −1

 B =

2 1
0 2
1 0


Is matrix A cyclic? Can a state feedback controller be designed using single
input variable controller design method?
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Solution to Problem 1

Recall (Lecture Slide 43)

A matrix A is called cyclic whenever the Jordan form of A has one and only
Jordan block associated with each distinct eigenvalue.

For

A =

−1 1 0
0 −1 0
0 0 −1


The eigenvalues of A are {−1,−1,−1}, forming two Jordan blocks of size
(2× 2) and (1× 1). Therefore, A is not cyclic.

Recall(Lecture slide 48)

If (A,B) is controllable, then for almost any p× n real constant matrix K, the
matrix (A−BK) has only distinct eigenvalues and is, consequently cyclic.

Further, we can also calculate the controllability matrix of the pair (A,B) as

C =

2 1 −2 1 2 −3
0 2 0 −2 0 2
1 0 −1 0 1 0


which has a rank equal to 3. Therefore, pair (A,B) is controllable.
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Solution to Problem 1

Recall(Lecture slide 48)

If (A,B) is controllable, then for almost any p× n real constant matrix K, the
matrix (A−BK) has only distinct eigenvalues and is, consequently cyclic.

Suppose K is arbitrarily selected as

K =

[
1 0.5 −1
−1 0.8 1

]
Then,

(A−BK) =

−1 1 0
0 −1 0
0 0 −1

−
2 1
0 2
1 0

[ 1 0.5 −1
−1 0.8 1

]

=

−2 −0.8 1
2 −2.6 −2
−1 −0.5 0


which can be written in the Jordan canonical form as

−1.6 0 0
0 −2 0
0 0 −1

.

Therefore, (A−BK) is cyclic.
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Cyclic Design

Problem 2

Given a plant defined by (A,B) pair,

A =

−1 1 0
3 2 0
2 0 4

 B =

2 1
0 2
1 0


Is A cyclic? Comment on the controllability of (A,Bv) pair, where v =

[
1
0

]
.
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Solution to Problem 2

Recall (Lecture Slide 43)

A matrix A is called cyclic whenever the Jordan form of A has one
and only Jordan block associated with each distinct eigenvalue.

Given,

A =

−1 1 0
3 2 0
2 0 4


The eigenvalues of A are {4, 2,−1}, forming 3 jordan blocks of
size (1× 1). Therefore, A is cyclic as the sufficient condition is
satisfied.
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Solution to Problem 2

Recall(Lecture slide 44)

If the n-dimensional p-input pair (A,B) is controllable and if A is
cyclic, then for almost any p× l vector v, the single-input pair
(A,Bv) is controllable.

The controllability matrix of pair (A,B) is given as

C =

2 1 −2 1 8 6
0 2 6 7 6 17
1 0 8 2 28 10


which has a rank = 3. Since pair (A,B) is controllable and A is
cyclic, it implies that (A,Bv) is also controllable.
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Solution to Problem 2

Numerically verifying the claim, we have the controllability matrix

of pair (A,Bv), where v =

[
1
0

]
, equal to

2 −2 8
0 6 6
1 8 28


which also has a rank = 3.
Similarly, this theorem can also be verified for other values of v.
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State Feedback Design for Multi-Input system

Problem 3

Let

A =


0 1 0 0
0 0 1 0
−3 1 2 3
2 1 0 0

 , B =


0 0
0 0
1 2
0 2


Find two different constant matrices K such that (A−BK) has
eigenvalues −4± 3j and −5± 4j.
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Solution to Problem 3

Given,

A =


0 1 0 0
0 0 1 0
−3 1 2 3
2 1 0 0

 , B =


0 0
0 0
1 2
0 2


Calculating the Controllability matrix of pair (A,B)

C =


0 0 0 0 1 2 2 10
0 0 1 2 2 10 5 22
1 2 2 10 5 22 12 54
0 2 0 0 1 2 4 14


which has a rank= 4. Therefore the pair (A,B) is controllable.
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Solution to Problem 3

The Jordan form of A matrix is then given as
0.3215− 1.2581i 0 0 0

0 0.3215 + 1.2581i 0 0
0 0 −1.3262 0
0 0 0 2.6833


Since all the Jordan blocks are of size 1× 1, A is cyclic. Arbitrarily

selecting v as

[
1
2

]
, we can calculate the controllability matrix of

pair (A,Bv) to find that it is also a controllable pair (having rank
= 4).

We can now proceed forward to design the state feedback
controller for the reduced single-input system (A,Bv).
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Solution to Problem 3

The state feedback gain vector (k) for system defined by (A,Bv)
for eigenvalues −4± 3j and −5± 4j, calculated by eigenvalue
placement method (equivalent to using place command in
MATLAB) is [

90.7152 10.5868 6.0939 −2.6174
]

Then, the overall state feedback for the multi-input system is
u(t) = vu′(t), where u′(t) = −kx(t).
The gain matrix becomes

K1 = vk =

[
1
2

] [
90.7152 10.5868 6.0939 −2.6174

]
=⇒ K1 =

[
90.7152 10.5868 6.0939 −2.6174
181.4304 21.1735 12.1878 −5.2348

]
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Solution to Problem 3

Selecting another arbitrary value of v as

[
0.8
−1

]
, the state feedback

gain vector (k) for the same eigenvalues become:[
−168.9968− 62.8041− 13.2899− 2.0261

]
and the multi-input system’s gain matrix becomes

K2 = vk =

[
0.8
−1

] [
−168.9968− 62.8041− 13.2899− 2.0261

]
=⇒ K2 =

[
−135.1975 −50.2433 −10.6319 −1.6209
168.9968 62.8041 13.2899 2.0261

]
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State Feedback and Disturbance Rejection

Problem 4

Consider the system

A =

[
−10 1
−0.02 −2

]
, b =

[
0
2

]
, c =

[
1 0

]
(a) Design a controller such that the desired eigenvalues are

located at s = −5± j and the output tracks a unit step input,
i.e. r = 1.

(b) Plot the step response of the system under the effect of an
external step disturbance (w) as in

ẋ = Ax + bu + bw
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Solution to Problem 4

(a) For the system

A =

[
−10 1
−0.02 −2

]
, b =

[
0
2

]
, c =

[
1 0

]
Firstly, we calculate the desired feedback gains for eigenvalues at
s = −5± j.

The characteristic equation of the closed-loop state feedback system
becomes

|sI −A+ bk| = 0∣∣∣∣[s+ 10 −1
0.02 s+ 2

]
+

[
0
2

] [
k1 k2

]∣∣∣∣ = 0∣∣∣∣ s+ 10 −1
0.02 + 2k1 s+ 2 + 2k2

∣∣∣∣ = 0

=⇒ s2 + s(12 + 2k2) + 19.98 + 20k2 − 2k1 = 0

The desired characteristic equation is

(s+ 5 + j)(s+ 5− j) = 0

s2 + 10s+ 26 = 0

Linear Dynamical Systems
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Solution to Problem 4

(a) Comparing the desired and actual characteristic equations, we get

k =
[
12.99 −1

]

Now, the transfer function of the closed-loop system becomes

ĝ(s) = c(sI −A− bk)−1b

=
[
1 0

]( [s+ 10 −1
0.02 s+ 2

]
−
[
0
2

] [
12.99 −1

])−1 [
0
2

]
=⇒ ĝ(s) =

2

s(s− 10) + 26

The steady state value of output y(t) = ĝ(0) = 1
13

.

Since ĝ(0) 6= (r(t) = 1), we will use p (feedforward gain) equal to
1

ĝ(0)
= 13 to make the output track the unit step input (r = 1).
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Solution to Problem 4

(a) Consequently, the unit step response becomes:
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Solution to Problem 4

(b) Adding a step disturbance at t = 4 secs to the system, the
step response becomes

It is evident from the step response that the state feedback control
is unable to track the reference(r = 1) due to the effect of this
external disturbance.
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State Feedback and Disturbance Rejection

Problem 4, continued

(c) Design a robust controller to reject the effect of disturbances.
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Solution to Problem 4

Recall (Lecture Slides 29)

In the above closed-loop control design, the output y will track
asymptotically and robustly any step reference input r(t) = a and
reject any step disturbance with unknown magnitude.
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Solution to Problem 4

(c) Adding an integral control action to the closed-loop system,
the (A, b) pair becomes,

Ā =

[
A 0
−c 0

]
, B̄ =

[
b
0

]
Again, calculating the feedback gain vector kfb =

[
k ka

]
, we

get [
12.99 2 −78

]
where the last element represents the integral gain ka of the
controller.

Linear Dynamical Systems



23

Solution to Problem 4

(c) The step response now becomes,

which clearly shows that the state feedback control with integral
action is capable of disturbance rejection.
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Feedback Invariant of Nonlinear system

Problem 5

Consider the non-linear system

ẋ = f(x, u), x ∈ Rn, u ∈ Rk (NLS)

and continuously differentiable function V : Rn → R with
V (0) = 0. Verify that the functional

H(x(·), u(·)) , −
∫ ∞

0

∂V (x(t))

∂x
f (x(t), u(t)) dt

is a feedback invariant as long as limt→∞ x(t) = 0.

1Hespanha Exercise 20.1
Linear Dynamical Systems



25

Solution to Problem 5

Recall!

Recall from the lecture slide 56 , that a functional H (x(·), u(·)) that involves
system’s input and state is a feedback invariant for a given dynamical system if
when computed along a solution to the system, its value depends only on the
initial condition and not on the specific input signal.

Given

H (x(·), u(·)) = −
∫ ∞
0

∂V (x(t)

∂x
f (x(t), u(t)) dt

The derivative of V along the trajectories of (NLS) denoted by V̇ (x), is given
by

V̇ (x) =

n∑
i=1

∂V

∂xi
ẋi =

n∑
i=1

∂V

∂xi
fi(x)

=
[

∂V
∂x1

∂V
∂x2

· · · ∂V
∂xn

]
f1(x)
f2(x)

...
fn(x)

 =
∂V

∂x
f(x)

The derivative of V along the trajectories of a system is dependent on the
system’s equation.
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Solution to Problem 5

Consider

H (x(·), u(·)) = −
∫ ∞

0

∂V (x(t))

∂x
f (x(t), u(t)) dt

= −
∫ ∞

0
V̇ (x(t))dt

= −
(
V (x(∞))− V (x(0))

)
= V (x(0)) as long as lim

t→∞
x(t) = 0

Since H (x(·), u(·)) depends only on the initial state of the system,
it is a feedback invariant.
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Solution to Problem 5
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Linear Quadratic Regulator(LQR)

Problem 6

Given a system

ẋ1(t) = x2(t), x1(0) = 5

ẋ2(t) = −2x1(t) + 5x2(t) + u(t), x2(0) = 10

and the performance index (PI)

J =
1

2

∫ ∞

0

[
2x21(t) + 6x1(t)x2(t) + 5x22(t) + 0.25u2(t)

]
dt

obtain the feedback control law. Compare the performance for
different input and state weighting matrices.

1Naidu, Optimal Control Systems, Example 3.1
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Solution to Problem 6

From the given system and performance index, the various quantities are

A =

[
0 1
−2 5

]
; b =

[
0
1

]
;Q =

[
2 3
3 5

]
; r =

1

4
; t0 = 0.

It is easy to check that the system is unstable.

Let P be the 2× 2 symmetric
matrix

P =

[
p11 p12
p21 p22

]
Then, the optimal control is given by

u∗ = −r−1b′Px∗

where P is the solution of the algebraic Riccati equation

A′P + PA+Q− Pbr−1b′P = 0

This equation can be solved using the care command in MATLAB.
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Solution to Problem 6

The next simulation results show the variation of the trajectories
for different weighting matrices

1 Q1 = Q =

[
2 3
3 5

]
, r1 = r = 0.25 and

2 Q2 = 4Q and r2 = r = 0.25.
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Solution to Problem 6

Simulations
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Figure: Input trajectories (u1 for Q1 and r1 and u2 for Q2 and r2)
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Solution to Problem 6

Simulations
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Figure: State and trajectories (x1
1 and x1

2 for Q1, r1 and x2
1 and x2

2 for
Q2 and r2)
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