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Linear Dynamical Systems
Week 1- State-space solutions and realizations
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Outline of Week 1

1 Introduction
2 State-space solution of linear systems

Linear Time Varying (LTV) systems
Linear Time Invariant (LTI) systems

3 Equivalent representation of linear state-space systems

4 Realization problem and its solution
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Dynamical System

  

Input Output
Dynamical
system

Continuous-Time (CT): accepts CT signals and generates CT
signals
Discrete-Time (DT): accepts DT signals and generates DT signals
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Dynamical System

Causality:

1 If the current output depends on past and current input(s)
but not on future input(s)

2 a necessary condition for a system to be built in the real world

3 “Current Output of a causal system is affected by past input”

Question

How far back in time will the past input affects the current output?

Answer

u(t),−∞ < t
S−−−−→ y(t)

However, tracking u(t) from t = −∞ is very inconvenient.

the concept of state deals with this problem!
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Dynamical System

State:

1 The state x(t0) of a system at time t0 is the information at t0
that, together with the input u(t), for t > t0 determines
uniquely the output y(t)∀t > t0

2 no need to know the input u(t) applied before t0 in
determining the output y(t) after t0.

3 the state summarizes the effect of past input on future output

Linear Dynamical Systems
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Example

Consider the electrical circuit

  

    

If we know the voltages x1(t0) and x2(t0) across the two
capacitors and the current x3(t0) passing through the inductor...
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Example: Continued...

...then for any input applied on and after t0 you can determine
uniquely the output for t ≥ t0

1 State Variables x =

x1

x2

x3

 ∈ R3

2 S : using the state at t0

x(t0)

u(t), t0 ≤ t

}
S−−−−→ y(t), t ≥ t0
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Dynamical Systems: Linearity

S is linear if (Superposition Property)

α1x1(t0) + α2x2(t0)

α1u1(t) + α2u2(t), t ≥ t0

}
S−−−−→ α1y1(t) + α2y2(t), t ≥ t0

for any real constants α1, α2

Based on the input-state-output variables, two types of responses can
now be defined

1 Zero Input Response:

x(t0)

u(t) = 0, t ≥ t0

}
S−−−−→ yzi , t ≥ t0

2 Zero State Response:

x(t0) = 0

u(t), t ≥ t0

}
S−−−−→ yzs(t), t ≥ t0

Linear Dynamical Systems
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Response of linear systems

The additivity property implies that:

output due to

{
x(t0)

u(t), t ≥ 0

}
= output due to

{
x(t0)

u(t) = 0, t ≥ 0

}

+ output due to

{
x(t0) = 0

u(t), t ≥ 0

}

i.e.,

y(t) = yzi(t) + yzs(t)

Linear Dynamical Systems
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Zero-state response of linear systems

Consider the SISO system.
Let δ∆(t− t1) be the pulse as shown in the figure, then every input
can be approximated by a sequence of the pulses

CAUSALITY, TIME INVARIANCE, AND LINEARITY 25

(a) Pulse (b) Time-shifted
pulse

(c) Step approximation

Figure 3.3. Step approximation to a continuous-time signal.

3.3 IMPULSE RESPONSE

Consider a linear SISO system and let δ" denote the unit-area pulse signal δ" in Fig-
ure 3.3(a). Using δ", we can write an approximation to an input signal u : [0, ∞) →
R as in Figure 3.3(c),

u"(t) :=
∞∑

k=0
u(k")" δ"(t −k"), ∀t ≥ 0. (3.1)

For each τ ≥ 0, let g"(t, τ ), t ≥ 0 be an output corresponding to the input δ"(t−τ ):Note. This assumes
we can choose outputs
g"(t, τ ) for which the
series (3.2) converges.

δ"(t −τ ) ! g"(t, τ ).

Because of (3.1) and linearity

u" ! y"(t) :=
∞∑

k=0
" u(k")g"(t, k"), ∀t ≥ 0. (3.2)

Moreover, since u" → u as " → 0, we conclude that

Note 2. The last
equality in (3.3) is a
consequence of the
definition of the
Riemann integral. It
implicitly assumes
that the limit in (3.4)
and the integral in
(3.3) both
exist. !p. 29 u ! y(t) = lim

"→0
y"(t) = lim

"→0

∞∑

k=0
" u(k")g"(t, k")

=
∫ ∞

0
u(τ )g(t, τ )dτ, ∀t ≥ 0 (3.3)

is an output corresponding to u, where g is defined by

g(t, τ ) = lim
"→0

g"(t, τ ). (3.4)

The function g(t, τ ) can be viewed as the output at time t , corresponding to an input
pulse of zero length but unit area (a Dirac pulse) applied at time τ .

For MIMO systems this generalizes to the following result.

Theorem 3.2 (Impulse response). Consider a continuous-time linear system with k
inputs and m outputs. There exists a matrix-valued signal G(t, τ ) ∈ Rm×k such that
for every input u, a corresponding output is given by

Notation. This output
has the special
property that it is
equal to zero when
u = 0, it is called a
forced or zero-state
response. The latter
terminology will
become clear in
Lecture 4.

u ! y(t) =
∫ ∞

0
G(t, τ )u(τ )dτ, ∀t ≥ 0. (3.5)
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The input can be expressed symbolically as :

u(t) ≈
∑
i

u(ti)δ∆(t− ti)∆
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Zero-state response of linear systems

Let g∆(t, ti) be the output at time t excited by the pulse
u(t) = δ∆(t− ti) applied at time ti then:

δ∆(t− ti) S−−−−→ g∆(t, ti)

u(ti)δ∆(t− ti)∆ S−−−−→ g∆(t, ti)u(ti)∆ (homogeneity)∑
i

u(ti)δ∆(t− ti)∆ S−−−−→
∑
i

g∆(t, ti)u(ti)∆ (additivity)

Thus,

y(t) ≈
∑
i

g∆(t, ti)u(ti)∆
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Zero-state response of linear systems

y(t) ≈
∑
i

g∆(t, ti)u(ti)∆

If ∆ approaches zero, then δ∆(t− ti) becomes an impulse at t = ti i.e.
δ(t− ti) and the corresponding output will be denoted by g(t, ti)

As ∆ approaches zero,

∆ can be written as dτ
discrete ti becomes a continuous and can be replaced by τ
summation becomes an integration
approximation becomes an equality

y(t) = lim
∆→0

∑
i

g∆(t, ti)u(ti)∆ =

∫ ∞
−∞

g(t, τ)u(τ)dτ

where t is the time at which the output is observed; τ is the time at which the impulse

input is applied; and g(t, τ) is the impulse response

1
The last equation is a consequence of the definition of the Riemann integral, i.e.∫∞

−∞ f(τ)dτ = lim
∆→0

∑
i f(k∆)∆. It implicitly assumes that the limit and the integral both exist.
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Zero-state response of linear systems
If a system is causal, the output will not appear before the input is applied.
Thus

Causal ⇐⇒ g(t, τ) = 0 for t < τ =⇒ y(t) =

∫ t

t0

g(t, τ)u(τ)dτ

⇐=
valid for
LTI and LTV

Theorem (Impulse Response)

Consider a continuous-time linear system with m inputs and p outputs.
There exists a matrix-valued signal G(t, τ) ∈ Rp×m such that for every
input u a corresponding output is given by

y(t) =

∫ t

t0

G(t, τ)u(τ)dτ ∀t ≥ t0

If the system is time-invariant as well, then

G(t, τ) = G(t+ T, τ + T ) = G(t− τ, 0) = G(t− τ) for any T

and assuming t0 = 0

y(t) =

∫ t

0

G(t− τ)u(τ)dτ , (G ? u)(t) ∀t ≥ 0

where ? denotes the convolution operator.
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Zero-state response of linear systems

For Discrete-time systems:

Theorem (Impulse Response)

Consider a discrete-time linear system with m inputs and p
outputs. There exists a matrix valued function G(t, τ) ∈ Rp×m
such that for every input u a corresponding output is given by

y(t) =

t∑
t0

G(t, τ)u(τ); ∀t ≥ t0, t, τ ∈ N

If the system is time-invariant as well, then the time-shifting
property holds and assuming t0 = 0

y(t) =
t∑
0

G(t− τ)u(τ)dτ , (G ? u)(t) ∀t ∈ N ≥ 0

where ? denotes the convolution operator.
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Zero-state response of linear systems: Transfer Function

Particularly, for computing the zero-state response of LTI systems, frequency
domain tools offers a great flexibility.

The continuous-time linear system has an output

y(t) =

∫ ∞

0

G(t− τ)u(τ)dτ ; ∀t ≥ 0

Taking its Laplace transform, one obtains

ŷ(s) =

∫ ∞

0

∫ ∞

0

e−stG(t− τ)u(τ)dτdt

Changing the order of integration and rearranging integrals, one gets

ŷ(s) =

∫ ∞

0

(∫ ∞

0

e−s(t−τ)G(t− τ)dt

)
e−sτu(τ)dτ (1)

But because of causality,∫ ∞

0

e−s(t−τ)G(t− τ)dt =

∫ ∞

−τ
e−st̄G(t̄)dt̄ =

∫ ∞

0

e−st̄G(t̄)dt̄ = Ĝ(s) (2)

Substituting (2) into (1) and removing Ĝ(s) from the integral, we conclude
that

ŷ(s) =

∫ ∞

0

Ĝ(s)e−sτu(τ)dτ = Ĝ(s)

∫ ∞

0

e−sτu(τ)dτ = Ĝ(s)û(s)
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that

ŷ(s) =

∫ ∞

0
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Zero-state response of linear systems: Transfer Function

Definition (Transfer function)

The transfer function of a CT causal LTI system is the Laplace
transform

Ĝ(s) = L[G(t)] =

∫ ∞
0

e−stG(t)dt, s ∈ C

of an impulse response G(t2, t1) = G(t2 − t1),∀t2 ≥ t1 ≥ 0.

Definition (Transfer function)

The transfer function of a DT causal LTI system is the Z-transform

Ĝ(z) = Z[G(t)] =
∞∑
t=0

z−tG(t), z ∈ C

of an impulse response G(t2, t1) = G(t2 − t1),∀t2 ≥ t1 ≥ 0.

Linear Dynamical Systems
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State-space systems

State-space representation of linear systems
Using the state variable, as introduced earlier, a continuous-time
state-space linear system is represented by the following two equations:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

}
, LTV (3)

where

u : [0,∞)→ Rm, x : [0,∞)→ Rn, y : [0,∞)→ Rp

are called the input, state, and output signals of the system and the
time-varying matrices (A,B,C,D)(t) are of appropriate dimensions.

Note:

The first equation of (3) is called the state equation and the second
equation of (3) is called the output equation.

when all the matrices (A,B,C,D)(t) are constant ∀t ≥ 0, the
system is LTI
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Interconnections

Interconnections of block diagrams are especially useful to
highlight special structures in state-space equations.

  

Figure: Negative feedback interconnection

Given P1 : z 7→ y ẋ = A1x+B1z, y1 = C1x+D1z

Compute S : u 7→ y

ẋ = (A1 −B1(I +D1)−1C1)x + B1(I − (I +D1)−1D1)u

y = (I +D1)−1C1x + (I +D1)−1D1u

———- Show By Yourself! ———-
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Impulse Response and Transfer function for LTI system

Consider the continuous-time LTI system

ẋ = Ax+Bu, y = Cx+Du,

Taking the Laplace transform of both sides, we obtain

sx̂(s)− x(0) = Ax̂(s) +Bû(s), ŷ(s) = Cx̂(s) +Dû(s)

Solving for x̂(s), we obtain

x̂(s) = (sI −A)−1Bû(s) + (sI −A)−1 x(0)

from which we conclude that

ŷ(s) = Ψ̂(s)x(0)+Ĝ(s)û(s) where
Ψ̂(s) = C (sI −A)−1

Ĝ(s) = C (sI −A)−1B +D

Coming back to the time domain by applying inverse Laplace
transforms, we obtain

y(t) = Ψ(t)x(0) + (G ? u)(t) where
G(t) = L−1[Ĝ(s)],

Ψ(t) = L−1[Ψ̂(s)].
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ŷ(s) = Ψ̂(s)x(0)+Ĝ(s)û(s) where
Ψ̂(s) = C (sI −A)−1

Ĝ(s) = C (sI −A)−1B +D

Coming back to the time domain by applying inverse Laplace
transforms, we obtain

y(t) = Ψ(t)x(0) + (G ? u)(t) where
G(t) = L−1[Ĝ(s)],

Ψ(t) = L−1[Ψ̂(s)].
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Impulse Response and Transfer function for LTI system

Theorem (In continuous-time domain)

The impulse response and transfer function of the CLTI system are given by:

G(t) = L
−1 [C(sI −A)−1B +D

]
and Ĝ(s) = C (sI −A)−1 B +D

respectively Moreover, the response y(t) = (G ? u)(t) corresponds to the zero
initial condition x(0) = 0.

Consider the discrete-time LTI system

x+ = Ax+Bu, y = Cx+Du

Theorem (In discrete-time domain)

The impulse response and transfer function of the DLTI system are given by:

G(t) = Z
−1 [C(zI −A)−1B +D

]
and Ĝ(z) = C (zI −A)−1 B +D

respectively Moreover, the response y(t) = (G ? u)(t) corresponds to the zero
initial condition x(0) = 0.
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Impulse Response and Transfer function

Laplace transforms can be used for solving the LTI state-space
systems, however for time-varying linear systems, this tool cannot
be used

1 The Laplace transform of G(t, τ) is a function of two variables

2 L [A(t)x(t)] 6= L[A(t)]L[x(t)]

First we will see the solution of LTV systems and then tailor it for
LTI systems
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Week 1 - Lecture 2

In the last lecture, we discussed

Key properties of dynamical systems and the physical
significance of the state

Zero-state response of linear (TI and TV) systems in (CT and
DT ) -domain

Zero-state response of LTI system in frequency domain and its
relation with the state-space representation
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Solution to homogeneous LTV systems

We start by considering the solution to a CTLTV system with a
given initial condition but zero input

ẋ(t) = A(t)x(t); x(t0) = x0 ∈ Rn; t ≥ 0 (4)

A key property of homogeneous systems is that the map from the initial
condition x(t0) = x0 ∈ Rn to the solution x(t) ∈ Rn at a given time
t ≥ 0 is always linear.

Theorem (Peano-Baker Series)

The unique solution to (4) is given by x(t) = φ(t, t0)x0, x0 ∈ Rn, t ≥ 0
where

φ(t, t0) = I +

∫ t

t0

A(τ1)dτ1 +

∫ t

t0

(
A(τ1)

∫ τ1

t0

A(τ2)dτ2

)
dτ1+∫ t

t0

A(τ1)

∫ τ1

t0

A(τ2)

∫ τ2

t0

A(τ3)dτ3dτ2dτ1 + . . .

The n× n matrix φ(t, t0) is called the state transition matrix.
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Solution to homogeneous LTV systems

Properties of the state-transition matrix

1 For every t0 ≥ 0, φ(t, t0) is the unique solution to

d

dt
φ(t, t0) = A(t)φ(t, t0) φ(t0, t0) = I, t ≥ 0.

2 For every t, s, τ ≥ 0,

φ(t, s)φ(s, τ) = φ(t, τ)

42 LECTURE 5

Properties (State transition matrix).

P5.1 For every t0 ≥ 0, !(t, t0) is the unique solution to

d
dt

!(t, t0) = A(t)!(t, t0), !(t0, t0) = I, t ≥ 0. (5.4)

Theorem 5.1 is a direct consequence of this property because (5.1) follows
from (5.4) and (5.2).

Proof. For t = t0, !(t0, t0) = I , because all the integrals in (5.3) are equal to
zero. Taking the derivative of each side of (5.3) with respect to time, we obtain

d
dt

!(t, t0) = A(t) + A(t)
∫ t

t0
A(s2)ds2

+ A(t)
∫ t

t0
A(s2)

∫ s2

t0
A(s3)ds3ds2 + · · ·

= A(t)!(t, t0).

This proves that !(t, t0) satisfies (5.4).

Proving that the series actually converges for all t, t0 ≥ 0 and that the solution
is unique is beyond the scope of this course. Both results follow from gen-
eral properties of solutions to ordinary differential equations and are a conse-
quence of the fact that ! "→ A(t)! is a globally Lipschitz map for every fixed
t [1, Chapter 1].

P5.2 For every fixed t0 ≥ 0, the i th column of !(t, t0) is the unique solution to

ẋ(t) = A(t)x(t), x(t0) = ei , t ≥ 0,

where ei is the i th vector of the canonical basis of Rn .

This is just a restatement of Property P5.1 above.

P5.3 For every t, s, τ ≥ 0,

!(t, s)!(s, τ ) = !(t, τ ). (5.5)

This is called the semigroup property.

Figure 5.1. Semigroup property.
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3 For every t, τ ≥ 0, φ(t, τ) is non-singular and φ(t, τ)−1 = φ(τ, t)
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Solution to homogeneous LTV systems

Properties of the state-transition matrix

1 For every t0 ≥ 0, φ(t, t0) is the unique solution to

d

dt
φ(t, t0) = A(t)φ(t, t0) φ(t0, t0) = I, t ≥ 0.

2 For every t, s, τ ≥ 0,

φ(t, s)φ(s, τ) = φ(t, τ)

42 LECTURE 5

Properties (State transition matrix).
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Figure 5.1. Semigroup property.
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Computation of φ(t, t0)

Consider

ẋ = A(t)x (5)

where A ∈ Rn×n is a continuous function, then for every initial
state xi(t0) ∈ Rn, there exists a unique solution xi(t) ∈ Rn for
i = 1, 2, 3, . . . , n

1 Arrange these n solutions as X =
[
x1 x2 . . . xn

]
a square

matrix of order n. Because every xi satisfies (5), we have

Ẋ(t) = A(t)X(t)

2 If X(t0) is non-singular or the n initial states are linearly
independent, then X(t) is called a fundamental matrix of (5)

Question

1 Is X(t) unique?

2 Is X(t) non-singular for all t ?
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Computation of φ(t, t0)

Example: Consider the homogeneous equation

ẋ1 =

[
0 0
t 0

]
x(t)

or ẋ1(t) = 0, ẋ2 = tx1(t)

the solution of ẋ1(t) = 0 for t0 = 0 is x1(t) = x1(0);

the solution of ẋ2 = tx1 = tx1(0) is

x2(t) =

∫ t

0

τx1(0)dτ + x2(0) = 0.5t2x1(0) + x2(0)

Thus

x1(0) =

[
x1(0)
x2(0)

]
=

[
1
0

]

=⇒
[

1
0.5t2

]
= x1(t)

and

x2(0) =

[
x1(0)
x2(0)

]
=

[
1
2

]

=⇒
[

1
0.5t2 + 2

]
= x2(t)

The two initial states are linearly independent.

Thus

X(t) =

[
1 1

0.5t2 0.5t2 + 2

]

is a fundamental matrix.
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Computation of φ(t, t0)

Theorem

Let X(t) be a fundamental matrix of ẋ = A(t)x. Then

φ(t, t0) = X(t)X−1(t0).

Because X(t) is non-singular for all t, its inverse is well defined

Revisit the last example:

X(t) =

[
1 1

0.5t2 0.5t2 + 2

]
The state-transition matrix is given by

φ(t, t0) =

[
1 0

0.5(t2 − t20) 1

]
Verify the three earlier listed properties of φ(t, t0).
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Solution of non-homogeneous LTV systems

We now go back to the original non-homogeneous LTV system

ẋ = A(t)x+B(t)u

y = C(t)x+D(t)u
, x(t0) = x0 ∈ Rn, t ≥ 0 (6)

Theorem (Variation of constants)

The unique solution to (6) is given by

x(t) = φ(t, t0)x0 +

∫ t

t0

φ(t, τ)B(τ)u(τ)dτ (7)

y(t) = C(t)φ(t, t0)x0 + C(t)

∫ t

t0

φ(t, τ)B(τ)u(τ)dτ +D(t)u(t) (8)

where φ(t, t0) is the state-transition matrix.

Equation (7) is known as the variation of constants formula.

Homogeneous response: yzi(t) ≡ yh(t) = C(t)φ(t, t0)x0

Forced response: yzs(t) ≡ yf (t) = C(t)
∫ t
t0
φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)
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To verify (7) is a solution to (6), note that at t = t0, the integral in (7)
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ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u
, x(t0) = x0 2 Rn, t � 0 (6)

Theorem (Variation of constants)

The unique solution to (6) is given by

x(t) = �(t, t0)x0 +

Z t

t0

�(t, ⌧)B(⌧)u(⌧)d⌧ (7)

y(t) = C(t)�(t, t0)x0 +

Z t

t0

C(t)�(t, ⌧)B(⌧)u(⌧)d⌧ + D(t)u(t) (8)

where �(t, t0) is the state-transition matrix.

Equation (7) is known as the variation of constants formula.

Homogeneous response: yzi(t) ⌘ yh(t) = C(t)�(t, t0)x0

Forced response: yzs(t) ⌘ yf (t) =
R t

t0
C(t)�(t, ⌧)B(⌧)u(⌧)d⌧ + D(t)u(t)

Linear Dynamical Systems

Proof

To verify (7) is a solution to (6), note that at t = t0, the integral in (7)
disappears and we get x(t0) = x0.

Taking the derivative of (7), we obtain
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Solution of non-homogeneous LTV systems: Facts

Relation between input-output and state-space descriptions:
The zero-state response is given as

yzs(t) = C(t)

∫ t

t0

φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

which can also be written as

yzs(t) =

∫ t

t0

[C(t)φ(t, τ)B(τ) +D(t)δ(t− τ)]u(τ)dτ

and is equivalent to

yzs(t) =

∫ t

t0

G(t, τ)u(τ)dτ

implying

G(t, τ) , C(t)φ(t, τ)B(τ) +D(t)δ(t− τ)
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Solution of non-homogeneous LTV systems: Facts

Computing φ(t, t0) is generally difficult

Recall that the solution

x(t) = φ(t, t0)x0 +

∫ t

t0

φ(t, τ)B(τ)u(τ)dτ

hinge on solving

d

dt
φ(t, t0) = A(t)φ(t, t0)

If A(t) is triangular such as[
ẋ1(t)
ẋ2(t)

]
=

[
a11(t) 0
a21(t) a22(t)

] [
x1(t)
x2(t)

]
we can solve the scalar equation ẋ1(t) = a11(t) and then substitute it into

ẋ2(t) = a22(t)x2(t) + a21(t)x1(t)

Because x1(t) has been solved, the preceding scalar equation can be
solved for x2(t). This is what we did in the example on slide# 26.
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Solution of homogeneous DTLTV systems

The (unique) solution to the homogeneous discrete-time linear
time-varying system

x(t+ 1) = A(t)x(t), x(t0) = x0 ∈ Rn, t ∈ N

is given by

x(t) = φ(t, t0)x0, x(t0) = x0 ∈ Rn, t ≥ t0

where

φ(t, t0) =

{
I, for t = t0
A(t−1)A(t−2) . . . A(t0 + 1)A(t0), for t > t0

}
is called the (discrete-time) state transition matrix
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Solution of homogeneous DTLTV systems

Note

Since the state equation is algebraic, it can be computed recursively
for a given initial state.

Because the fundamental matrix in the CT case is non-singular for
all t, φ(t, t0) is defined for t ≥ t0 and t < t0.

In the DT case, the A−matrix can be singular. Thus the inverse of
φ(t, t0) may not be defined. Consequently, φ(t, t0) is defined only
for t ≥ t0.

Properties of φ(t, t0)

1 For every t0 ≥ 0, φ(t, t0) is the unique solution to

φ(t+ 1, t0) = A(t)φ(t, t0), φ(t0, t0) = I, t ≥ t0
2 For every t ≥ s ≥ τ ≥ 0,

φ(t, s)φ(s, τ) = φ(t, τ)

3 φ(t, t0) may be singular
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Solution of non-homogeneous DTLTV systems

Theorem (Variation of constants)

The unique solution to

x(t+ 1) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

with x(t0) = x0 ∈ Rn, t ∈ N is given by

x(t) = φ(t, t0)x0 +
t−1∑
τ=t0

φ(t, τ + 1)B(τ)u(τ), ∀t ≥ t0

y(t) = C(t)φ(t, t0)x0 + C(t)

t−1∑
τ=t0

φ(t, τ + 1)B(τ)u(τ) +D(t)u(t),∀t ≥ t0

where φ(t, t0) is the discrete-time state transition matrix.

———-Show by yourself———-
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Solution of non-homogeneous LTV systems: Facts

Relation between input-output and state-space descriptions:
The zero-state response is given as

yzs(t) = C(t)

t−1∑
τ=t0

φ(t, τ + 1)B(τ)u(τ) +D(t)u(t),∀t ≥ t0

If we define φ(t, τ) = 0 for t < τ , then

yzs(t) =

t∑
τ=t0

[C(t)φ(t, τ + 1)B(τ) +D(τ)δ(t− τ)]u(τ)

where the impulse sequence δ(t− τ) equals 1 if t = τ and 0 if
t 6= τ . Therefore,

G(t, τ) , C(t)φ(t, τ + 1)B(τ) +D(τ)δ(t− τ)

for t ≥ τ .
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[C(t)φ(t, τ + 1)B(τ) +D(τ)δ(t− τ)]u(τ)

where the impulse sequence δ(t− τ) equals 1 if t = τ and 0 if
t 6= τ .

Therefore,

G(t, τ) , C(t)φ(t, τ + 1)B(τ) +D(τ)δ(t− τ)

for t ≥ τ .
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Week 1 - Lecture 3

In the last lecture, we discussed

solution of LTV state-space system in CT

solution of LTV state-space system in DT

properties and implications of these solution
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Solution to LTI systems: Homogeneous case

By applying the earlier results to the homogeneous time-invariant
systems

ẋ = Ax, x(t0) = x0 ∈ Rn, t ≥ 0 (9)

we have the following result.

Theorem (Peano-Baker Series)

The unique solution to (9) is given by x(t) = φ(t, t0)x0, x0 ∈ Rn, t ≥ 0 where

φ(t, t0) = I +

∫ t
t0

Adτ1 +

∫ t
t0

(
A

∫ τ1
t0

Adτ2

)
dτ1 +

∫ t
t0

A

∫ τ1
t0

A

∫ τ2
t0

Adτ3dτ2dτ1 + . . .

The n× n matrix φ(t, t0) is called the state transition matrix.

Since∫ t

t0

∫ τ1

t0

· · ·
∫ τk−2

t0

∫ τk−1

t0

Akdτkdτk−1 · · · dτ2dτ1 =
(t− t0)k

k!
Ak

we conclude that

φ(t, t0) =

∞∑
k=0

(t− t0)k

k!
Ak.
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Solution to LTI systems: Homogeneous case

φ(t, t0) =

∞∑
k=0

(t− t0)k

k!
Ak (10)

Define the matrix exponential of a given n× n matrix M by

eM =
∞∑
k=0

1

k!
Mk

which allows us to rewrite (10) as

φ(t, t0) = eA(t−t0)
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Solution to LTI systems: Non-homogeneous case

From the variation of constants formula, the solution to

ẋ = Ax+Bu

y = Cx+Du
, x(t0) = x0 ∈ Rn, t ≥ t0

is given by

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)B(τ)u(τ)dτ,

y(t) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−τ)B(τ)u(τ)dτ
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Solution to LTI systems: Non-homogeneous case
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Properties of the matrix exponential

1 The function eAt is the unique solution to

d

dt
eAt = AeAt, eA.0 = I, t ≥ 0

2 For every t, τ ∈ R,

eAteAτ = eA(t+τ)

In general, eAteBt 6= e(A+B)t

3 For every t ∈ R, eAt is nonsingular and(
eAt
)−1

= e−At

4 For every n× n matrix A,

AeAt = eAtA, ∀t ∈ R
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Computation of matrix exponential

eAt is uniquely defined by

d

dt
eAt = AeAt, eA.0 = I, t ≥ 0

Taking the Laplace Transform, we conclude that

L

[
d

dt
eAt
]

= L
[
AeAt

]
sêAt − eAt

∣∣∣
t=0

= AêAt

(sI −A)êAt = I

êAt = (sI −A)−1

Therefore,
eAt = L−1

[
(sI −A)−1

]
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Importance of the Characteristic polynomial

(sI −A)−1 =
1

det(sI −A)
[adj(sI −A)]′

where

det(sI −A) = (s− λ1)m1(s− λ2)m2 · · · (s− λk)mk
1 is the characteristic polynomial of A, whose roots λi are the

eigenvalues of A and,

2 adj(sI −A) is the adjoint matrix of sI −A whose entries are
polynomials in s of degree (n− 1) or lower

To compute L−1[(sI −A)−1], we need to perform the partial
fraction expansion.
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Importance of the Characteristic polynomial

These are of the forms

α1s
n−1 + α2s

n−2 + · · ·+ αn−1s+ αn
(s− λ1)m1(s− λ2)m2 · · · (s− λk)mk

=
a11

s− λ1
+

a12

(s− λ1)2
+ · · ·+ a1m1

(s− λ1)m1
+ · · ·

+
ak1

(s− λk)
+ · · ·+ akmk

(s− λk)mk

The inverse Laplace transform is then given by

L
−1

[
α1s

n−1 + · · ·+ αn−1s+ αn
(s− λ1)m1 · · · (s− λk)mk

]

= a11e
λ1t + · · ·+ a1m1t

m1−1eλ1t + · · ·+ ak1e
λkt + · · ·+ akmk t

mk−1eλkt

Thus when all the eigenvalues λi of A have strictly negative real parts, all
entries of eAt converge to zero as t→∞, i.e., y(t) converges to the forced
response

yf (t) =

∫ t

t0

CeA(t−τ)Bu(τ)dτ +Du(t)
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Discretization

Consider the continuous-time state equation

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(11)

For discretization, since

ẋ(t) = lim
T→0

x(t+ T )− x(t)

T

we can approximate (11) as

x(t+ T ) = x(t) +Ax(t)T +Bu(t)T

If we compute x(t) and y(t) only at t = kT for k = 1, 2, . . ., then

x((k + 1)T ) = (I + TA)x(kT ) + TBu(kT )

y(kT ) = Cx(kT ) +Du(kT )

This discretization is easy to carry out but yields the least accurate
results for the same T .
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ẋ(t) = lim
T→0

x(t+ T )− x(t)

T

we can approximate (11) as

x(t+ T ) = x(t) +Ax(t)T +Bu(t)T

If we compute x(t) and y(t) only at t = kT for k = 1, 2, . . ., then

x((k + 1)T ) = (I + TA)x(kT ) + TBu(kT )

y(kT ) = Cx(kT ) +Du(kT )

This discretization is easy to carry out but yields the least accurate
results for the same T .

Linear Dynamical Systems



45

Discretization: Another method
Let

u(t) = u(kT ) , u[k], for kT ≤ t ≤ (k + 1)T (12)

for k = 0, 1, 2, . . .. This input changes values only at discrete-time instants.

Compute the solution of CT system at t = kT and t = (k + 1)T

x[k] , x(kT ) = eAkTx(0) +

∫ kT

0

eA(kT−τ)Bu(τ)dτ (13)

and

x[k + 1] , x((k + 1)T ) = eA(k+1)Tx(0) +

∫ (k+1)T

0

eA((k+1)T−τ)Bu(τ)dτ

= eAT
[
eAkTx(0) +

∫ kT

0

eA(kT−τ)Bu(τ)dτ

]

+

∫ (k+1)T

kT

eA(kT+T−τ)Bu(τ)dτ

Substituting (12) and (13) and introducing the new variable α = kT + T − τ ,
we get

x[k + 1] = eATx[k] +

(∫ T

0

eAαdα

)
Bu[k]

Linear Dynamical Systems
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Discretization: Another method

x[k + 1] = eAT x[k] +

(∫ T

0
eAαdα

)
Bu[k]

Thus,

x[k + 1] = Adx[k] +Bdu[k], y[k] = Cdx[k] +Ddu[k]

with

Ad = eAt Bd =

(∫ T

0

eAαdα

)
B Cd = C Dd = D

Computation of Bd:
Note that∫ T

0

(
I +Aτ +A2 τ

2

2!
+ · · ·

)
dτ = TI +

T 2

2!
A+

T 3

2!
A2 + · · ·

If A is nonsingular, then the series can be written as

A−1

(
TA+

T 2

2!
A2 +

T 3

2!
A3 + · · ·+ I − I

)
= A−1

(
eAT − I

)

Thus, we have

Bd = A−1(Ad − I)B

MATLAB code: [ad, bd] = c2d(a, b, T)
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Solution of Discrete-time Equations

Consider the discrete-time state-space equations

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]
, x(t0) = x0 ∈ Rn, k ≥ 0

Once x[0] and u[k], k = 0, 1, . . ., are given, the response can be
computed recursively from the equations.

x[1] = Ax[0] +Bu[0]

x[2] = Ax[1] +Bu[1] = A2x[0] +ABu[0] +Bu[1]

Proceeding forward, we can readily obtain, for k > 0,

x[k] = Akx[0] +
k−1∑
m=0

Ak−1−mBu[m]

y[k] = CAkx[0] +

k−1∑
m=0

CAk−1−mBu[m] +Du[k]

State transition matrix, φ[k, k0] = Ak−k0 ,∀k ≥ k0

Linear Dynamical Systems
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, x(t0) = x0 ∈ Rn, k ≥ 0

Once x[0] and u[k], k = 0, 1, . . ., are given, the response can be
computed recursively from the equations.

x[1] = Ax[0] +Bu[0]

x[2] = Ax[1] +Bu[1] = A2x[0] +ABu[0] +Bu[1]

Proceeding forward, we can readily obtain, for k > 0,

x[k] = Akx[0] +
k−1∑
m=0

Ak−1−mBu[m]

y[k] = CAkx[0] +

k−1∑
m=0

CAk−1−mBu[m] +Du[k]

State transition matrix, φ[k, k0] = Ak−k0 ,∀k ≥ k0

Linear Dynamical Systems



47

Solution of Discrete-time Equations

Consider the discrete-time state-space equations

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] +Du[k]
, x(t0) = x0 ∈ Rn, k ≥ 0

Once x[0] and u[k], k = 0, 1, . . ., are given, the response can be
computed recursively from the equations.

x[1] = Ax[0] +Bu[0]

x[2] = Ax[1] +Bu[1] = A2x[0] +ABu[0] +Bu[1]

Proceeding forward, we can readily obtain, for k > 0,

x[k] = Akx[0] +

k−1∑
m=0

Ak−1−mBu[m]

y[k] = CAkx[0] +

k−1∑
m=0

CAk−1−mBu[m] +Du[k]

State transition matrix, φ[k, k0] = Ak−k0 ,∀k ≥ k0

Linear Dynamical Systems



48

Computation of φ[k, k0]

The matrix power can be computed using Z-transforms.

Z
[
Ak+1

]
,
∞∑
k=0

z−kAk+1 = z

∞∑
k=0

z−(k+1)Ak+1 = z

( ∞∑
k=0

z−kAk − I
)

= z
(
Z
[
Ak
]
− I
)

Also, Z
[
Ak+1

]
= AZ

[
Ak
]
. Therefore

AÂk = z
(
Âk − I

)
⇔ (zI −A)Âk = zI ⇔ Âk = z(zI −A)−1

Taking inverse Z-transform, we obtain

Ak = Z−1
[
z(zI −A)−1

]
Now, when all eigenvalues of A have magnitude smaller than 1, all
entries of Ak will converge to zero as t→∞, which means that
the output will converge to the forced response.
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Week 1 - Lecture 4

In the last lecture, we discussed

Solution of LTI system both in CT and DT domain

Two methods of discretization

Importance of characteristic polynomial
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Equivalent state equations

Consider the network shown below:

  

    

  

    

State variable, x(t)
x1: Inductor current; x2: Capacitor voltage[

ẋ1

ẋ2

]
=

[
0 −1
1 −1

] [
x1

x2

]
+

[
1
0

]
u  

    

State variable, x̄(t)
x̄1, x̄2: Loop currents[

˙̄x1
˙̄x2

]
=

[
−1 1
−1 0

] [
x̄1

x̄2

]
+

[
1
1

]
u

Problem

Given two or more state-space equations, when can we say that
these equations are equivalent or describe the same system?
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Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system

ẋ = Ax+Bu, y = Cx+Du

Given a nonsingular matrix T , suppose that we define

x̄ , Tx

The same system can be defined using x̄ as the state,

˙̄x = T ẋ = TAx+ TBu = TAT−1x̄+ TBu

y = Cx+Du = CT−1x̄+Du

which can be written as

˙̄x = Āx̄+ B̄u, y = C̄x̄+ D̄u

for

Ā , TAT−1, B̄ , TB, C̄ , CT−1, D̄ , D
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Equivalent LTI state equations
Consider the n-dimensional continuous-time LTI system

ẋ = Ax+Bu, y = Cx+Du (14)

Definition (Algebraically Equivalent)

Let T be an n× n real nonsingular matrix and let x̄ = Tx, then the state
equation

˙̄x = Āx̄+ B̄u, y = C̄x̄+ D̄u

where Ā = TAT−1, B̄ = TB, C̄ = CT−1, D̄ = D is said to be (algebraically)
equivalent to (14) and x̄ = Tx is called an equivalence transformation.

Property

The equivalent transformations have the same

set of eigenvalues

∆̄(λ) = det(λI − Ā) = det(λTT−1 − TAT−1)

= det
[
T (λI −A)T−1

]
= det(λI −A) = ∆(λ)

transfer functions

ˆ̄G(s) = C̄
(
sI − Ā

)−1
B̄ + D̄ = CT−1

[
T (sI −A)T−1

]−1
TB +D

= C̄T−1T (sI −A)−1 T−1TB +D = C (sI −A)−1B +D = Ĝ(s)
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)−1
B̄ + D̄ = CT−1

[
T (sI −A)T−1

]−1
TB +D

= C̄T−1T (sI −A)−1 T−1TB +D = C (sI −A)−1B +D = Ĝ(s)
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Equivalent LTI state equations

Definition (Zero-state equivalent)

Two state equations are said to be zero state equivalent whenever
they have the same transfer function matrix

Zero-state
equivalence

⇐=

Algebraic
equivalence

6=⇒

Under what conditions we can ensure the
zero-state equivalence?

Linear Dynamical Systems
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Markov parameters

We know that

(sI −A)−1 = L[eAt] = L

[ ∞∑
i=0

ti

i!
Ai

]
Since

L

[
ti

i!

]
= s−(i+1),

we conclude that

(sI −A)−1 =

∞∑
i=0

s−(i+1)Ai.

Therefore,
Ĝ(s) = C (sI −A)−1 B +D = D +

∞∑
i=0

s−(i+1)CAiB

The matrices D, CAiB, i ≥ 0 are called the Markov parameters which are also
related to the system’s impulse response i.e.

G(t) = L−1[Ĝ(s)] = L−1[C(sI −A)−1B +D] = CeAtB +Dδt

Taking derivative of the RHS, we get

diG(t)

dti
= CAieAtB, ∀i ≥ 1, t > 0

from which we obtain the relationship: limt→0
diG(t)

dti
= CAiB, ∀i ≥ 1
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Ĝ(s) = C (sI −A)−1 B +D = D +

∞∑
i=0

s−(i+1)CAiB

The matrices D, CAiB, i ≥ 0 are called the Markov parameters which are also
related to the system’s impulse response i.e.
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Equivalent LTI state equations

Theorem

Two state-space representations

ẋ = Ax+Bu, y = Cx+Du

and

˙̄x = Āx̄+ B̄u, y = C̄x̄+ D̄u

are zero-state equivalent or have the same transfer function matrix
if and only if they have the same Markov parameters i.e.,

D = D̄, CAiB = C̄ĀiB̄, ∀i ≥ 0.

Prove it by yourself!!
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Equivalent LTV state equations

Consider the n-dimensional continuous-time LTV system

ẋ = A(t)x+B(t)u, y = C(t)x+D(t)u (15)

Definition (Algebraically Equivalent)

Let P (t) ∈ Rn×n be a non-singular matrix and both P (t) and Ṗ (t) are
continuous for all t. Let x̄ , P (t)x, then the state equation

¯̇x = Ā(t)x̄+ B̄(t)u, y = C̄(t)x̄+ D̄(t)u (16)

where

Ā(t) =
[
P (t)A(t) + Ṗ (t)

]
P−1(t), C̄(t) = C(t)P−1(t)

B̄(t) = P (t)B(t), D̄(t) = D(t)

is said to be algebraically equivalent to (15) and P (t) is called an algebraic
equivalent transformation.
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Equivalent LTV state equations

Theorem (Equivalence of fundamental matrix)

Let X(t) be a fundamental matrix of (15), then X̄(t) = P (t)X(t) is a
fundamental matrix of (16).
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Equivalent LTV state equations

Theorem

Let A0 be an arbitrary constant matrix. Then there exists an equivalent
transformation that transforms (15) into (16) with Ā(t) = A0

Proof.

Let X(t) be a fundamental matrix of ẋ = A(t)x. The differentiation of
X−1(t)X(t) = I yields Ẋ−1(t)X(t) +X−1(t)Ẋ(t) = 0 which implies

Ẋ−1(t) = −X−1(t)A(t)X(t)X−1(t) = −X−1(t)A(t) (17)

Because Ā(t) = A0 is a constant matrix, X̄(t) = eA0t is a fundamental matrix of
˙̄x = Ā(t)x̄ = A0x̄.

Define X̄(t) = P (t)X(t) =⇒ P (t) = X̄(t)X−1(t) = eA0tX−1(t)
and compute

Ā(t) =
[
P (t)A(t) + Ṗ (t)

]
P−1(t)

=
[
eA0tX−1(t)A(t) +A0e

A0tX−1(t) + eA0tẊ−1(t)
]
X(t)e−A0t

which becomes after substituting (17)

Ā(t) = A0e
A0tX−1(t)X(t)e−A0t = A0.
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X−1(t)X(t) = I yields Ẋ−1(t)X(t) +X−1(t)Ẋ(t) = 0 which implies
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˙̄x = Ā(t)x̄ = A0x̄.

Define X̄(t) = P (t)X(t) =⇒ P (t) = X̄(t)X−1(t) = eA0tX−1(t)
and compute
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]
X(t)e−A0t

which becomes after substituting (17)
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Equivalent LTV state equations: Additional points

If A0 is chosen as zero matrix, then P (t) = X−1(t), thus
Ā(t) = 0, B̄(t) = X−1(t)B(t), C̄(t) = C(t)X(t), D̄(t) = D(t)

  

1 Every time-varying state equation can be transformed into such a
block diagram

2 However, the challenge is to determine its fundamental matrix.
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Equivalent LTV state equations: Additional points

Invariance of Impulse Response matrix

G(t, τ) = C(t)φ(t, τ)B(τ) +D(t)δ(t− τ)

= C(t)X(t)X−1(τ)B(τ) +D(t)δ(t− τ)

Using the above substitutions, we get

Ḡ(t, τ) = C̄(t)X̄(t)X̄−1(τ)B̄(τ) + D̄(t)δ(t− τ)

= CP−1PXX−1(τ)P−1(τ)P (τ)B(τ) +D(t)δ(t− τ)

= CXX−1(τ)B(τ) +D(t)δ(t− τ) = G(t, τ)

Thus, the impulse response is invariant under any equivalence
transformation.
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Concluding remarks on equivalence

Definition (Lyapunov transformation)

A matrix P (t) is called a Lyapunov transformation whenever

1 P (t) is non singular

2 P (t) and Ṗ (t) are continuous

3 P (t) and P−1(t) are bounded for all t.

Recall

ẋ = A(t)x+B(t)u, y = C(t)x+D(t)u (18)

¯̇x = Ā(t)x̄+ B̄(t)u, y = C̄(t)x̄+ D̄(t)u (19)

Definition (Lyapunov equivalent)

Equations (18) and (19) are said to be Lyapunov equivalent
whenever P (t) is a Lyapunov transformation
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Week 1 - Lecture 5

In the last lecture, we discussed

What is the equivalent representation problem?

Algebraic equivalence of LTI and LTV systems

Zero-state equivalence of LTI and LTV systems

Relationship between algebraic and zero-state equivalence.
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Realization: LTI systems

Every LTI system can be described by the input-output description

ŷ(s) = Ĝ(s)û(s)

and if the system is lumped as well, by input-system-output
description

ẋ = Ax+Bu, y = Cx+Du

If the state equation is known, the transfer function matrix can be
computed as Ĝ(s) = C(sI −A)−1B +D.

The computed transfer function matrix is unique

Realization problem

Find a state-space equation from a given transfer matrix.
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Realization: LTI systems

Definition (Realization)

A transfer function matrix Ĝ(ξ), ξ ∈ {s, z} is said to be realizable
whenever there exists a finite-dimensional state equation or simply
{A,B,C,D} such that

Ĝ(ξ) = C(ξI −A)−1B +D, ξ ∈ {s, z}

and {A,B,C,D} is called a realization of Ĝ(ξ)

Note

1 If Ĝ(ξ) is realizable then it has “infinitely” many realizations,
not necessarily of the same dimension

the realization problem is fairly complex

2 Here we shall study the “realizability condition” and compute
one realization
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Realization: LTI systems

Theorem

A transfer function matrix Ĝ(s) is realizable if and only if Ĝ(s) is a
proper rational matrix.

The proof shall be done in two parts.

Theorem (Necessary part)

If Ĝ(s) is realizable then Ĝ(s) is a proper rational matrix.

Theorem (Sufficient part)

If Ĝ(s) is a proper rational matrix then Ĝ(s) is realizable.
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Realization: LTI systems

Theorem (Necessary part)

If Ĝ(s) is realizable then Ĝ(s) is a proper rational matrix.

Proof.

If Ĝ is realizable, then we can write

Ĝsp(s) = C(sI −A)−1B =
1

det(sI −A)
C[Adj(sI −A)]′B

If A is n× n, then det(sI −A) has degree n

Every entry of Adj(sI −A) has at most degree (n− 1)

Thus C(sI −A)−1B is a strictly proper rational matrix.

If D is non-zero, then C(sI −A)−1B +D , Ĝ(s) is proper.
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Realization: LTI systems

Theorem (Sufficient part)

If Ĝ(s) is a proper rational matrix then Ĝ(s) is realizable.

We show the converse; i.e., if Ĝ(s) is a q × p proper rational matrix, then there
exists a realization.

Proof

Decompose Ĝ as

Ĝ(s) = Ĝ(∞) + Ĝsp(s).

Let

d(s) = sr + α1s
r−1 + · · ·+ αr−1s+ αr

be the LCD of all entries of Ĝsp(s).Then Ĝsp(s) can be expressed as

Ĝsp(s) =
1

d(s)
[N(s)] =

1

d(s)

[
N1s

r−1 +N2s
r−2 + ...+Nr−1s+Nr

]
(20)

where Ni are q × p constant matrix.
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Let

d(s) = sr + α1s
r−1 + · · ·+ αr−1s+ αr
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r−1 + · · ·+ αr−1s+ αr

be the LCD of all entries of Ĝsp(s).

Then Ĝsp(s) can be expressed as

Ĝsp(s) =
1

d(s)
[N(s)] =

1

d(s)

[
N1s

r−1 +N2s
r−2 + ...+Nr−1s+Nr

]
(20)

where Ni are q × p constant matrix.
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Realization: LTI systems
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Realization: LTI systems

Theorem (Sufficient part)

If Ĝ(s) is a proper rational matrix then Ĝ(s) is realizable.

Proof (Cont.)

We claim that the set of equations

ẋ =




−α1Ip −α2Ip . . . −αr−1Ip −αrIp
Ip 0 . . . 0 0
0 Ip . . . 0 0
...

...
. . .

...
...

0 0 ... Ip 0



x+




Ip
0
0
...
0



u

y =
[
N1 N2 ... Nr−1 Nr

]
x+ Ĝ(∞)u

(21)

where Ip ∈ Rp×p, 0 ∈ Rp×p, A ∈ Rrp×rp, B ∈ Rrp×p, C ∈ Rq×rp is a
realization of Ĝ(s) with dimension rp.

We shall show that (21) is a realization.
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Realization: LTI systems

Theorem (Sufficient part)

If Ĝ(s) is a proper rational matrix then Ĝ(s) is realizable.

Proof (Cont.)

Let us define

Z =




Z1

Z2

...
Zr


 , (sI −A)−1B (22)

where Zi is p× p and Z is rp× p.

Then the transfer matrix of (21) equals

C(sI −A)−1B + Ĝ(∞) = N1Z1 +N2Z2 + · · ·+NrZr + Ĝ(∞) (23)

Write (22) as (sI −A)Z = B or

sZ = AZ +B
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C(sI −A)−1B + Ĝ(∞) = N1Z1 +N2Z2 + · · ·+NrZr + Ĝ(∞) (23)
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Realization: LTI systems

Theorem (Sufficient part)

If Ĝ(s) is a proper rational matrix then Ĝ(s) is realizable.

Proof (Cont.)

Using the shifting property of the matrix A, from the second to the last block,
we can readily obtain,

sZ = AZ + B ≡ s



Z1
Z2
Z3

.

.

.
Zr

 =



−α1Ip −α2Ip . . . −αr−1Ip −αrIp
Ip 0 . . . 0 0
0 Ip . . . 0 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.
0 0 ... Ip 0





Z1
Z2
Z3

.

.

.
Zr

 +



Ip
0
0

.

.

.
0



sZ2 = Z1, sZ3 = Z2, . . . , sZr = Zr−1

which implies

Z2 =
Z1

s
, Z3 =

Z1

s2
, . . . , Zr =

Z1

sr−1

Substituting these into the first block of A yields

sZ1 = −α1Z1 − α2Z2 − · · · − αrZr + Ip

= −
(
α1 +

α2

s
+ · · ·+ αr

sr−1

)
Z1 + Ip
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Realization: LTI systems

Theorem (Sufficient part)

If Ĝ(s) is a proper rational matrix then Ĝ(s) is realizable.
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Realization: LTI systems

Theorem (Sufficient part)

If Ĝ(s) is a proper rational matrix then Ĝ(s) is realizable.

Proof (Cont.)

Using d(s)

(
s+ α1 +

α2

s
+ · · ·+ αr

sr−1

)
Z1 =

d(s)

sr−1
Z1 = Ip

Thus,

Z1 =
sr−1

d(s)
Ip, Z2 =

sr−2

d(s)
Ip, · · · , Zr =

1

d(s)
Ip

Substituting these into

C(sI −A)−1B + Ĝ(∞) = N1Z1 +N2Z2 + · · ·+NrZr + Ĝ(∞)

yields

C (sI −A)−1 B + Ĝ(∞) =
1

d(s)

[
N1s

r−1 +N2s
r−2 + · · ·+Nr

]
+ Ĝ(∞)
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Realization: LTV systems

The Laplace Transform cannot be used

input-output description

y(t) =

∫ t

t0

G(t, τ)u(τ)dτ

input-state-output description

ẋ = A(t)x+B(t)u

y = C(t)x+D(t)u

If the state equation is available, the impulse response can be
computed from

G(t, τ) = C(t)X(t)X−1(τ)B(τ) +D(t)δ(t− τ), ∀t ≥ τ

where X(t) is the fundamental matrix.
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Realization: LTV systems

Theorem

A q× p impulse response matrix G(t, τ) is realizable if and only if G(t, τ)
can be decomposed as

G(t, τ) = M(t)N(τ) +D(t)δ(t− τ),∀t ≥ τ

where M,N and D are respectively q × n, n× p and q × p matrices for
some integer n.

Proof shall be done in two parts.

Theorem (Necessary part)

If G(t, τ) is realizable then there exists a realization that satisfies

G(t, τ) = C(t)X(t)X−1(τ)B(τ) +D(t)δ(t− τ), ∀t ≥ τ

where X(t) is the fundamental matrix.

Theorem (Sufficient part)

If G(t, τ) can be decomposed as mentioned above then G(t, τ) is realizable.
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Realization: LTV systems
Theorem (Necessary part)

If G(t, τ) is realizable then there exists a realization that satisfies

G(t, τ) = C(t)X(t)X−1(τ)B(τ) +D(t)δ(t− τ), ∀t ≥ τ

where X(t) is the fundamental matrix.

Proof.

Identifying M(t) = C(t)X(t) and N(τ) = X−1(τ)B(τ) establishes the
necessary part of the theorem

Theorem (Sufficient part)

If G(t, τ) can be decomposed as mentioned above then G(t, τ) is realizable.

Proof.

If G(t, τ) can be decomposed as above, then the n−dimensional state equation

ẋ = N(t)u, y = M(t)x+D(t)u

is a realization. Indeed, a fundamental matrix of ẋ = 0.x is X(t) = I. Thus
the impulse response is

M(t)I.I−1N(τ) +D(s)δ(t− τ) = G(t, τ)
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ẋ = N(t)u, y = M(t)x+D(t)u

is a realization. Indeed, a fundamental matrix of ẋ = 0.x is X(t) = I. Thus
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the impulse response is

M(t)I.I−1N(τ) +D(s)δ(t− τ) = G(t, τ)

Linear Dynamical Systems


