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Linear Dynamical Systems
Week 5 - State Feedback Controller Design
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State Feedback Controller Design

Control Problem
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State Feedback Controller Design

Open-loop minimum-energy control

Suppose that a particular state x1 belongs to the reachable subspace R[t0, t1]
of the system (AB-CLTV).

Theorem (Reachable subspace)

Given two times t1 > t0 ≥ 0,

R[t0, t1] = ImWR(t0, t1).

Moreover, if x1 = WR(t0, t1)η1 ∈ ImWR(t0, t1), the control

u(t) = B(t)Tφ(t1, t)
T η1, t ∈ [t0, t1] (Min-energy control)

can be used to transfer the state from x(t0) = 0 to x(t1) = x1.

In general, there may be other control that achieve the first goal, but controls
of the form (Min-energy control) are desirable because they minimize control
energy.
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State Feedback Controller Design

Open-loop minimum-energy control
Suppose that ū(·) is another control that transfers the state to x1 and therefore

x1 =

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ =

∫ t1

t0

φ(t1, τ)B(τ)ū(τ)dτ.

For this to hold, we must have∫ t1

t0

φ(t1, τ)B(τ)v(τ)dτ = 0

where v = ū− u.The “energy” of ū(·) can be related to the energy of u(·) as
follows∫ t1

t0

‖ū(τ)‖2dτ =

∫ t1

t0

‖

u(τ)︷ ︸︸ ︷
B′(t)φ′(t1, τ)η1 +v(τ)‖2dτ

= η′1WR(t0, t1)η1 +

∫ t1

t0

‖v(τ)‖2dτ + 2η′1

∫ t1

t0

φ(t1, τ)B(τ)v(τ)dτ

Note the last term is equal to zero, and we conclude that the energy of ū is
minimized for v(·) = 0, i.e., for ū = u.Moreover, for v(·) = 0, we conclude that
the energy required for the optimal control u(·) in (Min-energy control) is given
by ∫ t1

t0

‖u(τ)‖2dτ = η′1WR(t0, t1)η1.
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‖ū(τ)‖2dτ =

∫ t1

t0

‖

u(τ)︷ ︸︸ ︷
B′(t)φ′(t1, τ)η1 +v(τ)‖2dτ

= η′1WR(t0, t1)η1 +

∫ t1

t0

‖v(τ)‖2dτ + 2η′1

∫ t1

t0

φ(t1, τ)B(τ)v(τ)dτ

Note the last term is equal to zero, and we conclude that the energy of ū is
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minimized for v(·) = 0, i.e., for ū = u.Moreover, for v(·) = 0, we conclude that
the energy required for the optimal control u(·) in (Min-energy control) is given
by ∫ t1

t0

‖u(τ)‖2dτ = η′1WR(t0, t1)η1.



5

State Feedback Controller Design

Open-loop minimum-energy control
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minimized for v(·) = 0, i.e., for ū = u.Moreover, for v(·) = 0, we conclude that
the energy required for the optimal control u(·) in (Min-energy control) is given
by ∫ t1

t0

‖u(τ)‖2dτ = η′1WR(t0, t1)η1.



6

State Feedback Controller Design

Open-loop minimum-energy control
Theorem (Reachable and Controllable subspaces)

1 if x1 = WR(t0, t1)η1 ∈ ImWR(t0, t1), the control

u(t) = B(t)
T
φ(t1, t)

T
η1, t ∈ [t0, t1] (1)

can be used to transfer the state from x(t0) = 0 to x(t1) = x1.

2 if x0 = WC(t0, t1)η0 ∈ ImWC(t0, t1), the control

u(t) = −B(t)
T
φ(t0, t)

T
η0, t ∈ [t0, t1] (2)

can be used to transfer the state x(t0) = x0 to x(t1) = 0.

Theorem (Minimum-energy control)

Given two times t1 > t0 ≥ 0,

1 when x1 ∈ R[t0, t1], the control (1) transfers the state from x(t0) = 0 to
x(t1) = x1 with the smallest amount of control energy, which is given by∫ t1

t0

‖u(τ)‖2dτ = η′1WR(t0, t1)η1,

2 when x1 ∈ C[t0, t1], the control (2) transfers the state from x(t0) = x0 to
x(t1) = 0 with the smallest amount of control energy, which is given by∫ t1

t0

‖u(τ)‖2dτ = η′0WC(t0, t1)η0.
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State Feedback Controller Design

Solution by Inversion
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State Feedback Controller Design

State Feedback

Consider the n-dimensional single-variable state equation

ẋ = Ax+ bu

y = Cx
(LTI)

where we have assumed d = 0 to simplify discussion.

In state feedback, the
input u is given by

u = r −Kx = r −
[
k1 k2 . . . kn

]
x = r −

n∑
i=1

kixi. (3)

Each feedback gain ki is a real constant. This is called the constant gain
negative state feedback or, simply, state feedback. The closed-loop system is
then given as

ẋ = (A− bk)x+ br

y = cx
(CL-LTI)

Theorem

The pair (A− bk, b), for any 1× n real constant vector k, is controllable if and
only if (A, b) is controllable.
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ẋ = Ax+ bu

y = Cx
(LTI)

where we have assumed d = 0 to simplify discussion. In state feedback, the
input u is given by

u = r −Kx = r −
[
k1 k2 . . . kn

]
x = r −

n∑
i=1

kixi. (3)

Each feedback gain ki is a real constant. This is called the constant gain
negative state feedback or, simply, state feedback. The closed-loop system is
then given as

ẋ = (A− bk)x+ br

y = cx
(CL-LTI)

Theorem

The pair (A− bk, b), for any 1× n real constant vector k, is controllable if and
only if (A, b) is controllable.



10

State Feedback Controller Design

State Feedback

Consider the n-dimensional single-variable state equation
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State Feedback Controller Design

State Feedback
Proof.

We show the theorem for n = 4. Define

C =
[
b Ab A2b A3b

]
and

Cf =
[
b (A− bk)b (A− bk)2b (A− bk)3b

]

It is straightforward to verify

Cf = C


1 −kb −k(A− bk)b −k(A− bk)2b
0 1 −kb −k(A− bk)b
0 0 1 −kb
0 0 0 1


Note that k is 1× n and b is n× 1. Thus kb is scalar; so is every entry in the
rightmost matrix. Because the right most matrix is nonsingular for any k, the
rank of Cf equals the rank of C. Thus (CL-LTI) is controllable if and only if
(LTI) is controllable.

Note

The input r does not control the state x directly; it generates u to control x.
Therefore, if u cannot control x, neither can r.
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State Feedback Controller Design

State Feedback
Theorem

Consider the (LTI) system with n = 4 and the characteristic polynomial

∆(s) = det(sI −A) = s4 + α1s
3 + α1s

2 + α3s+ α4

If the system is controllable, then it can be transformed by the transformation
x̄ = Px with

Q := P−1 =
[
b Ab A2b A3b

] 
1 α1 α2 α3

0 1 α1 α2

0 0 1 α1

0 0 0 1


into the controllable canonical form

˙̄x = Āx̄+ b̄u =


−α1 −α2 −α3 −α4

1 0 0 0
0 1 0 0
0 0 1 0

 x̄+


1
0
0
0

u
y = c̄x̄ =

[
β1 β2 β3 β4

]
x̄

Furthermore, the transfer function of the system with n = 4 equals

ĝ(s) =
β1s

3 + β2s
2 + β3s+ β4

s4 + α1s3 + α2s2 + α3s+ α4
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State Feedback Controller Design

State Feedback

Theorem (Eigenvalue Assignment)

If the n−dimensional (LTI) system is controllable, then by state
feedback u = r − kx, where k is a 1× n real constant vector, the
eigenvalues of A− bk can arbitrarily be assigned provided that
complex conjugate eigenvalues are assigned in pairs.
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State Feedback Controller Design

Proof
Let n = 4, if (LTI) is controllable then it can be transformed into the CCF
˙̄x = Āx̄+ b̄ū where Ā = PAP−1, b̄ = Pb, and C̄ = PC.

Substituting x̄ = Px in u yields

u = r − kx = r − kP−1x̄ = r − k̄x̄.
Since Ā− b̄k̄ = P (A− bk)P−1, it implies λ[A− bk] = λ[Ā− b̄k̄].
From any set of desired eigenvalues, we can form

∆f (s) = s4 + ᾱ1s
3 + ᾱ2s

2 + ᾱ3s+ ᾱ4.

If k̄ is chosen as

k̄ =
[
ᾱ1 − α1 ᾱ2 − α2 ᾱ3 − α3 ᾱ4 − α4

]
the state feedback equation becomes

˙̄x =
(
Ā− b̄k̄

)
x̄+ b̄r =


−ᾱ1 −ᾱ2 −ᾱ3 −ᾱ4

1 0 0 0
0 1 0 0
0 0 1 0

 x̄+


1
0
0
0

 r
y =

[
β1 β2 β3 β4

]
x̄

Because of the companion form, the characteristic polynomial of (Ā− b̄k̄) and
of (A− bk) equals ∆f (s). Thus the state feedback equation has the set of
desired eigenvalues. The feedback gain k can be computed from

k = k̄P = k̄C̄C−1.
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of (A− bk) equals ∆f (s). Thus the state feedback equation has the set of
desired eigenvalues. The feedback gain k can be computed from

k = k̄P = k̄C̄C−1.



14

State Feedback Controller Design

Proof
Let n = 4, if (LTI) is controllable then it can be transformed into the CCF
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Ā− b̄k̄

)
x̄+ b̄r =


−ᾱ1 −ᾱ2 −ᾱ3 −ᾱ4
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Feedback transfer function

(A, b, c) =⇒ ĝ(s) = c(sI −A)−1b =
β1s

3 + β2s
2 + β3s+ β4

s4 + α1s3 + α2s2 + α3s+ α4

After state feedback

(A− bk, b, c) =⇒ ĝf (s) = c(sI−A+ bk)−1b =
β1s

3 + β2s
2 + β3s+ β4

s4 + ᾱ1s3 + ᾱ2s2 + ᾱ3s+ ᾱ4

Note

the numerators are the same, state feedback can shift the
poles of a plant but has no effect on the zeros,

state feedback may alter the observability property because
one or more poles are shifted to coincide with the zeros of
ĝ(s).

Attention

The command K=place(A,B,v) computes a matrix K such that the
eigenvalues of A−BK are those specified in the vector v. The pair
(A,B) should be controllable, and the vector v should have no repeated
eigenvalues. This command should be used with great caution (and
generally avoided), because it is numerically badly conditioned.
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Selection of desired eigenvalues1

1 depends on the performance criteria

rise time
overshoot
settling time

2 response depends upon the poles and zeros both
3 factors affecting the selection of poles

zeros of the plant
magnitude of u: saturation or burn out
rise time, settling time, overshoot
bandwidth of the closed-loop

4 involve compromises among many conflicting objectives

1
Boyd et al. Linear controller design: limits of performance. Englewood Cliffs, NJ: Prentice Hall, 1991.

Åström. Limitations on control system performance. European Journal of Control. 6(1) 2000.
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Some guidelines

As a guide, place all the poles inside the region denoted by C

larger the σ, faster the response

large the θ, larger the overshoot

larger the r, faster the response , u will also be larger, BW
will also be larger and the resulting system will be more
susceptible to noise
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Method using Lyapunov equation

We now present a different method of computing state feedback gain for
eigenvalue assignment. The method, however, has the restriction that the
“selected eigenvalues cannot contain any eigenvalues of A”.

Algorithm for synthesizing the feedback gain:

Data: Controllable pair (A, b), A ∈ Rn×n, b ∈ Rn×1, a set of desired
eigenvalues.

Result: A 1× n real k such that (A− bk) has the set of desired
eigenvalues that contain no eigenvalues of A.

1: Select an n× n matrix F that has the set of desired eigenvalues.
The form of F can be chosen arbitrarily and will be discussed later.

2: Select an arbitrary 1× n vector k̄ such that (F ′, k̄′) is controllable.
3: Solvea the unique T in the Lyapunov equation AT − TF = bk̄.
4: Compute the feedback gain k = k̄T−1

5: Stop.

aOnce F and k̄ are selected, we may use the MATLAB function lyap to
solve the Lyapunov equation
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Justification of the algorithm
Data: Controllable pair (A, b), A ∈ Rn×n, b ∈ Rn×1, a set of desired eigenvalues.
Result: A 1×n real k such that (A− bk) has the set of desired eigenvalues that contain no eigenvalues of A.

1: Select an n× n matrix F that has the set of desired eigenvalues. The form of F can be chosen arbitrarily and
will be discussed later.

2: Select an arbitrary 1× n vector k̄ such that (F ′, k̄′) is controllable.

3: Solve the unique T in the Lyapunov equation AT − TF = bk̄.

4: Compute the feedback gain k = k̄T−1

5: Stop.

If T is nonsingular, then k̄ = kT and the Lyapunov equation
AT − TF = bk̄ implies

(A− bk)T = TF or A− bk = TFT−1.

Thus (A− bk) and F are similar and have the same set of eigenvalues.

Thus the eigenvalues of (A− bk) can be assigned arbitrarily except those
of A.

If A and F have no eigenvalues in common, then a solution T exists in
AT − TF = bk̄ for any k̄ and is unique.

Otherwise, if A and F have common eigenvalues, a solution T may or
may not exist depending of bk̄. To remove this uncertainty, we require A
and F to have no eigenvalues in common.

What remains to be proved is the nonsingularity of T !
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Nonsingularity of T

Theorem

If A and F have no eigenvalues in common, then the unique
solution T of AT − TF = bk̄ is nonsingular if and only if (A, b)
and (F ′, k̄′) are controllable pairs.

We shall prove the theorem for n = 4.
Recall, the characteristic polynomial of A is given by

∆(s) = s4 + α1s
3 + α2s

2 + α3s+ α4

then from Cayley-Hamilton theorem we have

∆(A) = A4 + α1A
3 + α2A

2 + α3A+ α4I = 0
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Proof

Let us consider

∆(F ) = F 4 + α1F
3 + α2F

2 + α3F + α4I

Note (take it as an exercise)

If λ̄i is an eigenvalue of F , then ∆(λ̄i) is an eigenvalue of ∆(F ).

Because A and F have no eigenvalue in common, we have ∆(λ̄i) 6= 0 for all
eigenvalues of F .
Computing determinant of the above matrix, we have

det∆(F ) =
∏
i

∆(λ̄i) 6= 0

Thus ∆(F ) is nonsingular.

Substituting AT = TF + bk̄ into A2T − TF 2 yields

A2T − TF 2 = A(TF + bk̄)− TF 2 = Abk̄ + (AT − TF )F

= Abk̄ + bk̄F
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Proof (Cont...)
Proceeding forward, we can obtain the following set of equations:

IT − TI = 0

AT − TF = bk̄

A2T − TF 2 = Abk̄ + bk̄F

A3T − TF 3 = A2bk̄ +Abk̄F + bk̄F 2

A4T − TF 4 = A3bk̄ +A2bk̄F +Abk̄F 2 + bk̄F 3

We multiply the first equation by α4, the second equation by α3, the third
equation by α2, the fourth equation by α1, and the last equation by 1, and
then sum them up.

∆(A)T − T∆(F ) = −T∆(F ) =
[
b Ab A2b A3b

] 
α3 α2 α1 1
α2 α1 1 0
α1 1 0 0
1 0 0 0



k̄
k̄F
k̄F 2

k̄F 3


If (A, b) and (F ′, k̄′) are controllable, then all three matrices are nonsingular,
which implies that T is nonsingular.

If (A, b) and/or (F, k̄) are uncontrollable, then the product of the three
matrices is singular. Therefore T is singular. This establishes the theorem.
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Comment on the selection of F

Given a set of desired eigenvalues, there are infinitely many F that have
the set of eigenvalues.

If we form a polynomial from the set, we can use its coefficients to
form a companion-form matrix

F =




−α1 1 0 0
−α2 0 1 0
−α3 0 0 1
−α4 0 0 0




If the desired eigenvalues are all distinct, we can also use the modal
form. For example, if n = 5, and if the five distinct desired
eigenvalues are selected as λ1, α1 ± jβ1 and α2 ± jβ2, then we can
select F as

F =




λ1 0 0 0 0
0 α1 β1 0 0
0 −β1 α1 0 0
0 0 0 α2 β2
0 0 0 −β2 α2




It is a block-diagonal matrix.
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Regulation

Regulation problem

Suppose the reference signal r is zero, and the response of the
system is caused by some nonzero initial conditions. The problem
is to find a state feedback gain so that the response will die out at
a desired rate.

Examples:

Aircraft cruise control

Liquid level control in tanks

Consider a plant described by (A, b, c). If A is unstable, then the
response excited by any nonzero initial conditions will grow
unbounded.

Let u = r − kx. Then the state feedback equation becomes
(A− bk, b, c) and the response caused by x(0) is

y(t) = ce(A−bk)tx(0)
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Tracking

Tracking problem

Suppose the reference signal r is a constant or r(t) = a, for t ≥ 0.
The problem is to design an overall system so that y(t) approaches
r(t) = a as t approaches infinity. This is called asymptotic tracking
of a step reference input.

It is clear that whenever r(t) = a = 0, then the tracking problem
reduces to the regulator problem.

Why do we then study these two problems separately?

A linear state equation is often obtained by shifting an operating
point and linearization, and the equation is valid only for r very
small or zero.

Tracking a non-constant reference signal is called a
servomechanism problem and is a much more difficult problem.
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Tracking
To address the tracking problem, in addition to the state feedback, we also
need a feedforward gain p as

u(t) = pr(t)− kx.

Consider again the transfer function

(A, b, c) =⇒ ĝ(s) = c(sI −A)−1b =
β1s

3 + β2s
2 + β3s+ β4

s4 + α1s3 + α2s2 + α3s+ α4

After the state feedback and feedforward, it will now become

ĝf (s) =
ŷ(s)

r̂(s)
= p

β1s
3 + β2s

2 + β3s+ β4

s4 + ᾱ1s3 + ᾱ2s2 + ᾱ3s+ ᾱ4

If (A, b) is controllable, all eigenvalues of (A− bk) or, equivalently, all poles of
ĝf (s) can be assigned arbitrarily.Under this assumption, if the reference input is
a step function with magnitude a, then the output y(t) will approach the
constant ĝf (0).a as t→∞.Thus in order for y(t) to track asymptotically any
step reference input, we need

1 = ĝf (0) = p
β4

ᾱ4
or p =

ᾱ4

β4

which requires β4 6= 0, which is possible if and only if the plant transfer
function ĝ(s) has no zero at s = 0.
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1 = ĝf (0) = p
β4

ᾱ4
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Robust Tracking and Disturbance Rejection

1 The state equation and transfer function developed to
describe a plant may change due to change of load ,
environment or aging. Thus plant parameter variations often
occur in practice.

2 The equation used in the design is often called the nominal
equation. The feed forward gain p, computed for nominal
plant transfer function may not yield gf (0) = 1 for
“nonnominal” plant transfer functions . Then the output will
not track asymptotically any step reference input. Such a
tracking is said to be nonrobust.

a different controller design that can achieve robust tracking
and disturbance rejection.
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Robust Tracking and Disturbance Rejection

Control problem

Consider a plant described by (LTI) affected by a constant
disturbance w with “unknown magnitude” enters at the plant
input. Then the state equation is given as

ẋ = Ax+ bu+ bw, y = cx (Disturbed LTI)

The problem is to design an overall system so that the output y(t)
will track asymptotically any step reference input even with the
presence of disturbance w(t) and with “plant parameter
variations”.
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Robust Tracking and Disturbance Rejection
In order to solve this problem, in addition to introducing state feedback, we will
introduce an integrator and a unity feedback from the output.

Let the output of the integrator be denoted by xa(t), an augmented state
variable.Then the system has the augmented state vector col(x, xa). We now
have

ẋa = r − y = r − cx

u =
[
k ka

] [ x
xa

]
Substituting these into (Disturbed LTI) yields[

ẋ
ẋa

]
=

[
A+ bk bka
−c 0

] [
x
xa

]
+

[
0
1

]
r +

[
b
0

]
w

y =
[
c 0

] [ x
xa

] (Aug. Dist. CL-LTI)
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Then the system has the augmented state vector col(x, xa). We now
have

ẋa = r − y = r − cx

u =
[
k ka

] [ x
xa

]
Substituting these into (Disturbed LTI) yields[
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+
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Robust Tracking and Disturbance Rejection

Theorem (Lemma)

If (A, b) is controllable and if ĝ(s) = c(sI −A)−1b has no zero at
s = 0, then all eigenvalues of the “new” A−matrix can be
assigned arbitrarily by selecting a feedback gain

[
k ka

]
.

We show the theorem for n = 4.

Assumption

1 A, b and c have been transformed into controllable canonical form.

2 The transfer function has no zeros at s = 0 if and only if β4 6= 0.

(A, b, c) =⇒ ĝ(s) = c(sI −A)−1b =
β1s

3 + β2s
2 + β3s+ β4

s4 + α1s3 + α2s2 + α3s+ α4
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Proof

We now show that the pair ([
A 0
−c 0

]
,

[
b
0

])
(New pair)

is controllable if and only if β4 6= 0.

Note that the dimension of (New pair) is five because of xa.The controllability
matrix of (New pair) is

[
b Ab A2b A3b A4b

0 −cb −cAb −cA2b −cA3b

]

=


1 −α1 α2

1 − α2 −α1(α2
1 − α2) + α2α1 − α3 a15

0 1 −α1 α2
1 − α2 a25

0 0 1 −α1 a35
0 0 0 1 a45

0 −β1 β1α1 − β2 −β1(α2
1 − α2) + β2α1 − β3 a55


Operations: R5→R5+β1R2, R5→R5+β3R4.

=


1 −α1 α2

1 − α2 −α1(α2
1 − α2) + α2α1 − α3 a15

0 1 −α1 α2
1 − α2 a25

0 0 1 −α1 a35
0 0 0 1 a45
0 0 0 0 −β4


Its determinant is -β4. Thus the matrix is nonsingular if and only if β4 6= 0.
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Robust Controller Design (1/5)
Consider again (Aug. Dist. CL-LTI)[

ẋ
ẋa

]
=

[
A + bk bka
−c 0

] [
x
xa

]
+

[
0
1

]
r +

[
b
0

]
w

y =
[
c 0

] [ x
xa

]

Assume that a set of n+ 1 desired stable eigenvalues has been selected and the
feedback gain

[
k ka

]
has been found such that

∆f (s) = det

[
sI −A− bk −bka

c s

]
Now we show that the output y will track asymptotically and robustly any step
reference input r(t) = a and reject any step disturbance with unknown
magnitude.

ū = v + kx| {z }
u

+w

<latexit sha1_base64="olx8p8VmEinzlKGujXYxhfFCaDo=">AAACDnicbVDJSgNBEO1xjXEb9ejBxiAIkTDjgrkIAS8eI5gFkhB6OpWkSU/P0Es0DDl69z+8qjfx6ifo39hZDpr4oODx6hVV9YKYM6U979tZWFxaXllNraXXNza3tt2d3bKKjKRQohGPZDUgCjgTUNJMc6jGEkgYcKgEvetRv9IHqVgk7vQghkZIOoK1GSXaSk33oB4QmZghvsJ1I1ogA0koJP1s72HYNNn7ppvxct4YeJ74U5JBUxSb7le9FVETgtCUE6VqvhfrRkKkZpTDMF03CmJCe6QDNUsFCUE1kvEjQ3xklRZuR9KW0His/p5ISKjUIAxOwFDCrT8kuqtmHSPxv17N6Ha+kTARGw2CTta1Dcc6wqNscItJoJoPLCFUMnsxpl1iA9E2wbSNwp99fJ6UT3P+We7i9jxTyE9DSaF9dIiOkY8uUQHdoCIqIYoe0TN6Qa/Ok/PmvDsfE+uCM53ZQ3/gfP4ABx2cHA==</latexit>

= v + w| {z }
v̄

+kx

<latexit sha1_base64="UZDYPnRfMAOsoW+q/yKRK4biYo4=">AAACDnicbVDLSgNBEJz1GeMr6tGDg0EQImHXB+YiBLx4jGAekIQwO9tJhszOLjOz0bDs0bv/4VW9iVc/Qf/GSbIHTSxoKKqr6e5yQ86Utu1va2FxaXllNbOWXd/Y3NrO7ezWVBBJClUa8EA2XKKAMwFVzTSHRiiB+C6Huju4HvfrQ5CKBeJOj0Jo+6QnWJdRoo3UyR1c4VYkPJCuJBTiYeE+6cQtl8h4mCSFwUMnl7eL9gR4njgpyaMUlU7uq+UFNPJBaMqJUk3HDnU7JlIzyiHJtiIFIaED0oOmoYL4oNrx5JEEHxnFw91AmhIaT9TfEzHxlRr57glElHDj94nuq1nHWPyv14x0t9SOmQgjDYJO13UjjnWAx9lgj0mgmo8MIVQyczGmfWKC0SbBrInCmX18ntROi85Z8eL2PF8upaFk0D46RMfIQZeojG5QBVURRY/oGb2gV+vJerPerY+pdcFKZ/bQH1ifP6GinIA=</latexit>
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ẋa

]
=

[
A + bk bka
−c 0

] [
x
xa

]
+

[
0
1

]
r +

[
b
0

]
w

y =
[
c 0

] [ x
xa

]
Assume that a set of n+ 1 desired stable eigenvalues has been selected and the
feedback gain

[
k ka

]
has been found such that

∆f (s) = det

[
sI −A− bk −bka

c s

]

Now we show that the output y will track asymptotically and robustly any step
reference input r(t) = a and reject any step disturbance with unknown
magnitude.
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The transfer function from v̄ to y is

ˆ̄g(s) :=
N̄(s)

D̄(s)
:= c(sI −A− bk)−1b

with D̄(s) = det(sI −A− bk).

ū = v + kx| {z }
u

+w
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It is straight forward to verify the following equality:

[
I 0

c(sI −A− bk)−1 1

]
︸ ︷︷ ︸

unimodular

(sI−AADCL-LTI)︷ ︸︸ ︷[
sI −A− bk −bka

c s

]

=

[
sI −A− bk −bka

0 s+ c(sI −A− bk)−1bka

]

Taking its determinant, we obtain

1 ·∆f (s) = D̄(s)

(
s+

N̄(s)

D̄(s)
ka

)
= sD̄(s) + kaN̄(s).

4f (s) = sD̄(s) + kaN̄(s)

This is a key equation.
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ĝyw =

N̄(s)

D̄(s)

1 + ka
s
N̄(s)

D̄(s)

=
sN̄(s)

sD̄(s) + kaN̄(s)
=

sN̄

∆f (s)

If the disturbance is w(t) = w̄ for all t ≥ 0, where w̄ is unknown constant, then
ŵ(s)=w̄/s and the corresponding output is given by

ŷw =
sN̄(s)

∆f (s)

w̄

s
=
w̄N̄(s)

∆f (s)

Because the pole s is cancelled, all remaining poles of ŷw(s) are stable poles.
Therefore the corresponding time response, for any w̄, will die out as t→∞.

If there are plant parameter variations and variations in the feedforward gain ka
and feedback gain k, the rejection still holds as long as overall system remains
stable.
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ĝyr(s)

=

kaN̄(s)

sD̄(s)

1 + ka
s
N̄(s)

D̄(s)

=
kaN̄(s)

sD̄(s) + kaN̄(s)
=
kaN̄(s)

∆f (s)

We see that

ĝyr(0) =
kaN̄(0)

0 · D̄(0) + kaN̄(0)
=
kaN̄(0)

kaN̄(0)
= 1

The above equation holds even when there are parameter perturbations in the
plant transfer function and the gains. Thus asymptotic tracking of any step
reference input is robust.

Note that this robust tracking holds even for very large parameter
perturbations as long as overall system remains stable.

Key Observation

The integrator is in fact a model of the step reference input and constant
disturbance. Thus it is called the internal model principle.
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ĝyr(0) =
kaN̄(0)

0 · D̄(0) + kaN̄(0)
=
kaN̄(0)

kaN̄(0)
= 1

The above equation holds even when there are parameter perturbations in the
plant transfer function and the gains. Thus asymptotic tracking of any step
reference input is robust.

Note that this robust tracking holds even for very large parameter
perturbations as long as overall system remains stable.

Key Observation

The integrator is in fact a model of the step reference input and constant
disturbance. Thus it is called the internal model principle.



36

Regulation and Tracking

Robust Controller Design (5/5)
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Stabilization problem

If a state equation is controllable, all eigenvalues can be assigned
arbitrarily by introducing the state feedback. The problem is to design a
stabilizing controller whenever the state equation is not
state-controllable .

Recall the decomposition result

Every uncontrollable state equation can be transformed into

[
˙̄xc
˙̄xu

]
=

[
Āc Ā12

0 Āu

] [
x̄c
x̄u

]
+

[
b̄c
0

]
u (Uncontrollable Decomposition)

where (Āc, b̄c) is controllable.

Observation

Because the “new A−matrix” is block triangular, the eigenvalues of the
original A−matrix are the union of the eigenvalues of Āc and Āu.
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38

Regulation and Tracking

Stabilization

Let introduce the state feedback controller

u = r − kx = r − k̄x̄ = r −
[
k̄1 k̄2

] [x̄c
x̄u

]

where we have partitioned k̄ as in x̄

then (Uncontrollable Decomposition)
becomes

[
˙̄xc
˙̄xu

]
=

[
Āc − b̄ck̄1 Ā12 − b̄ck̄2

0 Āu

] [
x̄c
x̄u

]
+

[
b̄c
0

]
r

We see that Āu and consequently, its eigenvalues are not affected by the
state feedback. Thus we conclude that controllability condition of (A, b)
is not only sufficient (as stated earlier, see slide #13) but also necessary
to assign all eigenvalues of (A− bk) to any desired positions.



38

Regulation and Tracking

Stabilization

Let introduce the state feedback controller

u = r − kx = r − k̄x̄ = r −
[
k̄1 k̄2

] [x̄c
x̄u

]

where we have partitioned k̄ as in x̄ then (Uncontrollable Decomposition)
becomes

[
˙̄xc
˙̄xu

]
=

[
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0 Āu

] [
x̄c
x̄u

]
+

[
b̄c
0

]
r
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Stabilization

Recall stabilizability

Consider again the (Uncontrollable Decomposition) state equation.
If Āu is stable, and if (Āc, b̄c) is controllable then the state
equation is said to be stabilizable.

Comment on Tracking and Rejection problems

1 The controllability condition for tracking and disturbance
rejection can be replaced by the weaker condition of
stabilizability.

2 But, we do not have complete control of the rate of tracking
and rejection.

3 If the uncontrollable stable eigenvalues have large imaginary
parts or are close to imaginary axis, then the tracking and
rejection may not be satisfactory.
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Multivariable Case

State feedback

Consider a plant described by the n-dimensional p-input state
equation

ẋ = Ax+Bu

y = Cx
(Plant)

In state feedback, the input u is given by

u = r −Kx (Controller)

where K is a p× n real constant matrix and r is a reference signal.
Substituting (Controller) in (Plant) yields

ẋ = (A−BK)x+Br

y = Cx
(Closed-loop)
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Multivariable Case

State feedback

Theorem

The pair (A−BK,B), for any p× n real constant matrix K, is
controllable if and only if (A,B) is controllable.

Logical idea.

1 The proof of this theorem follows closely the proof of the earlier
result. The only difference is that we must modify the key equation
as

Cf = C




Ip −KB −K(A−BK)B −K(A−BK)2B
0 Ip −KB −K(A−BK)B
0 0 Ip −KB
0 0 0 Ip




where Cf and C are n× np controllability matrices with n = 4 and
Ip is the unit matrix of order p.

2 Because the rightmost 4p× 4p matrix is nonsingular, Cf has rank n
if and only if C has rank n. Thus the controllability property is
preserved in any state feedback.
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controllable if and only if (A,B) is controllable.

Logical idea.

1 The proof of this theorem follows closely the proof of the earlier
result. The only difference is that we must modify the key equation
as

Cf = C




Ip −KB −K(A−BK)B −K(A−BK)2B
0 Ip −KB −K(A−BK)B
0 0 Ip −KB
0 0 0 Ip




where Cf and C are n× np controllability matrices with n = 4 and
Ip is the unit matrix of order p.

2 Because the rightmost 4p× 4p matrix is nonsingular, Cf has rank n
if and only if C has rank n. Thus the controllability property is
preserved in any state feedback.
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Multivariable Case

State feedback

Theorem

All eigenvalues of (A−BK) can be assigned arbitrarily (provided
complex conjugate eigenvalues assigned in pairs) by selecting a real
constant K if and only if (A,B) is controllable.

If (A,B) is not controllable, then (A,B) can be transformed into
the form shown in (Uncontrollable Decomposition) and the
eigenvalues of Āu will not be affected by any state feedback.
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Multivariable Case

State feedback

Theorem

All eigenvalues of (A−BK) can be assigned arbitrarily (provided
complex conjugate eigenvalues assigned in pairs) by selecting a real
constant K if and only if (A,B) is controllable.

If (A,B) is not controllable, then (A,B) can be transformed into
the form shown in (Uncontrollable Decomposition) and the
eigenvalues of Āu will not be affected by any state feedback.
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Multivariable Case

Lyapunov-Equation Method

Problem

Consider an n-dimensional p-input pair (A,B). Find a p× n real
constant matrix K so that (A−BK) has any set of desired
eigenvalues as long as the set does not contain any eigenvalue of
A.
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Multivariable Case

Lyapunov-Equation Method

1 Select an n× n matrix F with a set of desired eigenvalues that
contains no eigenvalues of A.

2 Select an arbitrary p×n matrix K̄ such that (F ′, K̄ ′) is controllable.

3 Solve the unique T in the Lyapunov equation AT − TF = BK̄.

4 If T is singular, select a different K̄ and repeat the process. If T is
nonsingular, we compute K = K̄T−1, and (A−BK) has the set of
desired eigenvalues.

If T is nonsingular, the Lyapunov equation and KT = K̄ imply

(A−BK)T = TF or A−BK = TFT−1

Thus A−BK and F are similar and have the same set of
eigenvalues.
Unlike the SISO case where T is always nonsingular, the T
here may not be nonsingular even if (A,B) is controllable and
(F ′, K̄ ′) is controllable.

det T 6= 0
<latexit sha1_base64="mYnAG+FXTmZZe/vutuEVKPy8eG8=">AAACEHicbVDLSgMxFM3UVx1fVZdugqXgQsqMD3RZdOOyQl/QGUomvdOGZjJDkhFK6U+4cKuf4U7c+gd+hb9gpp2FbT0Qcjj3HnJygoQzpR3n2yqsrW9sbhW37Z3dvf2D0uFRS8WppNCkMY9lJyAKOBPQ1Exz6CQSSBRwaAej+2zefgKpWCwaepyAH5GBYCGjRBvJ8/qgcQN7ArDTK5WdqjMDXiVuTsooR71X+vH6MU0jEJpyolTXdRLtT4jUjHKY2l6qICF0RAbQNVSQCJQ/mWWe4opR+jiMpTlC45n61zEhkVLjKDg3d7ahjCUieqiWlzLx39n8IbuyEEOHt/6EiSTVIOg8RZhyrGOctYP7TALVfGwIoZKZj2A6JJJQbTq0TUPuch+rpHVRdS+r149X5dpd3lURnaBTdIZcdINq6AHVURNRlKAX9IrerGfr3fqwPuerBSv3HKMFWF+/bsOcpQ==</latexit>

=)
<latexit sha1_base64="ybPMJtA3tnSRSmybjArTovj0NW4=">AAACDHicbVDLSgMxFL3js46vqks3wVJwIWXGB7osunFZwT6gHUomzbShSWZIMkIp/QUXbvUz3Ilb/8Gv8BfMtLOwrQdCDueey733hAln2njet7Oyura+sVnYcrd3dvf2iweHDR2nitA6iXmsWiHWlDNJ64YZTluJoliEnDbD4V1Wbz5RpVksH80ooYHAfckiRrCxUqvDhJ1CdbdY8ireFGiZ+DkpQY5at/jT6cUkFVQawrHWbd9LTDDGyjDC6cTtpJommAxxn7YtlVhQHYyn+05Q2So9FMXKPmnQVP3bMcZC65EIz+yfObRtEdgM9KIpE/+tzQa55bk1THQTjJlMUkMlmW0RpRyZGGXJoB5TlBg+sgQTxewhiAywwsTY/FybkL+YxzJpnFf8i8rVw2WpeptnVYBjOIFT8OEaqnAPNagDAQ4v8ApvzrPz7nw4nzPripP3HMEcnK9fOCCcIA==</latexit>

rankC(A,B) = rankC(F 0,K̄0) = n
<latexit sha1_base64="b2DCA09csp6MDOiFnV0nY72JJKg=">AAACVXicfVHLSgMxFE3Hd31VXboJFlGhlBkf6EaoFURwoYJVwZZyJ83U0ExmSO4IZZjP8ltE3OraLxDMtF34wgshJ+eem9x74sdSGHTd54IzNj4xOTU9U5ydm19YLC0tX5so0Yw3WCQjfeuD4VIo3kCBkt/GmkPoS37j947z/M0D10ZE6gr7MW+F0FUiEAzQUu3SeTMEvEdMNaheNjgEGnrpcdZON48q9a2MHtL/NCcblaYPOj3LNrayQ3tj2a26g6C/gTcCZTKKi3bpvdmJWBJyhUyCMXeeG2MrBY2CSZ4Vm4nhMbAedPmdhQpCblrpYPCMrlumQ4NI26WQDtivFSmExvRDv2L3XGFsSd6++SnKyT9zw4eK69/awOCglQoVJ8gVG3YRJJJiRHOLaUdozlD2LQCmhR2EsnvQwNB+RNE65P304ze43q56O9W9y91yrT7yapqskjWySTyyT2rklFyQBmHkkbyQV/JWeCp8OOPO5FDqFEY1K+RbOIufXcq2dA==</latexit>6(=

<latexit sha1_base64="vedVU8MJMbfOFsVcdEbVvTPxi7Q=">AAACMnicbVDLTgIxFO2gIo4vUHduJhISF4bM+IguiW5cYiJgwkxIp1ygoe1M2o7JSPgXt7r2Z3Rn3PoRFhgTAW/S9OTce+7jhDGjSrvuu5VbWV3Lrxc27M2t7Z3dYmmvqaJEEmiQiEXyIcQKGBXQ0FQzeIglYB4yaIXDm0m+9QhS0Ujc6zSGgOO+oD1KsDZUp3jgExAapIi0T7mZCN0w7RTLbtWdhrMMvAyUURb1TsnK+92IJNz0Igwr1fbcWAcjLDUlDMa2nyiIMRniPrQNFJiDCkbT9cdOxTBdpxdJ84R2puxfxQhzpVIenph/UqGMhGM9UItFE/Lf3GzQPPV79tiuzG2ne1fBiIo40SDIbLlewhwdORP/nC6VQDRLDcBEUnOfQwZYYmK6Kds45y36tAyap1XvrHpxd16uXWceFtAhOkLHyEOXqIZuUR01EEFP6Bm9oFfrzfqwPq2vWWnOyjT7aC6s7x/BTKqd</latexit>

nec

suf



44

Multivariable Case

Lyapunov-Equation Method

1 Select an n× n matrix F with a set of desired eigenvalues that
contains no eigenvalues of A.

2 Select an arbitrary p×n matrix K̄ such that (F ′, K̄ ′) is controllable.

3 Solve the unique T in the Lyapunov equation AT − TF = BK̄.

4 If T is singular, select a different K̄ and repeat the process. If T is
nonsingular, we compute K = K̄T−1, and (A−BK) has the set of
desired eigenvalues.

If T is nonsingular, the Lyapunov equation and KT = K̄ imply

(A−BK)T = TF or A−BK = TFT−1

Thus A−BK and F are similar and have the same set of
eigenvalues.
Unlike the SISO case where T is always nonsingular, the T
here may not be nonsingular even if (A,B) is controllable and
(F ′, K̄ ′) is controllable.

det T 6= 0
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<latexit sha1_base64="vedVU8MJMbfOFsVcdEbVvTPxi7Q=">AAACMnicbVDLTgIxFO2gIo4vUHduJhISF4bM+IguiW5cYiJgwkxIp1ygoe1M2o7JSPgXt7r2Z3Rn3PoRFhgTAW/S9OTce+7jhDGjSrvuu5VbWV3Lrxc27M2t7Z3dYmmvqaJEEmiQiEXyIcQKGBXQ0FQzeIglYB4yaIXDm0m+9QhS0Ujc6zSGgOO+oD1KsDZUp3jgExAapIi0T7mZCN0w7RTLbtWdhrMMvAyUURb1TsnK+92IJNz0Igwr1fbcWAcjLDUlDMa2nyiIMRniPrQNFJiDCkbT9cdOxTBdpxdJ84R2puxfxQhzpVIenph/UqGMhGM9UItFE/Lf3GzQPPV79tiuzG2ne1fBiIo40SDIbLlewhwdORP/nC6VQDRLDcBEUnOfQwZYYmK6Kds45y36tAyap1XvrHpxd16uXWceFtAhOkLHyEOXqIZuUR01EEFP6Bm9oFfrzfqwPq2vWWnOyjT7aC6s7x/BTKqd</latexit>

nec

suf
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Multivariable Case

Lyapunov-Equation Method

1 Select an n× n matrix F with a set of desired eigenvalues that
contains no eigenvalues of A.

2 Select an arbitrary p×n matrix K̄ such that (F ′, K̄ ′) is controllable.

3 Solve the unique T in the Lyapunov equation AT − TF = BK̄.

4 If T is singular, select a different K̄ and repeat the process. If T is
nonsingular, we compute K = K̄T−1, and (A−BK) has the set of
desired eigenvalues.

If T is nonsingular, the Lyapunov equation and KT = K̄ imply

(A−BK)T = TF or A−BK = TFT−1

Thus A−BK and F are similar and have the same set of
eigenvalues.

Unlike the SISO case where T is always nonsingular, the T
here may not be nonsingular even if (A,B) is controllable and
(F ′, K̄ ′) is controllable.

det T 6= 0
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=)
<latexit sha1_base64="ybPMJtA3tnSRSmybjArTovj0NW4=">AAACDHicbVDLSgMxFL3js46vqks3wVJwIWXGB7osunFZwT6gHUomzbShSWZIMkIp/QUXbvUz3Ilb/8Gv8BfMtLOwrQdCDueey733hAln2njet7Oyura+sVnYcrd3dvf2iweHDR2nitA6iXmsWiHWlDNJ64YZTluJoliEnDbD4V1Wbz5RpVksH80ooYHAfckiRrCxUqvDhJ1CdbdY8ireFGiZ+DkpQY5at/jT6cUkFVQawrHWbd9LTDDGyjDC6cTtpJommAxxn7YtlVhQHYyn+05Q2So9FMXKPmnQVP3bMcZC65EIz+yfObRtEdgM9KIpE/+tzQa55bk1THQTjJlMUkMlmW0RpRyZGGXJoB5TlBg+sgQTxewhiAywwsTY/FybkL+YxzJpnFf8i8rVw2WpeptnVYBjOIFT8OEaqnAPNagDAQ4v8ApvzrPz7nw4nzPripP3HMEcnK9fOCCcIA==</latexit>
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<latexit sha1_base64="vedVU8MJMbfOFsVcdEbVvTPxi7Q=">AAACMnicbVDLTgIxFO2gIo4vUHduJhISF4bM+IguiW5cYiJgwkxIp1ygoe1M2o7JSPgXt7r2Z3Rn3PoRFhgTAW/S9OTce+7jhDGjSrvuu5VbWV3Lrxc27M2t7Z3dYmmvqaJEEmiQiEXyIcQKGBXQ0FQzeIglYB4yaIXDm0m+9QhS0Ujc6zSGgOO+oD1KsDZUp3jgExAapIi0T7mZCN0w7RTLbtWdhrMMvAyUURb1TsnK+92IJNz0Igwr1fbcWAcjLDUlDMa2nyiIMRniPrQNFJiDCkbT9cdOxTBdpxdJ84R2puxfxQhzpVIenph/UqGMhGM9UItFE/Lf3GzQPPV79tiuzG2ne1fBiIo40SDIbLlewhwdORP/nC6VQDRLDcBEUnOfQwZYYmK6Kds45y36tAyap1XvrHpxd16uXWceFtAhOkLHyEOXqIZuUR01EEFP6Bm9oFfrzfqwPq2vWWnOyjT7aC6s7x/BTKqd</latexit>

nec

suf
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Multivariable Case

Lyapunov-Equation Method
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contains no eigenvalues of A.

2 Select an arbitrary p×n matrix K̄ such that (F ′, K̄ ′) is controllable.

3 Solve the unique T in the Lyapunov equation AT − TF = BK̄.

4 If T is singular, select a different K̄ and repeat the process. If T is
nonsingular, we compute K = K̄T−1, and (A−BK) has the set of
desired eigenvalues.

If T is nonsingular, the Lyapunov equation and KT = K̄ imply

(A−BK)T = TF or A−BK = TFT−1

Thus A−BK and F are similar and have the same set of
eigenvalues.
Unlike the SISO case where T is always nonsingular, the T
here may not be nonsingular even if (A,B) is controllable and
(F ′, K̄ ′) is controllable.
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=)
<latexit sha1_base64="ybPMJtA3tnSRSmybjArTovj0NW4=">AAACDHicbVDLSgMxFL3js46vqks3wVJwIWXGB7osunFZwT6gHUomzbShSWZIMkIp/QUXbvUz3Ilb/8Gv8BfMtLOwrQdCDueey733hAln2njet7Oyura+sVnYcrd3dvf2iweHDR2nitA6iXmsWiHWlDNJ64YZTluJoliEnDbD4V1Wbz5RpVksH80ooYHAfckiRrCxUqvDhJ1CdbdY8ireFGiZ+DkpQY5at/jT6cUkFVQawrHWbd9LTDDGyjDC6cTtpJommAxxn7YtlVhQHYyn+05Q2So9FMXKPmnQVP3bMcZC65EIz+yfObRtEdgM9KIpE/+tzQa55bk1THQTjJlMUkMlmW0RpRyZGGXJoB5TlBg+sgQTxewhiAywwsTY/FybkL+YxzJpnFf8i8rVw2WpeptnVYBjOIFT8OEaqnAPNagDAQ4v8ApvzrPz7nw4nzPripP3HMEcnK9fOCCcIA==</latexit>
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<latexit sha1_base64="vedVU8MJMbfOFsVcdEbVvTPxi7Q=">AAACMnicbVDLTgIxFO2gIo4vUHduJhISF4bM+IguiW5cYiJgwkxIp1ygoe1M2o7JSPgXt7r2Z3Rn3PoRFhgTAW/S9OTce+7jhDGjSrvuu5VbWV3Lrxc27M2t7Z3dYmmvqaJEEmiQiEXyIcQKGBXQ0FQzeIglYB4yaIXDm0m+9QhS0Ujc6zSGgOO+oD1KsDZUp3jgExAapIi0T7mZCN0w7RTLbtWdhrMMvAyUURb1TsnK+92IJNz0Igwr1fbcWAcjLDUlDMa2nyiIMRniPrQNFJiDCkbT9cdOxTBdpxdJ84R2puxfxQhzpVIenph/UqGMhGM9UItFE/Lf3GzQPPV79tiuzG2ne1fBiIo40SDIbLlewhwdORP/nC6VQDRLDcBEUnOfQwZYYmK6Kds45y36tAyap1XvrHpxd16uXWceFtAhOkLHyEOXqIZuUR01EEFP6Bm9oFfrzfqwPq2vWWnOyjT7aC6s7x/BTKqd</latexit>

nec

suf
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Multivariable Case

Lyapunov-Equation Method

Theorem

If A and F have no eigenvalues in common, then the unique solution T of
AT − TF = BK̄ is nonsingular only if the pairs (A,B) and (F ′, K̄′) are
controllable.

Proof.

The proof is similar to that of the previous except that

∆(A)T − T∆(F ) = −T∆(F ) =
[
b Ab A2b A3b

] 
α3 α2 α1 1
α2 α1 1 0
α1 1 0 0
1 0 0 0



k̄
k̄F

k̄F2

k̄F3


now modifies to

=
[
B AB A2B A3B

] 
α3I α2I α1I I
α2I α1I I 0
α1I I 0 0
I 0 0 0



K̄
K̄F

K̄F2

K̄F3


= C(A,B)ΣC(F ′,K̄′)

where ∆(F ) is nonsingular and C(A,B),Σ, and C(F ′,K̄′) are, respectively, n× np, np× np and np× n. If

C(A,B) or C(F ′,K̄′) has rank less than n, then T is singular. However the conditions that C(A,B) and

C(F ′,K̄′) have rank n do not imply the nonsingularity of T . Thus the controllability of (A,B) and (F ′, K̄′)
are only necessary conditions for T to be nonsingular.
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Multivariable Case

Lyapunov-Equation Method
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Multivariable Case

Cyclic Design

Idea

We change the multi-input problem into a single input problem
and then apply earlier results.

Definition (Cyclic matrix)

A matrix A is called cyclic whenever its characteristic polynomial
equals its minimal polynomial.

Definition (Cyclic matrix)

A matrix A is called cyclic whenever the Jordan form of A has one
and only Jordan block associated with each distinct eigenvalue.
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Multivariable Case

Cyclic Design

Theorem

If the n-dimensional p-input pair (A,B) is controllable and if A is
cyclic, then for almost any p× l vector v, the single-input pair
(A,Bv) is controllable.

Controllability Invariance

Controllability is invariant under any equivalence transformation;
thus we may assume A to be in Jordan form.
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Multivariable Case

Cyclic Design: Logical idea behind the proof

To see the basic idea, we use the following example:

A =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 −1 1
0 0 0 0 −1

 B =


0 1
0 0
1 2
4 3
1 0

 Bv = B

[
v1

v2

]
=


×
×
α
×
β


There is only one Jordan block associated with each distinct eigenvalue; thus A
is cyclic.

Exercise

The necessary and sufficient conditions for (A,Bv) to be controllable are
α 6= 0 and β 6= 0.

Because α = v1 + 2v2 and β = v1, either α or β is zero if and only if v1 = 0 or
v1/v2 = −2/1. Thus any v other than v1 = 0 and v1 = −2v2 will make
(A,Bv) controllable.
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Multivariable Case

Cyclic Design: Logical idea behind the proof
The vector v can assume any value in the two-dimensional real space.

v1/2
<latexit sha1_base64="xjytp2PdbnuIvn0LbNkkwjn+ay4=">AAACIXicbVDLTgIxFG3xheMLdOmmkZC4MDiDGF2SuHGJiQMkMCGd0oGGTmfSdkjIhG9wq2u/xp1xZ/wZOzALAW/S9OTce25Pjx9zprRtf8PC1vbO7l5x3zo4PDo+KZVP2ypKJKEuiXgkuz5WlDNBXc00p91YUhz6nHb8yUPW70ypVCwSz3oWUy/EI8ECRrA2lDsdONf1Qali1+xFoU3g5KAC8moNynC3P4xIElKhCcdK9Rw71l6KpWaE07nVTxSNMZngEe0ZKHBIlZcu3M5R1TBDFETSHKHRgv2rSHGo1Cz0r8ydTSgjCbEeq/WhjPy3t3xolTJWqRSRnlvVFXc6uPdSJuJEU0GW5oKEIx2hLC40ZJISzWcGYCKZ+R8iYywxMduUZZJz1nPaBO16zbmp3T41Ks1GnmERnIMLcAkccAea4BG0gAsIYOAFvII3+A4/4Cf8Wo4WYK45AysFf34B6cWi5g==</latexit>

v1

2
= �v2

<latexit sha1_base64="XwyCNbaKBs4vrVykpljxEw7bgW8=">AAACMHicbVBNT8IwGG5REfEL8OhlkZB4ULIhRi8mJF48YiIfCSxLVzpo6Lql7Yhk2V/xqmd/jZ6MV3+FHewg4Js0ffK87/P26eOGjEplmp8wt7W9k98t7BX3Dw6PjkvlSlcGkcCkgwMWiL6LJGGUk46iipF+KAjyXUZ67vQ+7fdmREga8Cc1D4ntozGnHsVIacopVYaeQDieOVYSN5K7y5nTcEpVs24uytgEVgaqIKu2U4b54SjAkU+4wgxJObDMUNkxEopiRpLiMJIkRHiKxmSgIUc+kXa8MJ8YNc2MDC8Q+nBlLNi/ihj5Us5990Lf6YTUEh+piVwfSsl/e8uHViltlQgeqKRYW3GnvFs7pjyMFOF4ac6LmKECI03PGFFBsGJzDRAWVP/PwBOkE9TbZFEnZ63ntAm6jbp1Vb9+bFZbzSzDAjgFZ+AcWOAGtMADaIMOwOAZvIBX8Abf4Qf8gt/L0RzMNCdgpeDPL2l/qMM=</latexit>

The cyclicity assumption in this theorem is essential. For example, the pair

A =

2 1 0
0 2 0
0 0 2

 , B =

2 1
0 2
1 0


is controllable. However, there is no v such that (A,Bv) is controllable.

If all eigenvalues of A are distinct, then there is only one Jordan block
associated with each eigenvalue. Thus a sufficient condition for A to be cyclic
is that all eigenvalues of A are distinct.
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Multivariable Case

Cyclic Design

Theorem

If (A,B) is controllable, then for almost any p× n real constant
matrix K, the matrix (A−BK) has only distinct eigenvalues and
is, consequently cyclic.
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Multivariable Case

Cyclic Design
Theorem

If the n-dimensional p-input pair (A,B) is controllable and if A is cyclic, then for almost any p× l vector v, the
single-input pair (A,Bv) is controllable.

Theorem

If (A,B) is controllable, then for almost any p× n real constant matrix K, the matrix (A− BK) has only
distinct eigenvalues and is, consequently cyclic.

With these two theorems, we can now find a K to place all eigenvalues of
(A−BK) in any desired positions.

If A is not cyclic, we introduce u = w −K1x, such that Ā := A−BK1 in

ẋ = (A−BK1)x+Bw =: Āx+Bw

is cyclic.
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distinct eigenvalues and is, consequently cyclic.

With these two theorems, we can now find a K to place all eigenvalues of
(A−BK) in any desired positions.

If A is not cyclic, we introduce u = w −K1x, such that Ā := A−BK1 in

ẋ = (A−BK1)x+Bw =: Āx+Bw

is cyclic.
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Multivariable Case

Cyclic Design
Because (A,B) is controllable, so is (Ā, B). Thus there exists a p× 1 real
vector v such that (Ā, Bv) is controllable1.

Next we introduce “another” state feedback w = r −K2x with K2 = vk,
where k is a 1× n real vector. Then

ẋ = (Ā−BK2)x+Br = (Ā−Bvk)x+Br

Because the single-input pair (Ā, Bv) is controllable, the eigenvalues of
Ā−Bvk can be assigned arbitrarily by selecting a k.

Combining the two state feedback u = w −K1x and w = r −K2x as

u = r − (K1 +K2)x =: r −Kx
we obtain a K := K1 +K2 that achieves arbitrary eigenvalue assignment.

1
The choice of K1 and v are not unique. They can be chosen arbitrarily.
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The Linear Quadratic Regulator Problem

Problem

Given a continuous-time LTI system:

ẋ = Ax+Bu, y = Cx

the linear quadratic regulation (LQR) problem consists of finding the control
signal u(t) that makes the following criterion as small as possible:

JLQR ,
∫ ∞

0

yT (t)Qy(t) + uT (t)Ru(t)dt, (Cost function)

where Q and R are the positive-definite weighting matrices.

The following terms provides a measure∫ ∞
0

yT (t)Qy(t) (Output energy)∫ ∞
0

uT (t)Ru(t) (Control energy)
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The Linear Quadratic Regulator Problem

JLQR ,
∫ ∞

0

yT (t)Qy(t) + uT (t)Ru(t)dt

In LQR one seeks a controller that minimizes both energies. However,
decreasing the energy of the output requires a large control signal, and a
small control signal leads to large outputs.

The role of the weighting matrices Q and R is to establish a trade-ff
between these two conflicting goals.

1 When R is much larger than Q, the most effective way to decrease
JLQR is to employ a small control input at the expense of a large
output.

2 When R is much smaller than Q, the most effective way to decrease
JLQR is to obtain a very small output, even if this is acheived at the
expense of employing a large control input.
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Feedback Invariants

Definition (Feedback Invariant)

Given a continuous-time LTI system:

ẋ = Ax+Bu, y = Cx, x ∈ Rn, u ∈ Rk, y ∈ Rm (CLTI)

we say that a functional

H(x(·), u(·))

that involves the system’s input and state is a feedback invariant
for the system (CLTI) whenever its value depends only on the
initial condition x(0) and not on the specific input u(·).
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Feedback Invariants

Theorem (Feedback Invariant)

For a symmetric matrix P , the functional

H(x(·), u(·)) , −
∫ ∞

0

(Ax(t) +Bu(t))T Px(t) + xT (t)P (Ax(t) +Bu(t)) dt

is a feedback invariant for CLTI as long as limt→∞ x(t) = 0.

Proof.

We can write H as

H(x(·), u(·)) = −
∫ ∞

0

ẋT (t)Px(t) + xT (t)P ẋ(t)dt

= −
∫ ∞

0

d(xTPx)

dt

= x(0)TPx(0)− lim
t→∞

xTPx = xT (0)Px(0),

as long as limt→∞ x(t) = 0.
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Feedback Invariants in Optimal Control
Suppose that we are able to express a criterion J to be minimized by an
appropriate choice of the input u(·) in the following form:

J = H(x(.), u(.)) +

∫ ∞
0

Λ(x(t), u(t))dt, (criterion)

where H is a feedback invariant and the function Λ(x, u) has the property that
for every x ∈ Rn

min
u∈Rk

Λ(x, u) = 0

In this case, the control

u(t) = arg min
u∈Rk

Λ(x, u),

will minimize the criterion J , and the optimal value of J is equal to the
feedback invariant

J = H(x(.), u(.)).

Note that it is not possible to get a lower value for J since

1 the feedback invariant H is never affected by u and

2 a smaller value for J would require the integral in the right hand side of
(criterion) to be negative, which is not possible since Λ(x(t), u(t)) can at
best be as low as zero.
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Optimal State Feedback

J = H(x(.), u(.)) +

∫ ∞
0

Λ(x(t), u(t))dt, (criterion)

It turns out that the LQR criterion can be expressed as in (criterion) for an
appropriate choice of feedback invariant.

In fact, the feedback invariant
introduced earlier will work, provided that we choose the matrix P
appropriately.

To check that this is so, we add and subtract this feedback invariant to the
LQR criterion and conclude that

JLQR =

∫ ∞
0

(
xTCTQCTx+ uTRu

)
dt

= H +

∫ ∞
0

(
xTCTQCTx+ uTRu+ (Ax+Bu)TPx+ xTP (Ax+Bu)

)
dt

= H +

∫ ∞
0

(
xT
(
ATP + PA+ CTQCT

)
x+ uTRu+ 2uTBTPx

)
dt

By completing the squares as follows, we group the quadratic term in u with
the cross-term in u times x(

uT + xTKT
)
R (u+Kx) = uTRu+ xTPBR−1BTPx+ 2uTBTPx,

K = R−1BTP.
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Optimal State Feedback

We conclude that

JLQR = H(x(.), u(.)) +

∫ ∞
0

xT
(
ATP + PA+ CTQCT − PBR−1BTP

)
x

+
(
uT + xTKT

)
R (u+Kx) dt.

If we are able to select the matrix P so that

ATP + PA+ CTQC − PBR−1BTP = 0,

We obtain precisely an expression such as (criterion) with

Λ(x, u) = (uT + xTKT )R(u+Kx)

which has a minimum equal to zero for

u = −Kx K = R−1BTP,

leading to the closed-loop system

ẋ = Ax+BKx =
(
A−BR−1BTP

)
x.
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Optimal state feedback

Theorem (Optimal State Feedback)

Assume that there exists a symmetric matrix P to the following algebraic
Riccati equation (ARE)

ATP + PA+ CTQC − PBR−1BTP = 0 (ARE)

for which A−BR−1BTP is a stability matrix. Then the feedback
control law

u = −Kx, K = R−1BTP,

stabilizes the closed-loop system while minimizing the LQR criterion

JLQR ,
∫ ∞

0

yT (t)Qy(t) + uT (t)Ru(t)dt.

Note: Asymptotic stability of the closed loop system is needed because
we assumed that limt→∞ x(t)Px(t) = 0.

1
Kumar and Jain. Some Insights on Synthesizing Optimal Linear Quadratic Controllers using Krotov Sufficient

Conditions, IEEE Control Systems Letters, 2020.
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Optimal state feedback

Attention

The ARE itself already provides the clues about whether or not the
closed-loop system is stable. Indeed if we write the Lyapunov
equation for the closed loop, we get

(A−BR−1BTP )TP + P (A−BR−1BTP )

= ATP + PA− 2PBR−1BTP

= −Q̄ ≤ 0

for Q̄ = CTQC +PBR−1BTP ≥ 0. In case P > 0 and Q̄ > 0, we
could immediately conclude that the closed loop system was stable
by Lyapunov stability theorem.
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LQR with MATLAB

The command

[K,P,E] = lqr(A,B,QQ,RR,NN)

computes the optimal state feedback LQR controller for the process

ẋ = Ax+ Bu

with the criterion

J =

∫ ∞

0

x(t)′QQx(t) + u(t)′RRu(t) + 2x(t)′NNu(t)dt.

For the criterion in (Cost function), one should select

QQ = C ′QC, RR = R, NN = 0.

This command returns the optimal state feedback matrix K, the solution
P to the corresponding algebraic Riccati equation, and the poles E of the
closed-loop system.
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