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Outline

1 State Space representation of LTI systems(Lecture 1 Slides 4-7, 17)

2 Time-Domain Solution for LTI Systems (Lecture1, Slides 9-16; Lecture 3,

Slides 37-46)

3 Realization of an LTI system (Lecture 5, Slides 63-71)

4 Equivalence of LTI systems (Lecture 4, Slides 50-55)

5 State Space representation of LTV systems (Lecture 1 Slides 4-7, 17)

6 State Space representation of LTV systems (Lecture 1 Slides 4-7, 17)

7 Equivalence of LTV systems (Lecture 4, Slides 56-61)

8 Time-Domain Solution for LTV Systems (Lecture 2, Slides 23-31)
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State Space representation of LTI systems

Problem 1

Consider the circuit shown below:

  

Input Output
Dynamical
system

Find the state-space representation for the given circuit.
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Solution to Problem 1

States:il(t), vc(t)
Input:e1(t), e2(t)

e1(t) = Li̇1(t)dt+R(i1(t)− i2(t)) (1)

−e2(t) = R(i2(t)− i1(t)) + vc(t) (2)

−e2(t) = Ri2(t)−Ri1(t) + vc(t)
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Solution to Problem 1

i1(t) = i2(t) +
vc(t)

R
+
e2(t)

R
(3)

Substituting (3) in (1),

e1(t) = Li̇1(t) +R

(
i2(t) +

vc(t)

R
+
e2(t)

R
− i2(t)

)

i̇1(t) =
e1(t)

L
− e2(t)

L
− vc(t)

L
(4)

From (2),

−e2(t) = RCv̇c(t)−Ri1(t) + vc(t)
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Solution to Problem 1

v̇c(t) =
−e2(t)

RC
+
i1(t)

C
− vc(t)

RC
(5)

From (4) and (5),

ẋ = Ax(t) +Bu(t)[
i̇l(t)
v̇c(t)

]
=

[
0 −1/L

1/C −1/RC

] [
il(t)
vc(t)

]
+

[
1/L −1/L

0 −1/RC

] [
e1(t)
e2(t)

]
Taking y1(t) = il(t), y2(t) = ic(t)

y(t) = Cx(t) +Du(t)

=⇒
[
y1(t)
y2(t)

]
=

[
1 0
1 −1/R

] [
il(t)
vc(t)

]
+

[
0 0
0 −1/R

] [
e1(t)
e2(t)

]
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Time-Domain Solution for LTI Systems

Problem 2

Solve the state-space equations obtained in Problem 1 to obtain
the
(i) zero-state response and
(ii) zero-input response of the system
(iii) overall response.
Assume R = 2

3Ω, L = 1H, C = 1
2F .

Take [
x1(0)
x2(0)

]
=

[
1
2

]
as the initial state for (i)
and

u =

[
1
2

]
u(t)

for (ii), where u(t) is the standard unit step signal.
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Solution to Problem 2

[
i̇l(t)
v̇c(t)

]
=

[
0 −1/L

1/C −1/RC

] [
il(t)
vc(t)

]
+

[
1/L −1/L

0 −1/RC

] [
e1(t)
e2(t)

]
C = 1

2F , L = 1H, R = 2
3Ω

A =

[
0 −1
2 −3

]
, B =

[
1 −1
0 −3

]
, C =

[
1 0
1 −3

2

]
, D =

[
0 0
0 −3

2

]
[
x1(0)
x2(0)

]
=

[
il(0)
vc(0)

]
=

[
1
2

]
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Solution to Problem 2

(i) Zero Input Response:

Lecture Slides: 37

For a homogeneous LTI System,

φ(t, t0) = eA(t−t0), t ≥ t0

yzi = C[eAtx(0)]

x(t) = eAtx(0)

=⇒ x(t) =

[
−e−2t + 2e−t e−2t − e−t
−2e−2t + 2e−t 2e−2t − e−t

] [
1
2

]
=

[
e−2t

2e−2t

]
yzi = C[eAtx(0)]

=

[
1 0
1 −3

2

] [
e−2t

2e−2t

]
=

[
e−2t

−2e−2t

]
, t ≥ 0
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Solution to Problem 2

(ii) Zero State Response:

Lecture Slides: 39-41

For a non-homogeneous LTI System,

eAt = L−1
[
(sI −A)−1

]

yzs(t) = C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t), t ≥ t0

yzs(t) = L−1
[
C(sI −A)−1BU(s) +DU(s)

]
u =

[
1
2

]
u(t)

yzs = L−1
[
C(sI −A)−1BU(s) +DU(s)

]
Linear Dynamical Systems
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Solution to Problem 2

=L−1

[[
1 0
1 −3

2

] [
s 1
−2 s+ 3

]−1 [
1 −1
0 −3

] [
1
s
2
s

]
+

[
0 0
0 −3

2

] [
1
s
2
s

]]

=L−1

([
1 0
1 −3

2

]
1

s2 + 3s+ 2

[
s+ 3 −1

2 s

] [
1 −1
0 −3

2

] [
1
s
2
s

]

+

[
0 0
0 −3

2

] [
1
s
2
s

])

=L−1

([
1 0
1 −3

2

]
1

s2 + 3s+ 2

[
s+ 3 −s− 3

2
2 −2− 3s

2

] [
1
s
2
s

]
+

[
0
−3
s

])

=L−1

([
1 0
1 −3

2

]
1

s2 + 3s+ 2

[
−1
−3− 2

s

]
+

[
0
−3
s

])
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Solution to Problem 2

= L−1

(
1

s2 + 3s+ 2

[
−1
6+7s
2s

]
+

[
0
−3
s

])

= L−1

([
−1

(s+2)(s+1)
6+7s

2s(s+2)(s+1)

])
+ L−1

([
0
−3
s

])

=⇒ yzs =

[
−e−2t − e−t

3
2 − 2e−2t + 1

2e
−t

]
+

[
0
−3

]
yzs =

[
−e−2t − e−t

3
2 − 2e−2t + 1

2e
−t − 3

]
, t ≥ 0
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Solution to Problem 2

Overall Response y(t) = yzi + yzs

=

[
e−2t

−2e2t

]
+

[
−e−2t − e−t

3
2 − 2e−2t + 1

2e
−t − 3

]
=

[
−e−t

−2e2t + 3
2 − 2e−2t + 1

2e
−t − 3

]
, t ≥ 0
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Realization of an LTI system

Problem 3

Find the state-space realization of the Transfer Matrix given below:

Ĝ(s) =
1

s2 + s+ 1

[
s+ 1 −s
s −s2 − s

]
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Solution to Problem 3

Given,

Ĝ(s) =
1

s2 + s+ 1

[
s+ 1 −s
s −s2 − s

]

Lecture Slides: 67,68

Transfer matrix Ĝ(s) can be decomposed as ,

Ĝ(s) = Ĝ(∞) + Ĝsp(s).

where,

Ĝsp(s) =
1

d(s)
[N(s)] =

1

d(s)

[
N1s

r−1 +N2s
r−2 + ...+Nr−1s+Nr

]
and

d(s) = sr + α1s
r−1 + · · ·+ αr−1s+ αr

Linear Dynamical Systems
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Solution to Problem 3

Ĝ(s) =
1

s2 + s+ 1

[
s+ 1 −s
s −s2 − s

]
Ĝ(∞) = lim

s→∞
Ĝ(s) =

[
0 0
0 −1

]

Ĝ(s) =

[
0 0
0 −1

]
+

1

s2 + s+ 1

[
s+ 1 −s
s 1

]

=⇒ Ĝ(s) =

[
0 0
0 −1

]
+

1

s2 + s+ 1

([
1 −1
1 0

]
s+

[
1 0
0 1

])
and

d(s) = s2 + s+ 1

Linear Dynamical Systems
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Solution to Problem 3

Lecture Slide: 68

ẋ =


−α1Ip −α2Ip . . . −αr−1Ip −αrIp
Ip 0 . . . 0 0
0 Ip . . . 0 0
...

...
. . .

...
...

0 0 ... Ip 0

x+


Ip
0
0
...
0

u
y =

[
N1 N2 ... Nr−1 Nr

]
x+ Ĝ(∞)u

Using the above expressions,

=⇒ ẋ =


−1 0 −1 0
0 −1 0 −1
1 0 0 0
0 1 0 0

x+


1 0
0 1
0 0
0 0

u (1)
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Solution to Problem 3

y =

[
−1 −1 1 0
1 0 0 1

]
x+

[
0 0
0 −1

]
u (2)

The above set of equations are a realization of Ĝ(s).
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Equivalence of LTI systems

Problem 4

Given a state-space representation with

A =

[
0 −2
1 −3

]
, B =

[
1 −1
0 −3/2

]
and another representation with

Ā =

[
0 −1
2 −3

]
, B̄ =

[
1 −1
0 −3

]
Prove the equivalence of these two systems.
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Solution to Problem 4

Given

A =

[
0 −2
1 −3

]
, B =

[
1 −1
0 −3/2

]
and Ā =

[
0 −1
2 −3

]
, B̄ =

[
1 −1
0 −3

]
Method 1 :

B =

[
1 −1
0 −3/2

]
R2 → 2R2

B =

[
1 −1
0 −3

]
= B̄

Therefore, Transformation matrix : T =

[
1 0
0 2

]
Linear Dynamical Systems
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Solution to Problem 4

Verifying value of T matrix,

TAT−1 =

[
1 0
0 2

] [
0 −2
1 −3

] [
1 0
0 2

]−1
=

[
1 0
0 2

] [
0 −2
1 −3

] [
1 0
0 1/2

]
=

[
0 −1
2 −3

]
= Ā

Method 2 : For the two systems to be equivalent:

Ā = TAT−1, B̄ = TB

=⇒ B̄B−1 = TT =

[
1 −1
0 −3

] [
1 −1
0 −3/2

]−1
Linear Dynamical Systems
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Solution to Problem 4

T =

[
1 −1
0 −3

] [
1 −2/3
0 −2/3

]
=⇒ T =

[
2 0

1.5 0.5

]
detT 6= 0

Since, T is a non-singular matrix, the corresponding two state
equations are equivalent.

Linear Dynamical Systems
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State Space representation of LTV systems

Problem 5

If the Resistance(R), Inductance(L), and Capacitance(C) of the
circuit in Problem 1 are time-variant, find the state space
representation of the corresponding LTV system.

y
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Solution to Problem 5

Taking R = R(t), L = L(t), C = C(t)
States:il(t), vc(t)
Input:e1(t), e2(t)

e1(t) =
d

dt
(L(t)i1(t)) +R(t)(i1(t)− i2(t)) (1)

−e2(t) = R(t)(i2(t)− i1(t)) + vc(t) (2)

Linear Dynamical Systems
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Solution to Problem 5

−e2(t) = R(t)i2(t)−R(t)i1(t) + vc(t)

i1(t) = i2(t) +
vc(t)

R(t)
+
e2(t)

R(t)
(3)

Substituting (3) in (1),

e1(t) = L(t)i̇1(t) + i1(t)L̇(t) +R(t)

(
i2(t) +

vc(t)

R(t)
+
e2(t)

R(t)
− i2(t)

)

i̇1(t) =
e1(t)

L(t)
− i1(t)L̇(t)

L(t)
− vc(t)

L(t)
− e2(t)

L(t)
(4)
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Solution to Problem 5

From equation (2),

−e2(t) = R(t)(i2(t)− i1(t)) + vc(t)

−e2(t) = R(t)
d

dt
(C(t)vc(t))−R(t)i1(t) + vc(t)

−e2(t) = R(t)C(t)v̇c(t) +R(t)vc(t)Ċ(t)−R(t)i1(t) + vc(t)

v̇c(t) =
−e2(t)

R(t)C(t)
− vc(t)Ċ(t)

C(t)
− vc(t)

R(t)C(t)
+
i1(t)

C(t)
(5)
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Solution to Problem 5

From equation (4) and (5),[
i̇l(t)
v̇c(t)

]
=

[
−L−1(t)L̇(t) −L−1(t)

C−1(t) −[Ċ(t) +R−1(t)]C−1(t)

] [
il(t)
vc(t)

]

+

[
L−1(t) −L−1(t)

0 −R−1(t)C−1(t)

] [
e1(t)
e2(t)

]

Linear Dynamical Systems



28

State Space representation of LTV systems

Problem 6

Taking φ(t)(the magnetic flux through the inductor), q(t)(the
charge on the capacitor) as the states, find the Time-Variant state
space representation of the circuit given in Problem 1.
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Solution to Problem 6

Taking R = R(t), L = L(t), C = C(t)
States:φ(t), q(t)
Input:e1(t), e2(t)

vl(t) =
dφ(t)

dt
, i2(t) =

dq(t)

dt

=⇒ φ(t) =

∫
vldt, q(t) =

∫
i2dt

Linear Dynamical Systems
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Solution to Problem 6

e1(t) =
d

dt
(L(t)i1(t)) +R(t)(i1(t)− i2(t))

e1(t) =
d

dt

(
L(t)

1

L(t)

∫
vldt

)
+
R(t)φ(t)

L(t)
−R(t)q̇(t)

e1(t) = φ̇(t) +
R(t)φ(t)

L(t)
−R(t)q̇(t) (1)

−e2(t) = R(t)(i2(t)− i1(t)) + vc(t)

−e2(t) = R(t)

(
q̇(t)− φ(t)

L(t)

)
+
q(t)

C(t)

−e2(t) +
R(t)φ(t)

L(t)
− q(t)

C(t)
= R(t)q̇(t)

−e2(t)
R(t)

+
φ(t)

L(t)
− q(t)

C(t)R(t)
= q̇(t) (2)
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Solution to Problem 6

Replacing (2) in (1),

e1(t)− e2(t)− q(t)

C(t)
= φ̇(t) (3)

From (2) and (3),[
φ̇(t)
q̇(t)

]
=

[
0 −C−1(t)

L−1(t) R−1(t)C−1(t)

] [
φ(t)
q(t)

]

+

[
1 −1
0 −R−1(t)

] [
e1(t)
e2(t)

]
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Equivalence of LTV systems

Problem 7

Prove the equivalence of State Space models obtained in Problem
5 and 6. Take: L(t) = 0.5t H , C(t) = 0.5t C, R = 2Ω.

[
i̇l(t)
v̇c(t)

]
=

[
−L−1(t)L̇(t) −L−1(t)
C−1(t) −[Ċ(t) +R−1(t)]C−1(t)

] [
il(t)
vc(t)

]

+

[
L−1(t) −L−1(t)

0 −R−1(t)C−1(t)

] [
e1(t)
e2(t)

]
(1)

[
φ̇(t)
q̇(t)

]
=

[
0 −C−1(t)

L−1(t) R−1(t)C−1(t)

] [
φ(t)
q(t)

]
+

[
1 −1
0 −R−1(t)

] [
e1(t)
e2(t)

]
(2)
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Solution to Problem 7

Using L(t) = 0.5t H , C(t) = 0.5t C and R = 2Ω

A =

[
−1/t −2/t
2/t −2/t

]
, B =

[
2/t −2/t
0 −1/t

]
Ā =

[
0 −2/t

2/t −1/t

]
, B̄ =

[
1 −1
0 −0.5

]

Lecture Slide: 56

(A,B) and (Ā, B̄) are equivalent if there exists a non-singular
matrix P (t) ∈ R2×2 such that:

Ā(t) = [P (t)A(t) + Ṗ (t)]P−1(t) (1)

B̄(t) = P (t)B(t) (2)

Linear Dynamical Systems
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Solution to Problem 7

B =

[
2/t −2/t
0 −1/t

]
R1 → R1

t

2
, R2 → R2

t

2

=

[
1 −1
0 −0.5

]
= B̄

Elementary Row Matrices:

E1(t) =

[
t/2 0
0 1

]
, E2(t) =

[
1 0
0 t/2

]
P (t) = E1E2 =

[
t/2 0
0 t/2

]
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Solution to Problem 7

To verify that P (t) is the algebraic equivalent transformation
matrix:
Substituting in (1),

Ā(t) = [P (t)A(t) + Ṗ (t)]P−1(t)

RHS: ([
t/2 0
0 t/2

] [
−1/t −2/t
2/t −2/t

]
+

[
0.5 0
0 0.5

])[
2/t 0
0 2/t

]
[
0 −1
1 −0.5

] [
2/t 0
0 2/t

]
[

0 −2/t
2/t −1/t

]
= Ā(t) = LHS. Hence Proved.
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Time-Domain Solution for LTV Systems

Problem 8

Comment on the realizability of::

ẋ(t) = A(t)x(t) +B(t)u(t)

where,

A =

[
0 −2/t

2/t −1/t

]
, B =

[
1 −1
0 −0.5

]
Use the concept of the fundamental matrix.
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Solution to Problem 8

Given,

A =

[
0 −2/t

2/t −1/t

]
R1 → R1 − 2R2

=⇒ Ā =

[
−4/t 0
2/t −1/t

]
ż(t) = Ā(t)z(t)[

ż1(t)
ż2(t)

]
=

[
−4/t 0
2/t −1/t

] [
z1(t)
z2(t)

]
ż1(t) = −4

t
z1(t)

ż2(t) =
2

t
z1(t)−

1

t
z2(t)
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Solution to Problem 8

Taking t0 = 0 and[
z1(0)
z2(0)

]
=

[
1
0

]
z1(t) = z1(t0) +

4

t2
z1(t)

=⇒ z1(t) =
1

1− 4
t2

z2(t) = z2(t0)−
2

t2
z1(t) +

1

t2
z2(t)

Substituting the value of z1(t)

z2(t) = − 2

t2

( 1

1− 4
t2

)
+

1

t2
z2(t)
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Solution to Problem 8

z2(t)
(

1− 1

t2

)
= − 2

t2

( 1

1− 4
t2

)
=⇒ z2(t) =

−2t2

(t2 − 4)(t2 − 1)

Taking [
z1(0)
z2(0)

]
=

[
0
1

]
z1(t) = z1(t0) +

4

t2
z1(t)

z1(t)
(

1− 4

t2

)
= 0

=⇒ z1(t) = 0
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Solution to Problem 8

z2(t) = z2(t0)−
2

t2
z1(t) +

1

t2
z2(t)

Substituting value of z1(t)

z2(t)
(

1− 1

t2

)
= 1

=⇒ z2(t) =
1

1− 1
t2

Fundamental Matrix Z(t):

Z(t) =

[
z1

(1)(t) z1
(2)(t)

z2
(1)(t) z2

(2)(t)

]
=

[
t2

t2−4 0
−2t2

(t2−4)(t2−1)
t2

t2−1

]

Linear Dynamical Systems
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Solution to Problem 8

Converting back to the original system using:
X(t) = T−1Z(t), where T is the elementary transformation matrix.

X(t) =

[
1 −2
0 1

]−1 [ t2

t2−4 1
−2t2

(t2−4)(t2−1)
t2

t2−1

]

X(t) =

[
t2(t2−5)

(t2−4)(t2−1)
2t2

t2−1
−2t2

(t2−4)(t2−1)
t2

t2−1

]

Linear Dynamical Systems
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Recall

Recall from the lecture slide 74 that the impulse response G(t, τ)
is realizable iff it can be decomposed as
G(t, τ) = M(t)N(τ) +D(t)δ(t− τ) ∀t ≥ τ

The impulse response for the system under consideration is :

G(t, τ) = C(t)X(t)X−1(τ)B(τ) +D(t)δ(t− τ)

= X(t)X−1(τ)B(τ)

Clearly, by comparison, M(t) = X(t), N(τ) = X−1(τ)B(τ) and
D(t) = 0 and hence the given impulse response is realizable.
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