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Linear Dynamical Systems
Week 7 - Observability and Minimal Realization
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Outline of Week 7

1 Observability and its tests

2 Kalman Decomposition

3 Detectability and its tests

4 Minimal Realization
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Observability

Motivation: Output Feedback

Consider the continuous-time LTI system

ẋ = Ax+Bu, y = Cx+Du, x ∈ Rn, u ∈ Rk, y ∈ Rm (CLTI)

We know that if the pair (A,B) is stabilizable, then there exists a state
feedback law

u = −Kx (Control law)

that asymptotically stabilize the system (CLTI), i.e., for which (A−BK) is a
stability matrix.

Issue

However, when only the output y can be measured (as opposed to the whole
state x), the (Control law) cannot be implemented.

Possible solution

In principle, this difficulty can be overcome if it is possible to reconstruct the
state of the system based on its measured output and perhaps also on the
control input that is applied.
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Observability

Motivation: Output Feedback

When the matrix C is invertible, instantaneous reconstruction of x from y and
u is possible by solving the output equation for x

x(t) = C−1(y(t)−Du(t)).

However, this would be possible only if the number of outputs was equal to the
number of states (C is a square matrix).

When the number of outputs is strictly less than number of states,
instantaneous reconstruction of x is not possible, but it may still be possible to
reconstruct the state from the output y(t) and input u(t) over the time interval
[t0, t1].

Two formulations are usually considered.

1 Observability refers to determining x(t0) from the future inputs and
outputs, u(t) and y(t), t ∈ [t0, t1].

2 Constructibility refers to determining x(t1) from the past inputs and
outputs, u(t) and y(t), t ∈ [t0, t1].
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Observability

Unobservable Subspace

Consider the continuous-time LTV system

ẋ = A(t)x+B(t)u, y = C(t)x+D(t)u, x ∈ Rn, u ∈ Rk, y ∈ Rm
(CLTV)

We know that the system’s state x0 := x(t0) at time t0 is related to its input
and output on the interval [t0, t1] by the variation of constants formula:

y(t) = C(t)φ(t, t0)x0 +
∫ t1
t0
C(t)φ(t, τ)B(τ)u(τ)dτ +D(t)u(t) , ∀t ∈ [t0, t1],

where φ(.) denotes the system’s state transition matrix.

To study the system’s observability, we need to determine under which
conditions we can solve

ỹ(t) = C(t)φ(t, t0)x0, ∀t ∈ [t0, t1]

for the unknown x0 ∈ Rn, where

ỹ(t) = y(t)−
∫ t

t0

C(t)φ(t, τ)B(τ)u(τ)dτ −D(t)u(t), ∀t ∈ [t0, t1].
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Observability

Unobservable Subspace

Definition (Unobservable subspace)

Given two times t1 > t0 ≥ 0, the unobservable subspace on
[t0, t1], i.e., UO[t0, t1] consists of all states x0 ∈ Rn for which

C(t)φ(t, t0)x0 = 0 , ∀ ∈ [t0, t1].
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Observability

Unobservable Subspace

Properties (Unobservable subspace)

Suppose we are given two times t1 > t0 ≥ 0 and an input/output pair
u(t), y(t), [t0, t1].

1 When a particular initial state x0 = x(t0) is compatible with the
input/output pair, then every initial state of the form

x0 + xu, xu ∈ UO[t0, t1]

is also compatible with the same input/output pair. This is because{
ỹ = C(t)φ(t, t0)x0, ∀t ∈ [t0, t1]

0 = C(t)φ(t, t0)xu, ∀t ∈ [t0, t1]

⇒ ỹ = C(t)φ(t, t0)(x0 + xu) ∀t ∈ [t0, t1].



8

Observability

Unobservable Subspace

Properties (Unobservable subspace)

Suppose we are given two times t1 > t0 ≥ 0 and an input/output pair
u(t), y(t), [t0, t1].

2 When the unobservable subspace contains only the zero vector, then
there exists at most one initial state that is compatible with the
input/output pair 1.

This is because if two different states x0, x̄0 ∈ Rn were compatible with
the same input/output pair, i.e.,{

ỹ = C(t)φ(t, t0)x0, ∀t ∈ [t0, t1]

ỹ = C(t)φ(t, t0)x̄0, ∀t ∈ [t0, t1]

⇒ 0 = C(t)φ(t, t0)(x0 − x̄0) ∀t ∈ [t0, t1],

and therefore x0 − x̄0 6= 0 would have to belong to the unobservable
subspace.

1Because of this property, it is possible to uniquely reconstruct the state of
an observable system from (future) inputs/outputs.
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Observability

Unobservable Subspace

The above properties motivate the following definition.

Definition (Observable system)

Given two times t1 > t0 ≥ 0, the system (CLTV) is observable
whenever its unobservable subspace contains only the zero vector;
i.e., UO[t0, t1] = 0.

The matrices B(.) and D(.) play no role in the definition of the
unobservable subspace; therefore one often simply talks about the
unobservable subspace or the observability of the system

ẋ = A(t)x, y = C(t)x x ∈ Rn, y ∈ Rm (AC-CLTV)
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Observability

Unconstructible Subspace

The “future” system’s state x1 := x(t1) at time t1 can also be related to the
system’s input and output on the interval [t0, t1] by the variation of constants
formula:

y(t) = C(t)φ(t, t1)x1 +

∫ t

t1

C(t)φ(t, τ)B(τ)u(τ)dτ +D(t)u(t), ∀ ∈ [t0, t1]

Definition (Unconstructible subspace)

Given two times t1 > t0 ≥ 0, the unconstructible subspace on [t0, t1], i.e.,
UC[t0, t1] consists of all states x1 for which

C(t)φ(t, t1)x1 = 0 , ∀t ∈ [t0, t1].
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Observability

Unconstructible Subspace

Properties(Unconstructible subspace)

Suppose we are given two times t1 > t0 ≥ 0 and an input/output pair
u(t), y(t), t ∈ [t0, t1].

1 When a particular final state x1 = x(t1) is compatible with the
input/output pair, then every final state of the form

x1 + xu, xu ∈ UC[t0, t1]

is also compatible with the same input/output pair.

2 When the unconstructible subspace contains only the zero vector, then
there exists at most one final state that is compatible with the
input/output pair.

Definition (Constructible system)

Given two times t1 > t0 ≥ 0, the system (CLTV) is constructible whenever its
unconstructible subspace contains only the zero vector, i.e., UC[t0, t1] = 0.
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Observability

Physical example
Parallel interconnection:
Consider the below interconnection of two systems with states x1, x2 ∈ Rn.
The overall system corresponds to following state space model

ẋ =

[
A1 0
0 A2

]
x+

[
B1

B2

]
, y =

[
C1 C2

]
x

where we chose for state x :=
[
xT1 xT2

]T ∈ R2n.

The output is given by

y(t) = C1e
A1tx1(0) + C1e

A2tx2(0) +

∫ t

0

(C1e
A1(t−τ)B1 + C2e

A2(t−τ)B2)u(τ)dτ.

When A1 = A2 = A and C1 = C2 = C, we have

y(t) = CeAt (x1(0) + x2(0)) +

∫ t

0

CeA(t−τ)(B1 +B2)u(τ)dτ.

This shows that, solely by knowing the input and output of the system, we
cannot distinguish between initial states for which x1(0) + x2(0) is the same.

138 LECTURE 15
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reconstruct the state
of a constructible
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]
x,

where we chose for state x :=
[
x ′
1 x ′

2
]′ ∈ R2n . The output to this system is given by

y(t) = C1eA1t x1(0) + C1eA2t x2(0) +
∫ t
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C1eA1(t−τ )B1 + C2eA2(t−τ )B2
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ẋ =
[
A1 0
0 A2

]
x +

[
B1
B2

]
u, y =

[
C1 C2

]
x,

where we chose for state x :=
[
x ′
1 x ′

2
]′ ∈ R2n . The output to this system is given by

y(t) = C1eA1t x1(0) + C1eA2t x2(0) +
∫ t

0

(
C1eA1(t−τ )B1 + C2eA2(t−τ )B2

)
u(τ )dτ.

When A1 = A2 = A and C1 = C2 = C , we have

y(t) = CeAt
(
x1(0) + x2(0)

)
+

∫ t

0
CeA(t−τ )(B1 + B2)u(τ )dτ.

This shows that, solely by knowing the input and output of the system, we cannot
distinguish between initial states for which x1(0) + x2(0) is the same. !

Figure 15.1. Parallel interconnections.



13

Observability

Subspace characterization using Gramians

Definition (Observability and Constructibility Gramians)

Given two times t1 > t0 ≥ 0, the observability and constructibility
Gramians1 of the system (CLTV) are defined by

WO(t0, t1) :=

∫ t1

t0

Φ(τ, t0)
TC(τ)TC(τ)Φ(τ, t0)dτ,

WCn(t0, t1) :=

∫ t1

t0

Φ(τ, t1)
TC(τ)TC(τ)Φ(τ, t1)dτ.

1Both Gramians are symmetric positive-semidefinite n× n matrices.
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Observability

Subspace characterization using Gramians

Theorem (Unobservable and Unconstructible subspaces)

Given two times t1 > t0 ≥ 0,

UO[t0, t1] = kerWO(t0, t1), UC[t0, t1] = kerWCn(t0, t1).

Proof.

From the definition of the observability Gramian, for every x0 ∈ Rn, we have

x
T
0 WO(t0, t1)x0 =

∫ t1
t0

x
T
0 Φ(τ, t0)

T
C(τ)

T
C(τ)Φ(τ, t0)x0dτ

=

∫ t1
t0

‖C(τ)Φ(τ, t0)x0‖
2
dτ.
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Observability

Subspace characterization using Gramians

This result provides a first method to determine whether a system
is observable or constructible, because the kernel of a square matrix
contains only the zero vector when the matrix is nonsingular.

Theorem (Observable and Constructible systems)

Suppose we are given two times t1 > t0 ≥ 0.

1 The system (CLTV) is observable if and only if

rankWO(t0, t1) = n .

2 The system (CLTV) is constructible if and only if

rankWCn(t0, t1) = n .
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Observability

Gramian-based reconstruction

Consider the continuous-time LTV system

ẋ = A(t)x+B(t)u, y = C(t)x+D(t)u, x ∈ Rn, u ∈ Rk, y ∈ Rm.
(CLTV)

We have seen that the system’s state x0 := x(t0) at time t0 is related to its
input and output on the interval [t0, t1] by

ỹ(t) = C(t)Φ(t, t0)x0, ∀t ∈ [t0, t1],

where

ỹ(t) = y(t)−
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ −D(t)u(t), ∀t ∈ [t0, t1].
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Observability

Gramian-based reconstruction

Premultiplying by Φ(t, t0)TC(t)T and integrating between t0 and t1 yields∫ t1

t0

Φ(t, t0)TC(t)T ỹ(t)dt =

∫ t1

t0

Φ(t, t0)TC(t)TC(t)Φ(t, t0)x0dt,

which can be written as∫ t1

t0

Φ(t, t0)TC(t)T ỹ(t)dt = WO(t0, t1)x0,

If the system is observable, WO(t0, t1) is invertible, and we conclude that

x0 = W0(t0, t1)−1
∫ t1
t0

Φ(t, t0)TC(t)T ỹ(t)dt ,

which allows us to reconstruct x(t0) from the future inputs and outputs on
[t0, t1]. A similar construction can be carried out to reconstruct x(t1) from past
inputs and outputs for reconstructible systems.
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Observability

Gramian-based reconstruction

Theorem (Gramian-based reconstruction)

Suppose we are given two times t1 > t0 ≥ 0 and an input/output pair
u(t), y(t), ∀t ∈ [t0, t1].

1 When the system (CLTV) is observable

x(t0) = WO(t0, t1)−1
∫ t1
t0

Φ(t, t0)TC(t)T ỹ(t)dt ,

where

ỹ(t) := y(t)−
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ −D(t)u(t), ∀t ∈ [t0, t1].

2 When the system (CLTV) is constructible

x(t1) = WCn(t0, t1)−1
∫ t1
t0

Φ(t, t1)TC(t)T ȳ(t)dt ,

where

ȳ(t) := y(t)−
∫ t

t1

C(t)Φ(t, τ)B(τ)u(τ)dτ −D(t)u(t), ∀t ∈ [t0, t1].
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Observability

Discrete-time Case

Consider the discrete time LTV system

x(t+ 1) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t), (DLTV)

for which the system’s state x0 := x(t0) at time t0 is related to its input and
output on the interval t0 ≤ t ≤ t1 by the variations of constant formula,

y(t) = C(t)Φ(t, t0)x0 +

t−1∑
τ=t0

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t) ∀t0 ≤ t ≤ t1

Definition (Unobservable and unconstructible subspaces)

Given two times t1 > t0 ≥ 0, the unobservable subspace on [t0, t1), UO[t0, t1)
consists of all states x0 for which

C(t)Φ(t, t0)x0 = 0 , ∀t0 ≤ t < t1.

The unconstructible subspace on [t0, t1), UC[t0, t1) consists of all states x1 for
which

C(t)Φ(t, t1)x1 = 0 , ∀t0 ≤ t < t1.
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Observability

Discrete-time Case

Attention!

The definition of the discrete-time unconstructible subspace requires a
backward-in-time state transition matrix Φ(t, t1) from time t1 to time
t ≤ t1 − 1 < t1. This matrix is well defined only when

x(t1) = A(t1 − 1)A(t1 − 2) · · ·A(τ)x(t), t0 ≤ τ ≤ t1 − 1

can be solved for x(t), i.e., when all the matrices
A(t0), A(t0 + 1), . . . , A(t1 − 1) are nonsingular. When this does not happen,
the unconstructibility subspace cannot be defined.

Definition (Observable and Constructible systems)

Given two times t1 > t0 ≥ 0, the system (DLTV) is observable whenever its
unobservable subspace contains only the zero vector, and it is constructible
whenever its unconstructible subspace contains only the zero vector.
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Observability

Discrete-time Case

Definition (Observability and constructibility Gramians)

Given two times t1 > t0 ≥ 0, the observability and constructibility Gramians
of the system (AC-DLTV) are defined by

WO(t0, t1) :=

t1−1∑
τ=t0

Φ(τ, t0)TC(τ)TC(τ)Φ(τ, t0),

WCn(t0, t1) :=

t1−1∑
τ=t0

Φ(τ, t1)TC(τ)TC(τ)Φ(τ, t1)

Theorem (Unobservable and Unconstructible subspaces)

Given two times t1 > t0 ≥ 0,

UO[t0, t1) = kerWO(t0, t1), UC[t0, t1) = kerWCn(t0, t1)
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Observability

Dicrete-time Case

Theorem (Gramian-based reconstruction)

Suppose we are given two times t1 > t0 ≥ 0 and an input/output pair
u(t), y(t), t0 ≤ t < t1.

1 When the system (DLTV) is observable

x(t0) = WO(t0, t1)−1
t1−1∑
t=t0

Φ(t, t0)TC(t)T ỹ(t).

2 When the system (DLTV) is constructible

x(t1) = WCn(t0, t1)−1
t1−1∑
t=t0

Φ(t, t1)TC(t)T ȳ(t).
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Observability

Duality (LTI)

Consider the continuous-time LTI system

ẋ = Ax+Bu, y = Cx+Du, x ∈ Rn, u ∈ Rk, y ∈ Rm. (CLTI)

So far we have shown the following

The system (CLTI) is controllable ⇐⇒ rankWC(t0, t1) = n,

where WC(t0, t1) :=
∫ t1
t0
eA(τ−t0)BBT eA

T (τ−t0)dτ.

The system (CLTI) is observable on [t0, t1] ⇐⇒ rankWO(t0, t1) = n,

where WO(t0, t1) :=
∫ t1
t0
eA

T (τ−t0)CTCeA(τ−t0)dτ.
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Observability

Duality (LTI)

Suppose we construct the following dual system.

˙̄x = AT x̄+ CT ū, ȳ = BT x̄+DT ū, x̄ ∈ Rn, ū ∈ Rm, ȳ ∈ Rk.
(DUAL-CLTI)

For this system we have the following.

The system (DUAL-CLTI) is controllable ⇐⇒ rankW̄C(t0, t1) = n,

where W̄C(t0, t1) :=
∫ t1
t0
eA

T (τ−t0)CTCeA(τ−t0)dτ .

The system (DUAL-CLTI) is observable on [t0, t1] ⇐⇒ rankW̄O(t0, t1) = n,

where W̄O(t0, t1) :=
∫ t1
t0
eA(τ−t0)BBT eA

T (τ−t0)dτ .

Recall!

WC(t0, t1) :=

∫ t1
t0

e
A(τ−t0)

BB
T
e
AT (τ−t0)

dτ

WO(t0, t1) :=

∫ t1
t0

e
AT (τ−t0)

C
T
Ce
A(τ−t0)

dτ.
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Observability

Duality (LTI)

Theorem (Duality controllability/observability)

Suppose we are given two times t1 > t0 ≥ 0

1 The system (CLTI) is controllable if and only if the system (DUAL-CLTI)
is observable on [t0, t1].

2 The system (CLTI) is observable on [t0, t1] if and only if the system
(DUAL-CLTI) is controllable.

Theorem (Duality reachability/constructability)

Suppose we are given two times t1 > t0 ≥ 0

1 The system (CLTI) is reachable if and only if the system (DUAL-CLTI) is
constructible on [t0, t1].

2 The system (CLTI) is constructible on [t0, t1] if and only if the system
(DUAL-CLTI) is reachable.

Theorem (Duality)

The pair (A,B) is controllable if and only if the pair (A′, B′) is observable.
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Observability

Observability Tests
Consider the LTI systems

ẋ/x+ = Ax, y = Cx, x ∈ Rn, y ∈ Rm (AC-LTI)

From the duality theorems , we can conclude that a pair (A,C) is observable if
and only if the pair (AT , CT ) is controllable.

This allows us to use all previously discussed tests for controllability to
determine whether or not a system is observable.

To apply the controllability matrix test to the pair (AT , CT ), we construct the
corresponding controllability matrix

C =
[
CT ATCT (AT )2CT · · · (AT )n−1CT

]
(kn)×n = OT

where O denotes the observability matrix of the system (AC-LTI), which is
defined by

O :=


C
CA

...
CAn−1


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Observability

Observability Tests
Since rankC = rankOT = rankO , we obtain the following tests.

Theorem (Observability tests)

The following statements are equivalent.

1 The system (AC-LTI) is observable.

2 rankO = n.

3 No eigenvector of A is in the kernel of C.

4 rank

[
A− λI
C

]
= n, ∀λ ∈ C.

Theorem (Lyapunov test for observability)

Assume that A is a stability matrix/Schur stable. The system (AC-LTI) is
observable if and only if there is a unique positive-definite solution W to the
Lyapunov equation

ATW +WA = −CTC / ATWA−W = −CTC
Moreover, the unique solution to this equation is

W =

∫ ∞
0

eA
T τCTCeAτdτ = lim

t1−t0→∞
WO(t0, t1)

/ W =

∞∑
τ=0

(AT )τCTCAτdτ = lim
t1−t0→∞

WO(t0, t1).
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Observability

Observability Tests: LTV

Theorem (Necessary and Sufficient condition)

The pair (A(t), C(t)) is observable at time t0 if and only there exists a finite t1 > t0 such that the n× n
matrix

WO(t0, t1) :=

∫ t1
t0

Φ(τ, t0)
T
C(τ)

T
C(τ)Φ(τ, t0)dτ,

is nonsingular.

Theorem (Sufficient condition)

Let A(t) and C(t) be n− 1 times continuously differentiable. Then the
n-dimensional pair (A(t), C(t)) is observable at t0 if there exists a finite
t1 > t0 such that

rank


N0(t1)
N1(t1)

...
Nn−1(t1)

 = n

where

Nm+1(t) = Nm(t)A(t) +
d

dt
Nm(t) m = 0, 1, . . . , n− 1

with
N0 = C(t).

Attention!

For time-varying systems, duality is more “complicated”, because the state transition matrix of the dual system
must be the transpose of the state transition matrix of the original system, but this is not obtained by simply
transposing A(t).
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Theorem (Sufficient condition)

Let A(t) and C(t) be n− 1 times continuously differentiable. Then the
n-dimensional pair (A(t), C(t)) is observable at t0 if there exists a finite
t1 > t0 such that

rank


N0(t1)
N1(t1)

...
Nn−1(t1)

 = n

where

Nm+1(t) = Nm(t)A(t) +
d

dt
Nm(t) m = 0, 1, . . . , n− 1

with
N0 = C(t).

Attention!

For time-varying systems, duality is more “complicated”, because the state transition matrix of the dual system
must be the transpose of the state transition matrix of the original system, but this is not obtained by simply
transposing A(t).
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Observable Decomposition

Consider the LTI system

ẋ/x+ = Ax+Bu, y = Cx+Du, x ∈ Rn, y ∈ Rm (AC-LTI)

and a similarity transformation x̄ := T−1x, leading to :

˙̄x/x+ = Āx̄+ B̄u, y = C̄x̄+Du,

Ā = T−1AT, B̄ = T−1B, C̄ = CT

The observability matrices of the system Ō and O of the above two systems
are related by

Ō =


C̄
C̄Ā

...
C̄Ān−1

 =


C
CA

...
CAn−1

T = OT
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Theorem (Invariance with respect to similarity transformations)

The pair (A,C) is observable if and only if the pair (Ā, C̄) = (T−1AT,CT ) is
observable.

Theorem (Observable decomposition)

For every LTI system (AC-LTI) there is a similarity transformation that takes
the system to the form[

Ao 0
A21 Au

]
= T−1AT,

[
Bo Bu

]
= T−1B,

[
Co 0

]
= CT

for which

1 the unobservable subspace of the transformed system is given by

ŪO = Im

[
0

In̄×n̄

]
where n̄ denotes the dimension of the unobservable subspace UO of the
original system, and

2 the pair (Ao, Co) is observable
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Observable Decomposition
By partitioning the state of the transformed system as

x̄ = T−1x =

[
x0

xu

]
its state space model can be written as follows:[

ẋ0

ẋu

]
=

[
Ao 0
A21 Au

] [
xo
xu

]
+

[
Bo
Bu

]
u, y =

[
Co 0

] [xo
xu

]
+Du

The figure below shows a block representation of this system, which highlights
the fact that the xu component of the state x(t) cannot be reconstructed from
the output.150 LECTURE 16

Figure 16.1. Observable decomposition. The direct feed-through term D was omitted to sim-
plify the diagram.

in which the pair (Ac, Bc) is controllable [cf. Figure 16.2(a)]. This was obtained by
choosing a similarity transformation

[
xc
xc̄

]
:= T−1x, T :=

[
Vc Vc̄

]
,

whose leftmost columns Vc form a basis for the (A-invariant) controllable subspace
C of the pair (A, B). Using duality, we further concluded that every LTI system can
also be transformed into the following form standard form for unobservable systems:

[
ẋo/x+

o
ẋō/x+

ō

]
=

[
Ao 0
A21 Aō

] [
xo
xō

]
+

[
Bo
Bō

]
u, y =

[
Co 0

] [
xo
xō

]
+ Du,

in which the pair (Ao,Co) is observable [cf. Figure 16.2(b)]. This is obtained by
choosing a similarity transformation

[
xo
xō

]
:= T−1x, T :=

[
Vo Vō

]
,

whose rightmost columns Vō form a basis for the (A-invariant) unobservable sub-
space UO of the pair (A,C).

Suppose now that we choose a similarity transformation

x̄ := T−1x, T :=
[
Vco Vcō Vc̄o Vc̄ō

]

such that

1. the columns of Vcō form a basis for the (A-invariant) subspace C ∩ UO,

2. the columns of
[
Vco Vcō

]
form a basis for the (A-invariant) controllable

subspace C of the pair (A, B), and

3. the columns of
[
Vcō Vc̄ō

]
form a basis for the (A-invariant) unobservable

subspace UO of the pair (A,C).

Figure: Observable Decomposition. The direct feed-through term D was omitted to simplify the diagram.
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Kalman Decomposition
Consider the LTI system

ẋ/x+ = Ax+Bu; y = Cx+Du, x ∈ Rn, u ∈ Rk, y ∈ Rm (LTI)

We know that every LTI system can be transformed through a similarity
transformation into the following standard form for uncontrollable systems:[

ẋc/x
+
c

ẋc̄/x
+
c̄

]
=

[
Ac A12

0 Ac̄

] [
xc
xc̄

]
+

[
Bc
0

]
u

y =
[
Cc Cc̄

] [xc
xc̄

]
+Du

in which the pair (Ac, Bc) is controllable .This was obtained by choosing a
similarity transformation [

xc
xc̄

]
:= T−1x

T :=
[
Vc Vc̄

]
,

where leftmost columns Vc form a basis for the (A-invariant) controllable
subspace C of the pair (A,B).

Definition (A-invariant)

Given an n× n matrix A, a linear subspace V of Rn is said to be A-invariant whenever for every vector v ∈ V

we have Av ∈ V.
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Kalman Decomposition

Using duality, we further concluded that every LTI system can also be
transformed into the following standard form for unobservable systems:[

ẋo/x
+
o

ẋō/x
+
ō

]
=

[
Ao 0
A21 Aō

] [
xo
xō

]
+

[
Bo
Bō

]
u

y =
[
Co 0

] [xo
xō

]
+Du

in which the pair (Ao, Co) is observable.
This is obtained by choosing the similarity transformation:[

xo
xō

]
:= T−1x, T :=

[
Vo Vō

]
whose rightmost columns Vō form a basis for the (A-invariant) unobservable
subspace UO of the pair (A,C).
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Kalman Decomposition
Suppose now that we choose a similarity transformation

x̄ := T−1x, T :=
[
Vco Vcō Vc̄o Vc̄ō

]

such that

1 the columns of Vcō form a basis for the (A-invariant) subspace C ∩ UO,

2 the columns of [Vco Vcō] form a basis for the (A-invariant) controllable
subspace C of the pair (A,B), and

3 the columns of [Vcō Vc̄ō form a basis for the (A-invariant) unobservable
subspace UO of the pair (A,C).

This similarity transformation leads to the system in the form:
ẋco/x

+
co

ẋcō/x
+
cō

ẋc̄o/x
+
c̄o

ẋc̄ō/x
+
c̄ō

 =


Aco 0 A×o 0
Ac× Acō A×× A×ō

0 0 Ac̄o 0
0 0 Ac̄× Ac̄ō



xco
xcō
xc̄o
xc̄ō

+


Bco
Bcō
0
0

u

y =
[
Cco 0 Cc̄o 0

] 
xco
xcō
xc̄o
xc̄ō

+Du
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]
such that
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

xco
xcō
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ẋc̄o/x
+
c̄o
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0 0 Ac̄o 0
0 0 Ac̄× Ac̄ō
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Kalman Decomposition

This similarity transformation is called a canonical Kalman
decomposition, and it is represented schematically in figure below.

OUTPUT FEEDBACK 151

(a) Controllable decom-
position

(b) Observable decom-
position

(c) Kalman decomposi-
tion

Figure 16.2. Schematic representation of the structural decompositions.

This similarity transformation leads to a system in the form





ẋco/x+
co

ẋcō/x+
cō

ẋc̄o/x+
c̄o

ẋc̄ō/x+
c̄ō



 =





Aco 0 A×o 0
Ac× Acō A×× A×ō
0 0 Ac̄o 0
0 0 Ac̄× Ac̄ō









xco
xcō
xc̄o
xc̄ō



 +





Bco
Bcō
0
0



 u, (16.3a)

y =
[
Cco 0 Cc̄o 0

]





xco
xcō
xc̄o
xc̄ō



 + Du. (16.3b)

This similarity transformation is called a canonical Kalman decomposition, and it isMATLAB R© Hint 36.
[msys,T]=
minreal(sys)
returns an orthogonal
matrix T such that
(TAT−1,TB,CT−1)
is a Kalman
decomposition of
(A,B,C). !p. 163

represented schematically in Figure 16.2(c). This decomposition has several impor-
tant properties as stated in the following theorem.

Theorem 16.3 (Kalman decomposition). For every LTI system (AB-LTI), there is a
similarity transformation that takes it to the form (16.3), for which

1. the pair
( [

Aco 0
Ac× Acō

]
,
[
Bco
Bcō

] )
is controllable,

2. the pair
( [

Aco A×o
0 Ac̄o

]
, [ Cco Cc̄o ]

)
is observable,

3. the triple (Aco, Bco,Cco) is both controllable and observable, and

Figure: Schematic representation of the structural decompositions



36

Decompositions

Kalman Decomposition

Theorem (Kalman Decomposition)

For every LTI system (AB-LTI), there is a similarity transformation that takes it
to the form 

ẋco/x
+
co

ẋcō/x
+
cō

ẋc̄o/x
+
c̄o

ẋc̄ō/x
+
c̄ō

 =


Aco 0 A×o 0
Ac× Acō A×× A×ō

0 0 Ac̄o 0
0 0 Ac̄× Ac̄ō



xco
xcō
xc̄o
xc̄ō

 +


Bco
Bcō

0
0

u

y =
[
Cco 0 Cc̄o 0

] 
xco
xcō
xc̄o
xc̄ō

 +Du

for which

1 the pair

([
Aco 0
Ac× Acō

]
,

[
Bco
Bcō

])
is controllable

2 the pair

([
Aco A×o
0 Ac̄o

]
,
[
Cco Ccō

])
is observable

3 the triple (Aco, Bco, Cco) is both controllable and observable, and

4 the tranfer function C(sI −A)−1B +D of the original system is the
same as the transfer function Cco(sI −Aco)−1Bco +D of the
controllable and observable system
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Detectability

We just saw that any LTI system is algebraically equivalent to a system in the
following standard form for unobservable systems[

ẋo/x
+
0

u̇/x+
u

]
=

[
Ao 0
A21 Au

] [
xo
xu

]
+

[
Bo
Bu

]
u, x0 ∈ Rn̄, x0 ∈ Rn−n̄

y =

[
Co
0

] [
xo
xu

]
+Du, u ∈ Rk,m ∈ Rm

Definition (Detectable system)

The pair (A,C) is detectable whenever it is algebraically equivalent to a system
in the standard form for unobservable systems with n = n̄ i.e Au non-existent
or with Au a stability matrix.
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Detectability

For a continuous-time system, the evolution of the unobservable component of
the state is determined by

ẋu = Auxu +A21xo +Buu

Regarding A21xo +Buu as the input, we can use the variation of constants
formula to conclude that

xu(t) = eAu(t−t0)xu(t0) +

∫ t

t0

eAu(t−τ) (A21xo(τ) +Buu(τ)) dτ

Since the pair (Ao, Co) is observable, it is possible to reconstruct xo from the
input and output, and therefore the integral term can be perfectly
reconstructed.

For detectable systems, the term eAu(t−t0)xu(t0) eventually converges to zero,
and therefore one can guess that xu(t) up to an error converges to zero
exponentially fast.
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Detectability tests

Investigating the detectability of an LTI system

ẋ/x+ = Ax, y = Cx, x ∈ Rn, y ∈ Rm (AC-LTI)

from the definition requires the computation of the observable decomposition.

However, there are alternative tests that avoid this intermediate step. These
tests can be deduced by duality from the stabilizability tests.

Theorem (Eigenvector test for detectability)

1 The continuous− time LTI system (AC-LTI) is detectable if and only if
every eigenvector of A corresponding to an eigenvalue with a positive or
zero real part is not in the kernel of C.

2 The discrete− time LTI system (AC-LTI) is detectable if and only if
every eigenvector of A corresponding to an eigenvalue with magnitude
larger than or equal to 1 is not in the kernel of C.
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Detectability tests

Theorem (Popov-Belevitch-Hautus(PBH) test for detectability )

1 The continuous-time system (AC-LTI) is detectable if and
only if

rank

[
A− λI
C

]
= n, ∀λ ∈ C : Re[λ] ≥ 0.

2 The discrete-time system (AC-LTI) is detectable if and only if

rank

[
A− λI
C

]
= n, ∀λ ∈ C : |λ| ≥ 1
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Detectability tests

Theorem (Lyapunov test for detectability)

1 The continuous-time system (AC-LTI) is detectable if and
only if there is a positive-definite solution P to the Lyapunov
matrix inequality

A′P + PA− C ′C ≺ 0

2 The discrete-time system (AC-LTI) is detectable if and only if
there is a positive-definite solution P to the Lyapunov matrix
inequality

A′PA+ P − C ′C ≺ 0
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Minimal Realizations

Recall that, given a transfer function Ĝ(s), we say that

ẋ = Ax+Bu, y = Cx+Du, x ∈ Rn, u ∈ Rk, y ∈ Rm (1)

is a realization of Ĝ(s) if

Ĝ(s) = C(sI −A)−1B +D

The size n of the state-space vector x is called the order of the realization.

Attention!

A transfer function can have realizations of different orders!

Definition (Minimal Realization)

A realization of Ĝ(s) is called minimal or irreducible whenever there is no
realization of Ĝ(s) of smaller order.
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Minimal Realizations

Theorem

Every minimal realization must be both controllable and
observable.

Proof.

This theorem can be easily proved by contradiction. Assuming
that a realisation is either not controllable or not observable, by
Kalman decomposition theorem one could find another realisation
of smaller order that realises the same transfer function, which
would contradict minimality.
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Minimal Realizations

Theorem

A realization is minimal if and only if it is both controllable and observable.

Proof.

1 =⇒ 2 We have already shown previously that if a realization is minimal,
then it must be controllable and observable.
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1 ⇐= 2 OR ¬1 =⇒ ¬2
Assume that ẋ = Ax + Bu, y = Cx +Du, x ∈ Rn (LTI)

is a controllable and observable realization of Ĝ(s), but this realization is not
minimal; i.e., there exists another realization

˙̄x = Āx̄ + B̄u, y = C̄x̄ + D̄u, x ∈ Rn̄ (LTI)

for Ĝ(s) with n̄ < n.

For (LTI), compute

OC =


C
CA

.

.

.

CAn−1

 [B AB . . . An−1B
]

=


CB CAB . . . CAn−1B

CAB CA2B . . . CAnB

.

.

.

.

.

.

.

.

.

CAn−1B CAnB . . . CA2n−2B


︸ ︷︷ ︸

Markov parameters

Since (LTI) is controllable and observable, both C and O have rank n, and
therefore the above matrix also has rank n. Suppose now that we compute

ŌC̄ =


C̄
C̄Ā

.

.

.

C̄Ān−1

 [B̄ ĀB̄ . . . Ān−1B̄
]

=


C̄B̄ C̄ĀB̄ . . . C̄Ān−1B̄

C̄ĀB̄ C̄Ā2B̄ . . . C̄ĀnB̄

.

.

.

.

.

.

.

.

.

C̄Ān−1B̄ C̄ĀnB̄ . . . C̄Ā2n−2B̄


Since (LTI) and (LTI) realize the same transfer function, they must have the
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45

Minimal Realizations

1 ⇐= 2 OR ¬1 =⇒ ¬2
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columns, its rank must be lower than n and therefore
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.

.

.

C̄Ān−1
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C̄Ān−1

 [B̄ ĀB̄ . . . Ān−1B̄
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Minimal Realizations

Similarity of Minimal Realizations

The definition of minimal realization automatically guarantees that
all minimal realizations have the same order, but minimal
realizations are even more closely related.

Theorem

All minimal realizations of a transfer function are algebraically
equivalent.
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Minimal Realizations

Order of a Minimal SISO realization

Any proper SISO rational function ĝ(s) can be written as

ĝ(s) =
n(s)

d(s)
,

where d(s) is a monic1 polynomial, and n(s) and d(s) are coprime2. In this
case, the right-hand side of the above is called a coprime fraction, d(s) is
called the pole (or characteristic polynomial) of ĝ(s), and the degree of d(s) is
called the degree of the transfer function ĝ(s). The roots of d(s) are called
the poles of the transfer function and the roots of n(s) are called the zeros of
the transfer function.

Theorem

A SISO realizaion

ẋ/x+ = Ax+ bu, y = cx+ du, x ∈ Rn, u, y ∈ R,

of ĝ(s) is minimal if and only if its order n is equal to the degree of ĝ(s). In
this case, the pole polynomial d(s) of ĝ(s) is equal to the characteristic
polynomial of A; i.e., d(s) = det(sI −A).

1A polynomial is monic if its highest order coefficient is equal to 1.
2Two polynomial are coprime if they have no common roots.
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ĝ(s) =
n(s)

d(s)
,

where d(s) is a monic1 polynomial, and n(s) and d(s) are coprime2. In this
case, the right-hand side of the above is called a coprime fraction, d(s) is
called the pole (or characteristic polynomial) of ĝ(s), and the degree of d(s) is
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Minimal Realizations

Comment on BIBO and Asymptotic stability

Theorem

If the SISO realization (LTI) of ĝ(s) is minimal or the pair (A, b, c, d) is
controllable and observable, then we have

Asymptotic stability ⇐⇒ BIBO stability1

MATLAB commands

The command msys=minreal(sys) computes a minimal realization of the
system sys, which can either be in state-space or transfer function form.

When sys is in state-space form, msys is a state-space system from which all
uncontrollable and unobservable modes were removed.

When sys is in transfer function form, msys is a transfer function from which
all common poles and zeros have been canceled.

1This result also holds for MIMO systems.
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