Linear Dynamical Systems
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Origin of Stability Analysis

One of the first significant feedback control systems in modern Europe
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(http://commons.wikimedia.org)

Figure: The flyball governor invented by James Watt in 1788. (a) The original
design, and (b) the improved design.!

1C. G. Kang, “Origin of Stability Analysis: “On Governors” by J.C. Maxwell [Historical Perspectives],” in
IEEE Control Systems, 36(5), pp. 77-88, 2016.



Origin of Stability Analysis

@ At the height of industrial revolution around 1868, many governors
were installed.

@ The governor system was soon discovered to be plagued by
problems of instability and inaccuracy that could apparently not be
overcome by either theoretical or practical approaches




Origin of Stability Analysis

@ At the height of industrial revolution around 1868, many governors
were installed.

@ The governor system was soon discovered to be plagued by
problems of instability and inaccuracy that could apparently not be
overcome by either theoretical or practical approaches

@ Maxwell's 1868 paper?:

Stability concept

Simple mathematical models

Importance of integral actions
Linearization

Stability is an algebraic problem

Criteria for 1st, 2nd, and 3rd order systems
Posed stability problem in competition

2J. C. Maxwell, “On governors,” Proc. R. Soc. London, 16, 270-283, 1868.
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The equation of motion of the machine itself is
d*x , (dx
MZ%—P_R—F (;,i——Vl)—Gy. R 1)
This must be combined with equation (7) to determine the motion of the
whole apparatus. The solution is of the form

w=A et A et A e+ VE, L . 0 L L .. (1)

where #,, 7, n, are the roots of the cubic equation
MBn*+ (MY +IB)n*+FYn+FG=0. . . . . (12)

If n be a pair of roots of this equation of the form a + N = 15, then the
part of @ corresponding to these roots will be of the form

et cos (bt+3).

If @ is a negative quantity, this will indicate an oscillation the amplitude
of which continually decreases. If a is zero, the amplitude will remain
constant, and if @ is positive, the amplitude will continually increase.

One root of the equation (12) is evidently a real negative quantity.
The condition that the real part of the other roots should be negative is

M"B/B B
This is the condition of stability of the motion. If it is not fulfilled
there will be a dancing motion of the governor, which will increase till it
is as great as the limits of motion of the governor. To ensure this stability,
the value of Y must be made sufficiently great, as compared with G, by

nlanine thae woetoht W in a viennna Liniid if tha vianngite nf tha ket

Y G
( r -l-Y )—Y— —==a positive quantity.



Taxonomy - Stability Concept?

“the motion of a machine with its governor consist in general of a
uniform motion, combined with a disturbance that may be expressed as
the sum of several component motions. These components may be of
four different kinds:

@ continually increase,
@ continually diminish,
© be an oscillation of continually increasing amplitude, and

@ be an oscillation of continually decreasing amplitude.”

3J. C. Maxwell, “On governors,” Proc. R. Soc. London, 16, 270-283, 1868.



Taxonomy - Stability Concept?

“the motion of a machine with its governor consist in general of a
uniform motion, combined with a disturbance that may be expressed as
the sum of several component motions. These components may be of
four different kinds:

@ continually increase,
@ continually diminish,
© be an oscillation of continually increasing amplitude, and

@ be an oscillation of continually decreasing amplitude.”

The second and fourth kinds are admissible in a good governor, and are
mathematically equivalent to the condition that all the possible roots,
and all the possible parts of the impossible roots of a characteristic
equation shall be negative.

3J. C. Maxwell, “On governors,” Proc. R. Soc. London, 16, 270-283, 1868.



Matrix Norms (Review)

A matrix norm is a norm on the vector space K™*".



Matrix Norms (Review)

A matrix norm is a norm on the vector space K™*".
Thus, the matrix norm is a function || - || : K™*" — R that must
satisfy the following properties:

For all scalars o € K and for all matrices A, B € K"*",

Al = laf[[A] (homogeneity)
|A+ Bl < ||A|l+ || B]| ( triangle inequality)
|Al| >0 (positive-valued)

1Al = 0 iff A = Opn (definite)
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Matrix Norms (Review)

Several matrix norms are available for an m x n matrix A = [a;;].

@ The one-norm,
m
A ..
I 1%%2 a1,
1=

For a (column) vector v = [v;] € R, |jv]| £ Zle |vg .

@ The co-norm,
[Alloo = max Z!aw!

For a (column) vector v = [v;] € RY, ||v]|leo & max;<;<y |vs].



Matrix Norms (Review)

@ The two-norm,

IA]l2 £ omax|Al,
2/ Amax[A/A]
where op,.x[A] denotes the largest singular value, and A\ ax[A]
denotes the largest eigenvalue of A

For a (column) vector v = [v;] € R, [ju]la 2 /35, v2.



Matrix Norms (Review)

@ The two-norm,
[All2 £ omax[A],
£ Amax[A’A]

where op,.x[A] denotes the largest singular value, and A\ ax[A]
denotes the largest eigenvalue of A

For a (column) vector v = [v;] € R, [ju]la 2 /35, v2.

Q@ The Frobenius norm,

Z aj; = Z oilAJ?,

j=1 =1

IAllp =

m n

(2

where the o;[A] are the singular values of A.
For (column) vectors, the Frobenius norm coincides with the
two-norm, but in general this is not true for matrices.
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All matrix norms are equivalent in the sense that each one of them can
be upper and lower bounded by any other times a multiplicative constant:
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Matrix Norms (Review)

All matrix norms are equivalent in the sense that each one of them can
be upper and lower bounded by any other times a multiplicative constant:
Al
<J|Afl2 < A
T2 Il < VA,
1Al
Vn
Al
Vvn
The four matrix norms above are submultiplicative; i.e., given two
matrices A and B

IABl, < |AllplI1Bllp,  pe{1,2,00,F}
For any submultiplicative norm || e ||,,, we have

[Azll, < [Allpllzllp, Ve

<lIAll2 < vm||Alls

<[|A]lz < |A[|»

and therefore

A
4]l > max 1221
a0 |z,




Positive-Definite Matrices (Review)

A symmetric n X n matrix @) is positive-definite if

7'Qz > 0, vz € R™\ {0}. (1)
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When > is replaced by <, we obtain the definition of a
negative-definite matrix.

@ Positive-definite matrices are always nonsingular, and their
inverses are also positive-definite.

o Negative-definite matrices are also always nonsingular, and
their inverses are negative-definite.



Positive-Definite Matrices (Review)

A symmetric n X n matrix Q) is positive-definite if
7'Qz > 0, vz € R™\ {0}. (1)

When > is replaced by <, we obtain the definition of a
negative-definite matrix.

@ Positive-definite matrices are always nonsingular, and their
inverses are also positive-definite.

o Negative-definite matrices are also always nonsingular, and
their inverses are negative-definite.

When (1) holds only for < or >, the matrix is said to be
negative-semidefinite or positive-semidefinite, respectively.



Positive-Definite Matrices (Review)

The following statements are equivalent for a symmetric n x n
matrix Q.

Q Q is positive-definite.
@ All eigenvalues of () are strictly positive.

© The determinants of all upper left submatrices of () are
positive.

@ There exists an n X n nonsingular real matrix H such that

Q=HH



Positive-Definite Matrices (Review)

The following statements are equivalent for a symmetric n x n
matrix Q.

Q Q is positive-definite.
@ All eigenvalues of () are strictly positive.

© The determinants of all upper left submatrices of () are
positive.

@ There exists an n X n nonsingular real matrix H such that
Q=HH
For a positive-definite matrix () we have
0 < Amin[@]l|2]* < 2'Qw < Amax[Q] 2, Va #0,

where Apin[@] and Apax[Q] denote the smallest and largest
eigenvalues of (), respectively.



Simple Pendulum

» Equations of motion

I6(t) + mglsin6(t) = Q, ig [

Q = —bi(t) + u(t) 9.
Consider a special case of heavy damping R p
e b>1 i

mgl
.. . . b
ug —mglsinf = 16 + bh ~ bl
bt = ug — mglsinx -\ x

when ug is zero




Simple Pendulum

» Two equilibrium position (or steady states):
-at =0
-at0=nr

Initial angle of 0°, a Initial angle of 45° Initial angle of 90° Initial angle of 135° Initial angle of 170° Initial angle of 180°,
xr

1

g

b




Definitions of stability

In the sense of Lyapunov

A system steady state X; is said to be stable if for each possible region of
radius € > 0 around the steady state, there is an initial state Xg at £ = §
falling within a radius § > 0 around the steady state that causes the
dynamic trajectory to stay within the region |(x — X;)| < € for all times
t>Iy.




Definitions of stability

In the sense of Lyapunov

A system steady state X; is said to be asymptotically stable if it is both
stable and in addition, there exists a region of initial conditions of radius
do > 0 around X; for which the system approaches X; as f — oo-

x(0




Definitions of stability

Definition 3
A system steady state is said to be unstable if it is not stable.
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Lyapunov Stability

Consider the following continuous-time LTV system
i=A(t)z+ B(t)u, y=Ct)z+D{t)u, zecR" uecR" yecR™
The system (CLTV) is said to be

@ (marginally) stable in the sense of Lyapunov or internally stable
whenever, for every initial condition x(t9) = o € R", the homogeneous
state response

z(t) = ¢(t,to)r0, Vt>0

is uniformly bounded,

@ asymptotically stable (in the sense of Lyapunov) whenever, in addition,
for every initial condition z(to) = xo € R"™, we have that z(t) — 0 as
t — o0,

© cxponentially stable whenever, in addition, there exist constants ¢, A > 0
such that, for every initial condition z(to) = zo € R™, we have

lz@)]| < ce® O ||z(to)]l, Wt >0,

@ unstable whenever it is not marginally stable in the Lyapunov sense.
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@ The matrices B(e),C(e), and D(e) play no role in the above
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@ only A(e) matters because this matrix completely defines the state
transition matrix.

Therefore one often simply talks about the Lyapunov stability of the
homogeneous system

&= A(t)x, x € R™.



Lyapunov Stability

@ The matrices B(e),C(e), and D(e) play no role in the above
definition;
@ only A(e) matters because this matrix completely defines the state
transition matrix.
Therefore one often simply talks about the Lyapunov stability of the
homogeneous system
&= A(t)x, x € R™.

Attention!

@ For marginally stable systems, the effect of initial conditions does
not grow unbounded with time (but it may grow temporarily during
a transient phase).

@ For asymptotically stable systems, the effect of initial conditions
eventually disappears with time.

© For unstable systems, the effect of initial conditions (may) grow
over time (depending on the specific initial conditions and the value
of the matrix C).



Eigenvalue Conditions for Lyapunov Stability

The overall objective is to determine simple conditions to classify
the continuous-time homogeneous LTI system

T = Ax z € R"

in terms of its Lyapunov stability, without explicitly computing the
solution to the system.
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Eigenvalue Conditions for Lyapunov Stability

The overall objective is to determine simple conditions to classify
the continuous-time homogeneous LTI system

T = Ax z € R"

in terms of its Lyapunov stability, without explicitly computing the
solution to the system.

Theorem (Eigenvalue conditions)
The system (H-CLTI) is
@ marginally stable if and only if all the eigenvalues of A have

negative or zero real parts and all the Jordan blocks corresponding
to eigenvalues with zero real parts are 1 x 1,

Q asymptotically stable if and only if all the eigenvalues of A have
strictly negative real parts,

@ unstable if and only if at least one eigenvalue of A has a positive

real part or zero real part, but the corresponding Jordan block is
larger than 1 x 1.




Eigenvalue Conditions for Lyapunov Stability

Asymptotic and Exponential stability of LTI systems

When all the eigenvalues of A have strictly negative real parts, all entries of
et converge to zero exponentially fast, and therefore ||e?|| converges to zero
exponentially fast (for every matrix norm); i.e., there exist constants ¢, A > 0
such that

e <ce™™  VteR
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Eigenvalue Conditions for Lyapunov Stability

Asymptotic and Exponential stability of LTI systems

When all the eigenvalues of A have strictly negative real parts, all entries of
et converge to zero exponentially fast, and therefore ||e?|| converges to zero
exponentially fast (for every matrix norm); i.e., there exist constants ¢, A > 0
such that

e <ce™™  VteR
In this case, for a submultiplicative norm, we have
lz(@)]| = le** " zo]| < e ||zo]| < ce™ T o], VEER

This means that asymptotic stability and exponential stability are equivalent
concepts for LTI systems

Attention!

These conditions do not generalize to time-varying systems. One can find
matrix-valued signals A(t) that are stability matrices for every fixed ¢ > 0, but
the time-varying system & = A(¢)z is not even stable.



Lyapunov Stability Theorem

The Lyapunov stability theorem provides an alternative condition to check
whether or not the CT homogeneous LTI system is asymptotically stable.



Lyapunov Stability Theorem

Theorem (Lyapunov stability)
The following conditions are equivalent:
@ The system (H-CLTI) is asymptotically stable.
@ The system (H-CLTI) is exponentially stable.
© Al the eigenvalues of A have strictly negative real parts.
@ For every symmetric positive-definite matrix (Q, there exists a unique
solution P to the following Lyapunov equation
A'P+ PA=—Q. (Lyapunov Eq.)
Moreover, P is symmetric and positive-definite.
@ There exists a symmetric positive-definite matrix P for which the

following Lyapunov matrix inequality holds:

A'P+PA<O. (LMI)



Lyapunov Stability Theorem

Theorem (Lyapunov stability)
The following conditions are equivalent:
@ The system (H-CLTI) is asymptotically stable.
@ The system (H-CLTI) is exponentially stable.
© Al the eigenvalues of A have strictly negative real parts.
@ For every symmetric positive-definite matrix (Q, there exists a unique
solution P to the following Lyapunov equation
A'P+ PA=—Q. (Lyapunov Eq.)
Moreover, P is symmetric and positive-definite.
@ There exists a symmetric positive-definite matrix P for which the
following Lyapunov matrix inequality holds:

A'P+PA<O. (LMI)

Logical overview of the proof.
3




Proof: 2 = 4

We claim that the unique solution to (Lyapunov Eq.) is given by

P= / eA’thAtdt. (2)
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Proof: 2 = 4

We claim that the unique solution to (Lyapunov Eq.) is given by
S !
P= / eAtQeAtdt. (2)
0

To verify that this is so, four steps are needed.
@ The (improper) integral in (2) is well defined (i.e., it is finite)
@ The matriz P in (2) solves the equation (Lyapunov Eq.)
© The matriz P in (2) is symmetric and positive-definite
@ No other matriz solves this equation
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Proof: 2 = 4

We claim that the unique solution to (Lyapunov Eq.) is given by
S !
P= / eAtQeAtdt. (2)
0

To verify that this is so, four steps are needed.

@ Well-defined: This is a consequence of the fact that the system (H-CLTI) is
exponentially stable, and therefore ||eAtheAt|| converges to zero exponentially
fast as t — co. Because of this, the (improper) integral is absolutely
convergent.

@ (2) solves (Lyapunov Eq.): Compute

A'P+ PA= / (A’eA/thAt + eA’thAtA) dt.
0

%(eA’thAt) = AATQeA 4 At Qe A,

therefore
> d ’ , 00
/ _ A't At _ A't At
A P+PA7/O T (e Qe )dt [e Qe ]0

’ ’
_ (tlim oA thAt) — eA0QeA0.
— 00

Equation (Lyapunov Eq.) follows from this and the facts that lim; o €
because of asymptotic stability and that e49 = T.

At:O
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© Symmetric and positive-definite:

P /0°° (eA’thAt>’dt: /0°° (eAt>/Q/ (eA’t)’dt _ /(;OO AtQeAt — p

For positive-definiteness, take an arbitrary (constant) vector z € R™ and
compute

2 Pz :/ z/eA,thAtzdt :/ w(t) Qu(t)dt,
0 0

where w(t) = eAtz,Vt > 0.
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© Symmetric and positive-definite:

P /0°° (eA’thAt>’dt: /0°° (eAt>/Q/ (eA’t)’dt _ /(;OO AtQeAt — p

For positive-definiteness, take an arbitrary (constant) vector z € R™ and
compute

2 Pz :/ z/eA,thAtzdt :/ w(t) Qu(t)dt,
0 0

where w(t) = ez, ¥t > 0. Since Q is positive-definite, we conclude that
2/ Pz > 0. Moreover,

Z’Pz=0 = /00 w(t)’' Qu(t)dt =0,
0

which can only happen if w(t) = eA*z = 0,¥t > 0, from which one concludes
that z = 0, because eAt is nonsingular. Therefore P is positive-definite.
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@ Uniqueness: Assume there exists another solution P to (Lyapunov Eq.), i.e.,
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@ Uniqueness: Assume there exists another solution P to (Lyapunov Eq.), i.e.,
A'P+ PA =—-Q, and A'P4+PA=-Q
Then
A'(P—-P)+ (P—-P)A=0.

Pre-multiplying and post-multiplying by eA’t and et respectively, we get

eATAN(P — P)e?t + A H(P — P)Ae =0, Vit >0.



@ Uniqueness: Assume there exists another solution P to (Lyapunov Eq.), i.e.,
A'P+ PA =-Q, and A'P+ PA=-Q

Then

A'(P—-P)+ (P—-P)A=0.
Pre-multiplying and post-multiplying by eA’t and et respectively, we get
eATAN(P — P)e?t + A H(P — P)Ae =0, Vit >0.

On the other hand,

d _ _ _
7 (eA/t(P — P)eAt) = eA/tA'(P — P)e?t 4 eA,t(P — P)4e =0

and therefore eA/t(P — P)eAt must remain constant for all times. But, because
of stability, this quantity must converge to zero as t — oo, so it must be always

zero. Since et is nonsingular, this is only if P = P.



Lyapunov Stability Theorem

Theorem (Lyapunov stability)
The following conditions are equivalent:
@ The system (H-CLTI) is asymptotically stable.
@ The system (H-CLTI) is exponentially stable.
© Al the eigenvalues of A have strictly negative real parts.
@ For every symmetric positive-definite matrix (Q, there exists a unique
solution P to the following Lyapunov equation
A'P+ PA=—Q. (Lyapunov Eq.)
Moreover, P is symmetric and positive-definite.
@ There exists a symmetric positive-definite matrix P for which the
following Lyapunov matrix inequality holds:

A'P+PA<O. (LMI)

Logical overview of the proof.
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Proof: 5 = 2

Let P be a symmetric positive-definite matrix for which (LMI) holds and let

Q= —(A'P+ PA) > 0.
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Consider an arbitrary solution to H-CLTI system, and define the scalar signal
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Proof: 5 = 2

Let P be a symmetric positive-definite matrix for which (LMI) holds and let

Q=—-(A'"P+PA)>0.
Consider an arbitrary solution to H-CLTI system, and define the scalar signal

v(t) = 2/ (t)Pz(t) > 0, vt > 0.
Taking derivatives, we obtain
9 =i’ Pz +a'Pi =2/ (AP + PA)x = —2'Qx < 0, vt > 0. 3)
Therefore, v(t) is a nonincreasing signal, and we get
v(t) = 2’ (t) Pz(t) < v(0) = 2’(0) Pz(0), Yt >0

But since v = &' Px > Amin[P]||z||?, we conclude that

' (t)Pz(t)  v(t) v(0)
H$||2 S Amin[P] B Amin[P} S Amin[P} ’ vt 2 07 (4)

which means that the H-CLTI system is stable.
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To verify that it is actually exponentially stable, we go back to (3) and, using the facts
that 2'Qx > Amin[Q]||z||? and that v = 2/ Px < Amax[P]||z||?, we conclude that

U= 7x/Q:E S 7>\mln[Q]|lx“2 S

77;\’“‘“ D, wso (5)

max [P]



Proof: 5 = 2

To verify that it is actually exponentially stable, we go back to (3) and, using the facts
that 2/Qx > Amin[Q]||z]|? and that v = 2/ Pz < Amax[P]||z||?, we conclude that

)\min [Q]

)= —2'Qr < —Ami 2< - ,
v z'Qz < min [Q]||z]|* < )\max[P]”

Vt>0 (5)

To proceed, we need the Comparison lemma.

Theorem (Comparison Lemma)

Let v(t) be a differentiable scalar signal for which
o(t) < po(t), Vet
for some constant 1 € R. Then

o(t) < et=t)y(ty), Vit > to.



Proof: 5 = 2

To verify that it is actually exponentially stable, we go back to (3) and, using the facts
that 2/Qx > Amin[Q]||z]|? and that v = 2/ Pz < Amax[P]||z||?, we conclude that

)\rnin [Q]

)= —2'Qr < —Ami 2< - ,
v z'Qz < min [Q]||z]|* < )\max[P]”

Vt>0 (5)

To proceed, we need the Comparison lemma.

Theorem (Comparison Lemma)

Let v(t) be a differentiable scalar signal for which
o(t) < po(t),  VE>to
for some constant 1 € R. Then
o(t) < ePEt0)y(tg), Wt > to.
Applying the Comparison lemma to (5), we conclude that

)\min [Q]

t) < e AMEto)y(¢g), Wt >0, 22— ,
v(t) <e v(to) > e [P

which shows that v(¢) converges to zero exponentially fast and so does ||z (t)|| [see

(4)]-



Comparison Lemma

Theorem (Comparison Lemma)

Let v(t) be a differentiable scalar signal for which
0(t) < po(t), Yt > to
for some constant ;1 € R. Then
o(t) < e T)y(ty), Vit > to. (6)
Define a new signal u(t) as follows:

u(t) £ e ME0y(h),  VE > to.



Comparison Lemma

Theorem (Comparison Lemma)

Let v(t) be a differentiable scalar signal for which
0(t) < po(t), Yt > to
for some constant ;1 € R. Then

v(t) < e"Tu(tg),  VE > to. (6)

Proof.

Define a new signal u(t) as follows:

u(t) £ e ME0y(h),  VE > to.
Taking derivative, we conclude that

5 = —,ue_“(t_t[’)'u(t) + e—#(t—to)i}(t) < —/,Le_“(t_t‘))v(t) + ue—u(t—to)v(t) -0



Comparison Lemma

Theorem (Comparison Lemma)

Let v(t) be a differentiable scalar signal for which
0(t) < po(t), Yt > to
for some constant ;1 € R. Then

v(t) < e"Tu(tg),  VE > to. (6)

Proof.

Define a new signal u(t) as follows:
u(t) £ e ME0y(h),  VE > to.
Taking derivative, we conclude that
= —pe MOy () 4 e T (1) < —pePETI)y (1) 4 pe P y() = 0
Therefore u is nonincreasing, and we conclude that
u(t) = e () <u(to) = v(to), Vi >to

which is precisely equivalent to (6). O



Lyapunov Stability Theorem

Theorem (Lyapunov stability)
The following conditions are equivalent:
@ The system (H-CLTI) is asymptotically stable.
@ The system (H-CLTI) is exponentially stable.
© Al the eigenvalues of A have strictly negative real parts.
@ For every symmetric positive-definite matrix (Q, there exists a unique
solution P to the following Lyapunov equation
A'P+ PA=—Q. (Lyapunov Eq.)
Moreover, P is symmetric and positive-definite.
@ There exists a symmetric positive-definite matrix P for which the
following Lyapunov matrix inequality holds:

A'P+PA<O. (LMI)

Logical overview of the proof.
3




Discrete-time case

Consider now the following discrete-time LTV system

a(t+1) = A)a(t) + BOu(t), y(t) = Ct)z(t) + D(t)u(t). (DLTV)

Definition (Lyapunov stability)
The system (DLTV) is said to be

@ (marginally) stable in the sense of Lyapunov or internally stable whenever,
for every initial condition z(tg) = zo € R™, the homogeneous state response

z(t) = ¢(t, to)zo, Vt2>to

is uniformly bounded,

@ asymptotically stable (in the Lyapunov sense) whenever, in addition, for every
initial condition z(tg) = xo € R™, we have z(t) — 0 as t — oo,

e exponentially stable whenever, in addition, there exist constants
¢ > 0,0 < X\ <1 such that, for every initial condition z(tp) = zo € R",
(@)l < eA*=*0||z(to)ll, V¢ > to,

@ unstable whenever it is not marginally stable in the Lyapunov sense.



Discrete-time case

The matrices B(e),C(e), and D(e) play no role in this definition; therefore,
one often simply talks about the Lyapunov stability of the homogeneous system

z(t+1) = A(t)z, z € R" (H-DLTV)

Theorem (Eigenvalue conditions)

The discrete-time homogeneous LTI system
zt = Az, zeR” (H-DLTI)
is
@ marginally stable if and only if all the eigenvalues of A have magnitude

smaller than or equal to 1 and all the Jordan blocks corresponding to
eigenvalues with magnitude equal to 1 are 1 x 1,

asymptotically and exponentially stable if and only if all the eigenvalues
of A have magnitude strictly smaller than 1, or

unstable if and only if at least one eigenvalue of A has magnitude larger
than 1 or magnitude equal to 1, but the corresponding Jordan block is
larger than 1 x 1.



Discrete-time case

Theorem (Lyapunov stability in discrete time)

The following five conditions are equivalent:
@ The system (H-DLTI) is asymptotically stable.
@ The system (H-DLT]I) is exponentially stable.
© Al the eigenvalues of A have magnitude strictly smaller than 1.

@ For every symmetric positive-definite matrix (Q, there exists a unique
solution P to the following Stein equation (more commonly known as the
discrete-time Lyapunov equation)

A'PA—-P=-Q. (DT Lyapunov Eq.)

Moreover, P is symmetric and positive-definite.

@ There exists a symmetric positive-definite matrix P for which the
following Lyapunov matrix inequality holds:

A'PA-P<0. (DT LMI)



Lyapunov Stability Tests for LTI systems

Definition

Continuous time

Discrete time

Eigenvalue test Lyapunov test

Eigenvalue test

Lyapunov test

Unstable

Marginally
stable

Asymptotically
stable

Exponentially
stable

For some 7, x(t9),
x() can be unbounded.

For every 1y, x(19),
x(1) is uniformly bounded.

For every to, x(to),
lim x(r) = 0.
00

Je, > 0: fOl'. every g, X (fo),
Ix®Oll < ce™* llx(@o)ll, VYt =
1.

For some A;[A],
NAri[A] > Oor

NAri[A] = 0 with Jor-
dan block larger than
1 x1

For every A;[A],
Nii[A] <0or
NA;[A] =0with 1 x 1

Jordan block.
For every 4;[A], Yor ever)/! >0,
P P=P >0:
Rai[A] < 0. §
AP+PA=—-Q
or
AP =P">0:

A'P+PA<O.

For some A;[A],

|Ai[A]l > 1 or

|Ai[A]l = 1 with Jor-
dan block larger than
1 x1.

For every A;[A],
|%i[A]l < 1or

A [A]l = 1 with I x 1
Jordan block.

For every A;[Al,
[AilA]ll < 1.

For every Q > 0,

3P =P'>0:
APA—P=-Q

or

IP=P>0
A'PA—P <.




Example: Inv

Consider the inverted pendulum and assume that w = T and y = 0 are its input and
output, respectively.

From Newton’s law,
me*6 = mglsing — b6 + T,

where T denotes a torque applied at the
base and g is the gravitational accelera-
tion.




Example: Inverted Pendulum

At equilibrium point 6 = 7
0 1 0
a=lh fe-f]e-no
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The eigenvalues of A are given by
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Example: Inverted Pendulum

At equilibrium point 6 = 7

0 1 0
[y L)oot o
me
The eigenvalues of A are given by
b g b b g
det(A\l —A) =X A+ — S=0eA=———-+ — ) ==
et( ) (+me2)+e 2me? (2m€2> ¢

and therefore the linearized system is exponentially stable.

This is consistent with the obvious fact that in the absence of u the (nonlinear)
pendulum converges to this equilibrium.



Example: Inverted Pe

At equilibrium point 6 = 7

0o 1
7 Twme

The eigenvalues of A are given by

b Il b b g
dotO T — A=A (re 2 V49— b 4 /(b \_9
et( ) ( +me2)+e < 2me2 (2m€2> ¢

and therefore the linearized system is exponentially stable.

This is consistent with the obvious fact that in the absence of u the (nonlinear)
pendulum converges to this equilibrium.

b2+g2[2m2+943m2 ¢
P = 2bglm 2g
¢ m(g+0)

29 2bg



Example: Inverted Pendulum

At equilibrium point ) = 0

0 1 0
amly ]l
me
The eigenvalues of A are given by
b g b b g
det(Al —A)=A A+ — | —->=0A=——-—-=+ — =
et( ) ( +m22> ¢ 2me? (2me2>+e

and therefore the linearized system is exponentially unstable, because

S ( b )+3>0
2me? 2mi? L ’

This is consistent with the obvious fact that in the absence of u the (nonlinear)
pendulum does not naturally move up to the upright position if it starts away from it.
However, one can certainly make it move up by applying some torque u.

_b2+9222m2_g£3m2 e
_ 2bglm 2g
P= ¢ 2m(g—t)

T 29 2bg
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Internal or Lyapunov stability is concerned only with the effect of the initial
conditions on the response of the system.

We now consider a distinct notion of stability that ignores initial conditions
and is concerned only with the effect of the input on the forced response.

We shall see that for LTI systems these two notions of stability are closely
related.

Consider the continuous-time LTV system
i=A(t)z + B(t)u, y=Ct)z+Dt)u, zcR" uecRkR yecR™

The forced response of this system is given by
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Bounded-Input, Bounded Output Stability

Internal or Lyapunov stability is concerned only with the effect of the initial
conditions on the response of the system.

We now consider a distinct notion of stability that ignores initial conditions
and is concerned only with the effect of the input on the forced response.

We shall see that for LTI systems these two notions of stability are closely
related.

Consider the continuous-time LTV system
i=A(t)z + B(t)u, y=Ct)z+Dt)u, zcR" uecRkR yecR™

The forced response of this system is given by
*/ C(t)o(t, 7)B(T)u(r)dr + D(t)u(t).

Definition (BIBO stability)

The system (CLTV) is said to be (uniformly) BIBO stable if there exists a
finite constant ¢g* such that, for every input w, its forced response y; satisfies

<
&
=
o~
=
= |
o
&

o lys@®I < g sup [u@)l
t€[0,00)

€[0,00)

1 . -
The factor g can be viewed as a system “gain”.



Time-domain condition for BIBO stability

Theorem (Time domain BIBO stability condition)

The following two statements are equivalent.
@ The system (CLTV) is uniformly BIBO stable.
@ Every entry of D(t) is uniformly bounded ! and

t
sup/ lgi; (t, T)|dT < 00
>0 Jo

for every entry g;;(t, ) of C(t)p(t,7)B(T).

1 -
A signal z(t) is uniformly bounded if there exists a finite constant ¢ such that ||z(t)|| < ¢,Vt > 0.



Proof: 2 = 1

Conditions in (1) implies that the gain g is finite.
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Conditions in (1) implies that the gain g is finite.

lly () |I</ IC@®)(t, T)B)lllu(r)lldr + [ID@)|[[[u(®)], vt = 0

Defining w2 sup |lu(®)), &2 sup |D@®),
te[0,00) t€[0,00)

we conclude that

s (8) ||<(/ IOt 7)B( )Hd‘r+5)u,\7t20




Proof: 2 = 1

Conditions in (1) implies that the gain g is finite.

lyr @Il </ IC@®)(t, T)B)lllu(r)lldr + [ID@)|[[[u(®)], vt = 0

Defining 2 sup Ju@®)|, &2 sup D).

te[0,00) t€[0,00)

m

we conclude that

s (8 ||<(/ G867 B +5 ) 1 > 0

Defining g = SUP;>0 fo |C(t)¢(t, 7)B(T)||dT + 8, this part is proved if g is finite.




Conditions in (1) implies that the gain g is finite.

lyr @Il </ IC@®)(t, T)B)lllu(r)lldr + [ID@)|[[[u(®)], vt = 0

Defining w2 sup |lu(®)), &2 sup |D@®),
te[0,00) t€[0,00)

we conclude that

llys () II<(/ IC#)e(t, 7)B(r )HdTJrzS),u,Vtzo

Defining g = SUP;>0 fot |C(t)¢(t, 7)B(T)||dT + 8, this part is proved if g is finite.
Note that*

IC®)e(t, T)B(T)| < Zlgu (t,7)

4 . . . . .
this is a consequence of the triangle inequality



Conditions in (1) implies that the gain g is finite.

lyr @Il </ IC@®)(t, T)B)lllu(r)lldr + [ID@)|[[[u(®)], vt = 0

Defining w2 sup |lu(®)), &2 sup |D@®),
te[0,00) t€[0,00)

we conclude that
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Defining g = SUP;>0 fot |C(t)¢(t, 7)B(T)||dT + 8, this part is proved if g is finite.
Note that*

IC®)e(t, T)B(T)| < Zlgu (t,7)

and therefore

t t
/0 ||c<t>¢<t,T>B<T>||de§ /0 lgi5(t, 7)ldr, ¥t > 0.

4 . . . . .
this is a consequence of the triangle inequality



Conditions in (1) implies that the gain g is finite.

lyr @Il </ IC@®)(t, T)B)lllu(r)lldr + [ID@)|[[[u(®)], vt = 0

Defining w2 sup |lu(®)), &2 sup |D@®),
te[0,00) t€[0,00)

we conclude that

llys () II<(/ IC#)e(t, 7)B(r )HdTJrzS),u,Vtzo

Defining g = SUP;>0 fot |C(t)¢(t, 7)B(T)||dT + 8, this part is proved if g is finite.
Note that*

IC®)e(t, T)B(T)| < Zlgu (t,7)

and therefore

t t
/0 ||c<t>¢<t,T>B<T>||de§ /0 lgi5(t, 7)ldr, ¥t > 0.

Finally .

t
g = sup / IC(W(t, 7)B()lldr +5 < sup 3 / 19,5 (t, )7 + 6 < 00
t>0.J0 047 Jo

4 . . . . .
this is a consequence of the triangle inequality



Time-domain condition for BIBO stability

Theorem (Time domain BIBO stability condition)

The following two statements are equivalent.
@ The system (CLTV) is uniformly BIBO stable.
@ Every entry of D(t) is uniformly bounded ! and

t
sup/ lgi; (t, T)|dT < 00
t>0 Jo

for every entry g;;(t, ) of C(t)p(t,7)B(7).

/ C(t)p(t, 7)B(T)u(T)dr + D(t)u(t).

sup lyr @)l <g sup [lu(?)]]
t€[0,00) t€[0,00)

1 . . -
A signal z(t) is uniformly bounded if there exists a finite constant ¢ such that ||z(t)|| < ¢,Vt > 0.
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violated no matter what we choose for the finite gain g.
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Suppose first that 2 is false because the entry d;;(e) of D(e) is unbounded.

We show next that in this case sup,c(o,o0) [|¥ ()|l < gsuPi(o,00) llu(t)|| can be
violated no matter what we choose for the finite gain g.

To do this, pick an arbitrary time T' and consider the following step input:

R {0 0<7<T

£ V1 >0,
ur(T) e; T>T TZ

where e¢; € R” is the jth vector in the canonical basis of R¥.
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where e¢; € RF is the jth vector in the canonical basis of R¥*. For this input, the
second term of the forced response at time T is exactly

ys(T) = D(T)e;



Proof: 1 = 2 OR -1 <= -2

Suppose first that 2 is false because the entry d;;(e) of D(e) is unbounded.

We show next that in this case sup,c(o,o0) [|¥ ()|l < gsuPi(o,00) llu(t)|| can be
violated no matter what we choose for the finite gain g.

To do this, pick an arbitrary time T' and consider the following step input:

0 07T

uT(T)ﬁ{e ST VT >0,
J =

where e¢; € RF is the jth vector in the canonical basis of R¥*. For this input, the
second term of the forced response at time T is exactly

ys(T) = D(T)e;
We thus have found an input for which

sup lur(®)|| =1
t€[0,00)

and
sup Ny (@)l = [lys (T = [ID(T)e;ll > |di (T)],
t€[0,00)
where the last inequality results from the fact that the norm of the vector D(T)e;
must be larger than the absolute value of its ith entry, which is precisely d;;(T).



Proof: 1 = 2 OR -1 <= -2

Suppose first that 2 is false because the entry d;;(e) of D(e) is unbounded.

We show next that in this case sup,c(o,o0) [|¥ ()|l < gsuPi(o,00) llu(t)|| can be
violated no matter what we choose for the finite gain g.

To do this, pick an arbitrary time T' and consider the following step input:

< T
ur(r) £ {0 PSTST w2,
ej T2

where e¢; € RF is the jth vector in the canonical basis of R¥*. For this input, the
second term of the forced response at time T is exactly

ys(T) = D(T)e;
We thus have found an input for which

sup lur(®)|| =1
t€[0,00)

and
sup |lyr (Ol 2 [lys (DI = [ID(T)ej|| = |di (T)],

te[0,00)
where the last inequality results from the fact that the norm of the vector D(T)e;
must be larger than the absolute value of its ith entry, which is precisely d;;(T).Since
d;j(e) is unbounded, we conclude that we can make sup,co,o0) |y (¢)|| arbitrarily
large by using inputs u(e) for which sup,cjg o) ur(t) = 1, which is not compatible
with the existence of a finite gain g. This means that D(e) must be uniformly
bounded for a system to be BIBO stable.
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Suppose first that 2 is false because

t
[ lase.nlar (7)
0

is unbounded for some ¢ and j.
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t
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is unbounded for some ¢ and j.
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violated no matter what we choose for the finite gain g.
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t
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is unbounded for some ¢ and j.
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violated no matter what we choose for the finite gain g.

To do this, pick an arbitrary time 7" and consider the following “switching” input:

up(r) £ tei 9i(tm) 20 VT 2>0
- gij(t,7) <0 -



Proof: 1 = 2 OR -1 <= -2

Suppose first that 2 is false because

t
/ 1955 (£, 7| dr )
0

is unbounded for some ¢ and j.

We show next that in this case sup,co,o0) [|¥ ()|l < gsuPsc(o,00) llu(t)|| can be
violated no matter what we choose for the finite gain g.

To do this, pick an arbitrary time 7" and consider the following “switching” input:

up(7) £ tei 9i(tm) 20 T > 0.
- gij(t,7) <0 -

For this input, the forced response at time T is
T
uy (1) = [ T, B)u(r)dr + DIT)u(D),
0

and its ith entry is equal to fOT |gi (T, T)|d7T £ di (T).



Proof: 1 = 2 OR -1 <= -2

Suppose first that 2 is false because

t
/ 1955 (£, 7| dr )
0

is unbounded for some ¢ and j.

We show next that in this case sup,co,o0) [|¥ ()|l < gsuPsc(o,00) llu(t)|| can be
violated no matter what we choose for the finite gain g.

To do this, pick an arbitrary time 7" and consider the following “switching” input:

up (T) £ tei gij(t) 20 YT >0
—ej gij(t, 7‘) <0 =

For this input, the forced response at time T is
T
uy (1) = [ T, B)u(r)dr + DIT)u(D),
0

and its ith entry is equal to fOT |gi (T, T)|dT £ d;;(T). We thus have found an input
for which

SUP;e(0,00) lur(t)ll =1 and supic(o,c0) lyr (W) = llys (T = ’fot |gij (¢, T)|dT & dij (¢)

Since (7) is unbounded, also now we conclude that we can make sup;c(o, o) [l¥7 (0|l
arbitrarily large by using inputs ur(e) for which SUP¢¢[0,00) ur(t) = 1, which is not
compatible with the existence of a finite gain g. This means that condition (2) must
hold for a system to be BIBO stable.



Time-domain condition for BIBO stability

Theorem (Time domain BIBO stability condition)

The following two statements are equivalent.
@ The system (CLTV) is uniformly BIBO stable.
@ Every entry of D(t) is uniformly bounded ! and

t
sup/ lgi; (t, T)|dT < 00
>0 Jo

for every entry g;;(t, ) of C(t)p(t,7)B(T).

1 -
A signal z(t) is uniformly bounded if there exists a finite constant ¢ such that ||z(t)|| < ¢,Vt > 0.
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Time-Invariant Case

For the time-invariant system
& = Az + Bu, y = Cz + Du,

we have
Co(t,7)B = CeArt-TB

Therefore, rewriting from the previous definition as
t
sup/ |Gij (t — T)|dT < o0,
t>0J0

with the understanding that now g;;(t — 7) denotes the ijth entry of CeAlt=T) B,
Making the change of variable p £ ¢t — 7, we conclude that

oo
sup/ |gij (t —7)|dT —sup/ |Gij (p |dp—/ |Gij (p)|dp.

Theorem (Time domain BIBO LTI condition)

The following two statements are equivalent.
© The system (CLTI) is uniformly BIBO stable.
@ For every entry Gij(p) of Ce?B, we have

/ 15 (0)ldp < co.
0
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Frequency Domain Conditions for BIBO Stability

The Laplace transform provides a very convenient tool for studying BIBO
stability.

To determine whether a time-invariant system (CLTI) is BIBO stable, we need
to compute the entries g;;(t) of Ce** B. To do this, we compute its Laplace
transform, £[Ce?*B] = C(sI — A)"'B.

The ijth entry of this matrix will be a strictly proper rational function of the
general form

s (5) = aos? +a1s? o Fag1s+ag

Gij (5 —A1)™i(s — Xa)™2 - (s — Ag) ™k
where the \; are the (distinct) pole of §;;(s) and the m, are the corresponding
multiplicities. Perform the partial fraction as

bo(s) = 3L G12 T W
gz](s) (S—>\1) + (5_)\1)2 + + (8—)\1)m1 +
+ a1 + k2 . 4ot Ay,

(s=Xk) (5= k) (5 = A)me’

The inverse Laplace transform is then given by

gi;(t) = £ [3i5(s)]

Art
ai1e’ !’ + aiste

At -1 _Xgt
1 +"'+alm1tm1 et 4.

At mp—1 At
U apm, tTF T e

At
ar1e” " + agate
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We therefore conclude the following.

@ If for all §;;(s), all the poles A\, have strictly negative real parts, then
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BIBO stable.
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Frequency Domain Conditions for BIBO Stability

We therefore conclude the following.

@ If for all §;;(s), all the poles A\, have strictly negative real parts, then
gi;(t) converges to zero exponentially fast and the system (CLTI) is
BIBO stable.

@ If at least one of the g;;(s) has a pole A\, with a zero or positive real part,
then |g;;(t)| does not converge to zero and the system (CLTI) is not
BIBO stable.

Note that adding a constant D term will not change its poles.

Theorem (Frequency domain BIBO condition)

The following two statements are equivalent:
© The system (CLTI) is uniformly BIBO stable.

@ Every pole of every entry of the transfer function of the system (CLTI)
has a strictly negative real part.



BIBO vs Lyapunov stability

We now know that the LTI system
& = Ax + Bu, y=Cxr+ Du

is uniformly BIBO stable if and only if every entry g;;(t) of Ce?' B satisfies

/0 g (0)]dt < 0o (®)
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BIBO vs Lyapunov stability

We now know that the LTI system
& = Ax + Bu, y=Cxr+ Du

is uniformly BIBO stable if and only if every entry ;;(t) of Ce** B satisfies
| las @l < o ®)
0

However, if the system (CLTI) is exponentially stable, then every entry of et
converges to zero exponentially fast and therefore (8) must hold.

Theorem

When the system (CLTI) is exponentially stable, then it must also be BIBO
stable.

Attention!

In general, the converse of the above theorem is not true, because there are
systems that are BIBO stable but not exponentially stable.



BIBO vs Lyapunov stability

Example?

Consider the system®

a'r:[(l) _Oz]ermu, y=[1 1]z

for which

is unbounded and therefore Lyaunov unstable, but

t
A e 0 0 —92
Ce*B=[1 1] [0 e,gt} M =e 2

and therefore the system is BIBO stable

We shall see in later lectures that this discrepancy between Lyapunov and BIBO stability is always associated
with lack of controllability or observability, two concepts that will be introduced later.

The system is not controllable.



Discrete-time case

Consider now the following discrete-time LTV system
z(t+1) = At)z(t) + B(tu(t),  y(t) = C)z(t) + D(t)u(t)

The forced response of this system is given by

t—1

yr(t) = > C()e(t, 7+ 1)B(r)u(r)dr + D(t)u(t), Vt>0,

N
I
o

Definition (BIBO stability)

The system (DLTV) is said to be (uniformly) BIBO stable whenever there
exists a finite constant g' such that, for every input u(e), its forced response
yyr(e) satisfies

sup [lys(¢)Il < gsup [lu(t)].
teN teN

1 . P
The factor g can be viewed as the “gain” of the system.



Discrete-time case

Theorem (Time domain BIBO condition)

The following two statements are equivalent.
@ The system (DLTV) is uniformly BIBO stable.
@ Every entry of D(e) is uniformly bounded and

t—1
sup (T, 7)| < o0
sup > low (t,7)

for every entry g;;(t, ) of C(t)é(t, 7)B(T).



Discrete-time case

Theorem (Time domain BIBO condition)

The following two statements are equivalent.
@ The system (DLTV) is uniformly BIBO stable.
@ Every entry of D(e) is uniformly bounded and

t—1
sup gij(t,7)] < oo
sup 3 los (4,7

for every entry g;;(t, ) of C(t)é(t, 7)B(T).
Theorem (BIBO LTI conditions)
The following three statements are equivalent.
© The system (DLTI) is uniformly BIBO stable.
@ For every entry g;j(p) of CA?B. we have

> " 15i5(p)| < o0
p=1

@ Every pole of every entry of the transfer function of the system (DLTI)
has magnitude strictly smaller than 1.



Interesting facts

Consider the function defined by

4 1
Flt—n) = n+(t—n)n4, forn—ﬁﬁtgln
n—(—-n)n* forn<t<n+ 5
for n = 2,3,.... The area under each triangle is 1/n2. Thus the absolute integration

of the function equals ?:2(1/n2) < o0o. This function is absolutely integrable but is
not bounded and does not approach zero as t — co.

LT



Interesting facts

In the discrete-time case, if g(¢) is absolutely summable, then it must be
bounded and approach zero as ¢t — co. However, the converse is not true.



Interesting facts

In the discrete-time case, if g(¢) is absolutely summable, then it must be
bounded and approach zero as ¢t — co. However, the converse is not true.

Example
Consider g(t) = 1/t, for t =1,2,... and g(0) = 0. We compute
- — 1 11,1
§=) lg®)l= - +totg+gt
t=1 t=1
o (et D) (R ) () +
o 2 3 4 5 8 9 16

We notice that
1 1 1

S>1+§+§+§+"'=OO

This impulse response sequence is bounded and approaches 0 as ¢ — oo but is
not absolutely summable.



Additional results

Theorem

The equation & = Ax is marginally stable if and only if all the eigenvalus of A
have zero or negative real parts and those with zero real parts are simple roots
of the minimal polynomial of A.




Additional results

Theorem

The equation & = Ax is marginally stable if and only if all the eigenvalus of A
have zero or negative real parts and those with zero real parts are simple roots
of the minimal polynomial of A.

Theorem (Eigenvalue conditions - Slide 20)
The system (H-CLTI) is
o

@ asymptotically stable if and only if all the eigenvalues of A have strictly
negative real parts,

© unstable if and only if at least one eigenvalue of A has a positive real part
or zero real part, but the corresponding Jordan block is larger than 1 x 1.
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e 1(s) is the monic polynomial of the smallest possible degree
such that ¢(A) = 0,



Additional results

Definition (Minimal polynomial)

Let A be an n x n matrix. We associate two polynomials to A:
@ The characteristic polynomial of A is defined as
f(s) =det(s.I —A). f(s) is a monic polynomial of degree n.
@ The minimal polynomial of A, which we will denote by ) (s),
is defined by the following properties:
e (s) is monic (i.e., its leading coefficent is 1),
° Y(A) =0,
e 1(s) is the monic polynomial of the smallest possible degree
such that ¢(A) = 0,

They also satisfy the following properties:

o If g(s) is another polynomial, then g(A) = 0 if and only if
Y (s) divides g(s).
o f(s) is a multiple of 9 (s).
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a simple root of the minimal polynomial. This the system is marginally stable.
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Additional results (Example)

Consider
0

0 0
=10 0 O |«
0 0 -1
Its characteristic polynomial is A(\) = A?(\ 4+ 1) and its minimal polynomial is
Y(A) = A(A+1). The matrix has eigenvalues 0,0, and —1. The eigenvalue 0 is
a simple root of the minimal polynomial. This the system is marginally stable.

The equation
01 0
=10 0 0
0 0 -1
is not marginally stable, however, because its minimal polynomial is
¥(A) = A2(A+ 1) and A = 0 is not a simple root of the minimal polynomial.
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A time-invariant system is asymptotically stable if all eigenvalues of A have
negative real parts. Is this also true for the time-varying case?




Interesting facts

A time-invariant system is asymptotically stable if all eigenvalues of A have
negative real parts. Is this also true for the time-varying case?

Example

Consider

5= Ae = [‘01 6_2;]

The characteristic polynomial of A(t) and the eigenvalues are

det(\T — A(t)) = (A+1)> = A=-1,-1



Interesting facts

A time-invariant system is asymptotically stable if all eigenvalues of A have
negative real parts. Is this also true for the time-varying case?

Example

Consider
. -1 €*
z=A(t)x = [ 0 _1]
The characteristic polynomial of A(t) and the eigenvalues are
det(\T — A(t)) = (A+1)> = A=-1,-1
It can be verified directly that

(t,0) = {e(;‘ 0.5(6; e_t)}

Note that determination of the stability using the eigenvalues of matrix A(t) is
not applicable in the time varying case.



