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Linear Dynamical Systems
Week 3 and 4 - Controllability and State Feedback
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Controllable and Reachable subspaces
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Controllable and Reachable subspaces

Controllability
Consider the continuous-time LTV system

ẋ = A(t)x+B(t)u, y = C(t)x+D(t)u, x ∈ Rn, u ∈ Rk

Using variation of constants formula, a given input u(•) transfers the state
x(t0) := x0 at time t0 to the state x(t1) := x1 at time t1,

x1 = φ(t1, t0)x0 +

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ

where φ(•) denoted the system’s state transition matrix.

We want to express how powerful the input is in terms of transferring
the state between two given states.

Definition (Controllability)

The LTV1 system is said to be controllable at t0, whenever there exists a finite
t1 > t0 such that for any x0 and any x1, there exists an input u(·) that
transfers x0 to x1 at time t1.
Otherwise, the system is uncontrollable at t0.

1
In the time-invariant case, if the state equation is controllable then it is controllable at every t0 and for every

t1 > t0; thus there is no need to specify t0 and t1. In the time-varying case, the specification of t0 and t1 is
crucial.
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Controllable and Reachable subspaces

Subspaces

Controllability from the origin

Definition (Reachable Subspace)

Given two times t1 > t0 ≥ 0, the reachable or controllable-from-the-origin on
[t0, t1] subspace R[t0, t1] consists of all states x1 for which there exists an input
u : [t0, t1]→ Rk that transfers the state from x(t0) = 0 to x(t1) = x1; i.e

R[t0, t1] ,
{
x1 ∈ Rn : ∃u(•), x1 =

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ

}
.

Controllability to the origin

Definition (Controllable Subspace)

Given two times t1 > t0 ≥ 0, the controllable or controllable-to-the-origin on
[t0, t1] subspace C[t0, t1] consists of all states x0 for which there exists an input
u : [t0, t1]→ Rk that transfers the state from x(t0) = x0 to x(t1) = 0; i.e.,

C[t0, t1] ,
{
x0 ∈ Rn : ∃u(•), 0 = φ(t1, t0)x0 +

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ

}
.
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Controllable and Reachable subspaces

Subspaces
The matrices C(·) and D(·) play no role in these definitions; therefore one
often simply talks about the reachable or controllable subspaces of the system

ẋ = A(t)x+B(t)u, x ∈ Rn, u ∈ Rk (AB-CLTV)

or of the pair (A(·), B(·)).

Attention!

Determining the reachable subspace amounts to finding for which vectors
x1 ∈ Rn, the equation

x1 =

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ

has a solution u(·).

Similarly, determining the controllable subspace amounts to finding the vectors
x0 ∈ Rn for which the equation

0 = φ(t1, t0)x0 +

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ ⇐⇒ x0 =

∫ t1

t0

φ(t0, τ)B(τ)v(τ)dτ

has a solution v(·) = −u(·).
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Controllable and Reachable subspaces

Examples and System Interconnections

Parallel RC network

CONTROLLABLE AND REACHABLE SUBSPACES 97

(a) Parallel RC network (b) Suspension system

Figure 11.1. Uncontrollable systems.

When the two branches have the same time constant, i.e., 1
R1C1 = 1

R2C2 = ω, we
have

x(t) = e−ωt x(0) + ω

∫ t

0
e−ω(t−τ )u(τ )dτ

[
1
1

]
.

This shows that if x(0) = 0, then x(t) is always of the form

x(t) = α(t)
[
1
1

]
, α(t) := ω

∫ t

0
e−ω(t−τ )u(τ )dτ,

and we cannot transfer the system from the origin to any state with x1(t) "= x2(t).
The reachable subspace for this system is

R[t0, t1] =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 ≥ 0.

Suppose now that we want to transfer x(0) to the origin. Then we need

0 = e−ωt x(0) + α(t)
[
1
1

]
, α(t) := ω

∫ t

0
e−ω(t−τ )u(τ )dτ.

Clearly, this is possible only if x(0) is aligned with
[
1 1

]′. The controllable subspace
for this system is also

C[t0, t1] =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 ≥ 0.

However, we shall see shortly that when the time constants are different; i.e., 1
R1C1 "=

1
R2C2 , any vector in R2 can be reached from the origin and the origin can be reached

from any initial condition in R2; i.e.,

R[t0, t1] = C[t0, t1] = R2. !

State space model of parallel electrical network is given as

ẋ =

[− 1
R1C1

0

0 − 1
R2C2

]
x+

[ 1
R1C1

1
R2C2

]
u

The solution to this system is given by

x(t) =

[
x1(t)
x2(t)

]
=

[
e−

t
R1C1 x1(0)

e−
t

R2C2 x2(0)

]
+

∫ t

0

 e− t−τ
R1C1

R1C1

e
− t−τ
R2C2

R2C2

u(τ)dτ
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Controllable and Reachable subspaces

Examples and System Interconnections

Parallel RC network
When the two branches have the same time constant, i.e.

1
R1C1

= 1
R2C2

= ω, we have

x(t) = e−ωtx(0) + ω

∫ t

0
e−ω(t−τ)u(τ)dτ

[
1
1

]

If x(0) = 0, then x(t) reduces to

x(t) = α(t)

[
1
1

]
, α(t) = ω

∫ t

0
e−ω(t−τ)u(τ)dτ

We can observe that transferring the system from the origin to any
state with x1(t) = x2(t) is permissible. Hence, the reachable
subspace of this system is

R[t0, t1] =

{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 ≥ 0.
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Controllable and Reachable subspaces

Examples and System Interconnections

Parallel RC network
Suppose now that we want to transfer x(0) to the origin.

Then we
need

0 = e−ωtx(0) + α(t)

[
1
1

]
, α(t) = ω

∫ t

0
e−ω(t−τ)u(τ)dτ

Clearly, this is possible only if x(0) is aligned with
[
1 1

]′
.The

controllable subspace for this system is

C[t0, t1] =

{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 ≥ 0.

However, we shall see shortly that when the time constants are
different; i.e. 1

R1C1
6= 1

R2C2
, any vector in R2 can be reached from

the origin and the origin can be reached from any initial condition
in R2; i.e.

R[t0, t1] = C[t0, t1] = R2
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(a) Parallel RC network (b) Suspension system

Figure 11.1. Uncontrollable systems.

When the two branches have the same time constant, i.e., 1
R1C1 = 1

R2C2 = ω, we
have

x(t) = e−ωt x(0) + ω

∫ t

0
e−ω(t−τ )u(τ )dτ

[
1
1

]
.

This shows that if x(0) = 0, then x(t) is always of the form

x(t) = α(t)
[
1
1

]
, α(t) := ω

∫ t

0
e−ω(t−τ )u(τ )dτ,

and we cannot transfer the system from the origin to any state with x1(t) "= x2(t).
The reachable subspace for this system is

R[t0, t1] =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 ≥ 0.

Suppose now that we want to transfer x(0) to the origin. Then we need

0 = e−ωt x(0) + α(t)
[
1
1

]
, α(t) := ω

∫ t

0
e−ω(t−τ )u(τ )dτ.

Clearly, this is possible only if x(0) is aligned with
[
1 1

]′. The controllable subspace
for this system is also

C[t0, t1] =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 ≥ 0.

However, we shall see shortly that when the time constants are different; i.e., 1
R1C1 "=

1
R2C2 , any vector in R2 can be reached from the origin and the origin can be reached

from any initial condition in R2; i.e.,

R[t0, t1] = C[t0, t1] = R2. !

The steady state space model of the mechanical system is given by

ẋ =


− b1
m1

− k1
m1

0 0

1 0 0 0

0 0 − b2
m2

− k2
m2

0 0 1 0

x+


1

2m1

0
1

2m2

0

u
where x =

[
x1 x2 x3 x4

]′
, and x1 and x2 are the spring

displacements with respect to the equilibrium position. We assumed that
the bar has negligible mass and therefore the force u is equally
distributed between the two spring systems.
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Example 11.2 (Suspension system). The state-space model of the mechanical sus-
pension system in Figure 11.1(b) is given by

ẋ =





− b1
m1 − k1

m1 0 0
1 0 0 0
0 0 − b2

m2 − k2
m2

0 0 1 0




x +





1
2m1
0
1
2m2
0




u,

where x :=
[
ẋ1 x1 ẋ2 x2

]′, and x1 and x2 are the spring displacements with
respect to the equilibrium position. We assumed that the bar has negligible mass and
therefore the force u is equally distributed between the two spring systems. !

This and the previous examples are special cases of the parallel connection in Fig-
ure 11.2(a), which is discussed next.

Example 11.3 (Parallel interconnection). Consider the parallel connection in Fig-
ure 11.2(a) of two systems with states x1, x2 ∈ Rn . The overall system corresponds
to the state-space model

ẋ =
[
A1 0
0 A2

]
x +
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B2

]
u,

where we chose for state x :=
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x ′
1 x ′

2
]′ ∈ R2n . The solution to this system is given

by
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∫ t
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When A1 = A2 = A and B1 = B2 = B, we have

x(t) =
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eAt x1(0)
eAt x2(0)
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I
I

] ∫ t

0
eA(t−τ )Bu(τ )dτ.

This shows that if x(0) = 0, we cannot transfer the system from the origin to any
state with x1(t) $= x2(t). Similarly, to transfer a state x(t0) to the origin, we must
have x1(t0) = x2(t0). !
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Figure 11.2. Block interconnections.
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Figure 11.2. Block interconnections.Attention

Parallel connections of similar systems are a common
mechanism that leads to lack of reachability and
controllability.

Cascade connections, generally do not have this problem.
However, they may lead to stability problems through
resonance.
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State variable x is the voltage across the capacitor.

If x(0) = 0, then x(t) = 0 for all t ≥ 0 no matter what input is
applied.

This is due to the symmetry of the network, and the input has no
effect on the voltage across the capacitor.
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Controllable and Reachable subspaces

Fundamental theorem of linear equations
Given an m× n matrix W

Definition (Image and Rank of a matrix)

The range or image is the set of vectors y ∈ Rm for which y = Wx has
a solution x ∈ Rn; i.e.,

ImW , {y ∈ Rm : ∃x ∈ Rn, y = Wx}
The image of W is a linear subspace of Rm and its dimension is called
the rank of the matrix W .

The rank of W is equal to the number of linearly independent
columns of W , which is also equal to the number of linearly

independent rows of W .

Definition (Kernel and Nullity of a matrix)

The kernel or null space is the set

kerW = {x ∈ Rn : Wx = 0}

The kernel of W is a linear subspace of Rn, and its dimension is called
the nullity of the matrix W .
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Controllable and Reachable subspaces

Reachability and Controllability Gramians

As the name suggests, the Gramians allow one to compute the
aforesaid subspaces.

Definition (Gramians)

Given two times t1 > t0 ≥ 0, the reachability and controllability
Gramians of the system (AB-CLTV) are defined, respectively, by

WR(t0, t1) =

∫ t1

t0

φ(t1, τ)B(τ)B(τ)Tφ(t1, τ)Tdτ

WC(t0, t1) =

∫ t1

t0

φ(t0, τ)B(τ)B(τ)Tφ(t0, τ)Tdτ

Note

Both Gramians are symmetric and positive-semidefinite n× n
matrices.
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Controllable and Reachable subspaces

Reachability and Controllability Gramians
Definition (Reachable Subspace, Gramian, Image)

R[t0, t1] ,

{
x1 ∈ Rn : ∃u(•), x1 =

∫ t1
t0

φ(t1, τ)B(τ)u(τ)dτ

}

WR(t0, t1) ,
∫ t1
t0

φ(t1, τ)B(τ)B(τ)
T
φ(t1, τ)

T
dτ, ImW ,

{
y ∈ Rm : ∃x ∈ Rn, y = Wx

}

Theorem (Reachable subspace)

Given two times t1 > t0 ≥ 0,

R[t0, t1] = ImWR(t0, t1).

Moreover, if x1 = WR(t0, t1)η1 ∈ ImWR(t0, t1), the control

u(t) = B(t)Tφ(t1, t)
T η1, t ∈ [t0, t1] (1)

can be used to transfer the state from x(t0) = 0 to x(t1) = x1.

Logical idea of the proof.

The proof shall be done in two parts

x1 ∈ ImWR(t0, t1) =⇒ x1 ∈ R[t0, t1]

x1 ∈ ImWR(t0, t1) ⇐= x1 ∈ R[t0, t1]
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Controllable and Reachable subspaces

Proof: x1 ∈ ImWR(t0, t1) =⇒ x1 ∈ R[t0, t1]

Recall

WR(t0, t1) =

∫ t1

t0

φ(t1, τ)B(τ)B(τ)Tφ(t1, τ)T dτ

u(t) = B(t)Tφ(t1, t)
T η1, t ∈ [t0, t1]

When x1 ∈ ImWR(t0, t1), there exists a vector η1 ∈ Rn such that

x1 = WR(t0, t1)η1.

To prove that x1 ∈ R[t0, t1], it suffices to show that the input u(t) does
indeed transfer the state from x(t0) = 0 to x(t1) = x1. To verify that
this is so, we use the variations of constants formula for the input

x(t1) =

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ

x(t1) =

∫ t1

t0

φ(t1, τ)B(τ)B(τ)Tφ(t1, τ)T η1︸ ︷︷ ︸
u(τ)

dτ = WR(t0, t1)η1 = x1.
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Controllable and Reachable subspaces

Proof: x1 ∈ ImWR(t0, t1) ⇐= x1 ∈ R[t0, t1]

When x1 ∈ R[t0, t1] there exists an input u(·) for which x1 =
∫ t1
t0
φ(t1, τ)B(τ)u(τ)dτ

We show next that this leads to x1 ∈ ImWR(t0, t1) = (kerWR(t0, t1))⊥, which
is to say that

xT1 η1 = 0, ∀η1 ∈ kerWR(t0, t1) (2)

To verify that, we pick some arbitrary vector η1 ∈ kerWR(t0, t1) and compute

xT1 η1 =

∫ t1

t0

u(τ)TB(τ)Tφ(t1, τ)T η1dτ (3)

Compute further

ηT1 WR(t0, t1)η1 =

∫ t1

t0

ηT1 φ(t1, τ)B(τ)B(τ)Tφ(t1, τ)T η1dτ

=

∫ t1

t0

‖B(τ)Tφ(t1, τ)T η1‖2dτ

But since η1 ∈ kerWR(t0, t1), we have

ηT1 WR(t0, t1)η1 =

∫ t1

t0

‖B(τ)Tφ(t1, τ)T η1‖2dτ = 0

which implies that

B(τ)Tφ(t1, τ)T η1 = 0, ∀τ ∈ [t0, t1].

From this and (3), we conclude that (2) indeed holds.
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Controllable and Reachable subspaces

Reachability and Controllability Gramians

Theorem (Controllable subspace)

Given two times t1 > t0 ≥ 0

C[t0, t1] = ImWC(t0, t1)

Moreover, if x0 = WC(t0, t1)η0 ∈ ImWC(t0, t1), the control

u(t) = −B(t)Tφ(t0, t)
T η0, t ∈ [t0, t1]

can be used to transfer the state x(t0) = x0 to x(t1) = 0
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Controllable and Reachable subspaces

Controllability Matrix (LTI)

Consider the continuous time LTI system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rk (AB-CLTI)

For this system, the reachability and controllability Gramians are
given, respectively, by

WR[t0, t1] =

∫ t1

t0

eA(t1−τ)BBT eA
T (t1−τ)dτ =

∫ t1−t0

0

eAtBBT eA
T tdt

WC [t0, t1] =

∫ t1

t0

eA(t0−τ)BBT eA
T (t0−τ)dτ =

∫ t1−t0

0

e−AtBBT e−A
T tdt

The controllability matrix of (AB-CLTI) is to be defined by

C =
[
B AB A2B . . . An−1B

]
n×(kn)

and provides a “simple method” to compute the reachable and
controllable subspace.



21

Controllable and Reachable subspaces

Controllability Matrix (LTI)

Consider the continuous time LTI system
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Controllable and Reachable subspaces

Controllability Matrix (LTI)

Theorem

For any two times t0 and t1, with t1 > t0 ≥ 0

R[t0, t1] = ImWR(t0, t1) = ImC = ImWC(t0, t1) = C[t0, t1]

Attention

The notion of reachability and controllability coincide for continuous time LTI
system, which means if one can go from origin to some state x1, then one can
also go from x1 to origin.
Because of this, one studies controllability for continuous time system, and
neglect reachability.

Logical idea of the proof.

R[t0, t1] = ImWR(t0, t1)︸ ︷︷ ︸
Reachable subspace

= ImC =

Controllable subspace︷ ︸︸ ︷
ImWC(t0, t1) = C[t0, t1]

The rest of the proof shall be done in two parts

x1 ∈ R[t0, t1] = ImWR[t0, t1] =⇒ x1 ∈ ImC.

x1 ∈ R[t0, t1] = ImWR[t0, t1] ⇐= x1 ∈ ImC.
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Controllable and Reachable subspaces

Proof: x1 ∈ R[t0, t1] = ImWR[t0, t1] =⇒ x1 ∈ ImC

When x1 ∈ R[t0, t1], there exists an input u(·) that transfers the state
from x(t0) = 0 to x(t1) = x1, and therefore

x1 =

∫ t1

t0

eA(t1−τ)Bu(τ)dτ

Using Caley-Hamilton theorem, we can write

eAt =

n−1∑
i=0

αi(t)A
i, ∀t ∈ R

for appropriately defined scalar functions α0(t), α1(t), α2(t), . . . , αn−1(t).
Therefore,

x1 =

n−1∑
i=0

AiB

(∫ t1

t0

αi(t1 − τ)u(τ)dτ

)
= C


∫ t1
t0
α0(t1 − τ)u(τ)dτ

...∫ t1
t0
αn−1(t1 − τ)u(τ)dτ


which shows that x1 ∈ ImC.
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n−2 + · · ·+ an−1s+ an
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Controllable and Reachable subspaces

Proof: x1 ∈ R[t0, t1] = ImWR[t0, t1] ⇐= x1 ∈ ImC

When x1 ∈ ImC, there exists a vector v ∈ Rkn for which

x1 = Cv.

We show next that this leads to x1 ∈ ImWR(t0, t1) = (kerWR(t0, t1))⊥, which
is to say that

ηT1 x1 = ηT1 Cv = 0, ∀η1 ∈ kerWR(t0, t1). (4)

To verify that this is so, we pick an arbitrary vector η1 ∈ kerWR(t0, t1).
We saw in the proof of the reachable subspace that such vector η1 has the
property that

ηT1 e
A(t1−τ)B = 0, ∀τ ∈ [t0, t1].
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Controllable and Reachable subspaces

Proof: x1 2 ImWR(t0, t1) (= x1 2 R[t0, t1]
When x1 2 R[t0, t1] there exists an input u(·) for which

x1 =

Z t1

t0

�(t1, ⌧)B(⌧)u(⌧)d⌧

We show next that this leads to x1 2 ImWR(t0, t1) = (kerWR(t0, t1))
?, which

is to say that

xT
1 ⌘1 = 0, 8⌘1 2 ker(WR(t0, t1)) (2)

To verify that, we pick some arbitrary vector ⌘1 2 kerWR(t0, t1) and compute

xT
1 ⌘1 =

Z t1

t0

u(⌧)T B(⌧)T�(t1, ⌧)T ⌘1d⌧ (3)

But since ⌘1 2 kerWR(t0, t1), we have

⌘T
1 WR(t0, t1)⌘1 =

Z t1

t0

⌘T
1 �(t1, ⌧)B(⌧)B(⌧)T�(t1, ⌧)T ⌘1d⌧

=

Z t1

t0

kB(⌧)T�(t1, ⌧)T ⌘1k2d⌧ = 0

which implies that

B(⌧)T�(t1, ⌧)T ⌘1 = 0, 8⌧ 2 [t0, t1].

From this and (3), we conclude that (2) indeed holds.

Taking k time derivatives with respect to τ , we further conclude that

(−1)kηT1 A
keA(t1−τ)B = 0, ∀τ ∈ [t0, t1], k ≥ 0.

and in particular for τ = t1, we obtain

ηT1 A
kB = 0, ∀k ≥ 0

It follows that ηT1 C = 0 and therefore (4) indeed holds.
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It follows that ηT1 C = 0 and therefore (4) indeed holds.
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Proof: x1 ∈ R[t0, t1] = ImWR[t0, t1] ⇐= x1 ∈ ImC
When x1 ∈ ImC, there exists a vector v ∈ Rkn for which

x1 = Cv.

We show next that this leads to x1 ∈ ImWR(t0, t1) = (kerWR(t0, t1))⊥, which
is to say that

ηT1 x1 = ηT1 Cv = 0, ∀η1 ∈ kerWR(t0, t1). (4)

To verify that this is so, we pick an arbitrary vector η1 ∈ kerWR(t0, t1).
We saw in the proof of the reachable subspace that such vector η1 has the
property that

ηT1 e
A(t1−τ)B = 0, ∀τ ∈ [t0, t1].
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Parallel RC network example (continued)

CONTROLLABLE AND REACHABLE SUBSPACES 97

(a) Parallel RC network (b) Suspension system

Figure 11.1. Uncontrollable systems.

When the two branches have the same time constant, i.e., 1
R1C1 = 1

R2C2 = ω, we
have

x(t) = e−ωt x(0) + ω

∫ t

0
e−ω(t−τ )u(τ )dτ

[
1
1

]
.

This shows that if x(0) = 0, then x(t) is always of the form

x(t) = α(t)
[
1
1

]
, α(t) := ω

∫ t

0
e−ω(t−τ )u(τ )dτ,

and we cannot transfer the system from the origin to any state with x1(t) "= x2(t).
The reachable subspace for this system is

R[t0, t1] =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 ≥ 0.

Suppose now that we want to transfer x(0) to the origin. Then we need

0 = e−ωt x(0) + α(t)
[
1
1

]
, α(t) := ω

∫ t

0
e−ω(t−τ )u(τ )dτ.

Clearly, this is possible only if x(0) is aligned with
[
1 1

]′. The controllable subspace
for this system is also

C[t0, t1] =
{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 ≥ 0.

However, we shall see shortly that when the time constants are different; i.e., 1
R1C1 "=

1
R2C2 , any vector in R2 can be reached from the origin and the origin can be reached

from any initial condition in R2; i.e.,

R[t0, t1] = C[t0, t1] = R2. !

The controllability matrix for the network is given by

C =
[
B AB

]
=

[
1

R1C1

−1
R2

1C
2
1

1
R2C2

−1
R2

2C
2
2

]

When two branches have the same time constants, i.e., 1
R1C1

= 1
R2C2

= ω, we
have

C =

[
ω −ω2

ω −ω2

]

and therefore

R[t0, t1] = C[t0, t1] = ImC =

{
α

[
1
1

]
: α ∈ R

}
, ∀t1 > t0 ≥ 0

However, when the time constants are different, i.e. 1
R1C1

6= 1
R2C2

.

detC =
1

R2
1C

2
1R2C2

− 1

R1C1R2
2C

2
2

=
1

R1C1R2C2

(
1

R1C1
− 1

R2C2

)
6= 0

which means that C is nonsingular, and therefore

R[t0, t1] = C[t0, t1] = ImC = R2
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Discrete-Time Case

Consider discrete-time LTV system

x(t+ 1) = A(t)x(t) +B(t)u(t), x ∈ Rn, u ∈ Rk (AB-DLTV)

A given input u(·) transfers of state x(t0) = x0 at time t0 to the
state x(t1) = x1 at time t1 given by the variation of constants
formula,

x1 = φ(t1, t0)x0 +

t1−1∑
τ=t0

φ(t1, τ + 1)B(τ)u(τ),

where φ(·) denotes the system’s state transition matrix.

We want to express how powerful the input is in terms of
transferring the state between two given states.
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Discrete-Time Case

Definition (Reachable subspace)

Given two times t1 > t0 ≥ 0, the reachable or controllable-from-the-origin on
[t0, t1] subspace R[t0, t1] consists of all states x1 for which there exists an input
u : {t0, t0 + 1, . . . , t1 − 1} → Rk that transfers the state from x(t0) = 0 to
x(t1) = x1; i.e.

R[t0, t1] =

{
x1 ∈ Rn : ∃u(·), x1 =

t1−1∑

τ=t0

φ(t1, τ + 1)B(τ)u(τ)

}
.

Definition (Controllable subspace)

Given two times t1 > t0 ≥ 0, the controllable or controller-to-the-origin on
[t0, t1] subspace C[t0, t1] consists of all states x0 for which there exists an input
u : {t0, t0 + 1, . . . , t1 − 1} → Rk that transfers the state from x(t0) = x0 to
x(t1) = 0; i.e.,

C[t0, t1] =

{
x0 ∈ Rn : ∃u(·), 0 = φ(t1, t0)x0 +

t1−1∑

τ=t0

φ(t1, τ + 1)B(τ)u(τ)

}
.
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Discrete-Time Case
Theorem (Reachability and controllability Gramians)

Given two times t1 > t0 ≥ 0, the reachability and controllability Gramians of
the system (AB-DLTV) are defined, respectively, by

WR(t0, t1) :=

t1−1∑

τ=t0

φ(t1, τ + 1)B(τ)B(τ)′φ(t1, τ + 1)′,

WC(t0, t1) :=

t1−1∑

τ=t0

φ(t0, τ + 1)B(τ)B(τ)′φ(t0, τ + 1)′.

Attention!

The discrete-time controllability Gramian requires a backward-in-time state
transition matrix φ(t0, τ + 1) from time τ + 1 to time t0 ≤ τ < τ + 1.
The matrix is well defined only when

x(τ + 1) = A(τ)A(τ − 1) · · ·A(t0)x(t0), t0 ≤ τ < t1 − 1

can be solved for x(t0), i.e. when all the matrices A(t0), A(t0 + 1) . . . A(t1 − 1)
are nonsingular.
When this does not happen, the controllability Gramian cannot be defined.

These Gramians allow us to determine exactly what the reachable and
controllable spaces are.
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Discrete-Time Case

Theorem (Reachable and controllable subspaces)

Given two times t1 > t0 ≥ 0,

R[t0, t1] = ImWR(t0, t1),

C[t0, t1] = ImWC(t0, t1)

Moreover

1 if x1 = WR(t0, t1)η1 ∈ ImWR(t0, t1), the control

u(t) = B(t)Tφ(t1, t+ 1)T η1, t ∈ [t0, t1 − 1]

can be used to transfer the state from x(t0) = 0 to x(t1) = x1,

and

2 if x0 = WC(t0, t1)η0 ∈ ImWC(t0, t1), the control

u(t) = −B(t)Tφ(t0, t+ 1)T η0, t ∈ [t0, t1 − 1]

can be used to transfer the state from x(t0) = x0 to x(t1) = 0.

Logical idea of the proof.

The proof can be done in two parts

x1 ∈ ImWR(t0, t1) =⇒ x1 ∈ R[t0, t1]

x1 ∈ ImWR(t0, t1) ⇐= x1 ∈ R[t0, t1]
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Discrete-Time Case: LTI

Consider now the discrete-time LTI ststem

x+ = Ax+Bu, x ∈ Rn, u ∈ Rk (AB-DLTI)

For this system, the reachability and controllability Gramians are
given, respectively, by'

&

$

%

WR(t0, t1) =

t1−1∑
τ=t0

At1−1−τBBT (AT )t1−1−τ ,

WC(t0, t1)1 =

t1−1∑
τ=t0

At0−1−τBBT (AT )t0−1−τ

and the controllability matrix is given by

C =
[
B AB · · · An−1B

]
n×(kn)

.

1The controllability Gramian can be defined only when A is nonsingular.
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Discrete-Time Case: LTI

Theorem

For any two times t1 > t0 ≥ 0, with t1 ≥ t0 + n, we have1

R[t0, t1] = ImWR(t0, t1) = ImC = ImWC(t0, t1) = C[t0, t1].

Attention

In discrete time, the notions of controllable and reachable subspaces
coincide only when the matrix A is nonsingular.
Otherwise, we have

R[t0, t1] = ImC ⊂ C[t0, t1],

but the reverse inclusion does not hold, i.e., there are states x1 that can
be transferred to the origin, but it is not possible to find an input to
transfer the origin to these states.

Because of this, one must study reachability and controllability of
discrete time systems separately.

1The results regarding the controllability Gramian implicitly assume that A
is nonsingular.
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Discrete-Time Case: LTI
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Outline of Controllable Systems

1 Matrix test

2 Eigenvector test

3 Lyapunov test
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Matrix Test

Consider the following continuous and discrete-time LTV systems

ẋ = A(t)x+B(t)u / x(t+ 1) = A(t)x(t) +B(t)u(t), x ∈ Rn, u ∈ Rk

(AB-LTV)

Definition (Reachable system)

Given two times t1 > t0 ≥ 0, the system (AB-LTV), or simply the pair
(A(.), B(.)), is (completely state-) reachable on [t0, t1] whenever
R[t0, t1] = Rn, i.e., whenever the origin can be transferred to every state.

Definition (Controllable system)

Given two times t1 > t0 ≥ 0, the system (AB-LTV), or simply the pair
(A(.), B(.)), is (completely state-) controllable on [t0, t1] whenever
C[t0, t1] = Rn, i.e., whenever every state can be transferred to the origin.

1Here, we jointly present the results for continuous and discrete time and
use a slash to separate the two cases.
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Matrix Test
Theorem

The following two statements are equivalent.

1 The n−dimensional pair (A(t), B(t)) is controllable at time t0.

2 there exists a finite t1 > t0 such that the n× n matrix

WC(t0, t1) =

∫ t1

t0

φ(t1, τ)B(τ)B(τ)′φ(t1, τ)′dτ

is nonsingular.

Proof: 2 =⇒ 1.

The response of (AB-LTV) at t1 is given as

x(t1) = φ(t1, t0)x0 +

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ

We claim that the input

u(t) = −B′(t)φ′(t1, t)η, η = W−1
C (t0, t1)[φ(t1, t0)(x0 − x1)]

will transfer x0 at time t0 to x1 at time t1.From the above, we have

x(t1) = φ(t1, t0)x0 −
∫ t1

t0

φ(t1, τ)B(τ)B′(τ)φ′(t1, τ)dτ × η

= φ(t1, t0)x0 −Wc(t0, t1)W−1
c (t0, t1)[φ(t1, t0)x0 − x1]︸ ︷︷ ︸

η

= x1
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Proof: 2 ⇐= 1 OR ¬2 =⇒ ¬1

We prove this by contradiction.
Suppose Wc(t0, t1) is singular or positive-semidefinite, for all t1 > t0.Then
there exists a nonzero constant vector v ∈ Rn such that

v′Wc(t0, t1)v = 0 =

∫ t1

t0

v′φ(t1, τ)B(τ)B′(τ)φ′(t1, τ)vdτ

=

∫ t1

t0

∥∥B′(τ)φ′(t1, τ)v
∥∥2
dτ

which implies

B′(τ)φ′(t1, τ)v = 0 or v′φ(t1, τ)B(τ) = 0 ∀τ ∈ [t0, t1]

If (AB-LTV) is controllable, there exists an input that transfers the initial state
x0 = φ(t0, t1)v at t0 to x(t1) = 0. Then the solution of the state equations is
given by

0 =

I︷ ︸︸ ︷
φ(t1, t0)φ(t0, t1)v︸ ︷︷ ︸

x0

+

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ

Premultiplication with v′ yields

0 = v′v + v′
∫
φ(t1, τ)B(τ)u(τ)dτ = ‖v‖2 + 0.

This contradicts the hypothesis v 6= 0.
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If (AB-LTV) is controllable, there exists an input that transfers the initial state
x0 = φ(t0, t1)v at t0 to x(t1) = 0. Then the solution of the state equations is
given by

0 =

I︷ ︸︸ ︷
φ(t1, t0)φ(t0, t1)v︸ ︷︷ ︸

x0

+

∫ t1

t0

φ(t1, τ)B(τ)u(τ)dτ

Premultiplication with v′ yields

0 = v′v + v′
∫
φ(t1, τ)B(τ)u(τ)dτ = ‖v‖2 + 0.

This contradicts the hypothesis v 6= 0.
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Controllable systems

Matrix Test

Attention!

1 We need the knowledge of the state transition matrix which
may not be available

2 Therefore, it is desirable to develop a controllability condition
without involving φ(t, τ)

3 This is possible if we have additional conditions on A(t) and
B(t)

4 Recall that we have assumed A(t) and B(t) to be continuous.
Now we require them to be (n− 1) times continuously
differentiable.
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Controllable systems

Matrix Test

Define M0(t) , B(t), define using recursion:

Mm+1(t) = −A(t)Mm(t) +
d

dt
Mm(t); m = 0, 1, . . . , (n− 1)

Clearly, we have

φ(t2, t)B(t) = φ(t2, t)M0(t) for any fixed t2

Using

d

dt
φ(t2, t) = −φ(t2, t)A(t),

compute

d

dt
[φ(t2, t)B(t)] =

d

dt
[φ(t2, t)]B(t) + φ(t2, t)

d

dt
B(t)

= φ(t2, t)

[
−A(t)M0(t) +

d

dt
M0(t)

]
= φ(tt, t)M1(t)

Proceeding forward, we have

dm

dtm
φ(t2, t)B(t) = φ(t2, t)Mm(t);m = 0, 1, 2, . . .
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Controllable systems

Matrix Test

Theorem

Let A(t) and B(t) be (n− 1) times continuously differentiable,
then the n−dimensional pair (A(t), B(t)) is controllable at t0 if
there exists a finite t1 > t0 such that

rank
[
M0(t1) M1(t1) · · · Mn−1(t1)

]
= n

M0(t) = B(t)

Mm+1(t) = −A(t)Mm(t) +
d

dt
Mm(t); m = 0, 1, . . . , (n− 1)

Note

The above theorem is sufficient but not necessary.
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Controllable systems

Proof

We show that if the rank condition holds, then Wc(t0, t1) is non-singular
for all t ≥ t1.

Suppose not, i.e. Wc(t0, t1) is singular or positive semidefinite for some
t2 ≥ t1. Then there exists a nonzero constant vector v such that

v′Wc(t0, t2)v = 0 =

∫ t2

t0

‖B′(τ)φ′(t2, τ)v‖2dτ

which implies

B′(τ)φ′(t2, τ)v = 0 or v′φ(t2, τ)B(τ) = 0

for all τ in [t0, t2]. Its differentiation with respect to τ yield as derived
previously

v′φ(t2, τ)Mm(τ) = 0

for m = 0, 1, 2, . . . , n− 1, and all τ ∈ [t0, t2], in particular, at t1. They
can be arranged as

v′φ(t2, t1)
[
M0(t1) M1(t1) · · · Mn−1(t1)

]
= 0

Because φ(t2, t1) is nonsingular, v′φ(t2, t1) is nonzero. This contradicts
the rank condition.
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Example

Consider

ẋ =

t −1 0
0 −t t
0 0 t

x+

0
1
1

u

We have M0 =
[
0 1 1

]′
and compute

M1 = −A(t)M0 +
d

dt
M0 =

 1
0
−t


M2 = −A(t)M1 +

d

dt
M1 =

 −tt2
t2 − 1


The determinant of the matrix[

M0 M1 M2

]
=

0 1 −t
1 0 t2

1 −t t2 − 1


is t2 + 1, which is nonzero for all t.
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Matrix Test

Consider now the LTI systems

ẋ = Ax+Bu / x(t+ 1) = Ax(t) +Bu(t), x ∈ Rn, u ∈ Rk (AB-LTI)

Notes

For continuous-time LTI systems R[t0, t1] = C[t0, t1], and
therefore one often talks about only controllability.

A system that is not controllable is called uncontrollable.

In discrete time, this holds for t1 − t0 ≥ n, and nonsingular A.
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Matrix Test
Earlier, we saw that

ImC = R[t0, t1] = C[t0, t1].

Since C has n rows, ImC is a subspace of Rn, so its dimension can be at most n.

For controllability, ImC = Rn, and therefore the dimension of ImC must be
exactly n.

Theorem (Controllabilty matrix test)

The LTI system (AB-LTI) is controllable if and only if

rankC = n

Notes

In discrete time, when A is singular, we simply have

ImC = R[t0, t1] ⊂ C[t0, t1]
and

rankC = n =⇒ R[t0, t1] = C[t0, t1] = Rn

rankC < n =⇒ ImC = R[t0, t1] ⊂ C[t0, t1] = Rn
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Eigenvector Test

Definition (A-invariant)

Given an n× n matrix A, a linear subspace V of Rn is said to be A-invariant
whenever for every vector v ∈ V we have Av ∈ V.

Properties: Given an n× n matrix A, a linear subspace V ⊂ Rn, the following
statements are true.

Lemma (Property 1)

If one constructs an n× k matrix V whose columns form a basis for V, there
exists a k × k matrix Γ such that

AV = V Γ.

Proof.

Since the ith column vi of the matrix V belongs to V and V is A-invariant,
Avi ∈ V. This means that Avi can be written as linear combination of columns
of V ; i.e., there exists a column vector γi such that

Avi = V γi ∀i ∈ {1, 2, . . . , k}.

Putting all these equations together, we conclude that

[
Av1 Av2 · · · Avk

]
=
[
V γ1 V γ2 · · · V γk

]
⇐⇒ AV = V Γ

where all the γi are used as columns for Γ.
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Eigenvector Test
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Eigenvector Test

Lemma (Property 2)

V contains at least one eigenvector of A.

Proof.

Let v̄ is an eigenvector of the matrix Γ corresponding to the
eigenvalue λ. Then

AV v̄ = V Γv̄ = λV v̄

and therefore, v := V v̄ is an eigenvector of the matrix A.
Moreover, since v is a linear combination of the columns of V , it
must belong to V.
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Eigenvector Test

Theorem (Eigenvector test for controllability)

The following two statements are equivalent.

1 The LTI system (AB-LTI) is controllable.

2 There is no eigenvector of AT in the kernel of BT .

1 =⇒ 2 OR ¬1 ⇐= ¬2.

Suppose there exists an eigenvalue ATx = λx with x 6= 0, for which
BTx = 0.Then

CTx =




BT

BTAT

...

BT (AT )
n−1


x =




BTx
λBTx

...
λn−1BTx


 = 0. (7)

This means that the null space of C has at least one nonzero vector

, and
therefore, from the fundamental theorem of linear equations, we conclude that

dim kerCT ≥ 1 =⇒ rankC = rankCT = n− dim kerCT < n

which contradicts the controllability of (AB-LTI).
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Eigenvector Test
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Eigenvector Test

Theorem (Eigenvector test for controllability)

The following two statements are equivalent.

1 The LTI system (AB-LTI) is controllable.

2 There is no eigenvector of AT in the kernel of BT .

1 =⇒ 2 OR ¬1 ⇐= ¬2.

Suppose there exists an eigenvalue ATx = λx with x 6= 0, for which
BTx = 0.

Then

CTx =




BT

BTAT

...

BT (AT )
n−1


x =




BTx
λBTx

...
λn−1BTx


 = 0. (7)

This means that the null space of C has at least one nonzero vector

, and
therefore, from the fundamental theorem of linear equations, we conclude that

dim kerCT ≥ 1 =⇒ rankC = rankCT = n− dim kerCT < n

which contradicts the controllability of (AB-LTI).



46

Controllable systems

Eigenvector Test
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Eigenvector Test

Theorem (Eigenvector test for controllability)
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Eigenvector Test

Theorem (Eigenvector test for controllability)
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Eigenvector Test

Theorem (Eigenvector test for controllability)
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Proof: 2 =⇒ 1 OR ¬2 ⇐= ¬1

To prove this part, firstly we shall show that the subspace kerCT is
AT -invariant.

Subsequently, we use the property 2 to conclude that if (AB-LTI) is not
controllable then there exists an eigenvector of AT in the kernel of BT .

Property 2

V contains at least one eigenvector of A.
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Proof: 2 =⇒ 1 OR ¬2 ⇐= ¬1
kerCT is AT -invariant

Since (AB-LTI) is not controllable, we have

rankC = rankCT < n =⇒ dim kerCT = n− rankCT ≥ 1

Indeed, if x ∈ kerCT , then (7) holds, and therefore

x ∈ kerCT =⇒ CTATx =




BTAT

BT (AT )2

...
BT (AT )n


x =




0
0
...

BT (AT )
n
x




But by the Caley-Hamilton theorem, (AT )n can be written as a linear
combination of the lower powers of AT , and therefore BT (AT )nx can be
written as a linear combination of the terms

BTx,BTATx, . . . , BT (AT )
n−1

x,

which are all zero because of (7). We therefore conclude that

x ∈ kerCT =⇒ CTATx = 0 =⇒ ATx ∈ kerCT .



48

Controllable systems

Proof: 2 =⇒ 1 OR ¬2 ⇐= ¬1
kerCT is AT -invariant

Since (AB-LTI) is not controllable, we have

rankC = rankCT < n =⇒ dim kerCT = n− rankCT ≥ 1

Indeed, if x ∈ kerCT , then (7) holds, and therefore

x ∈ kerCT =⇒ CTATx =




BTAT

BT (AT )2

...
BT (AT )n


x =




0
0
...

BT (AT )
n
x




But by the Caley-Hamilton theorem, (AT )n can be written as a linear
combination of the lower powers of AT , and therefore BT (AT )nx can be
written as a linear combination of the terms

BTx,BTATx, . . . , BT (AT )
n−1

x,

which are all zero because of (7). We therefore conclude that

x ∈ kerCT =⇒ CTATx = 0 =⇒ ATx ∈ kerCT .



48

Controllable systems

Proof: 2 =⇒ 1 OR ¬2 ⇐= ¬1
kerCT is AT -invariant

Since (AB-LTI) is not controllable, we have

rankC = rankCT < n =⇒ dim kerCT = n− rankCT ≥ 1

Indeed, if x ∈ kerCT , then (7) holds, and therefore

x ∈ kerCT =⇒ CTATx =




BTAT

BT (AT )2

...
BT (AT )n


x =




0
0
...

BT (AT )
n
x




But by the Caley-Hamilton theorem, (AT )n can be written as a linear
combination of the lower powers of AT , and therefore BT (AT )nx can be
written as a linear combination of the terms

BTx,BTATx, . . . , BT (AT )
n−1

x,

which are all zero because of (7). We therefore conclude that

x ∈ kerCT =⇒ CTATx = 0 =⇒ ATx ∈ kerCT .



48

Controllable systems

Proof: 2 =⇒ 1 OR ¬2 ⇐= ¬1
kerCT is AT -invariant

Since (AB-LTI) is not controllable, we have

rankC = rankCT < n =⇒ dim kerCT = n− rankCT ≥ 1

Indeed, if x ∈ kerCT , then (7) holds, and therefore

x ∈ kerCT =⇒ CTATx =




BTAT

BT (AT )2

...
BT (AT )n


x =




0
0
...

BT (AT )
n
x




But by the Caley-Hamilton theorem, (AT )n can be written as a linear
combination of the lower powers of AT , and therefore BT (AT )nx can be
written as a linear combination of the terms

BTx,BTATx, . . . , BT (AT )
n−1

x,

which are all zero because of (7). We therefore conclude that

x ∈ kerCT =⇒ CTATx = 0 =⇒ ATx ∈ kerCT .



49

Controllable systems

Proof: 2 =⇒ 1 OR ¬2 ⇐= ¬1

Property 2

V contains at least one eigenvector of A.

Use Property 2

From Property 2, we then conclude that kerCT must contain at
least one eigenvector x of AT . But since CTx = 0, we necessarily
have BTx = 0.

CTx =




BT

BTAT

...

BT (AT )
n−1


x =




BTx
λBTx

...
λn−1BTx


 = 0.
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Eigenvector Test (Elegant restatement)

Theorem (Popov-Belevitch-Hautus (PBH) test for controllability)

The LTI system (AB-LTI) is controllable if and only if

rank
[
A− λI B

]
= n ∀λ ∈ C (8)

Proof: Equivalence of rank and eigenvector condition.

From the fundamental theorems of linear equations, we conclude that

dim ker

[
AT − λI
BT

]
= n− rank

[
A− λI B

]
, ∀λ ∈ C

and therefore the above condition can also be written as

dim ker

[
AT − λI
BT

]
= 0 ∀λ ∈ C,

which means that the kernel of

[
AT − λI
BT

]
can contain only the zero vector. This means the said condition is

also equivalent to

ker

[
AT − λI
BT

]
=
{
x ∈ Rn : A

T
x = λx,B

T
x = 0

}
= {0}, λ ∈ C

which is precisely equivalent to the statement that there can be no eigenvector of AT in the kernel of BT .
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Lyapunov test for controllability

Consider now the LTI systems

ẋ = Ax+Bu / x(t+ 1) = Ax(t) +Bu(t), x ∈ Rn, u ∈ Rk

Theorem (Lyapunov test for controllability)

Assume that A is a stability matrix. The LTI system (AB-LTI) is
controllable if and only if there is a unique positive-definite solution W to
the following Lyapunov equation

AW +WAT = −BBT / AWAT −W = −BBT (C-Lyapunov Eq.)

Moreover, the unique solution to (C-Lyapunov Eq.) is equal to

W =

∫ ∞
0

eAτBBT eA
T τdτ = lim

t1−t0→∞
WR(t0, t1)

/ W =

∞∑
τ=0

AτBBT (AT )τ = lim
t1−t0→∞

WR(t0, t1) (9)
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2 =⇒ 1 (C-LTI systems)

We use the eigenvector test to prove this implication.

Assume that (C-Lyapunov Eq.) holds, and x 6= 0 be an eigenvector of AT

associated with the eigenvalue λ, i.e., ATx = λx. Then

x∗(AW +WAT )x = −x∗BBTx = −‖BTx‖2, (10)

where (·)∗ denotes the complex conjugate transpose. But the left-hand
side of this equation is equal to

(ATx∗T )TWx+ x∗WATx = λ∗x∗Wx+ λx∗Wx = 2Re[λ]x∗Wx. (11)

Since W is positive-definite, this expression must be strictly negative
(note that Re[λ] < 0 because A is a stability matrix), and therefore
BTx 6= 0.

We conclude that every eigenvalue of AT is not in the kernel of BT ,
which implies controllability by the eigenvector test.
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1 =⇒ 2 (C-LTI systems)

Assume that (AB-LTI) is controllable. The previously studied Lyapunov
equation can be written as

ĀTW +WĀ = −Q, Ā := AT , Q := BBT .

Since A is a stability matrix, Ā := AT is also a stability matrix, and
therefore we can reuse the proof of the Lyapunov stability theorem to
conclude that (9) is a unique solution to (C-Lyapunov Eq.).

The only issue that needs special attention is that in Lyapunov stability
theorem we used the fact that Q = BBT was positive-definite to show
that the solution W was also positive-definite. Here, Q = BBT may not
be positive-definite, but it turns out that controllability of the pair (A,B)
suffices to establish that W is positive-definite, even if Q is not. Indeed,
given any arbitrary vector x 6= 0,

xTWx = xT
(∫ ∞

0

eAτBBT eA
T τdτ

)
x ≥ xT

(∫ 1

0

eAτBBT eA
T τdτ

)
x

= xTWR(0, 1)x > 0,

because WR(0, 1) > 0, due to controllability.
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Lyapunov test for controllability
The result of the above theorem allow us to add a six equivalent conditions to
the Lyapunov stability theorem.

Theorem (Lyapunov stability, updated)

The following six conditions are equivalent.
1 The system (H-CLTI) is asymptotically stable.

2 The system (H-CLTI) is exponentially stable.

3 All the eigenvalues of A have strictly negative real parts.

4 For every symmetric positive-definite matrix Q, there exists a unique solution P to the Lyapunov equation

A
T
P + PA = −Q (Lyapunov Eq.)

Moreover, P is symmetric, positive-definite, and equal to P :=
∫∞
0 eA

T tQeAtdt.

5 There exists symmetric, positive-definite matrix P for which the following Lyapunov matrix inequality holds

A
T
P + PA < 0 (LMI)

6 For every matrix B for which the pair (A,B) is controllable, there exists
a unique solution P to the Lyapunov equation

AP + PAT = −BBT (C-Lyapunov Eq.)

Moreover, P is symmetric, positive-definite, and equal to

P =
∫∞

0
eAτBBT eA

T τdτ .
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Summary of Controllability Tests
The following statements are equivalent.

1 The n-dimensional pair (A,B) is controllable.

2 The n× n Gramian

Wc(t) =

∫ t

0

eAtBB′eA
′τdτ =

∫ t

0

eA(t−τ)BB′eA
′(t−τ)dτ

(Gramian - Matrix Test)
is non-singular for any t > 0.

3 The n× kn controllability matrix

C =
[
B AB A2B · · · An−1B

]
(Matrix Test)

has rank n (full row rank).

4 The matrix [
A− λI B

]
(PBH Test)

has full row rank at every eigenvalue λ of A.

5 If, in addition, all eigenvalues of A have negative real parts, then the
unique solution of

AWc +WcA = −BB′ (C-Lyapunov Eq.)

is positive definite and can be expressed as Wc =
∫∞

0
eAτBB

′
expA

′τdτ .
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Outline of this section

1 Invariance with respect to similarity transformations

2 Controllable decomposition

3 Block diagram interpretation

4 Transfer function
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Invariance with Respect to Similarity Transformations
Consider the LTI systems

ẋ = Ax+Bu / x+ = Ax+Bu, x ∈ Rn, u ∈ Rk

and a similarity transformation x̄ = T−1x, leading to

˙̄x = Āx̄+ B̄u, Ā = T−1AT B̄ = T−1B (ĀB̄-LTI)

The controllability matrices C and C̄ of the systems (AB-LTI) and (ĀB̄-LTI),
respectively, are related by

C̄ =
[
B̄ ĀB̄ · · · Ān−1B̄

]

=
[
T−1B T−1AB · · · T−1An−1B

]
= T−1C

Therefore,

rankC̄ = rankT−1C = rankC

because T−1 is nonsingular. Since the controllability of a system is determined
by the rank of its controllability matrix, we conclude that controllability is
preserved through similarity transformations.

Theorem (Invariance with respect to Similarity transformation)

The pair (A,B) is controllable if and only if (Ā, B̄) = (T−1AT, T−1B) is
controllable.
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Controllable Decomposition

Consider again the LTI systems

ẋ = Ax+Bu / x+ = Ax+Bu, x ∈ Rn, u ∈ Rk (AB-LTI)

Note

The controllable subspace C of the system (AB-LTI) is A-invariant and
contains ImB.

Because of A-invariance, by constructing an n× n̄ matrix V 2 whose columns
form a basis for C, there exists an n̄× n̄ matrix Ac such that

AV = V Ac

Moreover, since ImB ⊂ C, the columns of B can be written as a linear
combination of the columns of V , and therefore there exists an n̄× k matrix
Bc such that

B = V Bc.

When the system (AB-LTI) is controllable, n̄ = dimC = n, and the matrix V is
square and nonsingular.

2The number of columns of V is n̄, and therefore n̄ is also the dimension of
the controllable subspace.
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combination of the columns of V , and therefore there exists an n̄× k matrix
Bc such that

B = V Bc.

When the system (AB-LTI) is controllable, n̄ = dimC = n, and the matrix V is
square and nonsingular.

2The number of columns of V is n̄, and therefore n̄ is also the dimension of
the controllable subspace.
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Controllable Decomposition

Consider again the LTI systems
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AV = V Ac

Moreover, since ImB ⊂ C, the columns of B can be written as a linear
combination of the columns of V , and therefore there exists an n̄× k matrix
Bc such that

B = V Bc.

When the system (AB-LTI) is controllable, n̄ = dimC = n, and the matrix V is
square and nonsingular.

2The number of columns of V is n̄, and therefore n̄ is also the dimension of
the controllable subspace.
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Controllable Decomposition
Otherwise, let U be an n× (n− n̄) matrix whose columns are linearly
independent of each other and also linearly independent of the columns of V .

Suppose that we define a nonsingular matrix T by combining V and U side by
side:

T :=
[
Vn×n̄ Un×(n−n̄)

]
n×n

We then conclude that

AT = A
[
V U

]
=
[
AV AU

]
=
[
V Ac TT−1AU

]
=

[
T

[
Ac
0

]
TT−1AU

]

By partitioning the n× (n− n̄) matrix T−1AU as

T−1AU =

[
A12

Au

]

we further obtain

AT = T

[
Ac A12

0 Au

]
, B = V Bc = T

[
Bc
0

]
,

which can be rewritten as[
Ac A12

0 Au

]
= T−1AT,

[
Bc
0

]
= T−1B.

The similarity transformation constructed using this procedure is called a
controllable decomposition.
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Controllable Decomposition

Recall3 [
Ac A12

0 Au

]
= T−1AT,

[
Bc
0

]
= T−1B. (12)

Theorem (Controllable decomposition)

For every LTI system (AB-LTI), there is a similarity transformation that
takes the system to the form (12)3 for which

1 the controllable subspace of the transformed system (12) is given by

C̄ = Im

[
In̄×n̄

0

]
,

and

2 the pair (Ac, Bc) is controllable.

3This form is often called the standard form for uncontrollable systems.
3MATLAB: [Abar,Bbar,Cbar,T] = ctrbf(A,B,C) computes the

controllable decomposition of the system with realization A,B,C.
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Proof (Controllable decomposition)
To compute the controllability subspace of the transformed system, we
compute its controllability matrix

C̄ =

[[
Bc
0

] [
Ac A12

0 Au

] [
Bc
0

]
. . .

[
Ac A12

0 Au

]n−1 [
Bc
0

]]

=

[
Bc AcBc . . . An−1

c Bc
0 0 . . . 0

]
.

Since, similarity transformation preserve the dimension of the controllability
subspace, which was n̄ for the original system,

rankC̄ = n̄.

Since the number of nonzero rows of C is exactly n̄, all these rows must be
linearly independent. Therefore

ImC̄ = Im

[
In̄×n̄

0

]
.

Moreover,

rank
[
Bc AcBc · · · An−1

c Bc
]

= n̄.

But since Ac is n̄× n̄, by the Cayley-Hamilton theorem,

rank
[
Bc AcBc · · · An−1

c Bc
]

= rank
[
Bc AcBc · · · An̄−1

c Bc
]

= n̄,

which proves the pair (Ac, Bc) is controllable.
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Block Diagram Interpretation

Consider now the LTI systems with outputs

ẋ/x+ = Ax+Bu, y = Cx+Du, x ∈ Rn, u ∈ Rk, y ∈ Rm
(AB-LTI)

and let T be the similarity transformation that leads to the controllable
decomposition[

Ac A12

0 Au

]
= T−1AT,

[
Bc
0

]
= T−1B,

[
Cc Cu

]
= CT.

Partitioning the state of the transformed system as

x̄ = T−1x =

[
xc
xu

]
xc ∈ Rn̄, xu ∈ Rn−n̄

its state space model can be written as[
ẋc
ẋu

]
=

[
Ac A12

0 Au

] [
xc
xu

]
+

[
Bc
0

]
u y =

[
Cc Cu

] [xc
xu

]
+Du.
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Block Diagram InterpretationCONTROLLABLE DECOMPOSITIONS 121

Figure 13.1. Controllable decomposition. The direct feed-through term D was omitted to
simplify the diagram.

In general, the transformed output matrix CT has no particular structure, but for
convenience we partition it into the first n̄ columns and the remaining ones.

Partitioning the state of the transformed system as
Notation. The vectors
xc and xu are called
the controllable and
the uncontrollable
components of the
state, respectively.

x̄ = T−1x =
[
xc
xu

]
, xc ∈ Rn̄, xu ∈ Rn−n̄,

its state-space model can be written as

[
ẋc
ẋu

]
=

[
Ac A12
0 Au

] [
xc
xu

]
+

[
Bc
0

]
u, y =

[
Cc Cu

] [
xc
xu

]
+ Du.

Figure 13.1 shows a block representation of this system, which highlights the fact thatNote. This is
consistent with
statement 1 in
Theorem 13.2.

the input u cannot affect the xu component of the state. Moreover, the controllability
of the pair (Ac, Bc) means that the xc component of the state can always be taken to
the origin by an appropriate choice of u(·).

13.4 TRANSFER FUNCTION

Since similarity transformations do not change the system’s transfer function, we
can use the state-space model for the transformed system to compute the transfer
function T (s) of the original system

T (s) =
[
Cc Cu

] [
s I − Ac −A12
0 s I − Au

]−1 [
Bc
0

]
+ D.

Since the matrix that needs to be inverted is upper triangular, its inverse is also upper
triangular, and the diagonal blocks of the inverse are the inverses of the diagonal block
of the matrix. Therefore

Note. This could have
been deduced directly
from the block
diagram
representation in
Figure 13.1. In
computing the
transfer function we
can ignore initial
conditions, and, in
this case, the xu
component of the
state plays no role
because it is
identically zero.

T (s) =
[
Cc Cu

] [
(s I − Ac)−1 ×

0 s(I − Au)−1
] [

Bc
0

]
= Cc(s I − Ac)−1Bc + D.

This shows that the transfer function of the system (LTI) is equal to the transfer func-
tion of its controllable part.

Figure: Controllable decomposition. The direct feed-through term D was
eliminated to simplify the diagram

1 This figure highlights the fact that the input u cannot affect the xu
component of the state.

2 The controllability of the pair (Ac, Bc) means that the xc component of
the state can always be taken to the origin by the appropriate choice of
u(·).
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Transfer function

Since similarity transformations do not change the system’s transfer
function, we can use the state-space model for the transformed system to
compute the transfer function T (s) of the original system

T (s) =
[
Cc Cu

] [sI −A −A12

0 sI −Au

]−1 [
Bc
0

]
+D

Since the matrix that needs to be inverted is upper triangular, its inverse
is also upper triangular, and the diagonal blocks of the inverse are the
inverses of the diagonal block of the matrix. Therefore,

T (s) =
[
Cc Cu

] [(sI −A)−1 ∗
0 (sI −Au)−1

] [
Bc
0

]
+D

= Cc(sI −Ac)−1Bc +D.

This shows that the transfer function of the system (LTI) is equal
to the transfer function of its controllable part.
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Outline of this section

1 Stabilizable system
2 Tests for stabilizability

1 Eigenvector test
2 PBH test
3 Lyapunov test

CONTROLLABLE DECOMPOSITIONS 121

Figure 13.1. Controllable decomposition. The direct feed-through term D was omitted to
simplify the diagram.

In general, the transformed output matrix CT has no particular structure, but for
convenience we partition it into the first n̄ columns and the remaining ones.

Partitioning the state of the transformed system as
Notation. The vectors
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the controllable and
the uncontrollable
components of the
state, respectively.
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of the pair (Ac, Bc) means that the xc component of the state can always be taken to
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[
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triangular, and the diagonal blocks of the inverse are the inverses of the diagonal block
of the matrix. Therefore
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transfer function we
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conditions, and, in
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state plays no role
because it is
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[
Cc Cu
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] [
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]
= Cc(s I − Ac)−1Bc + D.

This shows that the transfer function of the system (LTI) is equal to the transfer func-
tion of its controllable part.
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Stabilizable system

Earlier we saw that any LTI system is algebraically equivalent to a
system in the following standard form for uncontrollable systems:[

ẋc/x
+
c

ẋu/x
+
u

]
=

[
Ac A12

0 Au

] [
xc
xu

]
+

[
Bc
0

]
u, xc ∈ Rn̄, xu ∈ Rn−n̄

(13)

Definition (Stabilizable systems)

The pair (A,B) is stabilizable whenever it is algebraically
equivalent to a system in the standard form for uncontrollable
systems (13) with n = n̄ (i.e., Au nonexistent) or with Au a
stability matrix.
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Stabilizable System

Since for stabilizable systems we have

ẋu/x
+
u = Auxu,

with Au a stability matrix, xu converges to zero exponentially fast, and
therefore we have

ẋc/x
+
c = Acxc +Bcu+ d, y = Ccxc +Du+ n,

where

d(t) := A12xu(t), n(t) := Cuxu(t), ∀t ≥ 0

can be viewed as disturbance and noise terms, respectively, that
convergence to zero exponentially fast.

124 LECTURE 14

Figure 14.1. Controllable part of a stabilizable system. The direct feed-through term D was
omitted to simplify the diagram.

where

d(t) := A12xu(t), n(t) := Cuxu(t), ∀t ≥ 0

can be viewed as disturbance and noise terms, respectively, that converge to zero
exponentially fast (cf. Figure 14.1).

Attention! Stabilizability can be viewed as an infinite-time version of controllability
in the sense that if a system is stabilizable, then its state can be transferred to the
origin from any initial state, but this may require infinite time. In particular, if the
system is not controllable, then xu will indeed “reach” the origin only as t → ∞. !

14.2 EIGENVECTOR TEST FOR STABILIZABILITY

Investigating the stabilizability of the LTI systems

ẋ = Ax + Bu / x+ = Ax + Bu x ∈ Rn, u ∈ Rk (AB-LTI)

from the definition requires the computation of their controllable decompositions.
However, there are alternative tests that avoid this intermediate step.

Theorem 14.1 (Eigenvector test for stabilizability).

1. The continuous-time LTI system (AB-LTI) is stabilizable if and only if every eigen-
vector of A′ corresponding to an eigenvalue with a positive or zero real part is not
in the kernel of B ′.

2. The discrete-time LTI system (AB-LTI) is stabilizable if and only if every eigen-
vector of A′ corresponding to an eigenvalue with magnitude larger or equal to 1 is
not in the kernel of B ′. !

Proof of Theorem 14.1. Let T be the similarity transformation that leads the system
(AB-LTI) to the controllable decomposition, and let (14.1) be the corresponding
standard form; i.e.,

Ā :=
[
Ac A12
0 Au

]
= T−1AT, B̄ :=

[
Bc
0

]
= T−1B.

We start by proving that if the system (AB-LTI) is stabilizable, then every “unstable”
eigenvector of A′ is not in the kernel of B ′. To prove by contradiction, assume that
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Figure 14.1. Controllable part of a stabilizable system. The direct feed-through term D was
omitted to simplify the diagram.
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Stabilizable System

Since for stabilizable systems we have

ẋu/x
+
u = Auxu,

with Au a stability matrix, xu converges to zero exponentially fast, and
therefore we have

ẋc/x
+
c = Acxc +Bcu+ d, y = Ccxc +Du+ n,

where

d(t) := A12xu(t), n(t) := Cuxu(t), ∀t ≥ 0

can be viewed as disturbance and noise terms, respectively, that
convergence to zero exponentially fast.
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Eigenvector test for stabilizability
Investigating the stabilizability of an LTI system

ẋ = Ax+Bu / x+ = Ax+Bu, x ∈ Rn, u ∈ Rk (AB-LTI)

from the definition requires the computation of its controllable decomposition.

However, there are alternative tests that avoid this intermediate step.

Theorem (Eigenvector test for stabilizability)

1 The continuous-time system (AB-LTI) is stabilizable if and only if every
eigenvector of A′ corresponding to an eigenvalue with a positive or zero
real part is not in kernel of B′.

2 The discrete-time system (AB-LTI) is stabilizable if and only if every
eigenvector of A′ corresponding to an eigenvalue with magnitude larger
or equal to 1 is not in the kernel of B′.

Before seeing the proof, let us recall a couple of things.
Let T be the similarity transformation that leads the system (AB-LTI) to the
controllable decomposition; i.e.,

Ā :=

[
Ac A12

0 Au

]
= T−1AT, B̄ :=

[
Bc
0

]
= T−1B

x̄ = T−1x.
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ẋ = Ax+Bu / x+ = Ax+Bu, x ∈ Rn, u ∈ Rk (AB-LTI)

from the definition requires the computation of its controllable decomposition.
However, there are alternative tests that avoid this intermediate step.

Theorem (Eigenvector test for stabilizability)

1 The continuous-time system (AB-LTI) is stabilizable if and only if every
eigenvector of A′ corresponding to an eigenvalue with a positive or zero
real part is not in kernel of B′.

2 The discrete-time system (AB-LTI) is stabilizable if and only if every
eigenvector of A′ corresponding to an eigenvalue with magnitude larger
or equal to 1 is not in the kernel of B′.

Before seeing the proof, let us recall a couple of things.
Let T be the similarity transformation that leads the system (AB-LTI) to the
controllable decomposition; i.e.,
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Proof ((AB-LTI) is stabilizable =⇒ every “unstable” eigenvector of A′ /∈ kerB′)

We prove this by contradiction!
Assume that there exists an “unstable” eigenvalue-eigenvector4 pair
(λ, x) for which

A′x = λx, B′x = 0 ⇐⇒
(
TĀT−1

)′
x = λx, (TB̄)′x = 0

⇐⇒
[
A′c 0
A′12 A′u

]
T ′x = λT ′x,

[
B′c 0

]
T ′x = 0

⇐⇒
[
A′c 0
A′12 A′u

] [
xc
xu

]
= λ

[
xc
xu

]
,
[
B′c 0

] [xc
xu

]
= 0

where
[
x′c x′u

]′
:= T ′x 6= 0. Since the pair (Ac, Bc) is controllable and

A′cxc = λxc, B′cxc = 0,

we must have xc = 0 (and consequently xu 6= 0), since otherwise this
would violate the eigenvector test for controllability. This means that λ
must be an eigenvalue of Au because

A′uxu = λxu

which contradicts the stabilizability of the system (AB-LTI) because λ is
“unstable”.

4
for the purposes of stabilizability, eigenvalues on the “boundary” are considered unstable.
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Proof (every “unstable” eigenvector of A′ /∈ kerB′ =⇒ (AB-LTI) is stabilizable.)

Suppose now that the system (AB-LTI) is not stabilizable.
Therefore A′u has an “unstable” eigenvalue-eigenvector pair

A′uxu = λxu, xu 6= 0.

Then,

Ā′
[

0
xu

]
=

[
A′c 0
A′12 A′u

] [
0
xu

]
= λ

[
0
xu

]
,

B̄′
[

0
xu

]
=
[
B′c 0

] [ 0
xu

]
= 0,

[
0
xu

]
6= 0.

We have thus far found an “unstable” eigenvector of Ā′ in the kernel of
B̄′, so (Ā, B̄) cannot be stabilizable.
To conclude that the original pair (A,B) is also not stabilizable we use
the equivalence shown in part 1 to conclude that

x := (T ′)−1

[
0
xu

]
⇐⇒

[
0
xu

]
:= T ′x

is an “unstable” eigenvector of A′ in the kernel of B′.
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Ā′
[

0
xu

]
=

[
A′c 0
A′12 A′u

] [
0
xu

]
= λ

[
0
xu

]
,

B̄′
[

0
xu

]
=
[
B′c 0

] [ 0
xu

]
= 0,

[
0
xu

]
6= 0.

We have thus far found an “unstable” eigenvector of Ā′ in the kernel of
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Ā′
[

0
xu

]
=

[
A′c 0
A′12 A′u

] [
0
xu

]
= λ

[
0
xu

]
,

B̄′
[

0
xu

]
=
[
B′c 0

] [ 0
xu

]
= 0,

[
0
xu

]
6= 0.

We have thus far found an “unstable” eigenvector of Ā′ in the kernel of
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Popov-Belevitch-Hautus(PBH) Test for Stabilizability

For stabilizability, one can also reformulate the eigenvector test as
a rank condition, similar to that for controllability.

Theorem (PBH test for stabilizability)

1 The continuous-time LTI system (AB-LTI) is stabilizable if
and only if

rank
[
A− λI B

]
= n, ∀λ ∈ C : Re[λ] ≥ 0.

2 The discrete-time LTI system (AB-LTI) is stabilizable if and
only if

rank
[
A− λI B

]
= n, ∀λ ∈ C : |λ| ≥ 1.

The proof of this theorem is analogous to the earlier proof, except
that now we need to restrict our attention to only the “unstable”
portion of C.
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Lyapunov Test for Stabilizability

Theorem (Lyapunov test for stabilizability)

The LTI system (AB-LTI) is stabilizable if and only if there is a
positive-definite solution P to the following Lyapunov matrix
inequality

AP + PA′ −BB′ < 0 / APA′ − P −BB′ < 0 (LMI)
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Proof: ((LMI) has positive-definite solution P =⇒ (AB-LTI) is stabilizable)

The simplest way to do this is by using the eigenvector test.
Assume that

1 (LMI) holds, and

2 x 6= 0 be an eigenvector of A′ associated with the “unstable”
eigenvalue λ; i.e., A′x = λx.

Then,
x∗(AP + PA′)x < x∗BB′x = ‖B′x‖2 ,

where (·)∗ denotes the complex conjugate transpose. But the left-hand
side of this equation is equal to

(A′x∗)′Px+ x∗PA′x = λ∗x∗Px+ λx∗Px = 2Re[λ]x∗Px.

Since P is positive-definite and Re[λ] ≥ 0, we conclude that

0 ≤ 2Re[λ]x∗Px < ‖B′x‖2 ,

and therefore x must not belong to the kernel of B′.
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0 ≤ 2Re[λ]x∗Px < ‖B′x‖2 ,

and therefore x must not belong to the kernel of B′.
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Stabilizability

Proof: ((AB-LTI) is stabilizable =⇒ (LMI) has positive-definite solution P )

We saw earlier that controllability of the pair (Ac, Bc) guarantees the existence
of a positive-definite Pc such that

AcPc + PcA
′
c −BcB′c = −Qc < 0.

On the other hand, since Au is a stability matrix, we conclude from the
Lyapunov stability theorem that there exists a positive-definite matrix Pu
such that

AuPu + PuA
′
u = −Qu < 0.

Defining

P̄ =

[
Pc 0
0 ρPu

]

for some scalar ρ > 0 to be determined shortly, we conclude that

ĀP̄ + P̄ Ā
′ − B̄B̄′ =

[
Ac A12
0 Au

] [
Pc 0
0 ρPu

]
+

[
Pc 0
0 ρPu

] [
A′c 0
A′12 A′u

]
−
[
Bc
0

] [
B′c 0

]
= −

[
Qc −ρA12Pu

−ρPuA′12 ρQu

]
.

It turns out that by making ρ positive, but sufficiently small, the right-hand
side can be made negative-definite. The proof is completed by verifying that
the matrix.

P = T

[
Pc 0
0 ρPu

]
T ′

satisfies (LMI).
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ĀP̄ + P̄ Ā
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Stabilizability

Controllability after sampling

Consider a continuous-time state equation

ẋ = Ax+Bu (AB-LTI)

If the input is piecewise constant or

u(k) := u(kT ) = u(t) for kT ≤ t < (k + 1)T

then the equation can be described by

x̄(k + 1) = Āx̄(k) + B̄u(k) (C2D)

with Ā = eAT , B̄ =
(∫ T

0
eAtdt

)
B ≡MB.

If (AB-LTI) is controllable, will its sampled equation (C2D) is
controllable?

This problem is important in designing so-called dead-beat sampled-data
systems and in computer control of continuous-time systems.



75

Stabilizability

Controllability after sampling

Consider a continuous-time state equation
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ẋ = Ax+Bu (AB-LTI)

If the input is piecewise constant or

u(k) := u(kT ) = u(t) for kT ≤ t < (k + 1)T

then the equation can be described by
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Stabilizability

Controllability after sampling

Let λi and λ̄i be, respectively, the eigenvalues of A and Ā.

Theorem (Controllability after sampling)

Suppose (AB-LTI) is controllable. A sufficient condition for
(C2D), with sampling time T , to be controllable is that

|Imag(λi − λj)| 6=
2πm

T
, m = 1, 2, . . .

whenever Re(λi − λj) = 0.
For the single input case, the condition is necessary as well.

It is straightforward to verify that if A has only real eigenvalues,
then the discretized equation with any sampling period T > 0 is
always controllable.
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Stabilizability

Controllability after sampling

Further remarks:
Suppose A has complex conjugate eigenvalues α± jβ.

If the sampling period T does not equal any integer multiple of
π/β, then the discretized state equation is controllable.

If T = mπ/β for some integer m, then the discretized equation
may not be controllable.

Note (take it as an exercise)

Since Ā = eAT , if λi is an eigenvalue of A, then λ̄i := eλiT is an
eigenvalue of Ā.

If T = mπ/β the two distinct eigenvalues λ1 = α+ jβ and λ2 = α− jβ
of A become a repeated eigenvalue −eαT or eαT of Ā. This will cause
the discretized equation to be uncontrollable.

Theorem

If the continuous time LTI state equation is not controllable, then its
discretized state equation with any sampling period, is not controllable.
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