Linear Dynamical Systems

Week 1- State-space solutions and realizations
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Outline of Week 1

© Introduction
@ State-space solution of linear systems

o Linear Time Varying (LTV) systems
o Linear Time Invariant (LTI) systems

© Equivalent representation of linear state-space systems

@ Realization problem and its solution
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) u(t)

Input -

Continuous-Time (CT): accepts CT signals and generates CT
signals
Discrete-Time (DT): accepts DT signals and generates DT signals

y(t)
~ Output

y[k]
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Dynamical System

Causality:

@ |If the current output depends on past and current input(s)
but not on future input(s)

@ a necessary condition for a system to be built in the real world
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Dynamical System

Causality:

@ |If the current output depends on past and current input(s)
but not on future input(s)

@ a necessary condition for a system to be built in the real world

© "Current Output of a causal system is affected by past input”

How far back in time will the past input affects the current output?
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Dynamical System

Causality:

@ |If the current output depends on past and current input(s)
but not on future input(s)

@ a necessary condition for a system to be built in the real world

© "Current Output of a causal system is affected by past input”

How far back in time will the past input affects the current output?

u(t), —oo <t —>— y(t)

However, tracking u(t) from ¢t = —oo is very inconvenient.
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Dynamical System

Causality:

@ |If the current output depends on past and current input(s)
but not on future input(s)

@ a necessary condition for a system to be built in the real world

© "Current Output of a causal system is affected by past input”

How far back in time will the past input affects the current output?

u(t), —oo <t —>— y(t)
However, tracking u(t) from ¢t = —oo is very inconvenient.

the concept of state deals with this problem!
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Dynamical System

State:

@ The state z(tp) of a system at time ¢ is the information at ¢
that, together with the input w(t), for t > ty determines
uniquely the output y(t) V¢ > to
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Dynamical System

State:

@ The state z(tp) of a system at time ¢ is the information at ¢
that, together with the input w(t), for t > ty determines
uniquely the output y(t) V¢ > to

@ no need to know the input u(t) applied before g in
determining the output y(t) after t.

© the state summarizes the effect of past input on future output
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Consider the electrical circuit

+ {61 — + x‘g -
Rl Cl Au2 C2 L1
I3y
uq 0 R>
_|_
1

If we know the voltages z1(to) and z2(tp) across the two
capacitors and the current x3(tp) passing through the inductor...
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Example: Continued...

&

...then for any input applied on and after ¢y you can determine
uniquely the output for ¢t > %,
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Example: Continued...

&

...then for any input applied on and after ¢y you can determine
uniquely the output for ¢t > %,

T
@ State Variables z = |25| € R?
T3

@ 3 : using the state at %

z(to)
ut),tg <t

} - y(t),t > to
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Dynamical Systems: Linearity

@ S is linear if (Superposition Property)

041.731(250) + Oégl‘g(to)

B
aquy (t) + asug(t), t > to} 1y1(t) 2y2(t) 0

for any real constants ag, as
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Dynamical Systems: Linearity

@ S is linear if (Superposition Property)

041.731(250) + OéQZ‘Q(tO)

B
aquy (t) + asug(t), t > to} 1y1(t) 2y2(t) 0

for any real constants ag, as

Based on the input-state-output variables, two types of responses can
now be defined

© Zero Input Response:
x(t
( O) L) qu' 7t Z tO
u(t) = 0,t > tg '
@ Zero State Response:

x(to) =0
u(t),t > to

}%y%(thm

Linear Dynamical Systems



Response of linear systems

@ The additivity property implies that:

x(to) x(to)
output due to = output due to
u(t),t >0 u(t) =0,t >0

+ output due tod "\
outpu ue to
P u(t),t >0

y(t) = Yzi (t) + Yzs (t)
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Zero-state response of linear systems

Consider the SISO system.
Let da(t —t1) be the pulse as shown in the figure, then every input
can be approximated by a sequence of the pulses

u(ti)(SA(t — tz)A

A

= an

N & dalt-toh u@fkf/
IINNIAENOY S N

)

N
NAN
NN N
0 A ! ti ti+A 1 t; t
(a) Pulse (b) Time-shifted (c) Step approximation
pulse
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Zero-state response of linear systems

Consider the SISO system.
Let da(t —t1) be the pulse as shown in the figure, then every input
can be approximated by a sequence of the pulses

u(ti)(SA(t — tz)A

A

= 8a(r)

N A Sa(t—t)A u(tiw
NN o N
ALY Jo dalr)dr =1 11y

N

/)

N
SAS
]
0 A t ti ti+A 1 t; t
(a) Pulse (b) Time-shifted (c) Step approximation
pulse

The input can be expressed symbolically as :

u(t) = > u(ti)oa(t —t)A

i
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Zero-state response of linear systems

Let ga(t,t;) be the output at time t excited by the pulse
u(t) = da(t — t;) applied at time ¢; then:

Sa(t — i) —>— ga(t,t;)
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Zero-state response of linear systems

Let ga(t,t;) be the output at time t excited by the pulse
u(t) = da(t — t;) applied at time ¢; then:

Sa(t — i) —>— ga(t,t;)
W(t)OA(t — t)A — s galt, t)u(t;) A (homogeneity)
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Zero-state response of linear systems

Let ga(t,t;) be the output at time t excited by the pulse
u(t) = da(t — t;) applied at time ¢; then:
Sa(t —t;) —>— ga(t,t;)
W(t)OA(t — t)A — s galt, t)u(t;) A (homogeneity)

ST ult)oalt —t)A —2= 3" galt,t)ult)A  (additivity)

%

Thus,

y(t) ~ ZQA(tvti)u(ti)A
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Zero-state response of linear systems

[yu) ~ ng,mu(tim]
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Zero-state response of linear systems

[yu) ~ ng,ti)uaim]

@ If A approaches zero, then da (¢t — t;) becomes an impulse at t = ¢; i.e.
d(t — t;) and the corresponding output will be denoted by g(¢, t;)
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Zero-state response of linear systems

[yu) ~ ng,ti)uuim]

@ If A approaches zero, then da (¢t — t;) becomes an impulse at t = ¢; i.e.
d(t — t;) and the corresponding output will be denoted by g(¢, t;)

@ As A approaches zero,

A can be written as dr

discrete t; becomes a continuous and can be replaced by 7
summation becomes an integration

approximation becomes an equality
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Zero-state response of linear systems

y(t) ~ ng, ti)u(t;) A

@ If A approaches zero, then da (¢t — t;) becomes an impulse at t = ¢; i.e.
0(t — t;) and the corresponding output will be denoted by g(, ;)

@ As A approaches zero,

A can be written as dr
discrete t; becomes a continuous and can be replaced by 7
summation becomes an integration
approximation becomes an equality

y(0) = im 37 ga(t t)ult)A = /_ gt yu(r)dr

where t is the time at which the output is observed; 7 is the time at which the impulse

input is applied; and g(t,7) is the impulse response

The last equation is a consequence of the definition of the Riemann integral, i.e.

ffooo f(r)dr = im Ez f(kA)A. It implicitly assumes that the limit and the integral both exist.
Linear Dynamical Systems



Zero-state response of linear systems

If a system is causal, the output will not appear before the input is applied.
Thus

[ Causal <= g(t,7)=0fort <7 J:> y(t) = /tg(t,r)u(r)dr
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Zero-state response of linear systems

If a system is causal, the output will not appear before the input is applied.
Thus

valid for

t
[ Causal <= g(t,7)=0fort <7 J:> y(t) = /to g(t, T)u(r)dr <= LTI and LTV
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Zero-state response of linear systems

If a system is causal, the output will not appear before the input is applied.
Thus

valid for

t
Causal <= g(t,7)=0fort <7 = y(t) = /to g(t, T)u(r)dr <= LTI and LTV

Theorem (Impulse Response)

Consider a continuous-time linear system with m inputs and p outputs.
There exists a matrix-valued signal G(¢,7) € RP*™ such that for every
input u a corresponding output is given by

/GtT T)dT Yt >t
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Zero-state response of linear systems

If a system is causal, the output will not appear before the input is applied.
Thus

valid for

t
Causal <= g(t,7)=0fort <7 = y(t) = / g(t, T)u(r)dr <= LTI and LTV

to

Theorem (Impulse Response)

Consider a continuous-time linear system with m inputs and p outputs.
There exists a matrix-valued signal G(¢,7) € RP*™ such that for every
input u a corresponding output is given by

/GtT T)dT Yt >t

If the system is time-invariant as well, then
G(t,7) =Gt +T,7+T)=G({t—71,0)=G(t—7) forany T
and assuming top = 0

/Gt—T T)dT £ (G % u)(t) ¥Vt > 0

where * denotes the convolution operator.
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Zero-state response of linear systems

For Discrete-time systems:

Theorem (Impulse Response)

Consider a discrete-time linear system with m inputs and p
outputs. There exists a matrix valued function G(¢,7) € RP*™
such that for every input u a corresponding output is given by

ZGtT ); Vt > to,t,7 €N

If the system is time-invariant as well, then the time-shifting
property holds and assuming to = 0

y(t) = Gt —r)u(r)dr £ (G*u)(t) ¥t €N >0
0

where * denotes the convolution operator.
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Zero-state response of linear systems: Transfer Function

Particularly, for computing the zero-state response of LTI systems, frequency
domain tools offers a great flexibility.
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Zero-state response of linear systems: Transfer Function

Particularly, for computing the zero-state response of LTI systems, frequency
domain tools offers a great flexibility.
The continuous-time linear system has an output

y(t) = / G(t — T)u(r)dr; Yt >0
0
Taking its Laplace transform, one obtains

g(s) = /Ooo /Ooo e *'G(t — T)u(r)drdt
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Zero-state response of linear systems: Transfer Function

Particularly, for computing the zero-state response of LTI systems, frequency
domain tools offers a great flexibility.
The continuous-time linear system has an output

y(t) = / G(t — T)u(r)dr; Yt >0
0
Taking its Laplace transform, one obtains

g(s) = /Ooo /Ooo e *'G(t — T)u(r)drdt

Changing the order of integration and rearranging integrals, one gets

G(s) = /Ooo (/Ooo e G — T)dt) e *Tu(r)dr (1)
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Zero-state response of linear systems: Transfer Function

Particularly, for computing the zero-state response of LTI systems, frequency
domain tools offers a great flexibility.
The continuous-time linear system has an output

/ G(t — T)u(r)dr; Yt >0
Taking its Laplace transform, one obtains

s) = /000 /000 e *'G(t — T)u(r)drdt

Changing the order of integration and rearranging integrals, one gets

G(s) = /Ooo (/Ooo e G — T)dt) e *Tu(r)dr (1)

But because of causality,

/0°° e *IG(t - 7)dt = /oo e *'G(f)dt = /Ooo GDdi=Cs) ()

-
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Zero-state response of linear systems: Transfer Function

Particularly, for computing the zero-state response of LTI systems, frequency
domain tools offers a great flexibility.
The continuous-time linear system has an output

y(t) = /000 G(t — T)u(r)dr; Yt >0

Taking its Laplace transform, one obtains

g(s) = /Ooo /Ooo e *'G(t — T)u(r)drdt

Changing the order of integration and rearranging integrals, one gets

G(s) = /Ooo (/Ooo e G — T)dt) e *Tu(r)dr (1)

But because of causality,
/ e *IG(t - 7)dt = / e G(T)dE = / et QD d = G(s) (2)
0 -7 0

Substituting (2) into (1) and removing G(s) from the integral, we conclude
that

i(s) = / Ci(s)e*ulr)dr = C(s) / e~ u(r)dr = G(s)i(s)
0 [0)



Zero-state response of linear systems: Transfer Function

Definition (Transfer function)

The transfer function of a CT causal LTI system is the Laplace
transform

G(s) = L[G(t)] = / e SG(t)dt, s€C
0
of an impulse response G(t2,t1) = G(ta — t1),Vta > t; > 0.

Definition (Transfer function)

The transfer function of a DT causal LTI system is the Z-transform

G(2) =2[G(t)] =) _2'G(t), z€C
t=0

of an impulse response G(ta,t1) = G(ta — t1),Vta > t; > 0.
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State-space systems

State-space representation of linear systems
Using the state variable, as introduced earlier, a continuous-time
state-space linear system is represented by the following two equations:

z(t) = A(t)x(t) + B(t)u(t) a
C(t)x(t) + D(t)u(t)} St

(3)

<

—~
~

=
Il

where
uw:[0,00) = R™, z:[0,00) > R", y:[0,00) > RP

are called the input, state, and output signals of the system and the
time-varying matrices (A, B, C, D)(t) are of appropriate dimensions.
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State-space systems

State-space representation of linear systems
Using the state variable, as introduced earlier, a continuous-time
state-space linear system is represented by the following two equations:

z(t) = A(t)x(t) + B(t)u(t) a
C(t)x(t) + D(t)u(t)} St

(3)

<

—~
~

=
Il

where

uw:[0,00) = R™, z:[0,00) > R", y:[0,00) > RP
are called the input, state, and output signals of the system and the
time-varying matrices (A, B, C, D)(t) are of appropriate dimensions.
Note:

@ The first equation of (3) is called the state equation and the second
equation of (3) is called the output equation.

@ when all the matrices (A, B, C, D)(t) are constant V¢ > 0, the
system is LTI
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Interconnections

Interconnections of block diagrams are especially useful to
highlight special structures in state-space equations.

Figure: Negative feedback interconnection
Given Py :z—vy 1=Aix+ Bz, y1=Cix+ D1z

Compute S: u—y
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Interconnections

Interconnections of block diagrams are especially useful to
highlight special structures in state-space equations.

Figure: Negative feedback interconnection
Given Py :z—vy 1=Aix+ Bz, y1=Cix+ D1z
Compute S: u—y
i= (A, —B(I+D)'C))x + Bi(I-{I+Dy)'Du
y = (I+ D) 'Ciz + (I 4+ D1) 'Diu
Show By Yourself!
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Impulse Response and Transfer function for LTI system

Consider the continuous-time LTI system

& = Ax + Bu, y=Czx+ Du,
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Impulse Response and Transfer function for LTI system

Consider the continuous-time LTI system
& = Ax + Bu, y=Czx+ Du,
Taking the Laplace transform of both sides, we obtain
sz(s) — x(0) = Az(s) + Bu(s), 9(s) = Cz(s) + Du(s)
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Impulse Response and Transfer function for LTI system

Consider the continuous-time LTI system
& = Ax + Bu, y=Czx+ Du,
Taking the Laplace transform of both sides, we obtain
sz(s) — x(0) = Az(s) + Bu(s), 9(s) = Cz(s) + Du(s)
Solving for Z(s), we obtain
i(s) = (sI — A)~' Ba(s) 4 (s — A)~ ' z(0)
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Impulse Response and Transfer function for LTI system

Consider the continuous-time LTI system
& = Ax + Bu, y=Czx+ Du,
Taking the Laplace transform of both sides, we obtain
sz(s) — x(0) = Az(s) + Bu(s), 9(s) = Cz(s) + Du(s)
Solving for Z(s), we obtain
i(s) = (sI — A)~' Ba(s) 4 (s — A)~ ' z(0)

from which we conclude that

9(s) = ¥(s)x(0)+G(s)u(s) where Gls) = C(sT— A B+ D
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Impulse Response and Transfer function for LTI system

Consider the continuous-time LTI system
& = Ax + Bu, y=Czx+ Du,
Taking the Laplace transform of both sides, we obtain
sz(s) — x(0) = Az(s) + Bu(s), 9(s) = Cz(s) + Du(s)
Solving for Z(s), we obtain
i(s) = (sI — A)~' Ba(s) 4 (s — A)~ ' z(0)

from which we conclude that
9(s) = W(s)z(0)+G(s)a(s) where ggi; z ggi : i;_i B4D
Coming back to the time domain by applying inverse Laplace
transforms, we obtain
Git)=L"1

-1

y(t) = ¥(t)z(0) + (G *u)(t) where W) = £
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Impulse Response and Transfer function for LTI system

Theorem (In continuous-time domain)

The impulse response and transfer function of the CLTI system are given by:
Gt)=L7'[C(sI—A)'B+D] and G(s)=C(sI-A)"'B+D

respectively Moreover, the response y(t) = (G * u)(t) corresponds to the zero
initial condition z(0) = 0.
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Impulse Response and Transfer function for LTI system

Theorem (In continuous-time domain)

The impulse response and transfer function of the CLTI system are given by:
Gt)=L7'[C(sI—A)'B+D] and G(s)=C(sI-A)"'B+D

respectively Moreover, the response y(t) = (G * u)(t) corresponds to the zero
initial condition z(0) = 0.

Consider the discrete-time LTI system

T = Az + Bu, y=Cx+ Du

Theorem (In discrete-time domain)

The impulse response and transfer function of the DLTI system are given by:
Gt)=2""[C(z:I-A)'B+D] and G(z)=C(zI-A)'B+D

respectively Moreover, the response y(t) = (G x u)(t) corresponds to the zero
initial condition z(0) = 0.
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Impulse Response and Transfer function

&

Laplace transforms can be used for solving the LTI state-space
systems, however for time-varying linear systems, this tool cannot
be used
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Impulse Response and Transfer function

Laplace transforms can be used for solving the LTI state-space

systems, however for time-varying linear systems, this tool cannot
be used

@ The Laplace transform of G(t, 7) is a function of two variables

Q@ L[A®)x(1)] # LIA®)]L[=(1)]
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Impulse Response and Transfer function

Laplace transforms can be used for solving the LTI state-space
systems, however for time-varying linear systems, this tool cannot
be used

@ The Laplace transform of G(t, 7) is a function of two variables

Q@ L[A®)x(1)] # LIA®)]L[=(1)]

First we will see the solution of LTV systems and then tailor it for
LTI systems
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Week 1 - Lecture 2

In the last lecture, we discussed

o Key properties of dynamical systems and the physical
significance of the state

@ Zero-state response of linear (Tl and TV) systems in (CT and
DT ) -domain

@ Zero-state response of LTI system in frequency domain and its
relation with the state-space representation

Linear Dynamical Systems



Solution to homogeneous LTV systems

We start by considering the solution to a CTLTV system with a
given initial condition but zero input

@(t) = A(t)z(t); x(tg) = xo € R™; t>0 (4)
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Solution to homogeneous LTV systems

We start by considering the solution to a CTLTV system with a
given initial condition but zero input

@(t) = A(t)z(t); x(tg) = xo € R™; t>0 (4)

A key property of homogeneous systems is that the map from the initial
condition z(tg) = o € R™ to the solution z(t) € R™ at a given time
t > 0 is always linear.
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Solution to homogeneous LTV systems

We start by considering the solution to a CTLTV system with a
given initial condition but zero input

@(t) = A(t)z(t); x(to) = vo € R™; t>0 (4)

A key property of homogeneous systems is that the map from the initial
condition z(tg) = xg € R™ to the solution z(t) € R™ at a given time
t > 0 is always linear.

Theorem (Peano-Baker Series)

The unique solution to (4) is given by x(t) = ¢(t,t9)zo, zo € R™,t >0
where

t

¢(t,t0) =1+ A(’Tl)dTl +/ (A(Tl)

to tO

T1

A(’T‘Q)dTQ) drm+

to

t T1 T2
/ A(Tl) / A(Tg) / A(Tg)dngTQdTl + ...
to to to

The n x n matrix ¢(t,to) Is called the state transition matrix.
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Solution to homogeneous LTV systems

Properties of the state-transition matrix

@ For every tg > 0, ¢(t,tg) is the unique solution to

Soltt0) = ANGlt0)  Bltoste) =1, £20.
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Solution to homogeneous LTV systems

Properties of the state-transition matrix

@ For every tg > 0, ¢(t,tg) is the unique solution to

Soltt0) = ANGlt0)  Bltoste) =1, £20.

@ For every t,s,7 >0,

(b(t) S)¢(57 T) = ¢(t) T)

T = ¢(87 7—)xO
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Solution to homogeneous LTV systems

Properties of the state-transition matrix

@ For every tg > 0, ¢(t,tg) is the unique solution to

Soltt0) = ANGlt0)  Bltoste) =1, £20.

@ For every t,s,7 >0,

(b(t) S)(b(sv T) = ¢(t, T)

T = ¢(87 7—)xO

© For every t,7 >0, ¢(t,7) is non-singular and ¢(t, 7)1 = ¢(7,t)
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Computation of ¢(t, tg)

Consider
T = A(t)x (5)

where A € R™*" is a continuous function, then for every initial
state z'(ty) € R", there exists a unique solution z'(t) € R" for
i=1,2,3,...,n
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Computation of ¢(t, tg)

Consider
T = A(t)x (5)

where A € R™*" is a continuous function, then for every initial
state x*(fp) € R", there exists a unique solution z*(¢) € R™ for
i=1,2,3,...,n

@ Arrange these n solutions as X = [:L‘l x? m”] a square
matrix of order n. Because every a" satisfies (5), we have

X(t)=A@t)X(t)
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Computation of ¢(t, tg)

Consider
T = A(t)x (5)
where A € R™*" is a continuous function, then for every initial

state z(to) € R™, there exists a unique solution z*(t) € R™ for
i=1,2,3,...,n

@ Arrange these n solutions as X = [:L‘l z? ... :U”] a square
matrix of order n. Because every a" satisfies (5), we have

X(t)=A@t)X(t)

@ If X (tp) is non-singular or the n initial states are linearly
independent, then X (¢) is called a fundamental matriz of (5)
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Computation of ¢(t, tg)

Consider
T = A(t)x (5)

where A € R™*" is a continuous function, then for every initial
state x*(fp) € R", there exists a unique solution z*(¢) € R™ for
i=1,2,3,....n

@ Arrange these n solutions as X = [:L‘l x? :L“”] a square

matrix of order n. Because every z’ satisfies (5), we have
X(t) = A(t)X(t)

@ If X (tp) is non-singular or the n initial states are linearly
independent, then X (¢) is called a fundamental matriz of (5)

Q Is X (¢) unique?
@ Is X (t) non-singular for all ¢ ?



Computation of ¢(t, tg)

Example: Consider the homogeneous equation

= [‘2 g] (1)

or i’l(t) = O7 i’g = t:l,‘1(t)
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Computation of ¢(t, tg)

Example: Consider the homogeneous equation

LG
or z1(t) =0, To = tx1(t)

@ the solution of @1 (¢) = 0 for to = 0 is z1(t) = z1(0);
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Computation of ¢(t, tg)

Example: Consider the homogeneous equation

LG
or z1(t) =0, To = tx1(t)

@ the solution of @1 (¢) = 0 for to = 0 is z1(t) = z1(0);
@ the solution of &2 = tzy = tz1(0) is

x2(t) = /Ot 721(0)dr 4 22(0) = 0.5t°21(0) 4 22(0)
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Computation of ¢(t, tg)

Example: Consider the homogeneous equation

et G
or z1(t) =0, To = tx1(t)

@ the solution of @1 (¢) = 0 for to = 0 is z1(t) = z1(0);
@ the solution of &2 = tzy = tz1(0) is

zo(t) = /Ot 721(0)dT + 22(0) = 0.5t°x1(0) + 22(0)
o= []- 1

<0= 0] - [}

The two initial states are linearly independent.

Choose

and
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Computation of ¢(t, tg)

Example: Consider the homogeneous equation

et G
or z1(t) =0, To = tx1(t)

@ the solution of @1 (¢) = 0 for to = 0 is z1(t) = z1(0);
@ the solution of &2 = tzy = tz1(0) is

x2(t) = /Ot 721(0)dr 4 22(0) = 0.5t°21(0) 4 22(0)

Thus
= (2] = ] -0

2*(0) = B;Egﬂ - H — [0.57521—%2} =a*(t)

The two initial states are linearly independent.

and
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Computation of ¢(t, tg)

Example: Consider the homogeneous equation
. {00
1 = [t O] x(t)
or i’l(t) = O7 To = t:l}1(t)

@ the solution of @1 (¢) = 0 for to = 0 is z1(t) = z1(0);
@ the solution of &2 = tzy = tz1(0) is

x2(t) = /Ot 721(0)dr 4 22(0) = 0.5t°21(0) 4 22(0)

Thus
= (2] = ] -0

2*(0) = B;Egﬂ - H — [0.57521—%2} =a*(t)

The two initial states are linearly independent. Thus

1 1
X® = {0.51&2 0.5t" + 2}

Linear Dynamical Systems

and



Computation of ¢(t, tg)

Let X (t) be a fundamental matrix of & = A(t)x. Then

(¢, to) = X ()X " (to)-

Because X (t) is non-singular for all ¢, its inverse is well defined

Linear Dynamical Systems



Computation of ¢(t, tg)

Let X (t) be a fundamental matrix of & = A(t)x. Then

6(t.to) = X(£)X " (to).
Because X (t) is non-singular for all ¢, its inverse is well defined

Revisit the last example:

1 1
X = [0.5t2 0.5¢% + 2]

The state-transition matrix is given by

1 0
o(t:to) = [0.5(152 — 12) 1}

Verify the three earlier listed properties of ¢(t,tp).

Linear Dynamical Systems



Solution of non-homogeneous LTV systems

We now go back to the original non-homogeneous LTV system

@ = A(t)z + B(t)u

y = C(t)x + D(t)u z(to) =20 €R™, £ >0 (6)

Linear Dynamical Systems



Solution of non-homogeneous LTV systems

We now go back to the original non-homogeneous LTV system
& = A(t)x + B(t)u
y = C(t)x + D(t)u

Theorem (Variation of constants)

The unique solution to (6) is given by

l’(to) =Xxo € Rn, t>0 (6)

z(t) = ¢(t, to)xo + /tt o(t, 7)B(T)u(r)dr (M)
y(t) = C(H(t, to)zo + C (1) / o(t, 7)B(r)u(r)dr + Dyu(t)  (8)

where ¢(t,to) is the state-transition matrix.

Linear Dynamical Systems



Solution of non-homogeneous LTV systems

We now go back to the original non-homogeneous LTV system
& = A(t)x + B(t)u
y = C(t)x + D(t)u

Theorem (Variation of constants)

The unique solution to (6) is given by

l’(to) =Xxo € Rn, t>0 (6)

z(t) = ¢(t, to)zo +/t o(t, 7)B(T)u(r)dr (M)

u(®) = COO(t to)ao + C®) [ 6(t,B(ru(r)dr + Du(t)  (8)
where ¢(t,to) is the state-transition matrix.

@ Equation (7) is known as the variation of constants formula.
@ Homogeneous response: yzi(t) = yh(t) = C(t)¢(t to)xo
@ Forced response: y.s(t) = ys(t ft (Tu(r)dT + D(t)u(t)

Linear Dynamical Systems



Solution

o (t); N D(t);, 2(to) = 20 € R™, £ >0 6)

a(6) = olt to)eo + [ " o(t, 7)B(rYu(r)dr )

y(t) = C()¢(t; to)zo + /: C(0)o(t, 7)B(r)u(r)dr + D(t)u(t)  (8)

Linear Dynamical Systems



Solution of non- ogeneous LTV systems
: B(t)u

O z(to) =m0 €R", t >0 (6)

z(t) = P(t, to)zo + /f‘ ¢(t, 7)B(T)u(r)dr )

y(t) = C(t)p(t, to)zo + i ' C(t)o(t, 7)B(r)u(r)dr + D(t)u(t) (8)

To verify (7) is a solution to (6), note that at ¢ = ¢, the integral in (7)
disappears and we get x(ty) = xo.
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Solution of non- homoeneous LTV systems

o C(f)‘: 1’ 1737(([))“ (o) =20 €R", £ >0 (6)
z(t) = P(t, to)zo + /f‘ ¢(t, 7)B(T)u(r)dr )

y(t) = C(t)p(t, to)zo + ' C(t)o(t, 7)B(r)u(r)dr + D(t)u(t) (8)

To verify (7) is a solution to (6), note that at ¢ = ¢, the integral in (7)
disappears and we get x(ty) = xo.

Taking the derivative of (7), we obtain

:%%§Qm+¢@ﬂBU +/‘w$”3wmum7

— A()(t, to)zo + B(t)u(t) + A(t) /¢tr Yu(r)dr
— A(t)(t) + B(t)ult)

which shows that (7) is indeed a solution to (6).
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Solution of non- homoeneous LTV systems

o C(f)‘: 1’ 1737(([))“ (o) =20 €R", £ >0 (6)
z(t) = P(t, to)zo + /f‘ ¢(t, 7)B(T)u(r)dr )

y(t) = C(t)p(t, to)zo + ' C(t)o(t, 7)B(r)u(r)dr + D(t)u(t) (8)

To verify (7) is a solution to (6), note that at ¢ = ¢, the integral in (7)
disappears and we get x(ty) = xo.

Taking the derivative of (7), we obtain

:@ggﬂw+¢@w3w +/‘w$”3wmwm7

— A()(t, to)zo + B(t)u(t) + A(t) / 6(t, 7) B(r)u(r)dr
— A()a(t) + B(t)u(t
which shows that (7) is indeed a solution to (6).

(8) is obtained by direct substitution of x(¢) in y(t) = C(t)x + D(¢)u.
R



Solution of non-homogeneous LTV systems: Facts

Relation between input-output and state-space descriptions:
The zero-state response is given as

Yzs(t) = C(t) t o(t, 7)B(T)u(r)dr + D(t)u(t)
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Solution of non-homogeneous LTV systems: Facts

Relation between input-output and state-space descriptions:
The zero-state response is given as

t
Ys(t) = C(t) | o(t,7)B(T)u(r)dr + D(t)u(?)
to
which can also be written as

Yzs(t) =/ [C(8)o(t, 7)B(7) + D(#)6(t — 7)] u(r)dr

to
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Solution of non-homogeneous LTV systems: Facts

Relation between input-output and state-space descriptions:
The zero-state response is given as

Yzs(t) = C(t) t o(t, 7)B(T)u(r)dr + D(t)u(t)
which can also be written as
Yas(t) =/t [C(t)o(t, 7)B(1) + D(t)é(t — 7)]u(r)dr

and is equivalent to

t
Yus(t) = G(t, T)u(T)dr
to
implying

G(t,7) 2 C(t)¢(t,7)B(T) + D(t)s(t — 7)

Linear Dynamical Systems



Solution of non-homogeneous LTV systems: Facts

Computing ¢(t, tg) is generally difficult
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Solution of non-homogeneous LTV systems: Facts

Computing ¢(t, tg) is generally difficult
Recall that the solution

z(t) = ¢(t,to)zo + t o(t, 7)B(T)u(r)dr

hinge on solving
d

%d’(t, tO) = A(t)¢(ta tO)
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Solution of non-homogeneous LTV systems: Facts

Computing ¢(t, tg) is generally difficult
Recall that the solution

z(t) = ¢(t,to)zo + t o(t, 7)B(T)u(r)dr

hinge on solving

d

%d’(t, tO) = A(t)(b(ta tO)

If A(t) is triangular such as

=[Sl ]
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Solution of non-homogeneous LTV systems: Facts

Computing ¢(t, tg) is generally difficult
Recall that the solution

z(t) = ¢(t,to)zo + t o(t, 7)B(T)u(r)dr

hinge on solving

d

%d’(t, tO) = A(t)(b(ta tO)

If A(t) is triangular such as

|:£L'1(t):| _ |:a11(t) 0 :| |:1'1(t):|
il‘z (t) azl(t> a9 (t) T2 (t)
we can solve the scalar equation @1 (¢) = a11(t) and then substitute it into

Ea(t) = azz(t)z2(t) + a1 (t)z1(?)
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Solution of non-homogeneous LTV systems: Facts

Computing ¢(t, tg) is generally difficult
Recall that the solution

z(t) = ¢(t,to)zo + t o(t, 7)B(T)u(r)dr

hinge on solving

d

%d’(t, tO) = A(t)(b(ta tO)

If A(t) is triangular such as

=[Sl ]

we can solve the scalar equation @1 (¢) = a11(t) and then substitute it into

Ea(t) = azz(t)z2(t) + a1 (t)z1(?)

Because x1(t) has been solved, the preceding scalar equation can be
solved for z5(t). This is what we did in the example on slide# 26.

Linear Dynamical Systems



Solution of homogeneous DTLTV systems

e(t+1) = A)z(t),  a(te) =20 €R?, teN

Linear Dynamical Systems



Solution of homogeneous DTLTV systems

The (unique) solution to the homogeneous discrete-time linear
time-varying system

xz(t+1) = A(t)z(t), x(ty) = xzg € R, teN
is given by

z(t) = ¢(t, to)ro, x(to) = x0 € R", t > tg

Linear Dynamical Systems



Solution of homogeneous DTLTV systems

The (unique) solution to the homogeneous discrete-time linear
time-varying system

xz(t+1) = A(t)z(t), x(ty) = xzg € R, teN
is given by
z(t) = (¢, to)zo, x(to) =20 ER", t > 1o

where

I, fort =+t
B(t,to) = { A(t—1)A(t—2) ... A(to + 1) A(to), fort > tg }

is called the (discrete-time) state transition matriz

Linear Dynamical Systems



Solution of homogeneous DTLTV systems

@ Since the state equation is algebraic, it can be computed recursively
for a given initial state.
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Solution of homogeneous DTLTV systems

@ Since the state equation is algebraic, it can be computed recursively
for a given initial state.

@ Because the fundamental matrix in the CT case is non-singular for
all ¢, ¢(t,to) is defined for t > tg and t < to.
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Solution of homogeneous DTLTV systems

@ Since the state equation is algebraic, it can be computed recursively
for a given initial state.

@ Because the fundamental matrix in the CT case is non-singular for
all ¢, ¢(t,to) is defined for t > tg and t < to.

@ In the DT case, the A—matrix can be singular. Thus the inverse of

@(t,to) may not be defined. Consequently, ¢(t,to) is defined only
for t > t.
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Solution of homogeneous DTLTV systems

@ Since the state equation is algebraic, it can be computed recursively
for a given initial state.

@ Because the fundamental matrix in the CT case is non-singular for
all ¢, ¢(t,to) is defined for t > tg and t < to.

@ In the DT case, the A—matrix can be singular. Thus the inverse of

@(t,to) may not be defined. Consequently, ¢(t,to) is defined only
for t > t.

Properties of ¢(t, o)

© For every tg > 0, ¢(¢, o) is the unique solution to
Pt +1,t0) = A)p(t,to),  d(to,to) =1, t=>to
@ Foreveryt>s>712>0,
o(t, s)p(s,7) = ¢(t,7)
© o(t,to) may be singular

Linear Dynamical Systems



Solution of non-homogeneous DTLTV systems

Theorem (Variation of constants)

The unique solution to

with z(tg) = xg € R",t € N is given by

t—1

(t) = @(t,to)wo + »_ ¢(t, 7+ 1)B(r)u(7r), Vi > to

T=tg

y(t) = Ct)o(t, to)zo + C(t Z o(t, 7+ 1)B(T)u(t) + D(t)u(t),Vt > to

T=tgo

where ¢(t, to) is the discrete-time state transition matrix.

Show by yourself:




Solution of non-homogeneous LTV systems: Facts

Relation between input-output and state-space descriptions:
The zero-state response is given as

t—1
y=s(t) = C(t) Y é(t,7 + 1)B(r)u(r) + D(t)u(t),Vt > tg

T=tg
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Solution of non-homogeneous LTV systems: Facts

Relation between input-output and state-space descriptions:
The zero-state response is given as

t—1
y=s(t) = C(t) Y é(t,7 + 1)B(r)u(r) + D(t)u(t),Vt > tg

T=to
If we define ¢(t,7) =0 for t < 7, then

t

yas(t) = Y [C(O(t, 7 + 1)B(r) + D(7)5(t — )] u(T)

T=to

where the impulse sequence 0(t — 7) equals 1 if t = 7 and 0 if

t#£T.
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Solution of non-homogeneous LTV systems: Facts

Relation between input-output and state-space descriptions:
The zero-state response is given as

t—1
y=s(t) = C(t) Y é(t,7 + 1)B(r)u(r) + D(t)u(t),Vt > tg

T=to
If we define ¢(t,7) =0 for t < 7, then

t

yas(t) = Y [C(O(t, 7 + 1)B(r) + D(7)5(t — )] u(T)

T=to

where the impulse sequence 0(t — 7) equals 1 if t = 7 and 0 if
t # 7. Therefore,

G(t,7) 2 C(t)p(t,7 + 1)B(1) + D(1)5(t — 7)

fort > 7.

Linear Dynamical Systems



Week 1 - Lecture 3

In the last lecture, we discussed
@ solution of LTV state-space system in CT
@ solution of LTV state-space system in DT

@ properties and implications of these solution

Linear Dynamical Systems



Solution to LTI systems: Homogeneous case

= Az, x(to) = xo € R", t>0 (9)

Linear Dynamical Systems



Solution to LTI systems: Homogeneous case

By applying the earlier results to the homogeneous time-invariant
systems

= Az, x(to) = xo € R", t>0 (9)
we have the following result.

Theorem (Peano-Baker Series)

The unique solution to (9) is given by z(t) = &(t, to)xo, o € R™, t > 0 where

t t T1 t T1 T
ot tg) = I +/ Adty +/ A Adry | dTy +/ A/ A Adrzdrodry + ...
to to to to to to

The n X n matrix ¢(t, to) is called the state transition matrix.
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Solution to LTI systems: Homogeneous case

By applying the earlier results to the homogeneous time-invariant
systems
= Az, x(to) = xo € R", t>0 (9)

we have the following result.

Theorem (Peano-Baker Series)

The unique solution to (9) is given by z(t) = &(t, to)xo, o € R™, t > 0 where

t t T1 t T1 T
ot tg) = I +/ Adty +/ A Adry | dTy +/ A/ A Adrzdrodry + ...
to to to to to to

The n X n matrix ¢(t, to) is called the state transition matrix.

Since

tom t—to)"
/ / / / Adedek 1° dTQdTl = 7( '0) Ak
to Jto to to k!

we conclude that
oo

ot 10) Z t—to

=0

Linear Dynamical Systems



Solution to LTI systems: Homogeneous case

ol to) =3 =t (10)
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Solution to LTI systems: Homogeneous case

RY
ot to) = Y0 L0 g (10)

Define the matrix exponential of a given n x n matrix M by

1
Y=gt
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Solution to LTI systems: Homogeneous case

CNTRY
ot to) = Y0 L0 g (10)

k=0

Define the matrix exponential of a given n X n matrix M by
wos Ly
— k!

which allows us to rewrite (10) as

(t,tg) = e=T0)

Linear Dynamical Systems



Solution to LTI systems: Non-homogeneous case

Tz = Az + Bu

) z(tg) = 9 € R", t>t
y=Cx+ Du (to) 0 =0

Linear Dynamical Systems



Solution to LTI systems: Non-homogeneous case

From the variation of constants formula, the solution to

i = Azr 4+ Bu
R w(to) =20 € Rn, t >ty
y=Cx+ Du
is given by

t
z(t) = eA(t_tO)wo +/ eA(t_T)B(T)u(T)dT,
to

t
y(t) = Cetlt)gy + [ CeAB(r)u(r)dr

to

Linear Dynamical Systems



Properties of the matrix exponential

@ The function e is the unique solution to

d QAL At
=A
at€ €

©Q Foreveryt, 7 € R,

eAteA‘r _ eA(t+T)

In general, eAteBt £ e(A+B)

© For every t € R, e is nonsingular and
-1 _
(eAt) A
@ For every n X n matrix A,

AeMt =eMA, VieER

Linear Dynamical Systems



Computation of matrix exponential

e is uniquely defined by

ieAt — AeAt’ 6A0 — I, t > O
dt -
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Computation of matrix exponential

e is uniquely defined by

ieAt — AeAt’ 6A0 — I, t > O
dt -

Taking the Laplace Transform, we conclude that

d
L [dteAt] =L [AeAt]

seAt — eAt’ = AeAt

Linear Dynamical Systems



Computation of matrix exponential

e is uniquely defined by

ieAt = Ae™, A0 = 1, t>0
dt -

Taking the Laplace Transform, we conclude that

L [def“t} = £ [Ae™]

dt
sef\At eAt’ = Ae/g’f
t=0
(sI — A)eAt =T

Therefore,
eM =L [(sT - A)7Y

Linear Dynamical Systems



Importance of the Characteristic polynomial

(sI — A)_1 [adj(sI — A)]

1
 det(sI — A)
where

det(s] — A) = (s — A1)™(s— X))+ (s — Ag)™*

@ is the characteristic polynomial of A, whose roots \; are the
eigenvalues of A and,

@ adj(sl — A) is the adjoint matrix of sI — A whose entries are
polynomials in s of degree (n — 1) or lower

To compute L~ 1[(sI — A)~!], we need to perform the partial
fraction expansion.
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Importance of the Characteristic polynomial

These are of the forms

a1s" M ass" b b apo1s Fan
(8 — )\1)7"1 (S — Ag)m2 e (S — )\k)mk

ail ai2 A1m,

Tion o T T eoaym
ak1 Almy,
+ e TR
(s = k) (5= Ag)m™e
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Importance of the Characteristic polynomial

These are of the forms

a1s" M ass" b b apo1s Fan
(8 — )\1)7"1 (S — Ag)m2 e (S — )\k)mk

—_u a12 T ¥ ST
BV D VA P W T
k1 Akmy,
(s = k) (5= Ag)m™e

The inverse Laplace transform is then given by

a1s" M a1+ ay
(S — Al)ml cee (S — )\k)mk

At mi1—1 At Apt mp—1 ARt
=ane "t + o daimt e e age™ 4 apm tT T ek

,571
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Importance of the Characteristic polynomial

These are of the forms

a1s" M ass" b b apo1s Fan
(8 — )\1)7"1 (S — Ag)m2 e (S — )\k)mk

ail ai2 A1m,

k1 Akmy,
(s = k) (5= Ag)m™e

The inverse Laplace transform is then given by

,571

(S — Al)ml cee (S — )\k)mk

Art
=anet 4+ 4 aim,t

ars" M a8+ an]

m1*16>\1t At

—1 Apt
+ooFapie et A, 7T ek

Thus when all the eigenvalues \; of A have strictly negative real parts, all
entries of ¢! converge to zero as t — oo, i.e., y(t) converges to the forced
response

t
yr(t) = / Ce* ") Bu(r)dr + Du(t)
to
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Consider the continuous-time state equation
&(t) = Az(t) + Bu(t)

y(t) = Cz(t) + Du(t) (11)
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Consider the continuous-time state equation
&(t) = Az(t) + Bu(t) (11)
y(t) = Cz(t) + Du(t)

For discretization, since

i) = %iLn(J x(t + Tj)j — x(t)

we can approximate (11) as

2(t+T)=ax(t)+ Ax(t)T + Bu(t)T
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Consider the continuous-time state equation
&(t) = Az(t) + Bu(t) (11)
y(t) = Cz(t) + Du(t)

For discretization, since

i) = %iLn(J x(t + Tj)j — x(t)

we can approximate (11) as
2(t+T)=ax(t)+ Ax(t)T + Bu(t)T
If we compute z(t) and y(t) only at t = kT for k = 1,2,..., then
z((k+1)T)=(I+TA)x(kT)+ TBu(kT)
y(kT) = Cx(kT) + Du(kT)

This discretization is easy to carry out but yields the least accurate
results for the same T'.

Linear Dynamical Systems



Discretization: Another method
Let

u(t) = w(kT) £ ulk], for kT <t < (k+1)T (12)

for Kk =0,1,2,.... This input changes values only at discrete-time instants.
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Discretization: Another method
Let

u(t) = w(kT) £ ulk], for kT <t < (k+1)T (12)

for Kk =0,1,2,.... This input changes values only at discrete-time instants.
Compute the solution of CT system at ¢t = k7" and ¢t = (k4 1)T

zk] £ 2(kT) = ™7 2(0) + / v eAFT=7) By(r)dr (13)

and

(k+1)T
zlk+1] 2 z((k + 1)T) = e** DT 2(0) + / eMEDT=T) By (1) dr
0
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Discretization: Another method
Let

u(t) = w(kT) £ ulk], for kT <t < (k+1)T (12)

for Kk =0,1,2,.... This input changes values only at discrete-time instants.
Compute the solution of CT system at ¢t = k7" and ¢t = (k4 1)T

zk] £ 2(kT) = ™7 2(0) + / v eAFT=7) By(r)dr (13)

0
and

(k+1)T
zlk+1] 2 z((k + 1)T) = e** DT 2(0) + / eMEDT=T) By (1) dr
0

kT
=T {eAkTw(O) —|—/ e T=7) Bu(7)dr
0

(k+1)T
+ / 6A(kT+T_T)BU(T)dT
kT
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Discretization: Another method
Let

u(t) = w(kT) £ ulk], for kT <t < (k+1)T (12)

for Kk =0,1,2,.... This input changes values only at discrete-time instants.
Compute the solution of CT system at ¢t = k7" and ¢t = (k4 1)T

zk] £ 2(kT) = ™7 2(0) + / v eAFT=7) By(r)dr (13)

and

(k+1)T
zlk+1] 2 z((k + 1)T) = e** DT 2(0) + / eMEDT=T) By (1) dr
0
kT
=T {eAkTw(O) +/ 6A(kT7T)Bu(T)dT:|
0

(k+1)T
+ / 6A(kT+T_T)BU(T)dT
kT

Substituting (12) and (13) and introducing the new variable « = kT + T — 7,
we get

zlk 4+ 1] = e zlk] + ( /O ’ eAadoz> Bulk]
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Discretization: Another method

ol + 1] = eAT k] + (/OT er‘da) Bulk]
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Discretization: Another method

ol + 1] = eAT k] + (/OT eA"‘da) Bulk]

Thus,
z[k + 1] = Aqz[k] + Baulk], ylk] = Cazx[k] + Dqulk]
with

T
Ag = et Bd:(/ eA"‘da)B Ci=C Dy=D
0
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Discretization: Another method

ol + 1] = eAT k] + (/OT eA"‘da) Bulk]

Thus,
z[k + 1] = Aqz[k] + Baulk], ylk] = Cazx[k] + Dqulk]
with

T
Ag = et Bd:(/ eA"‘da)B Ci=C Dy=D
0

Computation of By:
Note that

T 7_2 T2
/ (I+AT+A2§+ )dT_TIJr—AJr—A2
o !
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Discretization: Another method

ol + 1] = eAT k] + (/OT eA"‘da) Bulk]

Thus,
z[k + 1] = Aqz[k] + Baulk], ylk] = Cazx[k] + Dqulk]
with

T
Ag = et Bd:(/ eA"‘da)B Ci=C Dy=D
0

Computation of By:
Note that

T 7_2 T2
/ (I+AT+A2§+ )dT_TIJr—AJr—A2
o !

If A is nonsingular, then the series can be written as
A (TA+ —A2+ —A?’ .+1—1> = A7 (M )
Thus, we have
Bs=A'(A4s—1)B

MATLAB code: [ad,bd] = c2d(a, b, T)



Solution of Discrete-time Equations

Consider the discrete-time state-space equations
zlk + 1] = Az[k] + Bulk]

ylk] = Cafi] + Dufpy ") =0 SR B 20
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Solution of Discrete-time Equations

Consider the discrete-time state-space equations
k+ 1] = Ax[k] + Bulk

ole+1] z[k] + u[]’ z(tg) =zo €R", k>0

ylk] = Cz[k] + Dulk]

Once z[0] and u[k],k = 0,1,..., are given, the response can be
computed recursively from the equations.

z[1] = Az[0] + Bu[0]
z[2] = Az[l] + Bu[l] = A?2[0] + ABu[0] + Bu[l]
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Solution of Discrete-time Equations

Consider the discrete-time state-space equations
k+ 1] = Ax[k] + Bulk

gl ) 2lk] ul ], z(tg) =zo €R", k>0

ylk] = Cz[k] + Dulk]

Once z[0] and u[k],k = 0,1,..., are given, the response can be
computed recursively from the equations.

z[1] = Az[0] + Bu[0]
z[2] = Az[l] + Bu[l] = A?2[0] + ABu[0] + Bu[l]

Proceeding forward, we can readily obtain, for & > 0,

k—1
zlk] = AFz| +2Ak 1=m Buy[m)]
k—1
y[k] = CAFx] +ZCAk L=m Bum] + Dulk]

State transition matrix, @[k, ko] = A¥ ko Yk > kg

Linear Dynamical Systems



Computation of @[k, ko)

The matrix power can be computed using Z-transforms.

e [Akﬂ] A iszAkJrl _ Zio:zf(kJrl)AkJrl — (i L I)

k=0 k=0 k=0

Linear Dynamical Systems



Computation of @[k, ko)

The matrix power can be computed using Z-transforms.

e [Akﬂ] A iszAkJrl _ Zio:zf(kJrl)AkJrl — (i L I)

_ i(oz ] 1)

Also, 2 [AFF] = AZ [AF].
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Computation of @[k, ko)

The matrix power can be computed using Z-transforms.

e [Akﬂ] A iszAkJrl _ Zio:zf(kJrl)AkJrl — (i L I)

k=0 k=0 k=0
(] - 1)
Also, Z [Ak“] = AZ [Ak] Therefore

Aﬁzz(@—[)@(z[—A)@zzI@ﬁ:z(zl—A)_l
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Computation of @[k, ko)

The matrix power can be computed using Z-transforms.
oo oo o0
e [Akﬂ] N szkAkJrl _ Zzzf(kJrl)AkJrl — (Z L I)

< (ef#]-

Also, Z [Ak“] = AZ [Ak] Therefore

Aﬁzz(@—[)@(z[—A)@zzI@@:z(zl—A)_l

Taking inverse Z-transform, we obtain

AR =271 [2(2] — A)7!]

Linear Dynamical Systems



Computation of @[k, ko)

The matrix power can be computed using Z-transforms.

e [Akﬂ] A iszAkJrl _ Zio:zf(kJrl)AkJrl — <§: L I)

k=0 k=0 k=0
(2[4 -1)
Also, Z [AF+1] = AZ [A¥]. Therefore
Aﬁ:z<@—1) o (2] — AVAF = o] & AF = 5(2] — A)~)
Taking inverse Z-transform, we obtain
AP = 271 [5(2] — A)~Y]

Now, when all eigenvalues of A have magnitude smaller than 1, all
entries of A will converge to zero as t — oo, which means that
the output will converge to the forced response.
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Week 1 - Lecture 4

In the last lecture, we discussed
@ Solution of LTI system both in CT and DT domain
@ Two methods of discretization

@ Importance of characteristic polynomial

Linear Dynamical Systems



Equivalent state equations

Consider the network shown below:

T ]
u(>) 19 1
v
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Equivalent state equations

Consider the network shown below:

Lx'ls
+ L1 N " + ) - T
B x2$ x'J i@% %GD @ \@ {iy

I —
State variable, z(t) State variable, z(t)

x1: Inductor current; z2: Capacitor voltage T1,Z2: Loop currents
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Equivalent state equations

Consider the network shown below:

g
+ L1 . T
I—L T9 :U'J ixQ_f

|
State variable, x(t)

x1: Inductor current; z2: Capacitor voltage

=B SRl

+

CESRED ;%

State variable, z(t)

T1,Z2: Loop currents

=1 o2 Bl
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Equivalent state equations

Consider the network shown below:

Lx'ls

State variable, x(t)

x1: Inductor current; z2: Capacitor voltage

=B SRl

+

CESRED ;%

State variable, z(t)

T1,Z2: Loop currents

=1 o2 Bl

Given two or more state-space equations, when can we say that
these equations are equivalent or describe the same system?
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Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system

= Azx + Bu, y=Cx+ Du
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Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system
= Azx + Bu, y=Cx+ Du
Given a nonsingular matrix T, suppose that we define

_ A
r=Tx
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Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system
= Azx + Bu, y=Cx+ Du
Given a nonsingular matrix T, suppose that we define
TETx
The same system can be defined using T as the state,
i=Ti=TAr+TBu=TAT 'z + TBu
y=Cx+ Du=CT 'z + Du

Linear Dynamical Systems



Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system
= Azx + Bu, y=Cx+ Du
Given a nonsingular matrix T, suppose that we define
TETx
The same system can be defined using T as the state,
i=Ti=TAr+TBu=TAT 'z + TBu
y=Cx+ Du=CT 'z + Du
which can be written as
T = AZ + Bu, y=CzZ+ Du
for

A2TAT™Y, BA2TB, C2CT™', D2D
-~ Linear Dynamical Systems



Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system

& = Az + Bu, y=Czx+ Du (14)
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Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system

& = Az + Bu, y=Czx+ Du (14)

Definition (Algebraically Equivalent)
Let 7" be an n X n real nonsingular matrix and let Z = T'z, then the state
equation

Z = A% + Bu, y=CZ+ Du

where A=TAT™ ', B=TB, C =CT ', D= D is said to be (algebraically)
equivalent to (14) and Z = T'z is called an equivalence transformation.
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Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system

& = Az + Bu, y=Czx+ Du (14)

Definition (Algebraically Equivalent)

Let 7" be an n X n real nonsingular matrix and let Z = T'z, then the state
equation . _ _ _ _
T = AT + Bu, y=CZ+ Du

where A=TAT™ ', B=TB, C =CT ', D= D is said to be (algebraically)
equivalent to (14) and Z = T'z is called an equivalence transformation.

The equivalent transformations have the same

@ set of eigenvalues

@ transfer functions
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Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system

& = Az + Bu, y=Czx+ Du (14)

Definition (Algebraically Equivalent)

Let 7" be an n X n real nonsingular matrix and let Z = T'z, then the state

equation . _ _ _ _
T = AT + Bu, y=CZ+ Du

where A=TAT™ ', B=TB, C =CT ', D= D is said to be (algebraically)
equivalent to (14) and Z = T'z is called an equivalence transformation.

The equivalent transformations have the same
@ set of eigenvalues
A(N) = det(M — A) = det(A\TT! — TAT™1)
=det [T (M — A) T~ '] = det(M — A) = A(})
@ transfer functions
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Equivalent LTI state equations

Consider the n-dimensional continuous-time LTI system

& = Az + Bu, y=Czx+ Du (14)

Definition (Algebraically Equivalent)

Let 7" be an n X n real nonsingular matrix and let Z = T'z, then the state

equation . _ _ _ _
T = AT + Bu, y=CZ+ Du

where A=TAT™ ', B=TB, C =CT ', D= D is said to be (algebraically)
equivalent to (14) and Z = T'z is called an equivalence transformation.

The equivalent transformations have the same
@ set of eigenvalues
A(N) = det(M — A) = det(A\TT! — TAT™1)
=det [T (M — A) T~ '] = det(M — A) = A(})
@ transfer functions
G(s)=C(sI-A)'B+D=CT ' [T(sI - AT ] 'TB+D
=CT ' (sI—A)'T ' TB+ D =C (sl — A" B+ D =G(s)



Equivalent LTI state equations

Definition (Zero-state equivalent)

Two state equations are said to be zero state equivalent whenever
they have the same transfer function matrix
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Equivalent LTI state equations

Definition (Zero-state equivalent)

Two state equations are said to be zero state equivalent whenever
they have the same transfer function matrix

Zero-state Algebraic
equivalence equivalence
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Equivalent LTI state equations

Definition (Zero-state equivalent)

Two state equations are said to be zero state equivalent whenever
they have the same transfer function matrix

Zero-state — Algebraic
equivalence equivalence
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Equivalent LTI state equations

Definition (Zero-state equivalent)

Two state equations are said to be zero state equivalent whenever
they have the same transfer function matrix

Zero-state — Algebraic
equivalence =4  equivalence
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Equivalent LTI state equations

Definition (Zero-state equivalent)

Two state equations are said to be zero state equivalent whenever
they have the same transfer function matrix

Zero-state — Algebraic
equivalence =4  equivalence

Under what conditions we can ensure the
zero-state equivalence?

Linear Dynamical Systems



Markov parameters
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Markov parameters

We know that o
1 Al t
(sT—A)~t=Lle ]_L[EOHA
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Markov parameters

We know that o
1 Al t
(sT—A)~t=Lle ]_L[EOHA

. [ﬁ:| - S_(i+1)7

7!

Since

we conclude that
(sI —A)™ Z s~ (D 47,
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Markov parameters

We know that

(sI—A) L=l =2 [i ';A]
i=0

¢ [ﬁ:| - S_(i+1)7

7!

Since

we conclude that

(sI —A)™ Zsf(“Ll)A’

Therefore, R sl ) )
G(s)=C(sI-A)'B+D=D+)» s thca'B
=0

The matrices D, CA'*B, i > 0 are called the Markov parameters
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Markov parameters

We know that

(sI—A) L=l =2 [i ';A]
i=0

¢ [ﬁ:| - S_(i+1)7

7!

Since

we conclude that
(sI —A)™ Z s~ (D 47,

Therefore, R sl ) )
G(s)=C(sI-A)'B+D=D+)» s thca'B
=0

The matrices D, CA'*B, i > 0 are called the Markov parameters which are also
related to the system’s impulse response i.e.

G(t) = LHG(s)] = L7HC(sI — A)"'B + D] = Ce** B + Dét
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Markov parameters

We know that

(sI—A) L=l =2 [i ';A]
i=0

¢ [ﬁ:| - S_(i+1)7

7!

Since

we conclude that
(sI —A)™ Z s~ (D 47,

Therefore, R sl ) )
G(s)=C(sI-A)'B+D=D+)» s thca'B
=0

The matrices D, CA'*B, i > 0 are called the Markov parameters which are also
related to the system’s impulse response i.e.

G(t) = LHG(s)] = L7HC(sI — A)"'B + D] = Ce** B + Dét

Taking derivative of the RHS, we get

d'G(t ;
( ) _ CA'e?B, Vi>1,t>0
dt*
from which we obtain the relationship: lim; 0 dI'G@) _ = CA'B, Vi>1

dt®

Linear Dynamical Systems



Equivalent LTI state equations

Theorem

Two state-space representations

i = Az + Bu, y=Cz+ Du
and

T = Az + Bu, y=Cz+ Du

are zero-state equivalent or have the same transfer function matrix
if and only if they have the same Markov parameters i.e.,

D=D, CA'‘B =CA'B, Vi > 0.
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Equivalent LTI state equations

Theorem
Two state-space representations

& = Ax + Bu, y=Cx+ Du
and
T = Az + Bu, y=Cz+ Du

are zero-state equivalent or have the same transfer function matrix
if and only if they have the same Markov parameters i.e.,

D=D, CA'‘B =CA'B, Vi > 0.

Prove it by yourself!!

Linear Dynamical Systems



Equivalent LTV state equations

Consider the n-dimensional continuous-time LTV system

i = At + B(t)u, y = C(H) + D(t)u (15)
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Equivalent LTV state equations

Consider the n-dimensional continuous-time LTV system
z = A(t)x + B(t)u, y=C(t)z + D(t)u (15)

)

Let P(t) € R™*" be a non-singular matrix and both P(t) and P(t) are
continuous for all t. Let Z 2 P(t)x, then the state equation

Definition (Algebraically Equivalent

& =At)z+B(t)u, y=Ct)Z+D(t)u (16)
where
A(t) = [P(t)A(t) - P(t)] P't), C@t)=C@E)P ()
B(t) = P(t)B(t), D(t) = D(t)

is said to be algebraically equivalent to (15) and P(t) is called an algebraic
equivalent transformation.
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Equivalent LTV state equations

Theorem (Equivalence of fundamental matrix)

Let X (t) be a fundamental matrix of (15), then X (t) = P(t)X(t) is a
fundamental matrix of (16).
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Equivalent LTV state equations

Let Ao be an arbitrary constant matrix. Then there exists an equivalent
transformation that transforms (15) into (16) with A(t) = Ao
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Equivalent LTV state equations

Let Ao be an arbitrary constant matrix. Then there exists an equivalent
transformation that transforms (15) into (16) with A(t) = Ao

Let X (t) be a fundamental matrix of & = A(¢)z.
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Equivalent LTV state equations

Let Ao be an arbitrary constant matrix. Then there exists an equivalent
transformation that transforms (15) into (16) with A(t) = Ao

Proof.

Let X(t) be a fundamental matrix of & = A(t)x. The differentiation of
X1 X () =1 yields X~ 1(¢) X (t) + X ~1(¢)X (¢) = 0 which implies

X710t = - X1 AOX )X 1) = —X 1) A(t) (17)
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Equivalent LTV state equations

Let Ao be an arbitrary constant matrix. Then there exists an equivalent
transformation that transforms (15) into (16) with A(t) = Ao

Proof.

Let X(t) be a fundamental matrix of & = A(t)x. The differentiation of
X1 X () =1 yields X~ 1(¢) X (t) + X ~1(¢)X (¢) = 0 which implies

X710t = - X1 AOX )X 1) = —X 1) A(t) (17)

Because A(t) = Ag is a constant matrix, X () = e40t is a fundamental matrix of
z = A(t)T = AoZ.
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Equivalent LTV state equations

Let Ao be an arbitrary constant matrix. Then there exists an equivalent
transformation that transforms (15) into (16) with A(t) = Ao

Proof.

Let X(t) be a fundamental matrix of & = A(t)x. The differentiation of
X1 X () =1 yields X~ 1(¢) X (t) + X ~1(¢)X (¢) = 0 which implies

X710t = - X1 AOX )X 1) = —X 1) A(t) (17)

Becaus At ) Ao is a constant matrix, X (t) = e“40? is a fundamental matrix of
A(t)T = Aoz
Define X (t) = P(t)X(t) — P(t) = X(t) X 1(t) = edotXL(¢)

Linear Dynamical Systems



Equivalent LTV state equations

Let Ao be an arbitrary constant matrix. Then there exists an equivalent
transformation that transforms (15) into (16) with A(t) = Ao

Proof.

Let X(t) be a fundamental matrix of & = A(t)x. The differentiation of
X1 X () =1 yields X~ 1(¢) X (t) + X ~1(¢)X (¢) = 0 which implies

X710t = - X1 AOX )X 1) = —X 1) A(t) (17)

Because A(t) = Ag is a constant matrix, X () = e40t is a fundamental matrix of
z=A(t)Z = AoZ.

Define X (t) = P(t)X(t) = P(t) = X(t)X 1(t) = eAotX~1(1)
and compute

A(t) = [P(t)A(t) 4 P(t)] PL(1)
- [ertX*l(t)A(t) + Agedot X —1(t) + ertX’l(t)] X (t)e—4ot
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Equivalent LTV state equations

Let Ao be an arbitrary constant matrix. Then there exists an equivalent
transformation that transforms (15) into (16) with A(t) = Ao

Proof.

Let X(t) be a fundamental matrix of & = A(t)x. The differentiation of
X1 X () =1 yields X~ 1(¢) X (t) + X ~1(¢)X (¢) = 0 which implies

X710t = - X1 AOX )X 1) = —X 1) A(t) (17)

Because A(t) = Ag is a constant matrix, X () = e40t is a fundamental matrix of
z = A(t)T = AoZ.

Define X (t) = P(t)X(t) = P(t) = X(t)X 1(t) = eAotX~1(1)
and compute

A(t) = [P(t)A(t) 4 P(t)] PL(1)
- [ertX*l(t)A(t) + Agedot X —1(t) + ertX’l(t)] X (t)e—4ot
which becomes after substituting (17)

A(t) = Age P XL (1) X (t)e~ 40t = Aq.
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Equivalent LTV state equations: Additional points

If Ag is chosen as zero matrix, then P(t) = X ~'(t), thus
A(t) =0, B(t) = X~1(t)B(t), C(t) = C()X (t) D(t) = D(t)
D
U BT &»
D ‘
BT O
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Equivalent LTV state equations: Additional points

If Ag is chosen as zero matrix, then P(t) = X ~1(t), thus
A(t) = 0, B(t) = X~\(1)B(t), C(t) = C(1)X(1), D(t) = D(t)

' D]

[
Ul Bt &»

U =1 &
B

@ Every time-varying state equation can be transformed into such a
block diagram
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Equivalent LTV state equations: Additional points

If Ag is chosen as zero matrix, then P(t) = X ~1(t), thus
A(t) = 0, B(t) = X~\(1)B(t), C(t) = C(1)X(1), D(t) = D(t)

' D]

[
Ul Bt &»

z

D,
B
@ Every time-varying state equation can be transformed into such a

block diagram

@ However, the challenge is to determine its fundamental matrix.
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Equivalent LTV state equations: Additional points

Invariance of Impulse Response matrix

G(t,7) = C(t)p(t,7)B(t) + D(t)d(t — 7)
= C(t) X)X Y(r)B(1) + D(t)d(t — )

Using the above substitutions, we get

~—

G(t,7)=CHX®)X Y1)B(1)+ D(t)d(t — 7
= CP'PXX )P~ (r)P(1)B(1) + D(t)6(t — 1)
= CXX Y1)B(1)+ D(t)5(t — 1) = G(t, )

Thus, the impulse response is invariant under any equivalence
transformation.
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Concluding remarks on equivalence

Definition (Lyapunov transformation)

A matrix P(t) is called a Lyapunov transformation whenever
@ P(t) is non singular
@ P(t) and P(t) are continuous
© P(t) and P~1(t) are bounded for all .
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Concluding remarks on equivalence

Definition (Lyapunov transformation)

A matrix P(t) is called a Lyapunov transformation whenever

@ P(t) is non singular
@ P(t) and P(t) are continuous
© P(t) and P~1(t) are bounded for all .

Recall

A(t)x + B(t)u, y=0C
t = A(t)z + B(t)u, y=C(t) D

Definition (Lyapunov equivalent)

Equations (18) and (19) are said to be Lyapunov equivalent
whenever P(t) is a Lyapunov transformation

Linear Dynamical Systems
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Week 1 - Lecture 5

In the last lecture, we discussed
@ What is the equivalent representation problem?
@ Algebraic equivalence of LTI and LTV systems
@ Zero-state equivalence of LTI and LTV systems

@ Relationship between algebraic and zero-state equivalence.
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Realization: LTI systems

Every LTI system can be described by the input-output description

9(s) = G(s)a(s)

and if the system is lumped as well, by input-system-output
description

& = Ax + Bu, y=Czx+ Du
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Realization: LTI systems

Every LTI system can be described by the input-output description

9(s) = G(s)a(s)

and if the system is lumped as well, by input-system-output
description

& = Ax + Bu, y=Czx+ Du

If the state equation is known, the transfer function matrix can be
computed as G(s) = C(sI — A)"'B+ D.
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Realization: LTI systems

Every LTI system can be described by the input-output description

9(s) = G(s)a(s)

and if the system is lumped as well, by input-system-output
description

& = Ax + Bu, y=Czx+ Du

If the state equation is known, the transfer function matrix can be
computed as G(s) = C(sI — A)"'B+ D.

The computed transfer function matrix is unique
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Realization: LTI systems

Every LTI system can be described by the input-output description

9(s) = G(s)a(s)

and if the system is lumped as well, by input-system-output
description

& = Ax + Bu, y=Czx+ Du

If the state equation is known, the transfer function matrix can be
computed as G(s) = C(sI — A)"'B+ D.

The computed transfer function matrix is unique

Realization problem

Find a state-space equation from a given transfer matrix.
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Realization: LTI systems

Definition (Realization)

A transfer function matrix G(£),€ € {s, z} is said to be realizable
whenever there exists a finite-dimensional state equation or simply
{4, B,C, D} such that

G()=C(EI-A)'B+D, ¢e{sz}

and {A, B,C, D} is called a realization of G(¢)
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Realization: LTI systems

Definition (Realization)

A transfer function matrix G(£), € € {s, 2} is said to be realizable
whenever there exists a finite-dimensional state equation or simply
{4, B,C, D} such that

G()=C(EI-A)'B+D, ¢e{sz}

and {A, B,C, D} is called a realization of G(€)

o If G(f) is realizable then it has “infinitely” many realizations,
not necessarily of the same dimension

the realization problem is fairly complex
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Realization: LTI systems

Definition (Realization)

A transfer function matrix G(£), € € {s, 2} is said to be realizable
whenever there exists a finite-dimensional state equation or simply
{4, B,C, D} such that

G()=C(EI-A)'B+D, ¢e{sz}

and {A, B,C, D} is called a realization of G(€)

o If G(f) is realizable then it has “infinitely” many realizations,
not necessarily of the same dimension

the realization problem is fairly complex

© Here we shall study the “realizability condition” and compute
one realization

Linear Dynamical Systems



Realization: LTI systems

A transfer function matrix G(s) is realizable if and only if G(s) is a
proper rational matrix.
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Realization: LTI systems

A transfer function matrix G(s) is realizable if and only if G(s) is a
proper rational matrix.

The proof shall be done in two parts.

Theorem (Necessary part)

If G(s) is realizable then G(s) is a proper rational matrix.

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.
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Realization: LTI systems

Theorem (Necessary part)

If G(s) is realizable then G(s) is a proper rational matrix.
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Realization: LTI systems

Theorem (Necessary part)

If G(s) is realizable then G(s) is a proper rational matrix.

If G is realizable, then we can write

Gap(s) = C(sI — A)'B = m

ClAdj(sI — A)'B
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Realization: LTI systems

Theorem (Necessary part)

If G(s) is realizable then G(s) is a proper rational matrix.

If G is realizable, then we can write

Gap(s) = C(sI — A)'B = m

ClAdj(sI — A)'B

@ If Ais n X n, then det(sI — A) has degree n
@ Every entry of Adj(sI — A) has at most degree (n — 1)
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Realization: LTI systems

Theorem (Necessary part)

If G(s) is realizable then G(s) is a proper rational matrix.

If G is realizable, then we can write

Gap(s) = C(sI — A)'B = m

ClAdj(sI — A)'B

@ If Ais n X n, then det(sI — A) has degree n
@ Every entry of Adj(sI — A) has at most degree (n — 1)
Thus C(sI — A)~'B is a strictly proper rational matrix.

If D is non-zero, then C(sI — A)"'B + D £ G(s) is proper. O
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.
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Realization: LTI systems

(Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.

We show the converse; i.e., if G(s) is a ¢ X p proper rational matrix, then there
exists a realization.
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.

We show the converse; i.e., if G(s) is a ¢ X p proper rational matrix, then there
exists a realization.

Decompose G as

G(s) = G(oo) + Gsp(s).
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.

We show the converse; i.e., if G(s) is a ¢ X p proper rational matrix, then there
exists a realization.

Decompose G as

G(s) = G(o0) + Gup(s).
Let

1

d(s)=s"+a1s" "+ +ar_18+ ar

be the LCD of all entries of Gy (s).
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.

We show the converse; i.e., if G(s) is a ¢ X p proper rational matrix, then there
exists a realization.

Decompose G as

G(s) = G(o0) + Gup(s).
Let

1

d(s)=s"+a1s" "+ +ar_18+ ar

be the LCD of all entries of Gsp(s). Then Gip(s) can be expressed as
A 1 1 r—1 r—2
5 = ——[N = —— |V, N e+ Ny N, 2
Gp(s) d(s)[ (s)] d(s) [ 18 + Na2s A coo F 18 + ] (20)

where N; are ¢ X p constant matrix.
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.
Proof (Cont.)

We claim that the set of equations

—al, —a2l, ... —or—1l, —o;l, I
I, 0 ... 0 0 0
| o I, 0 0 |..10],
: : - : : : (21)
0 o . I, 0 0
y=[N1 Nz

Nr—1 Ny]z+ G(co)u

where I, € RP*P (0 € RP*P A € R™"*"™ B e R™"*? (C € R9*"P is a
realization of G(s) with dimension rp.
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.

Proof (Cont.)

We claim that the set of equations

—al, —a2l, ... —or—1l, —o;l, I
I, 0 0 0 0
B= 0 I, ... 0 0 L 0
: . : : (21)
0 0 I 0 0
Yy = [Nl N2 Nr—l Nr] x + é(oo)u

where I, € RP*P (0 € RP*P A € R™"*"™ B e R™"*? (C € R9*"P is a
realization of G(s) with dimension rp.We shall show that (21) is a realization.
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.

Proof (Cont.)

Let us define

Z=|.|2(GI-A)"'B (22)

where Z; is p X p and Z is rp X p.
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.

Proof (Cont.)

Let us define

VA
Z>
Z=|.|2(GI-A)"'B (22)
Zr
where Z; is p X p and Z is rp X p. Then the transfer matrix of (21) equals
C(sI — A)'B+G(o0) = N1Zy + NoZy + -+ -+ Ny Zp + G(c0)  (23)
Write (22) as (sI — A)Z = B or

sZ =AZ+ B
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.

Proof (Cont.)

Using the shifting property of the matrix A, from the second to the last block,
we can readily obtain,

Zy —ayly —agly —ar_11p —aply A Ip
Zo I, 0 0 0 Zo 0
Z3 0 I, 0 0 Z3 0
sZ =AZ+ B =s = e
Zp 0 0 I, 0 Zy 0
SZ2 :Zl, SZg :ZQ, <.y SZT :erl
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.
Proof (Cont.)

Using the shifting property of the matrix A, from the second to the last block,
we can readily obtain,

Zy —ayly —agly —ar_11p —aply A Ip
Zis I, ) 0 0 % 0
T 0 I, 0 0 i 0
sZ =AZ+ B =s = e

Z 0 0 Ip 0 Z, 0

SZ2 :Zl, SZg :ZQ, <.y SZT :erl

which implies

Z=2 gz -4 z, = 2

2*?7 37827 000g T78T71

Substituting these into the first block of A yields

SZl = —01121 = CYQZQ = o000 = CMTZT + Ip

Qo

=—(m+2++ 2z 41,
S S
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Realization: LTI systems

Theorem (Sufficient part)

If G(s) is a proper rational matrix then G(s) is realizable.

Proof (Cont.)

Using d(s)
Qo Qo d(s)
(s+a1+?+---—|— SH)Zl = Zi=1
Thus, . )
s" s" 1
71 = ——1 Zo = —1, Zp = ——1
1 d(S) P> 2 d(S) 2] P d(S) P

Substituting these into
C(sI — A)'B+G(o0) = N1Zy + NoZy + - - - + Ny Z, + G(c0)

yields
C(sI — A) ' B + G(o0) = % [Nis™™L + Nos™% + -+ N,] + G(o0)

O
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Realization: LTV systems

@ The Laplace Transform cannot be used
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Realization: LTV systems

@ The Laplace Transform cannot be used
@ input-output description
t
y(t) = [ G, m)u(r)dr
to
@ input-state-output description
&= A(t)xr + B(t)u
y=C(t)x + D(t)u
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Realization: LTV systems

@ The Laplace Transform cannot be used
@ input-output description
t
y(t) = [ G, m)u(r)dr
to
@ input-state-output description
&= A(t)xr + B(t)u
y=C(t)x + D(t)u

If the state equation is available, the impulse response can be
computed from

G(t,7) = CH) X)X L (7)B(1) + D(t)é(t — ), Vt> T

where X () is the fundamental matrix.
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Realization: LTV systems

Theorem

A g X p impulse response matrix G(t,T) is realizable if and only if G(t, T)
can be decomposed as

G(t,7) = M({t)N(t) + D(t)o(t — 7),Vt > 7

where M, N and D are respectively ¢ x n,n X p and q X p matrices for
some integer n.
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Realization: LTV systems

A g X p impulse response matrix G(t,T) is realizable if and only if G(t, T)
can be decomposed as

G(t,7)=M@)N(7)+ D(t)o(t — 1), Vt > 7
where M, N and D are respectively ¢ x n,n X p and q X p matrices for
some integer n.

Proof shall be done in two parts.

Theorem (Necessary part)

If G(t,7) is realizable then there exists a realization that satisfies
Gt,7)=CHXH)X '(1)B(r)+ D(t)é(t—71), Vt>r1
where X (t) is the fundamental matrix.

Theorem (Sufficient part)

If G(t,7) can be decomposed as mentioned above then G(t,T) is realizable.
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Realization: LTV systems

Theorem (Necessary part)

If G(t,T) is realizable then there exists a realization that satisfies
G(t,7) = C(t)X ()X ' (7)B(1) + D(t)8(t — 7), VE> T

where X (t) is the fundamental matrix.
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Realization: LTV systems

Theorem (Necessary part)

If G(t,T) is realizable then there exists a realization that satisfies
G(t,7) = C(t)X ()X ' (7)B(1) + D(t)8(t — 7), VE> T

where X (t) is the fundamental matrix.

Proof.
Identifying M (¢) = C(t)X (t) and N(7) = X '(7)B(7) establishes the
necessary part of the theorem O
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Realization: LTV systems

Theorem (Necessary part)

If G(t,T) is realizable then there exists a realization that satisfies
G(t,7) = C(t)X ()X ' (7)B(1) + D(t)8(t — 7), VE> T

where X (t) is the fundamental matrix.

Proof.
Identifying M (¢) = C(t)X (t) and N(7) = X '(7)B(7) establishes the
necessary part of the theorem O

Theorem (Sufficient part)

If G(t,7) can be decomposed as mentioned above then G(t,T) is realizable.
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Realization: LTV systems

Theorem (Necessary part)

If G(t,T) is realizable then there exists a realization that satisfies
G(t,7) = C(t)X ()X ' (7)B(1) + D(t)8(t — 7), VE> T

where X (t) is the fundamental matrix.

Identifying M (¢) = C(t)X (t) and N(7) = X '(7)B(7) establishes the
necessary part of the theorem O

Theorem (Sufficient part)

If G(t,7) can be decomposed as mentioned above then G(t,T) is realizable.

If G(t,7) can be decomposed as above, then the n—dimensional state equation

T = N(t)u, y= M)z + D(t)u

is a realization. Indeed, a fundamental matrix of & = 0.z is X (¢t) = I. Thus
the impulse response is
M) I.I 'N(1) + D(s)6(t — 7) = G(t, )
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