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@ Solvability of Lyapunov equations (Lecture Slide 22)

@ BIBO and internal stability (Lecture slides 38 — 43)

@ Lyapunov's theory for linear systems (Lecture slide 30)
© Margin of stability (Lecture slide 30)

@ Stability of linear time variant systems (Lecture slide 56)
@ Sampling and stability

@ Stability and Jordan canonical form (Lecture slides 53 — 54 )
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Solvability of the Lyapunov matrix equation

Problem 1

Consider the system & = Ax with

0 1
a=[4 )
Comment on the solvability of the Lyapunov matrix equation
ATP+PA=-Q, Q=QT > 0.
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Solvability of the Lyapunov matrix equation

Problem 1

Consider the system & = Ax with

0 1
4=
Comment on the solvability of the Lyapunov matrix equation
ATP+PA=-Q, Q=QT > 0.

Recall! -Lecture Slide 22

Let A € R™ ™ and let Aq,..., A, denote the (not necessarily
distinct) eigenvalues of A, then the equation

ATP+PA=—Q, Q=QT>0

has a unique solution for P corresponding to each @ if and only if

Mgl ds A S forallig
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Solution to Problem 1

The eigenvalues of A are A1, As = £j and therefore the required
condition is violated. Thus, the Lyapunov equation
ATP 4+ PA = —Q does not possess a unique solution for a given

Q.
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Solution to Problem 1

The eigenvalues of A are A1, As = £j and therefore the required
condition is violated. Thus, the Lyapunov equation
ATP 4+ PA = —Q does not possess a unique solution for a given

Q.

We now verify this for two specific cases:
@ When Q = 0, we obtain:

ATP 4 PA— [0 —1] [pn p12] n [pu p12} [0 1]
10| [p12 p22 p12 p22| |—1 O

_ [ —2p12 pn —pzﬂ _ [O 0]
P11 — P22 2p12 0 0

or p12 = 0 and p1; = paa. Therefore, for any a € R, the
matrix P = al is a solution of the Lyapunov matrix equation.
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Solution to Problem 1

@ When @) = 21, we obtain:

ATP 4 PA— —2p12 p11—p22] _ [—2 0}
P11 — P22 2p12 0 -2

or p11 = po2 and p12 = 1 and p12 = —1, which is impossible.
Therefore, for Q = —21 the Lyapunov equation has no
solution at all.
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BIBO stability and internal stability

Problem 2

Consider the continuous time linear time invariant (CT-LTI) system

yit)=1[1 1 —1]=(t)

with 2(0) = [z10 220 —1.53520}T. Analyze the system for
internal and BIBO stability.
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Solution to Problem 2

Solution: BIBO stability

The dynamics can be written as:
T = —x1 + u(t),:bg = x9 + 2x3, T3 = 229 + x3 thus,

t
r1(t) = e twyg + e_t/ e"u(r)dr
0

xo(t) = 0.5¢" (x20 + w30) + e3t (0.75220 + 0.5z30)
x3(t) = —e7t (0.5z99 + 0.25x30) + e (0.5z99 + 0.25x3)
= —0.125¢" 4 0.125¢%

t
y(t) =21+ 12 — 73 = € ‘w9 + 77 (/ GTU(T)dT> — 0.25¢ g
0

It is easy to see that the output y(t) is bounded when u(t) is
bounded for all t. Thus, the system is clearly BIBO stable.
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Solution to Problem 2

Solution: Internal stability

The matrix A is given as :

-1 0 0
A=10 1 2
0 21

which has the eigen values —1, —1 and 3 and thus the system is not
internally stable in the sense of Lyapunov (which requires the eigen
values to be negative). Note that the transfer function has a zero
at s = 3 and hence this pole-zero cancellation leads to the internal
instability of the system , although the system is BIBO stable.

Recall!-Lecture slides 38-43

This example illustrates the fact that

External stability =% Internal stability (in the sense of Lyapunov)



Lyapunov's theory of stability for linear systems

Problem 3

Assume that the origin of the system & = Ax is asymptotically
stable. Then prove that the matrix A is similar to a matrix A
which satisfies A + AT < 0.

In other words, the system & = Ax is equivalent by a linear change
of coordinates to a system Z = Az for which the Euclidean norm is
strictly decreasing along non-zero solutions.

Terrell, Theorem 3.7(d)
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Lyapunov's theory of stability for linear systems

Problem 3

Assume that the origin of the system & = Ax is asymptotically
stable. Then prove that the matrix A is similar to a matrix A
which satisfies A + AT < 0.

In other words, the system & = Ax is equivalent by a linear change
of coordinates to a system Z = Az for which the Euclidean norm is
strictly decreasing along non-zero solutions.

Recall

This question is based on the lecture slide 30 which discusses the
Lyapunov's theory of stability for linear systems

Terrell, Theorem 3.7(d)



Solution to Problem 3

Recall that since the matrix A is Hurwitz there exists positive definite
solution of the equation

ATP+PA+Q=0 (1)

where () is positive definite. Setting (Q = I, there exists a
P>0:ATP+PA+1=0.

Also, there exists a positive definite matrix S such that S2 = P; it is
natural to write S = P'/2 and call it the positive square root of P.

The matrix P1/2 is invertible and we can write P~1/2 £ (P1/2)7",

Multiplying (1) on the right and on the left by P~/ and rearranging it,
we obtain:
P71/2ATP1/2 T P1/2AP71/2 — _Pfl

Note that the right hand side is negative definite.
Now with A £ PY/2AP~1/2 e see that A is similar to A and

A+ AT < 0 is negative definite. This completes the proof.



Margin of stability

Problem 4

Let 0 > 0 be a positive number, () be a positive definite matrix,
and A a matrix of the same size as (). Show that if there exists a
positive definite matrix P such that

ATP+ PA+20P=—-Q

then every eigen values of A satisfies Re(\) < —c

Recall

This question is based on the lecture slide 30 which discusses the
Lyapunov's theory of stability for linear systems

1Terre||, Exercise 3.17
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Solution to Problem 4

Let A\ be a (possibly complex) eigenvlaue of A and v be the
corresponding eigenvector, then

v* (ATP +PA+20P)v=—v"Qu
= (Av)" Pv+v*P (Av) + 200" Pv = —v*Qu
— M*Pv + M*Puv 4 200*Pv = —v*Qu
= (5\ + A+ 20) v Pv=—v"Qu
Since @ is positive definite matrix, the right hand side of the above

equation is negative definite. Also, since P is positive definite it is
necessary that

(A+A+20) <0 = 2Re(\) < —20 = A< —0

and since A was an arbitrary eigenvalue pf A, every eigenvalue \ of
A must satisfy A < —o.
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Stability of linear time variant systems

Problem 5

Consider the system

Analyze the system for stability.

Terrell, Example 3.10
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Stability of linear time variant systems

Problem 5

Consider the system

Analyze the system for stability.

Recall

This question is based on the lecture slide 57- “the fact that it is
not possible to comment on the stability of a linear time varying
system by merely computing the eigen values of the state matrix" .

Terrell, Example 3.10
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Solution to Problem 5

For each ¢, the matrix A(t) has —1 as a repeated eigenvalue.

The solution for x5 is xo(t) = e 'x90. If we substitute this into the

equation for x1, then
t
e trig+et (/ e3sx2(s)ds)
0

=etxg+e? (625:1:20(138)
1

I (t)

—t —t 2t
=e T10te B (6 T20 — 5620)
—t L L
=e T+ 56 Tog — 56 T20

Because of the exponential growth term, if x99 # 0 then

x1(t) — 00 as t — oo. Thus, negative real parts for all eigenvalues
is not a sufficient condition for asymptotic convergence of all
solutions to the origin in a linear time-varying system.
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Sampling and stability

Problem 6
Compare the stability of the system

T = Az
. 0 1 L e . .
with A = _9 _5 with its discrete time counterpart (obtained
using the Euler's method) with a sampling time 7' = 0.5 and

T =0.1.
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Solution to Problem 6

Stable CT system

The eigen values of A are computed as —0.4384 and —4.5616
which clearly shows that the system is internally stable.
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Solution to Problem 6

Discrete counterpart at 7' = 0.5
Using the Euler method the discrete system is given s:

.’i‘d(k = 1) = (TA aF I) xd(kz) = Ade’d(k)

where T is the sampling time With T' = 0.5 the state matrix is

given as:
1 05
Aa= [—1 —1.5]

with eigenvalues: —1.281 and 0.7808. Since one of the eigenvalue
has magnitude greater than 1, the system is unstable.
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Solution to Problem 6

Discrete counterpart at 7' = 0.1
With T' = 0.1 the state matrix is given as:

101
As= [—0.2 0.5]

with eigenvalues: 0.5438 and 0.9562. Since the eigenvalues have
magnitude less than 1, the system is stable.

@ It can be verified that the system obtained after discretizing
using Euler method is stable as long as T" < 0.453.

@ Using another method of discretization or determining the
stability of the discrete-time state matrix obtained using
c2d-MATLAB command, the state matrix is always stable.
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Jordan forms stability and minimal polynomial

Problem 7

Comment on the stability of the system & = Az with

-1 0 0 0 0
1 -1 0 0 —1
A=|1 -1 0 0 -1
0 0 00 -1
-1 1 0 0 1
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Jordan forms stability and minimal polynomial

Problem 7

Comment on the stability of the system & = Az with

-1 0 0 0 0
1 -1 0 0 —1
A=|1 -1 0 0 -1
0 0 00 -1
-1 1 0 0 1

Recall

This question is based on the lecture slide 53 — 54 which discuss
relationship between stability, Jordan forms and minimal
polynomial.
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Solution to Problem 7

Jordan form computation

The Jordan form of a matrix can be computed using the concepts
of eigenvalues, eigenvectors and the generalized eigenvectors. Or
you can also use MATLAB command: J = jordan(A).

The eigenvalues of A are computed to be 0,0,0,0,—1. For the
given A the Jordan form is computed to be:

o O O

-1
0

-

I
cocoocoo
cococor
cocoo~oO
cococoo

Clearly the Jordan blocks corresponding the zero eigenvalues are
not 1 x 1 and hence the system under consideration is not
marginally stable
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Solution to Problem 7

Minimal polynomial

The characteristic polynomial is given as s*(s + 1) = 0.

Furthermore, it is easily verified that A satisfies A3(A + 1) =0
and hence the minimal polynomial is s3(s + 1) which has repeated
roots at s = 0 and hence the system is unstable.
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