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Outline

1 Motion of an orbiting satellite (Controllability test discussed in
lecture slides 21, 43)

2 Controllability and control input design (lecture slides 20)

3 Reachability and control input design (lecture slides 30− 31)

4 Reachability for a discrete time system (lecture slide 27)

5 Reachability of a time varying system (lecture slides 15− 16)

6 Hot air balloon (lecture slides 20− 23)

7 Rank equivalence (lecture slides 12− 16)

8 Controllability Check (lecture slides 34− 49)

9 Controllability Check (lecture slides 34− 49)
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Motion of an orbiting satellite

Problem 1

Consider the state equation ẋ = Ax+Bu, where

A =


0 1 0 0

3w2 0 0 2w
0 0 0 1
0 −2w 0 0

 , B =


0 0
1 0
0 0
0 1

 ,
which was obtained by linearizing the nonlinear equations of motion
of an orbiting satellite about a steady-state solution. In the state
vector x = [x1, x2, x3, x4]′, x1 is the differential radius, while x3 is
the differential angle. In the input vector u = [u1, u2]′, u1 is the
radial thrust and u2 is the tangential thrust.

(a) Is the system controllable?
(b) Can the system be controlled if the radial thruster fails? What

if the tangential thruster fails?

1Antsaklis, Problem 3.2
Linear Dynamical Systems
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Solution to Problem 1

Recall!

Recall from the lecture slide 43 that an LTI system is controllable
if the controllability matrix has full rank.

(a) since rank
[
B AB A2B A3B

]
= 4 the system is controllable

from u, (can also use MATLAB command rank(ctrb(A, B)))

(b) If the radial thruster fails, that is u1 = 0, consider the controllability
matrix

C2 =
[
b2 Ab2 A2b2 A3b2

]
, where b2 =

[
0 0 0 1

]T
. Since rank(C2) = 4, the system is

controllable from u2. Similarly, if the tangential thruster fails,
consider :

C1 =
[
b1 Ab1 A2b1 A3b1

]
where b1 =

[
0 1 0 0

]T
. since rank(C1) < 4, the system is not

controllable from u1.

Linear Dynamical Systems



5

Controllability and control input Design

Problem 2

Consider the state equation

[
ẋ1
ẋ2

]
=

[
−1

2 0
0 −1

] [
x1
x2

]
+

[
1
2
1

]
u

(a) If x0 = x(0) =

[
a
b

]
, derive an input that will drive the state to

x1 =

[
0
0

]
in T seconds.

(b) For x0 = x(0) =

[
5
−5

]
compare the plots of the input and

state trajectories for T = 1, 2 and 5. How do the trajectories
appear after t = T?

1Antsaklis, Problem 3.3
Linear Dynamical Systems
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Solution to Problem 2

Recall!

Recall from the lecture slides 17− 21 the formula of the
controllability matrix and the subsequent computation of the
control input.

(a) The required control input is given by:
u(t) = B′eA

′(T−t)
W−1r (0, T )(x1 − eATx0) where Wr is the

n× n reachability gramian given as:

Wr(0, T ) =

∫ T

0
e(T−τ)ABB′e(T−τ)A

′
dτ

and x0 is the initial state and x1 is the final state.

Linear Dynamical Systems
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Solution to Problem 2

For x0 =
[
a b

]′
, x1 =

[
0 0

]′
, we obtain

u(t) =
1

∆

{
1

2
et/2
[
b

3
e−3T/2(1− e−3T/2)− a

2
e−T (1− e−2T )

]
+ et

[
a

3
e−3T/2(1− e−3T/2)− b

4
e−2T (1− e−T )

]}
where ∆ = 1

72 −
1
8e
−T + 2

9e
−3T/2 − 1

8e
−2T + 1

72e
−3eT

Linear Dynamical Systems
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Solution to Problem 2

(b) The next figures summarize the answer:

Simulations
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Figure: State and input trajectories for T = 1
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Solution to Problem 2

Simulations
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Figure: State ad input trajectories for T = 2
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Solution to Problem 2

Simulations
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Figure: State trajectory for T = 5
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Solution to Problem 2

Simulations
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Solution to Problem 2

Simulations
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Solution to Problem 2

Simulations

0 0.5 1 1.5 2 2.5 3

time (seconds)

-10

0

10

20

30

40

50

60

x
(t

)

State trajectories for T=2 (beyond T!!)

x
1
(t)

x
2
(t)

Figure: State trajectory beyond T = 2

Linear Dynamical Systems



14

Solution to Problem 2

Simulations
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Solution to Problem 2

Simulations
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Solution to Problem 2

Comparison of energies

Figure: Comparison of the energies of the input u(t) for T = 1, 2 and 5

T Energy (computed using the formula

∫
T

0
u2(t)dt)

1 5858.90

2 440.80

5 7.12

Linear Dynamical Systems
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Reachability and Control Input Design

Problem 3

Consider the equation x(k + 1) =

1 1 0
0 1 0
0 0 1

x(k) +

0
1
1

u(k),

y(k) =

[
1 1 0
0 1 0

]
x(k) .

(a) Is x1 =

3
2
2

 reachable? If yes, what is the minimum number of

steps required to transfer the state from the zero state to x1? What
inputs do you need?

(b) Determine all states that are reachable.

(c) For the discrete-time system x(k + 1) =

[
2 1
0 0

]
x(k) +

[
−1
0

]
u(k),

comment on reachability and controllability subspaces. Are they
equal?

1Antsaklis, Problem 3.4
Linear Dynamical Systems
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Solution to Problem 3

Recall!

Recall from the lecture slides 28− 29 the formula of the
controllability and the subsequent computation of the control input
for the discrete time systems.

(a) The controllability matrix for this case is given as:

C =

0 1 2
1 1 1
1 1 1


which is a rank 2 matrix. But

x =

3
2
2

 = C

−1
3
0


Thus, x1 ∈ Im(C), it is reachable. Further, x1 ∈

[
B AB

]
, it

can be reached in two steps.

Linear Dynamical Systems
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Solution to Problem 3

(b) Note that,

x(1) = Ax(0) +

0
1
1

u(0) =⇒ x(1) =

 0
u(0)
u(0)


and

x(2) = A

 0
u(0)
u(0)

+

0
1
1

u(1) =⇒ x(2) =

 u(0)
u(0) + u(1)
u(0) + u(1)



Thus, the state x1 =

3
2
2

 can be reached with u(0) = 3 and

u(1) = −1.

Linear Dynamical Systems
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Solution to Problem 3

(c) A basis for the reachability subspace range(
[
B AB A2B

]
)

is

0 1
1 0
1 0

. Thus, any x =

0 1
1 0
1 0

[a
b

]
=

ba
a

 will be

reachable.

Linear Dynamical Systems
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Solution to Problem 3

(d) The controllability matrix is computed to be:

C =

[
−1 −2
0 0

]
which has rank 1 and hence the system is not reachable.
However, for any x1[0] = a and x2[0] = b, the input
u[0] = 2a+ b transfers the state x[0] to x[1] = 0 and hence
the system is controllable to the origin.

Recall!

Recall from the lecture slide 31 that for a singular matrix A, the
reachable space of the system x(k+ 1) = Ax(k) +Bu(k) is subset
of the controllability space.

Linear Dynamical Systems
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Reachability for a discrete system

Problem 4

Given x(k + 1) =

[
1 1
0 1

]
x(k) +

[
1
1

]
u(k), y(k) =

[
1 0
1 1

]
x(k),

and assume zero initial conditions.

(a) Is there a sequence of inputs u(0), u(1), ... that transfers the

output from

[
0
0

]
to

[
0
1

]
in finite time? If the answer is yes,

determine such a sequence.

(b) Characterize all outputs that can be reached from the zero

output

(
y(0) =

[
0
0

])
in one step.

1Antsaklis, Problem 3.10
Linear Dynamical Systems
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Solution to Problem 4

Recall!

Recall from the lecture slides 28− 29 the formula of the
controllability and the subsequent computation of the control input
for the discrete time systems.

(a) This is essentially a problem of output reachability. Consider:
x(k + 1) = Ax(k) +Bu(k) with

y(k) = Cx(k)

=⇒ y(k + 1) = Cx(k + 1)

=⇒ y(k + 1) = CAx(k) + CBu(k)

=⇒ y(k + 1) = CAC−1y(k) + CBu(k)

(assuming that C is invertible )

This system shall be reachable if the matrix[
CB CAC−1CB

]
=
[
CB CAB

]
is full rank.

Linear Dynamical Systems
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Solution to Problem 4

Computation gives:

[
CB CAB

]
=

[
1 2
2 3

]
Since this matrix is of full rank, the system is reachable and the
required input exists.
The required input is easily computed as u(0) = −1, u(1) = 2.

(b) y(0) = [0 0]′ implies x(0) = [0 0]′ as well. Therefore

y(1) = Cx(1) = CBu(0) =

[
1
2

]
u(0).

where u(0) is arbitrary.

Linear Dynamical Systems
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Reachability of a time varying system

Problem 5

Consider the state equation

ẋ =

[
ẋ1
ẋ2

]
=

[
0 0
0 1

]
x(t) +

[
1
e−t

]
u(t)

(a) Show that it is controllable at any t0 ∈ (−∞,∞).

(b) Suppose we are interested only in x2(t). Consider, therefore,
ẋ2(t) = x2(t) + e−tu(t). Is it possible to determine u(t) so that the state
x2(t) is transferred from x20 at t = t0 [x2(t0) = x20] to the zero state at
some t = t1 [x2(t1) = 0] and then stay there? If the answer is yes, find
such a u(t).

(c) In (b), let t0 = 0 and study the effects of the sizes of t1 and x0 on the
magnitude of u(t).

(d) For the system in (b), determine, if possible, a u(t) so that the state is
transferred from x20 at t = t0 to x21 at t = t1 and then stay there.

1Antsaklis, Problem 3.11
Linear Dynamical Systems
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Solution to Problem 5

Recall!

See the lecture slide 17 for the computation of the controllability
gramian. The controllability gramian is given as

WC(t0, t1) =

∫ t1

t0

φ(t0, τ)B(τ)B(τ)Tφ(t0, τ)Tdτ

(a) The controllability gramian is computed to be :

Wc (t0, t1) =

[
t1 − t0 e−t0

2 −
et0−2t1

2
e−t0
2 −

et0−2t1

2
e−2t0

4 − e2t0−4t1

4

]
For any t0 ∈ (−∞,∞) we can find t1 > t0 such that
rank(Wc(t0, t1)) = 2. Therefore the system is controllable at
any t0 ∈ (−∞,∞).

(b) We need to find an input that will satisfy x2(t) = 0, t ≥ t1.
Since:

Linear Dynamical Systems
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Solution to Problem 5

x2(t) = et−t0x20 +

∫ t

t0

et−τe−τu(τ)dτ

=⇒ x2(t1) = et1−t0x20 + et1
∫ t1

t0

e−2τu(τ)dτ

In order to have x2(t1) = 0, we need et1−t0x20 +
∫ t1
t0
e−2τu(τ)dτ = 0. We also

need u(t) = 0, t ≥ t1, because e−tu(t) = 0 for t ≥ t1. Let

u(t) =

{
e2t(at+ b) t0 ≤ t ≤ t1
0 t ≥ t1

Then,
e−t0x20 +

a

2
(t21 − t20) + b(t1 − t0) = 0 and at1 + b = 0

=⇒ a =
2x20e

−t

(t1 − t0)2
, b = −2t1x20e

−t0

(t1 − t0)2

Hence,

u(t) =

{
2x20e

−t

(t1−t0)2
(t− t1) e2t t0 ≤ t ≤ t1

0 t ≥ t1

Linear Dynamical Systems
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Solution to Problem 5

Simulation result for part (b) with t1 = 2, t0 = 1 and x0 = 5
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Figure: State and input trajectories for (b)
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Solution to Problem 5

(c) For

t0 = 0, u(t) = 2
x20(t− t1)

t21
e2t; t0 ≤ t ≤ t1

The energy of u(t) is computed to be:

Eu =

∫ t1

0
(u(t))2 dt =

x220
8t41

[
e4t1 −

(
1 + 2t1 + 8t21

)]
Obviously, the energy of u(t) increases as x20 increases or t1
decreases.

Linear Dynamical Systems
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Solution to Problem 5

(d) We need x2(t1) = x21 that is

x2(t1) = x21 = et1−t0x20 +

∫ t1

t0

et1−τe−τu(τ)dτ

and ẋ2(t) = x2 + e−tu(t) = 0, t ≥ t1

Let

u(t) =

{
e2t(at+ b); t0 ≤ t ≤ t1
−e−tx21; t ≥ t1

Then

e−tx21 = e−t0x20 +
a

2

(
t21 − t20

)
+ b (t1 − t0)

e2t1 (at+ b) = −e−tx21

=⇒ a = 2
(t1−t0)2

[
−x21et1(t1 − t0) + x20e

−t0 − x21e−t1
]

and

b = (t1+t0)x21et1

t1−t0 − 2t1(x20e−t0−x21e−t1)
(t1−t0)2

Linear Dynamical Systems
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Hot air Balloon

Problem 6
Approximate equations of motion for a hot air balloon are

θ̇ = −
1

τ1
θ + u

v̇ = −
1

τ2
v + σθ +

1

τ2
w

ḣ = v

Burner Flame

Wind

Reference 
Altitude

Temperature 
Change

Here θ = temperature change of air in balloon away
from equilibrium temperature, u is proportional to
change in heat added to air in balloon (control), v =
vertical velocity, h = change in altitude from equilibrium
altitude, and w = vertical wind velocity (disturbance).
Determine the transfer function from u to h and from w
to h. Is the system completely controllable by u? Is it
completely controllable by w?

1Example 2.3 (Linear Systems- T. Kailath)
Linear Dynamical Systems
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Solution to Problem 6

We consider w as a second input, the state equation are

θ̇v̇
ḣ

 =

−1/τ1 0 0
σ −1/τ2 0
0 1 0

θv
h

 +

1 0
0 1/τ2
0 0

 [u
w

]
; y =

[
0 0 1

] θv
h


Note that the eigenvalues are −1/τ1,−1/τ2 and 0. The transfer function to the output from one input of a
multi-input system is defined with all other input zero. Then when all inputs are present we merely use
superposition.

Recall that the transfer function from
y(s)
u(s)

for the system ẋ = Ax + Bu,y = Cx is given by

y(s)

u(s)
= C (sI − A)

−1
B

Using this formula for the present system with

A =

−1/τ1 0 0
σ −1/τ2 0
0 1 0



Linear Dynamical Systems
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Solution to Problem 6

The quantity (sI −A)−1 is computed to be

(sI −A)−1 =


τ1

(sτ1+1) 0 0
στ1τ2

(sτ1+1)(sτ2+1)
τ2

(sτ2+1) 0
στ1τ2

s(sτ1+1)(sτ2+1)
τ2

s(sτ2+1)
1
s


Taking transforms with w = 0, we obtain, after some algebraic
manipulations

h(s)

u(s)
|w=0 =

h(s)v(s)θ(s)

v(s)θ(s)u(s)
=

σ

s(s+ 1/τ2)(s+ 1/τ1)

Similarly, with u = 0, we obtain

h(s)

w(s)
|u=0 =

h(s)v(s)

v(s)w(s)
=

1/τ2
s(s+ 1/τ2)

=
1

s(τ2s+ 1)

The eigenvalues at −1/τ1 has evidently been canceled by the
numerator, as the eigenvalue s = −1

τ1
is the present in the

expression of (sI −A)−1.
Linear Dynamical Systems
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Solution to Problem 6

Linear Dynamical Systems
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Rank equivalence

Problem 7

Is it true that the rank of
[
B AB · · · An−1B

]
equals the rank

of
[
AB A2B · · · AnB

]
? If not, under what condition will it be

true?

1Chen, Problem 6.3
Linear Dynamical Systems
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Solution to Problem 7

Recall!

Recall the lecture slide 12− 16 for revisiting the linear algebra
concepts required for this problem.

It is not always true that the rank of
[
B AB · · · An−1B

]
equals the rank of

[
AB A2B · · · AnB

]
. Only if A is

nonsingular

ρ(
[
AB A2B · · · AnB

]
) =ρ(A

[
B AB · · · An−1B

]
)

=ρ(
[
B AB · · · An−1B

]
)

will be true.
Let A be m× n matrix and C and D be any n× n and m×m
nonsingular matrices. Then we have

ρ(AC) = ρ(A) = ρ(DA)

In other words, the rank of a matrix will not change after pre or
post-multiplication by a nonsingular matrix.

Linear Dynamical Systems
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Controllability Check

Problem 8

Consider the state equation

ẋ =


λ1 0 0 0 0
0 α1 β1 0 0
0 −β1 α1 0 0
0 0 0 α2 β2
0 0 0 −β2 α2

x+


b1
b11
b12
b21
b22

u
y =

[
c1 c11 c12 c21 c22

]
It is the modal form. It has one real eigenvalue and two pairs of
complex conjugate eigenvalues. It is assumed that they are
distinct. Show that the state equation is controllable if and only if
b1 6= 0; bi1 6= 0 or bi2 6= 0 for i = 1, 2.

1Chen, Problem 6.16
Linear Dynamical Systems
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Solution to Problem 8

Controllability is invariant under any equivalence transformation.
So we introduce a nonsingular matrix transformed into Jordan form

P =


1 0 0 0 0
0 0.5 −0.5j 0 0
0 0.5 0.5j 0 0
0 0 0 0.5 −0.5j
0 0 0 0.5 0.5j

,

P−1 =


1 0 0 0 0
0 1 1 0 0
0 j −j 0 0
0 0 0 1 1
0 0 0 j −j

,

Linear Dynamical Systems
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Solution to Problem 8

Ā = PAP−1 =
λ1 0 0 0 0
0 α1 + jβ1 0 0 0
0 0 α1 − jβ1 0 0
0 0 0 α2 + jβ2 0
0 0 0 0 α2 − jβ2

,

B̄ = PB =


b1

0.5(b11 − jb12)
0.5(b11 + jb12)
0.5(b21 − jb22)
0.5(b21 − jb22)

.

Recall!

Recall from the lecture slide 43 that a LTI system is controllable if
the controllability matrix has full rank.

Linear Dynamical Systems
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Solution to Problem 8

The state equation is controllable if and only if b1 6= 0,
0.5(b11 ± jb12) 6= 0 and 0.5(b21 ± jb22) 6= 0; equivalently if and
only if b1 6= 0, bi1 6= 0 or bi2 6= 0 for i = 1, 2

Linear Dynamical Systems
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Controllability Check

Problem 9

For time-invariant systems, show that (A,B) is controllable if and
only if (-A,B) is controllable. Is this true for time-varying systems?

1Chen, Problem 6.23
Linear Dynamical Systems
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Solution to Problem 9

Recall!

Recall from the lecture slide 43 that a LTI system is controllable if
the controllability matrix has full rank.

For time-invariant system (A,B) is controllable if and only if
ρ(C1) = ρ

[
B AB · · · An−1B

]
= n Assuming A is n× n,

(−A,B) is controllable if and only if

ρ(C2) =ρ
[
B −AB A2B −A3B · · · An−1B

]
=ρ
[
B AB A2B A3B · · · An−1B

]

I 0 0 · · · 0
0 −I 0 · · · 0
0 0 I · · · 0

. . .



Linear Dynamical Systems
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Solution to Problem 9

We know that any column of a matrix multiplied by nonzero
constant does not change the rank of the matrix, so the conditions
ρ(C1) = ρ(C2) is identically the same, thus we conclude that
(A,B) is controllable if and only if (−A,B) is controllable and for
the time-varying system this is not true.
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Solution to Problem 9

Recall!

Recall from the lecture slide 35 that a linear system is controllable
if the controllability gramian Wc is non-singular ∀t.

For example consider (A(t), B(t))=

([
0 0
0 −1

]
,

[
1
e−t

])
,

φ(t, τ) =

[
1 0

0 e−(t−τ)

]
,

φ(t, τ)B(τ) =

[
1 0

0 e−(t−τ)

] [
1
e−t

]
=

[
1
e−t

]
Wc(t0, t1) =

∫ t1
t0

[
1
e−τ

] [
1 e−τ

]
dτ =[

t1 − t0 e−t1(t1 − t0)
e−t1(t1 − t0) e−2t1(t1 − t0)

]
detWc(t0, t1) = 0 for all t0 and t1 ≥ t0. Thus the equation is not
controllable at any t.
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Solution to Problem 9

(−A(t), B(t))=

([
0 0
0 1

]
,

[
1
e−t

])
, we have φ(t, τ) =

[
1 0
0 et−τ

]
φ(t, τ)B(τ) =

[
1

et−τe−τ

]
=

[
1

et−2τ

]

Wc(t0, t1) =

∫ t1

t0

[
1

et1−2τ

] [
1 et1−2τ

]
dτ

=

∫ t1

t0

[
1 et1−2τ

et1−2τ e2(t1−2τ)

]
dτ

=

[
t1 − t0 1

3e
t1(e−3t0 − e−3t1)

1
3e
t1(e−3t0 − e−3t1) 1

5e
2t1(e−5t0 − e−5t1)

]
For any t0, we can find a t1 so that Wc(t0, t1) is nonsingular and
(−A(t), B(t)) is controllable at any t although (A(t), B(t)) is not.
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