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Origin of Stability Analysis

One of the first significant feedback control systems in modern Europe

OCTOBER 2016 « IEEE CONTROL SYSTEMS MAGAZINE 79

Maxwell described stability as [1] “the motion of a ma-
chine with its governor consists in general of a uniform mo-
tion, combined with a disturbance that may be expressed as 
the sum of several component motions. These components 
may be of four different kinds: the disturbance may (i) contin-
ually increase, (ii) continually diminish, (iii) be an oscillation 
of continually increasing amplitude, and (iv) be an oscillation 
of continually decreasing amplitude. The second and fourth 
kinds are admissible in a good governor, and are mathemati-
cally equivalent to the condition that all the possible roots 
[that is, real roots in modern terminology], and all the pos-
sible parts [that is, real parts] of the impossible roots [that is, 
complex roots] of a characteristic equation shall be negative.’’ 

Maxwell classified governors into two groups: mod-
erators and genuine governors. His description of the dif-
ference between moderators and genuine governors (in 
modern terminology) is that moderators are controllers 
with only proportional control action, whereas genuine gov-
ernors are controllers with both proportional and integral 
control actions.

Maxwell considered three kinds of governors. In the first 
kind, the centrifugal piece is at a constant distance from the 
axis of rotation; examples of this kind of governor are a fric-
tion governor [10], as shown in Figure 5, and the governor 
of H.C. Fleeming Jenkin (1863), shown in Figures 6 and 7.  
Figure 7 is a redrawing of the schematic from [7, p. 65].  
In the second kind of governor, the centrifugal piece is free 
to move from the axis of rotation but is balanced by a cen-
trifugal force and the force of gravity (or by the spring force, 

too, in some cases). Examples of this kind of governor are 
Watt’s governor, as shown in Figure 4, and Léon Foucault’s 
governor (1862) [11], as shown in Figure 8. In the third kind 
of governor, a liquid is pumped up and removed over the 
sides of a rotating cup, for example, the liquid governor of 
C. William Siemens (1866) [10], [12], [13], as shown in Figure 9.

After describing the three kinds of governors, Maxwell 
presented differential equations of motion for each of them 
without providing any detailed explanations. Maxwell ap-
proached the topic of the instability of governors by solving 
the differential equations of motion, and, for the first time in 
the history of control, partially succeeded in a stability analy-
sis. The first mathematical investigation of governor instabil-
ity was performed in 1840 by Prof. George Biddell Airy of the 
University of Cambridge, who also attempted to understand 
governor instability through differential equations of motion 
but failed, owing to the insolvability of the nonlinear differ-
ential equation of the form /( ) ( / )sin cosk g a D22 2i i i+ - =o  
that he derived [14]. Maxwell was able to obtain results by 
linearizing the nonlinear equations.

For Jenkin’s governor, Maxwell derived differential 
equations of motion without any illustrative figures. In this 
article, the same equations of motion are rederived with 
clear free-body diagrams and extensive explanations. Jen-
kin’s governor was used to regulate an experimental appa-
ratus used to determine electrical resistance (ohms). It was 
essentially a friction governor and consisted of two rotat-
ing mechanisms capable of moving separately, as shown 
in Figure 7. If the principal axis rotates faster, the flyballs 
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FIGURE 4 The flyball governor invented by James Watt in 1788. If the actual speed increases beyond the desired value, the increase 
in the centrifugal force of the flyball governor causes closing of the steam valve, resulting in the supply of less steam, and the speed 
of the steam engine decreases. If the engine speed drops below the desired value, the opposite action occurs. (a) The original design 
(reproduced by permission of the Institution of Engineering & Technology [7]), and (b) the improved design.

Figure: The flyball governor invented by James Watt in 1788. (a) The original
design, and (b) the improved design.1

1
C. G. Kang, “Origin of Stability Analysis: “On Governors” by J.C. Maxwell [Historical Perspectives],” in

IEEE Control Systems, 36(5), pp. 77-88, 2016.
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Origin of Stability Analysis

At the height of industrial revolution around 1868, many governors
were installed.

The governor system was soon discovered to be plagued by
problems of instability and inaccuracy that could apparently not be
overcome by either theoretical or practical approaches

Maxwell’s 1868 paper2:

Stability concept
Simple mathematical models
Importance of integral actions
Linearization
Stability is an algebraic problem
Criteria for 1st, 2nd, and 3rd order systems
Posed stability problem in competition

2J. C. Maxwell, “On governors,” Proc. R. Soc. London, 16, 270–283, 1868.
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276 Mr. J. C. lVlaxwell on Governors. [Mar. 5, 

The equation of motion of the machine itself is 

d
2

x (dX) M-=P-R-F ---V -Gy dt 2 dt 1 • • (10) 

This must be combined with equation (7) to determine the motion of the 
whole apparatus. The solution is of the form 

x = A 1 enl t + A 2en2t -1- J.~3en'l + V t, 
where n], 'il 2 , n3 are the roots of the cubic equation 

MBn3+ (MY +FB)n2 +FYn+FG=O. 

(11) 

(12) 

If n be a pair of roots of this equation of the form a + V-1o, then the 
part of x corresponding to these roots will be of the form 

eat cos (bt+(3). 

If a is a negative quantity, this will indicate an oscillation the anlplitude 
of which continually decreases. If a is zero, the amplitude \vill remain 
constant, and if a is positive, the urnplitude will continually increase. 

One root of the equation (12) is evidently a real negative quantity. 
The condition that the real part of the other roots should be negative is 

( 
F Y) Y G . . . 
])i + B B -]3 =a posItIve quantIty. 

This is the condition of stability of the motion. If it is not fulfilled 
there will be a dancing motion of the governor, which will increase till it 
is as great as the limits of nlotion of the governor. To ensure this stability, 
the value of Y must be made sufficiently great, as conlpared with G, by 
placing the weight VV in a viscous liquid if the viscosity of the lubri­
cating materials at the axle is not sufficient. 

To uetermine the value of F, put the break out of gear, and fix the 
moveable ,,,heel; then, if V and V' be the velocities when the driving-power 
is P and P', 

p-p' 
F=V_V' · 

To cletern1ine G, let the governor act, and let y anel y' be the positions 
of the break when the dl'iving-po\;ver is P alld P', then 

p-p' 
G=- ,. y-y 

General Theory of Ohronouzetr-ic Centrifugal Piece8. 

Sir lY. r.Pho?nson's and Jll. Ji'oucault' 8 Governor8.-Let A be the mo­
Inent of inertia of a revolving apparatus, and {} the angle of revolution. 
rfhe equation of motion is 

d. (.A d.B)==L 
/ f .ti It ' 

( L' (, 

(1) 

where L is the moment of the applied force round the axis. 
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Taxonomy - Stability Concept3

“the motion of a machine with its governor consist in general of a
uniform motion, combined with a disturbance that may be expressed as
the sum of several component motions. These components may be of
four different kinds:

1 continually increase,

2 continually diminish,

3 be an oscillation of continually increasing amplitude, and

4 be an oscillation of continually decreasing amplitude.”

The second and fourth kinds are admissible in a good governor, and are
mathematically equivalent to the condition that all the possible roots,

and all the possible parts of the impossible roots of a characteristic
equation shall be negative.

3
J. C. Maxwell, “On governors,” Proc. R. Soc. London, 16, 270–283, 1868.
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Matrix Norms (Review)

A matrix norm is a norm on the vector space Km×n.

Thus, the matrix norm is a function ‖ · ‖ : Km×n → R that must
satisfy the following properties:

For all scalars α ∈ K and for all matrices A,B ∈ Km×n,

‖αA‖ = |α|‖A‖ (homogeneity)

‖A+B‖ ≤ ‖A‖+ ‖B‖ ( triangle inequality)

‖A‖ ≥ 0 (positive-valued)

‖A‖ = 0 iff A = 0m,n (definite)
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Matrix Norms (Review)

Several matrix norms are available for an m× n matrix A = [aij ].

1 The one-norm,

‖A‖1 , max
1≤j≤n

m∑
i=1

|aij |.

For a (column) vector v = [vi] ∈ R`, ‖v‖1 ,
∑`

i=1 |vi|.

2 The ∞-norm,

‖A‖∞ , max
1≤i≤m

n∑
j=1

|aij |.

For a (column) vector v = [vi] ∈ R`, ‖v‖∞ , max1≤i≤` |vi|.
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Matrix Norms (Review)

3 The two-norm,

‖A‖2 , σmax[A],

,
√
λmax[A′A]

where σmax[A] denotes the largest singular value, and λmax[A]
denotes the largest eigenvalue of A

For a (column) vector v = [vi] ∈ R`, ‖v‖2 ,
√∑`

i=1 v
2
i .

4 The Frobenius norm,

‖A‖F ,

√√√√ m∑
i=1

n∑
j=1

a2
ij =

√√√√ n∑
i=1

σi[A]2,

where the σi[A] are the singular values of A.
For (column) vectors, the Frobenius norm coincides with the
two-norm, but in general this is not true for matrices.
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Matrix Norms (Review)

All matrix norms are equivalent

in the sense that each one of them can
be upper and lower bounded by any other times a multiplicative constant:

‖A‖1√
n
≤‖A‖2 ≤

√
n‖A‖1

‖A‖∞√
n
≤‖A‖2 ≤

√
m‖A‖∞

‖A‖F√
n
≤‖A‖2 ≤ ‖A‖F

The four matrix norms above are submultiplicative; i.e., given two
matrices A and B

‖AB‖p ≤ ‖A‖p‖B‖p, p ∈ {1, 2,∞, F}
For any submultiplicative norm ‖ • ‖p, we have

‖Ax‖p ≤ ‖A‖p‖x‖p, ∀x
and therefore

‖A‖p ≥ max
x 6=0

‖Ax‖p
‖x‖p

.
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Positive-Definite Matrices (Review)

A symmetric n× n matrix Q is positive-definite if

x′Qx > 0, ∀x ∈ Rn \ {0}. (1)

When > is replaced by <, we obtain the definition of a
negative-definite matrix.

Positive-definite matrices are always nonsingular, and their
inverses are also positive-definite.

Negative-definite matrices are also always nonsingular, and
their inverses are negative-definite.

When (1) holds only for ≤ or ≥, the matrix is said to be
negative-semidefinite or positive-semidefinite, respectively.
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Positive-Definite Matrices (Review)

The following statements are equivalent for a symmetric n× n
matrix Q.

1 Q is positive-definite.

2 All eigenvalues of Q are strictly positive.

3 The determinants of all upper left submatrices of Q are
positive.

4 There exists an n× n nonsingular real matrix H such that

Q = H ′H

For a positive-definite matrix Q we have

0 < λmin[Q]‖x‖2 ≤ x′Qx ≤ λmax[Q]‖x‖2, ∀x 6= 0,

where λmin[Q] and λmax[Q] denote the smallest and largest
eigenvalues of Q, respectively.
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Simple Pendulum

• Equations of motion

C H A P T E R 2 

The Simple Pendulum 

2.1 INTRODUCTION�

Our�goals�for�this�chapter�are�modest:�we’d�like�to�understand�the�dynamics�of�a�pendulum.�
Why�a�pendulum?� In�part,�because�the�dynamics�of�a�majority�of�our�multi-link�robotics�
manipulators�are�simply�the�dynamics�of�a� large�number�of�coupled�pendula.� Also,� the�
dynamics�of�a�single�pendulum�are�rich�enough�to� introduce�most�of� the�concepts�from�
nonlinear�dynamics�that�we�will�use�in�this�text,�but�tractable�enough�for�us�to�(mostly)�
understand�in�the�next�few�pages.�
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m

l

FIGURE 2.1 The�Simple�Pendulum�

The�Lagrangian�derivation�(e.g,�[35])�of�the�equations�of�motion�of�the�simple�pen-
dulum�yields:�

I✓̈(t) + mgl sin ✓(t) = Q, 

where�I is�the�moment�of�inertia,�and�I = ml2 for�the�simple�pendulum.� We’ll�consider�
the�case�where�the�generalized�force,�Q,�models�a�damping�torque�(from�friction)�plus�a�
control�torque�input,�u(t):�

Q = �b✓̇(t) + u(t). 

2.2 NONLINEAR�DYNAMICS�W/�A�CONSTANT�TORQUE�

Let�us�first�consider�the�dynamics�of�the�pendulum�if�it�is�driven�in�a�particular�simple�way:�
a�torque�which�does�not�vary�with�time:�

I✓ ̈+ b✓̇ + mgl sin ✓ = u0. (2.1)�

These�are� relatively�simple�equations,� so�we�should�be�able� to� integrate� them� to�obtain�
✓(t) given�✓(0), ✓̇(0)...� right?� Although�it�is�possible,�integrating�even�the�simplest�case�

12 c� Russ�Tedrake,�2009�
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Consider a special case of heavy damping 
i.e.  

Section 2.2 Nonlinear Dynamics w/ a Constant Torque 13 

(b = u = 0)�involves�elliptic�integrals�of�the�first�kind;� there�is�relatively�little�intuition�
to�be�gained�here.� If�what�we�care�about�is�the�long-term�behavior�of�the�system,�then�we�
can�investigate�the�system�using�a�graphical�solution�method.�These�methods�are�described�
beautifully�in�a�book�by�Steve�Strogatz[83].�

2.2.1 The Overdamped Pendulum 

Let’s�start�by�studying�a�special�case,�when� b � 1.� This�is�the�case�of�heavy�damping�-I 
for�instance�if�the�pendulum�was�moving�in�molasses.� In�this�case,�the�b term�dominates�
the�acceleration�term,�and�we�have:�
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Simple Pendulum

• Two equilibrium position (or steady states): 
- at  
- at 

✓ = 0

✓ = ⇡

C H A P T E R 2 

The Simple Pendulum 

2.1 INTRODUCTION�

Our�goals�for�this�chapter�are�modest:�we’d�like�to�understand�the�dynamics�of�a�pendulum.�
Why�a�pendulum?� In�part,�because�the�dynamics�of�a�majority�of�our�multi-link�robotics�
manipulators�are�simply�the�dynamics�of�a� large�number�of�coupled�pendula.� Also,� the�
dynamics�of�a�single�pendulum�are�rich�enough�to� introduce�most�of� the�concepts�from�
nonlinear�dynamics�that�we�will�use�in�this�text,�but�tractable�enough�for�us�to�(mostly)�
understand�in�the�next�few�pages.�

g

θ

m

l

FIGURE 2.1 The�Simple�Pendulum�

The�Lagrangian�derivation�(e.g,�[35])�of�the�equations�of�motion�of�the�simple�pen-
dulum�yields:�

I✓̈(t) + mgl sin ✓(t) = Q, 

where�I is�the�moment�of�inertia,�and�I = ml2 for�the�simple�pendulum.� We’ll�consider�
the�case�where�the�generalized�force,�Q,�models�a�damping�torque�(from�friction)�plus�a�
control�torque�input,�u(t):�

Q = �b✓̇(t) + u(t). 

2.2 NONLINEAR�DYNAMICS�W/�A�CONSTANT�TORQUE�

Let�us�first�consider�the�dynamics�of�the�pendulum�if�it�is�driven�in�a�particular�simple�way:�
a�torque�which�does�not�vary�with�time:�

I✓ ̈+ b✓̇ + mgl sin ✓ = u0. (2.1)�

These�are� relatively�simple�equations,� so�we�should�be�able� to� integrate� them� to�obtain�
✓(t) given�✓(0), ✓̇(0)...� right?� Although�it�is�possible,�integrating�even�the�simplest�case�
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b

nonlinear�systems�(not�just�pendula);�as�illustrated�by�the�following�example:�

EXAMPLE 2.1 Nonlinear autapse 

Consider�the�following�system:�

ẋ + x = tanh(wx) (2.3)�

It’s�convenient� to�note� that�tanh(z) ⇡ z for� small�z.� For�w  1 the� system�has�only�
a�single�fixed�point.� For�w > 1 the�system�has�three�fixed�points� :� two�stable�and�one�
unstable.� These� equations� are� not� arbitrary� - they� are� actually� a� model� for� one� of� the�
simplest�neural�networks,�and�one�of�the�simplest�model�of�persistent�memory[71].� In�the�
equation�x models�the�firing�rate�of�a�single�neuron,�which�has�a�feedback�connection�to�
itself.�tanh is�the�activation�(sigmoidal)�function�of�the�neuron,�and�w is�the�weight�of�the�
synaptic�feedback.�

One�last�piece�of�terminology.� In�the�neuron�example,�and�in�many�dynamical�sys-
tems,�the�dynamics�were�parameterized;�in�this�case�by�a�single�parameter,�w.�As�we�varied�
w,�the�fixed�points�of�the�system�moved�around.� In�fact,�if�we�increase�w through�w = 1,�
something�dramatic�happens�- the�system�goes�from�having�one�fixed�point�to�having�three�
fixed�points.� This�is�called�a�bifurcation.� This�particular�bifurcation�is�called�a�pitchfork�
bifurcation.�We�often�draw�bifurcation�diagrams�which�plot�the�fixed�points�of�the�system�
as�a�function�of�the�parameters,�with�solid�lines�indicating�stable�fixed�points�and�dashed�
lines�indicating�unstable�fixed�points,�as�seen�in�figure�2.2.�

Our�pendulum�equations�also�have�a�(saddle-node)�bifurcation�when�we�change�the�
constant� torque� input,�u0.� This� is� the� subject�of� exercise�1.� Finally,� let’s� return� to� the�

� Russ�Tedrake,�2009�c
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Definitions of stability

Roughly speaking, the Lyapunov stability of a system
with respect to its equilibrium of interest is about the be-
havior of the system outputs toward the equilibrium
state—wandering nearby and around the equilibrium
(stability in the sense of Lyapunov) or gradually approach-
es it (asymptotic stability); the orbital stability of a system
output is the resistance of the trajectory to small pertur-
bations; the structural stability of a system is the resis-
tance of the system structure against small perturbations
[3,13,16,17,19,20,23,25,26,29,35]. These three basic types
of stabilities are introduced in this section, for dynamical
systems without explicitly involving control inputs.

Consider the general nonautonomous system

.
x¼ fðx; tÞ; xðt0Þ¼x0 2 Rn ð15Þ

where the control input u(t)¼h(x(t), t), if it exists [see
system (1)], has been combined into the system function f
for simplicity of discussion. Without loss of generality, as-
sume that the origin x¼ 0 is the system equilibrium of
interest. Lyapunov stability theory concerns various sta-
bilities of the system orbits with respect to this equilibri-
um. When another equilibrium is discussed, the new
equilibrium is first shifted to zero by a change of vari-
ables, and then the transformed system is studied in the
same way.

3.1. Stability in the Sense of Lyapunov

System (15) is said to be stable in the sense of Lyapunov
with respect to the equilibrium x$¼0, if for any e > 0
and any initial time t0%0, there exists a constant, d¼
dðe; t0Þ > 0, such that

jjxðt0Þjjod) jjxðtÞjjoe for all t%t0 ð16Þ

This stability is illustrated by Fig. 4.
It should be emphasized that the constant d generally

depends on both e and t0. It is particularly important to
point out that, unlike autonomous systems, one cannot
simply fix the initial time t0¼ 0 for a nonautonomous sys-
tem in a general discussion of its stability. For example,
consider the following linear time-varying system with a
discontinuous coefficient:

.
xðtÞ¼

1

1& t
xðtÞ; xðt0Þ¼ x0

It has an explicit solution

xðtÞ¼ x0
1& t0

1& t
; 0't0'to1

which is stable in the sense of Lyapunov about the equi-
librium x$¼ 0 over the entire time domain [0,N) if and
only if t0¼ 1. This shows that the initial time, t0, does play
an important role in the stability of a nonautonomous
system.

The above-defined stability, in the sense of Lyapunov, is
said to be uniform with respect to the initial time, if the
existing constant d¼ d(e) is indeed independent of t0 over
the entire time interval [0, N). According to the discussion
above, uniform stability is defined only for nonautono-
mous systems since it is not needed for autonomous sys-
tems (for which it is always uniform with respect to the
initial time).

3.2. Asymptotic and Exponential Stabilities

System (15) is said to be asymptotically stable about its
equilibrium x$¼ 0, if it is stable in the sense of Lyapunov
and, furthermore, there exists a constant, d¼ d(t0)40,
such that

jjxðt0Þjjod) jjxðtÞjj ! 0 as t!1 ð17Þ

This stability is visualized by Fig. 5.
The asymptotic stability is said to be uniform if the ex-

isting constant d is independent of t0 over [0, N), and is
said to be global if the convergence, ||x||-0, is inde-
pendent of the initial state x(t0) over the entire spatial
domain on which the system is defined (e.g., when d¼N).
If, furthermore

jjxðt0Þjjod) jjxðtÞjj'ce&st ð18Þ

for two positive constants c and s, then the equilibrium is
said to be exponentially stable. The exponential stability is
visualized by Fig. 6.

Clearly, exponential stability implies asymptotic stabil-
ity, and asymptotic stability implies the stability in the
sense of Lyapunov, but the reverse need not be true. For
illustration, if a system has output trajectory x1(t)¼
x0 sin(t), then it is stable in the sense of Lyapunov about
0, but is not asymptotically stable; a system with output

x (t0)

!
t

"
x (t)

Figure 4. Geometric meaning of stability in the sense of Lya-
punov.

x (t0)

!
t

x(t)

Figure 5. Geometric meaning of the asymptotic stability.

4884 STABILITY OF NONLINEAR SYSTEMS

Sample frame title

In the sense of Lyapunov

A system steady state xs is said to be stable if for each possible region of
radius ✏ > 0 around the steady state, there is an initial state x0 at t = t0

falling within a radius � > 0 around the steady state that causes the
dynamic trajectory to stay within the region |(x � xs)| < ✏ for all times
t > t0.

Arthur, Doe (VFU) About Beamer VLC 2014 7 / 8

3



16

Definitions of stability

Roughly speaking, the Lyapunov stability of a system
with respect to its equilibrium of interest is about the be-
havior of the system outputs toward the equilibrium
state—wandering nearby and around the equilibrium
(stability in the sense of Lyapunov) or gradually approach-
es it (asymptotic stability); the orbital stability of a system
output is the resistance of the trajectory to small pertur-
bations; the structural stability of a system is the resis-
tance of the system structure against small perturbations
[3,13,16,17,19,20,23,25,26,29,35]. These three basic types
of stabilities are introduced in this section, for dynamical
systems without explicitly involving control inputs.

Consider the general nonautonomous system

.
x¼ fðx; tÞ; xðt0Þ¼x0 2 Rn ð15Þ

where the control input u(t)¼h(x(t), t), if it exists [see
system (1)], has been combined into the system function f
for simplicity of discussion. Without loss of generality, as-
sume that the origin x¼ 0 is the system equilibrium of
interest. Lyapunov stability theory concerns various sta-
bilities of the system orbits with respect to this equilibri-
um. When another equilibrium is discussed, the new
equilibrium is first shifted to zero by a change of vari-
ables, and then the transformed system is studied in the
same way.

3.1. Stability in the Sense of Lyapunov

System (15) is said to be stable in the sense of Lyapunov
with respect to the equilibrium x$¼0, if for any e > 0
and any initial time t0%0, there exists a constant, d¼
dðe; t0Þ > 0, such that

jjxðt0Þjjod) jjxðtÞjjoe for all t%t0 ð16Þ

This stability is illustrated by Fig. 4.
It should be emphasized that the constant d generally

depends on both e and t0. It is particularly important to
point out that, unlike autonomous systems, one cannot
simply fix the initial time t0¼ 0 for a nonautonomous sys-
tem in a general discussion of its stability. For example,
consider the following linear time-varying system with a
discontinuous coefficient:

.
xðtÞ¼

1

1& t
xðtÞ; xðt0Þ¼ x0

It has an explicit solution

xðtÞ¼ x0
1& t0

1& t
; 0't0'to1

which is stable in the sense of Lyapunov about the equi-
librium x$¼ 0 over the entire time domain [0,N) if and
only if t0¼ 1. This shows that the initial time, t0, does play
an important role in the stability of a nonautonomous
system.

The above-defined stability, in the sense of Lyapunov, is
said to be uniform with respect to the initial time, if the
existing constant d¼ d(e) is indeed independent of t0 over
the entire time interval [0, N). According to the discussion
above, uniform stability is defined only for nonautono-
mous systems since it is not needed for autonomous sys-
tems (for which it is always uniform with respect to the
initial time).

3.2. Asymptotic and Exponential Stabilities

System (15) is said to be asymptotically stable about its
equilibrium x$¼ 0, if it is stable in the sense of Lyapunov
and, furthermore, there exists a constant, d¼ d(t0)40,
such that

jjxðt0Þjjod) jjxðtÞjj ! 0 as t!1 ð17Þ

This stability is visualized by Fig. 5.
The asymptotic stability is said to be uniform if the ex-

isting constant d is independent of t0 over [0, N), and is
said to be global if the convergence, ||x||-0, is inde-
pendent of the initial state x(t0) over the entire spatial
domain on which the system is defined (e.g., when d¼N).
If, furthermore

jjxðt0Þjjod) jjxðtÞjj'ce&st ð18Þ

for two positive constants c and s, then the equilibrium is
said to be exponentially stable. The exponential stability is
visualized by Fig. 6.

Clearly, exponential stability implies asymptotic stabil-
ity, and asymptotic stability implies the stability in the
sense of Lyapunov, but the reverse need not be true. For
illustration, if a system has output trajectory x1(t)¼
x0 sin(t), then it is stable in the sense of Lyapunov about
0, but is not asymptotically stable; a system with output

x (t0)

!
t

"
x (t)

Figure 4. Geometric meaning of stability in the sense of Lya-
punov.

x (t0)

!
t

x(t)

Figure 5. Geometric meaning of the asymptotic stability.

4884 STABILITY OF NONLINEAR SYSTEMS

Sample frame title

In the sense of Lyapunov

A system steady state xs is said to be asymptotically stable if it is both
stable and in addition, there exists a region of initial conditions of radius
�0 > 0 around xs for which the system approaches xs as t ! 1·
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Definitions of stability
Sample frame title

Definition 3

A system steady state is said to be unstable if it is not stable.
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Lyapunov Stability

Consider the following continuous-time LTV system

ẋ = A(t)x+B(t)u, y = C(t)x+D(t)u, x ∈ Rn, u ∈ Rk, y ∈ Rm.

Definition (Lyapunov Stability)

The system (CLTV) is said to be

1 (marginally) stable in the sense of Lyapunov or internally stable
whenever, for every initial condition x(t0) = x0 ∈ Rn, the homogeneous
state response

x(t) = φ(t, t0)x0, ∀t ≥ 0

is uniformly bounded,

2 asymptotically stable (in the sense of Lyapunov) whenever, in addition,
for every initial condition x(t0) = x0 ∈ Rn, we have that x(t)→ 0 as
t→∞,

3 exponentially stable whenever, in addition, there exist constants c, λ > 0
such that, for every initial condition x(t0) = x0 ∈ Rn, we have

‖x(t)‖ ≤ ceλ(t−t0)‖x(t0)‖, ∀t ≥ 0,

4 unstable whenever it is not marginally stable in the Lyapunov sense.
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Lyapunov Stability

The matrices B(•), C(•), and D(•) play no role in the above
definition;

only A(•) matters because this matrix completely defines the state
transition matrix.

Therefore one often simply talks about the Lyapunov stability of the
homogeneous system

ẋ = A(t)x, x ∈ Rn.

Attention!

1 For marginally stable systems, the effect of initial conditions does
not grow unbounded with time (but it may grow temporarily during
a transient phase).

2 For asymptotically stable systems, the effect of initial conditions
eventually disappears with time.

3 For unstable systems, the effect of initial conditions (may) grow
over time (depending on the specific initial conditions and the value
of the matrix C).
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Eigenvalue Conditions for Lyapunov Stability

The overall objective is to determine simple conditions to classify
the continuous-time homogeneous LTI system

ẋ = Ax x ∈ Rn

in terms of its Lyapunov stability, without explicitly computing the
solution to the system.

Theorem (Eigenvalue conditions)

The system (H-CLTI) is

1 marginally stable if and only if all the eigenvalues of A have
negative or zero real parts and all the Jordan blocks corresponding
to eigenvalues with zero real parts are 1× 1,

2 asymptotically stable if and only if all the eigenvalues of A have
strictly negative real parts,

3 unstable if and only if at least one eigenvalue of A has a positive
real part or zero real part, but the corresponding Jordan block is
larger than 1× 1.
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ẋ = Ax x ∈ Rn

in terms of its Lyapunov stability, without explicitly computing the
solution to the system.

Theorem (Eigenvalue conditions)

The system (H-CLTI) is

1 marginally stable if and only if all the eigenvalues of A have
negative or zero real parts and all the Jordan blocks corresponding
to eigenvalues with zero real parts are 1× 1,

2 asymptotically stable if and only if all the eigenvalues of A have
strictly negative real parts,

3 unstable if and only if at least one eigenvalue of A has a positive
real part or zero real part, but the corresponding Jordan block is
larger than 1× 1.



20

Eigenvalue Conditions for Lyapunov Stability

The overall objective is to determine simple conditions to classify
the continuous-time homogeneous LTI system
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Eigenvalue Conditions for Lyapunov Stability

Asymptotic and Exponential stability of LTI systems

When all the eigenvalues of A have strictly negative real parts, all entries of
eAt converge to zero exponentially fast, and therefore ‖eAt‖ converges to zero
exponentially fast (for every matrix norm); i.e., there exist constants c, λ > 0
such that

‖eAt‖ ≤ ce−λt ∀t ∈ R

In this case, for a submultiplicative norm, we have

‖x(t)‖ = ‖eA(t−t0)x0‖ ≤ ‖eA(t−t0)‖‖x0‖ ≤ ce−λ(t−t0)‖x0‖, ∀t ∈ R

This means that asymptotic stability and exponential stability are equivalent
concepts for LTI systems

Attention!

These conditions do not generalize to time-varying systems. One can find
matrix-valued signals A(t) that are stability matrices for every fixed t ≥ 0, but
the time-varying system ẋ = A(t)x is not even stable.
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the time-varying system ẋ = A(t)x is not even stable.



21

Eigenvalue Conditions for Lyapunov Stability

Asymptotic and Exponential stability of LTI systems

When all the eigenvalues of A have strictly negative real parts, all entries of
eAt converge to zero exponentially fast, and therefore ‖eAt‖ converges to zero
exponentially fast (for every matrix norm); i.e., there exist constants c, λ > 0
such that

‖eAt‖ ≤ ce−λt ∀t ∈ R

In this case, for a submultiplicative norm, we have

‖x(t)‖ = ‖eA(t−t0)x0‖ ≤ ‖eA(t−t0)‖‖x0‖ ≤ ce−λ(t−t0)‖x0‖, ∀t ∈ R

This means that asymptotic stability and exponential stability are equivalent
concepts for LTI systems

Attention!

These conditions do not generalize to time-varying systems. One can find
matrix-valued signals A(t) that are stability matrices for every fixed t ≥ 0, but
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Lyapunov Stability Theorem

The Lyapunov stability theorem provides an alternative condition to check
whether or not the CT homogeneous LTI system is asymptotically stable.

Theorem (Lyapunov stability)

The following conditions are equivalent:

1 The system (H-CLTI) is asymptotically stable.

2 The system (H-CLTI) is exponentially stable.

3 All the eigenvalues of A have strictly negative real parts.

4 For every symmetric positive-definite matrix Q, there exists a unique
solution P to the following Lyapunov equation

A′P + PA = −Q. (Lyapunov Eq.)

Moreover, P is symmetric and positive-definite.

5 There exists a symmetric positive-definite matrix P for which the
following Lyapunov matrix inequality holds:

A′P + PA < 0. (LMI)

Logical overview of the proof.

16

Lyapunov Stability

Consider the following continuous-time LTV system

ẋ = A(t)x + B(t)u, y = C(t)x + D(t)u, x 2 Rn, u 2 Rk, y 2 Rm.

Definition (Lyapunov Stability)

The system (CLTV) is said to be

1 (marginally) stable in the sense of Lyapunov or internally stable
whenever, for every initial condition x(t0) = x0 2 Rn, the homogeneous
state response

x(t) = �(t, t0)x0, 8t � 0

is uniformly bounded,

2 asymptotically stable (in the sense of Lyapunov) whenever, in addition,
for every initial condition x(t0) = x0 2 Rn, we have that x(t) ! 0 as
t ! 1,

3 exponentially stable whenever, in addition, there exist constants c, � > 0
such that, for every initial condition x(t0) = x0 2 Rn, we have

kx(t)k  ce�(t�t0)kx(t0)k, 8t � 0,

4 unstable whenever it is not marginally stable in the Lyapunov sense.
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Lyapunov Stability Theorem
Theorem (Lyapunov stability)

The following conditions are equivalent:

1 The system (H-CLTI) is asymptotically stable.

2 The system (H-CLTI) is exponentially stable.

3 All the eigenvalues of A have strictly negative real parts.

4 For every symmetric positive-definite matrix Q, there exists a unique
solution P to the following Lyapunov equation

A′P + PA = −Q. (Lyapunov Eq.)

Moreover, P is symmetric and positive-definite.

5 There exists a symmetric positive-definite matrix P for which the
following Lyapunov matrix inequality holds:

A′P + PA < 0. (LMI)

Logical overview of the proof.

16

Lyapunov Stability

Consider the following continuous-time LTV system

ẋ = A(t)x + B(t)u, y = C(t)x + D(t)u, x 2 Rn, u 2 Rk, y 2 Rm.

Definition (Lyapunov Stability)

The system (CLTV) is said to be

1 (marginally) stable in the sense of Lyapunov or internally stable
whenever, for every initial condition x(t0) = x0 2 Rn, the homogeneous
state response

x(t) = �(t, t0)x0, 8t � 0

is uniformly bounded,

2 asymptotically stable (in the sense of Lyapunov) whenever, in addition,
for every initial condition x(t0) = x0 2 Rn, we have that x(t) ! 0 as
t ! 1,

3 exponentially stable whenever, in addition, there exist constants c, � > 0
such that, for every initial condition x(t0) = x0 2 Rn, we have

kx(t)k  ce�(t�t0)kx(t0)k, 8t � 0,

4 unstable whenever it is not marginally stable in the Lyapunov sense.
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Proof: 2 =⇒ 4

We claim that the unique solution to (Lyapunov Eq.) is given by

P =

∫ ∞
0

eA
′tQeAtdt. (2)

To verify that this is so, four steps are needed.
1 Well-defined: This is a consequence of the fact that the system (H-CLTI) is

exponentially stable, and therefore ‖eA′tQeAt‖ converges to zero exponentially
fast as t→∞. Because of this, the (improper) integral is absolutely
convergent.

2 (2) solves (Lyapunov Eq.): Compute

A′P + PA =

∫ ∞
0

(
A′eA

′tQeAt + eA
′tQeAtA

)
dt.

But
d

dt

(
eA

′tQeAt
)

= A′eA
′tQeAt + eA

′tQeAtA,

therefore

A′P + PA =

∫ ∞
0

d

dt

(
eA

′tQeAt
)
dt =

[
eA

′tQeAt
]∞
0

=

(
lim
t→∞

eA
′tQeAt

)
− eA

′0QeA0.

Equation (Lyapunov Eq.) follows from this and the facts that limt→∞ eAt = 0
because of asymptotic stability and that eA0 = I.
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Proof: 2 =⇒ 4

3 Symmetric and positive-definite:

P ′ =

∫ ∞
0

(
eA

′tQeAt
)′
dt =

∫ ∞
0

(
eAt
)′
Q′
(
eA

′t
)′
dt =

∫ ∞
0

eA
′tQeAt = P.

For positive-definiteness, take an arbitrary (constant) vector z ∈ Rn and
compute

z′Pz =

∫ ∞
0

z′eA
′tQeAtzdt =

∫ ∞
0

w(t)′Qw(t)dt,

where w(t) = eAtz, ∀t ≥ 0. Since Q is positive-definite, we conclude that
z′Pz ≥ 0. Moreover,

z′Pz = 0 =⇒
∫ ∞
0

w(t)′Qw(t)dt = 0,

which can only happen if w(t) = eAtz = 0,∀t ≥ 0, from which one concludes
that z = 0, because eAt is nonsingular. Therefore P is positive-definite.
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3 Symmetric and positive-definite:

P ′ =

∫ ∞
0

(
eA

′tQeAt
)′
dt =

∫ ∞
0

(
eAt
)′
Q′
(
eA

′t
)′
dt =

∫ ∞
0

eA
′tQeAt = P.
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4 Uniqueness:

Assume there exists another solution P̄ to (Lyapunov Eq.), i.e.,

A′P + PA = −Q, and A′P̄ + P̄A = −Q

Then

A′(P − P̄ ) + (P − P̄ )A = 0.

Pre-multiplying and post-multiplying by eA
′t and eAt, respectively, we get

eA
′tA′(P − P̄ )eAt + eA

′t(P − P̄ )AeAt = 0, ∀t ≥ 0.

On the other hand,

d

dt

(
eA

′t(P − P̄ )eAt
)

= eA
′tA′(P − P̄ )eAt + eA

′t(P − P̄ )AeAt = 0

and therefore eA
′t(P − P̄ )eAt must remain constant for all times. But, because

of stability, this quantity must converge to zero as t→∞, so it must be always
zero. Since eAt is nonsingular, this is only if P = P̄ .
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Lyapunov Stability Theorem
Theorem (Lyapunov stability)

The following conditions are equivalent:

1 The system (H-CLTI) is asymptotically stable.

2 The system (H-CLTI) is exponentially stable.

3 All the eigenvalues of A have strictly negative real parts.

4 For every symmetric positive-definite matrix Q, there exists a unique
solution P to the following Lyapunov equation

A′P + PA = −Q. (Lyapunov Eq.)

Moreover, P is symmetric and positive-definite.

5 There exists a symmetric positive-definite matrix P for which the
following Lyapunov matrix inequality holds:

A′P + PA < 0. (LMI)

Logical overview of the proof.

16

Lyapunov Stability

Consider the following continuous-time LTV system

ẋ = A(t)x + B(t)u, y = C(t)x + D(t)u, x 2 Rn, u 2 Rk, y 2 Rm.

Definition (Lyapunov Stability)

The system (CLTV) is said to be

1 (marginally) stable in the sense of Lyapunov or internally stable
whenever, for every initial condition x(t0) = x0 2 Rn, the homogeneous
state response

x(t) = �(t, t0)x0, 8t � 0

is uniformly bounded,

2 asymptotically stable (in the sense of Lyapunov) whenever, in addition,
for every initial condition x(t0) = x0 2 Rn, we have that x(t) ! 0 as
t ! 1,

3 exponentially stable whenever, in addition, there exist constants c, � > 0
such that, for every initial condition x(t0) = x0 2 Rn, we have

kx(t)k  ce�(t�t0)kx(t0)k, 8t � 0,

4 unstable whenever it is not marginally stable in the Lyapunov sense.
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Proof: 5 =⇒ 2

Let P be a symmetric positive-definite matrix for which (LMI) holds and let

Q = −(A′P + PA) > 0.

Consider an arbitrary solution to H-CLTI system, and define the scalar signal

v(t) = x′(t)Px(t) ≥ 0, ∀t ≥ 0.

Taking derivatives, we obtain

v̇ = ẋ′Px+ x′P ẋ = x′(A′P + PA)x = −x′Qx ≤ 0, ∀t ≥ 0. (3)

Therefore, v(t) is a nonincreasing signal, and we get

v(t) = x′(t)Px(t) ≤ v(0) = x′(0)Px(0), ∀t ≥ 0

But since v = x′Px ≥ λmin[P ]‖x‖2, we conclude that

‖x‖2 ≤
x′(t)Px(t)

λmin[P ]
=

v(t)

λmin[P ]
≤

v(0)

λmin[P ]
, ∀t ≥ 0, (4)

which means that the H-CLTI system is stable.
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v̇ = ẋ′Px+ x′P ẋ = x′(A′P + PA)x = −x′Qx ≤ 0, ∀t ≥ 0. (3)

Therefore, v(t) is a nonincreasing signal

, and we get

v(t) = x′(t)Px(t) ≤ v(0) = x′(0)Px(0), ∀t ≥ 0

But since v = x′Px ≥ λmin[P ]‖x‖2, we conclude that

‖x‖2 ≤
x′(t)Px(t)

λmin[P ]
=

v(t)

λmin[P ]
≤

v(0)

λmin[P ]
, ∀t ≥ 0, (4)

which means that the H-CLTI system is stable.



27

Proof: 5 =⇒ 2

Let P be a symmetric positive-definite matrix for which (LMI) holds and let

Q = −(A′P + PA) > 0.

Consider an arbitrary solution to H-CLTI system, and define the scalar signal

v(t) = x′(t)Px(t) ≥ 0, ∀t ≥ 0.

Taking derivatives, we obtain

v̇ = ẋ′Px+ x′P ẋ = x′(A′P + PA)x = −x′Qx ≤ 0, ∀t ≥ 0. (3)

Therefore, v(t) is a nonincreasing signal, and we get

v(t) = x′(t)Px(t) ≤ v(0) = x′(0)Px(0), ∀t ≥ 0

But since v = x′Px ≥ λmin[P ]‖x‖2, we conclude that

‖x‖2 ≤
x′(t)Px(t)

λmin[P ]
=

v(t)

λmin[P ]
≤

v(0)

λmin[P ]
, ∀t ≥ 0, (4)

which means that the H-CLTI system is stable.



27

Proof: 5 =⇒ 2

Let P be a symmetric positive-definite matrix for which (LMI) holds and let

Q = −(A′P + PA) > 0.

Consider an arbitrary solution to H-CLTI system, and define the scalar signal

v(t) = x′(t)Px(t) ≥ 0, ∀t ≥ 0.

Taking derivatives, we obtain
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Proof: 5 =⇒ 2

To verify that it is actually exponentially stable, we go back to (3) and, using the facts
that x′Qx ≥ λmin[Q]‖x‖2 and that v = x′Px ≤ λmax[P ]‖x‖2

, we conclude that

v̇ = −x′Qx ≤ −λmin[Q]‖x‖2 ≤ −
λmin[Q]

λmax[P ]
v, ∀t ≥ 0 (5)

To proceed, we need the Comparison lemma.

Theorem (Comparison Lemma)

Let v(t) be a differentiable scalar signal for which

v̇(t) ≤ µv(t), ∀t ≥ t0

for some constant µ ∈ R. Then

v(t) ≤ eµ(t−t0)v(t0), ∀t ≥ t0.

Applying the Comparison lemma to (5), we conclude that

v(t) ≤ e−λ(t−t0)v(t0), ∀t ≥ 0, λ , −
λmin[Q]

λmax[P ]
,

which shows that v(t) converges to zero exponentially fast and so does ‖x(t)‖ [see
(4)].
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Comparison Lemma

Theorem (Comparison Lemma)

Let v(t) be a differentiable scalar signal for which

v̇(t) ≤ µv(t), ∀t ≥ t0

for some constant µ ∈ R. Then

v(t) ≤ eµ(t−t0)v(t0), ∀t ≥ t0. (6)

Proof.

Define a new signal u(t) as follows:

u(t) , e−µ(t−t0)v(t), ∀t ≥ t0.

Taking derivative, we conclude that

u̇ = −µe−µ(t−t0)v(t) + e−µ(t−t0)v̇(t) ≤ −µe−µ(t−t0)v(t) + µe−µ(t−t0)v(t) = 0

Therefore u is nonincreasing, and we conclude that
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Comparison Lemma
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Lyapunov Stability Theorem
Theorem (Lyapunov stability)

The following conditions are equivalent:

1 The system (H-CLTI) is asymptotically stable.

2 The system (H-CLTI) is exponentially stable.

3 All the eigenvalues of A have strictly negative real parts.

4 For every symmetric positive-definite matrix Q, there exists a unique
solution P to the following Lyapunov equation

A′P + PA = −Q. (Lyapunov Eq.)

Moreover, P is symmetric and positive-definite.

5 There exists a symmetric positive-definite matrix P for which the
following Lyapunov matrix inequality holds:

A′P + PA < 0. (LMI)

Logical overview of the proof.

16

Lyapunov Stability

Consider the following continuous-time LTV system

ẋ = A(t)x + B(t)u, y = C(t)x + D(t)u, x 2 Rn, u 2 Rk, y 2 Rm.

Definition (Lyapunov Stability)

The system (CLTV) is said to be

1 (marginally) stable in the sense of Lyapunov or internally stable
whenever, for every initial condition x(t0) = x0 2 Rn, the homogeneous
state response

x(t) = �(t, t0)x0, 8t � 0

is uniformly bounded,

2 asymptotically stable (in the sense of Lyapunov) whenever, in addition,
for every initial condition x(t0) = x0 2 Rn, we have that x(t) ! 0 as
t ! 1,

3 exponentially stable whenever, in addition, there exist constants c, � > 0
such that, for every initial condition x(t0) = x0 2 Rn, we have

kx(t)k  ce�(t�t0)kx(t0)k, 8t � 0,

4 unstable whenever it is not marginally stable in the Lyapunov sense.
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Discrete-time case

Consider now the following discrete-time LTV system

x(t+ 1) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t). (DLTV)

Definition (Lyapunov stability)

The system (DLTV) is said to be

1 (marginally) stable in the sense of Lyapunov or internally stable whenever,
for every initial condition x(t0) = x0 ∈ Rn, the homogeneous state response

x(t) = φ(t, t0)x0, ∀t ≥ t0

is uniformly bounded,

2 asymptotically stable (in the Lyapunov sense) whenever, in addition, for every
initial condition x(t0) = x0 ∈ Rn, we have x(t)→ 0 as t→∞,

3 exponentially stable whenever, in addition, there exist constants
c > 0, 0 < λ < 1 such that, for every initial condition x(t0) = x0 ∈ Rn,

‖x(t)‖ ≤ cλt−t0‖x(t0)‖,∀t ≥ t0,

4 unstable whenever it is not marginally stable in the Lyapunov sense.
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Discrete-time case

The matrices B(•), C(•), and D(•) play no role in this definition; therefore,
one often simply talks about the Lyapunov stability of the homogeneous system

x(t+ 1) = A(t)x, x ∈ Rn. (H-DLTV)

Theorem (Eigenvalue conditions)

The discrete-time homogeneous LTI system

x+ = Ax, x ∈ Rn (H-DLTI)

is

1 marginally stable if and only if all the eigenvalues of A have magnitude
smaller than or equal to 1 and all the Jordan blocks corresponding to
eigenvalues with magnitude equal to 1 are 1× 1,

2 asymptotically and exponentially stable if and only if all the eigenvalues
of A have magnitude strictly smaller than 1, or

3 unstable if and only if at least one eigenvalue of A has magnitude larger
than 1 or magnitude equal to 1, but the corresponding Jordan block is
larger than 1× 1.
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Discrete-time case

Theorem (Lyapunov stability in discrete time)

The following five conditions are equivalent:

1 The system (H-DLTI) is asymptotically stable.

2 The system (H-DLTI) is exponentially stable.

3 All the eigenvalues of A have magnitude strictly smaller than 1.

4 For every symmetric positive-definite matrix Q, there exists a unique
solution P to the following Stein equation (more commonly known as the
discrete-time Lyapunov equation)

A′PA− P = −Q. (DT Lyapunov Eq.)

Moreover, P is symmetric and positive-definite.

5 There exists a symmetric positive-definite matrix P for which the
following Lyapunov matrix inequality holds:

A′PA− P < 0. (DT LMI)
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Lyapunov Stability Tests for LTI systems
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Example: Inverted Pendulum

Consider the inverted pendulum and assume that u = T and y = θ are its input and
output, respectively.

76 LECTURE 8

Example 8.1 (Inverted pendulum). Consider the inverted pendulum in Figure 8.2
and assume that u = T and y = θ are its input and output, respectively.

The local linearization of this system around the equilibrium point for which θ =
π is given by

Note. This
equilibrium point is
xeq = π , ueq = 0,
yeq = π , and
therefore δx :=
x − xeq = x − π ,
δu := u − ueq = u,
δy := y−yeq = y−π .

δ̇x = A δx + Bu, δy = C δx,

where

A :=
[
0 1

− g
$ − b

m$2

]

, B :=
[
0
1

]
, C :=

[
1 0

]
.

The eigenvalues of A are given by

det(λI − A) = λ
(
λ + b

m$2

)
+ g

$
= 0 ⇔ λ = − b

2m$2
±

√( b
2m$2

)
− g

$
,

and therefore the linearized system is exponentially stable, because

− b
2m$2

±
√( b

2m$2

)
− g

$

has a negative real part. This is consistent with the obvious fact that in the absence ofNote. We now know
that this convergence
is actually
exponential.

u the (nonlinear) pendulum converges to this equilibrium.

The local linearization of this system around the equilibrium point for which θ =
0 is given by

Note. This
equilibrium point is
xeq = 0, ueq = 0,
yeq = 0, and
therefore
δx := x − xeq = x ,
δu := u − ueq = u,
δy := y − yeq = y.

δ̇x = A δx + Bu, δy = C δx,

where

A :=
[
0 1
g
$ − b

m$2

]

, B :=
[
0
1

]
, C :=

[
1 0

]
.

From Newton’s law,

m$2θ̈ = mg$ sin θ − bθ̇ + T,

where T denotes a torque applied at the
base and g is the gravitational accelera-
tion.

Figure 8.2. Inverted pendulum.
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Example: Inverted Pendulum

At equilibrium point θ = π

A =

[
0 1

− g
`
− b
m`2

]
, B =

[
0
1

]
, C =

[
1 0

]
The eigenvalues of A are given by

det(λI −A) = λ

(
λ+

b

m`2

)
+
g

`
= 0⇔ λ = −

b

2m`2
±

√(
b

2m`2

)
−
g

`

and therefore the linearized system is exponentially stable.

This is consistent with the obvious fact that in the absence of u the (nonlinear)
pendulum converges to this equilibrium.

P =

 b2+g2`2m2+g`3m2

2bg`m
`
2g

`
2g

`2m(g+`)
2bg


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Example: Inverted Pendulum

At equilibrium point θ = 0

A =

[
0 1
g
`
− b
m`2

]
, B =

[
0
1

]
, C =

[
1 0

]
The eigenvalues of A are given by

det(λI −A) = λ

(
λ+

b

m`2

)
−
g

`
= 0⇔ λ = −

b

2m`2
±

√(
b

2m`2

)
+
g

`

and therefore the linearized system is exponentially unstable, because

−
b

2m`2
+

√(
b

2m`2

)
+
g

`
> 0.

This is consistent with the obvious fact that in the absence of u the (nonlinear)
pendulum does not naturally move up to the upright position if it starts away from it.
However, one can certainly make it move up by applying some torque u.

P =

− b2+g2`2m2−g`3m2

2bg`m
− `

2g

− `
2g

`2m(g−`)
2bg


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Bounded-Input, Bounded Output Stability

Internal or Lyapunov stability is concerned only with the effect of the initial
conditions on the response of the system.

We now consider a distinct notion of stability that ignores initial conditions
and is concerned only with the effect of the input on the forced response.

We shall see that for LTI systems these two notions of stability are closely
related.

Consider the continuous-time LTV system

ẋ = A(t)x+B(t)u, y = C(t)x+D(t)u, x ∈ Rn, u ∈ Rk, y ∈ Rm

The forced response of this system is given by

yf (t) =

∫ t

0

C(t)φ(t, τ)B(τ)u(τ)dτ +D(t)u(t).

Definition (BIBO stability)

The system (CLTV) is said to be (uniformly) BIBO stable if there exists a
finite constant g1 such that, for every input u, its forced response yf satisfies

sup
t∈[0,∞)

‖yf (t)‖ ≤ g sup
t∈[0,∞)

‖u(t)‖

1
The factor g can be viewed as a system “gain”.
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Time-domain condition for BIBO stability

Theorem (Time domain BIBO stability condition)

The following two statements are equivalent.

1 The system (CLTV) is uniformly BIBO stable.

2 Every entry of D(t) is uniformly bounded 1 and

sup
t≥0

∫ t

0
|gij(t, τ)|dτ <∞

for every entry gij(t, τ) of C(t)φ(t, τ)B(τ).

1
A signal x(t) is uniformly bounded if there exists a finite constant c such that ‖x(t)‖ ≤ c, ∀t ≥ 0.
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Proof: 2 =⇒ 1
Conditions in (1) implies that the gain g is finite.

‖yf (t)‖ ≤
∫ t

0
‖C(t)φ(t, τ)B(τ)‖‖u(τ)‖dτ + ‖D(t)‖‖u(t)‖,∀t ≥ 0

Defining µ , sup
t∈[0,∞)

‖u(t)‖, δ , sup
t∈[0,∞)

‖D(t)‖,

we conclude that

‖yf (t)‖ ≤
(∫ t

0
‖C(t)φ(t, τ)B(τ)‖dτ + δ

)
µ, ∀t ≥ 0

Defining g , supt≥0

∫ t
0 ‖C(t)φ(t, τ)B(τ)‖dτ + δ, this part is proved if g is finite.

Note that4

‖C(t)φ(t, τ)B(τ)‖ ≤
∑
i,j

|gi,j(t, τ)|,

and therefore ∫ t

0
‖C(t)φ(t, τ)B(τ)‖dτ ≤

∑
i,j

∫ t

0
|gi,j(t, τ)|dτ, ∀t ≥ 0.

Finally

g = sup
t≥0

∫ t

0
‖C(t)φ(t, τ)B(τ)‖dτ + δ ≤ sup

t≥0

∑
i,j

∫ t

0
|gi,j(t, τ)|dτ + δ <∞

4
this is a consequence of the triangle inequality
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Time-domain condition for BIBO stability

Theorem (Time domain BIBO stability condition)

The following two statements are equivalent.

1 The system (CLTV) is uniformly BIBO stable.

2 Every entry of D(t) is uniformly bounded 1 and

sup
t≥0

∫ t

0
|gij(t, τ)|dτ <∞

for every entry gij(t, τ) of C(t)φ(t, τ)B(τ).

yf (t) =

∫ t

0
C(t)φ(t, τ)B(τ)u(τ)dτ +D(t)u(t).

sup
t∈[0,∞)

‖yf (t)‖ ≤ g sup
t∈[0,∞)

‖u(t)‖

1
A signal x(t) is uniformly bounded if there exists a finite constant c such that ‖x(t)‖ ≤ c, ∀t ≥ 0.
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Proof: 1 =⇒ 2 OR ¬1 ⇐= ¬2

Suppose first that 2 is false because the entry dij(•) of D(•) is unbounded.
We show next that in this case supt∈[0,∞) ‖yf (t)‖ ≤ g supt∈[0,∞) ‖u(t)‖ can be
violated no matter what we choose for the finite gain g.
To do this, pick an arbitrary time T and consider the following step input:

uT (τ) ,

{
0 0 ≤ τ < T

ej τ ≥ T
∀τ ≥ 0,

where ej ∈ Rk is the jth vector in the canonical basis of Rk. For this input, the
second term of the forced response at time T is exactly

yf (T ) = D(T )ej

We thus have found an input for which

sup
t∈[0,∞)

‖uT (t)‖ = 1

and
sup

t∈[0,∞)
‖yf (t)‖ ≥ ‖yf (T )‖ = ‖D(T )ej‖ ≥ |dij(T )|,

where the last inequality results from the fact that the norm of the vector D(T )ej
must be larger than the absolute value of its ith entry, which is precisely dij(T ).Since
dij(•) is unbounded, we conclude that we can make supt∈[0,∞) ‖yf (t)‖ arbitrarily

large by using inputs uT (•) for which supt∈[0,∞) uT (t) = 1, which is not compatible

with the existence of a finite gain g. This means that D(•) must be uniformly
bounded for a system to be BIBO stable.
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Proof: 1 =⇒ 2 OR ¬1 ⇐= ¬2
Suppose first that 2 is false because∫ t

0
|gij(t, τ)|dτ (7)

is unbounded for some i and j.

We show next that in this case supt∈[0,∞) ‖yf (t)‖ ≤ g supt∈[0,∞) ‖u(t)‖ can be
violated no matter what we choose for the finite gain g.
To do this, pick an arbitrary time T and consider the following “switching” input:

uT (τ) ,

{
+ej gij(t, τ) ≥ 0

−ej gij(t, τ) < 0
∀τ ≥ 0.

For this input, the forced response at time T is

yf (T ) =

∫ T

0
C(T )φ(T, τ)B(τ)u(τ)dτ +D(T )u(T ),

and its ith entry is equal to
∫ T
0 |gij(T, τ)|dτ ± dij(T ). We thus have found an input

for which

supt∈[0,∞) ‖uT (t)‖ = 1 and supt∈[0,∞) ‖yf (t)‖ ≥ ‖yf (T )‖ ≥
∣∣∣∫ t0 |gij(t, τ)|dτ ± dij(t)

∣∣∣ .
Since (7) is unbounded, also now we conclude that we can make supt∈[0,∞) ‖yf (t)‖
arbitrarily large by using inputs uT (•) for which supt∈[0,∞) uT (t) = 1, which is not

compatible with the existence of a finite gain g. This means that condition (2) must
hold for a system to be BIBO stable.
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Since (7) is unbounded, also now we conclude that we can make supt∈[0,∞) ‖yf (t)‖
arbitrarily large by using inputs uT (•) for which supt∈[0,∞) uT (t) = 1, which is not

compatible with the existence of a finite gain g. This means that condition (2) must
hold for a system to be BIBO stable.
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Proof: 1 =⇒ 2 OR ¬1 ⇐= ¬2
Suppose first that 2 is false because∫ t

0
|gij(t, τ)|dτ (7)

is unbounded for some i and j.
We show next that in this case supt∈[0,∞) ‖yf (t)‖ ≤ g supt∈[0,∞) ‖u(t)‖ can be
violated no matter what we choose for the finite gain g.
To do this, pick an arbitrary time T and consider the following “switching” input:

uT (τ) ,

{
+ej gij(t, τ) ≥ 0

−ej gij(t, τ) < 0
∀τ ≥ 0.

For this input, the forced response at time T is
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Time-domain condition for BIBO stability

Theorem (Time domain BIBO stability condition)

The following two statements are equivalent.

1 The system (CLTV) is uniformly BIBO stable.

2 Every entry of D(t) is uniformly bounded 1 and

sup
t≥0

∫ t

0
|gij(t, τ)|dτ <∞

for every entry gij(t, τ) of C(t)φ(t, τ)B(τ).

1
A signal x(t) is uniformly bounded if there exists a finite constant c such that ‖x(t)‖ ≤ c, ∀t ≥ 0.
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Time-Invariant Case

For the time-invariant system

ẋ = Ax+Bu, y = Cx+Du,

we have
Cφ(t, τ)B = CeA(t−τ)B.

Therefore, rewriting from the previous definition as

sup
t≥0

∫ t

0
|ḡij(t− τ)|dτ <∞,

with the understanding that now ḡij(t− τ) denotes the ijth entry of CeA(t−τ)B.
Making the change of variable ρ , t− τ , we conclude that

sup
t≥0

∫ t

0
|ḡij(t− τ)|dτ = sup

t≥0

∫ t

0
|ḡij(ρ)|dρ =

∫ ∞
0
|ḡij(ρ)|dρ.

Theorem (Time domain BIBO LTI condition)

The following two statements are equivalent.

1 The system (CLTI) is uniformly BIBO stable.

2 For every entry ḡij(ρ) of CeAρB, we have∫ ∞
0

|ḡij(ρ)|dρ <∞.

1. 2.
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Frequency Domain Conditions for BIBO Stability

The Laplace transform provides a very convenient tool for studying BIBO
stability.

To determine whether a time-invariant system (CLTI) is BIBO stable, we need
to compute the entries gij(t) of CeAtB. To do this, we compute its Laplace
transform, L[CeAtB] = C(sI −A)−1B.
The ijth entry of this matrix will be a strictly proper rational function of the
general form

ĝij(s) =
α0s

q + α1s
q−1 + · · ·+ αq−1s+ αq

(s− λ1)m1(s− λ2)m2 · · · (s− λk)mk
,

where the λ` are the (distinct) pole of ĝij(s) and the m` are the corresponding
multiplicities. Perform the partial fraction as

ĝij(s) =
a11

(s− λ1)
+

a12
(s− λ1)2

+ · · ·+ a1m1

(s− λ1)m1
+ · · ·

+
ak1

(s− λk)
+

ak2
(s− λk)2

+ · · ·+ akmk

(s− λK)mk
.

The inverse Laplace transform is then given by

gij(t) = L
−1 [ĝij(s)]

=
a11e

λ1t + a12te
λ1t + · · ·+ a1m1t

m1−1eλ1t + · · ·
ak1e

λkt + ak2te
λkt + · · ·+ akmk t

mk−1eλkt.
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Frequency Domain Conditions for BIBO Stability
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Frequency Domain Conditions for BIBO Stability
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Frequency Domain Conditions for BIBO Stability

The Laplace transform provides a very convenient tool for studying BIBO
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Frequency Domain Conditions for BIBO Stability

We therefore conclude the following.

1 If for all ĝij(s), all the poles λ` have strictly negative real parts, then
gij(t) converges to zero exponentially fast and the system (CLTI) is
BIBO stable.

2 If at least one of the ĝij(s) has a pole λ` with a zero or positive real part,
then |gij(t)| does not converge to zero and the system (CLTI) is not
BIBO stable.

Note that adding a constant D term will not change its poles.

Theorem (Frequency domain BIBO condition)

The following two statements are equivalent:

1 The system (CLTI) is uniformly BIBO stable.

2 Every pole of every entry of the transfer function of the system (CLTI)
has a strictly negative real part.
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BIBO vs Lyapunov stability

We now know that the LTI system

ẋ = Ax+Bu, y = Cx+Du

is uniformly BIBO stable if and only if every entry ḡij(t) of CeAtB satisfies∫ ∞
0

|ḡij(t)|dt <∞ (8)

However, if the system (CLTI) is exponentially stable, then every entry of eAt

converges to zero exponentially fast and therefore (8) must hold.

Theorem

When the system (CLTI) is exponentially stable, then it must also be BIBO
stable.

Attention!

In general, the converse of the above theorem is not true, because there are
systems that are BIBO stable but not exponentially stable.
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BIBO vs Lyapunov stability

Example1

Consider the system2

ẋ =

[
1 0
0 −2

]
x+

[
0
1

]
u, y =

[
1 1

]
x

for which

eAt =

[
et 0
0 e−2t

]
is unbounded and therefore Lyaunov unstable, but

CeAtB =
[
1 1

] [et 0
0 e−2t

] [
0
1

]
= e−2t

and therefore the system is BIBO stable

1
We shall see in later lectures that this discrepancy between Lyapunov and BIBO stability is always associated

with lack of controllability or observability, two concepts that will be introduced later.
2

The system is not controllable.
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Discrete-time case

Consider now the following discrete-time LTV system

x(t+ 1) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t)

The forced response of this system is given by

yf (t) =

t−1∑
τ=0

C(t)φ(t, τ + 1)B(τ)u(τ)dτ +D(t)u(t), ∀t ≥ 0,

Definition (BIBO stability)

The system (DLTV) is said to be (uniformly) BIBO stable whenever there
exists a finite constant g1 such that, for every input u(•), its forced response
yf (•) satisfies

sup
t∈N
‖yf (t)‖ ≤ g sup

t∈N
‖u(t)‖.

1
The factor g can be viewed as the “gain” of the system.
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Discrete-time case
Theorem (Time domain BIBO condition)

The following two statements are equivalent.

1 The system (DLTV) is uniformly BIBO stable.

2 Every entry of D(•) is uniformly bounded and

sup
t≥0

t−1∑
τ=0

|gij(t, τ)| <∞

for every entry gij(t, τ) of C(t)φ(t, τ)B(τ).

Theorem (BIBO LTI conditions)

The following three statements are equivalent.

1 The system (DLTI) is uniformly BIBO stable.

2 For every entry ḡij(ρ) of CAρB. we have

∞∑
ρ=1

|ḡij(ρ)| <∞

3 Every pole of every entry of the transfer function of the system (DLTI)
has magnitude strictly smaller than 1.
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|ḡij(ρ)| <∞

3 Every pole of every entry of the transfer function of the system (DLTI)
has magnitude strictly smaller than 1.



52

Interesting facts
Consider the function defined by

f(t− n) =

{
n+ (t− n)n4, for n− 1

n3 ≤ t ≤ n
n− (t− n)n4, for n < t ≤ n+ 1

n3

for n = 2, 3, . . .. The area under each triangle is 1/n2. Thus the absolute integration
of the function equals

∑∞
n=2(1/n2) <∞. This function is absolutely integrable but is

not bounded and does not approach zero as t→∞.

3
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Interesting facts

In the discrete-time case, if g(t) is absolutely summable, then it must be
bounded and approach zero as t→∞. However, the converse is not true.

Example

Consider g(t) = 1/t, for t = 1, 2, . . . and g(0) = 0. We compute

S =

∞∑
t=1

|g(t)| =
∞∑
t=1

1

t
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+

(
1

9
+ · · ·+ 1

16

)
+ · · ·

We notice that

S > 1 +
1

2
+

1

2
+

1

2
+ · · · =∞

This impulse response sequence is bounded and approaches 0 as t→∞ but is
not absolutely summable.
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Additional results

Theorem

The equation ẋ = Ax is marginally stable if and only if all the eigenvalus of A
have zero or negative real parts and those with zero real parts are simple roots
of the minimal polynomial of A.

Theorem (Eigenvalue conditions - Slide 20)

The system (H-CLTI) is

1 marginally stable if and only if all the eigenvalues of A have negative or
zero real parts and all the Jordan blocks corresponding to eigenvalues
with zero real parts are 1× 1,

2 asymptotically stable if and only if all the eigenvalues of A have strictly
negative real parts,

3 unstable if and only if at least one eigenvalue of A has a positive real part
or zero real part, but the corresponding Jordan block is larger than 1× 1.
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Additional results

Definition (Minimal polynomial)

Let A be an n× n matrix. We associate two polynomials to A

:

1 The characteristic polynomial of A is defined as
f(s) = det(s.I −A). f(s) is a monic polynomial of degree n.

2 The minimal polynomial of A, which we will denote by ψ(s),
is defined by the following properties:

ψ(s) is monic (i.e., its leading coefficent is 1),
ψ(A) = 0,
ψ(s) is the monic polynomial of the smallest possible degree
such that ψ(A) = 0,

They also satisfy the following properties:

If g(s) is another polynomial, then g(A) = 0 if and only if
ψ(s) divides g(s).

f(s) is a multiple of ψ(s).
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ψ(s) is the monic polynomial of the smallest possible degree
such that ψ(A) = 0,

They also satisfy the following properties:

If g(s) is another polynomial, then g(A) = 0 if and only if
ψ(s) divides g(s).

f(s) is a multiple of ψ(s).
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Additional results (Example)
Consider

ẋ =

0 0 0
0 0 0
0 0 −1

x
Its characteristic polynomial is ∆(λ) = λ2(λ+ 1)

and its minimal polynomial is
ψ(λ) = λ(λ+ 1). The matrix has eigenvalues 0, 0, and −1. The eigenvalue 0 is
a simple root of the minimal polynomial. This the system is marginally stable.

The equation

ẋ =

0 1 0
0 0 0
0 0 −1


is not marginally stable, however, because its minimal polynomial is
ψ(λ) = λ2(λ+ 1) and λ = 0 is not a simple root of the minimal polynomial.
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Interesting facts

A time-invariant system is asymptotically stable if all eigenvalues of A have
negative real parts. Is this also true for the time-varying case?

Example

Consider

ẋ = A(t)x =

[
−1 e2t

0 −1

]
The characteristic polynomial of A(t) and the eigenvalues are

det(λ.I −A(t)) = (λ+ 1)2 =⇒ λ = −1,−1

It can be verified directly that

φ(t, 0) =

[
e−t 0.5(et − e−t)
0 e−t

]
Note that determination of the stability using the eigenvalues of matrix A(t) is
not applicable in the time varying case.
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