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State Feedback Design

Problem 1

Given the system

ẋ = Ax+ bu =

[
0 1
−1 0

]
x+

[
0
1

]
u

Find the stabilizing feedback matrix k and a Hurwitz closed loop
matrix A+ bk using the controllability Gramian Q.
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Solution to Problem 1

Assertion

The feedback matrix K = −B′Q−1 produces a Hurwitz closed-loop matrix
A+BK = A−BB′Q−1, where Q is the controllability Gramian.

The proof of this assertion is briefed next.

AQ+QA′ =

∫ T

0

[
Ae−tABB′e−A

′
+ e−tABB′e−tA

′
A′
]
dt

=

∫ T

0

−
d
(
e−tABB′e−tA

′
)

dt
dt

AQ+QA′ = BB′ − e−TABB′e−TA
′

Set K = −B′Q−1 and compute

(A+BK)Q+Q (A+BK)′ =
(
A−BB′Q−1)Q+Q

(
A−BB′Q−1)′

= AQ+QA′ − 2BB′

= −BB′ − e−TABB′e−TA
′
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Solution to Problem 1

(A+BK)Q+Q (A+BK)′ = −BB′ − e−TABB′e−TA
′

Define B̂ =
[
B e−TAB

]
, and note that the right hand side of the equation

above may be written as

−B̂B̂′ = −
[
B e−TAB

] [ B′

B′e−TA
′

]

which implies that the previously obtained equation is the Lyapunov equation(
A−BB′Q−1)Q+Q

(
A−BB′Q−1)+ B̂B̂′ = 0

Since (A,B) is controllable, (A−BB′Q−1, B) is also controllable. From the
definition of B̂ is follows that (A−BB′Q−1, B̂) is also controllable. Since Q
and B̂B̂′ are positive definite matrices, we conclude that
A+BK = A−BB′Q−1 is Hurwitz.
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Solution to Problem 1

ẋ =

[
0 1
−1 0

]
x+

[
0
1

]
u

eAt =

[
cos t sin t
− sin t cos t

]
,

and A′ = −A. Thus, e−A
′t = eAt. Choosing T = 2π, we compute

the controllability Gramian as

Q2π =

∫ 2π

0

(
e−Atbb′e−A

′t
)
dt

=

∫ 2π

0

([
cos t − sin t
sin t cos t

] [
0
1

] [
0 1

] [ cos t sin t
− sin t cos t

])
dt
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ẋ =

[
0 1
−1 0

]
x+

[
0
1

]
u

eAt =

[
cos t sin t
− sin t cos t

]
,

and A′ = −A. Thus, e−A
′t = eAt.

Choosing T = 2π, we compute
the controllability Gramian as

Q2π =

∫ 2π

0

(
e−Atbb′e−A

′t
)
dt

=

∫ 2π

0

([
cos t − sin t
sin t cos t

] [
0
1

] [
0 1

] [ cos t sin t
− sin t cos t

])
dt

Linear Dynamical Systems



6

Solution to Problem 1
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Solution to Problem 1

=

∫ 2π

0

([
sin2 t − sin t cos t

− sin t cos t cos2 t

])
dt

=

∫ 2π

0

([
1
2 −

1
2 cos 2t − sin t cos t

− sin t cos t 1
2 + 1

2 cos 2t

])
dt

On direct Integration,

Q2π =

[
π 0
0 π

]
Calculating the stabilizing feedback matrix as

k = −b′Q−1 = −[0 1]

[
1/π 0
0 1/π

]
=

[
0
−1/π

]

Linear Dynamical Systems
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Solution to Problem 1

The closed-loop state matrix is given as

A+ bk =

[
0 1
−1 −1/π

]
which is Hurwitz.

Linear Dynamical Systems
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State Feedback Design

Problem 2

Consider the discrete-time state equation

x[t+ 1] =

1 1 −2
0 1 1
0 0 1

x[t] +

1
0
1

u[t], y[t] =
[
2 0 0

]
x[t]

(a) Find the state feedback gain so that the resulting system has all
eigenvalues at x = 0. Show that for any initial state the zero-input
response of the feedback system becomes identically zero for t ≥ 3.

(b) Let u = pr − kx, where p is the feedforward gain and k is the same state
feedback gain. Find a gain p so that the output will track “any” step
reference input. Show also that y(t) = r(t) for t ≥ 3.

1Chen, Problem 8.8
Linear Dynamical Systems
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Solution to Problem 2(a)

(A, b) is controllable.

∆(z) = z3 − 3z2 + 3z − 1

∆f (z) = z3

k̄ =
[
3 −3 1

]
Calculating the gain k

k = k̄CC−1 =
[
3 −3 1

] 1 3 6
0 1 3
0 0 1

 1 1 0
−2 −3 2

1 2 −1

 =
[
1 5 2

]
Thus, the state feedback equation becomes

x[t+ 1] =

1 1 −2
0 1 1
0 0 1

−
1

0
1

 [1 5 2
]
x[t] +

1
0
1

 r[t]
Linear Dynamical Systems
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Solution to Problem 2(a)

=

 0 −4 −4
0 1 1
−1 −5 −1

x[t] +

1
0
1

 r[t]
The zero input response of the feedback system then becomes

yzi[t] = cĀtx[0]

where Ā =

 0 −4 −4
0 1 1
−1 −5 −1

 is the closed-loop state matrix. Calculating Āt,

Ā = Q

0 1 0
0 0 1
0 0 0

Q−1

Āt = Q

0 1 0
0 0 1
0 0 0

tQ−1 where, Q =

 4 0 1
−1 0 0

1 −1 0



Linear Dynamical Systems
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Solution to Problem 2(a)

using the nilpotent property,0 1 0
0 0 1
0 0 0

t = 0, for t ≥ 3

Therefore,

yzi[t] = c0x[0] = 0, for t ≥ 3

Linear Dynamical Systems
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Solution to Problem 2(b)

∆(z) = z3 − 3z2 + 3z − 1, ĝ(z) =
2z2 − 8z + 8

z3 − 3z2 + 3z − 1

∆f (z) = z3, u = pr − kx, ĝf (z) = p
2z2 − 8z + 8

z3

If the reference input is a step function with magnitude a, then at steady-state
the output y is given by

y[t] = ĝf (1).a t→∞
thus in order for y to track any step reference input we need ĝf (1) = 1, i.e.

ĝf (1) = 2p = 1 ≡ p = 0.5

the resulting system can be described as

x[t+ 1] =

 0 −4 −4
0 1 1
−1 −5 −1

x[t] +

0.5
0

0.5

 r[t]
= Āx[t] + b̄r[t]

y[t] =
[
2 0 0

]
x[t]

the response excited by r[t] is

y[t] = cĀtx(0) +

t−1∑
m=0

c Ā(t−1−m)b̄r(m)

Linear Dynamical Systems
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Solution to Problem 2(b)

Since Āt = 0 for t ≥ 3, we have

y[t] = cb̄r[t− 1] + cĀb̄r[t− 2] + cĀ2b̄r[t− 3]

= r[t− 1]− 4r[t− 2] + 4r[t− 3] for t ≥ 3

For any step reference input r[t] = a the response is

y[t] = (1− 4 + 4)a = a = r[t], for t ≥ 3

Observation

In the above problem, exact tracking is achieved in a finite number
of sampling periods. This is possible if all poles of the resulting
system are placed at z = 0. This is called the dead-beat controller
design.

Linear Dynamical Systems
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BIBO and Asymptotic Stability with State Feedback

Problem 3

Consider a system with transfer function

ĝ(s) =
(s− 1)(s+ 2)

(s+ 1)(s− 2)(s+ 3)

Is it possible to change the transfer function to

ĝf (s) =
(s− 1)

(s+ 2)(s+ 3)

by state feedback? Is the resulting system BIBO stable?
Asymptotically stable ?

1Chen, Problem 8.5
Linear Dynamical Systems
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Solution to Problem 3

If we place the eigenvalues of the state feedback system at −2,
−2, −3. Then the system has the transfer function

ĝf (s) =
(s− 1)(s+ 2)

(s+ 2)2(s+ 3)
=

(s− 1)

(s+ 2)(s+ 3)

The system is BIBO stable because ĝf (s) has poles at poles at −2
and −3; it is asymptotically stable because the eigenvalues are −2,
−2 and −3.

Linear Dynamical Systems
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Limitations of Eigenvalue Placement

Problem 4

Consider the system

ẋ = Ax+ bu =

[
−1 0

0 2

]
x+

[
0
1

]
u

Can a gain matrix k be computed, such that the eigenvalues of the
system can be placed at any arbritary position? Comment on the
inference drawn from the result.

1Terrell, Example 6.3
Linear Dynamical Systems
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Solution to Problem 4

Given,

ẋ =

[
−1 0

0 2

]
x+

[
0
1

]
u

Since the rank of C = 1, the system is uncontrollable. If we try to find a
state feedback gain k using det(sI − (A− bk)) = 0, the characteristic
equation becomes,

(s+ 1)(s− 2 + k2) = 0

It is evident that no value of k1 can be computed for the system and the
eigenvalue at −1 cannot be changed by the state feedback.
For example, if we choose k =

[
0 −3

]
, the resulting system becomes

ẋ = (A+ bk)x =

[
−1 0

0 −1

]
x

where the eigenvalue −1 is unchanged.
Inference : If the pair (A,B) is uncontrollable, then there are
limitations on eigenvalue placement for the system.

Linear Dynamical Systems
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State Feedback design using Lyapunov method and place

command

Problem 5

Compute the feedback gain k ∈ R1×n for the system

ẋ = Ax+ bu

with A =

2 1 3
2 1 2
0 1 2

 and b =

1
2
2

 so that the closed loop

eigenvalues are placed at −1, −2 and −3.

Repeat for A =

0 1 3
0 1 2
4 1 5

 and B =

1 0
2 2
0 1

.

Linear Dynamical Systems
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Solution to Problem 5

Recall!

Recall from the lecture slide 18, the method of computing the
state feedback gains using the Lyapunov method.

The simplest choice for the matrix F which has the desired
eigenvalues is

F =

−1 0 0
0 −2 0
0 0 −3


Let k̄ =

[
1 2 1

]
. It is easy to verify that the pair (F ′, k̄′) is

controllable. The Lyapunov equation which needs to be solved is
then given as

AT − TF = bk̄

Linear Dynamical Systems
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Solution to Problem 5

Upon solving this equation, we compute the T matrix to be

T =

−1
3 − 6

19 − 3
43

1 20
19

16
43

1
3

14
19

14
43

 .
Finally, the required gain vector k is computed as k = k̄T−1, i.e.

k =

[
63

17

26

17

36

17

]
.

Also, using the MATLAB ‘place’ command, the gain vector is

found to be

[
63

17

26

17

36

17

]
.

Linear Dynamical Systems
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Solution to Problem 5

For A =

0 1 3
0 1 2
4 1 5

 and B =

1 0
2 2
0 1

, let F =

−1 0 0
0 −2 0
0 0 −3


and K̄ =

1 0
2 2
0 1

′. Then, upon solving the Lyapunov equation

AT − TF = BK̄, we get

T =

 13/3 −4/5 0
23/3 12/5 1
−11/3 2/5 0


Finally, the required state feedback gain is computed to be

Klyap =

[
31/9 1 53/9
25/9 1 41/9

]

Linear Dynamical Systems
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Solution to Problem 5

While using the place command the state feedback gain is
computed to be

Kplace =

[
−1.8710 0.6632 −2.8196

6.0082 1.2348 10.0750

]

Note

Note that the designed K matrices are different using the two
methods.

Linear Dynamical Systems
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Solution to Problem 5
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Solution to Problem 5
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State Feedback and Tracking

Problem 61: L

DT
X

α

γ

herr

γR

V

Aircraft axis

horizontal

Glideslope

Figure: Aircraft during the landing phase

System description

1 The Instrument Landing System (ILS) on ground determines the difference between the actual trajectory of
the aircraft and the reference trajectory imposed for the descent.

2 Lateral movement and rolling movements of the aircraft are ignored, but the longitudinal motion, assuming
that these aspects are handled by another automated system.

3 Three outputs that are measured in real-time: the speed V , the angle γ of the flight path, and the
distance from the center of mass of the aircraft relative to the glide-slope herr .

4 The control inputs of the system are the aircraft thrust T and the elevator command δ.

5 The elevator is a movable aerodynamic surface located in the empennage that controls the pitch of the
aircraft. We assume there are no dynamics between the elevator command and the angle of attack α of
the wing. Thus, we view α as equivalent to δ, and consequently, for the sake of simplicity, we treat α as a
control input. The thrust controls the speed V of the aircraft.

1
Jain et al, International Journal of Applied Mathematics and Computer Science, 22(1), pp. 125-137, 2012
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State Feedback and Tracking

Problem 6:
The non-linear model of the longitudinal dynamics of a large jet aircraft
is given as:  mdV

dt

mV dγ
dt

dherr

dt

 =

−D(α, V ) + T cosα−mgsinγ
L(α, V ) + T sinα−mgcosγ

V (sinγ + cosγtanγR)



Control objective

The objective is that the aircraft follows along the glide–slope, making a
desired flight path angle at 3 degrees clockwise (i.e., γr = −3 deg).
Thus, it makes herr zero.

1
Jain et al, International Journal of Applied Mathematics and Computer Science, 22(1), pp. 125-137, 2012
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State Feedback and Tracking

Problem 6:
We use the following linearized model for designing a controller bank around
the trim points, α = 2.686 deg and T = 4.23× 104N .

ẋ = Ax+Bu, z = Cx y = C0x

where A, B, C and C0 are given as

A =

−0.0180 −9.7966 0
0.0029 −0.0063 0

0 81.9123 0

, B =

−4.8374 5.2574× 10−6

0.5786 3.0149× 10−9

0 0


C =

1 0 0
0 1 0
0 0 1

, C0 =

[
1 0 0
0 0 1

]
, x =

[
V γ herr

]T
, u = col(α, T )

Control problem

Design a controller such that the state of the closed-loop system is stable and

tracks the output signal
[
81.8m/s 0m

]T
.

1
Jain et al, International Journal of Applied Mathematics and Computer Science, 22(1), pp. 125-137, 2012

Linear Dynamical Systems



29

Solution to Problem 6
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Solution to Problem 6
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Solution to Problem 6
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