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Linear Dynamical Systems
Week 8 - Observer Design and Output Feedback
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Outline of Week 8

1 State Estimation

Full-order design
Reduced-order design

2 Feedback from estimated states

3 State Estimation - Multivariable case

4 Unknown Input Observers (UIOs)
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State Estimation

Introduction and Motivation
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State Estimation

Problem Statement

State estimation problem

Consider the n-dimensional state equation

ẋ = Ax(t) + bu(t), y = cx(t) (CLTI)

where A, b, c are given and the input u(t) and output y(t) are
available to us. The state x, however is not available to us. The
problem is to estimate x from u and y with the knowledge of
A, b, c.
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State Estimation

Introduction and Motivation
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State Estimation

Introduction and Motivation

Gramians provide only the value of the state at a particular instant of time,
instead of the continuous estimate.

Theorem (Gramian-based reconstruction)

Suppose we are given two times t1 > t0 ≥ 0 and an input/output pair
u(t), y(t), ∀t ∈ [t0, t1]. When the system (CLTV) is observable

x(t0) = WO(t0, t1)−1
∫ t1
t0

Φ(t, t0)TC(t)T ỹ(t)dt ,

where

ỹ(t) := y(t)−
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ −D(t)u(t), ∀t ∈ [t0, t1].
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State Estimation

Introduction and Motivation

Two disadvantages in using the open-loop estimator

the initial state must be computed and set each time we use the
estimator.

if the matrix A has eigenvalue with positive real parts, then even for a
very small difference between x(t0) and x̂(t0) for some t0 which may be
caused by a disturbance between x(t) and x̂(t) will grow with time.
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State Estimation

State Estimator

The open-loop estimator is now modified as

˙̂x(t) = Ax̂(t) + bu(t) + l(y(t)− cx̂(t))

which can be written as

˙̂x(t) = (A− lc)x̂(t) + bu(t) + ly(t). (SE)
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State Estimation

State Estimator

Let e(t) = x(t)− x̂(t).

Differentiating e and then substituting (CLTI) and (SE)
into it we obtain

ė(t) = ẋ(t)− ˙̂x(t) = Ax(t) + bu(t) + (A− lc)x̂(t))− bu(t)− l(cx(t))

= (A− lc)x(t)− (A− lc)x̂(t)) = (A− lc)(x(t)− x̂(t))

or,
ė(t) = (A− lc)e(t)

This equation governs the estimation error.

Observation

If all eigenvalues of (A− lc) can be assigned arbitrarily, then we can control the
rate for e(t) to approach zero or equivalently, for the estimated state to
approach the actual state.

Even if there is a large error between x̂(t0) and x(t0) at the initial time t0
the estimated state will approach the actual state rapidly. Thus, there is

no need to compute the initial state of the original state equation.
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State Estimation

State estimation

˙̂x(t) = Ax̂(t) + bu(t) + l(y(t)− cx̂(t))

= (A− lc)x̂(t) + bu(t) + ly(t). (SE)

Theorem

Consider the closed-loop state estimator (SE). If the output
injection matrix gain l ∈ Rn×1 makes A− lc a stability matrix,
then the state estimation error e(t) converges to zero exponentially
fast, for every input signal u(t).

Note: The “correcting term” l(ŷ − y) is used to correct any deviations of x̂
from the true value x. When x̂ = x, we have ŷ = y and this term disappears.
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State estimation
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State Estimation

State estimation

Further questions

1 Does there exists a vector l?

2 How to compute l?

3 Under what conditions A− lc is a stability matrix?

4 Can the eigenvalues of A− lc be placed arbitrarily?

5 Can the eigenvalues of A− lc be placed at least on the LHS
of the complex plane?

6 . . .



12

State Estimation

State Estimator

Theorem

Consider the pair (A, c). All eigenvalues of (A− lc) can be
arbitrarily assigned by selecting a real constant vector l if and only
if (A, c) is observable.

Proof.

This theorem can be established directly or indirectly by using the duality
theorem.

((A, c) is observable) ⇐⇒ ((A′, c′) is controllable)

((A′, c′) is controllable) =⇒ (all eigenvalues of (A′ − c′k) can be
assigned arbitrarily by selecting a constant gain vector k)

(A′ − c′k)′ = (A− k′c)
Thus, l = k′

Observation

The procedure for computing state feedback gains can be used to compute the
gain l in the state estimators.
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State Estimation

Eigenvalue assignment by output injection

The following results can also be obtained by duality from the eigenvalue
assignment results that we proved for controllable and stabilizable
systems.

Theorem

When the system pair (A, c) is detectable, it is always possible to find a
matrix gain l ∈ Rn×1 such that A− lc is a stability matrix.

Theorem

Assume that the pair (A, c) is observable. Given any set of n complex
numbers λ1, λ2, . . . λn there exists a state feedback matrix l ∈ Rn×1 such
that A− lc has the eigenvalues equal to the λi.
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State Estimation

Lyapunov Equation Method

Consider n-dimensional state equation

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) (CLTI)

1 Select an arbitrary n× n matrix F that has no eigenvalues in common
with those of A.

2 Select an arbitrary n× 1 vector l such that (F, l) is controllable.

3 Solve the unique T in the Lyapunov equation TA− FT = lc.

4 Then the state-space equation

ż(t) = Fz(t) + Tbu(t) + ly(t)

x̂(t) = T−1z(t)

generates an estimate of x.
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State Estimation

Lyapunov Equation Method

Justification of the procedure:

Let us define
e(t) := z(t)− Tx(t)

Then we have, replacing TA by FT + lc,

ė(t) := ż(t)− T ẋ(t) = Fz(t) + Tbu(t) + lcx(t)− TAx(t)− Tbu(t)
= Fz(t) + lcx(t)− (FT + lc)x(t) = F (z(t)− Tx(t)) = Fe(t)

If F is stable, for any e(0), the error vector e(t) approaches zero as
t→∞. Thus z approaches Tx(t) or, equivalently, T−1z(t) is an
estimate of x(t).
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State Estimation

Full-order state estimator
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State Estimation

Reduced-Dimensional State Estimator

Consider n-dimensional state equation

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) (CLTI)

If it is observable, then it can be transformed into the observable canonical
form as

ẋ =


−α1 1 0 0
−α2 0 1 0
−α3 0 0 1
−α4 0 0 0

+


β1
β2
β3
β4

u
y =

[
1 0 0 0

]
x

We see that y equals x1.

Therefore, it is sufficient to construct an (n− 1) dimensional state estimator to
estimate xi for i = 2, 3, . . . , n. This estimator with output equation can then
be used to estimate all n state variables . This estimator has a lesser dimension
than (CLTI) and is called a reduced-dimensional estimator.
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ẋ =


−α1 1 0 0
−α2 0 1 0
−α3 0 0 1
−α4 0 0 0

+


β1
β2
β3
β4

u
y =

[
1 0 0 0

]
x

We see that y equals x1.

Therefore, it is sufficient to construct an (n− 1) dimensional state estimator to
estimate xi for i = 2, 3, . . . , n. This estimator with output equation can then
be used to estimate all n state variables . This estimator has a lesser dimension
than (CLTI) and is called a reduced-dimensional estimator.



17

State Estimation

Reduced-Dimensional State Estimator

Consider n-dimensional state equation
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State Estimation

Reduced-Dimensional State Estimator

Reduced dimensional estimators can be designed by transformations or by
solving Lyapunov equations.

Select an arbitrary (n− 1)× (n− 1) stable matrix F that has no
eigenvalues in common with those of A.

Select an arbitrary (n− 1)× 1 vector l such that (F, l) is controllable.

Solve the unique T in the Lyapunov equation TA− FT = lc. Note that
T is an (n− 1)× n matrix .

Then the (n− 1)-dimensional state equation

ż(t) = Fz(t) + Tbu(t) + ly(t)

x̂ =

[
c
T

]−1 [
y(t)
z(t)

]
is an estimate of x(t).
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State Estimation

Reduced-Dimensional State Estimator

Justification of the procedure:

We write x̂ =

[
c
T

]−1 [
y(t)
z(t)

]
as

[
y(t)
z(t)

]
=

[
c
T

]
x̂(t) =: P x̂(t)

which implies y = cx̂(t) and z = T x̂(t). Clearly y(t) is an estimate of cx(t).

We now show that z(t) is an estimate of Tx(t). Define

e(t) = z(t)− Tx(t)

Then we have

ė(t) = ż(t)− T ẋ(t) = Fz(t) + Tbu(t) + lcx(t)− TAx(t)− Tbu(t) = Fe(t)

Clearly if F is stable, then e(t)→ 0 as t→∞. Thus, z is an estimate of Tx.
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State Estimation

Reduced-Dimensional State Estimator

Theorem

If A and F have no common eigenvalues then the square matrix

P =

[
c
T

]
where T is the unique solution of TA− FT = lc, is nonsingular if
and only if (A, c) is observable and (F,L) is controllable.
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Feedback from estimated states

Feedback from estimated states

Consider a plant described by the n-dimensional state equation

ẋ = Ax+ bu, y = cx (CLTI)

If (A, b) is controllable state feedback u = r − kx can place the
eigenvalues of (A− bk) in any desired positions.

If the state variables are not available for feedback, we can design
a state estimator.

If (A, c) is observable, a full or reduced dimensional estimator with
arbitrary eigenvalue can be constructed.
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Feedback from estimated states

Feedback from estimated states

Consider the n-dimensional state estimator

˙̂x = (A− lc)x̂+ bu+ ly (Estimator)

The estimated state can approach the actual state with any rate by
selecting the vector l.

If x is not available it is natural to apply the feedback gain to the
estimated state as

u = r − kx̂ (Controller)

as shown in the figure below. The connection is called the
controller-estimator configuration.

  

Plant

Estimator
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Feedback from estimated states

Feedback from estimated states

Questions raised in this connection

1 The eigenvalues of (A− bk) are obtained from u = r−kx. Do
we still have the same set of eigenvalues in using u = r − kx̂?

2 Will the eigenvalues of the estimator be affected by the
connection?

3 What is the effect of the estimator on the transfer function
from r to y?.

4 . . .

  

Plant

Estimator
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Feedback from estimated states
Let us develop a state equation to describe the overall system.

  

Plant

Estimator

ẋ = Ax− bkx̂+ br

˙̂x = (A− lc)x̂+ b(r − kx̂) + lcx

They can be combined as[
ẋ
˙̂x

]
=

[
A −bk
lc A− lc− bk

] [
x
x̂

]
+

[
b
b

]
r

y =
[
c 0

] [x
x̂

]
This 2n dimensional state equation describe the feedback system.
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Feedback from estimated states

Let us introduce the following equivalence transformation[
x
e

]
=

[
x

x− x̂

]
=

[
I 0
I −I

] [
x
x̂

]
=: P

[
x
x̂

]

Computing P−1 which happens to equal P , we can obtain the following
equivalent state equation[

ẋ
ė

]
=

[
A− bk bk

0 A− lc

] [
x
e

]
+

[
b
0

]
r

y =
[
c 0

] [x
e

] (Estimate-Control)

Theorem (Seperation)

The closed-loop of the process (Estimate-Control) with the output feedback
controller results in a system whose eigenvalues are the union of the
eigenvalues of the state feedback closed-loop matrix (A− bk) with the
eigenvalues of the state estimator matrix (A− lc).
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Feedback from estimated states
[
ẋ
ė

]
=

[
A− bk bk

0 A− lc

] [
x
e

]
+

[
b
0

]
r

y =
[
c 0

] [x
e

] (Estimate-Control)

Some observations

Inserting the state estimator does not affect the eigenvalues of the
original state feedback; nor are the eigenvalues of the state estimator
affected by the connection.

The design of the state feedback and the design of the estimator can be
carried out independently.

The state equation in (Estimate-Control) is not controllable.

The transfer function of (Estimate-Control) equals the transfer function
of the reduced equation

ẋ = (A− bk)x+ br, y = cx

or,
ĝf (s) = c(sI −A+ bk)−1b.

The estimator is completely canceled in the transfer function from r to y.
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ė

]
=

[
A− bk bk

0 A− lc

] [
x
e

]
+

[
b
0

]
r

y =
[
c 0

] [x
e

] (Estimate-Control)

Some observations

Inserting the state estimator does not affect the eigenvalues of the
original state feedback; nor are the eigenvalues of the state estimator
affected by the connection.

The design of the state feedback and the design of the estimator can be
carried out independently.

The state equation in (Estimate-Control) is not controllable.

The transfer function of (Estimate-Control) equals the transfer function
of the reduced equation
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State Estimators - Multivariable Case

Consider the n-dimensional p-input q-output state equation

ẋ = Ax+Bu, y = Cx

The problem is to use available input u and output y to drive a system whose
output gives an estimate of the state x. We extend the previous study to the
multi-variable case as

˙̂x = (A− LC)x̂+Bu+ Ly

This is a full-dimensional state estimator.

Let us define the error vector as

e(t) := x(t)− x̂(t)

Then we have

ė = (A− LC)e

If (A,C) is observable, then all eigenvalues of (A− LC) can be assigned
arbitrarily by choosing an L. Thus the convergence rate for the estimated state
x̂ to approach the actual state x can be as fast as desired.
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Procedure for computing L - Reduced state estimator

Consider the n-dimensional q-output observable pair (A,C). It is assumed that
C has rank q.

1 Select an arbitrary (n− q)× (n− q) stable matrix F that has no
eigenvalues in common with those of A.

2 Select an arbitrary (n− q)× q matrix L such that (F,L) is controllable.

3 Solve the unique (n− q)× n matrix T in the Lyapunov equation
TA− FT = LC

4 If the square matrix of order n

P =

[
C
T

]
is singular, go back to step 2 and repeat the process.

5 If P is nonsingular, then the (n− q)-dimensional state equation

ż = Fz + TBu+ Ly

x̂ =

[
C
T

]−1 [
y
z

]
generates an estimate of x.
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Justification of the procedure
Let us write [

y
z

]
=

[
C
T

]
x̂

which implies y = Cx̂ and z = T x̂. Clearly y is an estimate of Cx. We now
show that z is an estimate of Tx. Let us define

e := z − Tx
Then we have

ė = z − T ẋ = Fz + TBu+ LCx− TAx− TBu
= Fz + (LC − TA)x = F (z − Tx) = Fe

If F is stable, then e(t)→ 0 as t→∞. Thus z is an estimate of Tx.

Theorem (Necessary condition)

If A and F have no common eigenvalues, then the square matrix

P :=

[
C
T

]
where T is the unique solution of TA− FT = LC, is non-singular only if
(A,C) is observable and (F,L) is controllable.
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Introduction - UIO
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Problem statement

Consider a system in which the system uncertainty can be
summarized as an additive unknown disturbance term as{

ẋ(t) = Ax(t) +Bu(t) + Ed(t)

y(t) = Cx(t)
(disturbed-CLTI)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the output
vector, u(t) ∈ Rr is the known input vector and d(t) ∈ Rq is the
unknown input (or disturbance) vector. A,B,C and E are known
matrices with appropriate dimensions.
The problem is to estimate the state of the system such that the
disturbances have no effect on the state-estimation error.
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Extended formulations

1 There is no loss of generality in assuming that the unknown input
distribution matrix E should be full column rank. When this is not the
case, the following rank decomposition can be applied to the matrix E

Ed(t) = E1E2d(t)

where E1 is a full column rank matrix and E2d(t) can now be considered
as a new unknown input.

2 The term Ed(t) can be used to describe an additive disturbance as well
as a number of other different kinds of modeling uncertainties. Examples
are: noise, interconnecting terms in large scale systems, non-linear terms
in system dynamics, terms arise from time-varying system dynamics,
linearization and model reduction errors, parameter variations.
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Extended formulations

3 The disturbance term may also appear in the output equation, i.e.,

y(t) = Cx(t) + Eyd(t)

This case is not considered here because the disturbance term Eyd(t) in
the output equation can be nulled by simply using a transformation of the
output signal y(t), i.e.

yE(t) = Tyy(t) = TyCx(t) + TyEyd(t) = TyCx(t)

where TyEy = 0, if one replaces y(t) and C with yE(t) and TyC, the
problem will be equivalent to one without output disturbances.

4 For some systems, there is a term relating the control input u(t) in the
system output equation, i.e.

y(t) = Cx(t) +Du(t)

As the control input u(t) is known, a new output can be constructed as:

ȳ(t) = y(t)−Du(t) = Cx(t)

If the output y(t) is replaced by ȳ(t), the problem will be equivalent to
the one without the term Du(t).
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Unknown Input Observers

{
ẋ(t) = Ax(t) +Bu(t) + Ed(t)

y(t) = Cx(t)
(disturbed-CLTI)

Definition (Unknown Input Observer (UIO))

An observer is defined as an unknown input observer for the
system described by (disturbed-CLTI), whenever its state
estimation error vector e(t) approaches zero asymptotically,
regardless of the presence of the unknown input (disturbance) in
the system.
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Unknown Input Observers
The structure for a full-order observer is described as{

ż(t) = Fz(t) + TBu(t) +Ky(t)

x̂(t) = z(t) +Hy(t)
(UIO)

where x̂ ∈ Rn is the estimated state vector and z ∈ Rn is the state of this
full-order observer, and F, T,K,H are matrices to be designed for achieving
unknown input de-coupling and other design requirements.

ROBUST RESIDUAL GENERATION VIA UIOS 71 

that the remaining freedom can be used to make the residual have directional 
properties (or make the state estimation error have minimal variance), after 
unknown input (or disturbance) de-coupling has been achieved. 

3.2.1 Theory of UIOs 

The structure for a full-order observer is described as: 

{ i(t) = Fz(t) + TBu(t) + Ky(t) 
x(t) = z(t) + Hy(t) (3.2) 

where x E IRn is the estimated state vector and z E IRn is the state of this 
full-order observer, and F, T, K, H are matrices to be designed for achiev-
ing unknown input de-coupling and other design requirements. The observer 
described by Eq.(3.2) is illustrated in Fig.3.1. 
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Figure 3.1. The structure of a full-order unknown input observer 

When the observer (3.2) is applied to the system (3.1), the estimation error 
(e(t) = x(t) - x(t)) is governed by the equation: 

e(t) (A - HCA - K1C)e(t) + [F - (A - HCA - K1C)]z(t) 
+ [K2 - (A - HCA - K1C)H]y(t) 
+ [T - (I - HC)]Bu(t) + (HC - I)Ed(t) (3.3) 

where 
(3.4) 
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x̂(t) = z(t) +Hy(t)
(UIO)

When the observer (UIO) is applied to the system (disturbed-CLTI), the
estimation error (e(t) = x(t)− x̂(t)) is governed by the equation

ė(t) = (A−HCA−K1C)e(t) + [F − (A−HCA−K1C)]z(t)

+ [K2 − (A−HCA−K1C)H]y(t)

+ [T − (I −HC)]Bu(t) + (HC − I)Ed(t)

where
K = K1 +K2

If one can make the following relations hold true:

(HC − I)E = 0 (1)

T = I −HC (2)

F = A−HCA−K1C (3)

K2 = FH (4)
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The state estimation error will then be:

ė(t) = Fe(t)

If all eigenvalues of F are stable, e(t) will approach zero
asymptotically, i.e. x̂→ x. This means that the observer (UIO) is
an unknown input observer for the system.

Questions to address

Does a solution to eqs. (1-4) exists?

How to compute it?

How to ensure that F is Hurwitz?

. . .
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(HC− I)E = 0 (1)

Theorem

Equation (1) is solvable if and only if

rank(CE) = rank(E)

and a special solution is

H∗ = E[(CE)TCE]−1(CE)T
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Proof

Necessity:
When equation (1) has a solution H, one has HCE = E

or

(CE)THT = ET

i.e., ET belongs to the range space of the matrix (CE)T and this leads to:

rank(ET ) ≤ rank((CE)T )

i.e., rank(E) ≤ rank(CE)

However,
rank(CE) ≤ min(rank(C), rank(E)) ≤ rank(E)

Hence, rank(CE) = rank(E).

Sufficiency:
When rank(CE) = rank(E) holds true, CE is a full column rank matrix
(because E is assumed to be full column rank), and a left inverse of CE exists

(CE)+ = [(CE)TCE]−1(CE)T

Clearly H = E(CE)+ is a solution to equation (1)
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(HC − I)E = 0 (1)

T = I −HC (2)

F = A−HCA−K1C (3)

K2 = FH (4)

The solution of equation (1) is given by

H = E(CE)+

where (CE)+ = [(CE)TCE]−1(CE)T .
Substituting H into (3), we get

F = A−HCA−K1C

= (In − E(CE)+C)A−K1C

= A1 −K1C
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Unknown Input Observers{
ẋ(t) = Ax(t) +Bu(t) + Ed(t)

y(t) = Cx(t)
(disturbed-CLTI){

ż(t) = Fz(t) + TBu(t) +Ky(t)

x̂(t) = z(t) +Hy(t)
(UIO)
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When the observer (UIO) is applied to the system (disturbed-CLTI), the
estimation error (e(t) = x(t) � x̂(t)) is governed by the equation

ė(t) = (A � HCA � K1C)e(t) + [F � (A � HCA � K1C)]z(t)

+ [K2 � (A � HCA � K1C)H]y(t)

+ [T � (I � HC)]Bu(t) + (HC � I)Ed(t)

where
K = K1 + K2

If one can make the following relations hold true:

(HC � I)E = 0 (1)

T = I � HC (2)

F = A � HCA � K1C (3)

K2 = FH (4)

Theorem

The necessary and sufficient conditions for (UIO) to be a UIO for
the system (disturbed-CLTI) are

rank(CE) = rank(E)

(C,A1) is detectable pair, where

A1 = A− E[(CE)TCE]−1(CE)TCA
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When the observer (UIO) is applied to the system (disturbed-CLTI), the
estimation error (e(t) = x(t) � x̂(t)) is governed by the equation

ė(t) = (A � HCA � K1C)e(t) + [F � (A � HCA � K1C)]z(t)

+ [K2 � (A � HCA � K1C)H]y(t)

+ [T � (I � HC)]Bu(t) + (HC � I)Ed(t)

where
K = K1 + K2

If one can make the following relations hold true:

(HC � I)E = 0 (1)

T = I � HC (2)

F = A � HCA � K1C (3)

K2 = FH (4)

Observations

K1 is a free parameter in the design of a UIO. The only restriction on K1

is that it must stabilize the system dynamics matrix F .

The matrix K1 is not unique.

(UIO) will be a simple full-order Luenberger observer by setting T = I
and H = 0, when E = 0.
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that the remaining freedom can be used to make the residual have directional 
properties (or make the state estimation error have minimal variance), after 
unknown input (or disturbance) de-coupling has been achieved. 

3.2.1 Theory of UIOs 

The structure for a full-order observer is described as: 

{ i(t) = Fz(t) + TBu(t) + Ky(t) 
x(t) = z(t) + Hy(t) (3.2) 

where x E IRn is the estimated state vector and z E IRn is the state of this 
full-order observer, and F, T, K, H are matrices to be designed for achiev-
ing unknown input de-coupling and other design requirements. The observer 
described by Eq.(3.2) is illustrated in Fig.3.1. 

input 

u(t) 

( 
I .--..L--, 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

unknown input 

ú Ç E í F =
System 

F 

output 

y(t) 

state 
estimates 

A 
x(t) 

,----------------------! 
Unknown Input Observer (UIO) 

Figure 3.1. The structure of a full-order unknown input observer 

When the observer (3.2) is applied to the system (3.1), the estimation error 
(e(t) = x(t) - x(t)) is governed by the equation: 

e(t) (A - HCA - K1C)e(t) + [F - (A - HCA - K1C)]z(t) 
+ [K2 - (A - HCA - K1C)H]y(t) 
+ [T - (I - HC)]Bu(t) + (HC - I)Ed(t) (3.3) 

where 
(3.4) 
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Design procedure for UIOs

One of the most important steps in designing a UIO is to stabilise
F = A1 −K1C by choosing the matrix K1, when the pair (C,A1)
is detectable.

If (C,A1) is observable, this can be achieved easily by using a
pole placement routine.

If (C,A1) is not observable, an observable canonical
decomposition procedure should be applied to (C,A1) which is

PA1P
−1 =

[
A11 0
A12 A22

]
;A11 ∈ Rn1×n1

CP−1 =
[
C∗ 0

]
;C∗ ∈ Rm×n1

where n1 is the rank of the observability matrix for (C,A1),
and (C∗, A11) is observable.

If all eigenvalues of A22 are stable, (C,A1) is detectable and
the matrix F can be stabilized.
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UIO design procedure
1 Check the rank condition for E and CE: If rank(CE) 6= rank(E), a UIO does not exist, go to 10

2 Compute H, T and A1:

H = E[(CE)
T
CE]

−1
(CE)

T
; T = I −HC; A1 = TA

3 Check the observability: If (C,A1) observable, a UIO exists and K1 can be computed using pole
placement, go to 9.

4 Construct a transformation matrix P for the observable canonical decomposition: To select independent

n1 = rank(W0) (W0 is the observability matrix of (C,A1) row vector pT1 , . . . , pTn1
from W0,

together other n− n1 row vector pTn1+1, . . . , p
T
n to construct a non-singular matrix as:

P = [p1, · · · , pn0; pn0+1, · · · , pn]
T

5 Perform an observable canonical decomposition on (C,A1):

PA1P
−1

=

[
A11 0
A12 A22

]
CP

−1
=
[
C∗ 0

]
6 Check the detectability of (C,A1): If any one of the eigenvalues of A22 is unstable a UIO does not exist

and go to 10.

7 Select n1 desirable eigenvalues and assign them to A11 −K1
pC

∗ using pole placement.

8 Compute K1 = P−1Kp = P−1
[
(K1

p)
T (K2

p)
T
]T

where K2
p can be any (n− n1)×m

matrix.

9 Compute F and K: F = A1 −K1C , K = K1 + K2 = K1 + FH

10 STOP
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