
The POP Instruction

• POP D

– Copy the contents of the memory location pointed
to by the SP to register E

– Increment SP

– Copy the contents of the memory location pointed
to by the SP to register D

– Increment SP

1NPTEL

Operation of the Stack

• During pushing, the stack operates in a “decrement then

store” style.

– The stack pointer is decremented first, then the information is

placed on the stack.

• During poping, the stack operates in a “use then increment” style.

– The information is retrieved from the top of the the stack and then the

pointer is incremented.

• The SP pointer always points to “the top of the stack”.

2NPTEL

LIFO

• The order of PUSHs and POPs must be
opposite of each other in order to retrieve
information back into its original location.

3NPTEL

The PSW Register Pair
• The 8085 recognizes one additional register pair called the

PSW (Program Status Word).

– This register pair is made up of the Accumulator and the Flags

registers.

• It is possible to push the PSW onto the stack, do whatever

operations are needed, then POP it off of the stack.

– The result is that the contents of the Accumulator and the status of

the Flags are returned to what they were before the operations were

executed.

4NPTEL

Subroutines

• A subroutine is a group of instructions that will be used

repeatedly in different locations of the program.

– Rather than repeat the same instructions several times, they can be

grouped into a subroutine that is called from the different locations.

• In Assembly language, a subroutine can exist anywhere in the

code.

– However, it is customary to place subroutines separately from the main

program.

5NPTEL

Subroutines

• The 8085 has two instructions for dealing with

subroutines.

– The CALL instruction is used to redirect

program execution to the subroutine.

– The RET instruction is used to return the

execution to the calling routine.

6NPTEL

The CALL Instruction

• CALL 4000H

• Push the address of the instruction

immediately following the CALL onto the

stack

• Load 4000H to PC

7NPTEL

The RET Instruction

• RET

– Retrieve the return address from the top of the stack

– Load the program counter with the return address

8NPTEL

Cautions

• The CALL instruction places the return address at the two memory

locations immediately before where the Stack Pointer is pointing.

– You must set the SP correctly BEFORE using the CALL instruction.

• The RET instruction takes the contents of the two memory

locations at the top of the stack and uses these as the return address.

– Do not modify the stack pointer in a subroutine. You will loose the

return address.

9NPTEL

Passing Data to a Subroutine

• In Assembly Language data is passed to a

subroutine through registers.

– The data is stored in one of the registers by the calling program

and the subroutine uses the value from the register.

• The other possibility is to use agreed upon

memory locations.

– The calling program stores the data in the memory location and

the subroutine retrieves the data from the location and uses it.

10NPTEL

Call by Reference and Call by Value

• If the subroutine performs operations on the contents of the

registers, then these modifications will be transferred back to the

calling program upon returning from a subroutine.
– Call by reference

• If this is not desired, the subroutine should PUSH all the registers it

needs on the stack on entry and POP them on return.

– The original values are restored before execution returns to the

calling program.

11NPTEL

Cautions with PUSH and POP

• PUSH and POP should be used in opposite order.

• There has to be as many POP’s as there are PUSH’s.

• –If not, the RET statement will pick up the wrong information

from the top of the stack and the program will fail.

• It is not advisable to place PUSH or POP inside a loop.

12NPTEL

Conditional CALL and RET Instructions

• The 8085 supports conditional CALL and

conditional RET instructions.

– The same conditions used with conditional JUMP instructions

can be used.
– CC, call subroutine if Carry flag is set.

– CNC, call subroutine if Carry flag is not set

– RC, return from subroutine if Carry flag is set

– RNC, return from subroutine if Carry flag is not set

– Etc.

13NPTEL

A Proper Subroutine
• According to Software Engineering practices, a proper

subroutine:
– Is only entered with a CALL and exited with an RET
– Has a single entry point

• Do not use a CALL statement to jump into different points of the same

subroutine.

– Has a single exit point
• There should be one return statement from any subroutine.

• Following these rules, there should not be any

confusion with PUSH and POP usage.

14NPTEL

Interrupts
• Interrupt is a process where an external device can get the

attention of the microprocessor.

– The process starts from the I/O device

– The process is asynchronous.

• Interrupts can be classified into two types:
• Maskable (can be delayed)

• Non-Maskable (can not be delayed)

• Interrupts can also be classified into:
• Vectored (the address of the service routine is hard-wired)

• Non-vectored (the address of the service routine needs to be supplied externally)

15NPTEL

Interrupts

• An interrupt is considered to be an emergency signal.

– The Microprocessor should respond to it as soon as possible.

• When the Microprocessor receives an interrupt signal, it

suspends the currently executing program and jumps to

an Interrupt Service Routine (ISR) to respond to the

incoming interrupt.

– Each interrupt will most probably have its own ISR.

16NPTEL

Responding to Interrupts

• Responding to an interrupt may be immediate or delayed

depending on whether the interrupt is maskable or non-maskable

and whether interrupts are being masked or not.

• There are two ways of redirecting the execution to the ISR

depending on whether the interrupt is vectored or non-vectored.
– The vector is already known to the Microprocessor

– The device will have to supply the vector to the Microprocessor

17NPTEL

The 8085 Interrupts

• The maskable interrupt process in the 8085 is
controlled by a single flip flop inside the
microprocessor. This Interrupt Enable flip flop is
controlled using the two instructions “EI” and
“DI”.

• The 8085 has a single Non-Maskable interrupt.
• The non-maskable interrupt is not affected by the value

of the Interrupt Enable flip flop.

18NPTEL

The 8085 Interrupts
• The 8085 has 5 interrupt inputs.

– The INTR input.

• The INTR input is the only non-vectored interrupt.

• INTR is maskable using the EI/DI instruction pair.

– RST 5.5, RST 6.5, RST 7.5 are all automatically
vectored.

• RST 5.5, RST 6.5, and RST 7.5 are all maskable.

– TRAP is the only non-maskable interrupt in the 8085

• TRAP is also automatically vectored

19NPTEL

The 8085 Interrupts

20

Interrupt name Maskable Vectored

INTR Yes No

RST 5.5 Yes Yes

RST 6.5 Yes Yes

RST 7.5 Yes Yes

TRAP No YesNPTEL

Interrupt Vectors and the Vector Table
• An interrupt vector is a pointer to where the ISR is stored in memory.

• All interrupts (vectored or otherwise) are mapped onto a memory area

called the Interrupt Vector Table (IVT).

– The IVT is usually located in memory page 00 (0000H- 00FFH).

– The purpose of the IVT is to hold the vectors that redirect the

microprocessor to the right place when an interrupt arrives.

– The IVT is divided into several blocks. Each block is used by one

of the interrupts to hold its “vector”

21NPTEL

The 8085 Non-Vectored Interrupt Process
1. The interrupt process should be enabled using the EI instruction.

2. The 8085 checks for an interrupt during the execution of every

instruction.

3. If there is an interrupt, the microprocessor will complete the executing

instruction, and start a RESTART sequence.

4. The RESTART sequence resets the interrupt flip flop and activates the interrupt

acknowledge signal (INTA).

5. Upon receiving the INTA signal, the interrupting device is expected to return

the op-code of one of the 8 RST instructions.

22NPTEL

The 8085 Non-Vectored Interrupt Process
6. When the microprocessor executes the RST instruction received from the

device, it saves the address of the next instruction on the stack and jumps to

the appropriate entry in the IVT.

7. The IVT entry must redirect the microprocessor to the actual service routine.

8. The service routine must include the instruction EI to re-enable the interrupt

process.

9. At the end of the service routine, the RET instruction returns the

execution to where the program was interrupted.

23NPTEL

The 8085 Non-Vectored Interrupt Process

24

• The 8085 recognizes 8

RESTART instructions: RST0

- RST7.

– each of these would send

the execution to a

predetermined hard-

wired memory location:

NPTEL

Restart Sequence
• The restart sequence is made up of three machine cycles

– In the 1st machine cycle:

• The microprocessor sends the INTA signal.

• While INTA is active the microprocessor reads the data lines

expecting to receive, from the interrupting device, the opcode for the

specific RST instruction.

– In the 2nd and 3rd machine cycles:

• the 16-bit address of the next instruction is saved on the stack.

• Then the microprocessor jumps to the address associated with the

specified RST instruction.

25NPTEL

Restart Sequence

• The location in the IVT associated with the
RST instruction can not hold the complete
service routine.

– The routine is written somewhere else in
memory.

– Only a JUMP instruction to the ISR’s location is
kept in the IVT block.

26NPTEL

Hardware Generation of RST Opcode

• How does the external device produce the

opcode for the appropriate RST instruction?

– The opcode is simply a collection of bits.

– So, the device needs to set the bits of the data

bus to the appropriate value in response to an

INTA signal.

27NPTEL

Hardware Generation of RST Opcode

28

RST 5’s opcode is EF =

D D

7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1

NPTEL

Hardware Generation of RST Opcode

29NPTEL

Issues in Implementing INTR Interrupts

30NPTEL

Issues in Implementing INTR Interrupts

31NPTEL

Issues in Implementing INTR Interrupts

32NPTEL

Multiple Interrupts & Priorities

33

• How do we allow multiple devices to

interrupt using the INTR line?
•The microprocessor can only respond to one signal on INTR

at a time.

•Therefore, we must allow the signal from only one of the

devices to reach the microprocessor.

•We must assign some priority to the different devices and

allow their signals to reach the microprocessor according to

the priority. NPTEL

The Priority Encoder

34

The solution is to use a circuit called the priority

encoder (74366).

NPTEL

Multiple Interrupts & Priorities

35NPTEL

Multiple Interrupts and Priority

36NPTEL

The 8085 Maskable/Vectored Interrupts

37NPTEL

Masking RST 5.5, RST 6.5 and RST 7.5

38NPTEL

Maskable Interrupts

39NPTEL

The 8085 Maskable/Vectored Interrupt Process

40NPTEL

The 8085 Maskable/Vectored Interrupt Process

41NPTEL

Manipulating the Masks

42

• The Interrupt Enable flip flop is manipulated using the

EI/DI instructions.

• The individual masks for RST 5.5, RST 6.5 and RST 7.5

are manipulated using the SIM instruction.

– This instruction takes the bit pattern in the Accumulator

and applies it to the interrupt mask enabling and disabling the

specific interrupts.NPTEL

How SIM Interprets the Accumulator

43NPTEL

SIM and the Interrupt Mask

44NPTEL

SIM and the Interrupt Mask

45

• The RST 7.5 interrupt is the only 8085 interrupt that has

memory.

•Bit 4 of the accumulator in the SIM instruction allows explicitly

resetting the RST 7.5 memory even if the microprocessor did not

respond to it. NPTEL

SIM and the Interrupt Mask

46NPTEL

Using SIM Instruction to Modify Interrupt Masks

47

Example: Set the interrupt masks so that RST5.5 is

enabled, RST6.5 is masked, and RST7.5 is enabled.

– First, determine the contents of the accumulator

NPTEL

Triggering Levels

48

RST 7.5 is positive edge sensitive.
•When a positive edge appears on the RST7.5 line, a logic 1 is stored in the

flip-flop as a “pending” interrupt.

•Since the value has been stored in the flip flop, the line does not have to be

high when the microprocessor checks for the interrupt to be recognized.

•The line must go to zero and back to one before a new interruptis recognized.

RST 6.5 and RST 5.5 are level sensitive.

•The interrupting signal must remain present until the microprocessor

checks for interrupts.NPTEL

Determining the Current Mask Settings

49

• RIM instruction: Read Interrupt Mask

– Load the accumulator with an 8-bit pattern showing the status of each

interrupt pin and mask.

NPTEL

How RIM sets the Accumulator’s different bits

50NPTEL

The RIM Instruction and the Masks

• Bits 0-2 show the current setting of the mask for each of RST
7.5, RST 6.5 and RST 5.5

– They return the contents of the three mask flip flops.

– They can be used by a program to read the mask settings in order to modify only the right
mask.

• Bit 3 shows whether the maskable interrupt process is enabled
or not.

– It returns the contents of the Interrupt Enable Flip Flop.

– It can be used by a program to determine whether or not interrupts are
enabled.

51NPTEL

The RIM Instruction and the Masks

• Bits 4-6 show whether or not there are pending interrupts on

RST 7.5, RST 6.5, and RST 5.5

– Bits 4 and 5 return the current value of the RST5.5 and RST6.5 pins.

– Bit 6 returns the current value of the RST7.5 memory flip flop.

• Bit 7 is used for Serial Data Input.

– The RIM instruction reads the value of the SID pin on the microprocessor and

returns it in this bit.

52NPTEL

Pending Interrupts

• Since the 8085 has five interrupt lines, interrupts may occur

during an ISR and remain pending.

– Using the RIM instruction, the programmer can read the status of the

interrupt lines and find if there are any pending interrupts.

• The advantage is being able to find about interrupts on RST

7.5, RST 6.5, and RST 5.5 without having to enable low level

interrupts like INTR.

53NPTEL

Using RIM and SIM to set Individual Masks

Example: Set the mask to enable RST6.5 without modifying the masks for
RST5.5 and RST7.5.

– In order to do this correctly, we need to use the RIM instruction to
find the current settings of the RST5.5 and RST7.5 masks.

– Then we can use the SIM instruction to set the masks using this
information.

– Given that both RIM and SIM use the Accumulator, we can use
some logical operations to masks the un-needed values returned by
RIM and turn them into the values needed by SIM.

54NPTEL

Using RIM and SIM to set Individual Masks

55NPTEL

TRAP

56NPTEL

Internal Interrupt Priority

57

Internally, the 8085 implements an interrupt

priority scheme.
– The interrupts are ordered as follows:

• TRAP

• RST 7.5

• RST 6.5

• RST 5.5

• INTR

– However, TRAP has lower priority than the HLD signal

used for DMA.

•

NPTEL

The 8085 Interrupts

58NPTEL

Direct Memory Access

59

This is a process where data is transferred between two

peripherals directly without the involvement of the

microprocessor.
– This process employs the HOLD pin on the

microprocessor
The external DMA controller sends a signal on the HOLD pin

to the microprocessor.

• The microprocessor completes the current operation and sends

a signal on HLDA and stops using the buses.

• Once the DMA controller is done, it turns off the HOLD signal

and the microprocessor takes back control of the buses.NPTEL

Basic Concepts in Serial I/O

60

• Interfacing requirements:

– Identify the device through a port number.

• Memory-mapped.

• Peripheral-mapped.

– Enable the device using the Read and Write control signals.

Read for an input device.

Write for an output device.
– Only one data line is used to transfer the information

instead of the entire data bus.NPTEL

Basic Concepts in Serial I/O

61

• Controlling the transfer of data:

– Microprocessor control.

• Unconditional, polling, status check, etc.

– Device control.

• Interrupt.

NPTEL

Synchronous Data Transmission

62

• The transmitter and receiver are synchronized.

– A sequence of synchronization signals is sent before the

communication begins.

• Usually used for high speed transmission.

• More than 20 K bits/sec.

• Message based.
– Synchronization occurs at the beginning of a long

message. NPTEL

Asynchronous Data Transmission

63

• Transmission occurs at any time.

• Character based.
– Each character is sent separately.

• Generally used for low speed transmission.

– Less the 20 K bits/sec.

NPTEL

Asynchronous Data Transmission

64

• Follows agreed upon standards:

– The line is normally at logic one (mark).

• Logic 0 is known as space.

– The transmission begins with a start bit (low).

– Then the seven or eight bits representing the

character are transmitted.

– The transmission is concluded with one or two stop bits.

NPTEL

Simplex and Duplex Transmission

65

• Simplex.

– One-way transmission.

– Only one wire is needed to connect the two devices

– Like communication from computer to a printer.

• Half-Duplex.
– Two-way transmission but one way at a time.

– One wire is sufficient.
• Full-Duplex.

– Data flows both ways at the same time.

– Two wires are needed.

– Like transmission between two computers.NPTEL

Rate of Transmission

66

• For parallel transmission, all of the bits are sent at

once.

• For serial transmission, the bits are sent one at a

time.

– Therefore, there needs to be agreement on how “long”

each bit stays on the line.

• The rate of transmission is usually measured in

bits/second or baud.NPTEL

Length of Each Bit

67

• Given a certain baud rate, how long should

each bit last?

– Baud = bits / second.

– Seconds / bits = 1 /baud.

– At 1200 baud, a bit lasts 1/1200 = 0.83 m Sec.

NPTEL

Transmitting a Character

68

• To send the character A over a serial

communication line at a baud rate of 56.6 K:
– ASCII for A is 41H = 01000001.

– Must add a start bit and two stop bits:
• 11 01000001 0

– Each bit should last 1/56.6K = 17.66 µ Sec. Known as bit time.

– Set up a delay loop for 17.66 µ Sec and set the

transmission line to the different bits for the duration of

the loop. NPTEL

Error Checking

69

• Various types of errors may occur during transmission.
– To allow checking for these errors, additional

information is transmitted with the data.

• Error checking techniques:

– Parity Checking.

– Checksum.

• These techniques are for error checking not correction.

– They only indicate that an error has occurred.

– They do not indicate where or what the correct information isNPTEL

Parity Checking

70

Make the number of 1’s in the data Odd or Even.

– Given that ASCII is a 7-bit code, bit D the parity information.

– Even Parity
The transmitter counts the number of ones in the data. If there

is an odd number of 1’s, bit D is set to 1 to make the total
number of 1’s even.

• The receiver calculates the parity of the received message, it

should match bit D .
– If it doesn’t match, there was an error in the transmission.NPTEL

Checksum

71

Used when larger blocks of data are being transmitted.

The transmitter adds all of the bytes in the

message without carries. It then calculates the 2’s

complement of the result and send that as the last

byte.

The receiver adds all of the bytes in the message

including the last byte. The result should be 0.NPTEL

RS 232

72

A communication standard for connecting computers to printers,

modems, etc.
– The most common communication standard.

– Defined in the 1950’s.

– It uses voltages between +15 and –15 V.

– Restricted to speeds less than 20 K baud.

– Restricted to distances of less than 50 feet (15 m).

The original standard uses 25 wires to connect the

two devices. However, in reality only three of these wires are

needed.NPTEL

Software-Controlled SerialTransmission

73

• The main steps involved in serially transmitting a character are:

– Transmission line is at logic 1 by default.

– Transmit a start bit for one complete bit length.

– Transmit the character as a stream of bits with

appropriate delay.

– Calculate parity and transmit it if needed.

– Transmit the appropriate number of stop bits.

– Transmission line returns to logic 1.NPTEL

Serial Transmission

74NPTEL

Flowchart of Serial Transmission

75NPTEL

Software-Controlled Serial Reception

76

• The main steps involved in serial reception are:

– Wait for a low to appear on the transmission line.

• Start bit

– Read the value of the line over the next 8 bit lengths.

• The 8 bits of the character.

– Calculate parity and compare it to bit 8 of the character.

• Only if parity checking is being used.

– Verify the reception of the appropriate number of stop bits.NPTEL

Serial Reception

77NPTEL

Flowchart of Serial Reception

78NPTEL

The 8085 Serial I/O Lines

79

• The 8085 Microprocessor has two serial I/O

pins:

– SOD – Serial Output Data

– SID – Serial Input Data

• Serial input and output is controlled using

the RIM and SIM instructions respectively.NPTEL

SIM and Serial Output

80

• The figure below shows how SIM uses the

accumulator for Serial Output.

NPTEL

RIM and Serial Input

81

• Again, the RIM instruction has dual use

– Reading the current settings of the Interrupt Masks

– Serial Data Input

• The figure below shows how the RIM instruction

uses the Accumulator for Serial Input

NPTEL

Ports?

82

• Using the SOD and SID pins, the user

would not need to bother with setting up input and

output ports.

– The two pins themselves can be considered as the

ports.

– The instructions SIM and RIM are similar to

the OUT and IN instructions except that they

only deal with the 1-bit SOD and SID ports.

NPTEL

Example

83NPTEL

Count number of 1’s in the contents of D register and store the count in the
B register

MVI B, 00H
MVI C, 08H
MOV A, D

BACK: RAR ; D0 to CY, CY to D7

JNC SKIP
INR B

SKIP: DCR C
JNZ BACK
HLT

84NPTEL

Sort given 10 numbers from memory location 2200H in the
ascending order

MVI B, 09 ;Initialize counter 1

START : LXI H, 2200H ;Initialize memory pointer

MVI C, 09H ;Initialize counter 2

BACK: MOV A, M ;Get the number

INX H ;Increment memory pointer

CMP M ;Compare number with next number

JC SKIP ;If less, don’t interchange

JZ SKIP ;If equal, don’t interchange

MOV D, M ;Interchange two numbers

MOV M, A

85NPTEL

Sort given 10 numbers from memory location 2200H in the ascending order
(Contd.)

DCX H

MOV M, D

INX H

SKIP: DCR C ;Decrement counter 2

JNZ BACK ;If not zero, repeat

DCR B ;Decrement counter 1

JNZ START

HLT ;Terminate program execution

86NPTEL

Calculate the sum of series of even numbers from the list of numbers. The length of the list is in
memory location 2200H and the series itself begins from memory location 2201H. Assume the
sum to be 8 bit number so you can ignore carries and store the sum at memory location 2210H.

LDA 2200H
MOV C, A ;Initialize counter
MVI B, 00H ;sum = 0
LXI H, 2201H ;Initialize pointer

BACK: MOV A, M ;Get the number
ANI 01H ;Mask Bit 1 to Bit7
JNZ SKIP ;Don’t add if number is ODD
MOV A, B ;Get the sum
ADD M ;SUM = SUM + data
MOV B, A ;Store result in B register

SKIP: INX H ;increment pointer
DCR C ;Decrement counter
JNZ BACK ;if counter 0 repeat
STA 2210H ;store sum
HLT ;Terminate program execution

87NPTEL

Unpack the packed BCD number
LDA 3000H ;Get the packed BCD number from the memory, let it be 98H
MOV B,A
MVI C,04
ANI F0 ;A = 90H

L1: RRC ;Need to be rotated right for 4 times to get A = 09H
DCR C
JNZ L1
STA 3001
MOV A,B
ANI 0F ;A = 08H
STA 3002
HLT

88NPTEL

Other Important Instructions
• ADC <reg>: Add register to accumulator with carry
• CMC: Complement carry
• DAA: Decimal adjust accumulator. Acc. content changed from 8-bit binary to two 4-

bit BCD digits. If (D3-D0) > 9, add 6.
• DAD <reg_pair>: Add register pair to HL
• IN <port>: Get data from port
• LHLD <addr> : L Mem[addr], H Mem[addr + 1]
• SHLD <addr>
• PCHL : PC  HL
• SPHL : SP  HL
• XCHG : Exchange HL with DE
• XTHL: Exchange HL with top of stack

89NPTEL

90

8086 Microprocessor

Santanu Chattopadhyay
Electronics and Electrical Communication Engineering

NPTEL

Overview
First 16-bit processor released by
INTEL in the year 1978

Originally HMOS, now manufactured
using HMOS III technique

Approximately 29, 000 transistors, 40
pin DIP, 5V supply

Does not have internal clock; external
asymmetric clock source with 33%
duty cycle

20-bit address to access memory  can
address up to 220 = 1 megabytes of
memory space.

Addressable memory space is
organized in to two banks of 512 kb
each; Even (or lower) bank and Odd (or
higher) bank. Address line A0 is used to
select even bank and control signal 𝐁𝐇𝐄
is used to access odd bank

Uses a separate 16 bit address for I/O
mapped devices  can generate 216 =
64 k addresses.

Operates in two modes: minimum mode
and maximum mode, decided by the
signal at MN and 𝐌𝐗 pins.

91NPTEL

Pins and signals

NPTEL

Pins and Signals

93

AD0-AD15 (Bidirectional)
Address/Data bus

Low order address bus; these are
multiplexed with data.

When AD lines are used to transmit
memory address the symbol A is used
instead of AD, for example A0-A15.

When data are transmitted over AD lines
the symbol D is used in place of AD, for
example D0-D7, D8-D15 or D0-D15.

A16/S3, A17/S4, A18/S5, A19/S6
High order address bus. These are
multiplexed with status signalsNPTEL

94

BHE (Active Low)/S7 (Output)
Bus High Enable/Status

It is used to enable data onto the most
significant half of data bus, D8-D15. 8-bit
device connected to upper half of the
data bus use BHE (Active Low) signal. It
is multiplexed with status signal S7.

MN/ MX
MINIMUM / MAXIMUM

This pin signal indicates what mode the
processor is to operate in.

RD (Read) (Active Low)
The signal is used for read operation.

It is an output signal.
It is active when low.NPTEL

95

TEST

𝐓𝐄𝐒𝐓 input is tested by the ‘WAIT’
instruction.

8086 will enter a wait state after
execution of the WAIT instruction and
will resume execution only when the
𝐓𝐄𝐒𝐓 is made low by an active hardware.

This is used to synchronize an external
activity to the processor internal
operation.

READY
This is the acknowledgement from the
slow device or memory that they have
completed the data transfer.

NPTEL

96

RESET (Input)
Causes the processor to immediately
terminate its present activity.
The signal must be active HIGH for at
least four clock cycles.

CLK
The clock input provides the basic timing
for processor operation and bus control
activity. Its an asymmetric square wave
with 33% duty cycle.

INTR Interrupt Request
This is a triggered input. This is sampled
during the last clock cycles of each
instruction to determine the availability
of the request. If any interrupt request is
pending, the processor enters the
interrupt acknowledge cycle.NPTEL

97

Min/ Max Pin
The 8086 microprocessor can work in two modes
of operations : Minimum mode and Maximum
mode.

In the minimum mode of operation the
microprocessor do not associate with any co-
processors and can not be used for
multiprocessor systems.

In the maximum mode the 8086 can work in
multi-processor or co-processor configuration.

Minimum or maximum mode operations are
decided by the pin MN/ MX(Active low).

When this pin is high 8086 operates in minimum
mode otherwise it operates in Maximum mode.NPTEL

8086 Microprocessor

98

Minimum mode signals

NPTEL

99

Minimum mode signals

NPTEL

During maximum mode operation, the MN/ 𝐌𝐗 is
grounded (logic low)

Pins 24 -31 are reassignedStatus signals; used by the 8086 bus
controller to generate bus timing and
control signals. These are decoded as
shown.

100

Maximum mode signals

NPTEL

(Queue Status) The processor provides the
status of queue in these lines.

The queue status can be used by external
device to track the internal status of the
queue in 8086.

The output on QS0 and QS1 can be
interpreted as shown in the table.

101

Maximum mode signals

NPTEL

102

Maximum mode signals

NPTEL

Architecture

NPTEL

Architecture

104NPTEL

105

Bus Interface Unit (BIU)

Segment Registers >>NPTEL

106

Bus Interface Unit (BIU)

Segment
Registers

8086’s 1-megabyte memory
is divided into segments of
up to 64K bytes each.

Programs obtain access to code
and data in the segments by
changing the segment register
content to point to the desired
segments.

The 8086 can directly address four
segments (256 K bytes within the 1
M byte of memory) at a particular
time.NPTEL

107

Bus Interface Unit (BIU)

Segment
Registers

Code Segment Register

16-bit

CS contains the base or start of the current code segment; IP contains the
distance or offset from this address to the next instruction byte to be fetched.

BIU computes the 20-bit physical address by logically shifting the contents of CS
4-bits to the left and then adding the 16-bit contents of IP.

That is, all instructions of a program are relative to the contents of the CS
register multiplied by 16 and then offset is added provided by the IP.

NPTEL

108

Bus Interface Unit (BIU)

Segment
Registers

Data Segment Register

16-bit

Points to the current data segment; operands for most instructions are fetched
from this segment.

The 16-bit contents of the Source Index (SI) or Destination Index (DI) or a 16-bit
displacement are used as offset for computing the 20-bit physical address.

NPTEL

109

Bus Interface Unit (BIU)

Segment
Registers

Stack Segment Register

16-bit

Points to the current stack.

The 20-bit physical stack address is calculated from the Stack Segment (SS) and
the Stack Pointer (SP) for stack instructions such as PUSH and POP.

In based addressing mode, the 20-bit physical stack address is calculated from
the Stack segment (SS) and the Base Pointer (BP).

NPTEL

110

Bus Interface Unit (BIU)

Segment
Registers

Extra Segment Register

16-bit

Points to the extra segment in which data (in excess of 64K pointed to by the DS)
is stored.

String instructions use the ES and DI to determine the 20-bit physical address for
the destination.

NPTEL

111

Bus Interface Unit (BIU)

Segment
Registers

Instruction Pointer

16-bit

Always points to the next instruction to be executed within
the currently executing code segment.

So, this register contains the 16-bit offset address pointing
to the next instruction code within the 64Kb of the code
segment area.

Its content is automatically incremented as the execution
of the next instruction takes place.

NPTEL

112

Bus Interface Unit (BIU)

A group of First-In-First-Out (FIFO)
in which up to 6 bytes of
instruction code are pre fetched
from the memory ahead of time.

This is done in order to speed up
the execution by overlapping
instruction fetch with execution.

This mechanism is known as
pipelining.

Instruction queue

NPTEL

113

Some of the 16 bit registers can be used as two 8 bit
registers as : AX, BX, CX, DX

Execution Unit (EU)
EU decodes and

executes instructions.

A decoder in the EU
control system

translates instructions.

16-bit ALU for performing
arithmetic and logic
operation

Four general purpose
registers(AX, BX, CX, DX);

Pointer registers (Stack Pointer,
Base Pointer);

and

Index registers (Source Index,

Destination Index) each of
16-bits NPTEL

114

EU
Registers

Accumulator Register (AX)

Consists of two 8-bit registers AL and AH, which can be
combined together and used as a 16-bit register AX.

AL in this case contains the low order byte of the word,
and AH contains the high-order byte.

The I/O instructions use the AX or AL for inputting /
outputting 16 or 8 bit data to or from an I/O port.

Multiplication and Division instructions also use the AX or
AL.NPTEL

115

EU
Registers

Base Register (BX)

Consists of two 8-bit registers BL and BH, which can be
combined together and used as a 16-bit register BX.

BL in this case contains the low-order byte of the word,
and BH contains the high-order byte.

This is the only general purpose register whose contents
can be used for addressing the 8086 memory.

All memory references utilizing this register content for
addressing use DS as the default segment register.NPTEL

116

EU
Registers

Counter Register (CX)

Consists of two 8-bit registers CL and CH, which can be
combined together and used as a 16-bit register CX.

When combined, CL register contains the low order byte of
the word, and CH contains the high-order byte.

Instructions such as SHIFT, ROTATE and LOOP use the
contents of CX as a counter.

Example:

The instruction LOOP START automatically decrements CX by
1 without affecting flags and will check if [CX] = 0.

If it is zero, 8086 executes the next instruction; otherwise
the 8086 branches to the label START.NPTEL

8086 Microprocessor

117

EU
Registers Data Register (DX)

Consists of two 8-bit registers DL and DH, which can be
combined together and used as a 16-bit register DX.

When combined, DL register contains the low order byte of
the word, and DH contains the high-order byte.

Used to hold the high 16-bit result (data) in 16 X 16
multiplication or the high 16-bit dividend (data) before a
32 ÷ 16 division and the 16-bit reminder after division.

NPTEL

118

EU
Registers

Stack Pointer (SP) and Base Pointer (BP)

SP and BP are used to access data in the stack segment.

SP is used as an offset from the current SS during
execution of instructions that involve the stack segment in
the external memory.

SP contents are automatically updated (incremented/
decremented) due to execution of a POP or PUSH
instruction.

BP contains an offset address in the current SS, which is
used by instructions utilizing the based addressing mode.NPTEL

8086 Microprocessor

119

EU
Registers

Source Index (SI) and Destination Index (DI)

Used in indexed addressing.

Instructions that process data strings use the SI and DI
registers together with DS and ES respectively in order to
distinguish between the source and destination addresses.

NPTEL

120NPTEL

121

Sl.No. Type Register width Name of register

1 General purpose register 16 bit AX, BX, CX, DX

8 bit AL, AH, BL, BH, CL, CH, DL, DH

2 Pointer register 16 bit SP, BP

3 Index register 16 bit SI, DI

4 Instruction Pointer 16 bit IP

5 Segment register 16 bit CS, DS, SS, ES

6 Flag (PSW) 16 bit Flag register

8086 registers
categorized

into 4 groups

NPTEL

122

Registers and Special Functions

NPTEL

Addressing Modes

123

Every instruction of a program has to operate on a data.
The different ways in which a source operand is denoted in an instruction
are known as addressing modes.

NPTEL

Register Addressing Modes

124

The instruction will specify the name of the register which holds the
data to be operated by the instruction.

Example:

MOV CL, DH

The content of 8-bit register DH is moved to another 8-bit register CL

(CL)  (DH)

NPTEL

Immediate Addressing

125

In immediate addressing mode, an 8-bit or 16-bit data is specified as part of the
instruction

Example:

MOV DL, 08H

The 8-bit data (08H) given in the instruction is moved to DL

(DL)  08H

MOV AX, 0A9FH

The 16-bit data (0A9FH) given in the instruction is moved to AX register

(AX)  0A9FH NPTEL

Addressing Modes : Memory Access

127NPTEL

Direct Addressing

129

Here, the effective address of the memory location at which the data operand is
stored is given in the instruction.

The effective address is just a 16-bit number written directly in the instruction.

Example:
MOV BX, [1354H]
MOV BL, [0400H]

The square brackets around the 1354H denotes the contents of the memory location.
When executed, this instruction will copy the contents of the memory location into
BX register.

This addressing mode is called direct because the displacement of the operand from
the segment base is specified directly in the instruction.NPTEL

Register Indirect Addressing

130

In Register indirect addressing, name of the register which holds the effective address
(EA) will be specified in the instruction.

Registers used to hold EA are any of the following registers: BX, BP, DI and SI.

Content of the DS register is used for base address calculation.
Example: MOV CX, [BX]

Operations:
EA = (BX)
BA = (DS) x 1610

MA = BA + EA

(CX)  (MA) or,

(CL)  (MA)
(CH)  (MA +1)

Note : Register/ memory
enclosed in brackets refer to
content of register/ memory

NPTEL

Based Addressing

131

In Based Addressing, BX or BP is used to hold the base value for effective address and a signed 8-bit or
unsigned 16-bit displacement will be specified in the instruction.

In case of 8-bit displacement, it is sign extended to 16-bit before adding to the base value.

When BX holds the base value of EA, 20-bit physical address is calculated from BX and DS.

When BP holds the base value of EA, BP and SS is used.

Example:
MOV AX, [BX + 08H]

Operations:
0008H  08H (Sign extended)
EA = (BX) + 0008H

BA = (DS) x 1610

MA = BA + EA

(AX)  (MA) or,

(AL)  (MA), (AH)  (MA + 1)NPTEL

Indexed Addressing

132

SI or DI register is used to hold an index value for memory data and a signed 8-bit or unsigned 16-bit
displacement will be specified in the instruction.

Displacement is added to the index value in SI or DI register to obtain the EA.

In case of 8-bit displacement, it is sign extended to 16-bit before adding to the base value.

Example:
MOV CX, [SI + 0A2H]

Operations:
FFA2H  A2H (Sign extended)

EA = (SI) + FFA2H

BA = (DS) x 1610

MA = BA + EA
(CX)  (MA) or,

(CL)  (MA)
(CH)  (MA + 1)NPTEL

Based Indexed Addressing

133

In Based Index Addressing, the effective address is computed from the sum of a base
register (BX or BP), an index register (SI or DI) and a displacement.

Example:
MOV DX, [BX + SI + 0AH]

Operations:
000AH  0AH (Sign extended)

EA = (BX) + (SI) + 000AH

BA = (DS) x 1610

MA = BA + EA

(DX)  (MA) or,

(DL)  (MA), (DH)  (MA + 1)NPTEL

String Addressing

134

Employed in string operations to operate on string data.

The effective address (EA) of source data is stored in SI register and the EA of destination is stored in
DI register.

Segment register for calculating base address of source data is DS and that of the destination data is ES

Example: MOVS BYTE

Operations:
Calculation of source memory location:
EA = (SI) BA = (DS) x 1610 MA = BA + EA

Calculation of destination memory location:
EAE = (DI) BAE = (ES) x 1610 MAE = BAE + EAE

(MAE)  (MA)

If DF = 1, then (SI)  (SI) – 1 and (DI) = (DI) - 1
If DF = 0, then (SI)  (SI) +1 and (DI) = (DI) + 1NPTEL

I/O Port Addressing
These addressing modes are used to access data from standard I/O mapped devices or ports.

In direct port addressing mode, an 8-bit port address is directly specified in the instruction.

Example: IN AL, [09H]
Operations: PORTaddr = 09H

(AL)  (PORT) Content of port with address 09H is moved to AL register

In indirect port addressing mode, the instruction will specify the name of the register which
holds the port address. In 8086, the 16-bit port address is stored in the DX register.

Example: OUT [DX], AX
Operations: PORTaddr = (DX)

(PORT)  (AX)

Content of AX is moved to port whose address is specified by DX register.

135NPTEL

Relative Addressing

136

In this addressing mode, the effective address of a program instruction is specified relative
to Instruction Pointer (IP) by an 8-bit signed displacement.

Example: JZ 0AH

Operations:

000AH  0AH (sign extend)

If ZF = 1, then

EA = (IP) + 000AH

BA = (CS) x 1610

MA = BA + EA

If ZF = 1, then the program control jumps to new address calculated above.

If ZF = 0, then next instruction of the program is executed.NPTEL

Implied Addressing

137

Instructions using this mode have no operands. The instruction itself will specify the
data to be operated by the instruction.

Example: CLC

This clears the carry flag to zero.

NPTEL

INSTRUCTION SET

NPTEL

1. Data Transfer Instructions

2. Arithmetic Instructions

3. Logical Instructions

4. String manipulation Instructions

5. Process Control Instructions

6. Control Transfer Instructions

Instruction Set

139

8086 supports 6 types of instructions.

NPTEL

Data Transfer Instructions

140

8086 Microprocessor

Instructions that are used to transfer data/ address in to registers, memory
locations and I/O ports.

Generally involve two operands: Source operand and Destination operand of the
same size.

Source: Register or a memory location or an immediate data
Destination : Register or a memory location.

The size should be a either a byte or a word.

A 8-bit data can only be moved to 8-bit register/ memory and a 16-bit data can be
moved to 16-bit register/ memory. NPTEL

Data Transfer Instructions

141

Mnemonics: MOV, XCHG, PUSH, POP, IN, OUT …

MOV reg2/ mem, reg1/ mem
MOV reg2, reg1
MOV mem, reg1
MOV reg2, mem

(reg2)  (reg1)
(mem) (reg1)
(reg2) (mem)

MOV reg/ mem, data
MOV reg, data
MOV mem, data

(reg)  data
(mem) data

XCHG reg2/ mem, reg1

XCHG reg2, reg1
XCHG mem, reg1

(reg2)  (reg1)
(mem) (reg1) NPTEL

Data Transfer Instructions

142

Mnemonics: MOV, XCHG, PUSH, POP, IN, OUT …
PUSH reg16/ mem

PUSH reg16

PUSH mem

(SP)  (SP) – 2
MA S = (SS) x 1610 + SP
(MA S ; MA S + 1) (reg16)

(SP)  (SP) – 2
MA S = (SS) x 1610 + SP
(MA S ; MA S + 1) (mem)

POP reg16/ mem

POP reg16

POP mem

MA S = (SS) x 1610 + SP
(reg16)  (MA S ; MA S + 1)
(SP)  (SP) + 2

MA S = (SS) x 1610 + SP
(mem)  (MA S ; MA S + 1)
(SP)  (SP) + 2NPTEL

Data Transfer Instructions

143

Mnemonics: MOV, XCHG, PUSH, POP, IN, OUT …

IN A, [DX]

IN AL, [DX]

IN AX, [DX]

PORTaddr = (DX)
(AL)  (PORT)

PORTaddr = (DX)
(AX)  (PORT)

IN A, addr8

IN AL, addr8

IN AX, addr8

(AL)  (addr8)

(AX)  (addr8)

OUT [DX], A

OUT [DX], AL

OUT [DX], AX

PORTaddr = (DX)
(PORT)  (AL)

PORTaddr = (DX)
(PORT)  (AX)

OUT addr8, A

OUT addr8, AL

OUT addr8, AX

(addr8)  (AL)

(addr8)  (AX) NPTEL

Arithmetic Instructions

144

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

ADD reg2/ mem, reg1/mem

ADD reg2, reg1
ADD reg2, mem
ADD mem, reg1

(reg2)  (reg1) + (reg2)
(reg2) (reg2) + (mem)
(mem) (mem)+(reg1)

ADD reg/mem, data

ADD reg, data
ADD mem, data

(reg)  (reg)+ data
(mem) (mem)+data

ADD A, data

ADD AL, data8
ADD AX, data16

(AL) (AL) + data8
(AX) (AX) +data16NPTEL

Arithmetic Instructions

145

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

ADC reg2/ mem, reg1/mem

ADC reg2, reg1
ADC reg2, mem
ADC mem, reg1

(reg2)  (reg1) + (reg2)+CF
(reg2) (reg2) + (mem)+CF
(mem) (mem)+(reg1)+CF

ADC reg/mem, data

ADC reg, data
ADC mem, data

(reg)  (reg)+ data+CF
(mem) (mem)+data+CF

ADDC A, data

ADD AL, data8
ADD AX, data16

(AL) (AL) + data8+CF
(AX) (AX) +data16+CF

NPTEL

Arithmetic Instructions

146

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

SUB reg2/ mem, reg1/mem

SUB reg2, reg1
SUB reg2, mem
SUB mem, reg1

(reg2)  (reg1) - (reg2)
(reg2) (reg2) - (mem)
(mem) (mem) - (reg1)

SUB reg/mem, data

SUB reg, data
SUB mem, data

(reg)  (reg) - data
(mem) (mem) - data

SUB A, data

SUB AL, data8
SUB AX, data16

(AL) (AL) - data8
(AX) (AX) - data16NPTEL

Arithmetic Instructions

147

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…
SBB reg2/ mem, reg1/mem

SBB reg2, reg1
SBB reg2, mem
SBB mem, reg1

(reg2)  (reg1) - (reg2) - CF
(reg2) (reg2) - (mem)- CF
(mem) (mem) - (reg1) –CF

SBB reg/mem, data

SBB reg, data
SBB mem, data

(reg)  (reg) – data - CF
(mem) (mem) - data - CF

SBB A, data

SBB AL, data8
SBB AX, data16

(AL) (AL) - data8 - CF
(AX) (AX) - data16 - CFNPTEL

Arithmetic Instructions

148

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

INC reg/ mem

INC reg8

INC reg16

INC mem

(reg8)  (reg8) + 1

(reg16)  (reg16) + 1

(mem)  (mem) + 1

DEC reg/ mem

DEC reg8

DEC reg16

DEC mem

(reg8)  (reg8) - 1

(reg16)  (reg16) - 1

(mem)  (mem) - 1NPTEL

Arithmetic Instructions

149

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

MUL reg/ mem

MUL reg

MUL mem

For byte : (AX)  (AL) x (reg8)
For word : (DX)(AX)  (AX) x (reg16)

For byte : (AX)  (AL) x (mem8)
For word : (DX)(AX)  (AX) x (mem16)

IMUL reg/ mem

IMUL reg

IMUL mem

For byte : (AX)  (AL) x (reg8)
For word : (DX)(AX)  (AX) x (reg16)

For byte : (AX)  (AX) x (mem8)
For word : (DX)(AX)  (AX) x (mem16)NPTEL

Arithmetic Instructions

150

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

DIV reg/ mem
DIV reg

DIV mem

For 16-bit :- 8-bit :
(AL)  (AX) :- (reg8) Quotient
(AH)  (AX) MOD(reg8) Remainder

For 32-bit :- 16-bit :
(AX)  (DX)(AX) :- (reg16) Quotient
(DX)  (DX)(AX) MOD(reg16) Remainder

For 16-bit :- 8-bit :
(AL)  (AX) :- (mem8) Quotient
(AH)  (AX) MOD(mem8) Remainder

For 32-bit :- 16-bit :
(AX)  (DX)(AX) :- (mem16) Quotient
(DX)  (DX)(AX) MOD(mem16) RemainderNPTEL

Arithmetic Instructions

151

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

IDIV reg/ mem
IDIV reg

IDIV mem

For 16-bit :- 8-bit :
(AL)  (AX) :- (reg8) Quotient
(AH)  (AX) MOD(reg8) Remainder

For 32-bit :- 16-bit :
(AX)  (DX)(AX) :- (reg16) Quotient
(DX)  (DX)(AX) MOD(reg16) Remainder

For 16-bit :- 8-bit :
(AL)  (AX) :- (mem8) Quotient
(AH)  (AX) MOD(mem8) Remainder

For 32-bit :- 16-bit :
(AX)  (DX)(AX) :- (mem16) Quotient
(DX)  (DX)(AX) MOD(mem16) RemainderNPTEL

Arithmetic Instructions

152

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…
CMP reg2/mem, reg1/ mem
CMP reg2, reg1

CMP reg2, mem

CMP mem, reg1

Modify flags  (reg2) – (reg1)
If (reg2) > (reg1) then CF=0, ZF=0, SF=0
If (reg2) < (reg1) then CF=1, ZF=0, SF=1
If (reg2) = (reg1) then CF=0, ZF=1, SF=0

Modify flags  (reg2) – (mem)
If (reg2) > (mem) then CF=0, ZF=0, SF=0
If (reg2) < (mem) then CF=1, ZF=0, SF=1
If (reg2) = (mem) then CF=0, ZF=1, SF=0

Modify flags  (mem) – (reg1)
If (mem) > (reg1) then CF=0, ZF=0, SF=0
If (mem) < (reg1) then CF=1, ZF=0, SF=1
If (mem) = (reg1) then CF=0, ZF=1, SF=0NPTEL

Arithmetic Instructions

153

8086 Microprocessor

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

CMP reg/mem, data

CMP reg, data

CMP mem, data

Modify flags  (reg) – (data)

If (reg) > data then CF=0, ZF=0, SF=0
If (reg) < data then CF=1, ZF=0, SF=1
If (reg) = data then CF=0, ZF=1, SF=0

Modify flags  (mem) – (mem)

If (mem) > data then CF=0, ZF=0, SF=0
If (mem) < data then CF=1, ZF=0, SF=1
If (mem) = data then CF=0, ZF=1, SF=0NPTEL

Arithmetic Instructions

154

Mnemonics: ADD, ADC, SUB, SBB, INC, DEC, MUL, DIV, CMP…

CMP A, data

CMP AL, data8

CMP AX, data16

Modify flags  (AL) – data8

If (AL) > data8 then CF=0, ZF=0, SF=0
If (AL) < data8 then CF=1, ZF=0, SF=1
If (AL) = data8 then CF=0, ZF=1, SF=0

Modify flags  (AX) – data16

If (AX) > data16 then CF=0, ZF=0, SF=0
If (mem) < data16 then CF=1, ZF=0, SF=1
If (mem) = data16 then CF=0, ZF=1, SF=0

NPTEL

Logical Instructions

155

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

NPTEL

Logical Instructions

156

Mnemonics: AND, OR, XOR, TEST, SHR, SHL, RCR, RCL …

NPTEL

String Manipulation Instructions

157

 String : Sequence of bytes or words

 8086 instruction set includes instruction for string movement, comparison, scan, load and store.

 REP instruction prefix : used to repeat execution of string instructions

 String instructions end with S or SB or SW. S represents string, SB string
byte and SW string word.

 Offset or effective address of the source operand is stored in SI register and that of the destination
operand is stored in DI register.

 Depending on the status of DF, SI and DI registers are automatically updated.

 DF = 0  SI and DI are incremented by 1 for byte and 2 for word.

 DF = 1  SI and DI are decremented by 1 for byte and 2 for word.NPTEL

String Manipulation Instructions

158

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

REP

REPZ/ REPE

(Repeat CMPS or SCAS until ZF = 0)

REPNZ/ REPNE

(Repeat CMPS or SCAS until ZF = 1)

While CX  0 and ZF = 1, repeat execution of string instruction
and
(CX)  (CX) – 1

While CX  0 and ZF = 0, repeat execution of string instruction
and
(CX)  (CX) - 1

NPTEL

String Manipulation Instructions

159

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS
MOVS

MOVSB

MOVSW

MA = (DS) x 1610 + (SI)
MAE = (ES) x 1610 + (DI)

(MAE)  (MA)

If DF = 0, then (DI)  (DI) + 1; (SI) (SI) + 1
If DF = 1, then (DI)  (DI) - 1; (SI) (SI) - 1

MA = (DS) x 1610 + (SI)
MAE = (ES) x 1610 + (DI)

(MAE ; MAE + 1)  (MA; MA + 1)

If DF = 0, then (DI)  (DI) + 2; (SI) (SI) + 2
If DF = 1, then (DI)  (DI) - 2; (SI) (SI) - 2NPTEL

String Manipulation Instructions

160

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

CMPS

CMPSB

CMPSW

MA = (DS) x 1610 + (SI)
MAE = (ES) x 1610 + (DI)

Modify flags  (MA) - (MAE)

If (MA) > (MAE), then CF = 0; ZF = 0; SF = 0
If (MA) < (MAE), then CF = 1; ZF = 0; SF = 1
If (MA) = (MAE), then CF = 0; ZF = 1; SF = 0

For byte operation
If DF = 0, then (DI)  (DI) + 1; (SI) (SI) + 1
If DF = 1, then (DI)  (DI) - 1; (SI) (SI) - 1

For word operation
If DF = 0, then (DI)  (DI) + 2; (SI) (SI) + 2
If DF = 1, then (DI)  (DI) - 2; (SI) (SI) - 2

Compare two string byte or string word

NPTEL

String Manipulation Instructions

161

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

SCAS

SCASB

SCASW

MAE = (ES) x 1610 + (DI)
Modify flags  (AL) - (MAE)
If (AL) > (MAE), then CF = 0; ZF = 0; SF = 0
If (AL) < (MAE), then CF = 1; ZF = 0; SF = 1
If (AL) = (MAE), then CF = 0; ZF = 1; SF = 0

If DF = 0, then (DI)  (DI) + 1
If DF = 1, then (DI)  (DI) – 1

MAE = (ES) x 1610 + (DI)
Modify flags  (AL) - (MAE)
If (AX) > (MAE ; MAE + 1), then CF = 0; ZF = 0; SF = 0
If (AX) < (MAE ; MAE + 1), then CF = 1; ZF = 0; SF = 1
If (AX) = (MAE ; MAE + 1), then CF = 0; ZF = 1; SF = 0

If DF = 0, then (DI)  (DI) + 2
If DF = 1, then (DI)  (DI) – 2

Scan (compare) a string byte or word with accumulator

NPTEL

String Manipulation Instructions

162

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

LODS

LODSB

LODSW

MA = (DS) x 1610 + (SI)
(AL) (MA)

If DF = 0, then (SI)  (SI) + 1
If DF = 1, then (SI)  (SI) – 1

MA = (DS) x 1610 + (SI)
(AX) (MA ; MA + 1)

If DF = 0, then (SI)  (SI) + 2
If DF = 1, then (SI)  (SI) – 2

Load string byte in to AL or string word in to AX

NPTEL

String Manipulation Instructions

163

Mnemonics: REP, MOVS, CMPS, SCAS, LODS, STOS

STOS

STOSB

STOSW

MAE = (ES) x 1610 + (DI)
(MAE) (AL)

If DF = 0, then (DI)  (DI) + 1
If DF = 1, then (DI)  (DI) – 1

MAE = (ES) x 1610 + (DI)
(MAE ; MAE + 1) (AX)

If DF = 0, then (DI)  (DI) + 2
If DF = 1, then (DI)  (DI) – 2

Store byte from AL or word from AX in to string

NPTEL

Mnemonics Explanation

STC Set CF  1

CLC Clear CF  0

CMC Complement carry CF  CF/

STD Set direction flag DF  1

CLD Clear direction flag DF  0

STI Set interrupt enable flag IF  1

CLI Clear interrupt enable flag IF  0

NOP No operation

HLT Halt after interrupt is set

WAIT Wait for TEST pin active

ESC opcode mem/ reg Used to pass instruction to a coprocessor which shares the address and data bus with the 8086

LOCK Lock bus during next instruction

Processor Control Instructions

164NPTEL

Control Transfer Instructions

165

Transfer the control to a specific destination or target instruction
Do not affect flags

Mnemonics Explanation

CALL reg/ mem/ disp16 Call subroutine

RET Return from subroutine

JMP reg/ mem/ disp8/ disp16 Unconditional jump

 8086 Unconditional transfers

NPTEL

Control Transfer Instructions

166

 8086 signed conditional branch
instructions

 8086 unsigned conditional branch
instructions

Checks flags

If conditions are true, the program control is transferred to the new
memory location in the same segment by modifying the content of IP

NPTEL

Control Transfer Instructions

167

Name Alternate name

JE disp8
Jump if equal

JZ disp8
Jump if result is 0

JNE disp8
Jump if not equal

JNZ disp8
Jump if not zero

JG disp8
Jump if greater

JNLE disp8
Jump if not less or equal

JGE disp8
Jump if greater than or equal

JNL disp8
Jump if not less

JL disp8
Jump if less than

JNGE disp8
Jump if not greater than or
equal

JLE disp8
Jump if less than or equal

JNG disp8
Jump if not greater

 8086 signed conditional branch
instructions

 8086 unsigned conditional branch
instructions

Name Alternate name

JE disp8
Jump if equal

JZ disp8
Jump if result is 0

JNE disp8
Jump if not equal

JNZ disp8
Jump if not zero

JA disp8
Jump if above

JNBE disp8
Jump if not below or equal

JAE disp8
Jump if above or equal

JNB disp8
Jump if not below

JB disp8
Jump if below

JNAE disp8
Jump if not above or equal

JBE disp8
Jump if below or equal

JNA disp8
Jump if not aboveNPTEL

Control Transfer Instructions

168

Mnemonics Explanation

JC disp8 Jump if CF = 1

JNC disp8 Jump if CF = 0

JP disp8 Jump if PF = 1

JNP disp8 Jump if PF = 0

JO disp8 Jump if OF = 1

JNO disp8 Jump if OF = 0

JS disp8 Jump if SF = 1

JNS disp8 Jump if SF = 0

JZ disp8 Jump if result is zero, i.e, Z = 1

JNZ disp8 Jump if result is not zero, i.e, Z = 1

 8086 conditional branch instructions affecting individual flags

NPTEL

