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Instructional Objectives 
 

After going through this lesson the student would be able to 
 
• Distinguish between the terms testing and verification 

• Describe the common types of faults that occur in embedded systems 

• Explain the various types of models that are used to represent the faults 

• Describe the methodology of testing systems with embedded cores 

• Distinguish among terms like DFT, BIST and on-line testing 

• Explain the need and mechanism of Automatic Test Pattern Generation in the context of 
testing embedded hard-ware software systems 

 
Testing Embedded Systems 
 
1. Introduction 
 
What is testing?  
 

• Testing is an organized process to verify the behavior, performance, and reliability of a 
device or system against designed specifications.  

• It ensures a device or system to be as defect-free as possible.  
• Expected behavior, performance, and reliability must be both formally described and 

measurable.  
 
Verification vs. Testing [1] 
 

• Verification or debugging is the process of removing defects ("bugs") in the design phase 
to ensure that the synthesized design, when manufactured will behave as expected.   

• Testing is a manufacturing step to ensure that the manufactured device is defect free. 
• Testing is one of the detective measures, and verification one of the corrective measures 

of quality. 
 

Verification Testing 

Verifies the correctness of design. Verifies correctness of manufactured 

system. 

Performed by simulation, hardware 
emulation, or formal methods. 

Two-part process: 
 1. Test generation: software process 
executed once during design. 
 2. Test application: electrical tests 
applied to hardware. 
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Performed once prior to manufacturing. Test application performed on every 
manufactured device. 

Responsible for quality of design. 
 

Responsible for quality of devices.  

 
What is an "embedded system"?  
 
Embedded systems are electronically controlled system where hardware and software are 
combined [2-3]. These are computers incorporated in consumer products or other devices to 
perform application-specific functions. The enduser is usually not even aware of their existence. 
Embedded systems can contain a variety of computing devices, such as microcontrollers, 
application-specific integrated circuits, and digital signal processors. Most systems used in real 
life as power plant system, medical instrument system, home appliances, air traffic control 
station, routers and firewalls, telecommunication exchanges, robotics and industrial automation, 
smart cards, personal digital assistant (PDA) and cellular phone are example of embedded 
system.  
 
Real-Time System 
 
Most, if not all, embedded systems are "real-time". The terms "real-time" and "embedded" are 
often used interchangeably. A real-time system is one in which the correctness of a computation 
not only depends on its logical correctness, but also on the time at which the result is produced. 
 

• In hard real time systems if the timing constraints of the system are not met, system crash 
could be the consequence. For example, in mission-critical application where failure is 
not an option, time deadlines must be followed.  

• In case of soft real time systems no catastrophe will occur if deadline fails and the time 
limits are negotiable.  

 
In spite of the progress of hardware/software codesign, hardware and software in embedded 
system are usually considered separately in the design process. There is a strong interaction 
between hardware and software in their failure mechanisms and diagnosis, as in other aspects of 
system performance. System failures often involve defects in both hardware and software. 
Software does not “break” in the traditional sense, however it can perform inappropriately due to 
faults in the underlying hardware, as well as specification or design flaws in either the hardware 
or the software. At the same time, the software can be exploited to test for and respond to the 
presence of faults in the underlying hardware. It is necessary to understand the importance of the 
testing of embedded system, as its functions have been complicated. However the studies related 
to embedded system test are not adequate. 
 
2. Embedded Systems Testing  
 
Test methodologies and test goals differ in the hardware and software domains. Embedded 
software development uses specialized compilers and development software that offer means for 
debugging. Developers build application software on more powerful computers and eventually 
test the application in the target processing environment.  
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In contrast, hardware testing is concerned mainly with functional verification and self-test after 
chip is manufactured. Hardware developers use tools to simulate the correct behavior of circuit 
models. Vendors design chips for self-test which mainly ensures proper operation of circuit 
models after their implementation. Test engineers who are not the original hardware developers 
test the integrated system. 
 
This conventional, divided approach to software and hardware development does not address the 
embedded system as a whole during the system design process. It instead focuses on these two 
critical issues of testing separately. New problems arise when developers integrate the 
components from these different domains. 
 
In theory, unsatisfactory performance of the system under test should lead to a redesign. In 
practice, a redesign is rarely feasible because of the cost and delay involved in another complete 
design iteration. A common engineering practice is to compensate for problems within the 
integrated system prototype by using software patches. These changes can unintentionally affect 
the behavior of other parts in the computing system. 
 

At a higher abstraction level, executable specification languages provide an excellent 
means to assess embedded-systems designs. Developers can then test system-level prototypes 
with either formal verification techniques or simulation. A current shortcoming of many 
approaches is, however, that the transition from testing at the system level to testing at the 
implementation level is largely ad hoc. To date, system testing at the implementation level has 
received attention in the research community only as coverification, which simulates both 
hardware and software components conjointly. Coverification runs simulations of specifications 
on powerful computer systems. Commercially available coverification tools link hardware 
simulators and software debuggers in the implementation phase of the design process. 

 
Since embedded systems are frequently employed in mobile products, they are exposed 

to vibration and other environmental stresses that can cause them to fail. Some embedded 
systems, such as those in automotive applications, are exposed to extremely harsh environments. 
These applications are preparing embedded systems to meet new and more stringent 
requirements of safety and reliability is a significant challenge for designers. Critical applications 
and applications with high availability requirements are the main candidates for on-line testing. 

 

3. Faults in Embedded Systems 
 

Incorrectness in hardware systems may be described in different terms as defect, error 
and faults. These three terms are quite bit confusing. We will define these terms as follows [1]: 

Defect: A defect in a hardware system is the unintended difference between the implemented 
hardware and its intended design. This may be a process defects, material defects, age defects or 
package effects. 

Error: A wrong output signal produced by a defective system is called an error. An error is an 
“effect” whose cause is some “defect”. Errors induce failures, that is, a deviation from 
appropriate system behavior. If the failure can lead to an accident, it is a hazard. 

Fault: A representation of a “defect” at the abstraction level is called a fault. Faults are physical 
or logical defects in the design or implementation of a device. 
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3.1  Hardware Fault Model (Gate Level Fault Models) 
 
As the complexity and integration of hardware are increasing with technology, defects 

are too numerous and very difficult to analyze. A fault model helps us to identify the targets for 
testing and analysis of failure. Further, the effectiveness of the model in terms of its relation to 
actual failures should be established by experiments. Faults in a digital system can be classified 
into three groups: design, fabrication, and operational faults. Design faults are made by human 
designers or CAD software (simulators, translators, or layout generators), and occur during the 
design process.  These faults are not directly related to the testing process. Fabrication defects 
are due to an imperfect manufacturing process. Defects on hardware itself, bad connections, 
bridges, improper semiconductor doping and irregular power supply are the examples of physical 
faults. Physical faults are also called as defect-oriented faults. Operational or logical faults are 
occurred due to environmental disturbances during normal operation of embedded system. Such 
disturbances include electromagnetic interference, operator mistakes, and extremes of 
temperature and vibration. Some design defects and manufacturing faults escape detection and 
combine with wearout and environmental disturbances to cause problems in the field.  

 
Hardware faults are classified as stuck-at faults, bridging faults, open faults, power 

disturbance faults, spurious current faults, memory faults, transistor faults etc. The most 
commonly used fault model is that of the “stuck-at fault model” [1]. This is modeled by having a 
line segment stuck at logic 0 or 1 (stuck-at 1 or stuck-at 0). 

Stuck-at Fault: This is due to the flaws on hardware, and they represent faults of the signal 
lines. A signal line is the input or output of a logic gate. Each connecting line can have two types 
of faults: stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1). In general several stuck-at faults can be 
simultaneously present in the circuit. A circuit with n lines can have 3n –1 possible stuck line 
combinations as each line can be one of the three states: s-a-0, s-a-1 or fault free. Even a 
moderate value of n will give large number of multiple stuck-at faults. It is a common practice, 
therefore to model only single stuck-at faults. An n-line circuit can have at most 2n single stuck-
at faults. This number can be further reduced by fault collapsing technique. 

Single stuck-at faults is characterized by the following properties: 

1. Fault will occur only in one line. 

2. The faulty line is permanently set to either 0 or 1. 

3. The fault can be at an input or output of a gate. 

4. Every fan-out branch is to be considered as a separate line. 
 
Figure 38.1 gives an example of a single stuck-at fault. A stuck-at-1 fault as marked at the output 
of OR gate implies that the faulty signal remains 1 irrespective of the input state of the OR gate. 
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Fig. 38.1 An example of a stuck-at fault 

 
 
 
 
 
 
 
 
 
 
 
 
Bridging faults:  These are due to a short between a group of signal. The logic value of the 
shorted net may be modeled as 1-dominant (OR bridge), 0-dominant (AND bridge), or 
intermediate, depending upon the technology in which the circuit is implemented.  

Stuck-Open and Stuck-Short faults: MOS transistor is considered as an ideal switch and two 
types of faults are modeled. In stuck-open fault a single transistor is permanently stuck in the 
open state and in stuck-short fault a single transistor is permanently shorted irrespective of its 
gate voltage. These are caused by bad connection of signal line. 

Power disturbance faults: These are caused by inconsistent power supplies and affect the 
whole system. 

Spurious current faults:  that exposed to heavy ion affect whole system. 
Operational faults are usually classified according to their duration: 

Permanent faults exist indefinitely if no corrective action is taken. These are mainly 
manufacturing faults and are not frequently occur due to change in system operation or 
environmental disturbances. 
Intermittent faults appear, disappear, and reappear frequently. They are difficult to predict, but 
their effects are highly correlated. Most of these faults are due to marginal design or 
manufacturing steps. These faults occur under a typical environmental disturbance.  

Transient faults appear for an instant and disappear quickly.  These are not correlated with each 
other. These are occurred due random environmental disturbances. Power disturbance faults and 
spurious current faults are transient faults. 
 
3.2 Software-Hardware Covalidation Fault Model 
 
A design error is a difference between the designer’s intent and an executable specification of 
the design. Executable specifications are often expressed using high-level hardware-software 
languages. Design errors may range from simple syntax errors confined to a single line of a 
design description, to a fundamental misunderstanding of the design specification which may 
impact a large segment of the description. A design fault describes the behavior of a set of design 
errors, allowing a large set of design errors to be modeled by a small set of design faults. The 
majority of covalidation fault models are behavioral-level fault models. Existing covalidation 
fault models can be classified by the style of behavioral description upon which the models are 
based. Many different internal behavioral formats are possible [8]. The covalidation fault models 
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currently applied to hardware-software designs have their origins in either the hardware [9] or 
the software [10] domains. 
  
3.2.1 Textual Fault Models 
 
A textual fault model is one, which is applied directly to the original textual behavioral 
description. The simplest textual fault model is the statement coverage metric introduced in 
software testing [10] which associates a potential fault with each line of code, and requires that 
each statement in the description be executed during testing. This coverage metric is accepted as 
having limited accuracy in part because fault effect observation is ignored. Mutation analysis is a 
textual fault model which was originally developed in the field of software test, and has also 
been applied to hardware validation. A mutant is a version of a behavioral description which 
differs from the original by a single potential design error. A mutation operator is a function 
which is applied to the original program to generate a mutant.  
 
3.2.2 Control-Dataflow Fault Models 
 
A number of fault models are based on the traversal of paths through the contol data flow graph 
(CDFG) representing the system behavior. In order to apply these fault models to a hardware-
software design, both hardware and software components must be converted into a CDFG 
description. Applying these fault models to the CDFG representing a single process is a well 
understood task. Existing CDFG fault models are restricted to the testing of single processes. The 
earliest control-dataflow fault models include the branch coverage and path coverage [10] 
models used in software testing. 

The branch coverage metric associates potential faults with each direction of each 
conditional in the CDFG. The branch coverage metric has been used for behavioral validation for 
coverage evaluation and test generation [11, 12]. The path coverage metric is a more demanding 
metric than the branch coverage metric because path coverage reflects the number of control-
flow paths taken. The assumption is that an error is associated with some path through the 
control flow graph and all control paths must be executed to guarantee fault detection.  

Many CDFG fault models consider the requirements for fault activation without 
explicitly considering fault effect observability. Researchers have developed observability-based 
behavioral fault models [13, 14] to alleviate this weakness.  

 
3.2.3 State Machine Fault Models 
 
Finite state machines (FSMs) are the classic method of describing the behavior of a sequential 
system and fault models have been defined to be applied to state machines. The commonly used 
fault models are state coverage which requires that all states be reached, and transition coverage 
which requires that all transitions be traversed. State machine transition tours, paths covering 
each transition of the machine, are applied to microprocessor validation [15]. The most 
significant problem with the use of state machine fault models is the complexity resulting from 
the state space size of typical systems. Several efforts have been made to alleviate this problem 
by identifying a subset of the state machine which is critical for validation [16].  
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3.2.4 Application-Specific Fault Models 
 
A fault model which is designed to be generally applicable to arbitrary design types may not be 
as effective as a fault model which targets the behavioral features of a specific application. To 
justify the cost of developing and evaluating an application-specific fault model, the market for 
the application must be very large and the fault modes of the application must be well 
understood. For this reason, application-specific fault models are seen in microprocessor test and 
validation [17,18].  
 
3.3 Interface Faults 
 
To manage the high complexity of hardware-software design and covalidation, efforts have been 
made to separate the behavior of each component from the communication architecture [19]. 
Interface covalidation becomes more significant with the onset of core-based design 
methodologies which utilize pre-designed, pre-verified cores. Since each core component is pre-
verified, the system covalidation problem focuses on the interface between the components. A 
case study of the interface-based covalidation of an image compression system has been 
presented [20].  
 
4.  Testing of Embedded Core-Based System-on-Chips (SOCs)  
 
The system-on-chip test is a single composite test comprised of the individual core tests of each 
core, the UDL tests, and interconnect tests. Each individual core or UDL test may involve 
surrounding components. Certain operational constraints (e.g., safe mode, low power mode, 
bypass mode) are often required which necessitates access and isolation modes. 
 

In a core-based system-on-chip [5], the system integrator designs the User Defined Logic 
(UDL) and assembles the pre-designed cores provided by the core vendor. A core is typically 
hardware description of standard IC e.g., DSP, RISC processor, or DRAM core. Embedded cores 
represent intellectual property (IP) and in order to protect IP, core vendors do not release the 
detailed structural information to the system integrator. Instead a set of test pattern is provided by 
the core vendor that guarantees a specific fault coverage. Though the cores are tested as part of 
overall system performance by the system integrator, the system integrator deals the core as a 
black box. These test patterns must be applied to the cores in a given order, using a specific clock 
strategy.  

 
The core internal test developed by a core provider need to be adequately described, 

ported and ready for plug and play, i.e., for interoperability, with the system chip test. For an 
internal test to accompany its corresponding core and be interoperable, it needs to be described in 
an commonly accepted, i.e., standard, format. Such a standard format is currently being 
developed by IEEE PI 500 and referred to as standardization of a core test description language 
[22]. 

 
In SOCs cores are often embedded in several layers of user-defined or other core-based 

logic, and direct physical access to its peripheries is not available from chip I/Os. Hence, an 
electronic access mechanism is needed. This access mechanism requires additional logic, such as 
a wrapper around the core and wiring, such as a test access mechanism to connect core 
peripheries to the test sources and sinks. The wrapper performs switching between normal mode 
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and the test mode(s) and the wiring is meant to connect the wrapper which surrounds the core to 
the test source and sink. The wrapper can also be utilized for core isolation. Typically, a core 
needs to be isolated from its surroundings in certain test modes. Core isolation is often required 
on the input side, the output side, or both.  
 

test access 
mechnism

test access 
mechnism

wrapper

sink source 
embedded 

core

Fig. 38. 2  Overview of the three elements in an embedded-core test approach: (1) test 
pattern source, (2) test access mechanism, and (3) core test wrapper [5]. 

 
 
 
 
 
 
 
 
 
 
A conceptual architecture for testing embedded-core-based SOCs is shown in Figure 38.2 It 
consists of three structural elements: 
 

1. Test Pattern Source and Sink  
 
The test pattern source generates the test stimuli for the embedded core, and the test pattern sink 
compares the response(s) to the expected response(s). Test pattern source as well as sink can be 
implemented either off-chip by external Automatic Test Equipment (ATE), on-chip by Built-In 
Self-Test (or Embedded ATE), or as a combination of both. Source and sink do not need to be of 
the same type, e.g., the source of an embedded core can be implemented off-chip, while the sink 
of the same core is implemented on-chip. The choice for a certain type of source or sink is 
determined by  (1) The type of circuitry in the core, (2) The type of pre-defined tests that come 
with the core and (3) Quality and Cost considerations. The type of circuitry of a certain core and 
the type of predefined tests that come with the core determine which implementation options are 
left open for test pattern source and sink. The actual choice for a particular source or sink is in 
general determined by quality and cost considerations. On-chip sources and sinks provide better 
accuracy and performance related defect coverage, but at the same time increase the silicon area 
and hence might reduce manufacturing yield.  
 
2. Test Access Mechanism  
 
The test access mechanism takes care of on-chip test pattern transport. It can be used (1) to 
transport test stimuli from the test pattern source to the core-under-test, and (2) to transport test 
responses from the core-under-test to the test pattern sink. The test access mechanism is by 
definition, implemented on-chip. Although for one core often the same type of' test access 
mechanism is used for both stimulus as well as response transportation, this is not required and 
various combinations may co-exist. Designing a test access mechanism involves making a trade-
off between the transport capacity (bandwidth) of the mechanism and the test application cost it 
induces. The bandwidth is limited by the bandwidth of source and sink and the amount of silicon 
area one wants to spend on the test access mechanism itself.  
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3. Core Test Wrapper  
 
The core test wrapper forms the interface between the embedded core and its system chip 
environment. It connects the core terminals both to the rest of the IC, as well as to the test access 
mechanism. By definition, the core test wrapper is implemented on-chip.  
The core test wrapper should have the following mandatory modes. 

• Normal operation (i.e., non-test) mode of' the core. In this mode, the core is connected to 
its system-IC environment and the wrapper is transparent. 

• Core test mode. In this mode the test access mechanism is connected to the core, such 
that test stimuli can be applied at the core's inputs and responses can be observed at the 
core's outputs. 

• Interconnect test mode. In this mode the test access mechanism is connected to the 
interconnect wiring and logic, such that test stimuli can be applied at the core's outputs 
and responses can be observed at the core's inputs. 

 
Apart from these mandatory modes, a core test wrapper might have several optional modes, e.g., 
a detach mode to disconnect the core from its system chip environment and the test access 
mechanism, or a bypass mode for the test access mechanisms. Depending on the implementation 
of the test access mechanism, some of the above modes may coincide. For example, if the test 
access mechanism uses existing functionality, normal operation and core test mode may 
coincide. 

 
Pre-designed cores have their own internal clock distribution system. Different cores 

have different clock propagation delays, which might result in clock skew for inter-core 
communication. The system-IC designer should take care of this clock skew issue in the 
functional communication between cores. However, clock skew might also corrupt the data 
transfer over the test access mechanism, especially if this mechanism is shared by multiple cores. 
The core test wrapper is the best place to have provisions for clock skew prevention in the test 
access paths between the cores. 

 
In addition to the test integration and interdependence issues, the system chip composite 

test requires adequate test scheduling. Effective test scheduling for SOCs is challenging because 
it must address several conflicting goals: (1) total SOC testing time minimization, (2) power 
dissipation, (3) precedence constraints among tests and (4) area overhead constraints [2]. Also, 
test scheduling is necessary to run intra-core and inter-core tests in certain order not to impact the 
initialization and final contents of individual cores.  

 
5. On-Line Testing 
 
On-line testing addresses the detection of operational faults, and is found in computers that 
support critical or high-availability applications [23]. The goal of on-line testing is to detect fault 
effects, that is, errors, and take appropriate corrective action. On-line testing can be performed by 
external or internal monitoring, using either hardware or software; internal monitoring is referred 
to as self-testing. Monitoring is internal if it takes place on the same substrate as the circuit under 
test (CUT); nowadays, this usually means inside a single IC—a system-on-a-chip (SOC). 
There are four primary parameters to consider in the design of an on-line testing scheme: 
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• Error coverage (EC): This is defined as the fraction of all modeled errors that are detected, 
usually expressed in percent. Critical and highly available systems require very good error 
detection or error coverage to minimize the impact of errors that lead to system failure. 

• Error latency (EL): This is the difference between the first time the error is activated and the 
first time it is detected. EL is affected by the time taken to perform a test and by how often tests 
are executed. A related parameter is fault latency (FL), defined as the difference between the 
onset of the fault and its detection. Clearly, FL ≥ EL, so when EL is difficult to determine, FL is 
often used instead. 

• Space redundancy (SR): This is the extra hardware or firmware needed to perform on-line 
testing. 

• Time redundancy (TR): This is the extra time needed to perform on-line testing. 
An ideal on-line testing scheme would have 100% error coverage, error latency of 1 

clock cycle, no space redundancy, and no time redundancy. It would require no redesign of the 
CUT, and impose no functional or structural restrictions on the CUT. To cover all of the fault 
types described earlier, two different modes of on-line testing are employed: concurrent testing 
which takes place during normal system operation, and non-concurrent testing which takes place 
while normal operation is temporarily suspended. These operating modes must often be 
overlapped to provide a comprehensive on-line testing strategy at acceptable cost. 

 
5.1 Non-concurrent testing 
 
This form of testing is either event-triggered (sporadic) or time-triggered (periodic), and is 
characterized by low space and time redundancy. Event-triggered testing is initiated by key 
events or state changes in the life of a system, such as start-up or shutdown, and its goal is to 
detect permanent faults. It is usually advisable to detect and repair permanent faults as soon as 
possible. Event-triggered tests resemble manufacturing tests.  
Time-triggered testing is activated at predetermined times in the operation of the system. It is 
often done periodically to detect permanent faults using the same types of tests applied by event 
triggered testing. This approach is especially useful in systems that run for extended periods, 
where no significant events occur that can trigger testing. Periodic testing is also essential for 
detecting intermittent faults. Periodic testing can identify latent design or manufacturing flaws 
that only appear under the right environmental conditions.  
 
5.2 Concurrent testing 
 
Non-concurrent testing [23] cannot detect transient or intermittent faults whose effects disappear 
quickly. Concurrent testing, on the other hand, continuously checks for errors due to such faults. 
However, concurrent testing is not by itself particularly useful for diagnosing the source of 
errors, so it is often combined with diagnostic software. It may also be combined with non-
concurrent testing to detect or diagnose complex faults of all types. 

 
A common method of providing hardware support for concurrent testing, especially for 

detecting control errors, is a watchdog timer. This is a counter that must be reset by the system 
on a repetitive basis to indicate that the system is functioning properly. A watchdog timer is 
based on the assumption that the system is fault-free—or at least alive—if it is able to perform 
the simple task of resetting the timer at appropriate intervals, which implies that control flow is 
correctly traversing timer reset points.  
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For critical or highly available systems, it is essential to have a comprehensive approach 
to on-line testing that covers all expected permanent, intermittent, and transient faults. In recent 
years, built-in-self-test (BIST) has emerged as an important method for testing manufacturing 
faults, and it is increasingly promoted for on-line testing as well. 
 
6. Test Pattern Generation  
 
6.1  Test Plan  
 
Test plans are generated to verify the device specification, which comprise of the decision on test 
type, fault coverage, test time etc. For example, the test pattern generator and response analyzer 
may reside on an automatic test equipment (ATE) or on-chip, depending on the test environment. 
In the case of production testing in an industry, ATE may be the option, while on-site testing 
may require on-chip testers (BIST). 
 
6.2  Test Programming 
 
The test program comprises modules for the generation of the test vectors and the corresponding 
expected responses from a circuit with normal behavior. CAD tools are used to automate the 
generation of optimized test vectors for the purpose [1,24]. Figure. 38.3 illustrates the basic steps 
in the development of a test program.  
 
 

Chip specifications Test generation Logic design 
(from simulators) 

Test plan Physical design 

Test
Program 

Generator 

 
 
 
 

Test types 

Test program 

Timing specs Pin assignments 

Vectors 

Fig. 38.3 Test program generation 

 
 
 
 
 
 
 
 
 
 
6.3  Test Pattern Generation 
 
Test pattern generation is the process of generating a (minimal) set of input patterns to stimulate 
the inputs of a circuit, such that detectable faults can be sensitized and their effects can be 
propagated to the output.  The process can be done in two phases: (1) derivation of a test, and (2) 
application of a test. For (1), appropriate models for the circuit (gate or transistor level) and 
faults are to be decided. Construction of the test is to be accomplished in a manner such that the 
output signal from a faulty circuit is different from that of a good circuit. This can be 
computationally very expensive, but the task is to be performed offline and only once at the end 
of the design stage. The generation of a test set can be obtained either by algorithmic methods 
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(with or without heuristics), or by pseudo-random methods. On the other hand, for (2), a test is 
subsequently applied many times to each integrated circuit and thus must be efficient both in 
space (storage requirements for the patterns) and in time. The main considerations in evaluating 
a test set are: (i) the time to construct a minimal test set; (ii) the size of the test set; (iii) the time 
involved to carry out the test; and (iv) the equipment required (if external). Most algorithmic test 
pattern generators are based on the concept of sensitized paths.  
The Sensitized Path Method is a heuristic approach to generating tests for general 
combinational logic networks. The circuit is assumed to have only a single fault in it. The 
sensitized path method consists of two parts:   

1.  The creation of a SENSITIZED PATH from the fault to the primary output. This involves 
assigning logic values to the gate inputs in the path from the fault site to a primary output, such 
that the fault effect is propagated to the output. 

2.  The JUSTIFICATION operation, where the assignments made to gate inputs on the sensitized 
path is traced back to the primary inputs. This may require several backtracks and iterations. 
In the case of sequential circuits the same logic is applied but before that the sequential elements 
are explicitly driven to a required state using scan based design-for-test (DFT) circuitry [1,24]. 
 
The best-known algorithms are the D-algorithm, PODEM and FAN [1,24]. Three steps can be 
identified in most automatic test pattern generation (ATPG) programs: (a) listing the signals on 
the inputs of a gate controlling the line on which a fault should be detected; (b) determining the 
primary input conditions necessary to obtain these signals (back propagation) and sensitizing the 
path to the primary outputs such that the signals and faults can be observed; (c) repeating this 
procedure until all detectable faults in a given fault set have been covered.  
 
6.4  ATPG for Hardware-Software Covalidation 
 
Several automatic test generation (ATG) approaches have been developed which vary in the 
class of search algorithm used, the fault model assumed, the search space technique used, and the 
design abstraction level used. In order to perform test generation for the entire system, both 
hardware and software component behaviors must be described in a uniform manner. Although 
many behavioral formats are possible, ATG approaches have focused on CDFG and FSM 
behavioral models. 

 
Two classes of search algorithms have been explored, fault directed and coverage 

directed. Fault directed techniques successively target a specific fault and construct a test 
sequence to detect that fault. Each new test sequence is merged with the current test sequence 
(typically through concatenation) and the resulting fault coverage is evaluated to determine if test 
generation is complete. Fault directed algorithms have the advantage that they are complete in 
the sense that a test sequence will be found for a fault if a test sequence exists, assuming that 
sufficient CPU time is allowed. For test generation, each CDFG path can be associated with a set 
of constraints which must be satisfied to traverse the path. Because the operations found in a 
hardware-software description can be either boolean or arithmetic, the solution method chosen 
must be able to handle both types of operations. Constraint logic programming (CLP) techniques 
[27] are capable to handle a broad range of constraints including non-linear constraints on both 
boolean and arithmetic variables. State machine testing has been accomplished by defining a 
transition tour which is a path which traverses each state machine transition at least once 
26ransition tours have been generated by iteratively improving an existing partial tour by 
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concatenating on to it the shortest path to an uncovered transition [26 A significant limitation to 
state machine test generation techniques is the time complexity of the state enumeration process 
performed during test generation. 

 
Coverage directed algorithms seek to improve coverage without targeting any specific 

fault. These algorithms heuristically modify an existing test set to improve total coverage, and 
then evaluate the fault coverage produced by the modified test set. If the modified test set 
corresponds to an improvement in fault coverage then the modification is accepted. Otherwise 
the modification is either rejected or another heuristic is used to determine the acceptability of 
the modification. The modification method is typically either random or directed random. An 
example of such a technique is presented in [25] which uses a genetic algorithm to successively 
improve the population of test sequences. 

 
7. Embedded Software Testing 
 
7.1  Software Unit Testing 
 
The unit module is either an isolated function or a class. This is done by the development team, 
typically the developer and is done usually in the peer review mode. Test data /test cases are 
developed based on the specification of the module. The test case consists of either: 

• Data-intensive testing: applying a large range of data variation for function parameter 
values, or 

• Scenario-based testing: exercising different method invocation sequences to perform all 
possible use cases as found in the requirements. 

 
Points of Observation are returned value parameters, object property assessments, and source 
code coverage.  Since it is not easy to track down trivial errors in a complex embedded system, 
every effort should be made to locate and remove them at the unit-test level. 
 
7.2 Software Integration Testing 
 
All the unit modules are integrated together. Now the module to be tested is a set of functions or 
a cluster of classes. The essence of integration testing is the validation of the interface. The same 
type of Points of Control applies as for unit testing (data-intensive main function call or method-
invocation sequences), while Points of Observation focus on interactions between lower-level 
models using information flow diagrams. 
First, performance tests can be run that should provide a good indication about the validity of the 
architecture. As for functional testing, the earlier is the better. Each forthcoming step will then 
include performance testing. White-box testing is also the method used during that step. 
Therefore software integration testing is the responsibility of the developer. 
 
7.3 Software Validation Testing 
 
This can be considered one of the activities that occur toward the end of each software 
integration. Partial use-case instances, which also called partial scenarios, begin to drive the test 
implementation. The test implementation is less aware of and influenced by the implementation 
details of the module. Points of Observation include resource usage evaluation since the module 

Version 2 EE IIT, Kharagpur 15



is a significant part of the overall system. This is considered as white-box testing. Therefore, 
software validation testing is also the responsibility of the developer. 
 
7.4 System Unit Testing 
 
Now the module to be tested is a full system that consists of user code as tested during software 
validation testing plus all real-time operating system (RTOS) and platform-related pieces such as 
tasking mechanisms, communications, interrupts, and so on. The Point of Control protocol is no 
longer a call to a function or a method invocation, but rather a message sent/received using the 
RTOS message queues, for example. Test scripts usually bring the module under test into the 
desired initial state; then generate ordered sequences of samples of messages; and validate 
messages received by comparing (1) message content against expected messages and (2) date of 
reception against timing constraints. The test script is distributed and deployed over the various 
virtual testers. System resources are monitored to assess the system's ability to sustain embedded 
system execution. For this aspect, grey-box testing is the preferred testing method. In most cases, 
only a knowledge of the interface to the module is required to implement and execute 
appropriate tests. Depending on the organization, system unit testing is either the responsibility 
of the developer or of a dedicated system integration team. 
 
7.5 System Integration Testing 
 
The module to be tested starts from a set of components within a single node and eventually 
encompasses all system nodes up to a set of distributed nodes. The Points of Control and 
Observations (PCOs) are a mix of RTOS and network-related communication protocols, such as 
RTOS events and network messages. In addition to a component, a Virtual Tester can also play 
the role of a node. As for software integration, the focus is on validating the various interfaces. 
Grey-box testing is the preferred testing method. System integration testing is typically the 
responsibility of the system integration team. 
 
7.6 System Validation Testing 
 
The module to be tested is now a complete implementation subsystem or the complete embedded 
system. The objectives of this final aspect are several: 

• Meet external-actor functional requirements. Note that an external-actor might either be a 
device in a telecom network (say if our embedded system is an Internet Router), or a 
person (if the system is a consumer device), or both (an Internet Router that can be 
administered by an end user). 

• Perform final non-functional testing such as load and robustness testing. Virtual testers 
can be duplicated to simulate load, and be programmed to generate failures in the system. 

• Ensure interoperability with other connected equipment. Check conformance to 
applicable interconnection standards. Going into details for these objectives is not in the 
scope of this article. Black-box testing is the preferred method: The tester typically 
concentrates on both frequently used and potentially risky or dangerous use-case 
instances. 
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8. Interaction Testing Technique between Hardware and 
Software in Embedded Systems 

 
In embedded system where hardware and software are combined, unexpected situation can occur 
owing to the interaction faults between hardware and software. As the functions of embedded 
system get more complicated, it gets more difficult to detect faults that cause such troubles. 
Hence, Faults Injection Technique is strongly recommended in a way it observes system 
behaviors by injecting faults into target system so as to detect interaction faults between 
hardware and software in embedded system. 

 
The test data selection technique discussed in [21] first simulates behaviors of embedded 

system to software program from requirement specification. Then hardware faults, after being 
converted to software faults, are injected into the simulated program. And finally, effective test 
data are selected to detect faults caused by the interactions between hardware and software. 

 

9. Conclusion 
 
Rapid advances in test development techniques are needed to reduce the test cost of million-gate 
SOC devices. In this chapter a number of state-of-the-art techniques are discussed for testing of 
embedded systems. Modular test techniques for digital, mixed-signal, and hierarchical SOCs 
must develop further to keep pace with design complexity and integration density. The test data 
bandwidth needs for analog cores are significantly different than that for digital cores, therefore 
unified top-level testing of mixed-signal SOCs remains major challenge. This chapter also 
described granular based embedded software testing technique. 
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Problems 
 

1. How testing differs from verification? 
2. What is embedded system? Define hard real-time system and soft real-time system 

with example. 
3. Why testing embedded system is difficult? 
4. How hardware testing differs from software testing? 
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5. What is co-testing? 
6. Distinguish between defects, errors and faults with example. 
7. Calculate the total number of single and multiple stuck-at faults for a logic circuit 

with n lines. 
8.  In the circuit shown in Figure 38.4 if any of the following tests detect the fault x1 s-

a-0? 
a) (0,1,1,1) 

b) (1,0,1,1) 

c) (1,1,0,1) 

d) (1,0,1,0) 

 
 

z 

x1

x2

x3

x4

Fig. P1 

 
 
 
 
 
 
 
 
 
 
 
 
 

9. Define the following fault models using examples where possible: 
a) Single and multiple stuck-at fault 
b) Bridging fault 
c) Stuck-open and stuck-short fault 
d) Operational fault 

10. What is meant by co-validation fault model? 
11. Describe different software fault model? 
12. Describe the basic structure of core-based testing approach for embedded system. 
13. What is concurrent or on-line testing? How it differs from non-concurrent testing? 
14. Define error coverage, error latency, space redundancy and time redundancy in view 

of on-line testing? 
15. What is a test vector? How test vectors are generated? Describe different techniques 

for test pattern generation. 
16. Define the following for software testing: 

a) Software unit testing 
b) Software integration testing 
c) Software validation testing 
d) System unit testing 
e) System integration testing 
f) System validation testing 
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