

Module
4

Design of Embedded
Processors

Version 2 EE IIT, Kharagpur 1

Lesson
23

Introduction to Hardware
Description Languages-III

Version 2 EE IIT, Kharagpur 2

Instructional Objectives

At the end of the lesson the student should be able to

• Interface Verilog code to C & C++ using Programming Language Interface
• Synthesize a Verilog code and generate a netlist for layout
• Verify the generated code, and carry out optimization and debugging
• Classify various types of flows in Verification

3.1 Programming Language interface

3.1.1 Verilog

PLI (Programming Language Interface) is a facility to invoke C or C++ functions from Verilog
code.

The function invoked in Verilog code is called a system call. Examples of built-in system calls
are $display, $stop, $random. PLI allows the user to create custom system calls, something that
Verilog syntax does not allow to do. Some of these are:-

• Power analysis.

• Code coverage tools.

• Can modify the Verilog simulation data structure - more accurate delays.

• Custom output displays.

• Co-simulation.

• Designs debug utilities.

• Simulation analysis.

• C-model interface to accelerate simulation.

• Testbench modeling.

To achieve the above few application of PLI, C code should have the access to the internal data
structure of the Verilog simulator. To facilitate this Verilog PLI provides with something called
acc routines or access routines

How it Works?

• Write the functions in C/C++ code.

• Compile them to generate shared lib (*.DLL in Windows and *.so in UNIX). Simulator
like VCS allows static linking.

• Use this Functions in Verilog code (Mostly Verilog Testbench).

Version 2 EE IIT, Kharagpur 3

• Based on simulator, pass the C/C++ function details to simulator during compile process
of Verilog Code (This is called linking, and you need to refer to simulator user guide to
understand how this is done).

• Once linked just run the simulator like any other Verilog simulation.

The block diagram representing above is as follows:

During execution of the Verilog code by the simulator, whenever the simulator encounters the
user defined system tasks (the one which starts with $), the execution control is passed to PLI
routine (C/C++ function).

Example - Hello World

Define a function hello (), which when called will print "Hello World". This example does not
use any of the PLI standard functions (ACC, TF and VPI). For exact linking details, the
simulator manuals must be referred. Each simulator implements its own strategy for linking with
the C/C++ functions.

C Code

#include < stdio.h >
Void hello () {
printf ("\nHello World\n");

Verilog Code

module hello_pli ();
initial begin
$hello;
#10 $finish;
end
endmodule

Version 2 EE IIT, Kharagpur 4

3.1.2 Running a Simulation

Once linking is done, simulation is run as a normal simulation with slight modification to the
command line options. These modifications tell the simulator that the PLI routines are being
used (e.g. Modelsim needs to know which shared objects to load in command line).

Writing PLI Application (counter example)

Write the DUT reference model and Checker in C and link that to the Verilog Testbench.

The requirements for writing a C model using PLI

• Means of calling the C model, when ever there is change in input signals (Could be wire
or reg or types).

• Means to get the value of the changes signals in Verilog code or any other signals in
Verilog code from inside the C code.

• Means to drive the value on any signal inside the Verilog code from C code.

There are set of routines (functions), that Verilog PLI provides which satisfy the above
requirements

3.1.3 PLI Application Specification

This can be well understood in context to the above counter logic. The objective is to design the
PLI function $counter_monitor and check the response of the designed counter using it. This
problem can be addressed to in the following steps:

• Implement the Counter logic in C.
• Implement the Checker logic in C.
• Terminate the simulation, whenever the checker fails.
This is represented in the block diagram in the figure 23.2.

Calling the C function

The change in clock signal is monitored and with its change the counter function is executed
The acc_vcl_add routine is used. The syntax can be obtained in the Verilog PLI LRM.

Version 2 EE IIT, Kharagpur 5

acc_vcl_add routine basically monitors the list of signals and whenever any of the monitor
signals change, it calls the user defined function (this function is called the Consumer C
routine). The vcl routine has four arguments.

• Handle to the monitored object
• Consumer C routine to call when the object value changes
• String to be passed to consumer C routine
• Predefined VCL flags: vcl_verilog_logic for logic monitoring vcl_verilog_strength for

strength monitoring

acc_vcl_add (net, display_net, netname, vcl_verilog_logic);

C Code – Basic

The desired C function is Counter_monitor , which is called from the Verilog Testbench. As
like any other C code, header files specific to the application are included.Here the include e file
comprises of the acc routines.

The access routine acc_initialize initializes the environment for access routines and must be
called from the C-language application program before the program invokes any other access
routines. Before exiting a C-language application program that calls access routines, it is
necessary to exit the access routine environment by calling acc_close at the end of the program.

#include < stdio.h >
#include "acc_user.h"
typedef char * string;
handle clk ;
handle reset ;
handle enable ;
handle dut_count ;
int count ;
void counter_monitor()
{
acc_initialize();
clk = acc_handle_tfarg(1);
reset = acc_handle_tfarg(2);
enable = acc_handle_tfarg(3);
dut_count = acc_handle_tfarg(4);
acc_vcl_add(clk,counter,null,vcl_verilog_logic);
acc_close();
}
void counter ()
printf("Clock changed state\n");

Handles are used for accessing the Verilog objects. The handle is a predefined data type that is a
pointer to a specific object in the design hierarchy. Each handle conveys information to access
routines about a unique instance of an accessible object information about the object type and,
also, how and where the data pertaining to it can be obtained. The information of specific object

Version 2 EE IIT, Kharagpur 6

to handle can be passed from the Verilog code as a parameter to the function $counter_monitor.
This parameters can be accessed through the C-program with acc_handle_tfarg() routine.

For instance clk = acc_handle_tfarg(1) basically makes that the clk is a handle to the first
parameter passed. Similarly, all the other handles are assigned clk can now be added to the signal
list that needs to be monitored using the routine acc_vcl_add(clk, counter ,null ,
vcl_verilog_logic). Here clk is the handle, counter is the user function to execute, when the clk
changes.

Verilog Code

Below is the code of a simple testbench for the counter example. If the object being passed is an
instance, then it should be passed inside double quotes. Since here all the objects are nets or
wires, there is no need to pass them inside the double quotes.

module counter_tb();
reg enable;;
reg reset;
reg clk_reg;
wire clk;
wire [3:0] count;
initial begin
clk = 0;
reset = 0;
$display("Asserting reset");
#10 reset = 1;
#10 reset = 0;
$display ("Asserting Enable");
#10 enable = 1;
#20 enable = 0;
$display ("Terminating Simulator");
#10 $finish;

End

Always
#5 clk_reg = !clk_reg;
assign clk = clk_reg;
initial begin
$counter_monitor(top.clk,top.reset,top.enable,top.count);
end

counter U(
clk (clk),
reset (reset),
enable (enable),
count (count)
);
endmodule

Version 2 EE IIT, Kharagpur 7

Access Routines

Access routines are C programming language routines that provide procedural access to
information within Verilog. Access routines perform one of two operations:

• Extract information pertaining to an object from the internal data representation.
• Write information pertaining to an object into the internal data representation.

Program Flow using access routines

include < acc_user.h >
void pli_func() {
acc_initialize();
// Main body: Insert the user application code here
acc_close();

• acc_user.h : all data-structure related to access routines
• acc_initialize() : initialize variables and set up environment
• main body : User-defined application
• acc_close() : Undo the actions taken by the function acc_initialize()

Utility Routines

Interaction between the Verilog tool and the user’s routines is handled by a set of programs that
are supplied with the Verilog toolset. Library functions defined in PLI1.0 perform a wide variety
of operations on the parameters passed to the system call and are used to do simulation
synchronization or implementing conditional program breakpoint.

3.2 Verilog and Synthesis

3.2.1 What is logic synthesis?

Logic synthesis is the process of converting a high-level description of design into an optimized
gate-level netlist representation. Logic synthesis uses standard cell libraries which consist of
simple cells, such as basic logic gates like and, or, and nor, or macro cells, such as adder, muxes,
memory, and flip-flops. Standard cells put together form the technology library. Normally,
technology library is known by the minimum feature size (0.18u, 90nm).
A circuit description is written in Hardware description language (HDL) such as Verilog Design
constraints such as timing, area, testability, and power are considered during synthesis. Typical
design flow with a large example is given in the last example of this lesson.

Version 2 EE IIT, Kharagpur 8

3.2.2 Impact of automation on Logic synthesis

For large designs, manual conversions of the behavioral description to the gate-level
representation are more prone to error. Prior to the development of modern sophisticated
synthesis tools the earlier designers could never be sure that whether after fabrication the design
constraints will be met. Moreover, a significant time of the design cycle was consumed in
converting the high–level design into its gate level representation. On account of these, if the
gate level design did not meet the requirements then the turnaround time for redesigning the
blocks was also very high. Each designer implemented design blocks and there was very little
consistency in design cycles, hence, although the individual blocks were optimized but the
overall design still contained redundant logics. Moreover, timing, area and power dissipation was
fabrication process specific and, hence, with the change of processes the entire process needed to
be changed with the design methodology.
However, now automated logic synthesis has solved these problems. The high level design is less
prone to human error because designs are described at higher levels of abstraction. High level
design is done without much concentration on the constraints. The tool takes care of all the
constraints and sees to it that the constraints are taken care of. The designer can go back,
redesign and synthesize once again very easily if some aspect is found unaddressed. The
turnaround time has also fallen down considerably. Automated logic synthesis tools synthesize
the design as a whole and, thus, an overall design optimization is achieved. Logic synthesis
allows a technology independent design. The tools convert the design into gates using cells from
the standard cell library provided by the vendor.
Design reuse is possible for technology independent designs. If the technology changes the tool
is capable of mapping accordingly.

Constructs Not Supported in Synthesis
Construct Type Notes

Initial Only in testbenches
event Events make more sense for syncing test bench components
real Real data type not supported

Version 2 EE IIT, Kharagpur 9

time Time data type not supported

force and release force and release of data types not supported
assign and deassign assign and deassign of reg data types is not supported, but,

assign on wire data type is supported

Example of a Non-Synthesizable Verilog construct

Codes containing one or more of the above constructs are not synthesizable. But even with
synthesizable constructs, bad coding may cause serious synthesis concerns.

Example - Initial Statement

module synthesis_initial(
clk,q,d);
input clk,d;

output q;
reg q;
initial begin
q <= 0;
end
always @ (posedge clk)
begin
q <= d;
end
endmodule

Delays are also non-synthesizable e.g. a = #10 b; This code is useful only for simulation
purpose.
Synthesis tool normally ignores such constructs, and just assumes that there is no #10 in above
statement, treating the above code as just a = b.

3.2.3 Constructs and Their Description

Construct Type Keyword Description
ports input, inout, output Use inout only at IO level.

parameters parameter This makes design more
generic

module definition module

signals and variables wire, reg, tri Vectors are allowed

instantiation module instances primitive gate
instances

Eg- nand (out,a,b) bad idea
to code RTL this way.

function and tasks function , task Timing constructs ignored

Version 2 EE IIT, Kharagpur 10

procedural always, if, then, else, case, casex,
casez initial is not supported

procedural blocks begin, end, named blocks, disable Disabling of named blocks
allowed

data flow assign Delay information is
ignored

named Blocks disable Disabling of named block
supported.

loops for, while, forever
While and forever loops
must contain @(posedge
clk) or @(negedge clk)

3.2.4 Operators and Their Description

Operator Type Operator Symbol DESCRIPTION
Arithmetic * Multiply

 / Division
 + Add
 - Subtract
 % Modulus
 + Unary plus
 - Unary minus

Logical ! Logical negation
 && Logical and
 || Logical or

Relational > Greater than
 < Less than
 >= Greater than or equal
 <= Less than or equal

Equality == Equality
 != inequality

Reduction & Bitwise negation
 ~& nand
 | or
 ~| nor
 ^ xor
 ^~ ~^ xnor

Shift >> Right shift

Version 2 EE IIT, Kharagpur 11

 << Left shift
Concatenation { } Concatenation

Conditional ? conditional

Constructs Supported In Synthesis

Construct Type Keyword Description
ports input, inout, output Use inout only at IO level.

parameters parameter This makes design more
generic

module definition module

signals and variables wire, reg, tri Vectors are allowed

instantiation module instances primitive gate
instances

Eg- nand (out,a,b) bad idea
to code RTL this way.

function and tasks function , task Timing constructs ignored

procedural always, if, then, else, case, casex,
casez initial is not supported

procedural blocks begin, end, named blocks, disable Disabling of named blocks
allowed

data flow assign Delay information is
ignored

named Blocks disable Disabling of named block
supported.

loops for, while, forever
While and forever loops
must contain @(posedge
clk) or @(negedge clk)

3.2.5 Overall Logic Circuit Modeling and Synthesis in brief

Combinational Circuit modeling using assign

RTL description – This comprises the high level description of the circuit incorporating the RTL
constructs. Some functional verification is also done at this level to ensure the validity of the
RTL description.
RTL for magnitude comparator
// module magnitude comparator
module magnitude_comparator(A_gt_B, A_lt_B, A_eq_B, A,_B);
//comparison output;
output A_gt_B, A_lt_B, A_eq_B ;
// 4- bit numbers input
input [3:0] A,B;
assign A_gt_B= (A>B) ; // A greater than B
assign A_lt_B= (A<B) ; // A greater than B

Version 2 EE IIT, Kharagpur 12

assign A_eq_B= (A==B) ; // A greater than B
endmodule

Translation

The RTL description is converted by the logic synthesis tool to an optimized, intermediate,
internal representation. It understands the basic primitives and operators in the Verilog RTL
description but overlooks any of the constraints.

Logic optimization

The logic is optimized to remove the redundant logic. It generates the optimized internal
representation.

Technology library

The technology library contains standard library cells which are used during synthesis to replace
the behavioral description by the actual circuit components. These are the basic building blocks.
Physical layout of these, are done first and then area is estimated. Finally, modeling techniques
are used to estimate the power and timing characteristics.
The library includes the following:

• Functionality of the cells

• Area of the different cell layout

• Timing information about the various cells

• Power information of various cells

The synthesis tools use these cells to implement the design.
// Library cells for abc_100 technology
VNAND// 2 – input nand gate
VAND// 2 – input and gate
VNOR // 2 – input nor gate
VOR// 2 – input or gate
VNOT// not gate
VBUF// buffer

Design constraints

Any circuit must satisfy at least three constraints viz. area, power and timing. Optimization
demands a compromise among each of these three constraints. Apart from these operating
conditions-temperature etc. also contribute to synthesis complexity.

Logic synthesis

The logic synthesis tool takes in the RTL design, and generates an optimized gate level
description with the help of technology library, keeping in pace with design constraints.

Version 2 EE IIT, Kharagpur 13

Verification of the gate –level netlist

An optimized gate level netlist must always be checked for its functionality and, in addition, the
synthesis tool must always serve to meet the timing specifications. Timing verification is done in
order to manipulate the synthesis parameters in such a way that different timing constraints like
input delay, output delay etc. are suitably met.

Functional verification

Identical stimulus is run with the original RTL and synthesized gate-level description of the
design. The output is compared for matches.
module stimulus
reg [3:0] A, B;
wire A_GT_B, A_LT_B, A_EQ_B;
// instantiate the magnitude comparator MC (A_GT_B, A_LT_B, A_EQ_B,. A, B);
initial
$ monitor ($time, “A=%b, B=%b, A_GT_B=%b, A_LT_B=%b, A_EQ_B=%b”, A_GT_B,
A_LT_B, A_EQ_B, A, B)
// stimulate the magnitude comparator

endmodule

Version 2 EE IIT, Kharagpur 14

3.3 Verification

3.3.1 Traditional verification flow

Traditional verification follows the following steps in general.

1. To verify, first a design specification must be set. This requires analysis of architectural
trade-offs and is usually done by simulating various architectural models of the design.

2. Based on this specification a functional test plan is created. This forms the framework for
verification. Based on this plan various test vectors are applied to the DUT (design under
test), written in verilog. Functional test environments are needed to apply these test
vectors.

3. The DUT is then simulated using traditional software simulators.
4. The output is then analyzed and checked against the expected results. This can be done

manually using waveform viewers and debugging tools or else can be done automatically
by verification tools. If the output matches expected results then verification is complete.

Version 2 EE IIT, Kharagpur 15

5. Optionally, additional steps can be taken to decrease the risk of future design respin.
These include Hardware Acceleration, Hardware Emulation and assertion based
Verification.

Functional verification

When the specifications for a design are ready, a functional test plan is created based on them.
This is the fundamental framework of the functional verification. Based on this test plan, test
vectors are selected and given as input to the design_under_test(DUT). The DUT is simulated to
compare its output with the desired results. If the observed results match the expected values, the
verification part is over.

Functional verification Environment

 The verification part can be divided into three substages :

• Block level verification: verification is done for blocks of code written in verilog using a
number of test cases.

• Full chip verification: The goal of full chip verification, i.e, all the feature of the full
chip described in the test plan is complete.

• Extended verification: This stage depicts the corner state bugs.

3.3.2 Formal Verification

A formal verification tool proves a design by manipulating it as much as possible. All input
changes must, however, conform to the constraints for behaviour validation. Assertions on
interfaces act as constraints to the formal tool. Assertions are made to prove the assertions in the
RTL code false. However, if the constraints are too tight then the tool will not explore all
possible behaviours and may wrongly report the design as faulty.
Both the formal and the semi-formal methodologies have come into precedence with the
increasing complexity of design.

Version 2 EE IIT, Kharagpur 16

3.3.3 Semi- formal verification

Semi formal verification combines the traditional verification flow using test vectors with the
power and thoroughness of formal verification.

• Semi-formal methods supplement simulation with test vectors

• Embedded assertion checks define the properties targeted by formal methods

• Embedded assertion checks defines the input constraints

• Semi-formal methods explore limited space exhaustibility from the states reached by
simulation, thus, maximizing the effect of simulation.The exploration is limited to a
certain point around the state reached by simulation.

Version 2 EE IIT, Kharagpur 17

3.3.4 Equivalence checking

After logic synthesis and place and route tools create a gate level netlist and physical
implementations of the RTL design, respectively, it is necessary to check whether these
functionalities match the original RTL design. Here comes equivalence checking. It is an
application of formal verification. It ensures that the gate level or physical netlist has the same
functionality as the Verilog RTL that was simulated. A logical model of both the RTL and gate
level representations is constructed. It is mathematically proved that their functionality are same.

Version 2 EE IIT, Kharagpur 18

Version 2 EE IIT, Kharagpur 19

3.4 Some Exercises

3.4.1 PLI

i) Write a user defined system task, $count_and_gates, which counts the number of and gate
primitive in a module instance. Hierarchical module instance name is the input to the task. Use
this task to count the number of and gates in a 4-to-1 multiplexer.

3.4.2 Verilog and Synthesis

i) A 1-bit full subtractor has three inputs x, y, z(previous borrow) and two outputs D(difference)
and B(borrow). The logic equations for D & B are as follows
 D=x’y’z+ x’yz’+ xy’z’ + xyz
 B= x’y + x’z+ yz
Write the verilog RTL description for the full subtractor. Synthesize the full using any
technology library available. Apply identical stimulus to the RTL and gate level netlist and
compare the outputs.

ii) Design a 3-8 decoder, using a Verilog RTL description. A 3-bit input a[2:0] is provided to the
decoder. The output of the decoder is out[7:0]. The output bit indexed by a[2:0] gets the value 1,
the other bits are 0. Synthesize the decoder, using any technology library available to you.
Optimize for smallest area. Apply identical stimulus to the RTL and gate level netlist and
compare the outputs.

iii) Write the verilog RTL description for a 4-bit binary counter with synchronous reset that is
active high.(hint: use always loop with the @ (posedge clock)statement.) synthesize the counter
using any technology library available to you. Optimize for smallest area. Apply identical
stimulus to the RTL and gate level netlist and compare the outputs.

Version 2 EE IIT, Kharagpur 20

	Design of Embedded Processors
	Introduction to Hardware Description Languages-III
	Instructional Objectives
	Programming Language interface
	Verilog
	How it Works?
	C Code
	Verilog Code

	Running a Simulation
	PLI Application Specification
	Calling the C function
	C Code – Basic
	Verilog Code
	Access Routines
	Program Flow using access routines
	Utility Routines

	Verilog and Synthesis
	What is logic synthesis?
	Impact of automation on Logic synthesis
	Example of a Non-Synthesizable Verilog construct

	Constructs and Their Description
	Operators and Their Description
	Constructs Supported In Synthesis

	Overall Logic Circuit Modeling and Synthesis in brief
	Combinational Circuit modeling using assign
	Translation
	Logic optimization
	Technology library
	Design constra
	Logic synthesis
	Verification of the gate –level netlist
	Functional verification

	Verification
	Traditional verification flow
	Functional verification
	Functional verification Environment

	Formal Verification
	Semi- formal verification
	Equivalence checking

	Some Exercises
	PLI
	Verilog and Synthesis

