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Specific Instructional Objectives 
 

At the end of this lesson, the student would be able to: 

• Know the clock and time services provided by a Real-Time OS 

• Get an overview of the features that a Real-Time OS is required to support 

• Investigate Unix as a Real-Time operating System 

• Know the shortcomings on traditional Unix in Real-Time applications 

• Know the different approaches taken to make Unix suitable for real-time applications 

• Investigate Windows as a Real-Time operating System 

• Know the features of Windows NT desirable for Real-Time applications 

• Know the shortcomings of Windows NT 

• Compare Windows with Unix OS 
 

1. Introduction 
 
In the last three lessons, we discussed the important real-time task scheduling techniques. We 

highlighted that timely  production  of  results  in  accordance  to  a  physical  clock  is  vital  to  
the  satisfactory  operation  of  a  real-time system. We had also pointed out that real-time 
operating systems are primarily responsible for ensuring that every real-time task meets its 
timeliness requirements. A real-time operating system in turn achieves this by using appropriate 
task scheduling techniques. Normally real-time operating systems provide flexibility to the 
programmers to select an appropriate scheduling policy among several supported policies.  
Deployment of an appropriate task scheduling  technique  out  of  the  supported  techniques  is  
therefore  an  important  concern  for  every  real-time  programmer. To be able to determine the 
suitability of a scheduling algorithm for a given problem, a thorough understanding of the 
characteristics of various real-time task scheduling algorithms is important.  We therefore had a 
rather elaborate discussion on real-time task scheduling techniques and certain related issues 
such as sharing of critical resources and handling task dependencies. 

In this lesson, we examine the important features that a real-time operating system is 
expected to support. We start by discussing the time service supports provided by the real-time 
operating systems, since accurate and high precision clocks are very important to the successful 
operation any real- time application. Next, we point out the important features that a real-time 
operating system needs to support. Finally, we discuss the issues that would arise if we attempt 
to use a general purpose operating system such as UNIX or Windows in real-time applications. 

 
1.1. Time  Services 

 
Clocks and time services are among some of the basic facilities provided to programmers by 

every real-time operating system. The time services provided by an operating system are based 
on a software clock called the system clock maintained by the operating system. The system 
clock is maintained by the kernel based on the interrupts received from the hardware clock.  
Since hard real-time systems usually have timing constraints in the micro seconds range, the 
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system clock should have sufficiently fine resolution1 to support the necessary time services. 
However, designers of real-time operating systems find it very difficult to support very fine 
resolution system clocks. In current technology, the resolution of hardware clocks is usually finer 
than a nanosecond (contemporary processor speeds exceed 3GHz). But, the clock resolution 
being made available by modern real-time operating systems to the programmers is of the order 
of several milliseconds or worse.  Let us first investigate why real-time operating system 
designers find it difficult to maintain system clocks with sufficiently fine resolution. We then 
examine various time services that are built based on the system clock, and made available to the 
real-time programmers. 

The  hardware  clock  periodically  generates  interrupts  (often  called  time  service  
interrupts).   After  each  clock interrupt,  the  kernel  updates  the  software  clock  and  also  
performs  certain  other  work  (explained  in  Sec  4.1.1).   A thread  can  get  the  current  time  
reading  of  the  system  clock  by  invoking  a  system  call  supported  by  the  operating system  
(such  as  the  POSIX  clock-gettime()).   The  finer  the  resolution  of  the  clock,  the  more  
frequent  need  to be the time service interrupts and larger is the amount of processor time the 
kernel spends in responding to these interrupts.   This  overhead  places  a  limitation  on  how  
fine  is  the  system  clock  resolution  a  computer  can  support. Another  issue  that  caps  the  
resolution  of  the  system  clock  is  the  response  time  of  the  clock-gettime()  system call is 
not deterministic.  In fact, every system call (or for that matter, a function call) has some 
associated jitter. The problem gets aggravated in the following situation.  The jitter is caused on 
account of interrupts having higher priority than system calls.  When an interrupt occurs, the 
processing of a system call is stalled.  Also, the preemption time of system calls can vary 
because many operating systems disable interrupts while processing a system call.  The variation 
in the response time (jitter) introduces an error in the accuracy of the time value that the calling 
thread gets from the kernel.  Remember that jitter was defined as the difference between the 
worst-case response time and the best case response time (see Sec. 2.3.1).   In commercially 
available operating systems, jitters associated with system calls can be several milliseconds. A 
software clock resolution finer than this error, is therefore not meaningful. 

We now examine the different activities that are carried out by a handler routine after a clock 
interrupt occurs. Subsequently, we discuss how sufficient fine resolution can be provided in the 
presence of jitter in function calls. 

 
1.1.1. Clock Interrupt Processing 

   

 

 

 

 
 

 

Handler 
1 

Handler 
2 

Expiration time 

t4=15 t3=3 t2=3 t1=1

Fig. 31.1 Structure of a Timer Queue 

                                                 
1 Clock resolution denotes the time granularity provided by the clock of a computer.  It corresponds to the duration 
of time that elapses between two successive clock ticks. 
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Each time a clock interrupt occurs, besides incrementing the software clock, the handler 
routine carries out the following activities: 

 
Process  timer  events: Real-time operating systems  maintain  either  per-process  timer  
queues  or  a  single system-wide timer queue. The structure of such a timer queue has been 
shown in Fig. 31.1. A timer queue contains all timers arranged in order of their expiration 
times. Each timer is associated with a handler routine. The handler routine is the function that 
should be invoked when the timer expires. At each clock interrupt, the kernel checks the 
timer data structures in the timer queue to see if any timer event has occurred. If it finds that 
a timer event has occurred, then it queues the corresponding handler routine in the ready 
queue. 
 
Update ready list: Since the occurrence of the last clock event, some tasks might have 
arrived or become ready due to the fulfillment of certain conditions they were waiting for. 
The tasks in the wait queue are checked, the tasks which are found to have become ready, are 
queued in the ready queue. If a task having higher priority than the currently running task is 
found to have become ready, then the currently running task is preempted and the scheduler 
is invoked. 
Update execution budget: At each clock interrupt, the scheduler decrements the time slice 
(budget) remaining for the executing task. If the remaining budget becomes zero and the task 
is not complete, then the task is preempted, the scheduler is invoked to select another task to 
run. 
 

1.1.2. Providing High Clock Resolution 
 
We had pointed out in Sec. 4.1 that there are two main difficulties in providing a high 

resolution timer.  First, the overhead associated with processing the clock interrupt becomes 
excessive.  Secondly, the jitter associated with the time lookup system call (clock-gettime()) is 
often of the order of several milliseconds.  Therefore, it is not useful to provide a clock with a 
resolution any finer than this.  However, some real-time applications need to deal with timing 
constraints of the order of a few nanoseconds.  Is it at all possible to support time measurement 
with nanosecond resolution?  A way to provide sufficiently fine clock resolution is by mapping a 
hardware clock into the address space of applications.  An application can then read the hardware 
clock directly (through a normal memory read operation) without having to make a system call.  
On a Pentium processor, a user thread can be made to read the Pentium time stamp counter.  This 
counter starts at 0 when the system is powered up and increments after each processor cycle. At 
today’s processor speed, this means that during every nanosecond interval, the counter 
increments several times. 

However,  making  the  hardware  clock  readable  by  an  application  significantly  reduces  
the  portability  of  the application.   Processors  other  than  Pentium  may  not  have  a  high  
resolution  counter,  and  certainly  the  memory address map and resolution would differ. 

 
1.1.3. Timers 

 
We had  pointed out  that  timer service  is a  vital  service that  is provided to  applications  

by all  real-time  operating systems.  Real-time operating systems normally support two main 
types of timers:  periodic timers and aperiodic (or one shot) timers.  We now discuss some basic 
concepts about these two types of timers. 
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Periodic Timers: Periodic timers are used mainly for sampling events at regular intervals or 
performing some activities periodically. Once a periodic timer is set, each time after it 
expires the corresponding handler routine is invoked, it gets reinserted into the timer queue. 
For example, a periodic timer may be set to 100 msec and its handler set to poll the 
temperature sensor after every 100 msec interval. 
 
Aperiodic (or One Shot) Timers:  These timers are set to expire only once. Watchdog 
timers are popular examples of one shot timers. 
 

 

 

 

 

 
 
Watchdog timers are used extensively in real-time programs to detect when a task misses 

its deadline, and then to initiate exception handling procedures upon a deadline miss.   An 
example use of a watchdog timer has been illustrated in Fig. 31.2. In Fig. 31.2, a watchdog 
timer is set at the start of a certain critical function f() through a wd_start(t1) call. The 
wd_start(t1) call sets the watch dog timer to expire by the specified deadline (t1) of the 
starting of the task. If the function f() does not complete even after t1 time units have elapsed, 
then the watchdog timer fires, indicating that the task deadline must have been missed and 
the exception handling procedure is initiated. In case the task completes before the watchdog 
timer expires (i.e. the task completes within its deadline), then the watchdog timer is reset 
using a wd_ tickle() call. 
 

t1

 start 

 end 

 f ( ) { 
 wd_start(t1, exception-handler); 

 wd_tickle ( ); 
 } 

Fig. 31.2 Use of a Watchdog Timer 

1.2. Features  of  a  Real-Time  Operating  System 
 

Before discussing about commercial real-time operating systems, we must clearly understand 
the features normally expected of a real-time operating system and also let us compare different 
real-time operating systems.  This would also let us understand the differences between a 
traditional operating system and a real-time operating system.  In the following, we identify 
some important features required of a real-time operating system, and especially those that are 
normally absent in traditional operating systems. 

 
Clock and Timer Support: Clock and timer services with adequate resolution are one of the 

most important issues in real-time programming. Hard real-time application development often 
requires support of timer services with resolution of the order of a few microseconds. And even 
finer resolution may be required in case of certain special applications. Clocks and timers are a 
vital part of every real-time operating system. On the other hand, traditional operating systems 
often do not provide time services with sufficiently high resolution. 
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Real-Time Priority Levels: A real-time operating system must support static priority levels. 
A priority level supported  by  an  operating  system  is  called  static,  when  once  the  
programmer  assigns  a  priority  value  to  a  task, the operating system does not change it by 
itself.  Static priority levels are also called real-time priority levels. This is because, as we 
discuss in section 4.3, all traditional operating systems dynamically change the priority levels of 
tasks from programmer assigned values to maximize system throughput. Such priority levels that 
are changed by the operating system dynamically are obviously not static priorities. 

 
Fast  Task  Preemption:  For successful operation of a real-time application, whenever a 

high priority critical task arrives,  an  executing  low  priority  task  should  be  made  to  
instantly  yield  the  CPU  to  it. The time duration for which a higher priority task waits before it 
is allowed to execute is quantitatively expressed as the corresponding task preemption time.  
Contemporary real-time operating systems have task preemption times of the order of a few 
micro seconds.  However, in traditional operating systems, the worst case task preemption time 
is usually of the order of a second.  We discuss in the next section that this significantly large 
latency is caused by a non-preemptive kernel. It  goes  without  saying  that  a  real-time  
operating  system  needs  to  have  a  preemptive  kernel  and  should  have  task preemption 
times of the order of a few micro seconds. 

 
Predictable and Fast Interrupt Latency:  Interrupt latency is defined as the time delay 

between the occurrence of an interrupt and the running of the corresponding ISR (Interrupt 
Service Routine).  In real-time operating systems, the upper bound on interrupt latency must be 
bounded and is expected to be less than a few micro seconds.  The way low interrupt latency is 
achieved, is by performing bulk of the activities of ISR in a deferred procedure call (DPC). A 
DPC is essentially a task that performs most of the ISR activity.  A DPC is executed later at a 
certain priority value. Further, support for nested interrupts are usually desired.  That is, a real-
time operating system  should  not  only be preemptive while executing kernel routines, but 
should be preemptive during interrupt servicing as well.  This is especially important for hard 
real-time applications with sub-microsecond timing requirements. 

 
Support for Resource Sharing Among Real-Time Tasks:  If real- time tasks are allowed to 

share critical resources among themselves using the traditional resource sharing techniques, then 
the response times of tasks can become unbounded leading to deadline misses. This is one 
compelling reason as to why every commercial real-time operating system should at the 
minimum provide the basic priority inheritance mechanism. Support of priority ceiling protocol 
(PCP) is also desirable, if large and moderate sized applications are to be supported. 

 
Requirements on Memory Management:  As far as general-purpose operating systems are 

concerned, it is rare to find one that does not support virtual memory and memory protection 
features. However, embedded real-time operating systems almost never support these features. 
Only those that are meant for large and complex applications do. Real-time operating systems for 
large and medium sized applications are expected to provide virtual memory support, not only to 
meet the memory demands of the heavy weight tasks of the application, but to let the memory 
demanding non-real-time applications such as text editors, e-mail software, etc. to also run on the 
same platform. Virtual memory reduces the average memory access time, but degrades the 
worst-case memory access time. The penalty of using virtual memory is the overhead associated 
with storing the address translation table and performing the virtual to physical address 
translations.  Moreover, fetching pages from the secondary memory on demand incurs significant 
latency. Therefore, operating systems supporting virtual memory must provide the real-time 
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applications with some means of controlling paging, such as memory locking.  Memory locking 
prevents a page from being swapped from memory to hard disk.  In the absence of memory 
locking feature, memory access times of even critical real-time tasks can show large jitter, as the 
access time would greatly depend on whether the required page is in the physical memory or has 
been swapped out. 

Memory protection is another important issue that needs to be carefully considered.  Lack of 
support for memory protection  among  tasks  leads  to  a  single  address  space  for  the  tasks.   
Arguments  for  having  only  a  single  address space  include  simplicity,  saving  memory  bits,  
and  light  weight  system  calls.  For small embedded applications, the overhead of a few Kilo 
Bytes of memory per process can be unacceptable.  However, when no memory protection is 
provided by the operating system, the cost of developing and testing a program without memory 
protection becomes very high when the complexity of the application increases.  Also, 
maintenance cost increases as any change in one module would require retesting the entire 
system. 

Embedded real-time operating systems usually do not support virtual memory. Embedded 
real-time operating systems create physically contiguous blocks of memory for an application 
upon request. However, memory fragmentation is a potential problem for a system that does not 
support virtual memory.  Also, memory protection becomes difficult to support a non-virtual 
memory management system. For this reason, in many embedded systems, the kernel and the 
user processes execute in the same space, i.e. there is no memory protection. Hence, a system 
call and a function call within an application are indistinguishable. This makes debugging 
applications difficult, since a run away pointer can corrupt the operating system code, making the 
system “freeze”. 

 
Additional Requirements for Embedded Real-Time Operating Systems: Embedded 

applications usually have constraints on cost, size, and power consumption.  Embedded real-time 
operating systems should be capable of diskless operation, since many times disks are either too 
bulky to use, or increase the cost of deployment.  Further, embedded operating systems should 
minimize total power consumption of the system. Embedded operating systems usually reside on 
ROM. For certain applications which require faster response, it may be necessary to run the real- 
time operating system on a RAM. Since the access time of a RAM is lower than that of a ROM, 
this would result in faster execution. Irrespective of whether ROM or RAM is used, all ICs are 
expensive. Therefore, for real-time operating systems for embedded applications it is desirable to 
have as small a foot print (memory usage) as possible. Since embedded products are typically 
manufactured large scale, every rupee saved on memory and other hardware requirements 
impacts millions in profit. 

 
1.3. Unix  as  a  Real-Time  Operating  System 

 
Unix is a popular general purpose operating system that was originally developed for the 

mainframe computers. However, UNIX and its variants have now permeated to desktop and even 
handheld computers. Since UNIX and its variants inexpensive and are widely available, it is 
worthwhile to investigate whether Unix can be used in real-time applications. This investigation 
would lead us to some significant findings and would give us some crucial insights into the 
current Unix-based real-time operating systems that are currently commercially available. 

The traditional UNIX operating system suffers from several shortcomings when used in real-
time applications. 

We elaborate these problems in the following two subsections. 
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The two most troublesome problems that a real-time programmer faces while using Unix 
for real-time applications include non-preemptive Unix kernel and dynamically changing 
priority of tasks. 

 
1.3.1. Non-Preemptive Kernel 

 
One of the biggest problems that real-time programmers face while using Unix for real-time 

application development is that Unix kernel cannot be preempted.   That  is,  all  interrupts  are  
disabled  when  any  operating  system  routine runs.  To set things in proper perspective, let us 
elaborate this issue. 

 Application programs invoke operating system services through system calls. Examples of 
system calls include the operating system services for creating a process, interprocess 
communication, I/O operations, etc.  After a system call is invoked by an application, the 
arguments given by the application while invoking the system call are checked. Next, a special 
instruction called a trap (or a software interrupt) is executed. As soon as the trap instruction is 
executed, the handler routine changes the processor state from user mode to kernel mode (or   
supervisor mode), and the execution of the required kernel routine starts. The change of mode 
during a system call has schematically been depicted in Fig. 31.3. 

 

 

 

 

 

 

At  the  risk  of  digressing  from  the  focus  of  this  discussion,  let  us  understand  an  
important  operating  systems concept.   Certain  operations  such  as  handling  devices,  creating  
processes,  file  operations,  etc.,   need to  be  done  in the kernel mode only.  That is, application 
programs are prevented from carrying out these operations, and need to request the operating 
system (through a system call) to carry out the required operation.  This restriction enables the  
kernel  to  enforce  discipline  among  different  programs  in  accessing  these  objects.   In  case  
such  operations  are not  performed  in  the  kernel  mode,  different  application  programs  
might  interfere  with  each  other’s  operation.  An example  of  an  operating  system  where  all  
operations  were  performed  in  user  mode  is  the  once  popular  operating system DOS 
(though DOS is nearly obsolete now).  In DOS, application programs are free to carry out any 
operation in user mode2, including crashing the system by deleting the system files.  The 
instability this can bring about is clearly unacceptable in real-time environment, and is usually 
considered insufficient in general applications as well. 

Application Program 
    (user mode) 

• System call 
• Next statement  
•  
•  

Check parameters

OS Service 
(Kernel mode) Trap  

System call  

Fig. 31.3 Invocation of an Operating System Service through System Call 

                                                 
2 In fact, in DOS there is only one mode of operation, i.e.  kernel mode and user mode are indistinguishable. 
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A  process  running  in  kernel mode  cannot  be  preempted  by  other  processes.  In  other  
words,  the  Unix  kernel is non-preemptive.  On the other hand,  the Unix system does preempt 
processes running in the user mode.  A consequence of this is that even when a low priority 
process makes a system call, the high priority processes would have to wait until the system call 
completes.  The longest system calls may take up to several hundreds of milliseconds to 
complete.  Worst-case preemption times of several hundreds of milliseconds can easily cause, 
high priority tasks with short deadlines of the order of a few milliseconds to miss their deadlines. 

Let  us  now  investigate,  why  the  Unix  kernel  was  designed  to  be  non-preemptive  in  
the  first  place.   Whenever an  operating  system  routine  starts  to  execute,  all  interrupts  are  
disabled.   The interrupts are enabled only after the operating system routine completes.  This 
was a very efficient way of preserving the integrity of the kernel data structures.   It  saved  the  
overheads  associated  with  setting  and  releasing  locks  and  resulted  in  lower  average  task 
preemption times.  Though a non-preemptive kernel results in worst-case task response time of 
upto a second, it was acceptable to Unix designers.  At that time, the Unix designers did not 
foresee usage of Unix in real-time applications. Of course, it could have been possible to ensure 
correctness of kernel data structures by using locks at appropriate places rather than disabling 
interrupts, but it would have resulted in increasing the average task preemption time. In Sec.  
4.4.4  we  investigate  how  modern  real-time  operating  systems  make  the  kernel  preemptive  
without  unduly increasing the task preemption time. 

 
1.3.2. Dynamic Priority Levels 

 
In Unix systems real-time tasks can not be assigned static priority values.  Soon after a 

programmer sets a priority value, the operating system alters it.  This makes it very difficult to 
schedule real-time tasks using algorithms such as RMA or EDF, since both these schedulers 
assume that once task priorities are assigned, it should not be altered by any other parts of the 
operating system.  It is instructive to understand why Unix dynamically changes the priority 
values of tasks in the first place. 

Unix uses round-robin scheduling with multilevel feedback. This scheduler arranges tasks in 
multilevel queues as shown in Fig. 31.4. At every preemption point, the scheduler scans the 
multilevel queue from the top (highest priority) and selects the task at the head of the first non-
empty queue. Each task is allowed to run for a fixed time quantum (or time slice) at a time. Unix 
normally uses one second time slice. That is, if the running process does not block or complete 
within one second of its starting execution, it is preempted and the scheduler selects the next task 
for dispatching. Unix system however allows configuring the default one second time slice 
during system generation. The kernel preempts a process that does not complete within its 
assigned time quantum, recomputes its priority, and inserts it back into one of the priority queues 
depending on the recomputed priority value of the task. 
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Unix  periodically  computes  the  priority  of  a  task  based  on  the  type  of  the  task  and  

its  execution  history.  The priority of a task (Ti) is recomputed at the end of its j-th time slice 
using the following two expressions: 

Pr(Ti,  j) = Base(Ti) + CPU(Ti, j) + nice(Ti)  …(4.1) 
  
CPU(Ti,  j)  =  U(Ti,  j−1) / 2  +  CPU(Ti,  j−1) / 2  …(4.2) 

where  Pr(Ti, j)  is  the  priority  of  the  task  Ti  at  the  end  of  its  j-th  time  slice;  U(Ti , j)  
is  the  utilization  of  the  task Ti  for its j-th time slice, and CPU(Ti , j) is the weighted history of 
CPU utilization of the task  Ti at the end of its j-th time slice.  Base(Ti) is the base priority of the 
task Ti and nice(Ti) is the nice value associated with Ti. User processes can have non-negative 
nice values. Thus, effectively the nice value lowers the priority value of a process (i.e. being nice 
to the other processes). 

 Expr. 4.2 has been recursively defined. Unfolding the recursion, we get: 
CPU(Ti,  j)  =  U(Ti,  j−1) / 2  +  U(Ti,  j−2) / 4  +           ……(4.3) 

1 

Tasks Priority Level 

2 

3 

4 

5 

6 

Fig. 31.4 Multi-Level Feedback Queues 
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It can be easily seen from Expr. 4.3 that, in the computation of the weighted history of CPU 
utilization of a task, the activity (i.e. processing or I/O) of the task in the immediately concluded 
interval is given the maximum weightage. If the task used up CPU for the full duration of the 
slice (i.e. 100% CPU utilization), then CPU(Ti, j) gets a higher value indicating a lower priority. 
Observe that the activities of the task in the preceding intervals get progressively lower 
weightage. It should be clear that CPU(Ti, j) captures the weighted history of CPU utilization of 
the task Ti at the end of its j-th time slice. 

Now, substituting Expr 4.3 in Expr. 4.1, we get: 
Pr(Ti,  j) = Base(Ti) + U(Ti,  j−1) / 2  +  U(Ti,  j−2) / 4  +  … + nice(Ti)      … (4.4) 

The  purpose  of  the  base  priority  term  in  the  priority  computation  expression  (Expr.  
4.4)  is  to  divide  all  tasks into  a  set  of  fixed  bands  of  priority  levels.   The  values  of  
U(Ti , j)  and  nice  components  are  restricted  to  be  small enough  to  prevent  a  process  from  
migrating  from  its  assigned  band.   The bands have been designed to optimize I/O, especially 
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block I/O.  The  different  priority  bands  under  Unix  in  decreasing  order  of  priorities  are:  
swapper, block I/O, file manipulation, character I/O and device control, and user processes.  
Tasks performing block I/O are assigned the highest priority band.  To give an example of block 
I/O, consider the I/O that occurs while handling a page fault in a virtual memory system.  Such 
block I/O use DMA-based transfer, and hence make efficient use of I/O channel.  Character I/O 
includes mouse and keyboard transfers.  The priority bands were designed to provide the most 
effective use of the I/O channels. 

Dynamic re-computation of priorities was motivated from the following consideration. Unix 
designers observed that in any computer system, I/O is the bottleneck.  Processors are extremely 
fast compared to the transfer rates of I/O devices.  I/O devices such as keyboards are necessarily 
slow to cope up with the human response times.  Other devices  such  as  printers  and  disks  
deploy  mechanical  components  that  are  inherently  slow  and  therefore  can  not sustain very 
high rate of data transfer.  Therefore, effective use of the I/O channels is very important to 
increase the overall system throughput.  The I/O channels should be kept as busy as possible for 
letting the interactive tasks to get good response time.  To keep the I/O channels busy, any task 
performing I/O should not be kept waiting for CPU. For this reason, as soon as a task blocks for 
I/O, its priority is increased by the priority re-computation rule given in Expr. 4.4. However, if a 
task makes full use of its last assigned time slice, it is determined to be computation-bound and 
its priority is reduced.  Thus the basic philosophy of Unix operating system is that the interactive 
tasks are made to assume higher priority levels and are processed at the earliest.  This gives the 
interactive users good response time. This technique has now become an accepted way of 
scheduling soft real-time tasks across almost all available general purpose operating systems. 

We  can  now  state  from  the  above  observations  that  the  overall  effect  of  re-
computation  of  priority  values  using Expr. 4.4 as follows:  

In  Unix,  I/O  intensive  tasks  migrate  to  higher  and  higher  priorities,  whereas  CPU-
intensive  tasks  seek lower priority levels. 

 

No doubt that the approach taken by Unix is very appropriate for maximizing the average 
task throughput, and does indeed provide good average responses time to interactive (soft real-
time) tasks.  In fact, almost every modern operating  system  does  very  similar  dynamic  re-
computation  of  the  task  priorities  to  maximize  the  overall  system throughput and to provide 
good average response time to the interactive tasks.  However, for hard real-time tasks, dynamic 
shifting of priority values is clearly not appropriate. 

 
1.3.3. Other Deficiencies of Unix 

 
We  have  so  far  discussed  two  glaring  shortcomings  of  Unix  in  handling  the  

requirements  of  real-time  applications. We now discuss a few other deficiencies of Unix that 
crop up while trying to use Unix in real-time applications. 

 
Insufficient Device Driver Support: In Unix, (remember that we are talking of the original 

Unix System V) device drivers run in kernel mode. Therefore, if support for a new device is to 
be added, then the driver module has to be linked to the kernel modules – necessitating a system 
generation step. As a result, providing support for a new device in an already deployed 
application is cumbersome. 
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Lack of Real-Time File Services: In Unix, file blocks are allocated as and when they are 
requested by an application. As a consequence, while a task is writing to a file, it may encounter 
an error when the disk runs out of space. In other words, no guarantee is given that disk space 
would be available when a task writes a block to a file. Traditional file writing approaches also 
result in slow writes since required space has to be allocated before writing a block. Another 
problem with the traditional file systems is that blocks of the same file may not be contiguously 
located on the disk. This would result in read operations taking unpredictable times, resulting in 
jitter in data access. In real-time file systems significant performance improvement can be 
achieved by storing files contiguously on the disk. Since the file system pre-allocates space, the 
times for read and write operations are more predictable.  

 
Inadequate Timer Services Support:  In Unix  systems,  real-time  timer  support  is  

insufficient  for  many  hard real-time applications.  The clock resolution that is provided to 
applications is 10 milliseconds, which is too coarse for many hard real-time applications. 

 
1.4. Unix-based Real-Time Operating Systems 

 
We have already seen in the previous section that traditional Unix systems are not suitable 

for being used in hard real-time applications.  In this section, we discuss the different approaches 
that have been undertaken to make Unix suitable for real-time applications. 

 
1.4.1. Extensions To The Traditional Unix Kernel 

 
A  naive  attempted  in  the  past  to  make  traditional  Unix  suitable  for  real-time  

applications  was  by  adding  some real-time  capabilities  over  the  basic  kernel.   These 
additionally implemented  capabilities  included  real-time  timer support, a real-time task 
scheduler built over the Unix scheduler, etc.  However, these extensions do not address the 
fundamental problems with the Unix system that were pointed out in the last section; namely, 
non-preemptive kernel and dynamic priority levels.   No  wonder  that  superficial  extensions  to  
the  capabilities  of  the  Unix  kernel  without addressing the fundamental deficiencies of the 
Unix system would fall wide short of the requirements of hard real-time applications. 

 
1.4.2. Host-Target Approach 

 
Host-target operating systems are popularly being deployed in embedded applications. In this 

approach, the real- time application development is done on a host machine. The host machine is 
either a traditional Unix operating system or an Windows system. The real-time application is 
developed on the host and the developed application is downloaded onto a target board that is to 
be embedded in a real-time system. A ROM-resident small real-time kernel is used in the target 
board. This approach has schematically been shown in Fig. 31.5. 
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The main idea behind this approach is that the real-time operating system running on the 

target board be kept as small and simple as possible.  This implies that the operating system on 
the target board would lack virtual memory management support, neither does it support any 
utilities such as compilers, program editors, etc.  The processor on the target board would run the 
real-time operating system. 

The host system must have the program development environment, including compilers, 
editors, library, cross-compilers, debuggers etc. These are memory demanding applications that 
require virtual memory support.   The host is usually connected to the target using a serial port or 
a TCP/IP connection (see Fig. 31.5). The real-time program is developed on the host. It is then 
cross-compiled to generate code for the target processor.  Subsequently, the executable module is 
downloaded to the target board.  Tasks are executed on the target board and the execution is 
controlled at the host side using a symbolic cross-debugger.  Once the program works 
successfully, it is fused on a ROM or flash memory and becomes ready to be deployed in 
applications. 

Commercial examples of host-target real-time operating systems include PSOS, VxWorks, 
and VRTX. We examine these commercial products in lesson 5.  We would point out that these 
operating systems, due to their small size, limited functionality, and optimal design achieve 
much better performance figures than full-fledged operating systems. For example, the task 
preemption times of these systems are of the order of few microseconds compared to several 
hundreds of milliseconds for traditional Unix systems. 

 

ICP/IP

Target Board 
Host System 

Fig. 31.5 Schematic Representation of a Host-Target System 

1.4.3. Preemption Point Approach 
 
We  have  already  pointed  out  that  one  of  the  major  shortcomings  of  the  traditional  

Unix  V  code  is  that  during  a system call, all interrupts are masked(disabled) for the entire 
duration of execution of the system call.  This leads to unacceptable worst case task response 
time of the order of second, making Unix-based systems unacceptable for most hard real-time 
applications. 

An approach that has been taken by a few vendors to improve the real-time performance of 
non-preemptive kernels is the introduction of preemption points in system routines. Preemption 
points in the execution of a system routine are the instants at which the kernel data structures are 
consistent.  At these points, the kernel can safely be preempted to make way for any waiting 
higher priority real-time tasks without corrupting any kernel data structures. In  this  approach,  
when  the  execution  of  a  system  call  reaches  a  preemption  point,  the  kernel  checks  to  
see  if  any higher  priority  tasks  have  become  ready.   If  there  is  at  least  one,  it  preempts  
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the  processing  of  the  kernel  routine and dispatches the waiting highest priority task 
immediately.  The worst-case preemption latency in this technique therefore becomes the longest 
time between two consecutive preemption points.  As a result, the worst-case response times of 
tasks are now several folds lower than those for traditional operating systems without preemption 
points.  This makes the preemption point-based operating systems suitable for use in many 
categories hard real-time applications, though  still  not  suitable  for  applications  requiring  
preemption  latency  of  the  order  of  a  few  micro  seconds  or  less. Another  advantage  of  
this  approach  is  that  it  involves  only  minor  changes  to  be  made  to  the  kernel  code.   
Many operating systems have taken the preemption point approach in the past, a prominent 
example being HP-UX. 

 
1.4.4.  Self-Host Systems 

 
Unlike  the  host-target  approach  where  application  development  is  carried  out  on  a  

separate  host  system  machine running traditional Unix, in self-host systems a real-time 
application is developed on the same system on which the real-time  application  would  finally  
run.  Of  course,  while  deploying  the  application,  the  operating  system  modules that  are  
not  essential during  task  execution  are  excluded  during  deployment  to  minimize  the  size  
of  the  operating system in the embedded application.  Remember that in host-target approach, 
the target real-time operating system was a lean and efficient system that could only run the 
application but did not include program development facilities; program development was 
carried out on the host system.  This made application development and debugging difficult and 
required cross-compiler and cross-debugger support. Self-host approach takes a different 
approach where the real-time application is developed on the full-fledged operating system, and 
once the application runs satisfactorily it is fused on the target board on a ROM or flash memory 
along with a stripped down version of the same operating system. 

Most of the self-host operating systems that are available now are based on micro-kernel 
architecture.  Use of microkernel architecture for a self-host operating system entails several 
advantages.  In microkernel architecture, only the core functionalities such as interrupt handling 
and process management are implemented as kernel routines. All other functionalities such as 
memory management, file management, device management, etc are implemented as add-on 
modules which operate in user mode.  As a result, it becomes very easy to configure the 
operating system. Also,  the  micro  kernel  is  lean  and  therefore  becomes  much  more  
efficient.   A  monolithic  operating  system  binds most  drivers,  file  systems,  and  protocol  
stacks  to  the  operating  system  kernel  and  all  kernel  processes  share  the same  address  
space.  Hence  a  single  programming  error  in  any  of  these  components  can  cause  a  fatal  
kernel  fault. In  microkernel-based  operating  systems,  these  components  run  in  separate  
memory-protected  address  spaces.   So, system crashes on this count are very rare, and 
microkernel-based operating systems are very reliable. 

We  had  discussed  earlier  that  any  Unix-based  system  has  to  overcome  the  following  
two  main  shortcomings  of the traditional Unix kernel in order to be useful in hard real-time 
applications:  non-preemptive kernel and dynamic priority values.  We now examine how these 
problems are overcome in self-host systems. 

 
Non-preemptive kernel: We had identified the genesis of the problem of non-preemptive 

Unix kernel in Sec.4.3.1. We had remarked that in order to preserve the integrity of the kernel 
data structures, all interrupts are disabled as long as a system call does not complete. This was 
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done from efficiency considerations and worked well for non-real-time and uniprocessor 
applications. 

Masking  interrupts  during  kernel  processing  makes  to  even  very  small  critical  routines  
to  have  worst  case  response  times  of  the  order  of  a  second.  Further,  this  approach  
would  not  work  in  multiprocessor  environments.  In multiprocessor environments masking 
the interrupts for one processor does not help, as the tasks running on other processors can still 
corrupt the kernel data structure. 

It is now clear that in order to make the kernel preemptive, locks must be used at appropriate 
places in the kernel code. In fully preemptive Unix systems, normally two types of locks are 
used:  kernel-level locks, and spin locks. 

 

 

 

 

 
 
A kernel-level lock is similar to a traditional lock.  When a task waits for a kernel level lock 

to be released, it is blocked and undergoes a context switch.  It becomes ready only after the 
required lock is released by the holding task and becomes available.  This type of locks is 
inefficient when critical resources are required for short durations of the order of a few 
milliseconds or less.  In some situations such context switching overheads are not acceptable.  
Consider that some  task  requires the  lock for carrying  out  very small  processing (possibly  a  
single arithmetic  operation) on some  critical  resource.  Now,  if  a  kernel  level  lock  is  used,  
another  task  requesting  the  lock  at  that  time  would  be blocked  and  a  context  switch  
would  be  incurred,  also  the  cache  contents,  pages  of  the  task  etc.  may be swapped. Here a 
context switching time is comparable to the time for which a task needs a resource even greater 
than it.  In such a situation, a spin lock would be appropriate.  Now let us understand the 
operation of a spin lock.  A spin lock has been schematically shown in Fig. 31.6. In Fig. 31.6, a 
critical resource is required by the tasks T1 and T2 for very short times (comparable to a context 
switching time).  This resource is protected by a spin lock. The task T1 has acquired the spin lock 
guarding the resource.  Meanwhile, the task T2 requests the resource.  When task T2 cannot get 
access to the resource, it just busy waits (shown as a loop in the figure) and does not block and 
suffer context switch.  T2 gets the resource as soon as T1 relinquishes the resource. 

 
Real-Time Priorities: Let us now examine how self-host systems address the problem of 

dynamic priority levels of the traditional Unix systems. In Unix based real-time operating 
systems, in addition to dynamic priorities, real-time and idle priorities are supported. Fig. 31.7 
schematically shows the three available priority levels. 

 

 

 

Spin lock 
Critical 
Resource

T1 T2 
Busy wait 

Fig. 31.6 Operation of a Spin Lock 
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Idle(Non-Migrating): This is the lowest priority.  The task that runs when there are no other 

tasks to run (idle), runs at this level.  Idle priorities are static and are not recomputed 
periodically. 

 
Dynamic:  Dynamic priorities are recomputed periodically to improve the average response 

time of soft real-time tasks.   Dynamic  re-computation  of  priorities  ensures  that  I/O  bound  
tasks  migrate  to  higher  priorities  and CPU-bound tasks operate at lower priority levels.  As 
shown in Fig.  31.7, dynamic priority levels are higher than the idle priority, but are lower than 
the real-time priorities. 

 
Real-Time: Real-time priorities are static priorities and are not recomputed. Hard real-time 

tasks operate at these levels. Tasks having real-time priorities operate at higher priorities than the 
tasks with dynamic priority levels. 

 

Real-time
Priorities  

Dynamic 
Priorities  

0  

127 

254 
255 Idle   Non-Migrating  

Priority  

Fig. 31.7 Priority Changes in Self-host Unix Systems 

1.5. Windows  As  A  Real-Time  Operating  System 
 
Microsoft’s Windows operating systems are extremely popular in desktop computers. 

Windows operating systems have evolved over the years last twenty five years from the naive 
DOS (Disk Operating System). Microsoft developed DOS in the early eighties. Microsoft kept 
on announcing new versions of DOS almost every year and kept on adding new features to DOS 
in the successive versions.  DOS evolved to the Windows operating systems, whose main 
distinguishing feature was a graphical front-end. As several new versions of Windows kept on 
appearing by way of upgrades, the Windows code was completely rewritten in 1998 to develop 
the Windows NT system.  Since the code was completely rewritten, Windows NT system was 
much more stable (does not crash) than the earlier DOS-based systems. The later versions of 
Microsoft’s operating systems were descendants of the Windows NT; the DOS-based systems 
were scrapped. Fig. 31.8 shows the genealogy of the various operating systems from the 
Microsoft stable.  Because stability is a major requirement for hard real-time applications, we 
consider only the Windows NT and its descendants in our study and do not include the DOS line 
of products. 
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An  organization  owning  Windows  NT  systems  might  be  interested  to  use  it  for  its  

real-time  applications  on account of either cost saving or convenience.  This is especially true in 
prototype application development and also when only a limited number of deployments are 
required.  In the following, we critically analyze the suitability of Windows NT for real-time 
application development.  First, we highlight some features of Windows NT that are very 
relevant and useful to a real-time application developer. In the subsequent subsection, we point 
out some of the lacuna of Windows NT when used in real-time application development. 

 

Windows NT 

Windows 2000 

Windows XP 
Windows 98 

Windows 95 

Windows 3.1 

DOS 

New 
code

Fig. 31.8 Genealogy of Operating Systems from Microsoft’s Stable 

1.5.1. Features of Windows NT 
 
Windows NT has several features which are very desirable for real-time applications such as 

support for multithreading, real-time priority levels, and timer. Moreover, the clock resolutions 
are sufficiently fine for most real-time applications. 

Windows  NT  supports  32  priority  levels  (see Fig. 31.9). Each  process  belongs  to  one  
of  the  following  priority classes:  idle,  normal,  high,  real-time.  By  default,  the  priority  
class  at  which  an  application  runs  is  normal. Both normal and high are variable type where 
the priority is recomputed periodically.  NT uses priority-driven pre- emptive scheduling and 
threads of real-time priorities have precedence over all other threads including kernel threads. 
Processes such as screen saver use priority class idle.  NT lowers the priority of a task (belonging 
to variable type) if it used all of its last time slice.  It raises the priority of a task if it blocked for 
I/O and could not use its last time slice in full.  However, the change of a task from its base 
priority is restricted to ±2. 
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Fig. 31.9 Task Priorities in Windows NT 

1.5.2. Shortcomings of Windows NT 
 
In spite of the impressive support that Windows provides for real-time program development 

as discussed in Section 4.5.1, a programmer trying to use Windows in real-time system 
development has to cope up with several problems.  Of these, the following two main problems 
are the most troublesome.  

 
1. Interrupt Processing: Priority level of interrupts is always higher than that of the user-

level threads; including the threads of real-time class.  When an interrupt occurs, the 
handler routine saves the machine’s state and makes the system execute an Interrupt 
Service Routine (ISR). Only critical processing is performed in ISR and the bulk of the 
processing is done as a Deferred Procedure Call(DPC). DPCs for various interrupts are 
queued in the DPC queue in a FIFO manner.  While this separation of ISR and DPC has 
the advantage of providing quick response to further interrupts, it has the disadvantage of 
maintaining the all DPCs at the same priorities. A DPC can not be preempted by another 
DPC but by an interrupt.  DPCs are executed in FIFO order at a priority lower than the 
hardware interrupt priorities but higher than the priority of the scheduler/dispatcher. 
Further,  it  is  not  possible  for  a  user-level  thread  to  execute  at  a  priority  higher  
than  that  of  ISRs  or  DPCs. Therefore,  even  ISRs  and  DPCs  corresponding  to  very  
low  priority  tasks  can  preempt  real-time  processes. Therefore, the potential blocking 
of real-time tasks due to DPCs can be large.  For example, interrupts due to page faults 
generated by low priority tasks would get processed faster than real-time processes.  
Also, ISRs and DPCs generated due to key board and mouse interactions would operate 
at higher priority levels compared to real-time tasks.  If there are processes doing network 
or disk I/O, the effect of system-wide FIFO queues may lead to unbounded response 
times for even real-time threads. 
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These problems have been avoided by Windows CE operating system through a priority 
inheritance mechanism. 

2. Support for Resource Sharing Protocols:  We had discussed in Chapter 3 that unless 
appropriate resource sharing protocols are used, tasks while accessing shared resources 
may suffer unbounded priority inversions leading to deadline misses and even system 
failure.  Windows NT does not provide any support (such as priority inheritance, etc.) to 
support real-time tasks to share critical resource among themselves. This is a major 
shortcoming of Windows NT when used in real-time applications. 
Since most real-time applications do involve resource sharing among tasks we outline 
below the possible ways in which user-level functionalities can be added to the Windows 
NT system. 
The simplest approach to let real-time tasks share critical resources without unbounded 
priority inversions is as follows. As soon as a task is successful in locking a non-
preemptable resource, its priority can be raised to the highest priority (31).  As soon as a 
task releases the required resource, its priority is restored.  However, we know that this 
arrangement would lead to large inheritance-related inversions. 
Another possibility is to implement the priority ceiling protocol (PCP). To implement this 
protocol, we need to restrict the real-time tasks to have even priorities (i.e. 16, 18, ..., 30). 
The reason for this restriction is that NT does not support FIFO scheduling among equal 
priority tasks. If the highest priority among all tasks needing a resource is 2∗n, then the 
ceiling priority of the resource is 2∗n+1. In Unix, FIFO option among equal priority tasks 
is available; therefore all available priority levels can be used. 
 

1.6. Windows vs Unix 
 

Table 31.1 Windows NT versus Unix 
 

Real-Time Feature Windows NT Unix V 
DPCs Yes No 
Real-Time priorities Yes No 
Locking virtual memory Yes Yes 
Timer precision 1 msec 10 msec 
Asynchronous I/O Yes No 

 
Though Windows NT has many of the features desired of a real-time operating system, its 

implementation of DPCs together its lack of protocol support for resource sharing among equal 
priority tasks makes it unsuitable for use in safety-critical real-time applications. A comparison 
of the extent to which some of the basic features required for real-time programming are 
provided by Windows NT and Unix V is indicated in Table 1. With careful programming, 
Windows NT may be useful for applications that can tolerate occasional deadline misses, and 
have deadlines of the order of hundreds of milliseconds than microseconds. Of course, to be used 
in such applications, the processor utilization must be kept sufficiently low and priority inversion 
control must be provided at the user level. 
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1.7. Exercises 
 
1. State whether the following assertions are True or False.  Justify your answer in each case. 

a. When RMA is used for scheduling a set of hard real-time periodic tasks, the upper 
bound on achievable utilization improves as the number in tasks in the system being 
developed increases. 

b. Under  the  Unix  operating  system,  computation  intensive  tasks  dynamically  
gravitate  towards  higher priorities. 

c. Normally, task switching time is larger than task preemption time. 
d. Suppose a real-time operating system does not support memory protection, then a 

procedure call and a system call are indistinguishable in that system. 
e. Watchdog timers are typically used to start certain tasks at regular intervals. 
f. For the memory of same size under segmented and virtual addressing schemes, the 

segmented addressing scheme would in general incur lower memory access jitter 
compared to the virtual addressing scheme. 

2. Even though clock frequency of modern processors is of the order of several GHz, why do 
many modern real-time operating systems not support nanosecond or even microsecond 
resolution clocks? Is it possible for an operating system to support nanosecond resolution 
clocks in operating systems at present?  Explain how this can be achieved. 

3. Give an example of a real-time application for which a simple segmented memory 
management support by the RTOS is preferred and another example of an application for 
which virtual memory management support is essential. Justify your choices. 

4. Is it possible to meet the service requirements of hard real-time applications by writing 
additional layers over the Unix System V kernel? If your answer is “no”, explain the 
reason. If your answer is “yes”, explain what additional features you would implement in 
the external layer of Unix System V kernel for supporting hard real-time applications. 

5. Briefly indicate how Unix dynamically recomputes task priority values. Why is such re-
computation of task priorities required? What are the implications of such priority re-
computations on real-time application development? 

6. Why is Unix V non-preemptive in kernel mode?  How do fully preemptive kernels based 
on Unix (e.g.  Linux) overcome this problem?  Briefly describe an experimental set up that 
can be used to determine the preemptability of different operating systems by high-priority 
real-time tasks when a low priority task has made a system call. 

7. Explain how interrupts are handled in Windows NT. Explain how the interrupt processing 
scheme of Windows NT makes it unsuitable for hard real-time applications.  How has this 
problem been overcome in WinCE? 

8. Would you recommend Unix System V to be used for a few real-time tasks for running a 
data acquisition application? Assume that the computation time for these tasks is of the 
order of few hundreds of milliseconds and the deadline of these tasks is of the order of 
several tens of seconds. Justify your answer. 

9. Explain the problems that you would encounter if you try to develop and run a hard real-
time system on the Windows NT operating system. 

10. Briefly explain why the traditional Unix kernel is not suitable to be used in a 
multiprocessor environments. Define a spin lock and a kernel-level lock and explain their 
use in realizing a preemptive kernel. 
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11. What do you understand by a microkernel-based operating system? Explain the advantages 
of a microkernel- based real-time operating system over a monolithic operating system. 

12. What is the difference between a self-host and a host-target based embedded operating 
system? Give at least one example of a commercial operating system from each category. 
What problems would a real-time application developer might face while using RT-Linux 
for developing hard real-time applications? 

13. What are the important features required in a real-time operating system?  Analyze to what 
extent these features are provided by Windows NT and Unix V. 
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