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Instructional Objectives 
 
After going through this lesson the student will be able to  
 

• Define what is a field programmable gate array (FPGA) 

• Distinguish between an FPGA and a stored-memory processor 

• List and explain the principle of operation of the various functional units within an FPGA 

• Compare the architecture and performance specifications of various commercially 
available FPGA 

• Describe the steps in using an FPGA in an embedded system 
 
Introduction 

 
An FPGA is a device that contains a matrix of reconfigurable gate array logic circuitry. 

When a FPGA is configured, the internal circuitry is connected in a way that creates a hardware 
implementation of the software application. Unlike processors, FPGAs use dedicated hardware 
for processing logic and do not have an operating system. FPGAs are truly parallel in nature so 
different processing operations do not have to compete for the same resources. As a result, the 
performance of one part of the application is not affected when additional processing is added. 
Also, multiple control loops can run on a single FPGA device at different rates. FPGA-based 
control systems can enforce critical interlock logic and can be designed to prevent I/O forcing by 
an operator. However, unlike hard-wired printed circuit board (PCB) designs which have fixed 
hardware resources, FPGA-based systems can literally rewire their internal circuitry to allow 
reconfiguration after the control system is deployed to the field. FPGA devices deliver the 
performance and reliability of dedicated hardware circuitry. 
A single FPGA can replace thousands of discrete components by incorporating millions of logic 
gates in a single integrated circuit (IC) chip. The internal resources of an FPGA chip consist of a 
matrix of configurable logic blocks (CLBs) surrounded by a periphery of I/O blocks shown in 
Fig. 20.1. Signals are routed within the FPGA matrix by programmable interconnect switches 
and wire routes. 
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Fig. 20.1 Internal Structure of FPGA 
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In an FPGA logic blocks are implemented using multiple level low fan-in gates, which gives it a 
more compact design compared to an implementation with two-level AND-OR logic. FPGA 
provides its user a way to configure:  

1. The intersection between the logic blocks and  
2. The function of each logic block.  

Logic block of an FPGA can be configured in such a way that it can provide functionality as 
simple as that of transistor or as complex as that of a microprocessor. It can used to implement 
different combinations of combinational and sequential logic functions. Logic blocks of an 
FPGA can be implemented by any of the following: 

1. Transistor pairs  
2. combinational gates like basic NAND gates or XOR gates  
3. n-input Lookup tables  
4. Multiplexers  
5. Wide fan-in And-OR structure.  

Routing in FPGAs consists of wire segments of varying lengths which can be interconnected via 
electrically programmable switches. Density of logic block used in an FPGA depends on length 
and number of wire segments used for routing. Number of segments used for interconnection 
typically is a tradeoff between density of logic blocks used and amount of area used up for 
routing. Simplified version of FPGA internal architecture with routing is shown in Fig. 20.2.  
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Fig. 20.2 Simplified Internal Structure of FPGA 

Logic 
block 

I/O block  

 

 

 

 

 
 
 
Why do we need FPGAs? 

 
By the early 1980’s large scale integrated circuits (LSI) formed the back bone of most of 

the logic circuits in major systems. Microprocessors, bus/IO controllers, system timers etc were 
implemented using integrated circuit fabrication technology. Random “glue logic” or 
interconnects were still required to help connect the large integrated circuits in order to:  

1. Generate global control signals (for resets etc.)  
2. Data signals from one subsystem to another sub system.  

Systems typically consisted of few large scale integrated components and large number of SSI 
(small scale integrated circuit) and MSI (medium scale integrated circuit) components.Intial 
attempt to solve this problem led to development of Custom ICs which were to replace the large 
amount of interconnect. This reduced system complexity and manufacturing cost, and improved 
performance. However, custom ICs have their own disadvantages. They are relatively very 
expensive to develop, and delay introduced for product to market (time to market) because of 
increased design time. There are two kinds of costs involved in development of custom ICs 
1. Cost of development and design  
2. Cost of manufacture  
(A tradeoff usually exists between the two costs) 
Therefore the custom IC approach was only viable for products with very high volume, and 
which were not time to market sensitive.FPGAs were introduced as an alternative to custom ICs 
for implementing entire system on one chip and to provide flexibility of reporogramability to the 
user. Introduction of FPGAs resulted in improvement of density relative to discrete SSI/MSI 
components (within around 10x of custom ICs). Another advantage of FPGAs over Custom ICs 
is that with the help of computer aided design (CAD) tools circuits could be implemented in a 
short amount of time (no physical layout process, no mask making, no IC manufacturing) 
 
Evaluation of FPGA 

 
In the world of digital electronic systems, there are three basic kinds of devices: memory, 

microprocessors, and logic. Memory devices store random information such as the contents of a 
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spreadsheet or database. Microprocessors execute software instructions to perform a wide variety 
of tasks such as running a word processing program or video game. Logic devices provide 
specific functions, including device-to-device interfacing, data communication, signal 
processing, data display, timing and control operations, and almost every other function a system 
must perform. 

The first type of user-programmable chip that could implement logic circuits was the 
Programmable Read-Only Memory (PROM), in which address lines can be used as logic circuit 
inputs and data lines as outputs. Logic functions, however, rarely require more than a few 
product terms, and a PROM contains a full decoder for its address inputs. PROMS are thus an 
inefficient architecture for realizing logic circuits, and so are rarely used in practice for that 
purpose. The device that came as a replacement for the PROM’s are programmable logic devices 
or in short PLA. Logically, a PLA is a circuit that allows implementing Boolean functions in 
sum-of-product form. The typical implementation consists of input buffers for all inputs, the 
programmable AND-matrix followed by the programmable OR-matrix, and output buffers. The 
input buffers provide both the original and the inverted values of each PLA input. The input lines 
run horizontally into the AND matrix, while the so-called product-term lines run vertically. 
Therefore, the size of the AND matrix is twice the number of inputs times the number of 
product-terms.  
When PLAs were introduced in the early 1970s, by Philips, their main drawbacks were that they 
were expensive to manufacture and offered somewhat poor speed-performance. Both 
disadvantages were due to the two levels of configurable logic, because programmable logic 
planes were difficult to manufacture and introduced significant propagation delays. To overcome 
these weaknesses, Programmable Array Logic (PAL) devices were developed. PALs provide 
only a single level of programmability, consisting of a programmable “wired” AND plane that 
feeds fixed OR-gates. PALs usually contain flip-flops connected to the OR-gate outputs so that 
sequential circuits can be realized. These are often referred to as Simple Programmable Logic 
Devices (SPLDs). Fig. 20.3 shows a simplified structure of PLA and PAL. 
 
 

Fig. 20.3 Simplified Structure of PLA and PAL 
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With the advancement of technology, it has become possible to produce devices with 
higher capacities than SPLD’s.As chip densities increased, it was natural for the PLD 
manufacturers to evolve their products into larger (logically, but not necessarily physically) parts 
called Complex Programmable Logic Devices (CPLDs). For most practical purposes, CPLDs 
can be thought of as multiple PLDs (plus some programmable interconnect) in a single chip. The 
larger size of a CPLD allows to implement either more logic equations or a more complicated 
design.  

 

Fig. 20.4 Internal structure of a CPLD
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Fig. 20.4 contains a block diagram of a hypothetical CPLD. Each of the four logic blocks shown 
there is the equivalent of one PLD. However, in an actual CPLD there may be more (or less) than 
four logic blocks. These logic blocks are themselves comprised of macrocells and interconnect 
wiring, just like an ordinary PLD. 

Unlike the programmable interconnect within a PLD, the switch matrix within a CPLD 
may or may not be fully connected. In other words, some of the theoretically possible 
connections between logic block outputs and inputs may not actually be supported within a given 
CPLD. The effect of this is most often to make 100% utilization of the macrocells very difficult 
to achieve. Some hardware designs simply won't fit within a given CPLD, even though there are 
sufficient logic gates and flip-flops available. Because CPLDs can hold larger designs than 
PLDs, their potential uses are more varied. They are still sometimes used for simple applications 
like address decoding, but more often contain high-performance control-logic or complex finite 
state machines. At the high-end (in terms of numbers of gates), there is also a lot of overlap in 
potential applications with FPGAs. Traditionally, CPLDs have been chosen over FPGAs 
whenever high-performance logic is required. Because of its less flexible internal architecture, 
the delay through a CPLD (measured in nanoseconds) is more predictable and usually shorter. 
The development of the FPGA was distinct from the SPLD/CPLD evolution just described.This 
is apparent from the architecture of FPGA shown in Fig 20.1. FPGAs offer the highest amount of 
logic density, the most features, and the highest performance. The largest FPGA now shipping, 
part of the Xilinx Virtex™ line of devices, provides eight million "system gates" (the relative 
density of logic). These advanced devices also offer features such as built-in hardwired 
processors (such as the IBM Power PC), substantial amounts of memory, clock management 
systems, and support for many of the latest, very fast device-to-device signaling technologies. 
FPGAs are used in a wide variety of applications ranging from data processing and storage, to 
instrumentation, telecommunications, and digital signal processing. The value of programmable 
logic has always been its ability to shorten development cycles for electronic equipment 
manufacturers and help them get their product to market faster. As PLD (Programmable Logic 
Device) suppliers continue to integrate more functions inside their devices, reduce costs, and 
increase the availability of time-saving IP cores, programmable logic is certain to expand its 
popularity with digital designers. 
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FPGA Structural Classification 
  
Basic structure of an FPGA includes logic elements, programmable interconnects and memory. 
Arrangement of these blocks is specific to particular manufacturer. On the basis of internal 
arrangement of blocks FPGAs can be divided into three classes: 
 
Symmetrical arrays 
  
 This architecture consists of logic elements (called CLBs) arranged in rows and columns 
of a matrix and interconnect laid out between them shown in Fig 20.2. This symmetrical matrix 
is surrounded by I/O blocks which connect it to outside world. Each CLB consists of n-input 
Lookup table and a pair of programmable flip flops. I/O blocks also control functions such as tri-
state control, output transition speed. Interconnects provide routing path. Direct interconnects 
between adjacent logic elements have smaller delay compared to general purpose interconnect 
 
Row based architecture 
 
 Row based architecture shown in Fig 20.5 consists of alternating rows of logic modules 
and programmable interconnect tracks. Input output blocks is located in the periphery of the 
rows. One row may be connected to adjacent rows via vertical interconnect. Logic modules can 
be implemented in various combinations. Combinatorial modules contain only combinational 
elements which Sequential modules contain both combinational elements along with flip flops. 
This sequential module can implement complex combinatorial-sequential functions. Routing 
tracks are divided into smaller segments connected by anti-fuse elements between them.  
 
Hierarchical PLDs 
 
 This architecture is designed in hierarchical manner with top level containing only logic 
blocks and interconnects. Each logic block contains number of logic modules. And each logic 
module has combinatorial as well as sequential functional elements. Each of these functional 
elements is controlled by the programmed memory. Communication between logic blocks is 
achieved by programmable interconnect arrays. Input output blocks surround this scheme of 
logic blocks and interconnects. This type of architecture is shown in Fig 20.6. 
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Fig. 20.5 Row based Architecture 
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Fig. 20.6 Hierarchical PLD 
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FPGA Classification on user programmable switch technologies 
 
 FPGAs are based on an array of logic modules and a supply of uncommitted wires to 
route signals. In gate arrays these wires are connected by a mask design during manufacture. In 
FPGAs, however, these wires are connected by the user and therefore must use an electronic 
device to connect them. Three types of devices have been commonly used to do this, pass 
transistors controlled by an SRAM cell, a flash or EEPROM cell to pass the signal, or a direct 
connect using antifuses. Each of these interconnect devices have their own advantages and 
disadvantages. This has a major affect on the design, architecture, and performance of the FPGA. 
Classification of FPGAs on user programmable switch technology is given in Fig. 20.7 shown 
below. 
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Fig. 20.7 FPGA Classification on user programmable technology 
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SRAM Based 
 
 The major advantage of SRAM based device is that they are infinitely re-programmable 
and can be soldered into the system and have their function changed quickly by merely changing 
the contents of a PROM. They therefore have simple development mechanics. They can also be 
changed in the field by uploading new application code, a feature attractive to designers. It does 
however come with a price as the interconnect element has high impedance and capacitance as 
well as consuming much more area than other technologies. Hence wires are very expensive and 
slow. The FPGA architect is therefore forced to make large inefficient logic modules (typically a 
look up table or LUT).The other disadvantages are: They needs to be reprogrammed each time 
when power is applied, needs an external memory to store program and require large area. Fig. 
20.8 shows two applications of SRAM cells: for controlling the gate nodes of pass-transistor 
switches and to control the select lines of multiplexers that drive logic block inputs. The figures 
gives an example of the connection of one logic block (represented by the AND-gate in the upper 
left corner) to another through two pass-transistor switches, and then a multiplexer, all controlled 
by SRAM cells . Whether an FPGA uses pass-transistors or multiplexers or both depends on the 
particular product. 
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Fig. 20.8 SRAM-controlled Programmable Switches. 
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Antifuse Based 
 
 The antifuse based cell is the highest density interconnect by being a true cross point. 
Thus the designer has a much larger number of interconnects so logic modules can be smaller 
and more efficient. Place and route software also has a much easier time. These devices however 
are only one-time programmable and therefore have to be thrown out every time a change is 
made in the design. The Antifuse has an inherently low capacitance and resistance such that the 
fastest parts are all Antifuse based. The disadvantage of the antifuse is the requirement to 
integrate the fabrication of the antifuses into the IC process, which means the process will always 
lag the SRAM process in scaling. Antifuses are suitable for FPGAs because they can be built 
using modified CMOS technology. As an example, Actel’s antifuse structure is depicted in Fig. 
20.9. The figure shows that an antifuse is positioned between two interconnect wires and 
physically consists of three sandwiched layers: the top and bottom layers are conductors, and the 
middle layer is an insulator. When unprogrammed, the insulator isolates the top and bottom 
layers, but when programmed the insulator changes to become a low-resistance link. It uses 
Poly-Si and n+ diffusion as conductors and ONO as an insulator, but other antifuses rely on 
metal for conductors, with amorphous silicon as the middle layer. 
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Fig. 20.9 Actel Antifuse Structure. 

 
 
 
 
 
 
 
 
EEPROM Based 
 
 The EEPROM/FLASH cell in FPGAs can be used in two ways, as a control device as in 
an SRAM cell or as a directly programmable switch. When used as a switch they can be very 
efficient as interconnect and can be reprogrammable at the same time. They are also non-volatile 
so they do not require an extra PROM for loading. They, however, do have their detractions. The 
EEPROM process is complicated and therefore also lags SRAM technology. 
 
Logic Block and Routing Techniques 
 
Crosspoint FPGA: consist of two types of logic blocks. One is transistor pair tiles in which 
transistor pairs run in parallel lines as shown in figure below: 

Transistor Pair

Fig. 20.10 Transistor pair tiles in cross-point FPGA. 

 

 

 

 

second type of logic blocks are RAM logic which can be used to implement random access 
memory. 
 
Plessey FPGA: Basic building block here is 2-input NAND gate which is connected to each 
other to implement desired function. 

 

Fig. 20.11 Plessey Logic Block 
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Both Crosspoint and Plessey are fine grain logic blocks. Fine grain logic blocks have an 
advantage in high percentage usage of logic blocks but they require large number of wire 
segments and programmable switches which occupy lot of area. 
 
Actel Logic Block: If inputs of a multiplexer are connected to a constant or to a signal, it can be 
used to implement different logic functions. For example a 2-input multiplexer with inputs a and 
b, select, will implement function ac + bc´. If b=0 then it will implement ac, and if a=0 it will 
implement bc´. 

 

 

 

 

 

 

 

Typically an Actel logic block consists of multiple number of multiplexers and logic gates. 
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Fig. 20.12 Actel Logic Block 

 
Xilinx Logic block 
 
 In Xilinx logic block Look up table is used to implement any number of different 
functionality. The input lines go into the input and enable of lookup table. The output of the 
lookup table gives the result of the logic function that it implements. Lookup table is 
implemented using SRAM.  

 

Fig. 20.13 Xilinx - LUT based 
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A k-input logic function is implemented using 2^k * 1 size SRAM. Number of different possible 
functions for k input LUT is 2^2^k. Advantage of such an architecture is that it supports 
implementation of so many logic functions, however the disadvantage is unusually large number 
of memory cells required to implement such a logic block in case number of inputs is large. Fig. 
20.13 shows 5-input LUT based implementation of logic block LUT based design provides for 
better logic block utilization. A k-input LUT based logic block can be implemented in number of 
different ways with tradeoff between performance and logic density. 
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An n-lut can be shown as a direct implementation of a function truth-table. Each of the latch 
holds the value of the function corresponding to one input combination. For Example: 2-lut 
shown in figure below implements 2 input AND and OR functions.  

Example: 2-lut 

INPUTS   AND  OR 
       00         0        0 
       01         0        1 
       10         0        1 
       11         1        1 

 

 

 

 

Altera Logic Block 
  
 Altera's logic block has evolved from earlier PLDs. It consists of wide fan in (up to 100 
input) AND gates feeding into an OR gate with 3-8 inputs. The advantage of large fan in AND 
gate based implementation is that few logic blocks can implement the entire functionality 
thereby reducing the amount of area required by interconnects. On the other hand disadvantage is 
the low density usage of logic blocks in a design that requires fewer input logic. Another 
disadvantage is the use of pull up devices (AND gates) that consume static power. To improve 
power manufacturers provide low power consuming logic blocks at the expense of delay. Such 
logic blocks have gates with high threshold as a result they consume less power. Such logic 
blocks can be used in non-critical paths.  
Altera, Xilinx are coarse grain architecture. 
 
Example: Altera’s FLEX 8000 series consists of a three-level hierarchy. However, the lowest 
level of the hierarchy consists of a set of lookup tables, rather than an SPLD like block, and so 
the FLEX 8000 is categorized here as an FPGA. It should be noted, however, that FLEX 8000 is 
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a combination of FPGA and CPLD technologies. FLEX 8000 is SRAM-based and features a 
four-input LUT as its basic logic block. Logic capacity ranges from about 4000 gates to more 
than 15,000 for the 8000 series. The overall architecture of FLEX 8000 is illustrated in Fig. 
20.14.  
 
 

Fig. 20.14 Architecture of Altera FLEX 8000 FPGAs. 
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The basic logic block, called a Logic Element (LE) contains a four-input LUT, a flip-flop, and 
special-purpose carry circuitry for arithmetic circuits. The LE also includes cascade circuitry that 
allows for efficient implementation of wide AND functions. Details of the LE are illustrated in 
Fig. 20.15. 
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Fig. 20.15 Altera FLEX 8000 Logic Element (LE). 
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In the FLEX 8000, LEs are grouped into sets of 8, called Logic Array Blocks (LABs, a term 
borrowed from Altera’s CPLDs). As shown in Fig. 20.16, each LAB contains local interconnect 
and each local wire can connect any LE to any other LE within the same LAB. Local 
interconnect also connects to the FLEX 8000’s global interconnect, called FastTrack. All 
FastTrack wires horizontal wires are identical, and so interconnect delays in the FLEX 8000 are 
more predictable than FPGAs that employ many smaller length segments because there are fewer 
programmable switches in the longer path 
 

Fig. 20.16 Altera FLEX 8000 Logic Array Block (LAB). 
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FPGA Design Flow 
 
 One of the most important advantages of FPGA based design is that users can design it 
using CAD tools provided by design automation companies. Generic design flow of an FPGA 
includes following steps: 
 
System Design 
 
At this stage designer has to decide what portion of his functionality has to be implemented on 
FPGA and how to integrate that functionality with rest of the system. 
 
I/O integration with rest of the system
 
Input Output streams of the FPGA are integrated with rest of the Printed Circuit Board, which 
allows the design of the PCB early in design process. FPGA vendors provide extra automation 
software solutions for I/O design process. 
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Design Description
 
Designer describes design functionality either by using schematic editors or by using one of the 
various Hardware Description Languages (HDLs) like Verilog or VHDL.  
 
Synthesis
 
Once design has been defined CAD tools are used to implement the design on a given FPGA. 
Synthesis includes generic optimization, slack optimizations, power optimizations followed by 
placement and routing. Implementation includes Partition, Place and route. The output of design 
implementation phase is bit-stream file. 
 
Design Verification
 
Bit stream file is fed to a simulator which simulates the design functionality and reports errors in 
desired behavior of the design. Timing tools are used to determine maximum clock frequency of 
the design. Now the design is loading onto the target FPGA device and testing is done in real 
environment. 
 
Hardware design and development 
 
 The process of creating digital logic is not unlike the embedded software development 
process. A description of the hardware's structure and behavior is written in a high-level 
hardware description language (usually VHDL or Verilog) and that code is then compiled and 
downloaded prior to execution. Of course, schematic capture is also an option for design entry, 
but it has become less popular as designs have become more complex and the language-based 
tools have improved. The overall process of hardware development for programmable logic is 
shown in Fig. 20.17 and described in the paragraphs that follow. 
Perhaps the most striking difference between hardware and software design is the way a 
developer must think about the problem. Software developers tend to think sequentially, even 
when they are developing a multithreaded application. The lines of source code that they write 
are always executed in that order, at least within a given thread. If there is an operating system it 
is used to create the appearance of parallelism, but there is still just one execution engine. During 
design entry, hardware designers must think-and program-in parallel. All of the input signals are 
processed in parallel, as they travel through a set of execution engines-each one a series of 
macrocells and interconnections-toward their destination output signals. Therefore, the 
statements of a hardware description language create structures, all of which are "executed" at 
the very same time.  
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Fig. 20.17 Programmable logic design process 
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Typically, the design entry step is followed or interspersed with periods of functional simulation. 
That's where a simulator is used to execute the design and confirm that the correct outputs are 
produced for a given set of test inputs. Although problems with the size or timing of the 
hardware may still crop up later, the designer can at least be sure that his logic is functionally 
correct before going on to the next stage of development. 
Compilation only begins after a functionally correct representation of the hardware exists. This 
hardware compilation consists of two distinct steps. First, an intermediate representation of the 
hardware design is produced. This step is called synthesis and the result is a representation called 
a netlist. The netlist is device independent, so its contents do not depend on the particulars of the 
FPGA or CPLD; it is usually stored in a standard format called the Electronic Design 
Interchange Format (EDIF). 
The second step in the translation process is called place & route. This step involves mapping the 
logical structures described in the netlist onto actual macrocells, interconnections, and input and 
output pins. This process is similar to the equivalent step in the development of a printed circuit 
board, and it may likewise allow for either automatic or manual layout optimizations. The result 
of the place & route process is a bitstream. This name is used generically, despite the fact that 
each CPLD or FPGA (or family) has its own, usually proprietary, bitstream format. Suffice it to 
say that the bitstream is the binary data that must be loaded into the FPGA or CPLD to cause that 
chip to execute a particular hardware design. 
Increasingly there are also debuggers available that at least allow for single-stepping the 
hardware design as it executes in the programmable logic device. But those only complement a 
simulation environment that is able to use some of the information generated during the place & 
route step to provide gate-level simulation. Obviously, this type of integration of device-specific 
information into a generic simulator requires a good working relationship between the chip and 
simulation tool vendors. 
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Things to Ponder 
 
Q.1 Define the following acronyms as they apply to digital logic circuits: 

• ASIC 
• PAL 
• PLA 
• PLD 
• CPLD 
• FPGA 

 
Q2.How granularity of logic block influences the performance of an FPGA? 
 
Q3. Why would anyone use programmable logic devices (PLD, PAL, PLA, CPLD, FPGA,    
etc.) in place of traditional "hard-wired" logic such as NAND, NOR, AND, and OR gates? Are 
there any applications where hard-wired logic would do a better job than a programmable 
device?

 
Q4.Some programmable logic devices (and PROM memory devices as well) use tiny fuses 
which are intentionally "blown" in specific patterns to represent the desired program. 
Programming a device by blowing tiny fuses inside of it carries certain advantages and 
disadvantages - describe what some of these are. 
 
Q5. Use one 4 x 8 x 4 PLA to implement the function. 
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