

Module
7

Software Engineering
Issues

Version 2 EE IIT, Kharagpur 1

Lesson
36

Software Design – Part 1
Version 2 EE IIT, Kharagpur 2

Specific Instructional Objectives

At the end of this lesson, the student would be able to:

• Identify the software design activities

• State the desirable characteristics of a good software design

• Understand cohesion and coupling

• Explain the importance of functional independence in software design

• State the features of a function-oriented design approach

• State the features of an object-oriented design approach

• Differentiate between function-oriented and object-oriented design approach

• Identify the activities carried out during the structured analysis phase

• Explain the Data Flow Diagram and its importance in software design

• Explain the Data Dictionary and its importance

• Identify whether a DFD is balanced

• Draw the context diagram of any given problem

• Draw the DFD model of any given problem

• Develop the data dictionary for any given problem

• Identify common errors that can occur while constructing a DFD model

• Identify the shortcomings of a DFD model

• Differentiate between a structure chart and a flow chart

• Identify the activities carried out during transform analysis with examples

• Explain what is meant by transaction analysis

1. Introduction

The goal of the design phase is to transform the requirements specified in the SRS document

into a structure that is suitable for implementation in some programming language. A good
software design is seldom arrived by using a single step procedure, but requires several iterations
through a series of steps. Design activities can be broadly classified into two important parts:

• Preliminary (or high-level) design and
• Detailed design

High-level design means identification of different modules and the control relationships
among them and the definition of the interfaces among these modules. The outcome of high-
level design is called the program structure or software architecture. During detailed design, the
data structure and the algorithms of the different modules are designed. The outcome of the
detailed design stage is usually known as the module-specification document.

Version 2 EE IIT, Kharagpur 3

1.1. Characteristics of a Good Software Design

However, most researchers and software engineers agree on a few desirable characteristics

that every good software design for general application must possess. They are listed below:

Correctness: A good design should correctly implement all the functionalities identified in
the SRS document.

Understandability: A good design is easily understandable.

Efficiency: It should be efficient.

Maintainability: It should be easily amenable to change.

1.2. Current Design Approaches

Most researchers and engineers agree that a good software design implies clean

decomposition of the problem into modules, and the neat arrangement of these modules in a
hierarchy. The primary characteristics of neat module decomposition are high cohesion and low
coupling.

1.2.1. Cohesion

Most researchers and engineers agree that a good software design implies clean

decomposition of the problem into modules, and the neat arrangement of these modules in a
hierarchy. The primary characteristics of neat module decomposition are high cohesion and low
coupling.

Cohesion is a measure of functional strength of a module. A module having high cohesion
and low coupling is said to be functionally independent of other modules. By the term functional
independence, we mean that a cohesive module performs a single task or function. The different
classes of cohesion that a module may possess are depicted in fig. 36.1.

Temporal Sequential CommunicationalProcedural Functional Logical Coincidental

High Low

Fig. 36.1 Classification of Cohesion

Coincidental cohesion: A module is said to have coincidental cohesion, if it performs a set of
tasks that relate to each other very loosely, if at all. In this case, the module contains a random
collection of functions. It is likely that the functions have been put in the module out of pure
coincidence without any thought or design.

Logical cohesion: A module is said to be logically cohesive, if all elements of the module
perform similar operations, e.g. error handling, data input, data output, etc. An example of
logical cohesion is the case where a set of print functions generating different output reports are
arranged into a single module.

Temporal cohesion: When a module contains functions that are related by the fact that all the
functions must be executed in the same time span, the module is said to exhibit temporal

Version 2 EE IIT, Kharagpur 4

cohesion. The set of functions responsible for initialization, start-up, shutdown of some process,
etc. exhibit temporal cohesion.

Procedural cohesion: A module is said to possess procedural cohesion, if the set of functions of
the module are all part of a procedure (algorithm) in which a certain sequence of steps have to be
carried out for achieving an objective, e.g. the algorithm for decoding a message.

Communicational cohesion: A module is said to have communicational cohesion, if all
functions of the module refer to or update the same data structure, e.g. the set of functions
defined on an array or a stack.

Sequential cohesion: A module is said to possess sequential cohesion, if the elements of a
module form the parts of sequence, where the output from one element of the sequence is input
to the next.

Functional cohesion: Functional cohesion is said to exist, if different elements of a module
cooperate to achieve a single function. For example, a module containing all the functions
required to manage employees’ pay-roll displays functional cohesion. Suppose a module displays
functional cohesion, and we are asked to describe what the module does, then we would be able
to describe it using a single sentence.

1.2.2. Coupling

Coupling between two modules is a measure of the degree of interdependence or interaction

between the two modules. A module having high cohesion and low coupling is said to be
functionally independent of other modules. If two modules interchange large amounts of data,
then they are highly interdependent. The degree of coupling between two modules depends on
their interface complexity. The interface complexity is basically determined by the number of
types of parameters that are interchanged while invoking the functions of the module. Even if no
techniques to precisely and quantitatively estimate the coupling between two modules exist
today, classification of the different types of coupling will help to quantitatively estimate the
degree of coupling between two modules. Five types of coupling can occur between any two
modules as shown in fig. 36.2.

High Low

Date Stamp Control Common Content

Fig. 36.2 Classification of coupling

Stamp Coupling: Two modules are stamped coupled, if they communicate using a composite
data item such as a record in PASCAL or a structure in C.

Control coupling: Control coupling exists between two couples, if data from one module is used
to direct the order of instructions execution in another. An example of control coupling is a flag
set in one module and tested in another module.

Common coupling: Two modules are common coupled, if they share some global data items.

Content coupling: Content coupling exists between two modules, if their code is shared, e.g. a
branch from one module into another module.

Version 2 EE IIT, Kharagpur 5

1.2.3. Functional Independence

A module having high cohesion and low coupling is said to be functionally independent of

other modules. By the term functional independence, we mean that a cohesive module performs
a single task or function. A functionally independent module has minimal interaction with other
modules.

Functional independence is a key to any good design primarily due to the following reasons:

Error isolation: Functional independence reduces error propagation. The reason behind this
is that if a module is functionally independent, its degree of interaction with the other
modules is less. Therefore, any error existing in a module would not directly effect the other
modules.

Scope of reuse: Reuse of a module becomes possible- because each module does some well-
defined and precise function and the interaction of the module with the other modules is
simple and minimal. Therefore, a cohesive module can be easily taken out and reused in a
different program.

Understandability: Complexity of the design is reduced, because different modules can be
understood in isolation as modules are more or less independent of each other.

1.2.4. Function-Oriented Design Approach

The following are the salient features of a typical function-oriented design approach:
1. A system is viewed as something that performs a set of functions. Starting at this high-
level view of the system, each function is successively refined into more detailed functions.
For example, consider a function create-new-library member which essentially creates the
record for a new member, assigns a unique membership number to him, and prints a bill
towards his membership charge. This function may consist of the following sub-functions:

• assign-membership-number
• create-member-record
• print-bill

Each of these sub-functions may be split into more detailed sub-functions and so on.
2. The system state is centralized and shared among different functions, e.g. data such as
member-records is available for reference and updating to several functions such as:

• create-new-member
• delete-member
• update-member-record

1.2.5. Object-Oriented Design Approach

In the object-oriented design approach, the system is viewed as collection of objects (i.e.

entities). The state is decentralized among the objects and each object manages its own state
information. For example, in a Library Automation Software, each library member may be a
separate object with its own data and functions to operate on these data. In fact, the functions
defined for one object cannot refer or change data of other objects. Objects have their own
internal data which define their state. Similar objects constitute a class. In other words, each
object is a member of some class. Classes may inherit features from super class. Conceptually,
objects communicate by message passing.

Version 2 EE IIT, Kharagpur 6

1.2.6. Function-Oriented Vs. Object-Oriented Design

The following are some of the important differences between function-oriented and object-

oriented design.

• Unlike function-oriented design methods, in OOD, the basic abstraction are not real-
world functions such as sort, display, track, etc, but real-world entities such as
employee, picture, machine, radar system, etc. For example in OOD, an employee
pay-roll software is not developed by designing functions such as update-employee-
record, get-employee-address, etc. but by designing objects such as employees,
departments, etc.

• In object-oriented design, software is not developed by designing functions such as
update-employee-record, get-employee-address, etc., but by designing objects such as
employee, department, etc.

• In OOD, state information is not represented in a centralized shared memory but is
distributed among the objects of the system. For example, while developing an
employee pay-roll system, the employee data such as the names of the employees,
their code numbers, basic salaries, etc. are usually implemented as global data in a
traditional programming system; whereas in an object-oriented system these data are
distributed among different employee objects of the system. Objects communicate by
passing messages. Therefore, one object may discover the state information of another
object by interrogating it. Of course, somewhere or the other the real-world functions
must be implemented.

• Function-oriented techniques such as SA/SD group functions together if, as a group,
they constitute a higher-level function. On the other hand, object-oriented techniques
group functions together on the basis of the data they operate on.

To illustrate the differences between the object-oriented and the function-oriented design

approaches, an example can be considered.

Example: Fire-Alarm System
The owner of a large multi-storied building wants to have a computerized fire alarm system
for his building. Smoke detectors and fire alarms would be placed in each room of the
building. The fire alarm system would monitor the status of these smoke detectors. Whenever
a fire condition is reported by any of the smoke detectors, the fire alarm system should
determine the location at which the fire condition is reported by any of the smoke detectors.
The fire alarm system should determine the location at which the fire condition has occurred
and then sound the alarms only in the neighboring locations. The fire alarm system should
also flash an alarm message on the computer consol. Fire fighting personnel man the console
round the clock. After a fire condition has been successfully handled, the fire alarm system
should support resetting the alarms by the fire fighting personnel.

Version 2 EE IIT, Kharagpur 7

Function-Oriented Approach:

/* Global data (system state) accessible by various functions */

BOOL detector_status[MAX_ROOMS];
int detector_locs[MAX_ROOMS];
BOOL alarm_status[MAX_ROOMS];/* alarm activated when status is set */
int alarm_locs[MAX_ROOMS]; /* room number where alarm is located */
int neighbor-alarm[MAX_ROOMS][10];
/* each detector has at most 10 neighboring locations */

The functions which operate on the system state are:
interrogate_detectors();
get_detector_location();
determine_neighbor();
ring_alarm();
reset_alarm();
report_fire_location();

Object-Oriented Approach:
class detector
attributes: status, location, neighbors
operations: create, sense-status, get-location, find-neighbors

class alarm
attributes: location, status
operations: create, ring-alarm, get_location, reset-alarm

In the object oriented program, an appropriate number of instances of the class detector and
alarm should be created. If the function-oriented and the object-oriented programs are examined,
then it is seen that in the function-oriented program the system state is centralized and several
functions on this central data is defined. In case of the object-oriented program, the state
information is distributed among various objects.

It is not necessary that an object-oriented design be implemented by using an object-oriented
language only. However, an object-oriented language such as C++, supports the definition of all
the basic mechanisms of class, inheritance, objects, methods, etc., and also supports all key
object-oriented concepts that we have just discussed. Thus, an object-oriented language
facilitates the implementation of an OOD. However, an OOD can as well be implemented using
a conventional procedural language – though it may require more effort to implement an OOD
using a procedural language as compared to the effort required for implementing the same design
using an object-oriented language.

Even though object-oriented and function-oriented approaches are remarkably different
approaches to software design, they do not replace each other but complement each other in
some sense. For example, usually one applies the top-down function oriented techniques to
design the internal methods of a class, once the classes are identified. In this case, though
outwardly the system appears to have been developed in an object-oriented fashion, inside each
class there may be a small hierarchy of functions designed in a top-down manner.

Version 2 EE IIT, Kharagpur 8

2. Function-Oriented Software Design

Function-oriented design techniques view a system as a black-box that performs a set of

high-level functions. During the design process, these high-level functions are successively
decomposed into more detailed functions and finally the different identified functions are
mapped to modules. The term top-down decomposition is often used to denote such successive
decompositions of a set of high-level functions into more detailed functions.

2.1. Structured Analysis

Structured analysis is used to carry out the top-down decomposition of a set of high-level

functions depicted in the problem description and to represent them graphically. During
structured analysis, functional decomposition of the system is achieved. That is, each function
that the system performs is analysed and hierarchically decomposed into more detailed functions.
Structured analysis technique is based on the following essential underlying principles:

• Top-down decomposition approach.
• Divide and conquer principle. Each function is decomposed independently.
• Graphical representation of the analysis results using Data Flow Diagrams (DFDs).

2.2. Data Flow Diagrams

The DFD (also known as a bubble chart) is a simple graphical formalism that can be used to

represent a system in terms of the input data to the system, various processing carried out on
these data, and the output data generated by the system. A DFD model uses a very limited
number of primitive symbols (as shown in fig. 36.3) to represent the functions performed by a
system and the data flow among these functions.

The main reason why the DFD technique is so popular is probably because of the fact that

DFD is a very simple formalism – it is simple to understand and use. Starting with a set of high-
level functions that a system performs, a DFD model hierarchically represents various sub-
functions. In fact, any hierarchical model is simple to understand. The human mind is such that it
can easily understand any hierarchical model of a system – because in a hierarchical model,
starting with a very simple and abstract model of a system, different details of the system are
slowly introduced through different hierarchies. The data flow diagramming technique also
follows a very simple set of intuitive concepts and rules. DFD is an elegant modeling technique
that turns out to be useful not only to represent the results of structured analysis of a software
problem but also for several other applications such as showing the flow of documents or items
in an organization.

Data Store Process External Entity Output Data Flow

Fig. 36.3 Symbols used for designing DFDs

Version 2 EE IIT, Kharagpur 9

2.2.1. Data Dictionary

A data dictionary lists all data items appearing in the DFD model of a system. The data items

listed include all data flows and the contents of all data stores appearing on the DFDs in the DFD
model of a system.

A data dictionary lists the purpose of all data items and the definition of all composite data
items in terms of their component data items. For example, a data dictionary entry may represent
that the data grossPay consists of the components regularPay and overtimePay.

grossPay = regularPay + overtimePay
For the smallest units of data items, the data dictionary lists their name and their type.

A data dictionary plays a very important role in any software development process because
of the following reasons:

• A data dictionary provides a standard terminology for all relevant data for use by
engineers working in a project. A consistent vocabulary for data items is very
important, since in large projects different engineers of the project have a tendency to
use different terms to refer to the same data, which unnecessarily causes confusion.

• The data dictionary provides the analyst with a means to determine the definition of
different data structures in terms of their component elements.

2.3. DFD : Levels and Model

The DFD model of a system typically consists of several DFDs, viz., level 0 DFD, level 1

DFD, level 2 DFDs, etc. A single data dictionary should capture all the data appearing in all the
DFDs constituting the DFD model of a system.

2.3.1. Balancing DFDs

The data that flow into or out of a bubble must match the data flow at the next level of DFD.

This is known as balancing a DFD. The concept of balancing a DFD has been illustrated in fig.
36.4. In the level 1 of the DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item
d2 flows into the bubble P1. In the next level, bubble 0.1 is decomposed. The decomposition is
balanced, as d1 and d3 flow out of the level 2 diagram and d2 flows in.

Version 2 EE IIT, Kharagpur 10

d1

d2

d3

d4

P1
0.1

P2
0.2

P3
0.3

(a) Level 1 DFD

d1

d2

d3

d21 d23

d22

P13
0.1.3

P12
0.1.2

P11
0.1.1

(b) Level 2 DFD

Fig. 36.4 An example showing balanced decomposition

2.3.2. Context Diagram

The context diagram is the most abstract data flow representation of a system. It represents

the entire system as a single bubble. This bubble is labeled according to the main function of the
system. The various external entities with which the system interacts and the data flow occurring
between the system and the external entities are also represented. The data input to the system
and the data output from the system are represented as incoming and outgoing arrows. These
data flow arrows should be annotated with the corresponding data names. The name context
diagram is well justified because it represents the context in which the system is to exist, i.e. the
external entities who would interact with the system and the specific data items they would be
supplying the system and the data items they would be receiving from the system. The context
diagram is also called the level 0 DFD.

Version 2 EE IIT, Kharagpur 11

To develop the context diagram of the system, we have to analyse the SRS document to
identify the different types of users who would be using the system and the kinds of data they
would be inputting to the system and the data they would be receiving from the system. Here, the
term “users of the system” also includes the external systems which supply data to or receive
data from the system.

The bubble in the context diagram is annotated with the name of the software system being
developed (usually a noun). This is in contrast with the bubbles in all other levels which are
annotated with verbs. This is expected since the purpose of the context diagram is to capture the
context of the system rather than its functionality.

Example 1: RMS Calculating Software

A software system called RMS calculating software would read three integral numbers from
the user in the range of -1000 and +1000 and then determine the root mean square (rms) of
the three input numbers and display it. In this example, the context diagram (fig. 36.5) is
simple to draw. The system accepts three integers from the user and returns the result to him.

Example 2: Tic-Tac-Toe Computer Game

Tic-tac-toe is a computer game in which a human player and the computer make alternative
moves on a 3 × 3 square. A move consists of marking previously unmarked square. The
player, who is first to place three consecutive marks along a straight line (i.e. along a row,
column, or diagonal) on the square, wins. As soon as either of the human player or the
computer wins, a message congratulating the winner should be displayed. If neither player
manages to get three consecutive marks along a straight line, nor all the squares on the board
are filled up, then the game is drawn. The computer always tries to win a game. The context
diagram of this problem is shown in fig. 36.6.

User

rms
Calculator

0

data–items rms

Fig. 36.5 Context Diagram

Version 2 EE IIT, Kharagpur 12

Human
Player

Tic-Tac-Toe
Software

display

move

Fig. 36.6 Context diagram for tic-tac-toe computer game

2.3.3. Developing the DFD Model

A DFD model of a system graphically depicts the transformation of the data input to the

system to the final result through a hierarchy of levels. A DFD starts with the most abstract
definition of the system (lowest level) and at each higher level DFD, more details are
successively introduced. To develop a higher-level DFD model, processes are decomposed into
their sub-processes and the data flow among these sub-processes is identified.

To develop the data flow model of a system, first the most abstract representation of the
problem is to be worked out. The most abstract representation of the problem is also called the
context diagram. After, developing the context diagram, the higher-level DFDs have to be
developed.

Context Diagram

Level 1 DFD: To develop the level 1 DFD, examine the high-level functional requirements.

If there are between 3 to 7 high-level functional requirements, then these can be directly
represented as bubbles in the level 1 DFD. We can then examine the input data to these
functions, the data output by these functions, and represent them appropriately in the diagram.

If a system has more than 7 high-level functional requirements, then some of the related
requirements have to be combined and represented in the form of a bubble in the level 1 DFD.
Such a bubble can be split in the lower DFD levels. If a system has less than three high-level
functional requirements, then some of them need to be split into their sub-functions so that we
have roughly about 5 to 7 bubbles on the diagram.

Decomposition: Each bubble in the DFD represents a function performed by the system. The
bubbles are decomposed into sub-functions at the successive levels of the DFD. Decomposition
of a bubble is also known as factoring or exploding a bubble. Each bubble at any level of DFD is
usually decomposed to anything between 3 to 7 bubbles. Too few bubbles at any level make that
level superfluous. For example, if a bubble is decomposed to just one bubble or two bubbles,
then this decomposition becomes redundant. Also, too many bubbles, i.e. more than 7 bubbles at
any level of a DFD makes the DFD model hard to understand. Decomposition of a bubble should
be carried on until a level is reached at which the function of the bubble can be described using a
simple algorithm.

Version 2 EE IIT, Kharagpur 13

Numbering the Bubbles: It is necessary to number the different bubbles occurring in the
DFD. These numbers help in uniquely identifying any bubble in the DFD from its bubble
number. The bubble at the context level is usually assigned the number 0 to indicate that it is the
0 level DFD. Bubbles at level 1 are numbered, 0.1, 0.2, 0.3, etc. When a bubble numbered x is
decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this numbering scheme, by
looking at the number of a bubble, we can unambiguously determine its level, its ancestors and
its successors.

Example: Supermarket Prize Scheme

A supermarket needs to develop the following software to encourage regular customers. For
this, the customer needs to supply his/her residence address, telephone number and the
driving license number. Each customer who registers for this scheme is assigned a unique
customer number (CN) by the computer. A customer can present his CN to the check out
staff when he makes any purchase. In this case, the value of his purchase is credited against
his CN. At the end of each year, the supermarket intends to award surprise gifts to 10
customers who make the highest total purchase over the year. Also, it intends to award a 22
carat gold coin to every customer whose purchase exceeds Rs.10,000. The entries against the
CN are the reset on the day of every year after the prize winners’ lists are generated.

Sales-clerk

Manager

Customer

Sales details
Winner-list

Customer-
details

Gen-winner
command

CN

Super-
market

software
0

Fig. 36.7 Context diagram for supermarket problem

The context diagram for this problem is shown in fig. 36.7, the level 1 DFD in fig. 36.8, and the
level 2 DFD in fig. 36.9.

Version 2 EE IIT, Kharagpur 14

Sales details Customer-details

Sales-info Customer-data

Generate-winner-command
Winner-list

CN Register-
customer

0.1
Register-

sales
0.3

Generate-
winner-list

0.2

Fig. 36.8 Level 1 diagram for supermarket problem

Total-sales

Find-total-
sales
0.2.3

Reset
0.2.3

Gen-surprise-
gift-winner

0.2.1

Gen-gold-
coin-gift-
winner
0.2.2

Sales-info

Generate-winner-command

Sales-info
Surprise-gift
winner-list

Gold-coin-
winner-list

Fig. 36.9 Level 2 diagram for supermarket problem

Version 2 EE IIT, Kharagpur 15

Data Dictionary for the DFD Model
address: name + house# + street# + city + pin
sales-details: {item + amount}* + CN
CN: integer
customer-data: {address + CN}*
sales-info: {sales-details}*
winner-list: surprise-gift-winner-list + gold-coin-winner-list
surprise-gift-winner-list: {address + CN}*
gold-coin-winner-list: {address + CN}*
gen-winner-command: command
total-sales: {CN + integer}*

2.3.4. Common Errors in Constructing DFD Model

Although DFDs are simple to understand and draw, students and practitioners alike

encounter similar types of problems while modelling software problems using DFDs. While
learning from experience is a powerful thing, it is an expensive pedagogical technique in the
business world. It is therefore helpful to understand the different types of mistakes that users
usually make while constructing the DFD model of systems.

• Many beginners commit the mistake of drawing more than one bubble in the context
diagram. A context diagram should depict the system as a single bubble.

• Many beginners have external entities appearing at all levels of DFDs. All external
entities interacting with the system should be represented only in the context diagram.
The external entities should not appear at other levels of the DFD.

• It is a common oversight to have either too less or too many bubbles in a DFD. Only 3
to 7 bubbles per diagram should be allowed, i.e. each bubble should be decomposed to
between 3 and 7 bubbles.

• Many beginners leave different levels of DFD unbalanced.

• A common mistake committed by many beginners while developing a DFD model is
attempting to represent control information in a DFD. It is important to realize that a
DFD is the data flow representation of a system and it does not represent control
information. The following examples represent some mistakes of this kind:

♦ A book can be searched in the library catalogue by inputting its name. If the book
is available in the library, then the details of the book are displayed. If the book is
not listed in the catalogue, then an error message is generated. While generating
the DFD model for this simple problem, many beginners commit the mistake of
drawing an arrow (as shown in fig. 36.10) to indicate the error function is invoked
after the search book. But, this is a control information and should not be shown
on the DFD.

Version 2 EE IIT, Kharagpur 16

Error-message Show-
error-

message
Search-

book

Search-results

Key Words

Fig. 36.10 To show control information on a DFD – A mistake

♦ Another error is trying to represent when or in what order different functions
(processes) are invoked and the conditions under which different functions are
invoked.

♦ If a bubble A invokes either the bubble B or the bubble C depending upon some
conditions, we need only to represent the data that flows between bubbles A and
B or bubbles A and C and not the conditions depending on which the two
modules are invoked.

• A data store should be connected only to bubbles through data arrows. A data store
cannot be connected to either another data store or to an external entity.

• All the functionalities of the system must be captured by the DFD model. No function
of the system specified in its SRS document should be overlooked.

• Only those functions of the system specified in the SRS document should be
represented, i.e. the designer should not assume functionality of the system not
specified by the SRS document and then try to represent them in the DFD.

• Improper or unsatisfactory data dictionary.

• The data and function names must be intuitive. Some students and even practicing
engineers use symbolic data names such a, b, c, etc. Such names hinder understanding
the DFD model.

2.3.5. Shortcomings of a DFD Model

DFD models suffer from several shortcomings. The important shortcomings of the DFD

models are the following:

• DFDs leave ample scope to be imprecise. In the DFD model, we judge the function
performed by a bubble from its label. However, a short label may not capture the
entire functionality of a bubble. For example, a bubble named find-book-position has
only intuitive meaning and does not specify several things, e.g. what happens when
some input information is missing or is incorrect. Further, the find-book-position
bubble may not convey anything regarding what happens when the required book is
missing.

• Control aspects are not defined by a DFD. For instance, the order in which inputs are
consumed and outputs are produced by a bubble is not specified. A DFD model does
not specify the order in which the different bubbles are executed. Representation of
such aspects is very important for modeling real-time systems.

Version 2 EE IIT, Kharagpur 17

• The method of carrying out decomposition to arrive at the successive levels and the
ultimate level to which decomposition is carried out are highly subjective and depend
on the choice and judgment of the analyst. Due to this reason, even for the same
problem, several alternative DFD representations are possible. Further, many a times it
is not possible to say which DFD representation is superior or preferable to another.

• The data flow diagramming technique does not provide any specific guidance as to
how exactly to decompose a given function into its sub-functions and we have to use
subjective judgment to carry out decomposition.

2.3.6. Extending DFD Technique To Real-Time Systems

The aim of structured design is to transform the results of the structured analysis (i.e. a DFD

representation into a structure chart). A structure chart represents the software architecture, i.e.
the various modules making up the system, the module dependency, and the parameters that are
passed among the different modules. Since the main focus in a structure chart representation is
on the module structure of software and the interaction between the different modules, the
procedural aspects are not represented.

 A real-time system is one where the functions must not only produce correct result but also
should produce them by some pre-specified time. For real-time systems since reasoning about
time is important to come up with a correct design, explicit representation of control and event
flow aspects are essential. One of the widely accepted techniques for extending the DFD
technique to real-time system analysis is the Ward and Mellor technique [1985]. In the Ward and
Mellor notation, a type of process that handles only control flows is introduced. These processes
representing control processing are denoted using dashed bubbles. Control flows are shown
using dashed lines/arrows.

Unlike Ward and Mellor, Hatley and Pirbhai [1987] show the dashed and solid
representations on separate diagrams. To be able to separate the data processing and the control
processing aspects, a Control Flow Diagram (CFD) is defined. This reduces the complexity of
the diagrams. In order to link the data processing and control processing diagrams, a notational
reference (solid bar) to a control specification is used. The CSPEC describes the following:

• The effect of an external event or control signal
• The processes that are invoked as a consequence of an event

Control specifications represent the behaviour of the system in two different ways:
• It contains a state transition diagram (STD). The STD is a sequential specification of

behaviour.
• It contains a program activation table (PAT). The PAT is a combinational

specification of behaviour. PAT represents invocation sequence of bubbles in a DFD.

2.4. Structured Design

The aim of structured design is to transform the results of the structured analysis (i.e. a DFD

representation into a structure chart). A structure chart represents the software architecture, i.e.
the various modules making up the system, the module dependency, and the parameters that are
passed among the different modules. Since the main focus in a structure chart representation is
on the module structure of software and the interaction between the different modules, the
procedural aspects are not represented.

Version 2 EE IIT, Kharagpur 18

2.4.1. Flow Chart Vs. Structure Chart

We are all familiar with the flow chart representation of a program. Flow chart is a

convenient technique to represent the flow of control in a program. A structure chart differs from
a flow chart in three principal ways:

• It is usually difficult to identify the different modules of the software from its flow
chart representation.

• Sequential ordering of tasks inherent in a flow chart is suppressed in a structure chart.

2.4.2. Transformation of a DFD into a Structure Chart

Systematic techniques are available to transform the DFD representation of a problem into a

module structure represented by a structure chart. Structured design provides two strategies:
• Transform Analysis
• Transaction Analysis

2.4.3. Transform Analysis

Transform analysis identifies the primary functional components (modules) and the high

level inputs and outputs for these components. The first step in transform analysis is to divide the
DFD into 3 types of parts:

• Input
• Logical processing
• Output

The input portion of the DFD includes processes that transform input data from physical (e.g.
character from terminal) to logical forms (e.g. internal tables, lists, etc.). Each input portion is
called an afferent branch.

The output portion of a DFD transforms output data from logical to physical form. Each
output portion is called efferent branch. The remaining portion of a DFD is called central
transform.

In the next step of transform analysis, the structure chart is derived by drawing one functional
component for the central transform, and the afferent and efferent branches. These are drawn
below a root module, which would invoke these modules.

Identifying the highest level input and output transforms requires experience and skill. One
possible approach is to trace the inputs until a bubble is found whose output cannot be deduced
from its inputs alone. Processes which validate input or add information to them are not central
transforms. Processes which sort input or filter data from it are. The first level structure chart is
produced by representing each input and output unit as boxes and each central transform as a
single box.

In the third step of transform analysis, the structure chart is refined by adding sub-functions
required by each of the high-level functional components. Many levels of functional components
may be added. This process of breaking functional components into subcomponents is called
factoring. Factoring includes adding read and write modules, error-handling modules,
initialization and termination process, identifying customer modules etc. The factoring process is
continued until all bubbles in the DFD are represented in the structure chart.

Example: Structure chart for the RMS software

Version 2 EE IIT, Kharagpur 19

For this example, the context diagram was drawn earlier.
To draw the level 1 DFD (fig. 36.11), from a cursory analysis of the problem description, we
can see that there are four basic functions that the system needs to perform – accept the input
numbers from the user, validate the numbers, calculate the root mean square of the input
numbers and, then display the result.

By observing the level 1 DFD, we identify the validate-input as the afferent branch, and
write-output as the efferent branch, and the remaining (i.e. compute-rms) as the central
transform. By applying the step 2 and step 3 of transform analysis, we get the structure chart
shown in fig. 36.12.

compute-
rms
0.2

display-
result

0.3

valid-datavalidate-
input

0.1

rms rmsdata-items

Fig. 36.11 Level 1 DFD

main

valid-data

valid-data

rms

rms

get-good-
data

compute-
rms

write-result

read-input validate-
input

data-items

data-items

valid-data

Fig. 36.12 Structure chart

Version 2 EE IIT, Kharagpur 20

2.4.4. Transaction Analysis

A transaction allows the user to perform some meaningful piece of work. Transaction

analysis is useful while designing transaction processing programs. In a transaction-driven
system, one of several possible paths through the DFD is traversed depending upon the input
data item. This is in contrast to a transform centred system which is characterized by similar
processing steps for each data item. Each different way in which input data is handled is a
transaction. A simple way to identify a transaction is to check the input data. The number of
bubbles on which the input data to the DFD are incident defines the number of transactions.
However, some transactions may not require any input data. These transactions can be identified
from the experience of solving a large number of examples.

For each identified transaction, trace the input data to the output. All the traversed bubbles
belong to the transaction. These bubbles should be mapped to the same module on the structure
chart. In the structure chart, draw a root module and below this module draw each identified
transaction a module. Every transaction carries a tag, which identifies its type. Transaction
analysis uses this tag to divide the system into transaction modules and a transaction-centre
module.

The structure chart for the supermarket prize scheme software is shown in fig. 36.13.

find-total-
sales

gen-
surprise-
gift-list

gen-
gold-
coin-

winner-
list

get-
sales-
details

record-
sales-
details

register-
customer

register-
sales

Gen-winner-
list

root

customer-
registration sales-registration

winner-list-
generation

sales-detailssales-
details

total-
sales

total-
sales

total-
sales

sales-
info

gold
coin
list

surp-
rise
list

customer-
details CN

get-
customer-

details
generate-

CN

Fig. 36.13 Structure chart for the supermarket prize scheme

Version 2 EE IIT, Kharagpur 21

3. Exercises

1. Mark the following as True or False. Justify your answer.

a. Coupling between two modules is nothing but a measure of the degree of dependence
between them.

b. The primary characteristic of a good design is low cohesion and high coupling.
c. A module having high cohesion and low coupling is said to be functionally

independent of other modules.
d. The degree of coupling between two modules does not depend on their interface

complexity.
e. In the function-oriented design approach, the system state is decentralized and not

shared among different functions.
f. The essence of any good function-oriented design technique is to map the functions

performing similar activities into a module.
g. In the object-oriented design, the basic abstraction is real-world functions.
h. An OOD (Object-Oriented Design) can be implemented using object-oriented

languages only.
i. A DFD model of a system represents the functions performed by the system and the

data flow taking place among these functions.
j. A data dictionary lists all data items appearing in the DFD model of a system but does

not capture the composition relationship among the data.
k. The context diagram of a system represents it using more than one bubble.
l. A DFD captures the order in which the processes (bubbles) operate.
m. There should be at the most one control relationship between any two modules in a

properly designed structure chart.
2. For the following, mark all options which are true.

a. The desirable characteristics that every good software design need are
• Correctness
• Understandability
• Efficiency
• Maintainability
• All of the above

b. A module is said to have logical cohesion, if
• it performs a set of tasks that relate to each other very loosely.
• all the functions of the module are executed within the same time span.
• all elements of the module perform similar operations, e.g. error handling, data

input, data output, etc.
• None of the above.

c. High coupling among modules makes it
• difficult to understand and maintain the product
• difficult to implement and debug
• expensive to develop the product as the modules having high coupling cannot be

developed independently
• all of the above

d. The desirable characteristics that every good software design need are
• error isolation
• scope of reuse

Version 2 EE IIT, Kharagpur 22

• understandability
• all of the above

e. The purpose of structured analysis is
• to capture the detailed structure of the system as perceived by the user
• to define the structure of the solution that is suitable for implementation in some

programming language
• all of the above

f. Structured analysis technique is based on
• top-down decomposition approach
• bottom-up approach
• divide and conquer principle
• none of the above

g. Data Flow Diagram (DFD) is also known as a:
• structure chart
• bubble chart
• Gantt chart
• PERT chart

h. The context diagram of a DFD is also known as
• level 0 DFD
• level 1 DFD
• level 2 DFD
• none of the above

i. Decomposition of a bubble is also known as
• classification
• factoring
• exploding
• aggregation

j. Decomposition of a bubble should be carried on
• till the atomic program instructions are reached
• up to two levels
• until a level is reached at which the function of the bubble can be described using

a simple algorithm
• none of the above

k. The bubbles in a level-1 DFD represent
• exactly one high-level functional requirement described in SRS document
• more than one high-level functional requirement
• part of a high-level functional requirement
• any of the above depending on the problem

l. By looking at the structure chart, we can
• say whether a module calls another module just once or many times
• not say whether a module calls another module just once or many times
• tell the order in which the different modules are invoked
• not tell the order in which the different modules are invoked

m. In which of the following ways does a structure chart differ from a flow chart?
• it is always difficult to identify the different modules of the software from its flow

chart representation

Version 2 EE IIT, Kharagpur 23

• data interchange among different modules is not presented in a flow chart
• sequential ordering of tasks inherent in a flow chart is suppressed in a structure

chart
• none of the above

n. The input portion in the DFD that transforms input data from physical to logical form
is called
• central transform
• efferent branch
• afferent branch
• none of the above

o. If during structured design, you observe that the data entering a DFD are incident on
different bubbles, then you would use:
• transform analysis
• transaction analysis
• combination of transform and transaction analysis
• neither transform nor transaction analysis

p. During detailed design, which of the following activities take place?
• the pseudo code for the different modules of the structure chart are developed in

the form of MSPECs
• data structures are designed for the different modules of the structure chart
• module structure is designed
• none of the above

3. State the major design activities. Identify separately, the activities undertaken during high-
level design and detailed design.

4. Why is functional independence of a module a key factor for a good software design?
5. What the salient features of a function-oriented design approach and object-oriented design

approach. Differentiate between both these approaches.
6. Identify the aim of the structured analysis activity. Which documents are produced at the

end of structured analysis activity?
7. Identify the necessity of constructing DFDs in the context of a good software design.
8. Write down the importance of data dictionary in the context of good software design.
9. Explain the term “balancing a DFD” with an example
10. Discuss the essential activities required to develop the DFD of a system more

systematically.
11. What do you understand by top-down decomposition in the context of structured analysis?

Explain with a suitable example.
12. Identify the common errors made during construction of a DFD model. Identify the

shortcomings of the DFD model.
13. Differentiate between a structure chart and a flow chart.
14. Explain transform analysis with a suitable example.
15. Explain transaction analysis with an example.

Version 2 EE IIT, Kharagpur 24

	Software Engineering Issues
	Software Design – Part 1
	Specific Instructional Objectives
	Introduction
	Characteristics of a Good Software Design
	Current Design Approaches
	Cohesion
	Coupling
	Functional Independence
	Function-Oriented Design Approach
	Object-Oriented Design Approach
	Function-Oriented Vs. Object-Oriented Design

	Function-Oriented Software Design
	Structured Analysis
	Data Flow Diagrams
	Data Dictionary

	DFD : Levels and Model
	Balancing DFDs
	Context Diagram
	Developing the DFD Model
	Context Diagram
	Common Errors in Constructing DFD Model
	Shortcomings of a DFD Model
	Extending DFD Technique To Real-Time Systems

	Structured Design
	Flow Chart Vs. Structure Chart
	Transformation of a DFD into a Structure Chart
	Transform Analysis
	Transaction Analysis

	Exercises

