

Module
4

Design of Embedded
Processors

Version 2 EE IIT, Kharagpur 1

Lesson
21

Introduction to Hardware
Description Languages - I

Version 2 EE IIT, Kharagpur 2

Instructional Objectives

At the end of the lesson the student should be able to

• Describe a digital IC design flow and explain its various abstraction levels.

• Explain the need for a hardware description language in the IC desing flow

• Model simple hardware devices at various levels of abstraction using Verilog
(Gate/Switch/Behavioral)

• Write Verilog codes meeting the prescribed requirement at a specified level

1.1 Introduction

1.1.1 What is a HDL and where does Verilog come?

HDL is an abbreviation of Hardware Description Language. Any digital system can be
represented in a REGISTER TRANSFER LEVEL (RTL) and HDLs are used to describe this
RTL. Verilog is one such HDL and it is a general-purpose language –easy to learn and use.
Its syntax is similar to C. The idea is to specify how the data flows between registers and how
the design processes the data. To define RTL, hierarchical design concepts play a very
significant role. Hierarchical design methodology facilitates the digital design flow with several
levels of abstraction. Verilog HDL can utilize these levels of abstraction to produce a simplified
and efficient representation of the RTL description of any digital design.

 For example, an HDL might describe the layout of the wires, resistors and transistors on
an Integrated Circuit (IC) chip, i.e., the switch level or, it may describe the design at a more
micro level in terms of logical gates and flip flops in a digital system, i.e., the gate level. Verilog
supports all of these levels.

1.1.2 Hierarchy of design methodologies

Bottom-Up Design

The traditional method of electronic design is bottom-up (designing from transistors and moving
to a higher level of gates and, finally, the system). But with the increase in design complexity
traditional bottom-up designs have to give way to new structural, hierarchical design methods.

Top-Down Design

For HDL representation it is convenient and efficient to adapt this design-style. A real top-down
design allows early testing, fabrication technology independence, a structured system design and
offers many other advantages. But it is very difficult to follow a pure top-down design. Due to
this fact most designs are mix of both the methods, implementing some key elements of both
design styles.

Version 2 EE IIT, Kharagpur 3

1.1.3 Hierarchical design concept and Verilog

To follow the hierarchical design concepts briefly mentioned above one has to describe the
design in terms of entities called MODULES.

Modules

A module is the basic building block in Verilog. It can be an element or a collection of low level
design blocks. Typically, elements are grouped into modules to provide common functionality
used in places of the design through its port interfaces, but hides the internal implementation.

1.1.4 Abstraction Levels

• Behavioral level
• Register-Transfer Level
• Gate Level
• Switch level

Behavioral or algorithmic Level

This level describes a system by concurrent algorithms (Behavioral). Each algorithm itself is
sequential meaning that it consists of a set of instructions that are executed one after the other.
‘initial’, ‘always’ ,‘functions’ and ‘tasks’ blocks are some of the elements used to define the
system at this level. The intricacies of the system are not elaborated at this stage and only the
functional description of the individual blocks is prescribed. In this way the whole logic
synthesis gets highly simplified and at the same time more efficient.

Register-Transfer Level

Designs using the Register-Transfer Level specify the characteristics of a circuit by operations
and the transfer of data between the registers. An explicit clock is used. RTL design contains
exact timing possibility, operations are scheduled to occur at certain times. Modern definition of
a RTL code is "Any code that is synthesizable is called RTL code".

Gate Level

Within the logic level the characteristics of a system are described by logical links and their
timing properties. All signals are discrete signals. They can only have definite logical values (`0',
`1', `X', `Z`). The usable operations are predefined logic primitives (AND, OR, NOT etc gates).
It must be indicated here that using the gate level modeling may not be a good idea in logic
design. Gate level code is generated by tools like synthesis tools in the form of netlists which are
used for gate level simulation and for backend.

Version 2 EE IIT, Kharagpur 4

Switch Level

This is the lowest level of abstraction. A module can be implemented in terms of switches,
storage nodes and interconnection between them.

However, as has been mentioned earlier, one can mix and match all the levels of abstraction in a
design. RTL is frequently used for Verilog description that is a combination of behavioral and
dataflow while being acceptable for synthesis.

Instances

A module provides a template from where one can create objects. When a module is invoked
Verilog creates a unique object from the template, each having its own name, variables,
parameters and I/O interfaces. These are known as instances.

1.1.5 The Design Flow

This block diagram describes a typical design flow for the description of the digital design for
both ASIC and FPGA realizations.

Version 2 EE IIT, Kharagpur 5

LEVEL OF FLOW TOOLS USED

Specification Word processor like Word, Kwriter, AbiWord, Open
Office

High Level Design
Word processor like Word, Kwriter, AbiWord, for
drawing waveform use tools like waveformer or
testbencher or Word, Open Office.

Micro Design/Low level
design

Word processor like Word, Kwriter, AbiWord, for
drawing waveform use tools like waveformer or
testbencher or Word. For FSM StateCAD or some similar
tool, Open Office

RTL Coding Vim, Emacs, conTEXT, HDL TurboWriter

Simulation Modelsim, VCS, Verilog-XL, Veriwell, Finsim, iVerilog,
VeriDOS

Synthesis
Design Compiler, FPGA Compiler, Synplify, Leonardo
Spectrum. You can download this from FPGA vendors
like Altera and Xilinx for free

Place & Route
For FPGA use FPGA' vendors P&R tool. ASIC tools
require expensive P&R tools like Apollo. Students can use
LASI, Magic

Post Si Validation
For ASIC and FPGA, the chip needs to be tested in real
environment. Board design, device drivers needs to be in
place

Specification

This is the stage at which we define the important parameters of the system that has to be
designed. For example for designing a counter one has to decide its bit-size, whether it should
have synchronous reset whether it must be active high enable etc.

High Level Design

This is the stage at which one defines various blocks in the design in the form of modules and
instances. For instance for a microprocessor a high level representation means splitting the
design into blocks based on their function. In this case the various blocks are registers, ALU,
Instruction Decode, Memory Interface, etc.

Micro Design/Low level design

Low level design or Micro design is the phase in which, designer describes how each block is
implemented. It contains details of State machines, counters, Mux, decoders, internal registers.
For state machine entry you can use either Word, or special tools like State CAD. It is always a
good idea if waveform is drawn at various interfaces. This is the phase, where one spends lot of
time. A sample low level design is indicated in the figure below.

Version 2 EE IIT, Kharagpur 6

RTL Coding

In RTL coding, Micro Design is converted into Verilog/VHDL code, using synthesizable
constructs of the language. Normally, vim editor is used, and conTEXT, Nedit and Emacs are
other choices.

Simulation

Simulation is the process of verifying the functional characteristics of models at any level of
abstraction. We use simulators to simulate the the Hardware models. To test if the RTL code
meets the functional requirements of the specification, see if all the RTL blocks are functionally
correct. To achieve this we need to write testbench, which generates clk, reset and required test
vectors. A sample testbench for a counter is as shown below. Normally, we spend 60-70% of
time in verification of design.

We use waveform output from the simulator to see if the DUT (Device Under Test) is
functionally correct. Most of the simulators come with waveform viewer, as design becomes
complex, we write self checking testbench, where testbench applies the test vector, compares the
output of DUT with expected value.
There is another kind of simulation, called timing simulation, which is done after synthesis or
after P&R (Place and Route). Here we include the gate delays and wire delays and see if DUT
works at the rated clock speed. This is also called as SDF simulation or gate level simulation

Version 2 EE IIT, Kharagpur 7

Synthesis

Synthesis is the process in which a synthesis tool like design compiler takes in the RTL in
Verilog or VHDL, target technology, and constrains as input and maps the RTL to target
technology primitives. The synthesis tool after mapping the RTL to gates, also does the minimal
amount of timing analysis to see if the mapped design is meeting the timing requirements.
(Important thing to note is, synthesis tools are not aware of wire delays, they know only gate
delays). After the synthesis there are a couple of things that are normally done before passing the
netlist to backend (Place and Route)

• Verification: Check if the RTL to gate mapping is correct.
• Scan insertion: Insert the scan chain in the case of ASIC.

Place & Route

Gate-level netlist from the synthesis tool is taken and imported into place and route tool in the
Verilog netlist format. All the gates and flip-flops are placed, Clock tree synthesis and reset is
routed. After this each block is routed. Output of the P&R tool is a GDS file, this file is used by a

Version 2 EE IIT, Kharagpur 8

foundry for fabricating the ASIC. Normally the P&R tool are used to output the SDF file, which
is back annotated along with the gatelevel netlist from P&R into static analysis tool like Prime
Time to do timing analysis.

Post Silicon Validation

Once the chip (silicon) is back from fabrication, it needs to be put in a real environment and
tested before it can be released into market. Since the speed of simulation with RTL is very slow
(number clocks per second), there is always a possibility to find a bug

1.2 Verilog HDL: Syntax and Semantics

1.2.1 Lexical Conventions

The basic lexical conventions used by Verilog HDL are similar to those in the C programming
language. Verilog HDL is a case-sensitive language. All keywords are in lowercase.

1.2.2 Data Types

Verilog Language has two primary data types :

• Nets - represents structural connections between components.
• Registers - represent variables used to store data.

Every signal has a data type associated with it. Data types are:
• Explicitly declared with a declaration in the Verilog code.
• Implicitly declared with no declaration but used to connect structural building blocks in

the code. Implicit declarations are always net type "wire" and only one bit wide.

Types of Net

Each net type has functionality that is used to model different types of hardware (such as PMOS,
NMOS, CMOS, etc).This has been tabularized as follows:

Net Data Type Functionality
wire, tri Interconnecting wire - no special resolution function

wor, trior Wired outputs OR together (models ECL)
wand,triand Wired outputs AND together (models open-collector)

tri0,tri1 Net pulls-down or pulls-up when not driven
supply0,suppy1 Net has a constant logic 0 or logic 1 (supply strength)

Register Data Types

• Registers store the last value assigned to them until another assignment statement
changes their value.

• Registers represent data storage constructs.
• Register arrays are called memories.

Version 2 EE IIT, Kharagpur 9

• Register data types are used as variables in procedural blocks.
• A register data type is required if a signal is assigned a value within a procedural block
• Procedural blocks begin with keyword initial and always.

Some common data types are listed in the following table:

Data Types Functionality
reg Unsigned variable

integer Signed variable – 32 bits
time Unsigned integer- 64 bits
real Double precision floating point variable

1.2.3 Apart from these there are vectors, integer, real & time
 register data types.

Some examples are as follows:
Integer
integer counter; // general purpose variable used as a counter.

initial
counter= -1; // a negative one is stored in the counter

Real
real delta; // Define a real variable called delta.

initial
begin
delta= 4e10; // delta is assigned in scientific notation
delta = 2.13; // delta is assigned a value 2.13
end

integer i; // define an integer I;

initial
i = delta ; // I gets the value 2(rounded value of 2.13)

Time
time save_sim_time; // define a time variable save_sim_time

initial
save_sim_time = $time; // save the current simulation time.
n.b. $time is invoked to get the current simulation time

Arrays
integer count [0:7]; // an array of 8 count variables
reg [4:0] port_id[0:7]; // Array of 8 port _ids, each 5 bit wide.
integer matrix[4:0] [0:255] ; // two dimensional array of integers.

Version 2 EE IIT, Kharagpur 10

1.2.4 Some Constructs Using Data Types

Memories

Memories are modeled simply as one dimensional array of registers each element of the array is
know as an element of word and is addressed by a single array index.
reg membit [0:1023] ; // memory meme1bit with 1K 1- bit words
reg [7:0] membyte [0:1023]; memory membyte with 1K 8 bit words
membyte [511] // fetches 1 byte word whose address is 511.

Strings

A string is a sequence of characters enclosed by double quotes and all contained on a single line.
Strings used as operands in expressions and assignments are treated as a sequence of eight-bit
ASCII values, with one eight-bit ASCII value representing one character. To declare a variable
to store a string, declare a register large enough to hold the maximum number of characters the
variable will hold. Note that no extra bits are required to hold a termination character; Verilog
does not store a string termination character. Strings can be manipulated using the standard
operators.
When a variable is larger than required to hold a value being assigned, Verilog pads the contents
on the left with zeros after the assignment. This is consistent with the padding that occurs during
assignment of non-string values. Certain characters can be used in strings only when preceded by
an introductory character called an escape character. The following table lists these characters in
the right-hand column with the escape sequence that represents the character in the left-hand
column.

Modules

• Module are the building blocks of Verilog designs
• You create design hierarchy by instantiating modules in other modules.
• An instance of a module can be called in another, higher-level module.

Version 2 EE IIT, Kharagpur 11

Ports

• Ports allow communication between a module and its environment.
• All but the top-level modules in a hierarchy have ports.
• Ports can be associated by order or by name.
You declare ports to be input, output or inout. The port declaration syntax is :
input [range_val:range_var] list_of_identifiers;
output [range_val:range_var] list_of_identifiers;
inout [range_val:range_var] list_of_identifiers;

Schematic

1.2.5 Port Connection Rules

• Inputs : internally must always be type net, externally the inputs can be connected to
variable reg or net type.

• Outputs : internally can be type net or reg, externally the outputs must be connected to a
variable net type.

• Inouts : internally or externally must always be type net, can only be connected to a
variable net type.

Version 2 EE IIT, Kharagpur 12

• Width matching: It is legal to connect internal and external ports of different sizes. But
beware, synthesis tools could report problems.

• Unconnected ports : unconnected ports are allowed by using a ","
• The net data types are used to connect structure
• A net data type is required if a signal can be driven a structural connection.

Example – Implicit

dff u0 (q,,clk,d,rst,pre); // Here second port is not connected

Example – Explicit

dff u0 (.q (q_out),
.q_bar (),
.clk (clk_in),
.d (d_in),
.rst (rst_in),
.pre (pre_in)); // Here second port is not connected

1.3 Gate Level Modeling

In this level of abstraction the system modeling is done at the gate level ,i.e., the properties of the
gates etc. to be used by the behavioral description of the system are defined. These definitions
are known as primitives. Verilog has built in primitives for gates, transmission gates, switches,
buffers etc.. These primitives are instantiated like modules except that they are predefined in
verilog and do not need a module definition. Two basic types of gates are and/or gates & buf /not
gates.

1.3.1 Gate Primitives

And/Or Gates: These have one scalar output and multiple scalar inputs. The output of the gate is
evaluated as soon as the input changes .

wire OUT, IN1, IN2;
// basic gate instantiations
and a1(OUT, IN1, IN2);
nand na1(OUT, IN1, IN2);
or or1(OUT, IN1, IN2);

Version 2 EE IIT, Kharagpur 13

nor nor1(OUT, IN1, IN2);
xor x1(OUT, IN1, IN2);
xnor nx1(OUT, IN1, IN2);
// more than two inputs; 3 input nand gate
nand na1_3inp(OUT, IN1, IN2, IN3);
// gate instantiation without instance name
and (OUT, IN1, IN2); // legal gate instantiation

Buf/Not Gates: These gates however have one scalar input and multiple scalar outputs
\// basic gate instantiations for bufif

bufif1 b1(out, in, ctrl);
bufif0 b0(out, in, ctrl);
// basic gate instantiations for notif
notif1 n1(out, in, ctrl);
notif0 n0(out, in, ctrl);

Array of instantiations

wire [7:0] OUT, IN1, IN2;
// basic gate instantiations
nand n_gate[7:0](OUT, IN1, IN2);

Gate-level multiplexer

A multiplexer serves a very efficient basic logic design element
// module 4:1 multiplexer
module mux4_to_1(out, i1, i2 , i3, s1, s0);
// port declarations
output out;
input i1, i2, i3;
input s1, s0;
// internal wire declarations
wire s1n, s0n;
wire y0, y1, y2, y3 ;
//gate instantiations
// create s1n and s0n signals
not (s1n, s1);
not (s0n, s0);
// 3-input and gates instantiated
and (y0, i0, s1n, s0n);
and (y1, i1, s1n, s0);
and (y2, i2, s1, s0n);
and (y3, i3, s1, s0);
// 4- input gate instantiated
or (out, y0, y1, y2, y3);
endmodule

Version 2 EE IIT, Kharagpur 14

1.3.2 Gate and Switch delays

In real circuits, logic gates haves delays associated with them. Verilog provides the mechanism
to associate delays with gates.

• Rise, Fall and Turn-off delays.
• Minimal, Typical, and Maximum delays

Rise Delay

The rise delay is associated with a gate output transition to 1 from another value (0,x,z).

Fall Delay

The fall delay is associated with a gate output transition to 0 from another value (1,x,z).

Turn-off Delay
The Turn-off delay is associated with a gate output transition to z from another value (0,1,x).
Min Value
The min value is the minimum delay value that the gate is expected to have.
Typ Value
The typ value is the typical delay value that the gate is expected to have.
Max Value
The max value is the maximum delay value that the gate is expected to have.

1.4 Verilog Behavioral Modeling

1.4.1 Procedural Blocks

Verilog behavioral code is inside procedures blocks, but there is an exception, some behavioral
code also exist outside procedures blocks. We can see this in detail as we make progress.
There are two types of procedural blocks in Verilog

• initial : initial blocks execute only once at time zero (start execution at time zero).
• always : always blocks loop to execute over and over again, in other words as the name

means, it executes always.

Version 2 EE IIT, Kharagpur 15

Example – initial
module initial_example();
reg clk,reset,enable,data;
initial begin
clk = 0;
reset = 0;
enable = 0;
data = 0;
end
endmodule

In the above example, the initial block execution and always block execution starts at time 0.
Always blocks wait for the the event, here positive edge of clock, where as initial block without
waiting just executes all the statements within begin and end statement.

Example – always
module always_example();
reg clk,reset,enable,q_in,data;
always @ (posedge clk)
if (reset) begin
data <= 0;
end
else if (enable) begin
data <= q_in;
end
endmodule

In always block, when the trigger event occurs, the code inside begin and end is executed and
then once again the always block waits for next posedge of clock. This process of waiting and
executing on event is repeated till simulation stops.

1.4.2 Procedural Assignment Statements

• Procedural assignment statements assign values to reg , integer , real , or time variables
and can not assign values to nets (wire data types)

• You can assign to the register (reg data type) the value of a net (wire), constant, another
register, or a specific value.

1.4.3 Procedural Assignment Groups

If a procedure block contains more then one statement, those statements must be enclosed within
Sequential begin - end block

• Parallel fork - join block

Example - "begin-end"
module initial_begin_end();
reg clk,reset,enable,data;
initial begin

Version 2 EE IIT, Kharagpur 16

#1 clk = 0;
#10 reset = 0;
#5 enable = 0;
#3 data = 0;
end
endmodule

Begin : clk gets 0 after 1 time unit, reset gets 0 after 6 time units, enable after 11 time units, data
after 13 units. All the statements are executed sequentially.

Example - "fork-join"
module initial_fork_join();
reg clk,reset,enable,data;
initial fork
#1 clk = 0;
#10 reset = 0;
#5 enable = 0;
#3 data = 0;
join
endmodule

1.4.4 Sequential Statement Groups

The begin - end keywords:

• Group several statements together.
• Cause the statements to be evaluated sequentially (one at a time)

o Any timing within the sequential groups is relative to the previous statement.
o Delays in the sequence accumulate (each delay is added to the previous delay)
o Block finishes after the last statement in the block.

1.4.5 Parallel Statement Groups

The fork - join keywords:

• Group several statements together.
• Cause the statements to be evaluated in parallel (all at the same time).

o Timing within parallel group is absolute to the beginning of the group.
o Block finishes after the last statement completes(Statement with high delay, it

can be the first statement in the block).

Example – Parallel
module parallel();
reg a;
initial
fork
#10 a = 0;’
#11 a = 1;
#12 a = 0;
#13 a = 1;

Version 2 EE IIT, Kharagpur 17

#14 a = $finish;
join
endmodule

Example - Mixing "begin-end" and "fork - join"
module fork_join();
reg clk,reset,enable,data;
initial begin
$display ("Starting simulation");
fork : FORK_VAL
#1 clk = 0;
#5 reset = 0;
#5 enable = 0;
#2 data = 0;
join
$display ("Terminating simulation");
#10 $finish;
end
endmodule

1.4.6 Blocking and Nonblocking assignment

Blocking assignments are executed in the order they are coded, Hence they are sequential. Since
they block the execution of the next statement, till the current statement is executed, they are
called blocking assignments. Assignment are made with "=" symbol. Example a = b;
Nonblocking assignments are executed in parallel. Since the execution of next statement is not
blocked due to execution of current statement, they are called nonblocking statement.
Assignment are made with "<=" symbol. Example a <= b;

Example - blocking and nonblocking
module blocking_nonblocking();
reg a, b, c, d ;
// Blocking Assignment
initial begin
#10 a = 0;’
#11 a = 1;
#12 a = 0;
#13 a = 1;
end
initial begin
#10 b <= 0;
#11 b <=1;
#12 b <=0;
#13 b <=1;
end
initial begin
c = #10 0;
c = #11 1;

Version 2 EE IIT, Kharagpur 18

c = #12 0;
c = #13 1;
end
initial begin
d <= #10 0;
d <= #11 1;
d <= #12 0;
d <= #13 1;
end
initial begin
$monitor(" TIME = %t A = %b B = %b C = %b D = %b" ,$time, a, b, c, d);
#50 $finish(1);
end
endmodule

1.4.7 The Conditional Statement if-else

The if - else statement controls the execution of other statements. In programming language like
c, if - else controls the flow of program. When more than one statement needs to be executed for
an if conditions, then we need to use begin and end as seen in earlier examples.

Syntax: if
if (condition) statements;
Syntax: if-else
if (condition) statements;
else
statements;

1.4.8 Syntax: nested if-else-if

if (condition) statements;
else if (condition) statements;
................
................
else statements;

Example- simple if
module simple_if();
reg latch;
wire enable,din;
always @ (enable or din)
if (enable) begin
latch <= din;
end
endmodule

Example- if-else
module if_else();

Version 2 EE IIT, Kharagpur 19

reg dff;
wire clk,din,reset;
always @ (posedge clk)
if (reset) begin
dff <= 0;
end else begin
dff <= din;
end
endmodule

Example- nested-if-else-if
module nested_if();
reg [3:0] counter;
wire clk,reset,enable, up_en, down_en;
always @ (posedge clk)
// If reset is asserted
if (reset == 1'b0) begin
counter <= 4'b0000;
// If counter is enable and up count is mode
end else if (enable == 1'b1 && up_en == 1'b1) begin
counter <= counter + 1'b1;
// If counter is enable and down count is mode
end else if (enable == 1'b1 && down_en == 1'b1) begin
counter <= counter - 1'b0;
// If counting is disabled
end else begin

counter <= counter; // Redundant code
end
endmodule

Parallel if-else

In the above example, the (enable == 1'b1 && up_en == 1'b1) is given highest pritority and
condition (enable == 1'b1 && down_en == 1'b1) is given lowest priority. We normally don't
include reset checking in priority as this does not fall in the combo logic input to the flip-flop as
shown in figure below.

Version 2 EE IIT, Kharagpur 20

So when we need priority logic, we use nested if-else statements. On the other end if we don't
want to implement priority logic, knowing that only one input is active at a time i.e. all inputs are
mutually exclusive, then we can write the code as shown below.
It is a known fact that priority implementation takes more logic to implement then parallel
implementation. So if you know the inputs are mutually exclusive, then you can code the logic in
parallel if.

module parallel_if();
reg [3:0] counter;
wire clk,reset,enable, up_en, down_en;
always @ (posedge clk)
// If reset is asserted
if (reset == 1'b0) begin
counter <= 4'b0000;
end else begin
// If counter is enable and up count is mode
if (enable == 1'b1 && up_en == 1'b1) begin
counter <= counter + 1'b1;
end
// If counter is enable and down count is mode
if (enable == 1'b1 && down_en == 1'b1) begin
counter <= counter - 1'b0;
end
end
endmodule

1.4.9 The Case Statement

The case statement compares an expression with a series of cases and executes the statement or
statement group associated with the first matching case

• case statement supports single or multiple statements.
• Group multiple statements using begin and end keywords.
Syntax of a case statement look as shown below.
case ()
< case1 > : < statement >
< case2 > : < statement >
default : < statement >
 endcase

1.4.10 Looping Statements

Looping statements appear inside procedural blocks only. Verilog has four looping statements
like any other programming language.

• forever
• repeat
• while
• for

Version 2 EE IIT, Kharagpur 21

The forever statement
The forever loop executes continually, the loop never ends. Normally we use forever statement
in initial blocks.
syntax : forever < statement >

Once should be very careful in using a forever statement, if no timing construct is present in the
forever statement, simulation could hang.
The repeat statement
The repeat loop executes statement fixed < number > of times.
syntax : repeat (< number >) (< statement >)

The while loop statement
The while loop executes as long as an evaluates as true. This is same as in any other
programming language.
syntax: while (expression)<statement>

The for loop statement
The for loop is same as the for loop used in any other programming language.

• Executes an < initial assignment > once at the start of the loop.
• Executes the loop as long as an < expression > evaluates as true.
• Executes a at the end of each pass through the loop

syntax : for (< initial assignment >; < expression >, < step assignment >) < statement >

Note : verilog does not have ++ operator as in the case of C language.

1.5 Switch level modeling

1.5.1 Verilog provides the ability to design at MOS-transistor level, however with increase in
complexity of the circuits design at this level is growing tough. Verilog however only provides
digital design capability and drive strengths associated to them. Analog capability is not into
picture still. As a matter of fact transistors are only used as switches.

MOS switches
//MOS switch keywords
nmos
pmos

Whereas the keyword nmos is used to model a NMOS transistor, pmos is used for PMOS
transistors.

Instantiation of NMOS and PMOS switches
nmos n1(out, data, control); // instantiate a NMOS switch
pmos p1(out, data, control); // instantiate a PMOS switch

CMOS switches

Instantiation of a CMOS switch.

Version 2 EE IIT, Kharagpur 22

cmos c1(out, data, ncontrol, pcontrol); // instantiate a cmos switch

The ‘ncontrol’ and ‘pcontrol’ signals are normally complements of each other

Bidirectional switches

These switches allow signal flow in both directions and are defined by keywords tran,tranif0 ,
and tranif1

Instantiation

tran t1(inout1, inout2); // instance name t1 is optional
tranif0(inout1, inout2, control); // instance name is not specified
tranif1(inout1, inout2, control); // instance name t1 is not specified

1.5.2 Delay specification of switches

pmos, nmos, rpmos, rnmos

• Zero(no delay) pmos p1(out,data, control);
• One (same delay in all) pmos#(1) p1(out,data, control);
• Two(rise, fall) nmos#(1,2) n1(out,data, control);
• Three(rise, fall, turnoff)mos#(1,3,2) n1(out,data,control);

1.5.3 An Instance: Verilog code for a NOR- gate

// define a nor gate, my_nor
module my_nor(out, a, b);
output out;
input a, b;

//internal wires
wire c;
// set up pwr n ground lines

supply1 pwr;// power is connected to Vdd
supply0 gnd; // connected to Vss

// instantiate pmos switches
pmos (c, pwr, b);
pmos (out, c, a);

//instantiate nmos switches

nmos (out, gnd, a);

Stimulus to test the NOR-gate
// stimulus to test the gate

Version 2 EE IIT, Kharagpur 23

module stimulus;
reg A, B;
wire OUT;

//instantiate the my_nor module
my_nor n1(OUT, A, B);

//Apply stimulus
initial
begin
 //test all possible combinations
 A=1’b0; B=1’b0;
 #5 A=1’b0; B=1’b1;
 #5 A=1’b1; B=1’b0;
 #5 A=1’b1; B=1’b1;
end
//check results
initial
$ monitor($time, “OUT = %b, B=%b, OUT, A, B);

endmodule

1.6 Some Exercises

1.6.1 Gate level modelling

i) A 2 inp xor gate can be build from my_and, my_or and my_not gates. Construct an xor module
in verilog that realises the logic function z= xy'+x'y. Inputs are x, y and z is the output. Write a
stimulus module that exercises all the four combinations of x and y
ii) The logic diagram for an RS latch with delay is being shown.

Write the verilog description for the RS latch, including delays of 1 unit when instantiating the
nor gates. Write the stimulus module for the RS latch using the following table and verify the
outputs.

Version 2 EE IIT, Kharagpur 24

Set Reset Qn+1
0 0 qn
0 1 0
1 0 1
1 1 ?

iii) Design a 2-input multiplexer using bufif0 and bufif1 gates as shown below

The delay specification for gates b1 and b2 are as follows

 Min Typ Max
Rise 1 2 3
Fall 3 4 5
Turnoff 5 6 7

1.6.2. Behavioral modelling

i) Using a while loop design a clk generator whose initial value is 0. time period of the clk is 10.
ii) Using a forever statement, design a clk with time period=10 and duty cycle =40%. Initial
value of clk is 0
iii) Using the repeat loop, delay the statement a=a+1 by 20 positive edges of clk.
iv) Design a negative edge triggered D-FF with synchronous clear, active high (D-FF clears only
at negative edge of clk when clear is high). Use behavioral statements only. (Hint: output q of D-
FF must be declared as reg.) Design a clock with a period of 10units and test the D-FF
v) Design a 4 to 1 multiplexer using if and else statements
vi) Design an 8-bit counter by using a forever loop, named block, and disabling of named block.
The counter starts counting at count =5 and finishes at count =67. The count is incremented at
positive edge of clock. The clock has a time period of 10. The counter starts through the loop
only once and then is disabled (hint: use the disable statement)

Version 2 EE IIT, Kharagpur 25

	Design of Embedded Processors
	Introduction to Hardware Description Languages - I
	Instructional Objectives
	Introduction
	What is a HDL and where does Verilog come?
	Hierarchy of design methodologies
	Bottom-Up Design
	Top-Down Design

	Hierarchical design concept and Verilog
	Modules

	Abstraction Levels
	Behavioral or algorithmic Level
	Register-Transfer Level
	Gate Level
	Switch Level
	Instances

	The Design Flow
	Specification
	High Level Design
	Micro Design/Low level design
	RTL Coding
	Simulation
	Synthesis
	Place & Route
	Post Silicon Validation

	Verilog HDL: Syntax and Semantics
	Lexical Conventions
	Data Types
	Types of Net
	Register Data Types

	Apart from these there are vectors, integer, real & time register data types.
	Some Constructs Using Data Types
	Memories
	Strings
	Modules
	Ports
	Schematic

	Port Connection Rules
	Example – Implicit
	Example – Explicit

	Gate Level Modeling
	Gate Primitives
	Array of instantiations
	Gate-level multiplexer

	Gate and Switch delays
	Rise Delay
	Fall Delay

	Verilog Behavioral Modeling
	Procedural Blocks
	Procedural Assignment Statements
	Procedural Assignment Groups
	Sequential Statement Groups
	Parallel Statement Groups
	Blocking and Nonblocking assignment
	The Conditional Statement if-else
	Syntax: nested if-else-if
	Parallel if-else

	The Case Statement
	Looping Statements

	Switch level modeling
	CMOS switches
	Bidirectional switches
	Instantiation
	Delay specification of switches
	An Instance: Verilog code for a NOR- gate

	Some Exercises
	Gate level modelling
	Behavioral modelling

