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Instructional Objectives 
 
After going through this lesson the student would be able to 

 
• Explain the meaning of the term On-line Testing 

• Describe the main issues in on-line testing and identify applications where on-line testing 
are required for embedded systems 

• Distinguish among concurrent and non-concurrent testing and their relations with BIST 
and on-line testing 

• Describe an application of on-line testing for System-on-Chip 
 
On-line Testing of Embedded Systems 
 
1.  Introduction 
  
 EMBEDDED SYSTEMS are computers incorporated in consumer products or other devices 
to perform application-specific functions. The product user is usually not even aware of the 
existence of these systems. From toys to medical devices, from ovens to automobiles, the range 
of products incorporating microprocessor-based, software controlled systems has expanded 
rapidly since the introduction of the microprocessor in 1971. The lure of embedded systems is 
clear: They promise previously impossible functions that enhance the performance of people or 
machines. As these systems gain sophistication, manufacturers are using them in increasingly 
critical applications— products that can result in injury, economic loss, or unacceptable 
inconvenience when they do not perform as required.  
 Embedded systems can contain a variety of computing devices, such as microcontrollers, 
application-specific integrated circuits, and digital signal processors. A key requirement is that 
these computing devices continuously respond to external events in real time. Makers of 
embedded systems take many measures to ensure safety and reliability throughout the lifetime of 
products incorporating the systems. Here, we consider techniques for identifying faults during 
normal operation of the product—that is, online-testing techniques. We evaluate them on the 
basis of error coverage, error latency, space redundancy, and time redundancy.  
 
2.  Embedded-system test issues  
  
 Cost constraints in consumer products typically translate into stringent constraints on product 
components. Thus, embedded systems are particularly cost sensitive. In many applications, low 
production and maintenance costs are as important as performance.  
      Moreover, as people become dependent on computer-based systems, their expectations of 
these systems’ availability increase dramatically. Nevertheless, most people still expect 
significant downtime with computer systems—perhaps a few hours per month. People are much 
less patient with computer downtime in other consumer products, since the items in question did 
not demonstrate this type of failure before embedded systems were added. Thus, complex 
consumer products with high availability requirements must be quickly and easily repaired. For 
this reason, automobile manufacturers, among others, are increasingly providing online detection 
and diagnosis, capabilities previously found only in very complex and expensive applications 
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such as aerospace systems. Using embedded systems to incorporate functions previously 
considered exotic in low-cost, everyday products is a growing trend.  
      Since embedded systems are frequently components of mobile products, they are exposed to 
vibration and other environmental stresses that can cause them to fail. Embedded systems in 
automotive applications are exposed to extremely harsh environments, even beyond those 
experienced by most portable devices. These applications are proliferating rapidly, and their 
more stringent safety and reliability requirements pose a significant challenge for designers. 
Critical applications and applications with high availability requirements are the main candidates 
for online testing.   
      Embedded systems consist of hardware and software, each usually considered separately in 
the design process, despite progress in the field of hardware-software co design. A strong 
synergy exists between hardware and software failure mechanisms and diagnosis, as in other 
aspects of system performance. System failures often involve defects in both hardware and 
software. Software does not “break” in the common sense of the term. However, it can perform 
inappropriately due to faults in the underlying hardware or specification or design flaws in either 
hardware or software. At the same time, one can exploit the software to test for and respond to 
the presence of faults in the underlying hardware.  
      Online software testing aims at detecting design faults (bugs) that avoid detection before the 
embedded system is incorporated and used in a product. Even with extensive testing and formal 
verification of the system, some bugs escape detection. Residual bugs in well-tested software 
typically behave as intermittent faults, becoming apparent only in rare system states. Online 
software testing relies on two basic methods: acceptance testing and diversity [1]. Acceptance 
testing checks for the presence or absence of well-defined events or conditions, usually 
expressed as true-or-false conditions (predicates), related to the correctness or safety of 
preceding computations. Diversity techniques compare replicated computations, either with 
minor variations in data (data diversity) or with procedures written by separate, unrelated design 
teams (design diversity). This chapter focuses on digital hardware testing, including techniques 
by which hardware tests itself, built-in self-test (BIST). Nevertheless, we must consider the role 
of software in detecting, diagnosing, and handling hardware faults. If we can use software to test 
hardware, why should we add hardware to test hardware? There are two possible answers. First, 
it may be cheaper or more practical to use hardware for some tasks and software for others. In an 
embedded system, programs are stored online in hardware-implemented memories such as 
ROMs (for this reason, embedded software is sometimes called firmware). This program storage 
space is a finite resource whose cost is measured in exactly the same way as other hardware. A 
function such as a test is “soft” only in the sense that it can easily be modified or omitted in the 
final implementation.  
      The second answer involves the time that elapses between a fault’s occurrence and a problem 
arising from that fault. For instance, a fault may induce an erroneous system state that can 
ultimately lead to an accident. If the elapsed time between the fault’s occurrence and the 
corresponding accident is short, the fault must be detected immediately. Acceptance tests can 
detect many faults and errors in both software and hardware. However, their exact fault coverage 
is hard to measure, and even when coverage is complete, acceptance tests may take a long time 
to detect some faults. BIST typically targets relatively few hardware faults, but it detects them 
quickly.  
 These two issues, cost and latency, are the main parameters in deciding whether to use 
hardware or software for testing and which hardware or software technique to use. This decision 
requires system-level analysis. We do not consider software methods here. Rather, we emphasize 
the appropriate use of widely implemented BIST methods for online hardware testing. These 
methods are components in the hardware-software trade-off. 
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3.  Online testing 
  
 Faults are physical or logical defects in the design or implementation of a digital device. 
Under certain conditions, they lead to errors—that is, incorrect system states. Errors induce 
failures, deviations from appropriate system behavior. If the failure can lead to an accident, it is a 
hazard. Faults can be classified into three groups: design, fabrication, and operational. Design 
faults are made by human designers or CAD software (simulators, translators, or layout 
generators) during the design process. Fabrication defects result from an imperfect 
manufacturing process. For example, shorts and opens are common manufacturing defects in 
VLSI circuits. Operational faults result from wear or environmental disturbances during normal 
system operation. Such disturbances include electromagnetic interference, operator mistakes, and 
extremes of temperature and vibration. Some design defects and manufacturing faults escape 
detection and combine with wear and environmental disturbances to cause problems in the field. 
Operational faults are usually classified by their duration:  

• Permanent faults remain in existence indefinitely if no corrective action is taken. Many 
are residual design or manufacturing faults. The rest usually occur during changes in 
system operation such as system start-up or shutdown or as a result of a catastrophic 
environmental disturbance such as a collision. 

• Intermittent faults appear, disappear, and reappear repeatedly. They are difficult to 
predict, but their effects are highly correlated. When intermittent faults are present, the 
system works well most of the time but fails under atypical environmental conditions. 

• Transient faults appear and disappear quickly and are not correlated with each other. 
They are most commonly induced by random environmental disturbances.  

One generally uses online testing to detect operational faults in computers that support critical or 
high-availability applications. The goal of online testing is to detect fault effects, or errors, and 
take appropriate corrective action. For example, in some critical applications, the system shuts 
down after an error is detected. In other applications, error detection triggers a reconfiguration 
mechanism that allows the system to continue operating, perhaps with some performance 
degradation. Online testing can take the form of external or internal monitoring, using either 
hardware or software. Internal monitoring, also called self-testing, takes place on the same 
substrate as the circuit under test (CUT). Today, this usually means inside a single IC—a system 
on a chip. There are four primary parameters to consider in designing an online-testing scheme:  

• error coverage—the fraction of modeled errors detected, usually expressed as a 
percentage. Critical and highly available systems require very good error coverage to 
minimize the probability of system failure.  

• error latency—the difference between the first time an error becomes active and the first 
time it is detected. Error latency depends on the time taken to perform a test and how 
often tests are executed. A related parameter is fault latency, the difference between the 
onset of the fault and its detection. Clearly, fault latency is greater than or equal to error 
latency, so when error latency is difficult to determine, test designers often consider fault 
latency instead.  

• space redundancy—the extra hardware or firmware needed for online testing.   
• time redundancy—the extra time needed for online testing.  

     The ideal online-testing scheme would have 100% error coverage, error latency of 1 clock 
cycle, no space redundancy, and no time redundancy. It would require no redesign of the CUT 
and impose no functional or structural restrictions on it. Most BIST methods meet some of these 
constraints without addressing others. Considering all four parameters in the design of an online-
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testing scheme may create conflicting goals. High coverage requires high error latency, space 
redundancy, and/or time redundancy. Schemes with immediate detection (error latency equaling 
1) minimize time redundancy but require more hardware. On the other hand, schemes with 
delayed detection (error latency greater than 1) reduce time and space redundancy at the expense 
of increased error latency. Several proposed delayed-detection techniques assume 
equiprobability of input combinations and try to establish a probabilistic bound on error latency 
[2]. As a result, certain faults remain undetected for a long time because tests for them rarely 
appear at the CUT’s inputs.  
 To cover all the operational fault types described earlier, test engineers use two different 
modes of online testing: concurrent and non-concurrent. Concurrent testing takes place during 
normal system operation, and non-concurrent testing takes place while normal operation is 
temporarily suspended. One must often overlap these test modes to provide a comprehensive 
online-testing strategy at acceptable cost.  
 
4.  Non-concurrent testing  
  
 This form of testing is either event-triggered (sporadic) or time-triggered (periodic) and is 
characterized by low space and time redundancy. Event triggered testing is initiated by key 
events or state changes such as start-up or shutdown, and its goal is to detect permanent faults. 
Detecting and repairing permanent faults as soon as possible is usually advisable. Event-
triggered tests resemble manufacturing tests. Any such test can be applied online, as long as the 
required testing resources are available. Typically, the hardware is partitioned into components, 
each exercised by specific tests. RAMs, for instance, are tested with manufacturing tests such as 
March tests [3].  
    Time-triggered testing occurs at predetermined times in the operation of the system. It detects 
permanent faults, often using the same types of tests applied by event-triggered testing. The 
periodic approach is especially useful in systems that run for extended periods during which no 
significant events occur to trigger testing. Periodic testing is also essential for detecting 
intermittent faults. Such faults typically behave as permanent faults for short periods. Since they 
usually represent conditions that must be corrected, diagnostic resolution is important. Periodic 
testing can identify latent design or manufacturing flaws that appear only under certain 
environmental conditions. Time-triggered tests are frequently partitioned and interleaved so that 
only part of the test is applied during each test period.  
 
5.  Concurrent testing 
 
 Non-concurrent testing cannot detect transient or intermittent faults whose effects disappear 
quickly. Concurrent testing, on the other hand, continuously checks for errors due to such faults. 
However, concurrent testing is not particularly useful for diagnosing the source of errors, so test 
designers often combine it with diagnostic software. They may also combine concurrent and 
non-concurrent testing to detect or diagnose complex faults of all types.  
     A common method of providing hardware support for concurrent testing, especially for 
detecting control errors, is a watchdog timer [4]. This is a counter that the system resets 
repeatedly to indicate that the system is functioning properly. The watchdog concept assumes 
that the system is fault-free—or at least alive—if it can reset the timer at appropriate intervals. 
The ability to perform this simple task implies that control flow is correctly traversing timer-reset 
points. One can monitor system sequencing very precisely by guarding the watchdog- reset 
operations with software-based acceptance tests that check signatures computed while control 
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flow traverses various checkpoints. To implement this last approach in hardware, one can 
construct more complex hardware watchdogs.  
      A key element of concurrent testing for data errors is redundancy. For example, the 
duplication-with-comparison (DWC) technique5 detects any single error at the expense of 100% 
space redundancy. This technique requires two copies of the CUT, which operate in tandem with 
identical inputs. Any discrepancy in their outputs indicates an error. In many applications, 
DWC’s high hardware overhead is unacceptable. Moreover, it is difficult to prevent minor 
timing variations between duplicated modules from invalidating comparison.  
    A possible lower-cost alternative is time redundancy. A technique called double execution, or 
retry, executes critical operations more than once at diverse time points and compares their 
results. Transient faults are likely to affect only one instance of the operation and thus can be 
detected. Another technique, re-computing with shifted operands (RESO) [5] achieves almost the 
same error coverage as DWC with 100% time redundancy but very little space redundancy. 
However, no one has demonstrated the practicality of double execution and RESO for online 
testing of general logic circuits.  
      A third, widely used form of redundancy is information redundancy—the addition of 
redundant coded information such as a parity-check bit[5]. Such codes are particularly effective 
for detecting memory and data transmission errors, since memories and networks are susceptible 
to transient errors. Coding methods can also detect errors in data computed during critical 
operations. 
 
6.  Built-in self-test  
  
 For critical or highly available systems, a comprehensive online-testing approach that covers 
all expected permanent, intermittent, and transient faults is essential. In recent years, BIST has 
emerged as an important method of testing manufacturing faults, and researchers increasingly 
promote it for online testing as well.  
     BIST is a design-for-testability technique that places test functions physically on chip with 
the CUT, as illustrated in Figure 42.1. In normal operating mode, the CUT receives its inputs 
from other modules and performs the function for which it was de-signed. In test mode, a test 
pattern generator circuit applies a sequence of test patterns to the CUT, and a response monitor 
evaluates the test responses. In the most common type of BIST, the response monitor compacts 
the test responses to form fault signatures. It compares the fault signatures with reference 
signatures generated or stored on chip, and an error signal indicates any discrepancies detected. 
We assume this type of BIST in the following discussion.  
 In developing a BIST methodology for embedded systems, we must consider four primary 
parameters related to those listed earlier for online-testing techniques:  

• fault coverage—the fraction of faults of interest that the test patterns produced by the test 
generator can expose and the response monitor can detect. Most monitors produce a fault-
free signature for some faulty response sequences, an undesirable property called 
aliasing.  

• test set size—the number of test patterns produced by the test generator. Test set size is 
closely linked to fault coverage; generally, large test sets imply high fault coverage. 
However, for online testing, test set size must be small to reduce fault and error latency.  

• hardware overhead—the extra hardware needed for BIST. In most embedded systems, 
high hardware overhead is not acceptable.  
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• performance penalty—the impact of BIST hardware on normal circuit performance, such 
as worst-case (critical) path delays. Overhead of this type is sometimes more important 
than hardware overhead.  

 System designers can use BIST for non-concurrent, online testing of a system’s logic and 
memory[6]. They can readily configure the BIST hardware for event-triggered testing, tying the 
BIST control to the system reset so that testing occurs during system start-up or shutdown. BIST 
can also be designed for periodic testing with low fault latency. This requires incorporating a test 
process that guarantees the detection of all target faults within a fixed time.  
      Designers usually implement online BIST with the goals of complete fault coverage and low 
fault latency. Hence, they generally design the test generator and the response monitor to 
guarantee coverage of specific fault models, minimum hardware overhead, and reasonable test 
set size. Different parts of the system meet these goals by different techniques.  
     Test generator and response monitor implementations often consist of simple, counter like 
circuits; especially linear- feedback shift registers [5]. An LFSR is formed from standard flip-
flops, with outputs of selected flip-flops being fed back (modulo 2) to its inputs. When used as a 
test generator, an LFSR is set to cycle rapidly through a large number of its states. These states, 
whose choice and order depend on the LFSR’s design parameters, define the test patterns. In this 
mode of operation, an LFSR is a source of pseudorandom tests that are, in principle, applicable 
to any fault and circuit types. An LFSR can also serve as a response monitor by counting (in a 
special sense) the responses produced by the tests. After receiving a sequence of test responses, 
an LFSR response monitor forms a fault signature, which it compares to a known or generated 
good signature to determine whether a fault is present.  
     Ensuring that fault coverage is sufficiently high and the number of tests is sufficiently low 
are the main problems with random BIST methods. Researchers have proposed two general 
approaches to preserve the cost advantages of LFSRs while greatly shortening the generated test 
sequence. One approach is to insert test points in the CUT to improve controllability and 
observability. However, this approach can result in performance loss. Alternatively, one can 
introduce some determinism into the generated test sequence—for example, by inserting specific 
“seed tests” known to detect hard faults.  
      Some CUTs, including data path circuits, contain hard-to detect faults that are detectable by 
only a few test patterns, denoted Thard. An N-bit LSFR can generate a sequence that eventually 
includes 2N - 1 patterns (essentially all possibilities). However, the probability that the tests in 
Thard will appear early in the sequence is low. In such cases, one can use deterministic testing, 
which tailors the generated test sequence to the CUT’s functional properties, instead of random 
testing. Deterministic testing is especially suited to RAMs, ROMs, and other highly regular 
components. A deterministic technique called transparent BIST [3] applies BIST to RAMs while 
preserving the RAM contents—a particularly desirable feature for online testing. Keeping 
hardware overhead acceptably low is the main difficulty with deterministic BIST. 
 A straightforward way to generate a specific test set is to store it in a ROM and address each 
stored test pattern with a counter. Unfortunately, ROMs tend to be much too expensive for 
storing entire test sequences. An alternative method is to synthesize a finite-state machine that 
directly generates the test set. However, the relatively large test set size and test vector width, as 
well as the test set’s irregular structure, are much more than current FSM synthesis programs can 
handle.  
     Another group of test generator design methods, loosely called deterministic, attempt to 
embed a complete test set in a specific generated sequence. Again the generated tests must meet 
the coverage, overhead, and test size constraints we’ve discussed. An earlier article [7] presents a 
representative BIST design method for data path circuits that meets these requirements. The test 
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generator’s structure, based on a twisted-ring counter, is tailored to produce a regular, 
deterministic test sequence of reasonable size. One can systematically rescale the test generator 
as the size of anon-bit-sliced data path CUT, such as a carry-look-ahead adder, changes. Instead 
of using an LFSR, a straightforward way to compress test response data and produce a fault 
signature is to use an FSM or an accumulator. However, FSM hardware overhead and 
accumulator aliasing are difficult parameters to control. Keeping hardware overhead acceptably 
low and reducing aliasing are the main difficulties in response monitor design. 
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Control  

Fig. 42.1 A General BIST Scheme 

An Example 
 
IEEE 1149.4 based Architecture for OLT of a Mixed Signal SoC 

      Analog/mixed signal blocks like DCDC converters, PLLs, ADCs, etc. and digital modules 
like application specific processors, micro controllers, UATRs, bus controllers etc. typically exist 
in SoCs. The have been used as cores of the SoC benchmark “Controller for Electro-Hydraulic 
Actuators” which is being used as the case study. It is to be noted that this case study is used 
only for illustration and the architecture is generic which applies for all Mixed Signal SoCs.  
 All the digital blocks like instruction specific processor, microcontroller, bus controller etc. 
have been designed with OLT capability using the CAD tool descried in [8]. Further, all these 
digital cores are IEEE 1149.1 compliant. In other words, all the digital cores are designed with a 
blanket comprising an on-line monitor and IEEE 1149.1 compliance circuitry.  For the analog 
modules the observer have been designed using ADCs and digital logic [9]. The test blanket for 
the analog/mixed signal cores comprises IEEE 1149.4 circuitry.  A dedicated test controller is 
designed and placed on-chip that schedules the various lines tests during the operation of the 
SoC. The block diagram of the SoC being used as the case study is illustrated in Figure 42.2.  
The basic functionality of the SoC under consideration is discussed below. 
 
Electronic Controller Electro Hydraulic system 
 
    Actuator systems are vital in the flight control system, providing the motive force necessary 
to move the flight control surfaces. Hydraulic actuators are very common in space vehicle and 
flight control systems, where force/ weight consideration is very much important. This system 
positions the control surface of aircraft meeting performance requirement which acting against 
external loads. The actuator commands are processed in four identical analog servo loops, which 
command the four coils of force motor driving the hydraulic servo valve used to control the 

Version 2 EE IIT, Kharagpur 9



motion of the dual tandem hydraulic jack. The motion of the spool of the hydraulic servo valve 
(Master control Valve), regulates the flow of oil to the tandem jacks, thereby determine the ram 
position. The Spool and ram positions are controlled by means of feedback loops. The actuator 
system is controlled by the on-board flight electronics. A lot of work has been done for On-line 
fault detection and diagnosis of the mechanical system, however OLT of the electronic systems 
were hardly looked into.  It is to be noted that as Electro Hydraulic Actuators are mainly used in 
mission critical systems like avionics; for reliable operation on-line fault detection and diagnosis 
is required for both the mechanical and the electronic sub-systems.  
     The IEEE 1149.1 and 1149.4 circuitry are utilized to perform the BIST of the interconnecting 
buses in between the cores. It may be noted that on-line tests are carried only for cores, which are 
more susceptible to failures. However, the interconnecting buses are tested during startup and at 
intervals when cores being connected by them are ideal.  The test scheduling logic can be 
designed as suggested in [10]. 
The following three classes of tests are carried in the SoC: 
 
1. Interconnect test of the interconnecting buses (BIST) 
 
Interconnect testing is to detect open circuits in the interconnect betweens the cores, and to detect 
and diagnose bridging faults anywhere in the Interconnect --regardless of whether they are 
normally carry digital or analog signals. This test is performed by EXTEST instruction and 
digital test patterns are generated from the pre-programmed test controller. 
 
2. Parametric test of the interconnecting buses (BIST) 
 
Parametric test: Parametric test permits analog measurements using analog stimulus and 
responses. This test is also performed by EXTEST instruction. For this only three values of 
analog voltages viz., VH=VDD, VLow=VDD/3, VG= VSS are given as test inputs by the controller 
and the voltages at the output of the line under test is sampled after one bit coarse digitization as 
mentioned in the IEEE 1149.4 standard  
 
3. Internal test of the cores (Concurrent tests) 
 
This test is performed by INTEST instruction and this enables the on-line monitors placed on 
each of the cores present in the SoC. This test can be enabled concurrently with the SoC 
operation and need not be synchronized to start up of the normal operation of the SoC. The 
asynchronous startup/shutdown of the on-line testers facilitates power saving and higher 
reliability of the test circuitry if compared to the functional circuit. 
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