

Module
8

Testing of Embedded
System

Version 2 EE IIT, Kharagpur 1

Lesson
38

Testing Embedded
Systems

Version 2 EE IIT, Kharagpur 2

Instructional Objectives

After going through this lesson the student would be able to

• Distinguish between the terms testing and verification

• Describe the common types of faults that occur in embedded systems

• Explain the various types of models that are used to represent the faults

• Describe the methodology of testing systems with embedded cores

• Distinguish among terms like DFT, BIST and on-line testing

• Explain the need and mechanism of Automatic Test Pattern Generation in the context of
testing embedded hard-ware software systems

Testing Embedded Systems

1. Introduction

What is testing?

• Testing is an organized process to verify the behavior, performance, and reliability of a
device or system against designed specifications.

• It ensures a device or system to be as defect-free as possible.
• Expected behavior, performance, and reliability must be both formally described and

measurable.

Verification vs. Testing [1]

• Verification or debugging is the process of removing defects ("bugs") in the design phase
to ensure that the synthesized design, when manufactured will behave as expected.

• Testing is a manufacturing step to ensure that the manufactured device is defect free.
• Testing is one of the detective measures, and verification one of the corrective measures

of quality.

Verification Testing

Verifies the correctness of design. Verifies correctness of manufactured

system.

Performed by simulation, hardware
emulation, or formal methods.

Two-part process:
 1. Test generation: software process
executed once during design.
 2. Test application: electrical tests
applied to hardware.

Version 2 EE IIT, Kharagpur 3

Performed once prior to manufacturing. Test application performed on every
manufactured device.

Responsible for quality of design.

Responsible for quality of devices.

What is an "embedded system"?

Embedded systems are electronically controlled system where hardware and software are
combined [2-3]. These are computers incorporated in consumer products or other devices to
perform application-specific functions. The enduser is usually not even aware of their existence.
Embedded systems can contain a variety of computing devices, such as microcontrollers,
application-specific integrated circuits, and digital signal processors. Most systems used in real
life as power plant system, medical instrument system, home appliances, air traffic control
station, routers and firewalls, telecommunication exchanges, robotics and industrial automation,
smart cards, personal digital assistant (PDA) and cellular phone are example of embedded
system.

Real-Time System

Most, if not all, embedded systems are "real-time". The terms "real-time" and "embedded" are
often used interchangeably. A real-time system is one in which the correctness of a computation
not only depends on its logical correctness, but also on the time at which the result is produced.

• In hard real time systems if the timing constraints of the system are not met, system crash
could be the consequence. For example, in mission-critical application where failure is
not an option, time deadlines must be followed.

• In case of soft real time systems no catastrophe will occur if deadline fails and the time
limits are negotiable.

In spite of the progress of hardware/software codesign, hardware and software in embedded
system are usually considered separately in the design process. There is a strong interaction
between hardware and software in their failure mechanisms and diagnosis, as in other aspects of
system performance. System failures often involve defects in both hardware and software.
Software does not “break” in the traditional sense, however it can perform inappropriately due to
faults in the underlying hardware, as well as specification or design flaws in either the hardware
or the software. At the same time, the software can be exploited to test for and respond to the
presence of faults in the underlying hardware. It is necessary to understand the importance of the
testing of embedded system, as its functions have been complicated. However the studies related
to embedded system test are not adequate.

2. Embedded Systems Testing

Test methodologies and test goals differ in the hardware and software domains. Embedded
software development uses specialized compilers and development software that offer means for
debugging. Developers build application software on more powerful computers and eventually
test the application in the target processing environment.

Version 2 EE IIT, Kharagpur 4

In contrast, hardware testing is concerned mainly with functional verification and self-test after
chip is manufactured. Hardware developers use tools to simulate the correct behavior of circuit
models. Vendors design chips for self-test which mainly ensures proper operation of circuit
models after their implementation. Test engineers who are not the original hardware developers
test the integrated system.

This conventional, divided approach to software and hardware development does not address the
embedded system as a whole during the system design process. It instead focuses on these two
critical issues of testing separately. New problems arise when developers integrate the
components from these different domains.

In theory, unsatisfactory performance of the system under test should lead to a redesign. In
practice, a redesign is rarely feasible because of the cost and delay involved in another complete
design iteration. A common engineering practice is to compensate for problems within the
integrated system prototype by using software patches. These changes can unintentionally affect
the behavior of other parts in the computing system.

At a higher abstraction level, executable specification languages provide an excellent
means to assess embedded-systems designs. Developers can then test system-level prototypes
with either formal verification techniques or simulation. A current shortcoming of many
approaches is, however, that the transition from testing at the system level to testing at the
implementation level is largely ad hoc. To date, system testing at the implementation level has
received attention in the research community only as coverification, which simulates both
hardware and software components conjointly. Coverification runs simulations of specifications
on powerful computer systems. Commercially available coverification tools link hardware
simulators and software debuggers in the implementation phase of the design process.

Since embedded systems are frequently employed in mobile products, they are exposed

to vibration and other environmental stresses that can cause them to fail. Some embedded
systems, such as those in automotive applications, are exposed to extremely harsh environments.
These applications are preparing embedded systems to meet new and more stringent
requirements of safety and reliability is a significant challenge for designers. Critical applications
and applications with high availability requirements are the main candidates for on-line testing.

3. Faults in Embedded Systems

Incorrectness in hardware systems may be described in different terms as defect, error
and faults. These three terms are quite bit confusing. We will define these terms as follows [1]:

Defect: A defect in a hardware system is the unintended difference between the implemented
hardware and its intended design. This may be a process defects, material defects, age defects or
package effects.

Error: A wrong output signal produced by a defective system is called an error. An error is an
“effect” whose cause is some “defect”. Errors induce failures, that is, a deviation from
appropriate system behavior. If the failure can lead to an accident, it is a hazard.

Fault: A representation of a “defect” at the abstraction level is called a fault. Faults are physical
or logical defects in the design or implementation of a device.

Version 2 EE IIT, Kharagpur 5

3.1 Hardware Fault Model (Gate Level Fault Models)

As the complexity and integration of hardware are increasing with technology, defects

are too numerous and very difficult to analyze. A fault model helps us to identify the targets for
testing and analysis of failure. Further, the effectiveness of the model in terms of its relation to
actual failures should be established by experiments. Faults in a digital system can be classified
into three groups: design, fabrication, and operational faults. Design faults are made by human
designers or CAD software (simulators, translators, or layout generators), and occur during the
design process. These faults are not directly related to the testing process. Fabrication defects
are due to an imperfect manufacturing process. Defects on hardware itself, bad connections,
bridges, improper semiconductor doping and irregular power supply are the examples of physical
faults. Physical faults are also called as defect-oriented faults. Operational or logical faults are
occurred due to environmental disturbances during normal operation of embedded system. Such
disturbances include electromagnetic interference, operator mistakes, and extremes of
temperature and vibration. Some design defects and manufacturing faults escape detection and
combine with wearout and environmental disturbances to cause problems in the field.

Hardware faults are classified as stuck-at faults, bridging faults, open faults, power

disturbance faults, spurious current faults, memory faults, transistor faults etc. The most
commonly used fault model is that of the “stuck-at fault model” [1]. This is modeled by having a
line segment stuck at logic 0 or 1 (stuck-at 1 or stuck-at 0).

Stuck-at Fault: This is due to the flaws on hardware, and they represent faults of the signal
lines. A signal line is the input or output of a logic gate. Each connecting line can have two types
of faults: stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1). In general several stuck-at faults can be
simultaneously present in the circuit. A circuit with n lines can have 3n –1 possible stuck line
combinations as each line can be one of the three states: s-a-0, s-a-1 or fault free. Even a
moderate value of n will give large number of multiple stuck-at faults. It is a common practice,
therefore to model only single stuck-at faults. An n-line circuit can have at most 2n single stuck-
at faults. This number can be further reduced by fault collapsing technique.

Single stuck-at faults is characterized by the following properties:

1. Fault will occur only in one line.

2. The faulty line is permanently set to either 0 or 1.

3. The fault can be at an input or output of a gate.

4. Every fan-out branch is to be considered as a separate line.

Figure 38.1 gives an example of a single stuck-at fault. A stuck-at-1 fault as marked at the output
of OR gate implies that the faulty signal remains 1 irrespective of the input state of the OR gate.

Version 2 EE IIT, Kharagpur 6

 Faultv Response

True Response AND

AND

OR

Stuck-at-1

0(1)

0 (1)

0

0

1

1

Fig. 38.1 An example of a stuck-at fault

Bridging faults: These are due to a short between a group of signal. The logic value of the
shorted net may be modeled as 1-dominant (OR bridge), 0-dominant (AND bridge), or
intermediate, depending upon the technology in which the circuit is implemented.

Stuck-Open and Stuck-Short faults: MOS transistor is considered as an ideal switch and two
types of faults are modeled. In stuck-open fault a single transistor is permanently stuck in the
open state and in stuck-short fault a single transistor is permanently shorted irrespective of its
gate voltage. These are caused by bad connection of signal line.

Power disturbance faults: These are caused by inconsistent power supplies and affect the
whole system.

Spurious current faults: that exposed to heavy ion affect whole system.
Operational faults are usually classified according to their duration:

Permanent faults exist indefinitely if no corrective action is taken. These are mainly
manufacturing faults and are not frequently occur due to change in system operation or
environmental disturbances.
Intermittent faults appear, disappear, and reappear frequently. They are difficult to predict, but
their effects are highly correlated. Most of these faults are due to marginal design or
manufacturing steps. These faults occur under a typical environmental disturbance.

Transient faults appear for an instant and disappear quickly. These are not correlated with each
other. These are occurred due random environmental disturbances. Power disturbance faults and
spurious current faults are transient faults.

3.2 Software-Hardware Covalidation Fault Model

A design error is a difference between the designer’s intent and an executable specification of
the design. Executable specifications are often expressed using high-level hardware-software
languages. Design errors may range from simple syntax errors confined to a single line of a
design description, to a fundamental misunderstanding of the design specification which may
impact a large segment of the description. A design fault describes the behavior of a set of design
errors, allowing a large set of design errors to be modeled by a small set of design faults. The
majority of covalidation fault models are behavioral-level fault models. Existing covalidation
fault models can be classified by the style of behavioral description upon which the models are
based. Many different internal behavioral formats are possible [8]. The covalidation fault models

Version 2 EE IIT, Kharagpur 7

currently applied to hardware-software designs have their origins in either the hardware [9] or
the software [10] domains.

3.2.1 Textual Fault Models

A textual fault model is one, which is applied directly to the original textual behavioral
description. The simplest textual fault model is the statement coverage metric introduced in
software testing [10] which associates a potential fault with each line of code, and requires that
each statement in the description be executed during testing. This coverage metric is accepted as
having limited accuracy in part because fault effect observation is ignored. Mutation analysis is a
textual fault model which was originally developed in the field of software test, and has also
been applied to hardware validation. A mutant is a version of a behavioral description which
differs from the original by a single potential design error. A mutation operator is a function
which is applied to the original program to generate a mutant.

3.2.2 Control-Dataflow Fault Models

A number of fault models are based on the traversal of paths through the contol data flow graph
(CDFG) representing the system behavior. In order to apply these fault models to a hardware-
software design, both hardware and software components must be converted into a CDFG
description. Applying these fault models to the CDFG representing a single process is a well
understood task. Existing CDFG fault models are restricted to the testing of single processes. The
earliest control-dataflow fault models include the branch coverage and path coverage [10]
models used in software testing.

The branch coverage metric associates potential faults with each direction of each
conditional in the CDFG. The branch coverage metric has been used for behavioral validation for
coverage evaluation and test generation [11, 12]. The path coverage metric is a more demanding
metric than the branch coverage metric because path coverage reflects the number of control-
flow paths taken. The assumption is that an error is associated with some path through the
control flow graph and all control paths must be executed to guarantee fault detection.

Many CDFG fault models consider the requirements for fault activation without
explicitly considering fault effect observability. Researchers have developed observability-based
behavioral fault models [13, 14] to alleviate this weakness.

3.2.3 State Machine Fault Models

Finite state machines (FSMs) are the classic method of describing the behavior of a sequential
system and fault models have been defined to be applied to state machines. The commonly used
fault models are state coverage which requires that all states be reached, and transition coverage
which requires that all transitions be traversed. State machine transition tours, paths covering
each transition of the machine, are applied to microprocessor validation [15]. The most
significant problem with the use of state machine fault models is the complexity resulting from
the state space size of typical systems. Several efforts have been made to alleviate this problem
by identifying a subset of the state machine which is critical for validation [16].

Version 2 EE IIT, Kharagpur 8

3.2.4 Application-Specific Fault Models

A fault model which is designed to be generally applicable to arbitrary design types may not be
as effective as a fault model which targets the behavioral features of a specific application. To
justify the cost of developing and evaluating an application-specific fault model, the market for
the application must be very large and the fault modes of the application must be well
understood. For this reason, application-specific fault models are seen in microprocessor test and
validation [17,18].

3.3 Interface Faults

To manage the high complexity of hardware-software design and covalidation, efforts have been
made to separate the behavior of each component from the communication architecture [19].
Interface covalidation becomes more significant with the onset of core-based design
methodologies which utilize pre-designed, pre-verified cores. Since each core component is pre-
verified, the system covalidation problem focuses on the interface between the components. A
case study of the interface-based covalidation of an image compression system has been
presented [20].

4. Testing of Embedded Core-Based System-on-Chips (SOCs)

The system-on-chip test is a single composite test comprised of the individual core tests of each
core, the UDL tests, and interconnect tests. Each individual core or UDL test may involve
surrounding components. Certain operational constraints (e.g., safe mode, low power mode,
bypass mode) are often required which necessitates access and isolation modes.

In a core-based system-on-chip [5], the system integrator designs the User Defined Logic
(UDL) and assembles the pre-designed cores provided by the core vendor. A core is typically
hardware description of standard IC e.g., DSP, RISC processor, or DRAM core. Embedded cores
represent intellectual property (IP) and in order to protect IP, core vendors do not release the
detailed structural information to the system integrator. Instead a set of test pattern is provided by
the core vendor that guarantees a specific fault coverage. Though the cores are tested as part of
overall system performance by the system integrator, the system integrator deals the core as a
black box. These test patterns must be applied to the cores in a given order, using a specific clock
strategy.

The core internal test developed by a core provider need to be adequately described,

ported and ready for plug and play, i.e., for interoperability, with the system chip test. For an
internal test to accompany its corresponding core and be interoperable, it needs to be described in
an commonly accepted, i.e., standard, format. Such a standard format is currently being
developed by IEEE PI 500 and referred to as standardization of a core test description language
[22].

In SOCs cores are often embedded in several layers of user-defined or other core-based

logic, and direct physical access to its peripheries is not available from chip I/Os. Hence, an
electronic access mechanism is needed. This access mechanism requires additional logic, such as
a wrapper around the core and wiring, such as a test access mechanism to connect core
peripheries to the test sources and sinks. The wrapper performs switching between normal mode

Version 2 EE IIT, Kharagpur 9

and the test mode(s) and the wiring is meant to connect the wrapper which surrounds the core to
the test source and sink. The wrapper can also be utilized for core isolation. Typically, a core
needs to be isolated from its surroundings in certain test modes. Core isolation is often required
on the input side, the output side, or both.

test access
mechnism

test access
mechnism

wrapper

sink source
embedded

core

Fig. 38. 2 Overview of the three elements in an embedded-core test approach: (1) test
pattern source, (2) test access mechanism, and (3) core test wrapper [5].

A conceptual architecture for testing embedded-core-based SOCs is shown in Figure 38.2 It
consists of three structural elements:

1. Test Pattern Source and Sink

The test pattern source generates the test stimuli for the embedded core, and the test pattern sink
compares the response(s) to the expected response(s). Test pattern source as well as sink can be
implemented either off-chip by external Automatic Test Equipment (ATE), on-chip by Built-In
Self-Test (or Embedded ATE), or as a combination of both. Source and sink do not need to be of
the same type, e.g., the source of an embedded core can be implemented off-chip, while the sink
of the same core is implemented on-chip. The choice for a certain type of source or sink is
determined by (1) The type of circuitry in the core, (2) The type of pre-defined tests that come
with the core and (3) Quality and Cost considerations. The type of circuitry of a certain core and
the type of predefined tests that come with the core determine which implementation options are
left open for test pattern source and sink. The actual choice for a particular source or sink is in
general determined by quality and cost considerations. On-chip sources and sinks provide better
accuracy and performance related defect coverage, but at the same time increase the silicon area
and hence might reduce manufacturing yield.

2. Test Access Mechanism

The test access mechanism takes care of on-chip test pattern transport. It can be used (1) to
transport test stimuli from the test pattern source to the core-under-test, and (2) to transport test
responses from the core-under-test to the test pattern sink. The test access mechanism is by
definition, implemented on-chip. Although for one core often the same type of' test access
mechanism is used for both stimulus as well as response transportation, this is not required and
various combinations may co-exist. Designing a test access mechanism involves making a trade-
off between the transport capacity (bandwidth) of the mechanism and the test application cost it
induces. The bandwidth is limited by the bandwidth of source and sink and the amount of silicon
area one wants to spend on the test access mechanism itself.

Version 2 EE IIT, Kharagpur 10

3. Core Test Wrapper

The core test wrapper forms the interface between the embedded core and its system chip
environment. It connects the core terminals both to the rest of the IC, as well as to the test access
mechanism. By definition, the core test wrapper is implemented on-chip.
The core test wrapper should have the following mandatory modes.

• Normal operation (i.e., non-test) mode of' the core. In this mode, the core is connected to
its system-IC environment and the wrapper is transparent.

• Core test mode. In this mode the test access mechanism is connected to the core, such
that test stimuli can be applied at the core's inputs and responses can be observed at the
core's outputs.

• Interconnect test mode. In this mode the test access mechanism is connected to the
interconnect wiring and logic, such that test stimuli can be applied at the core's outputs
and responses can be observed at the core's inputs.

Apart from these mandatory modes, a core test wrapper might have several optional modes, e.g.,
a detach mode to disconnect the core from its system chip environment and the test access
mechanism, or a bypass mode for the test access mechanisms. Depending on the implementation
of the test access mechanism, some of the above modes may coincide. For example, if the test
access mechanism uses existing functionality, normal operation and core test mode may
coincide.

Pre-designed cores have their own internal clock distribution system. Different cores

have different clock propagation delays, which might result in clock skew for inter-core
communication. The system-IC designer should take care of this clock skew issue in the
functional communication between cores. However, clock skew might also corrupt the data
transfer over the test access mechanism, especially if this mechanism is shared by multiple cores.
The core test wrapper is the best place to have provisions for clock skew prevention in the test
access paths between the cores.

In addition to the test integration and interdependence issues, the system chip composite

test requires adequate test scheduling. Effective test scheduling for SOCs is challenging because
it must address several conflicting goals: (1) total SOC testing time minimization, (2) power
dissipation, (3) precedence constraints among tests and (4) area overhead constraints [2]. Also,
test scheduling is necessary to run intra-core and inter-core tests in certain order not to impact the
initialization and final contents of individual cores.

5. On-Line Testing

On-line testing addresses the detection of operational faults, and is found in computers that
support critical or high-availability applications [23]. The goal of on-line testing is to detect fault
effects, that is, errors, and take appropriate corrective action. On-line testing can be performed by
external or internal monitoring, using either hardware or software; internal monitoring is referred
to as self-testing. Monitoring is internal if it takes place on the same substrate as the circuit under
test (CUT); nowadays, this usually means inside a single IC—a system-on-a-chip (SOC).
There are four primary parameters to consider in the design of an on-line testing scheme:

Version 2 EE IIT, Kharagpur 11

• Error coverage (EC): This is defined as the fraction of all modeled errors that are detected,
usually expressed in percent. Critical and highly available systems require very good error
detection or error coverage to minimize the impact of errors that lead to system failure.

• Error latency (EL): This is the difference between the first time the error is activated and the
first time it is detected. EL is affected by the time taken to perform a test and by how often tests
are executed. A related parameter is fault latency (FL), defined as the difference between the
onset of the fault and its detection. Clearly, FL ≥ EL, so when EL is difficult to determine, FL is
often used instead.

• Space redundancy (SR): This is the extra hardware or firmware needed to perform on-line
testing.

• Time redundancy (TR): This is the extra time needed to perform on-line testing.
An ideal on-line testing scheme would have 100% error coverage, error latency of 1

clock cycle, no space redundancy, and no time redundancy. It would require no redesign of the
CUT, and impose no functional or structural restrictions on the CUT. To cover all of the fault
types described earlier, two different modes of on-line testing are employed: concurrent testing
which takes place during normal system operation, and non-concurrent testing which takes place
while normal operation is temporarily suspended. These operating modes must often be
overlapped to provide a comprehensive on-line testing strategy at acceptable cost.

5.1 Non-concurrent testing

This form of testing is either event-triggered (sporadic) or time-triggered (periodic), and is
characterized by low space and time redundancy. Event-triggered testing is initiated by key
events or state changes in the life of a system, such as start-up or shutdown, and its goal is to
detect permanent faults. It is usually advisable to detect and repair permanent faults as soon as
possible. Event-triggered tests resemble manufacturing tests.
Time-triggered testing is activated at predetermined times in the operation of the system. It is
often done periodically to detect permanent faults using the same types of tests applied by event
triggered testing. This approach is especially useful in systems that run for extended periods,
where no significant events occur that can trigger testing. Periodic testing is also essential for
detecting intermittent faults. Periodic testing can identify latent design or manufacturing flaws
that only appear under the right environmental conditions.

5.2 Concurrent testing

Non-concurrent testing [23] cannot detect transient or intermittent faults whose effects disappear
quickly. Concurrent testing, on the other hand, continuously checks for errors due to such faults.
However, concurrent testing is not by itself particularly useful for diagnosing the source of
errors, so it is often combined with diagnostic software. It may also be combined with non-
concurrent testing to detect or diagnose complex faults of all types.

A common method of providing hardware support for concurrent testing, especially for

detecting control errors, is a watchdog timer. This is a counter that must be reset by the system
on a repetitive basis to indicate that the system is functioning properly. A watchdog timer is
based on the assumption that the system is fault-free—or at least alive—if it is able to perform
the simple task of resetting the timer at appropriate intervals, which implies that control flow is
correctly traversing timer reset points.

Version 2 EE IIT, Kharagpur 12

For critical or highly available systems, it is essential to have a comprehensive approach
to on-line testing that covers all expected permanent, intermittent, and transient faults. In recent
years, built-in-self-test (BIST) has emerged as an important method for testing manufacturing
faults, and it is increasingly promoted for on-line testing as well.

6. Test Pattern Generation

6.1 Test Plan

Test plans are generated to verify the device specification, which comprise of the decision on test
type, fault coverage, test time etc. For example, the test pattern generator and response analyzer
may reside on an automatic test equipment (ATE) or on-chip, depending on the test environment.
In the case of production testing in an industry, ATE may be the option, while on-site testing
may require on-chip testers (BIST).

6.2 Test Programming

The test program comprises modules for the generation of the test vectors and the corresponding
expected responses from a circuit with normal behavior. CAD tools are used to automate the
generation of optimized test vectors for the purpose [1,24]. Figure. 38.3 illustrates the basic steps
in the development of a test program.

Chip specifications Test generation Logic design
(from simulators)

Test plan Physical design

Test
Program

Generator

Test types

Test program

Timing specs Pin assignments

Vectors

Fig. 38.3 Test program generation

6.3 Test Pattern Generation

Test pattern generation is the process of generating a (minimal) set of input patterns to stimulate
the inputs of a circuit, such that detectable faults can be sensitized and their effects can be
propagated to the output. The process can be done in two phases: (1) derivation of a test, and (2)
application of a test. For (1), appropriate models for the circuit (gate or transistor level) and
faults are to be decided. Construction of the test is to be accomplished in a manner such that the
output signal from a faulty circuit is different from that of a good circuit. This can be
computationally very expensive, but the task is to be performed offline and only once at the end
of the design stage. The generation of a test set can be obtained either by algorithmic methods

Version 2 EE IIT, Kharagpur 13

(with or without heuristics), or by pseudo-random methods. On the other hand, for (2), a test is
subsequently applied many times to each integrated circuit and thus must be efficient both in
space (storage requirements for the patterns) and in time. The main considerations in evaluating
a test set are: (i) the time to construct a minimal test set; (ii) the size of the test set; (iii) the time
involved to carry out the test; and (iv) the equipment required (if external). Most algorithmic test
pattern generators are based on the concept of sensitized paths.
The Sensitized Path Method is a heuristic approach to generating tests for general
combinational logic networks. The circuit is assumed to have only a single fault in it. The
sensitized path method consists of two parts:

1. The creation of a SENSITIZED PATH from the fault to the primary output. This involves
assigning logic values to the gate inputs in the path from the fault site to a primary output, such
that the fault effect is propagated to the output.

2. The JUSTIFICATION operation, where the assignments made to gate inputs on the sensitized
path is traced back to the primary inputs. This may require several backtracks and iterations.
In the case of sequential circuits the same logic is applied but before that the sequential elements
are explicitly driven to a required state using scan based design-for-test (DFT) circuitry [1,24].

The best-known algorithms are the D-algorithm, PODEM and FAN [1,24]. Three steps can be
identified in most automatic test pattern generation (ATPG) programs: (a) listing the signals on
the inputs of a gate controlling the line on which a fault should be detected; (b) determining the
primary input conditions necessary to obtain these signals (back propagation) and sensitizing the
path to the primary outputs such that the signals and faults can be observed; (c) repeating this
procedure until all detectable faults in a given fault set have been covered.

6.4 ATPG for Hardware-Software Covalidation

Several automatic test generation (ATG) approaches have been developed which vary in the
class of search algorithm used, the fault model assumed, the search space technique used, and the
design abstraction level used. In order to perform test generation for the entire system, both
hardware and software component behaviors must be described in a uniform manner. Although
many behavioral formats are possible, ATG approaches have focused on CDFG and FSM
behavioral models.

Two classes of search algorithms have been explored, fault directed and coverage

directed. Fault directed techniques successively target a specific fault and construct a test
sequence to detect that fault. Each new test sequence is merged with the current test sequence
(typically through concatenation) and the resulting fault coverage is evaluated to determine if test
generation is complete. Fault directed algorithms have the advantage that they are complete in
the sense that a test sequence will be found for a fault if a test sequence exists, assuming that
sufficient CPU time is allowed. For test generation, each CDFG path can be associated with a set
of constraints which must be satisfied to traverse the path. Because the operations found in a
hardware-software description can be either boolean or arithmetic, the solution method chosen
must be able to handle both types of operations. Constraint logic programming (CLP) techniques
[27] are capable to handle a broad range of constraints including non-linear constraints on both
boolean and arithmetic variables. State machine testing has been accomplished by defining a
transition tour which is a path which traverses each state machine transition at least once
26ransition tours have been generated by iteratively improving an existing partial tour by

Version 2 EE IIT, Kharagpur 14

concatenating on to it the shortest path to an uncovered transition [26 A significant limitation to
state machine test generation techniques is the time complexity of the state enumeration process
performed during test generation.

Coverage directed algorithms seek to improve coverage without targeting any specific

fault. These algorithms heuristically modify an existing test set to improve total coverage, and
then evaluate the fault coverage produced by the modified test set. If the modified test set
corresponds to an improvement in fault coverage then the modification is accepted. Otherwise
the modification is either rejected or another heuristic is used to determine the acceptability of
the modification. The modification method is typically either random or directed random. An
example of such a technique is presented in [25] which uses a genetic algorithm to successively
improve the population of test sequences.

7. Embedded Software Testing

7.1 Software Unit Testing

The unit module is either an isolated function or a class. This is done by the development team,
typically the developer and is done usually in the peer review mode. Test data /test cases are
developed based on the specification of the module. The test case consists of either:

• Data-intensive testing: applying a large range of data variation for function parameter
values, or

• Scenario-based testing: exercising different method invocation sequences to perform all
possible use cases as found in the requirements.

Points of Observation are returned value parameters, object property assessments, and source
code coverage. Since it is not easy to track down trivial errors in a complex embedded system,
every effort should be made to locate and remove them at the unit-test level.

7.2 Software Integration Testing

All the unit modules are integrated together. Now the module to be tested is a set of functions or
a cluster of classes. The essence of integration testing is the validation of the interface. The same
type of Points of Control applies as for unit testing (data-intensive main function call or method-
invocation sequences), while Points of Observation focus on interactions between lower-level
models using information flow diagrams.
First, performance tests can be run that should provide a good indication about the validity of the
architecture. As for functional testing, the earlier is the better. Each forthcoming step will then
include performance testing. White-box testing is also the method used during that step.
Therefore software integration testing is the responsibility of the developer.

7.3 Software Validation Testing

This can be considered one of the activities that occur toward the end of each software
integration. Partial use-case instances, which also called partial scenarios, begin to drive the test
implementation. The test implementation is less aware of and influenced by the implementation
details of the module. Points of Observation include resource usage evaluation since the module

Version 2 EE IIT, Kharagpur 15

is a significant part of the overall system. This is considered as white-box testing. Therefore,
software validation testing is also the responsibility of the developer.

7.4 System Unit Testing

Now the module to be tested is a full system that consists of user code as tested during software
validation testing plus all real-time operating system (RTOS) and platform-related pieces such as
tasking mechanisms, communications, interrupts, and so on. The Point of Control protocol is no
longer a call to a function or a method invocation, but rather a message sent/received using the
RTOS message queues, for example. Test scripts usually bring the module under test into the
desired initial state; then generate ordered sequences of samples of messages; and validate
messages received by comparing (1) message content against expected messages and (2) date of
reception against timing constraints. The test script is distributed and deployed over the various
virtual testers. System resources are monitored to assess the system's ability to sustain embedded
system execution. For this aspect, grey-box testing is the preferred testing method. In most cases,
only a knowledge of the interface to the module is required to implement and execute
appropriate tests. Depending on the organization, system unit testing is either the responsibility
of the developer or of a dedicated system integration team.

7.5 System Integration Testing

The module to be tested starts from a set of components within a single node and eventually
encompasses all system nodes up to a set of distributed nodes. The Points of Control and
Observations (PCOs) are a mix of RTOS and network-related communication protocols, such as
RTOS events and network messages. In addition to a component, a Virtual Tester can also play
the role of a node. As for software integration, the focus is on validating the various interfaces.
Grey-box testing is the preferred testing method. System integration testing is typically the
responsibility of the system integration team.

7.6 System Validation Testing

The module to be tested is now a complete implementation subsystem or the complete embedded
system. The objectives of this final aspect are several:

• Meet external-actor functional requirements. Note that an external-actor might either be a
device in a telecom network (say if our embedded system is an Internet Router), or a
person (if the system is a consumer device), or both (an Internet Router that can be
administered by an end user).

• Perform final non-functional testing such as load and robustness testing. Virtual testers
can be duplicated to simulate load, and be programmed to generate failures in the system.

• Ensure interoperability with other connected equipment. Check conformance to
applicable interconnection standards. Going into details for these objectives is not in the
scope of this article. Black-box testing is the preferred method: The tester typically
concentrates on both frequently used and potentially risky or dangerous use-case
instances.

Version 2 EE IIT, Kharagpur 16

8. Interaction Testing Technique between Hardware and
Software in Embedded Systems

In embedded system where hardware and software are combined, unexpected situation can occur
owing to the interaction faults between hardware and software. As the functions of embedded
system get more complicated, it gets more difficult to detect faults that cause such troubles.
Hence, Faults Injection Technique is strongly recommended in a way it observes system
behaviors by injecting faults into target system so as to detect interaction faults between
hardware and software in embedded system.

The test data selection technique discussed in [21] first simulates behaviors of embedded

system to software program from requirement specification. Then hardware faults, after being
converted to software faults, are injected into the simulated program. And finally, effective test
data are selected to detect faults caused by the interactions between hardware and software.

9. Conclusion

Rapid advances in test development techniques are needed to reduce the test cost of million-gate
SOC devices. In this chapter a number of state-of-the-art techniques are discussed for testing of
embedded systems. Modular test techniques for digital, mixed-signal, and hierarchical SOCs
must develop further to keep pace with design complexity and integration density. The test data
bandwidth needs for analog cores are significantly different than that for digital cores, therefore
unified top-level testing of mixed-signal SOCs remains major challenge. This chapter also
described granular based embedded software testing technique.

References

[1] M. L. Bushnell and V. D Agarwal, “Essentials of Electronic Testing” Kluwer academic

Publishers, Norwell, MA, 2000.
[2] E. A. Lee, “What's Ahead for Embedded Software?”, IEEE Computer, pp 18-26,

September, 2000.
[3] E. A. Lee, “Computing for embedded systems”, proceeding of IEEE Instrumentation and

Measurement Technology Conference, Budapest, Hungary, May, 2001.
[4] Semiconductor Industry Association, “International Technology Roadmap for

Semiconductors, 2001 Edition”, http://public.itrs.net/Files/2001ITRS/Home.html
[5] Y. Zorian, E.J.Marinissen, and S.Dey, “Testing Embedded-Core Based System Chips”,

IEEE Computer, 32,52-60,1999
[6] M-C Hsueh, T. K.Tsai, and R. K. Lyer, “Fault Injection Techniques and Tools”, IEEE

Computer, pp75-82, April,1997.
[7] V. Encontre, “Testing Embedded Systems: Do You Have The GuTs for It?” www-

128.ibm.com/developerworks/rational/library/content/03July/1000/1050/1050.pdf
[8] D. D. Gajski and F. Vahid, “Specification and design of embedded hardware-software

systems”, IEEE Design and Test of Computers, vol. 12, pp. 53–67, 1995.
[9] S. Dey, A. Raghunathan, and K. D. Wagner, “Design for testability techniques at the

behavioral and register-transfer level”, Journal of Electronic Testing: Theory and
Applications (JETTA), vol. 13, pp. 79–91, October 1998.

[10] B. Beizer, Software Testing Techniques, Second Edition, Van Nostrand Reinhold, 1990.

Version 2 EE IIT, Kharagpur 17

http://public.itrs.net/Files/2001ITRS/Home.html

[11] G. Al Hayek and C. Robach, “From specification validation to hardware testing: A
unified method”, in International Test Conference, pp. 885–893, October 1996.

[12] A. von Mayrhauser, T. Chen, J. Kok, C. Anderson, A. Read, and A. Hajjar, “On
choosing test criteria for behavioral level harware design verification”, in High Level
Design Validation and Test Workshop, pp. 124–130, 2000.

[13] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A formal evaluation of data
flow path selection criteria”, IEEE Trans. on Software Engineering, vol. SE-15, pp.
1318–1332, 1989.

[14] S. C. Ntafos, “A comparison of some structural testing strategies”, IEEE Trans. on
Software Engineering, vol. SE-14, pp. 868–874, 1988.

[15] J. Laski and B. Korel, “A data flow oriented program testing strategy”, IEEE Trans. on
Software Engineering, vol. SE-9, pp. 33–43, 1983.

[16] Q. Zhang and I. G. Harris, “A domain coverage metric for the validation of behavioral
vhdl descriptions”, in International Test Conference, October 2000.

[17] D. Moundanos, J. A. Abraham, and Y. V. Hoskote, “Abstraction techniques for
validation coverage analysis and test generation”, IEEE Transactions on Computers, vol.
47, pp. 2–14, January 1998.

[18] N. Malik, S. Roberts, A. Pita, and R. Dobson, “Automaton: an autonomous coverage-
based multiprocessor system verification environment”, in IEEE International Workshop
on Rapid System Prototyping, pp. 168–172, June 1997.

[19] K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test bench generation using
the extended finite state machine model”, in Design Automation Conference, pp. 1–6,
1993.

[20] J. P. Bergmann and M. A. Horowitz, “Improving coverage analysis and test generation
for large designs”, in International Conference on Computer-Aided Design, pp. 580–583,
1999.

[21] A. Sung and B. Choi, “An Interaction Testing Technique between Hardware and
Software in Embedded Systems”, Proceedings of Ninth Asia-Pacific Software
Engineering Conference, 2002. 4-6 Dec. 2002 Page(s):457 – 464

[22] IEEE P I500 Web Site. http://grouper.ieee.org/groups/I SOO/.
[23] H. Al-Asaad, B. T. Murray, and J. P. Hayes, “Online BIST for embedded systems” IEEE

Design & Test of Computers, Volume 15, Issue 4, Oct.-Dec. 1998 Page(s): 17 – 24
[24] M. Abramovici, M.A. Breuer, AND A.D. Friedman, “Digital Systems Testing and

Testable Design”, IEEE Press 1990.
[25] F. Corno, M. Sonze Reorda, G. Squillero, A. Manzone, and A. Pincetti, “Automatic test

bench generation for validation of RT-level descriptions: an industrial experience”, in
Design Automation and Test in Europe, pp. 385–389, 2000.

[26] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill, “Architecture validation for
processors”, in International ymposium on Computer Architecture, pp. 404–413, 1995.

[27] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press, 1989.

Problems

1. How testing differs from verification?
2. What is embedded system? Define hard real-time system and soft real-time system

with example.
3. Why testing embedded system is difficult?
4. How hardware testing differs from software testing?

Version 2 EE IIT, Kharagpur 18

5. What is co-testing?
6. Distinguish between defects, errors and faults with example.
7. Calculate the total number of single and multiple stuck-at faults for a logic circuit

with n lines.
8. In the circuit shown in Figure 38.4 if any of the following tests detect the fault x1 s-

a-0?
a) (0,1,1,1)

b) (1,0,1,1)

c) (1,1,0,1)

d) (1,0,1,0)

z

x1

x2

x3

x4

Fig. P1

9. Define the following fault models using examples where possible:
a) Single and multiple stuck-at fault
b) Bridging fault
c) Stuck-open and stuck-short fault
d) Operational fault

10. What is meant by co-validation fault model?
11. Describe different software fault model?
12. Describe the basic structure of core-based testing approach for embedded system.
13. What is concurrent or on-line testing? How it differs from non-concurrent testing?
14. Define error coverage, error latency, space redundancy and time redundancy in view

of on-line testing?
15. What is a test vector? How test vectors are generated? Describe different techniques

for test pattern generation.
16. Define the following for software testing:

a) Software unit testing
b) Software integration testing
c) Software validation testing
d) System unit testing
e) System integration testing
f) System validation testing

Version 2 EE IIT, Kharagpur 19

	Testing of Embedded System
	Testing Embedded Systems
	Instructional Objectives
	Testing Embedded Systems
	Introduction
	What is testing?
	Verification vs. Testing [1]
	What is an "embedded system"?
	Real-Time System

	Embedded Systems Testing
	Faults in Embedded Systems
	Hardware Fault Model (Gate Level Fault Models)
	Software-Hardware Covalidation Fault Mod
	Textual Fault Models
	Control-Dataflow Fault Models
	State Machine Fault Models
	Application-Specific Fault Models

	Interface Faults

	Testing of Embedded Core-Based System-on-Chips (SOCs)
	Test Pattern Source and Sink
	Test Access Mechanism
	Core Test Wrapper

	On-Line Testing
	Non-concurrent testing
	Concurrent testing

	Test Pattern Generation
	Test Plan
	Test Programming
	Test Pattern Generation
	ATPG for Hardware-Software Covalidation

	Embedded Software Testing
	Software Unit Testing
	Software Integration Testing
	Software Validation Testing
	System Unit Testing
	System Integration Testing
	System Validation Testing

	Interaction Testing Technique between Hardware and Software in Embedded Systems
	Conclusion
	References
	Problems

