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Instructional Objectives 
 
At the end of the lesson the student should be able to  
 

• Call a task and a function in a Verilog code and distinguish between them 

• Plan and write test benches to a Verilog code such that it can be simulated to check the 
desired results and also test the source code 

• Explain what are User Defined Primitives, classify them and use them in code   
 
2.1 Task and Function 
 
2.1.1 Task 
 
Tasks are used in all programming languages, generally known as procedures or sub- routines. 
Many lines of code are enclosed in -task....end task- brackets. Data is passed to the task, 
processing done, and the result returned to the main program. They have to be specifically called, 
with data in and out, rather than just wired in to the general netlist. Included in the main body of 
code, they can be called many times, reducing code repetition. 

• Tasks are defined in the module in which they are used. it is possible to define a task in a 
separate file and use compile directive 'include to include the task in the file which 
instantiates the task. 

• Tasks can include timing delays, like posedge, negedge, # delay and wait. 

• Tasks can have any number of inputs and outputs. 

• The variables declared within the task are local to that task. The order of declaration 
within the task defines how the variables passed to the task by the caller are used. 

• Task can take, drive and source global variables, when no local variables are used. When 
local variables are used it assigns the output only at the end of task execution. 

• One task can call another task or function. 

• Task can be used for modeling both combinational and sequential logics. 

• A task must be specifically called with a statement, it cannot be used within an 
expression as a function can. 

 
Syntax 
 

• task begins with the keyword task and ends with the keyword endtask 

• Input and output are declared after the keyword task. 

• Local variables are declared after input and output declaration. 
 
module simple_task(); 
task convert; 
input [7:0] temp_in; 
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output [7:0] temp_out; 
begin 
temp_out = (9/5) *( temp_in + 32) 
end 
endtask 
endmodule 
 
Example - Task using Global Variables 
module task_global (); 
reg[7:0] temp_in; 
reg [7:0] temp_out; 
task convert; 
always@(temp_in) 
begin 
temp_out = (9/5) *( temp_in + 32) 
end 
endtask 
endmodule 
 
Calling a task 
 
Lets assume that the task in example 1 is stored in a file called mytask.v. Advantage of coding 
the task in a separate file is that it can then be used in multiple modules. 
module task_calling (temp_a, temp_b, temp_c, temp_d); 
input [7:0] temp_a, temp_c; 
output [7:0] temp_b, temp_d; 
reg [7:0] temp_b, temp_d; 
`include "mytask.v" 
always @ (temp_a) 
Begin 
convert (temp_a, temp_b); 
End 
always @ (temp_c) 
Begin 
convert (temp_c, temp_d); 
End 
Endmodule 
 
Automatic (Re-entrant) Tasks 
 
Tasks are normally static in nature. All declared items are statically allocated and they are shared 
across all uses of the task executing concurrently. Therefore if a task is called simultaneously 
from two places in the code, these task calls will operate on the same task variables. it is highly 
likely that the result of such operation be incorrect.  Thus, keyword automatic is added in front of 
the task keyword to make the tasks re-entrant. All items declared within the automatic task are 
allocated dynamically for each invocation. Each task call operates in an independent space. 
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Example 
// Module that contains an automatic re-entrant task 
//there are two clocks, clk2 runs at twice the frequency of clk and is synchronous with it. 
module top; 
reg[15:0] cd_xor, ef_xor; // variables in module top 
reg[15:0] c,d,e,f ;    // variables in module top 
task automatic bitwise_xor 
output[15:0] ab_xor ;    // outputs from the task 
input[15:0] a,b ;    // inputs to the task 
begin 
#delay  ab_and = a & b 
ab_or= a| b; 
ab_xor= a^ b; 
end 
endtask 
// these two always blocks will call the bitwise_xor task 
// concurrently at each positive edge of the clk, however since the task is re-entrant, the 
//concurrent calls will work efficiently 
always @(posedge clk) 
bitwise_xor(ef_xor, e ,f ); 
always @(posedge clk2)// twice the frequency as that of the previous clk 
bitwise_xor(cd_xor, c ,d ); 
endmodule 
 
2.1.2 Function 
 
Function is very much similar to a task, with very little difference, e.g., a function cannot drive 
more then one output and, also, it can not contain delays. 

• Functions are defined in the module in which they are used. It is possible to define 
function in separate file and use compile directive 'include to include the function in the 
file which instantiates the task. 

• Function can not include timing delays, like posedge, negedge, # delay. This means that a 
function should be executed in "zero" time delay. 

• Function can have any number of inputs but only one output. 

• The variables declared within the function are local to that function. The order of 
declaration within the function defines how the variables are passed to it by the caller.  

• Function can take, drive and source global variables when no local variables are used. 
When local variables are used, it basically assigns output only at the end of function 
execution. 

• Function can be used for modeling combinational logic. 

• Function can call other functions, but can not call a task. 
 
Syntax 
 

• A function begins with the keyword function and ends with the keyword endfunction 
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• Inputs are declared after the keyword function. 
 
Example - Simple Function 
module simple_function(); 
function myfunction; 
input a, b, c, d; 
begin 
myfunction = ((a+b) + (c-d)); 
end 
endfunction 
endmodule 
 
Example - Calling a Function 
module function_calling(a, b, c, d, e, f); 
input a, b, c, d, e ; 
output f; 
wire f; 
`include "myfunction.v" 
assign f = (myfunction (a,b,c,d)) ? e :0; 
endmodule 
 
Automatic (Recursive) Function 
 
Functions used normally are non recursive. But to eliminate problems when the same function is 
called concurrently from two locations automatic function is used. 
 
Example 
// define a factorial with recursive function 
module top; 
// define the function 
function automatic integer factorial: 
input[31:0] oper; 
integer i: 
begin 
if (operan>=2) 
factorial= factorial(oper -1)* oper:// recursive call 
else 
factorial=1; 
end 
endfunction 
// call the function 
integer result; 
initial 
begin 
result=factorial(4); // call the factorial of 7 
$ display (“Factorial of 4 is %0d”, result) ; // Displays 24 
end 
endmodule 
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Constant function 
 
A constant function is a regular verilog function and is used  to reference complex values, can be 
used instead of constants. 
 
Signed function 
 
These functions allow the use of signed operation on function return values. 
module top; 
// signed function declaration 
// returns a 64 bit signed value 
function signed [63:0] compute _signed (input [63:0] vector); 
-- 
-- 
endfunction 
// call to the signed function from a higher module 
if ( compute_signed(vector)<-3) 
begin 
-- 
end 
-- 
endmodule 
 
2.1.3  System tasks and functions 
 
Introduction 
 
There are tasks and functions that are used to generate inputs and check the output during 
simulation. Their names begin with a dollar sign ($). The synthesis tools parse and ignore system 
functions, and, hence, they can be included even in synthesizable models. 
 
$display, $strobe, $monitor 
 
These commands have the same syntax, and display text on the screen during simulation. They 
are much less convenient than waveform display tools like GTKWave. or Undertow. $display 
and $strobe display once every time they are executed, whereas $monitor displays every time 
one of its parameters changes. The difference between $display and $strobe is that $strobe 
displays the parameters at the very end of the current simulation time unit rather than exactly 
where a change in it took place. The format string is like that in C/C++, and may contain format 
characters. Format characters include %d (decimal), %h (hexadecimal), %b (binary), %c 
(character), %s (string) and %t (time), %m (hierarchy level). %5d, %5b. b, h, o can be appended 
to the task names to change the default format to binary, octal or hexadecimal. 
 
Syntax 
 

• $display ("format_string", par_1, par_2, ... ); 
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• $strobe ("format_string", par_1, par_2, ... ); 

• $monitor ("format_string", par_1, par_2, ... ); 

• $displayb ( as above but defaults to binary..); 

• $strobeh (as above but defaults to hex..); 

• $monitoro (as above but defaults to octal..); 
 
$time, $stime, $realtime 
 
These return the current simulation time as a 64-bit integer, a 32-bit integer, and a real number, 
respectively. 
 
$reset, $stop, $finish 
 
$reset resets the simulation back to time 0; $stop halts the simulator and puts it in the interactive 
mode where the user can enter commands; $finish exits the simulator back to the operating 
system. 
 
$scope, $showscope 
 
$scope(hierarchy_name) sets the current hierarchical scope to hierarchy_name. $showscopes(n) 
lists all modules, tasks and block names in (and below, if n is set to 1) the current scope. 
 
$random 
 
$random generates a random integer every time it is called. If the sequence is to be repeatable, 
the first time one invokes random give it a numerical argument (a seed). Otherwise, the seed is 
derived from the computer clock. 
 
$dumpfile, $dumpvar, $dumpon, $dumpoff, $dumpall 
 
These can dump variable changes to a simulation viewer like Debussy. The dump files are 
capable of dumping all the variables in a simulation. This is convenient for debugging, but can 
be very slow. 
 
Syntax 
 

• $dumpfile("filename.dmp") 

• $dumpvar dumps all variables in the design. 

• $dumpvar(1, top) dumps all the variables in module top and below, but not modules 
instantiated in top. 

• $dumpvar(2, top) dumps all the variables in module top and 1 level below. 

• $dumpvar(n, top) dumps all the variables in module top and n-1 levels below. 
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• $dumpvar(0, top) dumps all the variables in module top and all level below. 

• $dumpon initiates the dump. 

• $dumpoff stop dumping. 
 
$fopen, $fdisplay, $fstrobe $fmonitor and $fwrite 
 
These commands write more selectively to files. 
 

• $fopen opens an output file and gives the open file a handle for use by the other 
commands. 

• $fclose closes the file and lets other programs access it. 

• $fdisplay and $fwrite write formatted data to a file whenever they are executed. They are 
the same except $fdisplay inserts a new line after every execution and $write does not. 

• $strobe also writes to a file when executed, but it waits until all other operations in the 
time step are complete before writing. Thus initial #1 a=1; b=0; 

• $fstrobe(hand1, a,b); b=1; will write write 1 1 for a and b. $monitor writes to a file 
whenever any one of its arguments changes. 

 
Syntax 
 

• handle1=$fopen("filenam1.suffix") 

• handle2=$fopen("filenam2.suffix") 

• $fstrobe(handle1, format, variable list) //strobe data into filenam1.suffix 

• $fdisplay(handle2, format, variable list) //write data into filenam2.suffix 

• $fwrite(handle2, format, variable list) //write data into filenam2.suffix all on one line.          
                                                                  //put in the format string where a new line is   
                                                                  // desired. 

 
2.2  Writing Testbenches 
 
2.2.1  Testbenches  
 
are codes written in HDL to test the design blocks. A testbench is also known as  
stimulus, because the coding is such that a stimulus is applied to the designed block and its 
functionality is tested by checking the results. For writing a testbench it is important to have the 
design specifications of the "design under test" (DUT). Specifications need to be understood 
clearly and test plan made accordingly. The test plan, basically, documents the test bench 
architecture and the test scenarios (test cases) in detail.  
 
Example – Counter 
Consider a simple 4-bit up counter, which increments its count when ever enable is high and 
resets to zero, when reset is asserted high. Reset is synchronous with clock. 
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Code for Counter 
// Function : 4 bit up counter 
module counter (clk, reset, enable, count); 
input clk, reset, enable; 
output [3:0] count; 
reg [3:0] count; 
always @ (posedge clk) 
if (reset == 1'b1) begin 
count <= 0; 
end else if ( enable == 1'b1) begin 
count <= count + 1; 
end 
endmodule 
 
2.2.2  Test Plan 
 
We will write self checking test bench, but we will do this in steps to help you understand the 
concept of writing automated test benches. Our testbench environment will look something like 
shown in the figure. 
 

 
 

DUT is instantiated in testbench which contains a clock generator, reset generator, enable logic 
generator, compare logic. The compare logic calculates the expected count value of the counter 
and compares its output with the calculated value 
 
2.2.3  Test Cases 
 

• Reset Test : We can start with reset deasserted, followed by asserting reset for few clock 
ticks and deasserting the reset, See if counter sets its output to zero.  

• Enable Test : Assert/deassert enable after reset is applied.  

• Random Assert/deassert of enable and reset.  
 
2.2.4 Creating testbenches 
 
There are two ways of defining a testbench. 

Version 2 EE IIT, Kharagpur 10



The first way is to simply instantiate the design block(DUT) and write the code such that it 
directly drives the signals in the design block. In this case the stimulus block itself is the top-
level block. 
In the second style a dummy module acts as the top-level module and both the design(DUT) and 
the stimulus blocks are instantiated within it. Generally, in the stimulus block the inputs to DUT 
are defined as reg and outputs from DUT are defined as wire. An important point is that there is 
no port list for the test bench. 
An example of the stimulus block is given below. 
Note that the initial block below is used to set the various inputs of the DUT to a predefined 
logic state. 
 
Test Bench with Clock generator 
 
module counter_tb; 
reg clk, reset, enable; 
wire [3:0] count; 
counter U0 ( 
.clk (clk), 
.reset (reset), 
.enable (enable), 
.count (count) 
initial 
begin 
clk = 0; 
reset = 0; 
enable = 0;  
end 
 
always 
#5 clk = !clk; 
endmodule 
 
Initial block in verilog is executed only once. Thus, the simulator sets the value of clk, reset and 
enable to 0(0 makes all this signals disabled). It is a good design practice to keep file names 
same as the module name.  
 
Another elaborated instance of the testbench is shown below. In this instance the usage of system 
tasks has been explored. 
module counter_tb; 
reg clk, reset, enable; 
wire [3:0] count; 
counter U0 ( 
.clk (clk), 
.reset (reset), 
.enable (enable), 
.count (count) 
initial begin 
clk = 0; 
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reset = 0; 
enable = 0;  
end 
 
always 
#5 clk = !clk; 
initial begin 
$dumpfile ( "counter.vcd" ); 
$dumpvars; 
end 
 
initial begin 
$display( "\t\ttime,\tclk,\treset,\tenable,\tcount" ); 
$monitor( "%d,\t%b,\t%b,\t%b,\t%d" ,$time, clk,reset,enable,count); 
end 
 
initial  
#100 $finish;  
//Rest of testbench code after this line 
Endmodule 
 
$dumpfile is used for specifying the file that simulator will use to store the waveform, that can 
be used later to view using a waveform viewer. (Please refer to tools section for freeware version 
of viewers.) $dumpvars basically instructs the Verilog compiler to start dumping all the signals 
to "counter.vcd".  
$display is used for printing text or variables to stdout (screen), \t is for inserting tab. Syntax is 
same as printf. Second line $monitor is bit different, $monitor keeps track of changes to the 
variables that are in the list (clk, reset, enable, count). When ever anyone of them changes, it 
prints their value, in the respective radix specified. 
$finish is used for terminating simulation after #100 time units (note, all the initial, always 
blocks start execution at time 0) 
 
Adding the Reset Logic 
 
Once we have the basic logic to allow us to see what our testbench is doing, we can next add the 
reset logic, If we look at the testcases, we see that we had added a constraint that it should be 
possible to activate reset anytime during simulation. To achieve this we have many approaches, 
but the following one works quite well. There is something called 'events' in Verilog, events can 
be triggered, and also monitored to see, if a event has occurred. 
Lets code our reset logic in such a way that it waits for the trigger event "reset_trigger" to 
happen. When this event happens, reset logic asserts reset at negative edge of clock and de-
asserts on next negative edge as shown in code below. Also after de-asserting the reset, reset 
logic triggers another event called "reset_done_trigger". This trigger event can then be used at 
some where else in test bench to sync up.  
 
Code for the reset logic 
 
event reset_trigger; 
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event reset_done_trigger; 
initial begin 
forever begin 
@ (reset_trigger); 
@ (negedge clk); 
reset = 1; 
@ (negedge clk); 
reset = 0; 

 reset_done_trigger; 
end 
end 
 
Adding test case logic 
 
Moving forward, let’s add logic to generate the test cases, ok we have three testcases as in the 
first part of this tutorial. Let’s list them again.  

• Reset Test : We can start with reset deasserted, followed by asserting reset for few clock 
ticks and deasserting the reset, See if counter sets its output to zero.  

• Enable Test: Assert/deassert enable after reset is applied.  
Random Assert/deassert of enable and reset. 
 
Adding compare Logic 
 
To make any testbench self checking/automated, a model that mimics the DUT in functionality 
needs to be designed.For the counter defined previously the model looks similar to:  
Reg [3:0] count_compare; 
always @ (posedge clk) 
if (reset == 1'b1) 
count_compare <= 0; 
else if ( enable == 1'b1) 
count_compare <= count_compare + 1; 
 
 Once the logic to mimic the DUT functionality has been defined, the next step is to add the 
checker logic. The checker logic at any given point keeps checking the expected value with the 
actual value. Whenever there is an error, it prints out the expected and the actual values, and, 
also, terminates the simulation by triggering the event “terminate_sim”. This can be appended to 
the code above as follows: 
 
always @ (posedge clk) 
if (count_compare != count) begin 
$display ( "DUT Error at time %d" , $time); 
$display ( " Expected value %d, Got Value %d" , count_compare, count); 
#5 -> terminate_sim; 
end 
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2.3 User Defined Primitives 
 

2.3.1 Verilog comes with built in primitives like gates, transmission gates, and switches. This set 
sometimes seems to be rather small and a more complex primitive set needs to be constructed. 
Verilog provides the facility to design these primitives which are known as UDPs  or  User  
 
Defined Primitives. UDPs can model: 

• Combinational Logic  
• Sequential Logic  

One can include timing information along with the UDPs to model complete ASIC library 
models. 
 
Syntax 
 
UDP begins with the keyword primitive and ends with the keyword endprimitive. UDPs must be 
defined outside the main module definition. 
This code shows how input/output ports and primitve is declared. 
primitive udp_syntax ( 
a, // Port a 
b, // Port b 
c, // Port c 
d // Port d 
) 
output a; 
input b,c,d; 
// UDP function code here 
endprimitive 
 
Note:  

• A UDP can contain only one output and up to 10 inputs max.  
• Output Port should be the first port followed by one or more input ports.  
• All UDP ports are scalar, i.e. Vector ports are not allowed.  
• UDP's can not have bidirectional ports.  

 
Body 
 
Functionality of primitive (both combinational and sequential) is described inside a table, and it 
ends with reserve word endtable (as shown in the code below). For sequential UDPs, one can use 
initial to assign initial value to output. 
 
// This code shows how UDP body looks like 
primitive udp_body ( 
a, // Port a 
b, // Port b 
c // Port c 
); 
input b,c; 
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// UDP function code here 
// A = B | C; 
table 
// B C : A 
? 1 : 1; 
1 ? : 1; 
0 0 : 0; 
endtable 
endprimitive 
 
Note: A UDP cannot use 'z' in input table and instead it uses ‘x’. 
 
2.3.2  Combinational UDPs 
 
In combinational UDPs, the output is determined as a function of the current input. Whenever an 
input changes value, the UDP is evaluated and one of the state table rows is matched. The output 
state is set to the value indicated by that row.  
Let us consider the previously mentioned UDP.  
 
TestBench to Check the above UDP 
 
include "udp_body.v" 
module udp_body_tb(); 
reg b,c; 
wire a; 
udp_body udp (a,b,c); 
initial begin 
$monitor( " B = %b C = %b A = %b" ,b,c,a); 
b = 0; 
c=0;  
#1 b = 1; 
#1 c = 1; 
#1 b = 1'bx; 
#1 c = 0; 
#1 b = 1; 
#1 c = 1'bx; 
#1 b = 0; 
#10 $finish; 
end 
endmodule 
 
Sequential UDPs 
  
Sequential UDP’s differ in the following manner from the combinational UDP’s 
 

• The output of a sequential UDP is always defined as a reg 

• An initial statement can be used to initialize output of sequential UDP’s 

Version 2 EE IIT, Kharagpur 15



• The format of a state table entry is somewhat different 

• There are 3 sections in a state table entry: inputs, current state and next state. The three 
states are separated by a colon(:) symbol.  

• The input specification of state table can be in term of input levels or edge transitions 

• The current state is the current value of the output register.  

• The next state is computed based on inputs and the current state. The next state becomes 
the new value of the output register.  

• All possible combinations of inputs must be specified to avoid unknown output.  
 

Level sensitive UDP’s 
// define level sensitive latch by using UDP 
primitive latch (q, d, clock, clear) 
 
//declarations output q; 
reg q; // q declared as reg to create internal storage  
input d, clock, clear; 
 
// sequential UDP initialization  
// only one initial statement allowed  
initial  
q=0; // initialize output to value 0 
 
// state table  
table  
// d clock clear : q : q+ ; 
    ?    ?       1    :  ? : 0   ;// clear condition 
           // q+ is the new output value 
    1    1       0    :  ? : 1   ;// latch q = data = 1 
    0    1       0    :  ? : 0   ;// latch q = data = 0 
     
 
    ?   0       0    :  ? : -   ;// retain original state if clock = 0 
 
endtable 
 

endprimitive 
 

Edgesensitive UDP’s 
 
//Define edge sensitive sequential UDP; 
primitive edge_dff(output reg q = 0 input d, clock, clear); 
 
// state table  
table  
// d clock clear : q : q+ ; 
    ?    ?       1    :  ? : 0   ; // output=0 if clear =1 
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    ?    ?       (10):  ? : -   ;  // ignore negative transition of clear 
    1    (10)       0    :  ? : 1   ;// latch data on negative transition 
    0    (10)       0    :  ? : 0   ;// clock 
     
    ?    (1x)      0    :  ? : -   ;// hold q if clock transitions to unknown state 
    ?    (0?)      0    :  ? : -   ;// ignore positive transitions of clock 
    ?    (x1)      0    :  ? : -   ;// ignore positive transitions of clock 
 
    (??)    ?      0    :  ? : -   ;// ignore any change in d if clock is steady 
 
endtable 

endprimitive 
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Some Exercises 
 
1. Task and functions 
 

i. Define a function to multiply 2 four bit number. The output is a 32 bit value. Invoke the 
function by using stimulus and check results  

ii. define a function to design an 8-function ALU that takes 2 bit numbers a and computes a 
5 bit result out based on 3 bit select signal . Ignore overflow or underflow bits.  

iii. Define a task to compute even parity of a 16 bit number. The result is a 1-bit value that is 
assigned to the output after 3 positive edges of clock. (Hint: use a repeat loop in the task) 

iv. Create a design a using a full adder. Use a conditional compilation (idef). Compile the 
fulladd4 with def parameter statements in the text macro DPARAM is defined by the 
'define 'statement; otherwise compile the full adder with module instance parameter 
values.  

v. Consider a full bit adder. Write a stimulus file to do random testing of the full adder. Use 
a random number to generate a 32 bit random number. Pick bits 3:0 and apply them to 
input a; pick bits 7:4 and apply them to input b. use bit 8 and apply it to c_in. apply 20 
random test vectors and see the output.  

 
2. Timing 
 
i) a. Consider the negative edge triggered with the asynchronous reset D-FF shown below. Write 
the verilog description for the module D-FF. describe path delays using parallel connection.  
 
 

 
 

 
 
b Modify the above if all the path delays are 5.  
 
ii) Assume that a six delay specification is to be specified for all the path delays. All path delays 
are equal. In the specify block define parameters t_01=4, t_10=5, t_0z=7,t_z1=2, t_z0=8. Using 
the previous DFF write the six delay specifications for all the paths.   
 
 

Version 2 EE IIT, Kharagpur 18



3. UDP  
 

i. Define a positive edge triggered d-f/f with clear as a UDP. Signal clear is active low.  
ii. Define a level sensitive latch with a preset signal. Inputs are d, clock, and preset. Output 

is q. If clock=0, then q=d. If clock=1or x then q is unchanged. If preset=1, then q=1. If 
preset=0 then q is decided by clock and d signals. If preset=x then q=x.   

iii. Define a negative edge triggered JK FF, jk_ff with asynchronous preset and clear as a 
UDP. Q=1when preset=1 and q=0 when clear=1 

 

 
 
T he table for JK FF is as follows 
 

J K qn+1 
0 0 qn 
0 1 0 
1 0 1 
1 1 qn’ 
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