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In this lesson the student will learn the following 
 
Architecture of an Embedded Processor 
The Architectural Overview of Intel MCS 96 family of  
Microcontrollers 

 
Pre-requisite 
 
Digital Electronics 
 
10.1 Introduction 
 
It is generally difficult to draw a clear-cut boundary between the class of microcontrollers and 
general purpose microprocessors. Distinctions can be made or assumed on the following 
grounds. 

• Microcontrollers are generally associated with the embedded applications 

• Microprocessors are associated with the desktop computers 

• Microcontrollers will have simpler memory hierarchy i.e. the RAM and ROM may exist 
on the same chip and generally the cache memory will be absent. 

• The power consumption and temperature rise of microcontroller is restricted because of 
the constraints on the physical dimensions. 

• 8-bit and 16-bit microcontrollers are very popular with a simpler design as compared to 
large bit-length (32-bit, 64-bit) complex general purpose processors. 

 
However, recently, the market for 32-bit embedded processors has been growing. 
Further the issues such as power consumption, cost, and integrated peripherals differentiate a 
desktop CPU from an embedded processor. Other important features include the interrupt 
response time, the amount of on-chip RAM or ROM, and the number of parallel ports. The 
desktop world values processing power, whereas an embedded microprocessor must do the job 
for a particular application at the lowest possible cost. 
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 Fig. 10.2 Microprocessor versus microcontroller 
 
Fig. 10.1 shows the performance cost plot of the available microprocessors. Naturally the more is 
the performance the more is the cost. The embedded controllers occupy the lower left hand 
corner of the plot. 
 
Fig.10.2 shows the architectural difference between two systems with a general purpose 
microprocessor and a microcontroller. The hardware requirement in the former system is more 
than that of later. Separate chips or circuits for serial interface, parallel interface, memory and 
AD-DA converters are necessary On the other hand the functionality, flexibility and the 
complexity of information handling is more in case of the former. 



10.2 The Architecture of a Typical Microcontroller 
 
A typical microcontroller chip from the Intel 80X96 family is discussed in the following 
paragraphs. 
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Fig. 10.3 The Architectural Block diagram of Intel 8XC196 Microcontroller  
 
PTS: Peripheral Transaction Server; I/O: Input/Output Interface; EPA: Event Processor Array;  
 
PWM: Pulse Width Modulated Outputs; WG: Waveform Generator; A/D- Analog to Digital 
Converter;  
 
FG: Frequency Generator; SIO: Serial Input/Output Port 
 
Fig. 10.3 shows the functional block diagram of the microcontroller. The core of the 
microcontroller consists of the central processing unit (CPU) and memory controller. The CPU 
contains the register file and the register arithmetic-logic unit (RALU). A 16-bit internal bus 
connects the CPU to both the memory controller and the interrupt controller. An extension of this 
bus connects the CPU to the internal peripheral modules. An 8-bit internal bus transfers 
instruction bytes from the memory controller to the instruction register in the RALU. 
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 Fig. 10.4 The Architectural Block diagram of the core 
 
CPU: Central Processing Unit; RALU: Register Arithmetic Logic Unit; ALU: Arithmetic Logic 
Unit; 
 
Master PC: Master Program Counter; PSW: Processor Status Word; SFR: Special Function 
Registers 
 
CPU Control 
 
The CPU is controlled by the microcode engine, which instructs the RALU to perform 
operations using bytes, words, or double-words from either the 256-byte lower register file or 
through a window that directly accesses the upper register file. Windowing is a technique that 
maps blocks of the upper register file into a window in the lower register file. CPU instructions 
move from the 4-byte prefetch queue in the memory controller into the RALU’s instruction 
register. The microcode engine decodes the instructions and then generates the sequence of 
events that cause desired functions to occur. 
 
Register File 
 
The register file is divided into an upper and a lower file. In the lower register file, the lowest 24 
bytes are allocated to the CPU’s special-function registers (SFRs) and the stack pointer, while 
the remainder is available as general-purpose register RAM. The upper register file contains only 
general-purpose register RAM. The register RAM can be accessed as bytes, words, or double 
words. The RALU accesses the upper and lower register files differently. The lower register file 
is always directly accessible with direct addressing. The upper register file is accessible with 
direct addressing only when windowing is enabled.  
 
 



Register Arithmetic-logic Unit (RALU) 
 
The RALU contains the microcode engine, the 16-bit arithmetic logic unit (ALU), the master 
program counter (PC), the processor status word (PSW), and several registers. The registers in 
the RALU are the instruction register, a constants register, a bit-select register, a loop counter, 
and three temporary registers (the upper-word, lower-word, and second-operand registers). The 
PSW contains one bit (PSW.1) that globally enables or disables servicing of all maskable 
interrupts, one bit (PSW.2) that enables or disables the peripheral transaction server (PTS), and 
six Boolean flags that reflect the state of your program.  All registers, except the 3-bit bit-select 
register and the 6-bit loop counter, are either 16 or 17 bits (16 bits plus a sign extension). Some 
of these registers can reduce the ALU’s workload by performing simple operations. 
The RALU uses the upper- and lower-word registers together for the 32-bit instructions and as 
temporary registers for many instructions. These registers have their own shift logic and are used 
for operations that require logical shifts, including normalize, multiply, and divide operations. 
The six-bit loop counter counts repetitive shifts. The second-operand register stores the second 
operand for two-operand instructions, including the multiplier during multiply operations and the 
divisor during divide operations. During subtraction operations, the output of this register is 
complemented before it is moved into the ALU. The RALU speeds up calculations by storing 
constants (e.g., 0, 1, and 2) in the constants register so that they are readily available when 
complementing, incrementing, or decrementing bytes or words. In addition, the constants register 
generates single-bit masks, based on the bit-select register, for bit-test instructions. 
 
Code Execution 
 
The RALU performs most calculations for the microcontroller, but it does not use an 
accumulator. Instead it operates directly on the lower register file, which essentially provides 
256 accumulators. Because data does not flow through a single accumulator, the 
microcontroller’s code executes faster and more efficiently. 
 
Instruction Format 
 
These microcontrollers combine general-purpose registers with a three-operand instruction 
format. This format allows a single instruction to specify two source registers and a separate 
destination register. For example, the following instruction multiplies two 16-bit variables and 
stores the 32-bit result in a third variable. 

 
Memory Interface Unit 
 
The RALU communicates with all memory, except the register file and peripheral SFRs, through 
the memory controller. The memory controller contains the prefetch queue, the slave program 
counter (slave PC), address and data registers, and the bus controller. The bus controller drives 
the memory bus, which consists of an internal memory bus and the external address/data bus. 
The bus controller receives memory-access requests from either the RALU or the prefetch 
queue; queue requests always have priority. 
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When the bus controller receives a request from the queue, it fetches the code from the address 
contained in the slave PC. The slave PC increases execution speed because the next instruction 
byte is available immediately and the processor need not wait for the master PC to send the 
address to the memory controller. If a jump interrupt, call, or return changes the address 
sequence, the master PC loads the new address into the slave PC, then the CPU flushes the queue 
and continues processing. 
 
Interrupt Service 
 
The interrupt-handling system has two main components: the programmable interrupt controller 
and the peripheral transaction server (PTS). The programmable interrupt controller has a 
hardware priority scheme that can be modified by the software. Interrupts that go through the 
interrupt controller are serviced by interrupt service routines those are provided by you. The 
peripheral transaction server (PTS) which is a microcoded hardware interrupt-processor provides 
efficient interrupt handling.  
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Internal Timing 
  

The clock circuitry (Fig. 10.5) receives an input clock signal on XTAL1 provided by an 
external crystal or oscillator and divides the frequency by two. The clock generators accept the 
divided input frequency from the divide-by-two circuit and produce two non-overlapping 
internal timing signals, Phase 1(PH1) and  Phase 2 (PH2). These signals are active when high. 
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The rising edges of PH1 and PH2 generate the internal CLKOUT signal (Fig. 10.6). The 

clock circuitry routes separate internal clock signals to the CPU and the peripherals to provide 
flexibility in power management. Because of the complex logic in the clock circuitry, the signal 
on the CLKOUT pin is a delayed version of the internal CLKOUT signal. This delay varies with 
temperature and voltage.  
 
I/O Ports 
 
Individual I/O port pins are multiplexed to serve as standard I/O or to carry special function 
signals associated with an on-chip peripheral or an off-chip component. If a particular special-
function signal is not used in an application, the associated pin can be individually configured to 
serve as a standard I/O pin. Ports 3 and 4 are exceptions; they are controlled at the port level. 
When the bus controller needs to use the address/data bus, it takes control of the ports. When the 
address/data bus is idle, you can use the ports for I/O. Port 0 is an input-only port that is also the 
analog input for the A/D converter. For more details the reader is requested to see the data 
manual at  
www.intel.com/design/mcs96/manuals/27218103.pdf. 
 
Serial I/O (SIO) Port 
 
The microcontroller has a two-channel serial I/O port that shares pins with ports 1 and 2. Some 
versions of this microcontroller may not have any. The serial I/O (SIO) port is an 
asynchronous/synchronous port that includes a universal asynchronous receiver and transmitter 
(UART). The UART has two synchronous modes (modes 0 and 4) and three asynchronous 
modes (modes 1, 2, and 3) for both transmission and reception. The asynchronous modes are full 
duplex, meaning that they can transmit and receive data simultaneously. The receiver is buffered, 
so the reception of a second byte can begin before the first byte is read. The transmitter is also 
buffered, allowing continuous transmissions. The SIO port has two channels (channels 0 and 1) 
with identical signals and registers.  



Event Processor Array (EPA) and Timer/Counters 
 
The event processor array (EPA) performs high-speed input and output functions associated with 
its timer/counters. In the input mode, the EPA monitors an input for signal transitions. When an 
event occurs, the EPA records the timer value associated with it. This is called a capture event. 
In the output mode, the EPA monitors a timer until its value matches that of a stored time value. 
When a match occurs, the EPA triggers an output event, which can set, clear, or toggle an output 
pin. 
This is called a compare event. Both capture and compare events can initiate interrupts, which 
can be serviced by either the interrupt controller or the PTS. Timer 1 and timer 2 are both 16-bit 
up/down timer/counters that can be clocked internally or externally. Each timer/counter is called 
a timer if it is clocked internally and a counter if it is clocked externally.  
 
Pulse-width Modulator (PWM)  
 
The output waveform from each PWM channel is a variable duty-cycle pulse. Several types of 
electric motor control applications require a PWM waveform for most efficient operation. When 
filtered, the PWM waveform produces a DC level that can change in 256 steps by varying the 
duty cycle. The number of steps per PWM period is also programmable (8 bits).  
 
Frequency Generator 
 
Some microcontrollers of this class has this frequency generator. This peripheral produces a 
waveform with a fixed duty cycle (50%) and a programmable frequency (ranging from 4 kHz to 
1 MHz with a 16 MHz input clock).  
 
Waveform Generator 
 
A waveform generator simplifies the task of generating synchronized, pulse-width modulated 
(PWM) outputs. This waveform generator is optimized for motion control applications such as 
driving 3-phase AC induction motors, 3-phase DC brushless motors, or 4-phase stepping motors. 
The waveform generator can produce three independent pairs of complementary PWM outputs, 
which share a common carrier period, dead time, and operating mode. Once it is initialized, the 
waveform generator operates without CPU intervention unless you need to change a duty cycle.  
 
Analog-to-digital Converter 
 
The analog-to-digital (A/D) converter converts an analog input voltage to a digital equivalent. 
Resolution is either 8 or 10 bits; sample and convert times are programmable. Conversions can 
be performed on the analog ground and reference voltage, and the results can be used to calculate 
gain and zero-offset errors. The internal zero-offset compensation circuit enables automatic zero 
offset adjustment. The A/D also has a threshold-detection mode, which can be used to generate 
an interrupt when a programmable threshold voltage is crossed in either direction. The A/D scan 
mode of the PTS facilitates automated A/D conversions and result storage.  
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Watchdog Timer 
 
The watchdog timer is a 16-bit internal timer that resets the microcontroller if the software fails 
to operate properly.  
 
Special Operating Modes  
 
In addition to the normal execution mode, the microcontroller operates in several special-purpose 
modes. Idle and power-down modes conserve power when the microcontroller is inactive. On 
circuit emulation (ONCE) mode electrically isolates the microcontroller from the system, and 
several other modes provide programming options for nonvolatile memory.  
 
Reducing Power Consumption 
 
In idle mode, the CPU stops executing instructions, but the peripheral clocks remain active. 
Power consumption drops to about 40% of normal execution mode consumption. Either a 
hardware reset or any enabled interrupt source will bring the microcontroller out of idle mode. In 
power-down mode, all internal clocks are frozen at logic state zero and the internal oscillator is 
shut off. The register file and most peripherals retain their data if VCC is maintained. Power 
consumption drops into the µW range.  
 
Testing the Printed Circuit Board 
 
The on-circuit emulation (ONCE) mode electrically isolates the microcontroller from the system. 
By invoking the ONCE mode, you can test the printed circuit board while the microcontroller is 
soldered onto the board. 
 
Programming the Nonvolatile Memory 
 
The microcontrollers that have internal OTPROM provide several programming options: 

• Slave programming allows a master EPROM programmer to program and verify one or 
more slave microcontrollers. Programming vendors and Intel distributors typically use 
this mode to program a large number of microcontrollers with a customer’s code and 
data. 

• Auto programming allows an microcontroller to program itself with code and data 
located in an external memory device. Customers typically use this low-cost method to 
program a small number of microcontrollers after development and testing are complete. 

• Run-time programming allows you to program individual nonvolatile memory locations 
during normal code execution, under complete software control. Customers typically use 
this mode to download a small amount of information to the microcontroller after the rest 
of the array has been programmed. For example, you might use run-time programming to 

• download a unique identification number to a security device. 
• ROM dump mode allows you to dump the contents of the microcontroller’s nonvolatile 

memory to a tester or to a memory device (such as flash memory or RAM). 
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10.3 Conclusion 
 
This lesson discussed about the architecture of a typical high performance microcontrollers.  
The next lesson shall discuss the signals of a typical microcontroller from the Intel MCS96 
family. 
 
10.4 Questions and Answers 
 

1. What do you mean by the Microcode Engine? 
 
Ans: This is where the instructions which breaks down to smaller micro-instructions are 
executed. 
Microprogramming was one of the key breakthroughs that allowed system architects to 
implement complex instructions in hardware. To understand what microprogramming is, it 
helps to first consider the alternative: direct execution. With direct execution, the machine 
fetches an instruction from memory and feeds it into a hardwired control unit. This control 
unit takes the instruction as its input and activates some circuitry that carries out the task. For 
instance, if the machine fetches a floating-point ADD and feeds it to the control unit, there’s 
a circuit somewhere in there that kicks in and directs the execution units to make sure that all 
of the shifting, adding, and normalization gets done. Direct execution is actually pretty much 
what you’d expect to go on inside a computer if you didn’t know about microcoding. 
 
The main advantage of direct execution is that it’s fast. There’s no extra abstraction or 
translation going on; the machine is just decoding and executing the instructions right in 
hardware. The problem with it is that it can take up quite a bit of space. Think about it. If 
every instruction has to have some circuitry that executes it, then the more instructions you 
have, the more space the control unit will take up. This problem is compounded if some of 
the instructions are big and complex, and take a lot of work to execute. So directly executing 
instructions for a CISC machine just wasn’t feasible with the limited transistor resources of 
the day. 

With microprogramming, it’s almost like there’s a mini-CPU on the CPU. The control 
unit is a microcode engine that executes microcode instructions. The CPU designer uses 
these microinstructions to write microprograms, which are stored in a special control 
memory. When a normal program instruction is fetched from memory and fed into the 
microcode engine, the microcode engine executes the proper microcode subroutine. This 
subroutine tells the various functional units what to do and how to do it. 

As you can probably guess, in the beginning microcode was a pretty slow way to do 
things. The ROM used for control memory was about 10 times faster than magnetic core-
based main memory, so the microcode engine could stay far enough ahead to offer decent 
performance. As microcode technology evolved, however, it got faster and faster. (The 
microcode engines on current CPUs are about 95% as fast as direct execution) Since 
microcode technology was getting better and better, it made more and more sense to just 
move functionality from (slower and more expensive) software to (faster and cheaper) 
hardware. So ISA instruction counts grew, and program instruction counts shrank. 

As microprograms got bigger and bigger to accommodate the growing instructions sets, 
however, some serious problems started to emerge. To keep performance up, microcode had 
to be highly optimized with no inefficiencies, and it had to be extremely compact in order to 
keep memory costs down. And since microcode programs were so large now, it became 
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much harder to test and debug the code. As a result, the microcode that shipped with 
machines was often buggy and had to be patched numerous times out in the field. It was the 
difficulties involved with using microcode for control that spurred Patterson and others began 
to question whether implementing all of these complex, elaborate instructions in microcode 
was really the best use of limited transistor resources. 
 
2. What is the function of the Watch Dog Timer? 
 
Ans: A fail-safe mechanism that intervenes if a system stops functioning. A hardware timer 
that is periodically reset by software. If the software crashes or hangs, the watchdog timer 
will expire, and the entire system will be reset automatically. 
The Watch Dog Unit contains a Watch Dog Timer. 

A watchdog timer (WDT) is a device or electronic card that performs a specific operation 
after a certain period of time if something goes wrong with an electronic system and the 
system does not recover on its own.  

A common problem is for a machine or operating system to lock up if two parts or 
programs conflict, or, in an operating system, if memory management trouble occurs. In 
some cases, the system will eventually recover on its own, but this may take an unknown and 
perhaps extended length of time. A watchdog timer can be programmed to perform a warm 
boot (restarting the system) after a certain number of seconds during which a program or 
computer fails to respond following the most recent mouse click or keyboard action. The 
timer can also be used for other purposes, for example, to actuate the refresh (or reload) 
button in a Web browser if a Web site does not fully load after a certain length of time 
following the entry of a Uniform Resource Locator (URL).  
 

A WDT contains a digital counter that counts down to zero at a constant speed from a 
preset number. The counter speed is kept constant by a clock circuit. If the counter reaches 
zero before the computer recovers, a signal is sent to designated circuits to perform the 
desired action.  
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