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Specific Instructional Objectives 
 

At the end of this lesson, the student would be able to: 

• Know what a Real-Time system is 

• Get an overview of the various applications of Real-Time systems 

• Visualize the basic model of a Real-Time system 

• Identify the characteristics of a Real-Time system 

• Understand the safety and reliability aspects of a Real-Time system 

• Know how to achieve highly reliable software  

• Get an overview of the software fault-tolerant techniques 

• Classify the Real-Time tasks into different categories 
 

1. Introduction 
 
Commercial usage of computer dates back to a little more than fifty years.  This brief period 

can roughly be divided into mainframe, PC, and post-PC eras of computing.  The mainframe era 
was marked by expensive computers that were quite unaffordable by individuals, and each 
computer served a large number of users. The PC era saw the emergence of desktops which 
could be easily be afforded and used by the individual users. The post-PC era is seeing 
emergence of small and portable computers, and computers embedded in everyday applications, 
making an individual interact with several computers everyday. 

 
Real-time and embedded computing applications in the first two computing era were rather 

rare and restricted to a few specialized applications such as space and defense.  In the post-PC 
era of computing, the use of computer systems based on real-time and embedded technologies 
has already touched every facet of our life and is still growing at a pace that was never seen 
before.  While embedded processing and Internet-enabled devices have now captured everyone’s  
imagination,  they  are  just  a  small  fraction  of  applications  that  have  been  made  possible  
by  real-time systems.  If we casually look around us, we can discover many of them often they 
are camouflaged inside simple looking devices.  If we observe carefully, we can notice several 
gadgets and applications which have today become in- dispensable to our every day life, are in 
fact based on embedded real-time systems.  For example, we have ubiquitous consumer products 
such as digital cameras, cell phones, microwave ovens, camcorders, video game sets; 
telecommunication domain products and applications such as set-top  boxes, cable modems, 
voice over IP (VoIP), and video conferencing applications; office products such as fax machines, 
laser  printers, and security systems. Besides, we encounter real-time systems in hospitals in the 
form of medical instrumentation equipments and imaging systems. There are also a large number 
of equipments and gadgets based on real-time systems which though we normally do not use 
directly, but never the less are still important to our daily life. A few examples of such systems 
are Internet routers, base stations in cellular systems, industrial plant automation systems, and 
industrial robots. 

 
It can be easily inferred from the above discussion that in recent times real-time computers 

have become ubiquitous and have permeated large number of application areas.  At present, the 

Version 2 EE IIT, Kharagpur 3



computers used in real-time applications vastly outnumber the computers that are being used in 
conventional applications. According to an estimate [3], 70% of all processors manufactured 
world-wide are deployed in real-time embedded applications. While it is already true that an 
overwhelming majority of all processors being manufactured are getting deployed in real-time 
applications, what  is more remarkable  is  the  unmistakable trend of steady rise in the fraction 
of all processors manufactured world-wide finding their way to real-time applications. 

 
Some  of  the  reasons  attributable  to  the  phenomenal  growth  in  the  use  of  real-time  

systems  in  the  recent  years are  the  manifold  reductions  in  the  size  and  the  cost  of  the  
computers,  coupled  with  the  magical  improvements  to their  performance.  The  availability  
of  computers  at  rapidly  falling  prices,  reduced  weight,  rapidly  shrinking  sizes, and  their  
increasing  processing  power  have  together  contributed  to  the  present  scenario. Applications 
which not too far back were considered prohibitively expensive to automate can now be 
affordably automated. For instance, when microprocessors cost several tens of thousands of 
rupees, they were considered to be too expensive to be put inside a washing machine; but when 
they cost only a few hundred rupees, their use makes commercial sense. 

 
The rapid growth of applications deploying real-time technologies has been matched by the 

evolutionary growth of the underlying technologies supporting the development of real-time 
systems.  In this book, we discuss some of the core technologies used in developing real-time 
systems. However, we restrict ourselves to software issues only and keep hardware discussions 
to the bare minimum. The software issues that we address are quite expansive in the sense that 
besides the operating system and program development issues, we discuss the networking and 
database issues. 

 
 In this chapter, we restrict ourselves to some introductory and fundamental issues.  In the 

next three chapters, we  discuss  some  core  theories  underlying  the  development  of  practical  
real-time  and  embedded  systems. In the subsequent chapter, we discuss some important 
features of commercial real-time operating systems.  After that, we shift our attention to real-
time communication technologies and databases. 

 
1.1. What is Real-Time? 

 
Real-time is a quantitative notion of time. Real-time is measured using a physical (real) 

clock. Whenever we quantify time using a physical clock, we deal with real time. An example 
use of this quantitative notion of time can be observed in a description of an automated chemical 
plant.  Consider this: when the temperature of the chemical reaction chamber attains a certain 
predetermined temperature, say 250

o
C, the system automatically switches off the heater within a 

predetermined time interval, say within 30 milliseconds. In this description of a part of the 
behavior of a chemical plant, the time value that was referred to denotes the readings of some 
physical clock present in the plant automation system. 

 
In contrast to real time, logical time (also known as virtual time) deals with a qualitative 

notion of time and is expressed using event ordering relations such as before, after, sometimes, 
eventually, precedes, succeeds, etc.  While dealing with logical time, time readings from a 
physical clock are not necessary for ordering the events.  As an example, consider the following 
part of the behavior of library automation software used to automate the book-keeping activities 
of a college library:  “After a query book command is given by the user, details of all matching 
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books are displayed by the software.” In this example, the events “issue of query book 
command” and “display of results” are logically ordered in terms of which events follow the 
other. But, no quantitative expression of time was required. Clearly, this example behavior is 
devoid of any real-time considerations. We are now in a position to define what a real-time 
system is: 

 

 

 

Remember that in this definition of a real-time system, it is implicit that all quantitative time 
measurements are carried out using a physical clock. A chemical plant, whose part behavior 
description is - when  temperature  of the  reaction  chamber  attains  certain  predetermined  
temperature  value,  say  250oC,  the  system automatically  switches  off  the  heater  within  say  
30  milliseconds - is clearly a real-time system. Our examples so far were restricted to the 
description of partial behavior of systems.  The complete behavior of a system can  be  described  
by  listing  its  response  to  various  external  stimuli. It  may  be  noted  that  all  the  clauses  in  
the description of the behavior of a real-time system need not involve quantitative measures of 
time. That is, large parts of a description of the behavior of a system may not have any 
quantitative expressions of time at all, and still qualify as a real-time system. Any system whose 
behavior can completely be described without using any quantitative expression of time is of 
course not a real-time system. 

A system is called a real-time system, when we need quantitative expression of time (i.e. 
real-time) to describe the behavior of the system. 

 
1.2. Applications  of  Real-Time  Systems 

 
Real-time  systems  have  of  late,  found  applications  in  wide  ranging  areas.   In  the  

following,  we  list  some  of  the prominent areas of application of real-time systems and in each 
identified case, we discuss a few example applications in  some  detail. As  we  can  imagine,  the  
list  would  become  very  vast  if  we  try  to  exhaustively  list  all  areas  of applications of real-
time systems. We have therefore restricted our list to only a handful of areas, and out of these we 
have explained only a few selected applications to conserve space. We have pointed out the 
quantitative notions of time used in the discussed applications. The examples we present are 
important to our subsequent discussions and would be referred to in the later chapters whenever 
required. 

 
1.2.1. Industrial Applications 

 
Industrial applications constitute a major usage area of real-time systems.  A few examples of 

industrial applications of real-time systems are:  process control systems, industrial automation 
systems, SCADA applications, test and measurement equipments, and robotic equipments. 

 
Example 1: Chemical Plant Control 
 
Chemical plant control systems are essentially a type of process control application.  In an 
automated chemical plant, a real-time computer periodically monitors plant conditions. The 
plant conditions are determined based on  current  readings  of  pressure,  temperature,  and  
chemical  concentration  of  the  reaction  chamber. These parameters are sampled 
periodically. Based on the values sampled at any time, the automation system decides on the 
corrective actions necessary at that instant to maintain the chemical reaction at a certain rate.  
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Each time the plant conditions are sampled, the automation system should decide on the 
exact instantaneous corrective actions  required  such  as  changing  the  pressure,  
temperature,  or  chemical  concentration  and  carry  out  these actions  within  certain  
predefined  time  bounds. Typically,  the  time  bounds  in  such  a  chemical  plant  control 
application range from a few micro seconds to several milliseconds. 
 
Example 2: Automated Car Assembly Plant 
 
An automated car assembly plant is an example of a plant automation system.  In an 
automated car assembly plant, the work product (partially assembled car) moves on a 
conveyor belt (see Fig. 28.1). By the side of the conveyor belt, several workstations are 
placed.  Each workstation performs some specific work on the work product such as fitting 
engine, fitting door, fitting wheel, and spray painting the car, etc.  as it moves on the 
conveyor belt. An empty chassis is introduced near the first workstation on the conveyor belt.  
A fully assembled car comes out after the work product goes past all the workstations.  At 
each workstation, a sensor senses the arrival of the next partially assembled product.  As  
soon  as  the  partially  assembled product  is  sensed,  the  workstation begins  to  perform  
its  work  on  the  work  product.  The time constraint imposed on the workstation computer 
is that the workstation must complete its work before the work product moves away to the 
next workstation. The time bounds involved here are typically of the order of a few hundreds 
of milliseconds. 

 
 

Chassis  

Fit 
engine 

Fit 
door 

Fit 
wheel Spray 

paint  
Finished car  

Conveyor Belt 

Fig. 28.1 Schematic Representation of an Automated Car Assembly Plant 

 
 
 
 
 
 
 
 
 
 
 
 

Example 3: Supervisory Control And Data Acquisition (SCADA) 
 
SCADA are a category of distributed control systems being used in many industries. A 
SCADA system helps monitor and control a large number of distributed events of interest. In 
SCADA systems, sensors are scattered at various geographic locations to collect raw data 
(called events of interest). These data are then processed and stored in a real-time database.   
The  database  models  (or  reflects)  the  current  state  of  the  environment. The database is 
updated frequently to make it a realistic model of the up-to-date state of the environment. An 
example of a SCADA application is an Energy Management System (EMS). An EMS helps 
to carry out load balancing in an electrical energy distribution network.  The EMS senses the 
energy consumption at the distribution points and computes the load across different phases 
of power supply.  It also helps dynamically balance the load.  Another example of a SCADA 
system is a system that monitors and controls traffic in a computer network.  Depending  on  
the  sensed  load  in  different  segments  of  the  network,  the  SCADA  system  makes  the 
router change its traffic routing policy dynamically. The time constraint in such a SCADA 
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application is that the sensors must sense the system state at regular intervals (say every few 
milliseconds) and the same must be processed before the next state is sensed. 
 

1.2.2. Medical 
 
A few examples of medical applications of real-time systems are:  robots, MRI scanners, 

radiation therapy equipments, bedside monitors, and computerized axial tomography (CAT). 
 
Example 4: Robot Used in Recovery of Displaced Radioactive Material 
 
Robots  have  become  very  popular  nowadays  and  are  being  used  in  a  wide  variety  of  
medical  applications. An application that we discuss here is a robot used in retrieving 
displaced radioactive materials.  Radioactive materials such as Cobalt and Radium are used 
for treatment of cancer. At times during treatment, the radioactive Cobalt (or Radium) gets 
dislocated and falls down.  Since human beings can not come near a radioactive material, a 
robot is used to restore the radioactive material to its proper position. The robot walks into 
the room containing the radioactive material, picks it up, and restores it to its proper position.  
The robot has to sense its environment frequently and based on this information, plan its 
path.  The real-time constraint on the path planning task of the robot is that unless it plans the 
path fast enough after an obstacle is detected, it may collide with it.  The time constraints 
involved here are of the order of a few milliseconds. 
 

1.2.3. Peripheral equipments 
 
A few examples of peripheral equipments that contain embedded real-time systems are: laser 

printers, digital copiers, fax machines, digital cameras, and scanners. 
 
Example 5: Laser Printer 
 
Most laser printers have powerful microprocessors embedded in them to control different 
activities associated with printing. The important activities that a microprocessor embedded 
in a laser printer performs include the following:  getting data from the communication 
port(s), typesetting fonts, sensing paper jams, noticing when the printer runs out of paper, 
sensing when the user presses a button on the control panel, and displaying various messages 
to the user. The most complex activity that the microprocessor performs is driving the laser 
engine. The basic command that a laser engine supports is to put a black dot on the paper. 
However, the laser engine has no idea about the exact shapes of different fonts, font sizes, 
italic, underlining, boldface, etc. that it may be asked to print. The embedded microprocessor 
receives print commands on its input port and determines  how  the  dots  can  be  composed  
to  achieve  the  desired  document  and  manages  printing  the  exact shapes through a series 
of dot commands issued to the laser engine.  The time constraints involved here are of the 
order of a few milli seconds. 
 

1.2.4. Automotive and Transportation 
 
A few examples of automotive and transportation applications of real-time systems are:  

automotive engine control systems, road traffic signal control, air-traffic control, high-speed train 
control, car navigation systems, and MPFI engine control systems. 
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Example 6: Multi-Point Fuel Injection (MPFI) System 
 
An MPFI system is an automotive engine control system.  A conceptual diagram of a car 
embedding an MPFI system is shown in Fig.28.2. An MPFI is a real-time system that 
controls the rate of fuel injection and allows the engine to operate at its optimal efficiency.  
In older models of cars, a mechanical device called the carburetor was  used  to  control  the  
fuel  injection  rate  to  the  engine.  It  was  the  responsibility  of  the  carburetor  to  vary the  
fuel  injection  rate  depending  on  the  current  speed  of  the  vehicle  and  the  desired  
acceleration. Careful experiments have suggested that for optimal energy output, the required 
fuel injection rate is highly nonlinear with respect to the vehicle speed and acceleration.  
Also, experimental results show that the precise fuel injection through multiple points is 
more effective than single point injection.  In MPFI engines, the precise fuel injection rate at 
each injection point is determined by a computer. An MPFI system injects fuel into 
individual cylinders resulting in better ‘power balance’ among the cylinders as well as higher 
output from each one along with faster throttle response. The processor primarily controls the 
ignition timing and the quantity of fuel to be injected. The latter is achieved by controlling 
the duration for which the injector valve is open — popularly known as pulse width.  The 
actions of the processor are determined by the data gleaned from sensors located all over the 
engine. These sensors constantly monitor the ambient temperature, the engine coolant 
temperature, exhaust temperature,  emission  gas  contents,  engine  rpm  (speed),  vehicle  
road  speed,  crankshaft  position,  camshaft position, etc. An MPFI engine with even an 8-bit 
computer does a much better job of determining an accurate fuel injection rate for given 
values of speed and acceleration compared to a carburetor-based system. An MPFI system 
not only makes a vehicle more fuel efficient, it also minimizes pollution by reducing partial 
combustion. 

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

Multi Point Fuel Injection (MPFI) System 

Computer  

Fig. 28.2 A Real-Time System Embedded in an MPFI Car 

1.2.5. Telecommunication  Applications 
 
A few example uses of real-time systems in telecommunication applications are: cellular 

systems, video conferencing, and cable modems. 
 
Example 7: A Cellular System 
 
Cellular systems have become a very popular means of mobile communication.  A cellular 
system usually maps a city into cells.  In each cell, a base station monitors the mobile 
handsets present in the cell. Besides, the base station  performs  several  tasks  such  as  
locating  a  user,  sending  and  receiving  control  messages  to  a  handset, keeping  track  of  
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call  details  for  billing  purposes,  and  hand-off  of  calls  as  the  mobile  moves.   Call 
hand-off is required when a mobile moves away from a base station.  As a mobile moves 
away, its received signal strength (RSS) falls at the base station.  The  base  station  monitors  
this  and  as  soon  as  the  RSS  falls  below  a  certain threshold value, it hands-off the 
details of the on-going call of the mobile to the base station of the cell to which the mobile 
has moved.  The hand-off must be completed within a sufficiently small predefined time 
interval so that the user does not feel any temporary disruption of service during the hand-off.  
Typically call hand-off is required to be achieved within a few milliseconds. 
 

1.2.6. Aerospace 
 
A  few  important  use  of  real-time  systems  in  aerospace  applications  are:  avionics,  

flight  simulation, airline cabin management systems, satellite tracking systems, and computer 
on-board an aircraft. 
 

Example 8: Computer On-board an Aircraft 
 

In many modern aircrafts, the pilot can select an “auto pilot” option.  As soon as the pilot 
switches to the “auto pilot”  mode,  an  on-board  computer  takes  over  all  controls  of  the  
aircraft  including  navigation,  take-off,  and landing of the aircraft.  In the “auto pilot” 
mode, the computer periodically samples velocity and acceleration of the aircraft.  From the 
sampled data, the on-board computer computes X, Y, and Z co-ordinates of the current 
aircraft position and compares them with the pre-specified track data. Before the next sample 
values are obtained, it computes the deviation from the specified track values and takes any 
corrective actions that may be necessary.  In this case, the sampling of the various 
parameters, and their processing need to be completed within a few micro seconds. 

 
1.2.7. Internet and Multimedia Applications 
 

Important use of real-time systems in multimedia and Internet applications include: video 
conferencing and multimedia multicast, Internet routers and switches. 

 
Example 9: Video Conferencing 
 
In a video conferencing application, video and audio signals are generated by cameras and 
microphones respectively.   The data are sampled at a certain pre-specified frame rate. These 
are then compressed and sent as packets to the receiver over a network. At the receiver-end, 
packets are ordered, decompressed, and then played. The time constraint at the receiver-end 
is that the receiver must process and play the received frames at a predetermined constant 
rate. Thus if thirty frames are to be shown every minute, once a frame play-out is complete, 
the next frame must be played within two seconds. 
 

1.2.8. Consumer Electronics 
 
Consumer electronics area abounds numerous applications of real-time systems. A few 

sample  applications  of  real-time  systems  in  consumer  electronics  are:   set-top  boxes,  
audio  equipment, Internet  telephony,  microwave  ovens,  intelligent  washing  machines,  home  
security  systems,  air  conditioning and refrigeration, toys, and cell phones. 
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Example 10: Cell Phones 
 
Cell  phones  are  possibly  the  fastest  growing  segment  of  consumer  electronics. A cell 
phone at any point of time carries out a number of tasks simultaneously.  These include:  
converting input voice to digital signals by deploying digital signal processing (DSP) 
techniques, converting electrical signals generated by the microphone to output voice signals, 
and sampling incoming base station signals in the control channel. A cell phone responds to 
the  communications  received  from  the  base  station  within  certain  specified  time  
bounds. For example, a base station might command a cell phone to switch the on-going 
communication to a specific frequency. The cell phone must comply with such commands 
from the base station within a few milliseconds. 

 
1.2.9. Defense Applications 

 
Typical defense applications of real-time systems include:  missile guidance systems, anti- 

missile systems, satellite-based surveillance systems. 
 

Example 11: Missile Guidance System 
 

A guided missile is one that is capable of sensing the target and homes onto it.  Homing 
becomes easy when the target emits either electrical or thermal radiation.  In a missile 
guidance system, missile guidance is achieved by a computer mounted on the missile.  The 
mounted computer computes the deviation from the required trajectory and effects track 
changes of the missile to guide it onto the target.  The time constraint on the computer-based 
guidance system is that the sensing and the track correction tasks must be activated 
frequently enough to keep the missile from diverging from the target.  The target sensing and 
track correction tasks are typically required to  be  completed  within  a  few  hundreds  of  
microseconds  or  even  lesser  time  depending  on  the  speed  of  the missile and the type of 
the target. 
 

1.2.10. Miscellaneous  Applications 
 
Besides the areas of applications already discussed, real-time systems have found numerous 

other applications in our every day life.  An example of such an application is a railway 
reservation system. 

 
Example 12: Railway Reservation System 
 
In a railway reservation system, a central repository maintains the up-to-date data on booking 
status of various trains.  Ticket booking counters are distributed across different geographic 
locations.  Customers queue up at different booking counters and submit their reservation 
requests. After a reservation request is made at a counter, it normally takes only a few 
seconds for the system to confirm the reservation and print the ticket.  A real-time constraint 
in this application is that once a request is made to the computer, it must print the ticket or 
display the seat unavailability message before the average human response time (about 20 
seconds) expires, so that the customers do not notice any delay and get a feeling of having 
obtained instant results. However, as we discuss a little later (in Section 1.6), this application 
is an example of a category of applications that is in some aspects different from the other 
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discussed applications. For example, even if the results are produced just after 20 seconds, 
nothing untoward is going to happen - this may not be the case with the other discussed 
applications. 
 

1.3. A Basic Model of a Real-Time System 
 
We have already pointed out that this book confines itself to the software issues in real-time 

systems.  However, in order to be able to see the software issues in a proper perspective, we need 
to have a basic conceptual understanding of the underlying hardware.  We therefore in this 
section try to develop a broad understanding of high level issues of the underlying hardware in a 
real-time system. For a more detailed study of the underlying hardware issues, we refer the 
reader to [2]. Fig.28.3 shows a simple model of a real-time system in terms of its important 
functional blocks. Unless otherwise mentioned, all our subsequent discussions would implicitly 
assume such a model.  Observe that in Fig. 28.3, the sensors are interfaced with the input 
conditioning block, which in turn is connected to the input interface. The output interface, output 
conditioning, and the actuator are interfaced in a complementary manner. In the following, we 
briefly describe the roles of the different functional blocks of a real-time system. 

 
Sensor:  A sensor converts some physical characteristic of its environment into electrical 
signals.  An example of a sensor is a photo-voltaic cell which converts light energy into 
electrical energy.  A wide variety of temperature and pressure sensors are also used.  A 
temperature sensor typically operates based on the principle of a thermocouple. Temperature 
sensors based on many other physical principles also exist.  For example, one type of 
temperature sensor employs the principle of variation of electrical resistance with 
temperature (called a varistor).  A pressure sensor typically operates based on the 
piezoelectricity principle.  Pressure sensors based on other physical principles also exist. 
 
 
 

 

 

 

 

 

 

 
 
 

Actuator:  An actuator is any device that takes its inputs from the output interface of a 
computer and converts these electrical signals into some physical actions on its environment. 
The physical actions may be in the form of motion, change of thermal, electrical, pneumatic, 
or physical characteristics of some objects. A popular actuator is a motor. Heaters are also 
very commonly used. Besides, several hydraulic and pneumatic actuators are also popular. 
 
Signal  Conditioning  Units:   The  electrical  signals  produced  by  a  computer  can  rarely  
be  used  to  directly drive an actuator. The computer signals usually need conditioning 

Sensor  
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Input 
Conditioning 

Unit 
Input 

Interface 

Output 
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Unit 
Output 

Interface 

Real-Time 
Computer  

Human 
Computer 
Interface  

Operators  

Fig. 28.3 A Model of a Real-Time System 

Version 2 EE IIT, Kharagpur 11



before they can be used by the actuator. This is termed output conditioning.   Similarly,  input  
conditioning  is  required  to  be  carried  out  on  sensor  signals  before they can be accepted 
by the computer. For example, analog signals generated by a photo-voltaic cell are normally 
in the milli-volts range and need to be conditioned before they can be processed by a 
computer.  The following are some important types of conditioning carried out on raw 
signals generated by sensors and digital signals generated by computers: 

 
1. Voltage Amplification:  Voltage amplification is normally required to be carried out to 

match the full scale sensor voltage output with the full scale voltage input to the interface 
of a computer.  For example, a sensor might produce voltage in the millivolts range, 
whereas the input interface of a computer may require the input signal level to be of the 
order of a volt.   

2. Voltage Level Shifting: Voltage level shifting is often required to align the voltage level 
generated by a sensor with that acceptable to the computer. For example, a sensor may 
produce voltage in the range -0.5 to +0.5 volt, whereas the input interface of the computer 
may accept voltage only in the range of 0 to 1 volt.  In this case, the sensor voltage must 
undergo level shifting before it can be used by the computer. 

  
3. Frequency Range Shifting and Filtering: Frequency range shifting is often used to 

reduce the noise components in a signal.  Many types of noise occur in narrow bands and 
the signal must be shifted from the noise bands so that noise can be filtered out. 

  
4. Signal Mode Conversion: A type of signal mode conversion that is frequently carried 

out during signal conditioning involves changing direct current into alternating current 
and vice-versa. Another type signal mode conversion that is frequently used is conversion 
of analog signals to a constant amplitude pulse train such that the pulse rate or pulse 
width is proportional to the voltage level. Conversion of analog signals to a pulse train is 
often necessary for input to systems such as transformer coupled circuits that do not pass 
direct current. 

 
 

D/A 
register 

D/A 
converter From 

Processor 
Bus 

To output 
signal 

conditioning 
unit 

Fig. 28.4 An Output Interface 

 
 
 
 
 
 
 
 

Interface Unit:  Normally commands from the CPU are delivered to the actuator through an 
output interface. An  output  interface  converts  the  stored  voltage  into  analog  form  and  
then  outputs  this  to  the  actuator  circuitry. This of course would require the value 
generated to be written on a register (see Fig. 28.4). In an output interface, in order to 
produce an analog output, the CPU selects a data register of the output interface and writes 
the necessary data to it. The two main functional blocks of an output interface are shown in 
Fig. 28.4. The interface takes care of the buffering and the handshake control aspects. Analog 
to digital conversion is frequently deployed in an input interface. Similarly, digital to analog 
conversion is frequently used in an output interface. 
 
In the following, we discuss the important steps of analog to digital signal conversion (ADC). 
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Analog  to  Digital  Conversion: Digital  computers  can  not  process  analog  signals.   
Therefore, analog signals need to be converted to digital form. Analog signals can be 
converted to digital form using a circuitry whose block diagram is shown in Fig. 28.7. Using 
the block diagram shown in Fig. 28.7, analog signals are normally converted to digital form 
through the following two main steps: 

 

Voltage  

Time   

Fig. 28.5 Continuous Analog Voltage 

 
 
 
 
 
 
 
 
 
 
 
 

• Sample the analog signal (shown in Fig. 28.5) at regular intervals. This sampling can be 
done by a capacitor circuitry that stores the voltage levels. The stored voltage levels can 
be made discrete. After sampling the analog signal (shown in Fig. 28.5), a step waveform 
as shown in Fig. 28.6 is obtained. 

 
• Convert the stored value to a binary number by using an analog to digital converter 

(ADC) as shown in Fig. 28.7 and store the digital value in a register. 
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Fig. 28.6 Analog Voltage Converted to Discrete Form 
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Fig. 28.7 Conversion of an Analog Signal to a 16 bit Binary Number 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Digital to analog conversion can be carried out through a complementary set of operations. 
We leave it as an exercise to the reader to figure out the details of the circuitry that can perform 
the digital to analog conversion (DAC). 

 
1.4. Characteristics  of  Real-Time  Systems 

 
We now discuss a few key characteristics of real-time systems.  These characteristics 

distinguish real-time systems from non-real-time systems. However, the reader may note that all 
the discussed characteristics may not be applicable to every real-time system. Real-time systems 
cover such an enormous range of applications and products that a generalization of the 
characteristics into a set that is applicable to each and every system is difficult. Different 
categories of real-time systems may exhibit the characteristics that we identify to different 
extents or may not even exhibit some of the characteristics at all. 
 
1. Time constraints: Every real-time task is associated with some time constraints.  One form 

of time constraints that is very common is deadlines associated with tasks. A task deadline 
specifies the time before which the task must complete and produce the results. Other types 
of timing constraints are delay and duration (see Section 1.7). It is the responsibility of the 
real-time operating system (RTOS) to ensure that all tasks meet their respective time 
constraints.  We shall examine in later chapters how an RTOS can ensure that tasks meet 
their respective timing constraints through appropriate task scheduling strategies.  

2. New Correctness Criterion: The notion of correctness in real-time systems is different from 
that used in the context of traditional systems.  In real-time systems, correctness implies not 
only logical correctness of the results, but the time at which the results are produced is 
important.  A logically correct result produced after the deadline would be considered as an 
incorrect result. 
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Fig. 28.8 A Schematic Representation of an Embedded Real-Time System 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Embedded: A vast majority of real-time systems are embedded in nature [3]. An embedded 

computer system is physically “embedded” in its environment and often controls it.  Fig. 28.8 
shows a schematic representation of an embedded system. As shown in Fig. 28.8, the sensors 
of the real-time computer collect data from the environment, and pass them on to the real-
time computer for processing.  The computer, in turn passes information (processed data) to 
the actuators to carry out the necessary work on the environment, which results in controlling 
some characteristics of the environment. Several examples of embedded systems were 
discussed in Section 1.2. An example of an embedded system that we would often refer is the 
Multi-Point Fuel Injection (MPFI) system discussed in Example 6 of Sec. 1.2. 

  
4. Safety-Criticality:  For traditional non-real-time systems safety and reliability are 

independent issues. However, in many real-time systems these two issues are intricately 
bound together making them safety-critical. Note that a safe system is one that does not 
cause any damage even when it fails. A reliable system on the other hand, is one that can 
operate for long durations of time without exhibiting any failures. A safety-critical system is 
required to be highly reliable since any failure of the system can cause extensive damages. 
We elaborate this issue in Section 1.5. 

  
5. Concurrency: A real-time system usually needs to respond to several independent events 

within very short and strict time bounds. For instance, consider a chemical plant automation 
system (see Example1 of Sec. 1.2), which monitors the progress of a chemical reaction and 
controls the rate of reaction by changing the different parameters of reaction such as 
pressure, temperature, chemical concentration. These parameters are sensed using sensors 
fixed in the chemical reaction chamber. These sensors may generate data asynchronously at 
different rates. Therefore, the real-time system must process data from all the sensors 
concurrently, otherwise signals may be lost and the system may malfunction. These systems 
can be considered to be non-deterministic, since the behavior of the system depends on the 
exact timing of its inputs. A non-deterministic computation is one in which two runs using 
the same set of input data can produce two distinct sets of output data in the two runs. 

  
6. Distributed and Feedback Structure: In many real-time systems, the different components 

of the system are naturally distributed across widely spread geographic locations. In such 
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systems, the different events of interest arise at the geographically separate locations. 
Therefore, these events may often have to be handled locally and responses produced to them 
to prevent overloading of the underlying communication network. Therefore, the sensors and 
the actuators may be located at the places where events are generated. An example of such a 
system is a petroleum refinery plant distributed over a large geographic area. At each data 
source, it makes good design sense to locally process the data before being passed on to a 
central processor.  

 
Many distributed as well as centralized real-time systems have a feedback structure as shown 
in Fig. 28.9. In these systems, the sensors usually sense the environment periodically. The 
sensed data about the environment is processed to determine the corrective actions necessary. 
The results of the processing are used to carry out the necessary corrective actions on the 
environment through the actuators, which in turn again cause a change to the required 
characteristics of the controlled environment, and so on. 

 

Actuator   Sensor    

Environment   

Actuator 
Processing  

Computation   Sensor 
Processing   

 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 28.9 Feedback Structure of Real-Time Systems 
 
7. Task Criticality: Task criticality is a measure of the cost of failure of a task.  Task criticality 

is determined by examining how critical are the results produced by the task to the proper 
functioning of the system.  A real-time system may have tasks of very different criticalities.  
It is therefore natural to expect that the criticalities of the different tasks must be taken into 
consideration while designing for fault-tolerance.  The higher the criticality of a task, the 
more reliable it should be made. Further,  in  the  event  of  a  failure  of  a  highly  critical  
task, immediate failure detection and recovery are important.  However, it should be realized 
that task priority is a different concept and task criticality does not solely determine the task 
priority or the order in which various tasks are to be executed (these issues shall be 
elaborated in the later chapters). 

  
8. Custom Hardware: A real-time system is often implemented on custom hardware that is 

specifically designed and developed for the purpose. For example, a cell phone does not use 
traditional microprocessors. Cell phones use processors which are tiny, supporting only those 
processing capabilities that are really necessary for cell phone operation and specifically 
designed to be power-efficient to conserve battery life. The capabilities of the processor  used  
in  a  cell  phone  are  substantially  different  from  that  of  a  general  purpose  processor. 
Another example is the embedded processor in an MPFI car. In this case, the processor used 
need not be a powerful general purpose processor such as a Pentium or an Athlon processor. 
Some of the most powerful computers used in MPFI engines are 16- or 32-bit processors 
running at approximately 40 MHz. However, unlike the conventional PCs, a processor used 
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in these car engines do not deal with processing frills such as screen-savers or a dozen of 
different applications running at the same time. All that the processor in an MPFI system 
needs to do is to compute the required fuel injection rate that is most efficient for a given 
speed and acceleration. 

  
9. Reactive: Real-time systems are often reactive. A reactive system is one in which an on-

going interaction between the computer and the environment is maintained. Ordinary systems 
compute functions on the input data to generate the output data (See Fig. 28.10 (a)). In other 
words, traditional systems compute the output data as some function φ of the input data. That 
is, output data can mathematically be expressed as: output data = φ(input data). For example, 
if some data I1 is given as the input, the system computes O1 as the result O1 = φ(I1). To 
elaborate this concept, consider an example involving library automation software. In a 
library automation software, when the query book function is invoked and “Real-Time 
Systems” is entered as the input book name, then the software displays “Author name: R. 
Mall, Rack Number: 001, Number of Copies: 1”. 

 
 
 
 
 
 
 
 
 

 

Reactive System Starting 
Parameters   

(b)  

Output data  Input data  

Traditional System  
(a)  

φ  

Fig. 28.10 Traditional versus Reactive Systems 

In  contrast  to  the  traditional  computation  of  the  output  as  a  simple  function  of  the  
input  data,  real-time systems do not produce any output data but enter into an on-going 
interaction with their environment.  In each interaction step, the results computed are used to 
carry out some actions on the environment.  The reaction of the environment is sampled and 
is fed back to the system.  Therefore the computations in a real-time system can be 
considered to be non-terminating.  This reactive nature of real-time systems is schematically 
shown in the Fig. 28.10(b). 

  
10. Stability: Under overload conditions, real-time systems need to continue to meet the 

deadlines of the most critical tasks, though the deadlines of non-critical tasks may not be met. 
This is in contrast to the requirement of fairness for traditional systems even under overload 
conditions. 

  
11. Exception Handling: Many real-time systems work round-the-clock and often operate 

without human operators. For example, consider a small automated chemical plant that is set 
up to work non-stop. When there are no human operators, taking corrective actions on a 
failure becomes difficult. Even if no corrective actions can be immediate taken, it is desirable 
that a failure does not result in catastrophic situations. A failure should be detected and the 
system should continue to operate in a gracefully degraded mode rather than shutting off 
abruptly. 
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1.5. Safety and Reliability 
 
In traditional systems, safety and reliability are normally considered to be independent issues. 

It is therefore possible to identify a traditional system that is safe and unreliable and systems that 
are reliable but unsafe. Consider the following two examples. Word-processing software may not 
be very reliable but is safe. A failure of the software does not usually cause any significant 
damage or financial loss. It is therefore an example of an unreliable but safe system. On the other  
hand,  a  hand  gun  can  be  unsafe  but  is  reliable. A hand gun rarely fails. A hand gun is an 
unsafe system because if it fails for some reason, it can misfire or even explode and cause 
significant damage. It is an example of an unsafe but reliable system. These two examples show 
that for traditional systems, safety and reliability are independent concerns - it is therefore 
possible to increase the safety of a system without affecting its reliability and vice versa. 

 
In real-time systems on the other hand, safety and reliability are coupled together. Before 

analyzing why safety and reliability  are  no  longer  independent  issues  in  real-time  systems,  
we  need  to  first  understand  what  exactly  is meant by a fail-safe  state. 

 
 
 
 
To give an example, the fail-safe state of a word processing program is one where the 

document being processed has been saved onto the disk.  All traditional non real-time systems do 
have one or more fail-safe states which help separate the issues of safety and reliability - even if 
a system is known to be unreliable, it can always be made to fail in a fail-safe state, and 
consequently it would still be considered to be a safe system. 

If no damage can result if a system enters a fail-safe state just before it fails, then through 
careful transit to a fail-safe state upon a failure, it is possible to turn an extremely unreliable and 
unsafe system into a safe system. In many traditional systems this technique is in fact frequently 
adopted to turn an unreliable system into a safe system. For example, consider a traffic light 
controller that controls the flow of traffic at a road intersection. Suppose the traffic light 
controller fails frequently and is known to be highly unreliable. Though unreliable, it can still be 
considered safe if whenever a traffic light controller fails, it enters a fail-safe state where all the 
traffic lights are orange and blinking. This is a fail-safe state, since the motorists on seeing 
blinking orange traffic light become aware that the traffic light controller is not working and 
proceed with caution. Of course, a fail-safe state may not be to make all lights green, in which 
case severe accidents could occur. Similarly, all lights turned red is also not a fail-safe state - it 
may not cause accidents, but would bring all traffic to a stand still leading to traffic jams. 
However, in many real-time systems there are no fail-safe states. Therefore, any failure of the 
system can cause severe damages. Such systems are said to be safety-critical systems. 

 

 
 
An example of a safety-critical system is a navigation system on-board an aircraft. An on-

board navigation system has no fail-safe states. When the computer on-board an aircraft fails, a 
fail-safe state may not be one where the engine is switched-off!   In a safety-critical system, the 
absence of fail-safe states implies that safety can only be ensured through increased reliability.  
Thus, for safety-critical systems the issues of safety and reliability become interrelated - safety 

A fail-safe state of a system is one which if entered when the system fails, no damage would 
result.

A safety-critical system is one whose failure can cause severe damages.
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can only be ensured through increased reliability. It should now be clear why safety-critical 
systems need to be highly reliable. 

 
 Just to give an example of the level of reliability required of safety-critical systems, consider 

the following. For any fly-by-wire aircraft, most of its vital parts are controlled by a computer. 
Any failure of the controlling computer is clearly not acceptable. The standard reliability 
requirement for such aircrafts is at most 1 failure per 109 flying hours (that is, a million years of 
continuous flying!). We examine how a highly reliable system can be developed in the next 
section. 

 
1.5.1. How to Achieve High Reliability?  

 
If you are asked by your organization to develop software which should be highly reliable, 

how would you proceed to achieve it?  Highly reliable software can be developed by adopting all 
of the following three important techniques: 

 
• Error Avoidance: For achieving high reliability, every possibility of occurrence of 

errors should be minimized during product development as much as possible. This can be 
achieved by adopting a variety of means:  using well-founded software engineering 
practices, using sound design methodologies, adopting suitable CASE tools, and so on. 

 
• Error Detection and Removal:  In spite of using the best available error avoidance 

techniques, many errors still manage to creep into the code.  These errors need to be 
detected and removed.  This can be achieved to a large extent by conducting thorough 
reviews and testing.  Once errors are detected, they can be easily fixed. 

 
• Fault-Tolerance:  No matter how meticulously error avoidance and error detection 

techniques are used, it is virtually impossible to make a practical software system entirely 
error-free.  Few errors still persist even after carrying out thorough reviews and testing. 
Errors cause failures. That is, failures are manifestation of the errors latent in the system. 
Therefore to achieve high reliability, even in situations where errors are present, the 
system should be able to tolerate the faults and compute the correct results. This is called 
fault-tolerance. Fault-tolerance can be achieved by carefully incorporating redundancy. 

 
 

Legend: 
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Fig. 28.11 Schematic Representation of TMR 
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It is relatively simple to design a hardware equipment to be fault-tolerant.  The following are 
two methods that are popularly used to achieve hardware fault-tolerance: 
 

• Error Detection and Removal:  In spite of using the best available error avoidance 
techniques, many errors still manage to creep into the code.  These errors need to be 
detected and removed.  This can be achieved to a large extent by conducting thorough 
reviews and testing.  Once errors are detected, they can be easily fixed. 

  
• Built  In  Self  Test  (BIST):  In  BIST,  the  system  periodically  performs  self  tests  of  

its  components.  Upon detection of a failure, the system automatically reconfigures itself 
by switching out the faulty component and switching in one of the redundant good 
components. 

 
• Triple Modular Redundancy (TMR): In TMR, as the name suggests, three redundant 

copies of all critical components are made to run concurrently (see Fig. 28.11). Observe 
that in Fig. 28.11, C1, C2, and C3 are the redundant copies of the same critical 
component. The system performs voting of the results produced by the redundant 
components to select the majority result.  TMR can help tolerate occurrence of only a 
single failure at any time. (Can you answer why a TMR scheme can effectively tolerate a 
single component failure only?). An assumption that is  implicit  in  the  TMR  technique  
is  that  at  any  time  only  one  of  the  three  redundant components can produce 
erroneous results. The majority result after voting would be erroneous if two or more 
components can fail simultaneously (more precisely, before a repair can be carried out). 
In situations where two or more components are likely to fail (or produce erroneous 
results), then greater amounts of redundancies would be required to be incorporated. A 
little thinking can show that at least 2n+1 redundant components are required to tolerate 
simultaneous failures of n component. 

 
As compared to hardware, software fault-tolerance is much harder to achieve. To investigate 

the reason behind this,  let  us  first  discuss  the  techniques  currently  being  used  to  achieve  
software  fault-tolerance. We do this in the following subsection. 

 
1.6. Software Fault-Tolerance Techniques 

 
Two methods are now popularly being used to achieve software fault-tolerance: N-version 

programming and recovery block techniques. These two techniques are simple adaptations of the 
basic techniques used to provide hardware fault-tolerance. We discuss these two techniques in 
the following. 

 
N-Version Programming: This technique is an adaptation of the TMR technique for 

hardware fault-tolerance. In the N-version programming technique, independent teams develop 
N different versions (value of N depends on the degree of fault-tolerance required) of a software 
component (module). The redundant modules are run concurrently (possibly on redundant 
hardware). The results produced by the different versions of the module are subjected to voting 
at run time and the result on which majority of the components agree is accepted. The central 
idea behind this scheme is that independent teams would commit different types of mistakes, 
which would be eliminated when the results produced by them are subjected to voting. However, 
this scheme is not very successful in achieving fault-tolerance, and the problem can be attributed 
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to statistical correlation of failures. Statistical correlation of failures means that even though 
individual teams worked in isolation to develop the different versions of a software component, 
still the different versions fail for identical reasons. In other words, the different versions of a 
component show similar failure patterns. This does not mean that the different modules 
developed by independent programmers, after all, contain identical errors. The reason for this is 
not far to seek, programmers commit errors in those parts of a problem which they perceive to be 
difficult - and what is difficult to one team is usually difficult to all teams. So, identical errors 
remain in the most complex and least understood parts of a software component. 

 
Recovery Blocks: In the recovery block scheme, the redundant components are called try 

blocks. Each try block computes the same end result as the others but is intentionally written 
using a different algorithm compared to the other try blocks. In N-version programming, the 
different versions of a component are written by different teams of programmers, whereas in 
recovery block different algorithms are used in different try blocks. Also, in contrast to the N-
version programming approach where the redundant copies are run concurrently, in the recovery 
block approach they are (as shown in Fig. 28.12) run one after another. The results produced by a 
try block are subjected to an acceptance test (see Fig. 28.12). If the test fails, then the next try 
block is tried. This is repeated in a sequence until the result produced by a try block successfully 
passes the acceptance test. Note that in Fig. 28.12 we have shown acceptance tests separately for 
different try blocks to help understand that the tests are applied to the try blocks one after the 
other, though it may be the case that the same test is applied to each try block. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
As was the case with N-version programming, the recovery blocks approach also does not 

achieve much success in providing effective fault-tolerance. The reason behind this is again 
statistical correlation of failures. Different try blocks fail for identical reasons as was explained 
in case of N-version programming approach. Besides, this approach suffers from a further 
limitation that it can only be used if the task deadlines are much larger than the task computation 
times (i.e. tasks have large laxity), since the different try blocks are put to execution one after the 
other when failures occur.  The recovery block approach poses special difficulty when used with 
real-time tasks with very short slack time (i.e. short deadline and considerable execution time), 

test test test test 
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Fig. 28.12 A Software Fault-Tolerance Scheme Using Recovery Blocks 
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as the try blocks are tried out one after the other deadlines may be missed.  Therefore, in such 
cases the later try-blocks usually contain only skeletal code. 

 
 

 

 

 

Progress of 
computation 

Rollback recovery 

Acceptance test Check points 

Fig. 28.13 Checkpointing and Rollback Recovery  
Of course,  it is possible that the later try blocks contain only skeletal code,  produce only 

approximate results and therefore take much less time for computation than the first try block. 
 

 Checkpointing and Rollback Recovery: Checkpointing and roll-back recovery is another 
popular technique to achieve fault-tolerance. In this technique as the computation proceeds, the 
system state is tested each time after some meaningful progress in computation is made. 
Immediately after a state-check test succeeds, the state of the system is backed up on a stable 
storage (see Fig. 28.13). In case the next test does not succeed, the system can be made to roll-
back to the last checkpointed state. After a rollback, from a checkpointed state a fresh 
computation can be initiated. This technique is especially useful, if there is a chance that the 
system state may be corrupted as the computation proceeds, such as data corruption or processor 
failure. 

 
1.7. Types  of  Real-Time  Tasks 

 
We have already seen that a real-time task is one for which quantitative expressions of time 

are needed to describe its behavior. This quantitative expression of time usually appears in the 
form of a constraint on the time at which the task produces results. The most frequently 
occurring timing constraint is a deadline constraint which is used to express that a task is 
required to compute its results within some deadline. We therefore implicitly assume only 
deadline type of timing constraints on tasks in this section, though other types of constraints (as 
explained in Sec. ….) may occur in practice. Real-time tasks can be classified into the following 
three broad categories: 

 
 
 
 
It is not necessary that all tasks of a real-time application belong to the same category.  It is 

possible that different tasks of a real-time system can belong to different categories.  We now 
elaborate these three types of real-time tasks. 

 

A  real-time  task  can  be  classified  into  either  hard,  soft,  or  firm  real-time  task  
depending  on  the consequences of a task missing its deadline.

1.7.1. Hard Real-Time Tasks 
 
A hard real-time task is one that is constrained to produce its results within certain predefined 

time bounds. The system is considered to have failed whenever any of its hard real-time tasks 
does not produce its required results before the specified time bound. 
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An example of a system having hard real-time tasks is a robot. The robot cyclically carries 
out a number of activities including communication with the host system, logging all completed 
activities, sensing the environment to detect any obstacles present, tracking the objects of 
interest, path planning, effecting next move, etc. Now consider that the robot suddenly 
encounters an obstacle. The robot must detect it and as soon as possible try to escape colliding 
with it. If it fails to respond to it quickly (i.e. the concerned tasks are not completed before the 
required time bound) then it would collide with the obstacle and the robot would be considered 
to have failed. Therefore detecting obstacles and reacting to it are hard real-time tasks. 

 
Another application having hard real-time tasks is an anti-missile system.  An anti-missile 

system consists of the following critical activities (tasks).  An anti-missile system must first 
detect all incoming missiles, properly position the anti-missile gun, and then fire to destroy the 
incoming missile before the incoming missile can do any damage. All these tasks are hard real-
time in nature and the anti-missile system would be considered to have failed, if any of its tasks 
fails to complete before the corresponding deadlines. 

 
Applications having hard real-time tasks are typically safety-critical (Can you think an 

example of a hard real-time system that is not safety-critical?1)  This  means  that  any  failure  of  
a  real-time  task,  including  its  failure  to meet the associated deadlines, would result in severe 
consequences.  This makes hard real-time tasks extremely critical.  Criticality of a task can range 
from extremely critical to not so critical.  Task criticality therefore is a different dimension than 
hard or soft characterization of a task.  Criticality of a task is a measure of the cost of a failure - 
the higher the cost of failure, the more critical is the task. 

 
For hard real-time tasks in practical systems, the time bounds usually range from several 

micro seconds to a few milli seconds. It may be noted that a hard real-time task does not need to 
be completed within the shortest time possible, but it is merely required that the task must 
complete within the specified time bound. In other words, there is no reward in completing a 
hard real-time task much ahead of its deadline. This is an important observation and this would 
take a central part in our discussions on task scheduling in the next two chapters. 

 
1.7.2. Firm Real-Time Tasks 

 
Every firm real-time task is associated with some predefined deadline before which it is 

required to produce its results. However, unlike a hard real-time task, even when a firm real-time 
task does not complete within its deadline, the system does not fail. The late results are merely 
discarded. In other words, the utility of the results computed by a firm real-time task becomes 
zero after the deadline. Fig. 28.14 schematically shows the utility of the results produced by a 
firm real-time task as a function of time. In Fig. 28.14 it can be seen that if the response time of a 
task exceeds the specified deadline, then the utility of the results becomes zero and the results are 
discarded. 

 
 
 
 

                                                 
1 Some computer games have hard real-time tasks; these are not safety-critical though. Whenever a timing constraint is not met, the game may 
fail, but the failure may at best be a mild irritant to the user. 
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Fig. 28.14 Utility of Result of a Firm Real-Time Task with Time 

Firm real-time tasks typically abound in multimedia applications.  The following are two 
examples of firm real- time tasks: 

 
• Video conferencing: In  a  video  conferencing  application,  video  frames  and  the  

accompanying  audio  are converted into packets and transmitted to the receiver over a 
network. However, some frames may get delayed at different nodes during transit on a 
packet-switched network due to congestion at different nodes. This may result in varying 
queuing delays experienced by packets traveling along different routes. Even when 
packets traverse the same route, some packets can take much more time than the other 
packets due to the specific transmission strategy used at the nodes. When a certain frame 
is being played, if some preceding frame arrives at the receiver, then this frame is of no 
use and is discarded. Due to this reason, when a frame is delayed by more than say one 
second, it is simply discarded at the receiver-end without carrying out any processing on 
it. 

 
• Satellite-based tracking of enemy movements: Consider  a  satellite  that  takes  

pictures  of  an  enemy territory  and  beams  it  to  a  ground  station  computer  frame  
by  frame.  The ground computer processes each frame to find the positional difference of 
different objects of interest with respect to their position in the previous frame to 
determine the movements of the enemy.  When the ground computer is overloaded, a new 
image may be received even before an older image is taken up for processing. In this 
case, the older image is of not much use. Hence the older images may be discarded and 
the recently received image could be processed. 

 
For firm real-time tasks, the associated time bounds typically range from a few milli seconds 

to several hundreds of milli seconds. 
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Fig. 28.15 Utility of the Results Produced by a Soft Real-Time Task as a Function of Time 
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1.7.3. Soft Real-Time Tasks 
 
Soft real-time tasks also have time bounds associated with them.  However, unlike hard and 

firm real-time tasks, the timing constraints on soft real-time tasks are not expressed as absolute 
values.  Instead, the constraints are expressed either in terms of the average response times 
required. 

 
An example of a soft real-time task is web browsing.  Normally, after an URL (Uniform 

Resource Locater) is clicked, the corresponding web page is fetched and displayed within a 
couple of seconds on the average.  However, when  it  takes  several  minutes  to  display  a  
requested  page,  we  still  do  not  consider  the  system  to  have  failed,  but merely express that 
the performance of the system has degraded. 

 
Another example of a soft real-time task is a task handling a request for a seat reservation in 

a railway reservation application. Once a request for reservation is made, the response should 
occur within 20 seconds on the average. The response may either be in the form of a printed 
ticket or an apology message on account of unavailability of seats.  Alternatively,  we  might  
state  the  constraint  on  the  ticketing  task  as:  At  least  in  case  of  95%  of  reservation 
requests, the ticket should be processed and printed in less than 20 seconds. 

 
Let us now analyze the impact of the failure of a soft real-time task to meet its deadline, by 

taking the example of the railway reservation task. If the ticket is printed in about 20 seconds, we 
feel that the system is working fine and get a feel of having obtained instant results. As already 
stated, missed deadlines of soft real-time tasks do not result in system failures.  However, the 
utility of the results produced by a soft real-time task falls continuously with time after the expiry 
of the deadline as shown in Fig. 28.15. In Fig. 28.15, the utility of the results produced are 100% 
if produced before the deadline, and after the deadline is passed the utility of the results slowly 
falls off with time. For soft real-time tasks that typically occur in practical applications, the time 
bounds usually range from a fraction of a second to a few seconds. 

 
1.7.4. Non-Real-Time  Tasks 

 
A non-real-time task is not associated with any time bounds. Can you think of any example 

of a non-real-time task?  Most of the interactive computations you perform nowadays are 
handled by soft real-time tasks. However, about two or three decades back, when computers 
were not interactive almost all tasks were non-real-time. A few examples of non-real-time tasks 
are:  batch processing jobs, e-mail, and back ground tasks such as event loggers.  You may 
however argue that even these tasks, in the strict sense of the term, do have certain time bounds.  
For example, an e-mail is expected to reach its destination at least within a couple of hours of 
being sent. Similar is the case with a batch processing job such as pay-slip printing.  What then 
really is the difference between a non-real-time task and a soft real-time task?  For non-real-time 
tasks, the associated time bounds are typically of the order of a few minutes, hours or even days.  
In contrast, the time bounds associated with soft real-time tasks are at most of the order of a few 
seconds. 
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1.8. Exercises 
 
1. State whether you consider the following statements to be TRUE or FALSE. Justify your 

answer in each case. 
a. A hard real-time application is made up of only hard real-time tasks. 
b. Every safety-critical real-time system has a fail-safe state. 
c. A deadline constraint between two stimuli can be considered to be a behavioral 

constraint on the environment of the system. 
d. Hardware fault-tolerance techniques can easily be adapted to provide software fault-

tolerance. 
e. A good algorithm for scheduling hard real-time tasks must try to complete each task in 

the shortest time possible. 
f. All hard real-time systems are safety-critical in nature. 
g. Performance constraints on a real-time system ensure that the environment of the 

system is well-behaved. 
h. Soft real-time tasks are those which do not have any time bounds associated with 

them. 
i. Minimization of average task response times is the objective of any good hard real-

time task-scheduling algorithm. 
j. It  should  be  the  goal  of  any  good  real-time  operating  system  to  complete  every  

hard  real-time  task  as ahead of its deadline as possible. 
2. What do you understand by the term “real-time”?  How is the concept of real-time 

different from the traditional notion of time?  Explain your answer using a suitable 
example.  

3. Using a block diagram show the important hardware components of a real-time system and 
their interactions. Explain the roles of the different components. 

4. In  a  real-time  system,  raw  sensor  signals  need  to  be  preprocessed  before  they  can  
be  used  by  a  computer. Why is it necessary to preprocess the raw sensor signals before 
they can be used by a computer?  Explain the different  types  of  preprocessing  that  are  
normally  carried  out  on  sensor  signals  to  make  them  suitable  to  be used directly by 
a computer. 

5. Identify  the  key  differences  between  hard  real-time,  soft  real-time,  and  firm  real-
time  systems.  Give at least one example of real-time tasks corresponding to these three 
categories. Identify the timing constraints in your tasks and justify why the tasks should be 
categorized into the categories you have indicated. 

6. Give an example of a soft real-time task and a non-real-time task. Explain the key 
difference between the characteristics of these two types of tasks. 

7. Draw a schematic model showing the important components of a typical hard real-time 
system.  Explain the working of the input interface using a suitable schematic diagram.  
Explain using a suitable circuit diagram how analog to digital (ADC) conversion is 
achieved in an input interface. 

8. Explain the check pointing and rollback recovery scheme to provide fault-tolerant real-
time computing.  Explain the types of faults it can help tolerate and the faults it can not 
tolerate.  Explain the situations in which this technique is useful. 

9. Answer the following questions concerning fault-tolerance of real-time systems. 
a. Explain why hardware fault-tolerance is easier to achieve compared to software fault-

tolerance. 
b. Explain the main techniques available to achieve hardware fault-tolerance. 

Version 2 EE IIT, Kharagpur 26



c. What are the main techniques available to achieve software fault-tolerance?  What are 
the shortcomings of these techniques? 

10. What do you understand by the “fail-safe” state of a system?  Safety-critical real-time 
systems do not have a fail-safe state.  What is the implication of this? 

11. Is it possible to have an extremely safe but unreliable system? If your answer is 
affirmative, then give an example of such a system. If you answer in the negative, then 
justify why it is not possible for such a system to exist. 

12.  What is a safety-critical system?  Give a few practical examples safety-critical hard real-
time systems.  Are all hard real-time systems safety-critical?  If not, give at least one 
example of a hard real-time system that is not safety-critical. 

13. Explain  with  the  help  of  a  schematic  diagram  how  the  recovery  block  scheme  can  
be  used  to  achieve  fault- tolerance of real-time tasks.  What are the shortcomings of this 
scheme? Explain situations where it can be satisfactorily be used and situations where it 
can not be used. 

14. Identify and represent the timing constraints in the following air-defense system by means 
of an extended state machine diagram.  Classify each constraint into either performance or 
behavioral constraint. 

15. Every incoming missile must be detected within 0.2 seconds of its entering the radar 
coverage area. The intercept missile should be engaged within 5 seconds of detection of 
the target missile. The intercept missile should be fired after 0.1 seconds of its engagement 
but no later than 1 sec. 

16. Represent a washing machine having the following specification by means of an extended 
state machine diagram. The wash-machine waits for the start switch to be pressed. After  
the  user  presses  the  start  switch,  the machine  fills  the wash tub with either hot or cold 
water depending upon the setting of the Hot Wash switch. The water filling continues until 
the high level is sensed. The machine starts the agitation motor and continues agitating the 
wash tub until either the preset timer expires or the user presses the stop switch. After the 
agitation stops, the machine waits for the user to press the start Drying switch. After the 
user presses the start Drying switch, the machine starts the hot air blower and continues 
blowing hot air into the drying chamber until either the user presses the stop switch or the 
preset timer expires. 

17. Represent the timing constraints in a collision avoidance task in an air surveillance system 
as an extended finite state machine (EFSM) diagram.  The collision avoidance task 
consists of the following activities. 
a. The first subtask named radar signal processor processes the radar signal on a signal 

processor to generate the track record in terms of the target’s location and velocity 
within 100 mSec of receipt of the signal. 

b. The track record is transmitted to the data processor within 1 mSec after the track 
record is determined. 

c. A subtask on the data processor correlates the received track record with the track 
records of other targets that come close to detect potential collision that might occur 
within the next 500 mSec. 

d. If a collision is anticipated, then the corrective action is determined within 10 mSec by 
another subtask running on the data processor. 

e. The corrective action is transmitted to the track correction task within 25 mSec. 
18. Consider the following (partial) specification of a real-time system: 

The velocity of a space-craft must be sampled by a computer on-board the space-craft at 
least once every second (the sampling event is denoted by S). After sampling the velocity, 
the current position is computed (denoted by event C) within 100msec. Concurrently, the 
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expected position of the space-craft is retrieved from the database within 200msec 
(denoted by event R). Using these data, the deviation from the normal course of the space-
craft must be determined within 100 msec (denoted by event D) and corrective velocity 
adjustments must be carried out before a new velocity value is sampled in (the velocity 
adjustment event is denoted by A). Calculated positions must be transmitted to the earth 
station at least once every minute (position transmission event is denoted by the event T). 
Identify the different timing constraints in the system. Classify these into either 
performance or behavioral constraints. Construct an EFSM to model the system. 

19. Construct the EFSM model of a telephone system whose (partial) behavior is described 
below: 
After lifting the receiver handset, the dial tone should appear within 20 seconds. If a dial 
tone can not be given within 20 seconds, then an idle tone is produced. After the dial tone 
appears, the first digit should to be dialed within 10 seconds and the subsequent five digits 
within 5 seconds of each other. If the dialing of any of the digits is delayed, then an idle 
tone is produced.  The idle tone continues until the receiver handset is replaced. 
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