
 
 
 
 
 
 
 
 
 

Module 
6 

 

Embedded System 
Software 

Version 2 EE IIT, Kharagpur 1



 
 
 
 
 
 
 
 
 

Lesson 
30 

 

Real-Time Task 
Scheduling – Part 2 

Version 2 EE IIT, Kharagpur 2



Specific Instructional Objectives 
 
At the end of this lesson, the student would be able to: 

• Get an introduction to event-driven schedulers 

• Understand the basics of Foreground-Background schedulers 

• Get an overview of Earliest Deadline First (EDF) Algorithm 

• Work out solutions to problems based on EDF 

• Know the shortcomings of EDF 

• Get an overview of Rate Monotonic Algorithm (RMA) 

• Know the necessary and sufficient conditions for a set of  real-time tasks to be RMA-
schedulable 

• Work out solutions to problems based on EDF 

• Infer the maximum achievable CPU utilization 

• Understand the Advantages and Disadvantages of RMA 

• Get an overview of Deadline Monotonic Algorithm (DMA) 

• Understand the phenomenon of Context-Switching and Self-Suspension 
 

1. Event-driven Scheduling – An Introduction 
 
In this lesson, we shall discuss the various algorithms for event-driven scheduling. From the 

previous lesson, we may recollect the following points: 
The clock-driven schedulers are those in which the scheduling points are determined by the 
interrupts received from a clock. In the event-driven ones, the scheduling points are defined by 
certain events which precludes clock interrupts. The hybrid ones use both clock interrupts as well 
as event occurrences to define their scheduling points 

Cyclic schedulers are very efficient.  However,  a  prominent  shortcoming  of  the  cyclic  
schedulers  is  that  it  becomes very complex to determine a suitable frame size as well as a 
feasible schedule when the number of tasks increases. Further,  in  almost  every  frame  some  
processing  time  is  wasted  (as  the  frame  size  is  larger than all task execution times) resulting 
in sub-optimal schedules.  Event-driven schedulers overcome these shortcomings. Further, event-
driven schedulers can handle aperiodic and sporadic tasks more proficiently.  On the flip side, 
event-driven schedulers are less efficient as they deploy more complex scheduling algorithms. 
Therefore, event-driven schedulers are less suitable for embedded applications as these are 
required to be of small size, low cost, and consume minimal amount of power. 

It should now be clear why event-driven schedulers are invariably used in all moderate and 
large-sized applications  having  many  tasks,  whereas  cyclic  schedulers  are  predominantly  
used  in  small  applications.   In  event-driven scheduling,  the  scheduling  points  are  defined  
by  task  completion  and  task  arrival  events.   This class of schedulers is normally preemptive, 
i.e., when a higher priority task becomes ready, it preempts any lower priority task that may be 
running. 

 
 

Version 2 EE IIT, Kharagpur 3



1.1. Types of Event Driven Schedulers 
 
We discuss three important types of event-driven schedulers: 

• Simple priority-based 
• Rate Monotonic Analysis (RMA) 
• Earliest Deadline First (EDF) 

The simplest of these is the foreground-background scheduler, which we discuss next.  In 
section 3.4, we discuss EDF and in section 3.5, we discuss RMA. 

 
1.2. Foreground-Background Scheduler 

 
A foreground-background scheduler is possibly the simplest priority-driven preemptive 

scheduler.  In  foreground-background  scheduling,  the  real-time  tasks  in  an  application  are  
run  as  fore- ground tasks.  The sporadic, aperiodic, and non-real-time tasks are run as 
background tasks.  Among the foreground tasks,  at  every  scheduling  point  the  highest  
priority  task  is  taken  up  for  scheduling.   A  background  task  can  run when none of the 
foreground tasks is ready.  In other words, the background tasks run at the lowest priority. 

Let us assume that in a certain real-time system, there are n foreground tasks which are 
denoted as:  T1,T2,...,Tn. As already mentioned, the foreground tasks are all periodic. Let TB   be 
the only background task.  Let eB be the processing time requirement of TB.  In this case, the 
completion time (ctB) for the background task is given by: 

ctB = eB BB / (1−i=1∑
 n
ei / pi)   …  (3.1/2.7) 

This expression is easy to interpret. When any foreground task is executing, the background 
task waits. The average CPU utilization due to the foreground task Ti is ei/pi, since ei amount of 
processing time is required over every pi period. It follows that all foreground tasks together 
would result in CPU utilization of i=1∑

 n
ei / pi. Therefore, the average time available for execution 

of the background tasks in every unit of time is 1−i=1∑
 n

ei / pi. Hence, Expr. 2.7 follows easily. 
We now illustrate the applicability of Expr. 2.7 through the following three simple examples. 

 
1.3. Examples 

 
Example 1:  Consider a real-time system in which tasks are scheduled using foreground-
background scheduling. There is only one periodic foreground task Tf : (φf =0, pf =50 msec, ef 
=100 msec, df =100 msec) and the background task be TB  = (eB BB =1000 msec).  Compute the 
completion time for background task. 
 
Solution:  By using the expression (2.7) to compute the task completion time, we have 

ctB = 1000 / (1−50/100) = 2000 msec  B

So, the background task TB would take 2000 milliseconds to complete. B

 
Example 2: In a simple priority-driven preemptive scheduler, two periodic tasks T1 and T2  
and a background task are scheduled.  The periodic task T1 has the highest priority and 
executes once every 20 milliseconds and requires 10 milliseconds of execution time each 
time.  T2 requires 20 milliseconds of processing every 50 milliseconds.  T3 is a background 
task and requires 100 milliseconds to complete. Assuming that all the tasks start at time 0, 
determine the time at which T3 will complete. 

Version 2 EE IIT, Kharagpur 4



Solution:  The total utilization due to the foreground tasks:  i=1∑
 2

ei / pi = 10/20 + 20/50 = 
90/100. 
This implies that the fraction of time remaining for the background task to execute is given 
by: 

1−i=1∑
 2
ei / pi = 10/100. 

Therefore, the background task gets 1 millisecond every 10 milliseconds. Thus, the 
background task would take 10∗(100/1) = 1000 milliseconds to complete. 
 
Example 3: Suppose in Example 1, an overhead of 1 msec on account of every context 
switch is to be taken into account. Compute the completion time of TB. B

 
 

Foreground  Back 
ground Foreground  Back 

ground Foreground  

Time in milli secs  

Context Switching Time  

0 1  51 52  100  

Fig. 30.1 Task Schedule for Example 3 

 
 
 
 
 
 
 

Solution: The very first time the foreground task runs (at time 0), it incurs a context 
switching overhead of 1 msec. This has been shown as a shaded rectangle in Fig. 30.1. 
Subsequently each time the foreground task runs, it preempts the background task and incurs 
one context switch. On completion of each instance of the foreground task, the background 
task runs and incurs another context switch. With this observation, to simplify our  
computation of the actual completion time of TB,  we can imagine that the execution time of 
every foreground task is increased by  two  context  switch  times  (one  due  to  itself  and  
the  other  due  to  the  background  task  running  after  each  time it  completes). Thus,  the  
net  effect  of  context  switches  can  be  imagined  to  be  causing  the  execution  time  of  
the foreground  task  to  increase  by  2  context  switch  times,  i.e.  to 52  milliseconds  from  
50  milliseconds.  This has pictorially been shown in Fig. 30.1. 

B

Now, using Expr.  2.7, we get the time required by the background task to complete: 
1000/(1−52/100) = 2083.4 milliseconds 

In the following two sections, we examine two important event-driven schedulers:  EDF 
(Earliest Deadline First) and RMA (Rate Monotonic Algorithm).  EDF is the optimal dynamic 
priority real-time task scheduling algorithm and RMA is the optimal static priority real-time task 
scheduling algorithm. 

 
1.4. Earliest Deadline First (EDF) Scheduling 

 
In Earliest Deadline First (EDF) scheduling, at every scheduling point the task having the 

shortest deadline is taken up for scheduling. This basic principles of this algorithm is very 
intuitive and simple to understand. The schedulability test for EDF is also simple. A task set is 
schedulable under EDF, if and only if it satisfies the condition that the total processor utilization 
due to the task set is less than 1. For a set of periodic real-time tasks {T1, T2, …, Tn}, EDF 
schedulability criterion can be expressed as: 

i=1∑
 n
ei / pi = i=1∑

 n
ui ≤ 1   

 …  (3.2/2.8) 

Version 2 EE IIT, Kharagpur 5



where ui  is average utilization due to the task Ti and n is the total number of tasks in the task 
set. Expr. 3.2 is both a necessary and a sufficient condition for a set of tasks to be EDF 
schedulable. 

EDF has been proven to be an optimal uniprocessor scheduling algorithm. This means that, if 
a set of tasks is not schedulable under EDF, then no other scheduling algorithm can feasibly 
schedule this task set. In the simple schedulability test for EDF (Expr. 3.2), we assumed that the 
period of each task is the same as its deadline.  However, in practical problems the period of a 
task may at times be different from its deadline. In such cases, the schedulability test needs to be 
changed. If pi > di, then each task needs ei amount of computing time every      min(pi, di) 
duration of time. Therefore, we can rewrite Expr. 3.2 as: 

i=1∑
 n
ei / min(pi, di) ≤ 1  …  (3.3/2.9) 

However, if pi < di, it is possible that a set of tasks is EDF schedulable, even when the task 
set fails to meet the Expr 3.3. Therefore, Expr 3.3 is conservative when pi < di, and is not a 
necessary condition, but only a sufficient condition for a given task set to be EDF schedulable. 

 
Example 4: Consider the following three periodic real-time tasks to be scheduled using EDF 
on a uniprocessor: T1 = (e1=10, p1=20), T2 = (e2=5, p2=50), T3 = (e3=10, p3=35). Determine 
whether the task set is schedulable. 
 
Solution: The total utilization due to the three tasks is given by: 

i=1∑
 3
ei / pi = 10/20 + 5/50 + 10/35 = 0.89 

This is less than 1.  Therefore, the task set is EDF schedulable. 
Though  EDF  is  a  simple  as  well  as  an  optimal  algorithm,  it  has  a  few  shortcomings  
which  render  it  almost unusable in practical applications.  The main problems with EDF are 
discussed in Sec. 3.4.3. Next, we discuss the concept of task priority in EDF and then discuss 
how EDF can be practically implemented. 
 

1.4.1. Is EDF Really a Dynamic Priority Scheduling Algorithm? 
 
We stated in Sec 3.3 that EDF is a dynamic priority scheduling algorithm.  Was it after all 

correct on our part to assert that EDF is a dynamic priority task scheduling algorithm?  If EDF 
were to be considered a dynamic priority algorithm, we should be able determine the precise 
priority value of a task at any point of time and also be able to show how it changes with time.  If 
we reflect on our discussions of EDF in this section, EDF scheduling does not require any 
priority value to be computed for any task at any time.  In fact, EDF has no notion of a priority 
value for  a  task.  Tasks  are  scheduled  solely  based  on  the  proximity  of  their  deadline.  
However,  the  longer  a  task  waits in a ready queue, the higher is the chance (probability) of 
being taken up for scheduling.  So, we can imagine that a virtual priority value associated with a 
task keeps increasing with time until the task is taken up for scheduling. However, it is important 
to understand that in EDF the tasks neither have any priority value associated with them, nor 
does the scheduler perform any priority computations to determine the schedulability of a task at 
either run time or compile time. 

 
1.4.2. Implementation of EDF 

 
A naive implementation of EDF would be to maintain all tasks that are ready for execution in 

a queue.  Any freshly arriving task would be inserted at the end of the queue.  Every node in the 

Version 2 EE IIT, Kharagpur 6



queue would contain the absolute deadline of the task.  At every preemption point, the entire 
queue would be scanned from the beginning to determine the task having the shortest deadline.  
However, this implementation would be very inefficient.  Let us analyze the complexity of this 
scheme.  Each task insertion will be achieved in O(1) or constant time, but task selection (to run 
next) and its deletion would require O(n) time, where n is the number of tasks in the queue. 

A more efficient implementation of EDF would be as follows.  EDF can be implemented by 
maintaining all ready tasks in a sorted priority queue.  A sorted priority queue can efficiently be 
implemented by using a heap data structure.  In the priority queue, the tasks are always kept 
sorted according to the proximity of their deadline.  When a task arrives, a record for it can be 
inserted into the heap in O(log2 n) time where n is the total number of tasks in the priority queue.  
At every scheduling point, the next task to be run can be found at the top of the heap.  When a 
task is taken up for scheduling, it needs to be removed from the priority queue.  This can be 
achieved in O(1) time. 

A still more efficient implementation of the EDF can be achieved as follows under the 
assumption that the number of distinct deadlines that tasks in an application can have are 
restricted.  In this approach, whenever task arrives, its absolute deadline is computed from its 
release time and its relative deadline.  A separate FIFO queue is maintained for each distinct 
relative deadline that tasks can have.  The scheduler inserts a newly arrived task at the end of the 
corresponding relative deadline queue.  Clearly, tasks in each queue are ordered according to 
their absolute deadlines. 

To  find  a  task  with  the  earliest  absolute  deadline,  the  scheduler  only  needs  to  search  
among  the  threads  of  all FIFO queues.  If the number of priority queues maintained by the 
scheduler is Q, then the order of searching would be O(1).  The time to insert a task would also 
be O(1). 

 
1.4.3. Shortcomings of EDF 

 
In this subsection, we highlight some of the important shortcomings of EDF when used for 

scheduling real-time tasks in practical applications. 
 
Transient Overload Problem: Transient overload denotes the overload of a system for a 
very short time.  Transient  overload  occurs  when  some  task  takes  more  time  to  
complete  than  what  was  originally  planned  during  the design time.  A task may take 
longer to complete due to many reasons.  For example, it might enter an infinite loop or 
encounter an unusual condition and enter a rarely used branch due to some abnormal input 
values.  When EDF is used to schedule a set of periodic real-time tasks,  a task overshooting 
its completion time can cause some other task(s) to miss their deadlines.  It is usually very 
difficult to predict during program design which task might miss its deadline when a transient 
overload occurs in the system due to a low priority task overshooting its deadline.  The only  
prediction  that  can  be  made  is  that  the  task  (tasks)  that  would  run  immediately  after  
the  task  causing  the transient overload would get delayed and might miss its (their) 
respective deadline(s).  However, at different times a task might be followed by different 
tasks in execution.  However, this lead does not help us to find which task might miss its 
deadline.  Even the most critical task might miss its deadline due to a very low priority task 
overshooting its planned completion time.  So, it should be clear that under EDF any amount 
of careful design will not guarantee that the most critical task would not miss its deadline 
under transient overload.  This is a serious drawback of the EDF scheduling algorithm. 
 

Version 2 EE IIT, Kharagpur 7



Resource Sharing Problem: When EDF is used to schedule a set of real-time tasks, 
unacceptably high overheads might have to be incurred to support resource sharing among 
the tasks without making tasks to miss their respective deadlines.  We examine this issue in 
some detail in the next lesson. 
 
Efficient Implementation Problem: The efficient implementation that we discussed in Sec. 
3.4.2 is often not practicable  as  it  is  difficult  to  restrict  the  number  of  tasks  with  
distinct  deadlines  to  a  reasonable  number.  The efficient  implementation  that  achieves  
O(1)  overhead  assumes  that  the  number  of  relative  deadlines  is  restricted. This may be 
unacceptable in some situations.  For a more flexible EDF algorithm, we need to keep the 
tasks ordered in terms of their deadlines using a priority queue. Whenever a task arrives, it is 
inserted into the priority queue. The complexity of insertion of an element into a priority 
queue is of the order log2 n, where n is the number of tasks to be scheduled.  This represents 
a high runtime overhead, since most real-time tasks are periodic with small periods and strict 
deadlines. 
 

1.5. Rate  Monotonic  Algorithm(RMA) 
 
We had already pointed out that RMA is an important event-driven scheduling algorithm.  

This is a static priority algorithm and is extensively used in practical applications. RMA assigns 
priorities to tasks based on their rates of occurrence. The lower the occurrence rate of a task, the 
lower is the priority assigned to it. A task having the highest occurrence rate (lowest period) is 
accorded the highest priority. RMA has been proved to be the optimal static priority real-time 
task scheduling algorithm. 
In RMA, the priority of a task is directly proportional to its rate (or, inversely proportional to its 
period).  That is, the priority of any task Ti is computed as:  priority = k / pi, where pi is the 
period of the task Ti and k is a constant. Using this simple expression, plots of priority values of 
tasks under RMA for tasks of different periods can be easily obtained. These plots have been 
shown in Fig. 30.10(a) and Fig. 30.10(b). It can be observed from these figures that the priority 
of a task increases linearly with the arrival rate of the task and inversely with its period. 
 
 

Priority  Priority  

Rate  Period   
(a)  (b)  

Fig. 30.2 Priority Assignment to Tasks in RMA 

 
 
 
 
 
 
 
 
 
 
 
1.5.1. Schedulability Test for RMA 

 
An important problem that is addressed during the design of a uniprocessor-based real-time 

system is to check whether a set of periodic real-time tasks can feasibly be scheduled under 
RMA. Schedulability of a task set under RMA can be determined from a knowledge of the 

Version 2 EE IIT, Kharagpur 8



worst-case execution times and periods of the tasks.  A pertinent question at this point is how can 
a system developer determine the worst-case execution time of a task even before the system is 
developed.  The worst-case execution times are usually determined experimentally or through 
simulation studies. 

The following are some important criteria that can be used to check the schedulability of a set 
of tasks set under RMA. 

 
1.5.1.1 Necessary Condition 

 
A set of periodic real-time tasks would not be RMA schedulable unless they satisfy the 

following necessary condition: 

i=1∑
 n
ei / pi = i=1∑

 n
ui ≤ 1  

where ei  is the worst case execution time and pi  is the period of the task Ti, n is the number of 
tasks to be scheduled, and ui  is the CPU utilization due to the task Ti.  This test simply expresses 
the fact that the total CPU utilization due to all the tasks in the task set should be less than 1. 
 
1.5.1.2 Sufficient Condition 

 
The derivation of the sufficiency condition for RMA schedulability is an important result and 

was obtained by Liu and Layland in 1973. A formal derivation of the Liu and Layland’s results 
from first principles is beyond the scope of this discussion. We would subsequently refer to the 
sufficiency as the Liu and Layland’s condition. A set of n real-time periodic tasks are 
schedulable under RMA, if 

i=1∑
 n
ui ≤ n(21/n − 1) (3.4/2.10) 

where ui  is the utilization due to task Ti. Let us now examine the implications of this result. If a 
set of tasks satisfies the sufficient condition, then it is guaranteed that the set of tasks would be 
RMA schedulable. 
Consider the case where there is only one task in the system, i.e. n = 1. 
Substituting n = 1 in Expr. 3.4, we get, 

i=1∑
 1
ui ≤ 1(21/1 − 1)  or  i=1∑

 1
ui ≤ 1 

Similarly for n = 2, we get, 

i=1∑
 2
ui ≤ 2(21/2 − 1)  or  i=1∑

 2
ui ≤ 0.828 

For n = 3, we get, 

i=1∑
 3
ui ≤ 3(21/3 − 1)  or  i=1∑

 3
ui ≤ 0.78 

For n → ∞, we get, 

i=1∑
 ∞

ui ≤ 3(21/∞ − 1)  or  i=1∑
 ∞

ui ≤ ∞.0 
 
 
 
 
 
 
 
 

 

Version 2 EE IIT, Kharagpur 9



 
 
 
 
 
 
 
 
  

Σ ui  

Number of tasks  

0.692  

(1,0)  

1  

Fig. 30.3 Achievable Utilization with the Number of Tasks under RMA  
 

Evaluation of Expr. 3.4 when n → ∞ involves an indeterminate expression of the type ∞.0. 
By applying L’Hospital’s rule, we can verify that the right hand side of the expression evaluates 
to loge2 = 0.692. From the above computations, it is clear that the maximum CPU utilization that 
can be achieved under RMA is 1. This is achieved when there is only a single task in the system. 
As the number of tasks increases, the achievable CPU utilization falls and as n → ∞, the 
achievable utilization stabilizes at loge2, which is approximately 0.692. This is pictorially shown 
in Fig. 30.3. We now illustrate the applicability of the RMA schedulability criteria through a few 
examples. 

 
1.5.2. Examples 

 
Example 5: Check whether the following set of periodic real-time tasks is schedulable under 
RMA on a uniprocessor: T1 = (e1=20, p1=100), T2 = (e2=30, p2=150), T3 = (e3=60, p3=200). 
 
Solution:  Let us first compute the total CPU utilization achieved due to the three given 
tasks. 

i=1∑
 3
ui = 20/100 + 30/150 + 60/200 = 0.7 

This is less than 1; therefore the necessary condition for schedulability of the tasks is 
satisfied.  Now checking for the sufficiency condition, the task set is schedulable under RMA 
if Liu and Layland’s condition given by Expr. 3.4 is satisfied Checking for satisfaction of 
Expr. 3.4, the maximum achievable utilization is given by: 

3(2
1/3

 − 1) = 0.78 
The total utilization has already been found to be 0.7. Now substituting these in Liu and 
Layland’s criterion:  

i=1∑
 3
ui ≤ 3(2

1/3
 − 1) 

Therefore, we get 0.7 < 0.78. 
Expr. 3.4, a sufficient condition for RMA schedulability, is satisfied. Therefore, the task set 
is RMA-schedulable 
 
Example 6:  Check  whether  the  following  set  of  three  periodic  real-time  tasks  is  
schedulable  under  RMA on a uniprocessor: T1 = (e1=20, p1=100), T2 = (e2=30, p2=150), T3 
= (e3=90, p3=200). 
 
Solution: Let us first compute the total CPU utilization due to the given task set: 

i=1∑
 3
ui = 20/100 + 30/150 + 90/200 = 0.7 

Version 2 EE IIT, Kharagpur 10



Now checking for Liu and Layland criterion: 

i=1∑
 3
ui ≤ 0.78 

Since 0.85 is not ≤ 0.78, the task set is not RMA-schedulable. 
Liu and Layland test (Expr.  2.10) is pessimistic in the following sense. 
 

If a task set passes the Liu and Layland test, then it is guaranteed to be RMA schedulable. On 
the other hand, even if a task set fails the Liu and Layland test, it may still be RMA 
schedulable. 

It follows from this that even when a task set fails Liu and Layland’s test, we should not 
conclude that it is not schedulable under RMA. We need to test further to check if the task set is 
RMA schedulable. A test that can be per- formed to check whether a task set is RMA 
schedulable when it fails the Liu and Layland test is the Lehoczky’s test. Lehoczky’s test has 
been expressed as Theorem 3. 

 
1.5.3. Theorem 3 

 
A set of periodic real-time tasks is RMA schedulable under any task phasing, iff all the tasks 
meet their respective first deadlines under zero phasing. 
 
 

(b) T1 has a 20 msec phase with respect to T2 

time in msec 

T2 T2 T2 T1 T1 

20 30 50 60 80 

(a) T1 is in phase with T2 

time in msec 

T2 T2 T2 T1 T1 

10 30 40 60 70 

T1 

90 

Fig. 30.4 Worst Case Response Time for a Task Occurs When It is in Phase        
 with Its Higher Priority Tasks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A formal proof of this Theorem is beyond the scope of this discussion. However, we provide an 
intuitive reasoning as to why Theorem 3 must be true. Intuitively, we can understand this result 
from the following reasoning. First let us try to understand the following fact. 
 
 
 

Version 2 EE IIT, Kharagpur 11



The worst case response time for a task occurs when it is in phase with its higher 

To see why this statement must be true, consider the following statement. Under RMA whenever 
a higher priority task is ready, the lower priority tasks can not execute and have to wait.  This 
implies that, a lower priority task will have to wait for the entire duration of execution of each 
higher priority task that arises during the execution of the lower priority task.  More number of 
instances of a higher priority task will occur, when a task is in phase with it, when it is in phase 
with it rather than out of phase with it. This has been illustrated through a simple example in Fig. 
30.4. In Fig. 30.4(a), a higher priority task T1=(10,30) is in phase with a lower priority task  
T2=(60,120), the response time of T2 is 90 msec. However, in Fig. 30.4(b), when T1 has a 20 
msec phase, the response time of T2 becomes 80. Therefore, if a task meets its first deadline 
under zero phasing, then they it will meet all its deadlines. 
 

Example 7: Check whether the task set of Example 6 is actually schedulable under RMA. 
 
Solution: Though  the  results  of  Liu  and  Layland’s  test  were  negative as per  the  results  
of  Example 6, we  can apply the Lehoczky test and observe the following: 
 

For the task T1: e1 < p1 holds since 20 msec < 100 msec.  Therefore, it would meet its first 
deadline (it does not have any tasks that have higher priority). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

(c) T3 meets its first deadline 

Deadline for T3 

T2 T3 T2 T1 T3 

20 50 100 120 150 

T1 

180 

T3 

190 200 

(b) T2 meets its first deadline 

Deadline for T2 

T2 T1 

20 50 150 

(a) T1 meets its first deadline 

Deadline for T1 

T1 

20 100 

Fig. 30.5 Checking Lehoczky’s Criterion for Tasks of Example 7 

Version 2 EE IIT, Kharagpur 12



For the task T2: T1 is its higher priority task and considering 0 phasing, it would occur once 
before the deadline of T2. Therefore, (e1 + e2) < p2 holds, since 20 + 30 = 50 msec < 150 
msec. Therefore, T2 meets its first deadline. 
 
For the task T3: (2e1 + 2e2 + e3) < p3 holds, since 2∗20 + 2∗30 + 90 = 190msec < 200 msec.  
 
We have considered 2∗e1 and 2∗e2 since T1 and T2 occur twice within the first deadline of 

T3.  Therefore, T3 meets its first deadline. So, the given task set is schedulable under RMA. The 
schedulability test for T3 has pictorially been shown in Fig. 30.5. Since all the tasks meet their 
first deadlines under zero phasing, they are RMA schedulable according to Lehoczky’s results. 
 

Ti(1) 

T1(1) T1(2) T1(3) 

Fig. 30.6 Instances of T1 over a single instance of Ti

 
 
 
 
 
 
 
 
 
 
 
 

Let us now try to derive a formal expression for this important result of Lehoczky. Let {T1, 
T2, …,Ti} be the set of tasks to be scheduled. Let us also assume that the tasks have been ordered 
in descending order of their priority. That is, task priorities are related as: pr(T1) > pr(T2) > … > 
pr(Ti), where pr(Ti) denotes the priority of the task Ti. Observe that the task T1 has the highest 
priority and task Ti has the least priority. This priority ordering can be assumed without any loss 
of generalization since the required priority ordering among an arbitrary collection of tasks can 
always be achieved by a simple renaming of the tasks. Consider that the task Ti arrives at the 
time instant 0. Consider the example shown in Fig. 30.6. During the first instance of the task Ti, 
three instances of the task T1 have occurred. Each time T1 occurs, Ti has to wait since T1 has 
higher priority than Ti. 

Let us now determine the exact number of times that T1 occurs within a single instance of Ti. 
This is given by ⎡pi / p1⎤. Since T1’s execution time is e1, then the total execution time required 
due to task T1 before the deadline of Ti is ⎡pi / p1⎤ ∗ e1. This expression can easily be generalized 
to consider the execution times all tasks having higher priority than Ti (i.e. T1, T2, …, Ti−1). 
Therefore, the time for which Ti will have to wait due to all its higher priority tasks can be 
expressed as: 

k=1∑
 i-1 
⎡pi / pk⎤ ∗ ek    …(3.5/2.11) 

Expression 3.5 gives the total time required to execute Ti’s higher priority tasks for which Ti 
would have to wait. So, the task Ti would meet its first deadline, iff 

ei + k=1∑
 i-1 
⎡pi / pk⎤ ∗ ek ≤ pi  …(3.6/2.12) 

That is, if the sum of the execution times of all higher priority tasks occurring before Ti’s first 
deadline, and the execution time of the task itself is less than its period pi, then Ti would 
complete before its first deadline. Note that in Expr. 3.6, we have implicitly assumed that the 

Version 2 EE IIT, Kharagpur 13



task periods equal their respective deadlines, i.e. pi = di. If   pi < di, then the Expr. 3.6 would need 
modifications as follows. 

ei + k=1∑
 i-1 
⎡di / pk⎤ ∗ ek ≤ di  …(3.7/2.13) 

Note that even if Expr. 3.7 is not satisfied,  there  is  some  possibility  that  the  task  set  
may  still  be  schedulable. This might happen because in Expr. 3.7 we have considered zero 
phasing among all the tasks, which is the worst case.  In a given problem, some tasks may have 
non-zero phasing.  Therefore, even when a task set narrowly fails to meet Expr 3.7, there is some 
chance that it may in fact be schedulable under RMA. To understand why this is so, consider a 
task set where one particular task Ti fails Expr.  3.7, making the task set not schedulable. The 
task misses its deadline when it is in phase with all its higher priority task.  However, when the 
task has non-zero phasing with at  least  some  of  its  higher  priority  tasks,  the  task  might  
actually  meet  its first  deadline  contrary  to  any  negative results of the expression 3.7. 

Let us now consider two examples to illustrate the applicability of the Lehoczky’s results. 
 
Example 8: Consider the following set of three periodic real-time tasks: T1=(10,20), 
T2=(15,60), T3=(20,120) to be run on a uniprocessor.  Determine whether the task set is 
schedulable under RMA. 
 
Solution: First let us try the sufficiency test for RMA schedulability. By Expr. 3.4 (Liu and 
Layland test), the task set is schedulable if ∑ ui ≤ 0.78. 

∑ ui   = 10/20 + 15/60 + 20/120 = 0.91 
This is greater than 0.78. Therefore, the given task set fails Liu and Layland test. Since Expr. 
3.4 is a pessimistic test, we need to test further. 
Let us now try Lehoczky’s test.  All the tasks T1, T2, T3 are already ordered in decreasing 
order of their priorities. 
Testing for task T1: 
Since e1 (10 msec) is less than d1 (20 msec), T1 would meet its first deadline. 
Testing for task T2: 

15 + ⎡60/20⎤ ∗ 10 ≤ 60 or 15 + 30 = 45 ≤ 60 msec 
The condition is satisfied. Therefore, T2 would meet its first deadline. 
Testing for Task T3: 

20 + ⎡120/20⎤  ∗ 10 + ⎡120/60⎤  ∗ 15 = 20 + 60 + 30 = 110 msec 
This is less than T3’s deadline of 120.  Therefore T3 would meet its first deadline. 
Since all the three tasks meet their respective first deadlines, the task set is RMA schedulable 
according to Lehoczky’s results. 
 
Example 9: RMA is used to schedule a set of periodic hard real-time tasks in a system.  Is it 
possible in this system  that  a  higher  priority  task  misses its deadline, whereas a lower  
priority  task  meets  its  deadlines? If your answer is negative, prove your denial. If your 
answer is affirmative, give an example involving two or three tasks scheduled using RMA 
where the lower priority task meets all its deadlines whereas the higher priority task misses 
its deadline. 
 
Solution: Yes. It is possible that under RMA a higher priority task misses its deadline where 
as a lower priority task meets its deadline. We show this by constructing an example. 
Consider the following task set:   T1 = (e1=15, p1=20), T2 = (e2=6, p2=35), T3 = (e3=3, 
p3=100). For the given task set, it is easy to observe that pr(T1) > pr(T2) > pr(T3). That is, T1, 
T2, T3 are ordered in decreasing order of their priorities. 

Version 2 EE IIT, Kharagpur 14



For this task set, T3 meets its deadline according to Lehoczky’s test since 
e3 + ⎡p3 / p2⎤ ∗ e2 + ⎡p3 / p1⎤ ∗ e1 = 3 + ( ⎡100/35⎤  ∗ 6) +  ( ⎡100/20⎤  

∗ 15) 
= 3 + (3 ∗ 6) + (5 ∗ 15) = 96 ≤ 100 msec. 

But, T2 does not meet its deadline since 
e2 + ⎡p2 / p1⎤ ∗ e1 = 6 + ( ⎡35/20⎤  ∗ 15) = 6 + (2 ∗ 15) = 36 msec. 

This is greater than the deadline of T2 (35 msec). 
As a consequence of the results of Example 9, by observing that the lowest priority task of a 
given task set meets its first deadline, we can not conclude that the entire task set is RMA 
schedulable.  On the contrary, it is necessary to  check  each  task  individually  as  to  
whether  it  meets  its  first  deadline  under  zero  phasing.   If one finds that the lowest 
priority task meets its deadline, and concludes that the entire task set would be feasibly 
scheduled under RMA, he is likely to be flawed. 
 

1.5.4. Achievable CPU Utilization 
 
Liu and Layland’s results (Expr. 3.4) bounded the CPU utilization below which a task set 

would be schedulable. It is clear from Expr. 3.4 and Fig. 30.10 that the Liu and Layland 
schedulability criterion is conservative and restricts the maximum achievable utilization due to 
any task set which can be feasibly scheduled under RMA to 0.69 when the number of tasks in the 
task set is large.  However, (as you might have already guessed) this is a pessimistic figure. In 
fact, it has been found experimentally that for a large collection of tasks with independent 
periods, the maximum utilization below which a task set can feasibly be scheduled is on the 
average close to 88%. 

For harmonic tasks, the maximum achievable utilization (for a task set to have a feasible 
schedule) can still be higher.  In fact, if all the task periods are harmonically related, then even a 
task set having 100% utilization can be feasibly scheduled.  Let us first understand when are the 
periods of a task set said to be harmonically related.  The task periods in a task set are said to be 
harmonically related, iff for any two arbitrary tasks Ti and Tk in the task set, whenever pi > pk, it 
should imply that pi is an integral multiple of  pk. That is, whenever pi > pk, it should be possible 
to express pi as n ∗ pk for some integer n > 1. In other words, pk should squarely divide pi. An 
example of a harmonically related task set is the following: T1 = (5, 30), T2 = (8, 120), T3 = (12, 
60). 

It is easy to prove that a harmonically related task set with even 100% utilization can feasibly 
be scheduled. 

 
1.5.5. Theorem 4 

 
For a set of harmonically related tasks HS = {Ti}, the RMA schedulability criterion is given 

by i=1∑
 n
ui ≤ 1. 

 
Proof: Let us assume that T1, T2, …, Tn be the tasks in the given task set.  Let us further 

assume that the tasks in the task set T1, T2, …, Tn have been arranged in increasing order of their 
periods. That is, for any i and j, pi < pj whenever i < j. If this relationship is not satisfied, then a 
simple renaming of the tasks can achieve this. Now, according to Expr. 3.6, a task Ti meets its 
deadline, if ei + k=1∑

 i-1 
⎡pi / pk⎤ ∗ ek ≤ pi. 

Version 2 EE IIT, Kharagpur 15



However, since the task set is harmonically related, pi can be written as m ∗ pk for some m. 
Using this,           ⎡pi / pk⎤ = pi / pk. Now, Expr. 3.6 can be written as: 

ei + k=1∑
 i-1 

(pi / pk)∗ ek  ≤  pi

For Ti = Tn, we can write, en + k=1∑
 n-1 

(pn / pk)∗ ek  ≤  pn.  
Dividing both sides of this expression by pn, we get the required result. 

Hence, the task set would be schedulable iff  k=1∑
 n 

ek / pk ≤ 1 or i=1∑
 n 

ui  ≤ 1. 
 

1.5.6. Advantages and Disadvantages of RMA 
 
In this section, we first discuss the important advantages of RMA over EDF. We then point 

out some disadvantages of using RMA. As we had pointed out earlier, RMA is very commonly 
used for scheduling real-time tasks in practical applications. Basic support is available in almost 
all commercial real-time operating systems for developing applications using RMA. RMA is 
simple and efficient. RMA is also the optimal static priority task scheduling algorithm. Unlike 
EDF, it requires very few special data structures. Most commercial real-time operating systems 
support real-time (static) priority levels for tasks. Tasks having real-time priority levels are 
arranged in multilevel feedback queues (see Fig. 30.7). Among the tasks in a single level, these 
commercial real-time operating systems generally provide an option of either time-slicing and 
round-robin scheduling or FIFO scheduling. 

 
RMA Transient Overload Handling:  RMA possesses good transient overload handling 
capability. Good transient overload handling capability essentially means that, when a lower 
priority task does not complete within its planned completion time, it can not make any higher 
priority task to miss its deadline. Let us now examine how transient overload would affect a set 
of tasks scheduled under RMA. Will a delay in completion by a lower priority task affect a 
higher priority task? The answer is: ‘No’. A lower priority task even when it exceeds its planned 
execution time cannot make a higher priority task wait according to the basic principles of RMA 
− whenever  a higher  priority  task  is  ready,  it  preempts  any  executing  lower  priority  task. 
Thus, RMA is stable under transient overload and a lower priority task overshooting its 
completion time can not make a higher priority task to miss its deadline. 

Version 2 EE IIT, Kharagpur 16



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

1 

Task Queue Priority Level 

2 

3 

4 

5 

6 

Fig. 30.7 Multi-Level Feedback Queue  
 

The disadvantages of RMA include the following: It is very difficult to support aperiodic and 
sporadic tasks under RMA. Further, RMA is not optimal when task periods and deadlines differ. 

 
1.6. Deadline Monotonic Algorithm (DMA) 

 
RMA no longer remains an optimal scheduling algorithm for the periodic real-time tasks, 

when task deadlines and periods differ (i.e. d i≠ pi) for some tasks in the task set to be scheduled. 
For such task sets, Deadline Monotonic Algorithm (DMA) turns out to be more proficient than 
RMA. DMA is essentially a variant of RMA and assigns priorities to tasks based on their 
deadlines, rather than assigning priorities based on task periods as done in RMA. DMA assigns 
higher priorities to tasks with shorter deadlines.  When the relative deadline of every task is 
proportional to its period, RMA and DMA produce identical solutions.  When the relative 
deadlines are arbitrary, DMA is more proficient than RMA in the sense that it can sometimes 
produce a feasible schedule when RMA fails.  On the other hand, RMA always fails when DMA 
fails.  We now illustrate our discussions using an example task set that is DMA schedulable but 
not RMA schedulable. 

 
Example 10:  Is the following task set schedulable by DMA? Also check whether it is 
schedulable using RMA. T1 = (e1=10, p1=50, d1=35), T2 = (e2=15, p2=100, d1=20), T3 = 
(e3=20, p3=200, d1=200) [time in msec]. 
 
Solution: First, let us check RMA schedulability of the given set of tasks, by checking the 
Lehoczky’s criterion.  The tasks are already ordered in descending order of their priorities. 
Checking for T1: 
10 msec < 35 msec.  Hence, T1 would meet its first deadline. 
Checking for T2: 

(10 + 15) > 20 (exceeds deadline) 

Version 2 EE IIT, Kharagpur 17



Thus, T2 will miss its first deadline. Hence, the given task set can not be feasibly scheduled 
under RMA. 
Now let us check the schedulability using DMA: 
Under DMA, the priority ordering of the tasks is as follows:  pr(T2) > pr(T1) > pr(T3). 
Checking for T2: 
15 msec < 20 msec. Hence, T2 will meet its first deadline. 
Checking for T1: 

(15 + 10) < 35 
Hence T1 will meet its first deadline. 
Checking for T3: 

(20 + 30 + 40) < 200 
Therefore, T3 will meet its deadline. 
Therefore, the given task set is schedulable under DMA but not under RMA. 
 

1.7. Context Switching Overhead 
 
So far, while determining schedulability of a task set, we had ignored the overheads incurred 

on account of context switching.  Let us now investigate the effect of context switching overhead 
on schedulability of tasks under RMA. 

It is easy to realize that under RMA, whenever a task arrives, it preempts at most one task − 
the task that is currently running.  From this observation, it can be concluded that in the worst-
case, each task incurs at most two context switches under RMA. One when it preempts the 
currently running task.  And the other when it completes possibly the task that was preempted or 
some other task is dispatched to run.  Of course, a task may incur just one context switching 
overhead, if it does not preempt any task. For example, it arrives when the processor is idle  or 
when a higher priority task was running.  However, we need to consider two context switches for 
every task, if we try to determine the worst-case context switching overhead. 

For simplicity we can assume that context switching time is constant, and equals ‘c’ 
milliseconds where ‘c’ is a constant.  From this, it follows that the net effect of context switches 
is to increase the execution time ei of each task Ti to at most ei + 2∗c. It is therefore clear that in 
order to take context switching time into consideration, in all schedulability computations, we 
need to replace ei  by ei + 2∗c for each Ti. 

 
Example 11: Check whether the following set of periodic real-time tasks is schedulable 
under RMA on a uniprocessor: T1 = (e1=20, p1=100), T2 = (e2=30, p2=150), T3 = (e3=90, 
p3=200). Assume that context switching overhead does not exceed 1 msec, and is to be taken 
into account in schedulability computations. 
 
Solution: The  net  effect  of  context  switches  is  to  increase  the  execution  time  of  each  
task  by  two  context  switching  times. Therefore, the utilization due to the task set is: 

i=1∑
 3
 ui   = 22/100 + 32/150 + 92/200 = 0.89 

Since i=1∑
 3

 ui  > 0.78, the task set is not RMA schedulable according to the Liu and Layland 
test. 
Let us try Lehoczky’s test. The tasks are already ordered in descending order of their 
priorities. 
Checking for task T1: 

22 < 100 

Version 2 EE IIT, Kharagpur 18



The condition is satisfied; therefore T1 meets its first deadline. 
Checking for task T2: 

(22∗2) + 32 < 150 
The condition is satisfied; therefore T2 meets its first deadline. 
Checking for task T3: 

(22∗2) + (32∗2) + 90 < 200.  
The condition is satisfied; therefore T3 meets its first deadline. 
Therefore, the task set can be feasibly scheduled under RMA even when context switching 
overhead is taken into consideration. 
 

1.8. Self Suspension 
 

A task might cause its self-suspension, when it performs its input/output operations or when it 
waits for some events/conditions to occur. When a task self suspends itself, the operating system 
removes it from the ready queue, places it in the blocked queue, and takes up the next eligible 
task for scheduling. Thus, self-suspension introduces an additional scheduling point, which we 
did not consider in the earlier sections. Accordingly, we need to augment our definition of a 
scheduling point given in Sec. 2.3.1 (lesson 2). 

In  event-driven  scheduling,  the  scheduling  points  are  defined  by  task  completion,  task  
arrival,  and self-suspension events. 

Let us now determine the effect of self-suspension on the schedulability of a task set. Let us 
consider a set of periodic real-time tasks {T1, T2, …, Tn}, which  have  been  arranged  in  the  
increasing  order  of  their  priorities  (or decreasing order of their periods).  Let the worst case 
self-suspension time of a task Ti is bi.  Let the delay that the task Ti might incur due to its own 
self-suspension and the self-suspension of all higher priority tasks be bti.  Then, bti can be 
expressed as:  

bti = bi + k=1∑
 i-1

min(ek, bk)   …(3.8/2.15) 
Self-suspension of a higher priority task Tk may affect the response time of a lower priority task 
Ti by as much as its execution time ek if ek < bk. This worst case delay might occur when the 
higher priority task after self-suspension starts its execution exactly at the time instant the lower 
priority task would have otherwise executed.  That is, after self-suspension, the execution of the 
higher priority task overlaps with the lower priority task, with which it would otherwise not have 
overlapped. However, if ek > bk, then the self suspension of a higher priority task can delay a 
lower priority task by at most bk, since the maximum overlap period of the execution of a higher 
priority task due to self-suspension is restricted to bk. 

Note  that  in  a  system  where  some  of  the  tasks  are  non preemptable,  the  effect  of  self  
suspension  is  much  more severe than that computed by Expr.3.8. The reason is that, every time 
a processor self suspends itself, it loses the processor. It may be blocked by a non-preemptive 
lower priority task after the completion of self-suspension. Thus, in a non-preemptable scenario, 
a task incurs delays due to self-suspension of itself and its higher priority tasks, and also the 
delay caused due to non-preemptable lower priority tasks. Obviously, a task can not get delayed 
due to the self-suspension of a lower priority non-preemptable task. 

The RMA task schedulability condition of Liu and Layland (Expr. 3.4) needs to change when 
we consider the effect of self-suspension of tasks. To consider the effect of self-suspension in 
Expr. 3.4, we need to substitute ei by (ei + bti). If we consider the effect of self-suspension on 
task completion time, the Lehoczky criterion (Expr. 3.6) would also have to be generalized: 

Version 2 EE IIT, Kharagpur 19



ei + bti + k=1∑
 i-1 
⎡pi / pk⎤ ∗ ek ≤ pi  … (3.9/2.16) 

We  have  so  far  implicitly  assumed  that  a  task  undergoes  at  most  a  single  self  
suspension.   However, if a task undergoes multiple self-suspensions, then expression 3.9 we 
derived above, would need to be changed.  We leave this as an exercise for the reader. 

 
Example 14: Consider the following set of periodic real-time tasks: T1 = (e1=10, p1=50), T2 = 
(e2=25, p2=150), T3 = (e3=50, p3=200) [all in msec]. Assume that the self-suspension times of 
T1, T2, and T3 are 3 msec, 3 msec, and 5 msec, respectively. Determine whether the tasks 
would meet their respective deadlines, if scheduled using RMA. 
 
Solution: The tasks are already ordered in descending order of their priorities. By using the 
generalized Lehoczky’s condition given by Expr. 3.9, we get: 
For T1 to be schedulable: 

(10 + 3) < 50 
Therefore T1 would meet its first deadline. 
For T2 to be schedulable: 

(25 + 6 + 10∗3) < 150 
Therefore, T2 meets its first deadline. 
For T3 to be schedulable: 

(50 + 11 + (10∗4 + 25∗2)) < 200 
This inequality is also satisfied. Therefore, T3 would also meet its first deadline. 
It can therefore be concluded that the given task set is schedulable under RMA even when 
self-suspension of tasks is considered. 
 

1.9. Self Suspension with Context Switching Overhead 
 
Let us examine the effect of context switches on the generalized Lehoczky’s test (Expr.3.9) 

for schedulability of a task set, which takes self-suspension by tasks into account. In a fixed 
priority preemptable system, each task preempts at most one other task if there is no self 
suspension. Therefore, each task suffers at most two context switches − one context switch when 
it starts and another when it completes. It is easy to realize that any time when a task self-
suspends, it causes at most two additional context switches. Using a similar reasoning, we can 
determine that when each task is allowed to self-suspend twice, additional four context switching 
overheads are incurred. Let us denote the maximum context switch time as c. The effect of a 
single self-suspension of tasks is to effectively increase the execution time of each task Ti in the 
worst case from ei to (ei + 4∗c). Thus, context switching overhead in the presence of a single 
self-suspension of tasks can be taken care of by replacing the execution time of a task Ti by (ei + 
4∗c) in Expr. 3.9. We can easily extend this argument to consider two, three, or more self-
suspensions. 

 
1.10. Exercises 
 
1. State whether the following assertions are True or False.  Write one or two sentences to 

justify your choice in each case. 
a. When RMA is used for scheduling a set of hard real-time periodic tasks, the upper 

bound on achievable utilization improves as the number in tasks in the system being 
developed increases. 

Version 2 EE IIT, Kharagpur 20



b. If a set of periodic real-time tasks fails Lehoczky’s test, then it can safely be 
concluded that this task set can not be feasibly scheduled under RMA. 

c. A time-sliced round-robin scheduler uses preemptive scheduling. 
d. RMA is an optimal static priority scheduling algorithm to schedule a set of periodic 

real-time tasks on a non-preemptive operating system. 
e.  Self-suspension of tasks impacts the worst case response times of the individual tasks 

much more adversely when preemption of tasks is supported by the operating system 
compared to the case when preemption is not supported. 

f. When a set of periodic real-time tasks is being scheduled using RMA, it can not be 
the case that a lower priority task meets its deadline, whereas some higher priority 
task does not. 

g. EDF (Earliest Deadline First) algorithm possesses good transient overload handling 
capability. 

h. A time-sliced round robin scheduler is an example of a non-preemptive scheduler. 
i. EDF  algorithm  is  an  optimal  algorithm  for  scheduling  hard  real-time  tasks  on  

a  uniprocessor  when  the task set is a mixture of periodic and aperiodic tasks. 
j. In a non-preemptable operating system employing RMA scheduling for a set of real-

time periodic tasks, self-suspension of a higher priority task (due to I/O etc.) may 
increase the response time of a lower priority task. 

k. The worst-case response time for a task occurs when it is out of phase with its higher 
priority tasks. 

l. Good real-time task scheduling algorithms ensure fairness to real-time tasks while 
scheduling. 

2. State whether the following assertions are True or False.  Write one or two sentences to 
justify your choice in each case. 
a. The EDF algorithm is optimal for scheduling real-time tasks in a uniprocessor in a 

non-preemptive environment. 
b. When RMA is used to schedule a set of hard real-time periodic tasks in a 

uniprocessor environment, if the processor becomes overloaded any time during 
system execution due to overrun by the lowest priority task, it would be very difficult 
to predict which task would miss its deadline. 

c. While scheduling a set of real-time periodic tasks whose task periods are 
harmonically related, the upper bound on the achievable CPU utilization is the same 
for both EDF and RMA algorithms. 

d. In  a  non-preemptive  event-driven  task  scheduler,  scheduling  decisions  are  made  
only  at  the  arrival  and completion of tasks. 

e. The following is the correct arrangement of the three major classes of real-time 
scheduling algorithms in ascending order of their run-time overheads. 
• static priority preemptive scheduling algorithms 
• table-driven algorithms 
• dynamic priority algorithms 

f. While  scheduling  a  set  of  independent  hard  real-time  periodic  tasks  on  a  
uniprocessor,  RMA  can  be  as proficient as EDF under some constraints on the task 
set. 

g. RMA should be preferred over the time-sliced round-robin algorithm for scheduling a 
set of soft real-time tasks on a uniprocessor. 

Version 2 EE IIT, Kharagpur 21



h. Under  RMA,  the  achievable  utilization  of  a  set  of  hard  real-time  periodic  tasks  
would  drop  when  task periods are multiples of each other compared to the case 
when they are not. 

i. RMA scheduling of a set of real-time periodic tasks using the Liu and Layland 
criterion might produce infeasible schedules when the task periods are different from 
the task deadlines. 

3. What do you understand by scheduling point of a task scheduling algorithm?  How are the 
scheduling points determined in (i) clock-driven, (ii) event-driven, (iii) hybrid schedulers?  
How will your definition of scheduling points for the three classes of schedulers change 
when (a) self-suspension of tasks,  and  (b) context  switching overheads of tasks are taken 
into account. 

4. What  do  you  understand  by  jitter  associated  with  a  periodic  task?   How are these 
jitters caused? 

5. Is EDF algorithm used for scheduling real-time tasks a dynamic priority scheduling 
algorithm? Does EDF compute any priority value of tasks any time? If you answer 
affirmatively, then explain when is the priority computed and how is it computed. If you 
answer in negative, then explain the concept of priority in EDF. 

6. What is the sufficient condition for EDF schedulability of a set of periodic tasks whose 
period and deadline are different?  Construct an example involving a set of three periodic 
tasks whose period differ from their respective deadlines such that the task set fails the 
sufficient condition and yet is EDF schedulable.  Verify your answer. Show all your 
intermediate steps. 

7. A preemptive static priority real-time task scheduler is used to schedule two periodic tasks 
T1  and T2  with the following characteristics: 

 

Task Phase 
mSec 

Execution Time 
mSec 

Relative Deadline 
mSec 

Period 
mSec 

T1 0 10 20 20 

T2 0 20 50 50 
 

Assume that T1 has higher priority than T2. A background task arrives at time 0 and would 
require 1000mSec to complete.  Compute the completion time of the background task 
assuming that context switching takes no more than 0.5 mSec. 

8. Assume that a preemptive priority-based system consists of three periodic foreground tasks 
T1, T2, and T3  with the following characteristics: 

 

Task Phase 
mSec 

Execution Time 
mSec 

Relative Deadline 
mSec 

Period 
mSec 

T1 0 20 100 100 
T2 0 30 150 150 
T3 0 30 300 300 

 
T1 has higher priority than T2 and T2 has higher priority than T3.  A background task Tb 
arrives at time 0 and would require 2000mSec to complete.  Compute the completion time 
of the background task Tb assuming that context switching time takes no more than 1 
mSec. 

Version 2 EE IIT, Kharagpur 22



9. Consider the following set of four independent real-time periodic tasks. 
 

Task Start Time 
msec 

Processing Time 
msec 

Period 
msec 

T1 20 25 150 
T2 40 10 50 
T3 20 15 50 
T4 60 50 200 

 
Assume that task T3 is more critical than task T2. Check whether the task set can be 
feasibly scheduled using RMA. 

10. What is the worst case response time of the background task of a system in which the 
background task requires 1000 msec to complete? There are two foreground tasks. The 
higher priority foreground task executes once every 100mSec and each time requires 
25mSec to complete. The lower priority foreground task executes once every 50 msec and 
requires 15 msec to complete. Context switching requires no more than 1 msec. 

11. Construct an example involving more than one hard real-time periodic task whose 
aggregate processor utilization is 1, and yet schedulable under RMA. 

12. Determine whether the following set of periodic tasks is schedulable on a uniprocessor 
using DMA (Deadline Monotonic Algorithm). Show all intermediate steps in your 
computation. 

 

Task Start Time 
mSec 

Processing Time 
mSec 

Period 
mSec 

Deadline 
mSec 

T1 20 25 150 140 
T2 60 10 60 40 
T3 40 20 200 120 
T4 25 10 80 25 

 
13. Consider the following set of three independent real-time periodic tasks. 
 

Task Start Time 
mSec 

Processing Time 
mSec 

Period 
mSec 

Deadline 
mSec 

T1 20 25 150 100 
T2 60 10 50 30 

T3 40 50 200 150 
 
Determine  whether  the  task  set  is  schedulable  on  a  uniprocessor  using  EDF.  Show 
all intermediate steps in your computation. 

14. Determine whether the following set of periodic real-time tasks is schedulable on a 
uniprocessor using RMA. Show the intermediate steps in your computation. Is RMA 
optimal when the task deadlines differ from the task periods? 

 

Version 2 EE IIT, Kharagpur 23



Task Start Time 
mSec 

Processing Time 
mSec 

Period 
mSec 

Deadline 
mSec 

T1 20 25 150 100 
T2 40 7 40 40 
T3 60 10 60 50 
T4 25 10 30 20 

 
15. Construct an example involving two periodic real-time tasks which can be feasibly 

scheduled by both RMA and EDF, but the schedule generated by RMA differs from that 
generated by EDF. Draw the two schedules on a time line and highlight how the two 
schedules differ. Consider the two tasks such that for each task: 
a. the period is the same as deadline 
b. period is different from deadline 

16. Can multiprocessor real-time task scheduling algorithms be used satisfactorily in 
distributed systems.  Explain the basic difference between the characteristics of a real-time 
task scheduling algorithm for multiprocessors and a real-time task scheduling algorithm for 
applications running on distributed systems. 

17. Construct an example involving a set of hard real-time periodic tasks that are not 
schedulable under RMA but could be feasibly scheduled by DMA. Verify your answer, 
showing all intermediate steps. 

18. Three hard real-time periodic tasks T1 = (50, 100, 100), T2 = (70, 200, 200), and T3 = (60, 
400, 400) [time in msec] are to be scheduled on a uniprocessor using RMA. Can the task 
set be feasibly be scheduled?  Suppose context switch overhead of 1 millisecond is to be 
taken into account, determine the schedulability. 

19. Consider the following set of three real-time periodic tasks. 
 

Task Start Time 
mSec 

Processing Time 
mSec 

Period 
mSec 

Deadline 
mSec 

T1 20 25 150 100 
T2 40 10 50 50 

T3 60 50 200 200 
 

a. Check whether the three given tasks are schedulable under RMA. Show all 
intermediate steps in your computation. 

b. Assuming that each context switch incurs an overhead of 1 msec, determine whether 
the tasks are schedulable under RMA. Also, determine the average context switching 
overhead per unit of task execution. 

c. Assume that T1, T2, and T3 self-suspend for 10 msec, 20 msec, and 15 msec 
respectively. Determine whether the task set remains schedulable under RMA. The 
context switching overhead of 1 msec should be considered in your result.  You can 
assume that each task undergoes self-suspension only once during each of its 
execution. 

d. Assuming that T1 and T2 are assigned the same priority value, determine the 
additional delay in response time that T2 would incur compared to the case when they 
are assigned distinct priorities. Ignore the self-suspension times and the context 
switch overhead for this part of the question. 

Version 2 EE IIT, Kharagpur 24


	Embedded System Software
	Real-Time Task Scheduling – Part 2
	Specific Instructional Objectives
	Event-driven Scheduling – An Introduction
	Types of Event Driven Schedulers
	Foreground-Background Scheduler
	Examples
	Earliest Deadline First (EDF) Scheduling
	Is EDF Really a Dynamic Priority Scheduling Algorithm?
	Implementation of EDF
	Shortcomings of EDF

	Rate Monotonic Algorithm(RMA)
	Schedulability Test for RMA
	Necessary Condition
	Sufficient Condition

	Examples
	Theorem 3
	Achievable CPU Utilization
	Theorem 4
	Advantages and Disadvantages of RMA

	Deadline Monotonic Algorithm (DMA)
	Context Switching Overhead
	Self Suspension
	Self Suspension with Context Switching Overhead
	Exercises

