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Instructional Objectives 
 
At the end of the lesson the student should be able to  

• Interface Verilog code to C & C++ using Programming Language Interface 
• Synthesize a Verilog code and generate a netlist for layout  
• Verify the generated code, and carry out optimization and debugging 
• Classify various types of flows in Verification  

 
3.1  Programming Language interface 
 
3.1.1  Verilog  

PLI (Programming Language Interface) is a facility to invoke C or C++ functions from Verilog 
code. 

The function invoked in Verilog code is called a system call. Examples of built-in system calls 
are $display, $stop, $random. PLI allows the user to create custom system calls, something that 
Verilog syntax does not allow to do. Some of these are:- 

• Power analysis.  

• Code coverage tools.  

• Can modify the Verilog simulation data structure - more accurate delays.  

• Custom output displays.  

• Co-simulation.  

• Designs debug utilities.  

• Simulation analysis.  

• C-model interface to accelerate simulation.  

• Testbench modeling. 
 
To achieve the above few application of PLI, C code should have the access to the internal data 
structure of the Verilog simulator. To facilitate this Verilog PLI provides with something called 
acc routines or  access routines 
 
How it Works? 
 

• Write the functions in C/C++ code.  

• Compile them to generate shared lib (*.DLL in Windows and *.so in UNIX). Simulator 
like VCS allows static linking.  

• Use this Functions in Verilog code (Mostly Verilog Testbench).  
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• Based on simulator, pass the C/C++ function details to simulator during compile process 
of Verilog Code (This is called linking, and you need to refer to simulator user guide to 
understand how this is done).  

• Once linked just run the simulator like any other Verilog simulation. 
 
The block diagram representing above is as follows: 
 

 
During execution of the Verilog code by the simulator, whenever the simulator encounters the 
user defined system tasks (the one which starts with $), the execution control is passed to PLI 
routine (C/C++ function). 
 
Example - Hello World 
 
Define a function hello ( ), which when called will print "Hello World". This example does not 
use any of the PLI standard functions (ACC, TF and VPI). For exact linking details, the 
simulator manuals must be referred. Each simulator implements its own strategy for linking with 
the C/C++ functions. 
 
C Code 
 
#include < stdio.h > 
Void hello () { 
printf ( "\nHello World\n" ); 
 
Verilog Code 
 
module hello_pli (); 
initial begin 
$hello; 
#10 $finish; 
end 
endmodule 
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3.1.2  Running a Simulation 
 
Once linking is done, simulation is run as a normal simulation with slight modification to the 
command line options. These modifications tell the simulator that the PLI routines are being 
used (e.g. Modelsim needs to know which shared objects to load in command line).  
 
Writing PLI Application (counter example) 
 
Write the DUT reference model and Checker in C and link that to the Verilog Testbench. 
 
The requirements for writing a C model using PLI 

• Means of calling the C model, when ever there is change in input signals (Could be wire 
or reg or types).  

• Means to get the value of the changes signals in Verilog code or any other signals in 
Verilog code from inside the C code.  

• Means to drive the value on any signal inside the Verilog code from C code. 

There are set of routines (functions), that Verilog PLI provides which satisfy the above 
requirements 
 
3.1.3  PLI Application Specification 
 
This can be well understood in context to the above counter logic. The objective is to design the 
PLI function $counter_monitor and check the response of the designed counter using  it. This 
problem can be addressed to in the following steps: 

• Implement the Counter logic in C.  
• Implement the Checker logic in C.  
• Terminate the simulation, whenever the checker fails. 
This is represented in the block diagram in the figure 23.2. 
 

 
 
Calling the C function 
 
The change in clock signal is monitored and with its change the counter function is executed 
The acc_vcl_add routine is used. The syntax can be obtained in the Verilog PLI LRM. 
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acc_vcl_add routine basically monitors the list of signals and whenever any of the monitor 
signals change, it calls the user defined function (this function is called the Consumer C 
routine). The vcl routine has four arguments. 

• Handle to the monitored object  
• Consumer C routine to call when the object value changes  
• String to be passed to consumer C routine  
• Predefined VCL flags: vcl_verilog_logic for logic monitoring vcl_verilog_strength for 

strength monitoring  

acc_vcl_add (net, display_net, netname, vcl_verilog_logic); 

C Code – Basic 
 
The desired C function is Counter_monitor , which is called from the Verilog Testbench. As 
like any other C code, header files specific to the application are included.Here the include e file 
comprises of the acc routines. 

The access routine acc_initialize initializes the environment for access routines and must be 
called from the C-language application program before the program invokes any other access 
routines. Before exiting a C-language application program that calls access routines, it is 
necessary to exit the access routine environment by calling acc_close at the end of the program. 

#include < stdio.h > 
#include "acc_user.h" 
typedef char * string; 
handle clk ; 
handle reset ; 
handle enable ; 
handle dut_count ; 
int count ; 
void counter_monitor() 
{ 
acc_initialize(); 
clk = acc_handle_tfarg(1); 
reset = acc_handle_tfarg(2); 
enable = acc_handle_tfarg(3); 
dut_count = acc_handle_tfarg(4); 
acc_vcl_add(clk,counter,null,vcl_verilog_logic); 
acc_close(); 
} 
void counter () 
printf( "Clock changed state\n" ); 
 
Handles are used for accessing the Verilog objects. The handle is a predefined data type that is a 
pointer to a specific object in the design hierarchy. Each handle conveys information to access 
routines about a unique instance of an accessible object information about the object type and, 
also, how and where the data pertaining to it can be obtained. The information of specific object 
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to handle can be passed from the Verilog code as a parameter to the function  $counter_monitor. 
This parameters can be accessed through the C-program with acc_handle_tfarg( ) routine.  

For instance clk = acc_handle_tfarg(1) basically makes that the clk is a handle to the first 
parameter passed. Similarly, all the other handles are assigned clk can now be added to the signal 
list that needs to be monitored using the routine acc_vcl_add(clk, counter ,null , 
vcl_verilog_logic). Here clk is the handle, counter is the user function to execute, when the clk 
changes. 

Verilog Code 

Below is the code of a simple testbench for the counter example. If the object being passed is an 
instance, then it should be passed inside double quotes. Since here all the objects are nets or 
wires, there is no need to pass them inside the double quotes.  

module counter_tb(); 
reg enable;; 
reg reset; 
reg clk_reg; 
wire clk; 
wire [3:0] count; 
initial begin 
clk = 0; 
reset = 0; 
$display( "Asserting reset" ); 
#10 reset = 1; 
#10 reset = 0; 
$display ( "Asserting Enable" ); 
#10 enable = 1; 
#20 enable = 0; 
$display ( "Terminating Simulator" ); 
#10 $finish; 
 
End 
 
Always 
#5 clk_reg = !clk_reg; 
assign clk = clk_reg; 
initial begin 
$counter_monitor(top.clk,top.reset,top.enable,top.count); 
end 
 
counter U( 
clk (clk), 
reset (reset), 
enable (enable), 
count (count) 
); 
endmodule 
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Access Routines  
 
Access routines are C programming language routines that provide procedural access to 
information within Verilog. Access routines perform one of two operations: 

• Extract information pertaining to an object from the internal data representation. 
• Write information pertaining to an object into the internal data representation. 

Program Flow using access routines 
 
include < acc_user.h > 
void pli_func() { 
acc_initialize(); 
// Main body: Insert the user application code here 
acc_close(); 

• acc_user.h : all data-structure related to access routines  
• acc_initialize( ) : initialize variables and set up environment  
• main body : User-defined application  
• acc_close( ) : Undo the actions taken by the function acc_initialize( ) 

 
Utility Routines 
 
Interaction between the Verilog tool and the user’s routines is handled by a set of programs that 
are supplied with the Verilog toolset. Library functions defined in PLI1.0 perform a wide variety 
of operations on the parameters passed to the system call and are used to do simulation 
synchronization or implementing conditional program breakpoint. 
 
3.2  Verilog and Synthesis 
 
3.2.1  What is logic synthesis? 
 
Logic synthesis is the process of converting a high-level description of design into an optimized 
gate-level netlist representation. Logic synthesis uses standard cell libraries which consist of 
simple cells, such as basic logic gates like and, or, and nor, or macro cells, such as adder, muxes, 
memory, and flip-flops. Standard cells put together form the technology library. Normally, 
technology library is known by the minimum feature size (0.18u, 90nm). 
A circuit description is written in Hardware description language (HDL) such as Verilog Design 
constraints such as timing, area, testability, and power are considered during synthesis. Typical 
design flow with a large example is given in the last example of this lesson. 
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3.2.2  Impact of automation on Logic synthesis 
 
For large designs, manual conversions of the behavioral description to the gate-level 
representation are more prone to error. Prior to the development of modern sophisticated 
synthesis tools the earlier designers could never be sure that whether after fabrication the design 
constraints will be met. Moreover, a significant time of the design cycle was consumed in 
converting the high–level design into its gate level representation. On account of these, if the 
gate level design did not meet the requirements then the turnaround time for redesigning the 
blocks was also very high. Each designer implemented design blocks and there was very little 
consistency in design cycles, hence, although the individual blocks were optimized but the 
overall design still contained redundant logics. Moreover, timing, area and power dissipation was 
fabrication process specific and, hence, with the change of processes the entire process needed to 
be changed with the design methodology.  
However, now automated logic synthesis has solved these problems. The high level design is less 
prone to human error because designs are described at higher levels of abstraction. High level 
design is done without much concentration on the constraints. The tool takes care of all the 
constraints and sees to it that the constraints are taken care of. The designer can go back, 
redesign and synthesize once again very easily if some aspect is found unaddressed. The 
turnaround time has also fallen down considerably. Automated logic synthesis tools synthesize 
the design as a whole and, thus, an overall design optimization is achieved. Logic synthesis 
allows a technology independent design. The tools convert the design into gates using cells from 
the standard cell library provided by the vendor.    
Design reuse is possible for technology independent designs. If the technology changes the tool 
is capable of mapping accordingly. 
 

Constructs Not Supported in Synthesis 
Construct Type Notes 

Initial Only in testbenches 
event Events make more sense for syncing test bench components 
real Real data type not supported 
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time Time data type not supported 
 

force and release force and release of data types not supported 
assign and deassign assign and deassign of reg data types is not supported, but, 

assign on wire data type is supported 
 
Example of a Non-Synthesizable Verilog construct 
 
Codes containing one or more of the above constructs are not synthesizable. But even with 
synthesizable constructs, bad coding may cause serious synthesis concerns. 
 
Example - Initial Statement 
 
module synthesis_initial( 
clk,q,d); 
input clk,d; 
 
output q; 
reg q; 
initial begin 
q <= 0; 
end 
always @ (posedge clk) 
begin 
q <= d; 
end 
endmodule 
 
Delays  are also non-synthesizable e.g. a = #10 b; This code is useful only for simulation 
purpose. 
Synthesis tool normally ignores such constructs, and just assumes that there is no #10 in above 
statement, treating the above code as just a = b. 
 
3.2.3  Constructs and Their Description 
 

Construct Type Keyword  Description 
ports  input, inout, output  Use inout only at IO level. 

parameters  parameter  This makes design more 
generic 

module definition  module   

signals and variables  wire, reg, tri  Vectors are allowed 

instantiation  module instances primitive gate 
instances  

Eg- nand (out,a,b) bad idea 
to code RTL this way. 

function and tasks  function , task  Timing constructs ignored 

Version 2 EE IIT, Kharagpur 10



procedural  always, if, then, else, case, casex, 
casez  initial is not supported 

procedural blocks  begin, end, named blocks, disable  Disabling of named blocks 
allowed 

data flow  assign  Delay information is 
ignored 

named Blocks  disable  Disabling of named block 
supported. 

loops  for, while, forever  
While and forever loops 
must contain @(posedge 
clk) or @(negedge clk) 

 
3.2.4  Operators and Their Description 
 

Operator Type Operator Symbol DESCRIPTION 
Arithmetic * Multiply 

 / Division 
 + Add 
 - Subtract 
 % Modulus 
 + Unary plus 
 - Unary minus 

Logical ! Logical negation 
 && Logical and 
 || Logical or 

Relational > Greater than 
 < Less than 
 >= Greater than or equal 
 <= Less than or equal 

Equality == Equality 
 != inequality 

Reduction & Bitwise negation 
 ~& nand 
 | or 
 ~| nor 
 ^ xor 
 ^~ ~^ xnor 

Shift >> Right shift 
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 << Left shift 
Concatenation { } Concatenation 

Conditional ? conditional 
 
Constructs Supported In Synthesis 
 

Construct Type Keyword Description 
ports  input, inout, output  Use inout only at IO level. 

parameters  parameter  This makes design more 
generic 

module definition  module   

signals and variables  wire, reg, tri  Vectors are allowed 

instantiation  module instances primitive gate 
instances  

Eg- nand (out,a,b) bad idea 
to code RTL this way. 

function and tasks  function , task  Timing constructs ignored 

procedural  always, if, then, else, case, casex, 
casez  initial is not supported 

procedural blocks  begin, end, named blocks, disable  Disabling of named blocks 
allowed 

data flow  assign  Delay information is 
ignored 

named Blocks  disable  Disabling of named block 
supported. 

loops  for, while, forever  
While and forever loops 
must contain @(posedge 
clk) or @(negedge clk) 

 
3.2.5  Overall Logic Circuit Modeling and Synthesis in brief 
 
Combinational Circuit modeling using assign 
 
RTL description – This comprises the high level description of the circuit incorporating the RTL 
constructs. Some functional verification is also done at this level to ensure the validity of the 
RTL description.  
RTL for magnitude comparator 
// module magnitude comparator 
module magnitude_comparator(A_gt_B, A_lt_B, A_eq_B, A,_B); 
//comparison output; 
output A_gt_B, A_lt_B, A_eq_B ; 
// 4- bit numbers input 
input [3:0] A,B; 
assign A_gt_B= (A>B) ; // A greater than B 
assign A_lt_B= (A<B) ; // A greater than B 
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assign A_eq_B= (A==B) ; // A greater than B 
endmodule 
 
Translation  
 
The RTL description is converted by the logic synthesis tool to an optimized, intermediate, 
internal representation. It understands the basic primitives and operators in the Verilog RTL 
description but overlooks any of the constraints.  
 
Logic optimization 
 
The logic is optimized to remove the redundant logic. It generates the optimized internal 
representation.  
 
Technology library 
 
The technology library contains standard library cells which are used during synthesis to replace 
the behavioral description by the actual circuit components. These are the basic building blocks. 
Physical layout of these, are done first and then area is estimated. Finally, modeling techniques 
are used to estimate the power and timing characteristics. 
The library includes the following: 

• Functionality of the cells  

• Area of the different cell layout 

• Timing information about the various cells  

• Power information of various cells 
 
The synthesis tools use these cells to implement the design.  
// Library cells for abc_100 technology  
VNAND// 2 – input nand gate 
VAND// 2 – input and gate 
VNOR // 2 – input nor gate 
VOR// 2 – input or gate 
VNOT// not gate 
VBUF// buffer 
 
Design constraints 
 
Any circuit must satisfy at least three constraints viz. area, power and timing. Optimization 
demands a compromise among each of these three constraints. Apart from these operating 
conditions-temperature etc. also contribute to synthesis complexity. 
 
Logic synthesis 
 
The logic synthesis tool takes in the RTL design, and generates an optimized gate level 
description with the help of technology library, keeping in pace with design constraints. 
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Verification of the gate –level netlist 
 
An optimized gate level netlist must always be checked for its functionality and, in addition, the 
synthesis tool must always serve to meet the timing specifications. Timing verification is done in 
order to manipulate the synthesis parameters in such a way that different timing constraints like 
input delay, output delay etc. are suitably met. 
 
Functional verification 
 
Identical stimulus is run with the original RTL and synthesized gate-level description of the 
design. The output is compared for matches.  
module stimulus 
reg [3:0] A, B; 
wire A_GT_B, A_LT_B,  A_EQ_B; 
// instantiate the magnitude comparator MC (A_GT_B, A_LT_B,  A_EQ_B,. A, B); 
initial 
$ monitor ($time, “A=%b, B=%b, A_GT_B=%b, A_LT_B=%b,  A_EQ_B=%b”, A_GT_B, 
A_LT_B,  A_EQ_B, A, B) 
// stimulate the magnitude comparator 
 
endmodule 
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3.3  Verification 
 
3.3.1 Traditional verification flow 

 

 
 
Traditional verification follows the following steps in general.  
 

1. To verify, first a design specification must be set. This requires analysis of architectural 
trade-offs and is usually done by simulating various architectural models of the design.  

2. Based on this specification a functional test plan is created. This forms the framework for 
verification. Based on this plan various test vectors are applied to the DUT (design under 
test), written in verilog. Functional test environments are needed to apply these test 
vectors. 

3. The DUT is then simulated using traditional software simulators.  
4.  The output is then analyzed and checked against the expected results. This can be done 

manually using waveform viewers and debugging tools or else can be done automatically 
by verification tools. If the output matches expected results then verification is complete.  
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5. Optionally, additional steps can be taken to decrease the risk of future design respin. 
These include Hardware Acceleration, Hardware Emulation and assertion based 
Verification.  

  
Functional verification 
 
When the specifications for a design are ready, a functional test plan is created based on them. 
This is the fundamental framework of the functional verification. Based on this test plan, test 
vectors are selected and given as input to the design_under_test(DUT). The DUT is simulated to 
compare its output with the desired results. If the observed results match the expected values, the 
verification part is over.  
 
Functional verification Environment 
 
 The verification part can be divided into three substages : 

• Block level verification: verification is done for blocks of code written in verilog using a 
number of test cases.  

• Full chip verification: The goal of full chip verification, i.e, all the feature of the full 
chip described in the test plan is complete. 

• Extended verification: This stage depicts the corner state bugs. 
 
3.3.2  Formal Verification  
 
A formal verification tool proves a design by manipulating it as much as possible. All input 
changes must, however, conform to the constraints for behaviour validation. Assertions on 
interfaces act as constraints to the formal tool. Assertions are made to prove the assertions in the 
RTL code false. However, if the constraints are too tight then the tool will not explore all 
possible behaviours and may wrongly report the design as faulty.  
Both the formal and the semi-formal methodologies have come into precedence with the 
increasing complexity of design.   
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3.3.3 Semi- formal verification 

 
Semi formal verification combines the traditional verification flow using test vectors with the 
power and thoroughness of formal verification.  
 

• Semi-formal methods supplement simulation with test vectors 

• Embedded assertion checks define the properties targeted by formal methods 

• Embedded assertion checks defines the input constraints 

• Semi-formal methods explore limited space exhaustibility from the states reached by 
simulation, thus, maximizing the effect of simulation.The exploration is limited to a 
certain point around the state reached by simulation.  
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3.3.4  Equivalence checking  
 
After logic synthesis and place and route tools create a gate level netlist and physical 
implementations of the RTL design, respectively, it is necessary to check whether these 
functionalities match the original RTL design.  Here comes equivalence checking. It is an 
application of formal verification. It ensures that the gate level or physical netlist has the same 
functionality as the Verilog RTL that was simulated. A logical model of both the RTL and gate 
level representations is constructed. It is mathematically proved that their functionality are same. 
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3.4  Some Exercises 
 
3.4.1  PLI 
 
i) Write a user defined system task, $count_and_gates, which counts the number of and gate 
primitive in a module instance. Hierarchical module instance name is the input to the task. Use 
this task to count the number of and gates in a 4-to-1 multiplexer.  
 
3.4.2  Verilog and Synthesis 
 
i) A 1-bit full subtractor  has three inputs x, y, z(previous borrow) and two outputs D(difference) 
and B(borrow). The logic equations for D & B are as follows  
 D=x’y’z+ x’yz’+ xy’z’ + xyz 
 B= x’y + x’z+ yz 
Write the verilog RTL description for the full subtractor. Synthesize the full using any 
technology library available. Apply identical stimulus to the RTL and gate level netlist and 
compare the outputs.  
 
ii) Design a 3-8 decoder, using a Verilog RTL description. A 3-bit input a[2:0] is provided to the 
decoder. The output of the decoder is out[7:0]. The output bit indexed by a[2:0] gets the value 1, 
the other bits are 0. Synthesize the decoder, using any technology library available to you. 
Optimize for smallest area. Apply identical stimulus to the RTL and gate level netlist and 
compare the outputs.  
 
iii) Write the verilog RTL description for a 4-bit binary counter with synchronous reset that is 
active high.(hint: use always loop with the @ (posedge clock)statement.) synthesize the counter 
using any technology library available to you. Optimize for smallest area. Apply identical 
stimulus to the RTL and gate level netlist and compare the outputs.     
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