

Module
8

Testing of Embedded
System

Version 2 EE IIT, Kharagpur 1

Lesson
40

Built-In-Self-Test (BIST)
for Embedded Systems

Version 2 EE IIT, Kharagpur 2

Instructional Objectives

After going through this lesson the student would be able to

• Explain the meaning of the term ‘Built-in Self-Test (BIST)’

• Identify the main components of BIST functionality

• Describe the various methods of test pattern generation for designing embedded systems
with BIST

• Define what is a Signature Analysis Register and describe some methods to designing
such units

• Explain what is a Built-in Logic Block Observer (BILBO) and describe how to use this
block for designing BIST

Built-In-Self-Test (BIST) for Embedded Systems

1. Introduction

BIST is a design-for-testability technique that places the testing functions physically with the
circuit under test (CUT), as illustrated in Figure 40.1 [1]. The basic BIST architecture requires
the addition of three hardware blocks to a digital circuit: a test pattern generator, a response
analyzer, and a test controller. The test pattern generator generates the test patterns for the CUT.
Examples of pattern generators are a ROM with stored patterns, a counter, and a linear feedback
shift register (LFSR). A typical response analyzer is a comparator with stored responses or an
LFSR used as a signature analyzer. It compacts and analyzes the test responses to determine
correctness of the CUT. A test control block is necessary to activate the test and analyze the
responses. However, in general, several test-related functions can be executed through a test
controller circuit.

Hard ware
pattern generator

M
U
X

CUT

Test Controller
ROM

Output
Response

Compactor
Comparator

Test

PO
Signature

Good/Faulty

Reference
Signature

Fig. 40.1 A Typical BIST Architecture

As shown in Figure 40.1, the wires from primary inputs (PIs) to MUX and wires from circuit
output to primary outputs (POs) cannot be tested by BIST. In normal operation, the CUT
receives its inputs from other modules and performs the function for which it was designed.
During test mode, a test pattern generator circuit applies a sequence of test patterns to the CUT,

Version 2 EE IIT, Kharagpur 3

and the test responses are evaluated by a output response compactor. In the most common type
of BIST, test responses are compacted in output response compactor to form (fault) signatures.
The response signatures are compared with reference golden signatures generated or stored on-
chip, and the error signal indicates whether chip is good or faulty.
Four primary parameters must be considered in developing a BIST methodology for embedded
systems; these correspond with the design parameters for on-line testing techniques discussed in
earlier chapter [2].

 Fault coverage: This is the fraction of faults of interest that can be exposed by the test
patterns produced by pattern generator and detected by output response monitor. In
presence of input bit stream errors there is a chance that the computed signature matches
the golden signature, and the circuit is reported as fault free. This undesirable property is
called masking or aliasing.

 Test set size: This is the number of test patterns produced by the test generator, and is
closely linked to fault coverage: generally, large test sets imply high fault coverage.

 Hardware overhead: The extra hardware required for BIST is considered to be overhead.
In most embedded systems, high hardware overhead is not acceptable.

 Performance overhead: This refers to the impact of BIST hardware on normal circuit
performance such as its worst-case (critical) path delays. Overhead of this type is
sometimes more important than hardware overhead.

Issues for BIST

 Area Overhead: Additional active area due to test controller, pattern generator, response
evaluator and testing of BIST hardware.

 Pin Overhead: At least 1 additional pin is needed to activate BIST operation. Input MUX
adds extra pin overheads.

 Performance overhead: Extra path delays are added due to BIST.
 Yield loss increases due to increased chip area.
 Design effort and time increases due to design BIST.
 The BIST hardware complexity increases when the BIST hardware is made testable.

Benefits of BIST

 It reduces testing and maintenance cost, as it requires simpler and less expensive ATE.
 BIST significantly reduces cost of automatic test pattern generation (ATPG).
 It reduces storage and maintenance of test patterns.
 It can test many units in parallel.
 It takes shorter test application times.
 It can test at functional system speed.

BIST can be used for non-concurrent, on-line testing of the logic and memory parts of a system
[2]. It can readily be configured for event-triggered testing, in which case, the BIST control can
be tied to the system reset so that testing occurs during system start-up or shutdown. BIST can
also be designed for periodic testing with low fault latency. This requires incorporating a testing
process into the CUT that guarantees the detection of all target faults within a fixed time.

On-line BIST is usually implemented with the twin goals of complete fault coverage and low
fault latency. Hence, the test generation (TG) and response monitor (RM) are generally designed

Version 2 EE IIT, Kharagpur 4

to guarantee coverage of specific fault models, minimum hardware overhead, and reasonable set
size. These goals are met by different techniques in different parts of the system.

TG and RM are often implemented by simple, counter-like circuits, especially linear-feedback
shift registers (LFSRs) [3]. The LFSR is simply a shift register formed from standard flip-flops,
with the outputs of selected flip-flops being fed back (modulo-2) to the shift register’s inputs.
When used as a TG, an LFSR is set to cycle rapidly through a large number of its states. These
states, whose choice and order depend on the design parameters of the LFSR, define the test
patterns. In this mode of operation, an LFSR is seen as a source of (pseudo) random tests that
are, in principle, applicable to any fault and circuit types. An LFSR can also serve as an RM by
counting (in a special sense) the responses produced by the tests. An LFSR RM’s final contents
after applying a sequence of test responses forms a fault signature, which can be compared to a
known or generated good signature, to see if a fault is present. Ensuring that the fault coverage is
sufficiently high and the number of tests is sufficiently low are the main problems with random
BIST methods. Two general approaches have been proposed to preserve the cost advantages of
LFSRs while making the generated test sequence much shorter. Test points can be inserted in the
CUT to improve controllability and observability; however, they can also result in performance
loss. Alternatively, some determinism can be introduced into the generated test sequence, for
example, by inserting specific “seed” tests that are known to detect hard faults.

A typical BIST architecture using LFSR is shown in Figure 40.2 [4]. Since the output patterns of
the LFSR are time-shifted and repeated, they become correlated; this reduces the effectiveness of
the fault detection. Therefore a phase shifter (a network of XOR gates) is often used to
decorrelate the output patterns of the LFSR. The response of the CUT is usually compacted by a
multiple input shift register (MISR) to a small signature, which is compared with a known fault-
free signature to determine whether the CUT is faulty.

LFSR

Phase
shifter

Scan chain 1 (/bits)

Scan chain 2 (/bits)

Scan chain n (/bits)

MISR .
.
.

...

Fig. 40.2 A generic BIST architecture based on an LFSR, an MISR, and a phase shifter

2. BIST Test Pattern Generation Techniques

2.1 Stored patterns

An automatic test pattern generation (ATPG) and fault simulation technique is used to generate
the test patterns. A good test pattern set is stored in a ROM on the chip. When BIST is activated,
test patterns are applied to the CUT and the responses are compared with the corresponding
stored patterns. Although stored-pattern BIST can provide excellent fault coverage, it has limited
applicability due to its high area overhead.

Version 2 EE IIT, Kharagpur 5

2.2 Exhaustive patterns

Exhaustive pattern BIST eliminates the test generation process and has very high fault coverage.
To test an n-input block of combinational logic, it applies all possible 2n-input patterns to the
block. Even with high clock speeds, the time required to apply the patterns may make exhaustive
pattern BIST impractical for a circuit with n>20.

Clock

Reset Q1 Q2 Q3

DQ1 DQ2 DQ3

Fig. 40.3 Exhaustive pattern generator

2.3 Pseudo-exhaustive patterns

In pseudo-exhaustive pattern generation, the circuit is partitioned into several smaller sub-
circuits based on the output cones of influence, possibly overlapping blocks with fewer than n
inputs. Then all possible test patterns are exhaustively applied to each sub-circuit. The main goal
of pseudo-exhaustive test is to obtain the same fault coverage as the exhaustive testing and, at the
same time, minimize the testing time. Since close to 100% fault coverage is guaranteed, there is
no need for fault simulation for exhaustive testing and pseudo-exhaustive testing. However,
such a method requires extra design effort to partition the circuits into pseudo-exhaustive testable
sub-circuits. Moreover, the delivery of test patterns and test responses is also a major
consideration. The added hardware may also increase the overhead and decrease the
performance.

Five-Bit
Binary

Counter
1

2

3
6

h

X1

X2

X3

Five-Bit
Binary

Counter
2

4

5
7

f
X6

X7

X8

1
X4

X5
0 for Counter 1

1 for Counter 2

2-Bit
2-1

MUX

Fig. 40.4 Pseudo-exhaustive pattern generator

Version 2 EE IIT, Kharagpur 6

Circuit partitioning for pseudo-exhaustive pattern generation can be done by cone segmentation
as shown in Figure 40.4. Here, a cone is defined as the fan-ins of an output pin. If the size of the
largest cone in K, the patterns must have the property to guarantee that the patterns applied to
any K inputs must contain all possible combinations. In Figure 40.4, the total circuit is divided
into two cones based on the cones of influence. For cone 1 the PO h is influenced by X1, X2, X3,
X4 and X5 while PO f is influenced by inputs X4, X5, X6, X7 and X8. Therefore the total test
pattern needed for exhaustive testing of cone 1 and cone 2 is (25 +25) = 64. But the original
circuit with 8 inputs requires 28 = 256 test patterns exhaustive test.

2.4 Pseudo-Random Pattern Generation

A string of 0’s and 1’s is called a pseudo-random binary sequence when the bits appear to be
random in the local sense, but they are in someway repeatable. The linear feedback shift register
(LFSR) pattern generator is most commonly used for pseudo-random pattern generation. In
general, this requires more patterns than deterministic ATPG, but less than the exhaustive test. In
contrast with other methods, pseudo-random pattern BIST may require a long test time and
necessitate evaluation of fault coverage by fault simulation. This pattern type, however, has the
potential for lower hardware and performance overheads and less design effort than the
preceding methods. In pseudorandom test patterns, each bit has an approximately equal
probability of being a 0 or a 1. The number of patterns applied is typically of the order of 103 to
107 and is related to the circuit's testability and the fault coverage required.

Linear feedback shift register reseeding [5] is an example of a BIST technique that is based on
controlling the LFSR state. LFSR reseeding may be static, that is LFSR stops generating patterns
while loading seeds, or dynamic, that is, test generation and seed loading can proceed
simultaneously. The length of the seed can be either equal to the size of the LFSR (full
reseeding) or less than the LFSR (partial reseeding). In [5], a dynamic reseeding technique that
allows partial reseeding is proposed to encode test vectors. A set of linear equations is solved to
obtain the seeds, and test vectors are ordered to facilitate the solution of this set of linear
equations.

D FF D FF D FF D FF

Xn-1 Xn-2 X1 X0

hn-1 hn-2 h2 h1

Fig. 40.5 Standard Linear Feedback Shift Register

Figure 40.5 shows a standard, external exclusive-OR linear feedback shift register. There are n
flip-flops (Xn-1,……X0) and this is called n-stage LFSR. It can be a near-exhaustive test pattern
generator as it cycles through 2n-1 states excluding all 0 states. This is known as a maximal
length LFSR. Figure 40.6 shows the implementation of a n-stage LFSR with actual digital
circuit. [1]

Version 2 EE IIT, Kharagpur 7

Clock

D D D D Q Q Q Q
n-2 n-1 x x x 1

Xn-1 Xn-2 X1 X0

h1 h2 hn-1 hn-2

Fig. 40.6 n-stage LFSR implementation with actual digital circuit

2.5 Pattern Generation by Counter

In a BIST pattern generator based on a folding counter, the properties of the folding counter are
exploited to find the seeds needed to cover the given set of deterministic patterns. Width
compression is combined with reseeding to reduce the hardware overhead. In a two-dimensional
test data compression technique an LFSR and a folding counter are combined for scan-based
BIST. LFSR reseeding is used to reduce the number of bits to be stored for each pattern
(horizontal compression) and folding counter reseeding is used to reduce the number of patterns
(vertical compression).

2.6 Weighted Pseudo-random Pattern Generation

Bit-flipping [9], bit-fixing, and weighted random BIST [1,8] are example of techniques that rely
on altering the patterns generated by LFSR to embed deterministic test cubes. A hybrid between
pseudorandom and stored-pattern BIST, weighted pseudorandom pattern BIST is effective for
dealing with hard-to-detect faults. In a pseudorandom test, each input bit has a probability of 1/2
of being either a 0 or a 1. In a weighted pseudorandom test, the probabilities, or input weights,
can differ. The essence of weighted pseudorandom testing is to bias the probabilities of the input
bits so that the tests needed for hard-to-detect faults are more likely to occur. One approach uses
software that determines a single or multiple weight set based on a probabilistic analysis of the
hard-to detect faults. Another approach uses a heuristic-based initial weight set followed by
additional weight sets produced with the help of an ATPG system. The weights are either
realized by logic or stored in on-chip ROM. With these techniques, researchers obtained fault
coverage over 98% for 10 designs, which is the same as the coverage of deterministic test
vectors.

In hybrid BIST method based on weighted pseudorandom testing, a weight of 0, 1, or μ
(unbiased) is assigned to each scan chain in CUT. The weight sets are compressed and stored on
the tester. During test application, an on-chip lookup table is used to decompress the data from
the tester and generate weight sets. In order to reduce the hardware overhead, scan cells are
carefully reordered and a special ATPG approach is used to generate suitable test cubes.

Version 2 EE IIT, Kharagpur 8

Inversion

D Q
X7

D D D D D D D Q Q Q Q Q Q Q
X6 X5 X4 X3 X2 X1 X0

Weight W1
select W2

1/16 1/8 1/4 1/2
1 of 4 MUX

Fig. 40.7 Weighted pseudo-random pattern generator

LFSR

1/8 3/4 1/2 7/8 1/2

123

D
Q

61

D
Q

228

D
Q

25

D
Q

193

D
Q

D
Q

D
Q

D
Q

92 114

0
0

0.8 0.80.6 0.4 0.5 0.3 0.3
(a) (b)

Fig. 40.8 weighted pseudorandom patterns.

Figure 40.7 shows a weighted pseudo-random pattern generator implemented with
programmable probabilities of generating zeros and ones at the PIs. As we know, LFSR
generates pattern with equal probability of 1s and 0s. As shown in Figure 40.8 (a), if a 3-input
AND gate is used, the probability of 1s becomes 0.125. If a 2-input OR gate is used, the
probability becomes 0.75. Second, one can use cellular automata to produce patterns of desired
weights as shown in Figure 40.8(b).

2.7 Cellular Automata for Pattern Generation

Cellular automata are excellent for pattern generation, because they have a better randomness
distribution than LFSRs. There is no shift induced bit value correlation. A cellular automaton is a
collection of cells with regular connections. Each pattern generator cell has few logic gates, a
flip-flop and is connected only to its local neighbors. If Ci is the state of the current CA cell, Ci+1
and Ci-1 are the states of its neighboring cells. The next state of cell Ci is determined by (Ci-1, Ci ,
and Ci+1). The cell is replicated to produce cellular automaton. The two commonly used CA
structures are shown in Figure 40.9.

Version 2 EE IIT, Kharagpur 9

Fca

D
Q

D
Q

0 0

Fca Fca Fca Fca Fca

D
Q

D
Q

D
Q

D
Q

D
Q

(a) CA with null boundary conditions

Fca

D
Q

D
Q

Fca Fca Fca Fca Fca

D
Q

D
Q

D
Q

D
Q

D
Q

(b) CA with null cyclic boundary conditions
Fig. 40.9 The structure of cellular automata

In addition to an LFSR, a straightforward way to compress the test response data and produce a
fault signature is to use an FSM or an accumulator. However, the FSM hardware overhead and
accumulator aliasing are difficult parameters to control. Keeping the hardware overhead
acceptably low and reducing aliasing are the main difficulty in RM design.

2.9 Comparison of Test Generation Strategies

Implementing a BIST strategy, the main issues are fault coverage, hardware overhead, test time
overhead, and design effort. These four issues have very complicated relationship. Table 1
summarizes the characteristics of the test strategies mentioned earlier based on the four issues.

Table 7.1 Comparison of different test strategies

Test Generation
Methodology

Fault
Coverage

Hardware
Overhead

Test Time
Overhead

Design
Effort

Stored Pattern High High Short Large
Exhaustive High Low Long Small

Pseudo-exhaustive High High Medium Large
Pseudo-random Low Low Long Small

Weighted Pseudo-random Medium Medium Long Medium

3. BIST Response Compression/Compaction Techniques

During BIST, large amount of data in CUT responses are applied to Response Monitor (RM).
For example, if we consider a circuit of 200 outputs and if we want to generate 5 million random

Version 2 EE IIT, Kharagpur 10

patterns, then the CUT response to RM will be 1 billion bits. This is not manageable in practice.
So it is necessary to compact this enormous amount of circuit responses to a manageable size
that can be stored on the chip. The response analyzer compresses a very long test response into a
single word. Such a word is called a signature. The signature is then compared with the prestored
golden signature obtained from the fault-free responses using the same compression mechanism.
If the signature matches the golden copy, the CUT is regarded fault-free. Otherwise, it is faulty.
There are different response analysis methods such as ones count, transition count, syndrome
count, and signature analysis.
Compression: A reversible process used to reduce the size of the response. It is difficult in hard
ware.

Compaction: An irreversible (lossy) process used to reduce the size of the response.

a) Parity compression: It computes the parity of a bit stream.
b) Syndrome: It counts the number of 1’s in the bit stream.
c) Transition count: It counts the number of times 0→1 and 1→0 condition occur in the

bit stream.
d) Cyclic Redundancy Check (CRC): It is also called signature. It computes CRC check

word on the bit stream.

Signature analysis – Compact good machine response into good machine signature. Actual
signature generated during testing, and compared with good machine signature.

Aliasing: Compression is like a function that maps a large input space (the response) into a small
output space (signature). It is a many-to-one mapping. Errors may occur in the in the input bit
stream. Therefore, a faulty response may have the signature that matches the to the golden
signature and the circuit is reported as the fault-free one. Such a situation is referred as the
aliasing or masking. The aliasing probability is the possibility that a faulty response is treated as
fault-free. It is defined as follows:

Let us assume that the possible input patterns are uniformly distributed over the possible mapped
signature values. There are 2m input patterns, 2r signatures and 2n-r input patterns map into given
signature. Then the aliasing or masking probability

Number of erroneos input that map into the golden signatureP(M)=
Number of faulty input responses

m-r2 -1= m2 -1
m-r2 for largem2

1= r2

m≈

The aliasing probability is the major considerations in response analysis. Due to the n-to-1
mapping property of the compression, it is unlikely to do diagnosis after compression. Therefore,
the diagnosis resoluation is very poor after compression. In addition to the aliasing probability,
hardware overhead and hardware compatibility are also important issues. Here, hardware
compatibility is referred to how well the BIST hardware can be incorporated in the CUT or DFT.

Version 2 EE IIT, Kharagpur 11

3.1 Ones Count

The number of ones in the CUT output response is counted. In this method the number of ones is
the signature. It requires a simple counter to accomplish the goal. Figure 40.10 shows the test
structure of ones count for a single output CUT. For multiple output ones, a counter for each
output or one output at a time with the same input sequence can be used. Input test sequence can
be permuted without changing the count.

Test
Pattern

For N-bit test length with r ones the masking probability is shown as follows:

Number of masking sequences = 1
N
r

⎛ ⎞
−⎜ ⎟

⎝ ⎠

2N possible output sequences with only one fault free.

The masking probabilities: () () 1 2()
2 1N

N
r

P M Nπ −

⎛ ⎞
⎜ ⎟
⎝ ⎠= ≅
−

It has low masking probability for very small and very large r. It always detects odd number of
errors and it may detect even number of errors.

3.2 Transition Count

It is very similar to ones count technique. In this method the number of transitions in the CUT
response, zero to one and/or one to zero is counted. Figure 40.11 shows a test structure of
transition counting. It has simple hardware DFF with EXOR to detect a transition and counter to
count number of transitions. It has less aliasing probability than ones counting. Test sequences
cannot be permuted. Permutation of input sequences will change the number of transitions. On
the other hand, one can reorder the test sequence to maximize or minimize the transitions, hence,
minimize the aliasing probability.

CUT

Counter Clock

Fig. 40.10 Ones count compression circuit structure

Version 2 EE IIT, Kharagpur 12

Test
Pattern CUT

CounterClock

DFF

Fig. 40.11 Transition count compression circuit structure

For N-bit test length with r transitions the masking probability is shown as follows:

For the test length of N, there are N-1 transitions.

Number of masking sequences = 1
N
r

⎛ ⎞
−⎜ ⎟

⎝ ⎠

Hence, is the number of sequences that has r transitions. 1N
r
−⎛

⎜
⎝ ⎠

⎞
⎟

⎞
⎟

Since the first output can be either one or zero, therefore, the total number must be multiplied by

2. Therefore total number of sequences with same transition counts : 2 . Again, only one

of them is fault-free.

1N
r
−⎛

⎜
⎝ ⎠

Masking probabilities: () () 1 2

1
2 1

2
()

2 1N

N

P M Nπ −

−⎛ ⎞
−⎜ ⎟

⎝ ⎠= ≅
−

3.3 Syndrome Testing

Syndrome is defined as the probability of ones of the CUT output response. The syndrome is 1/8
for a 3-input AND gate and 7/8 for a 3-input OR gate if the inputs has equal probability of ones
and zeros. Figure 40.12 shows a BIST circuit structure for the syndrome count. It is very similar
to ones count and transition count. The difference is that the final count is divided by the number
of patterns being applied. The most distinguished feature of syndrome testing is that the
syndrome is independent of the implementation. It is solely determined by its function of the
circuit.

test
pattern

CUT

Syndrome Counter Clock

random

Counter Syndrome
Fig. 40.12 Syndrome testing circuit structure

Version 2 EE IIT, Kharagpur 13

The originally design of syndrome test applies exhaustive patterns. Hence, the syndrome is
S K n= / 2 , where n is the number of inputs and K is the number of minterms. A circuit is
syndrome testable if all single stuck-at faults are syndrome detectable. The interesting part of
syndrome testing is that any function can be designed as being syndrome testable.

3.4 LFSR Structure

 External and internal type LFSR is used. Both types use D type flip-flop and exclusive-
OR logic as shown in Figure 40.13.

 In external type LFSR, XOR gates are placed outside the shift path. It is also called type 1
LFSR [1].

 In internal type LFSRs, also called type 2 LFSR, XOR gates are placed in between the
flip-flops.

(b) Internal Type (a) External Type

D3 D2 D1 D0 D3 D2 D1 D0

Fig. 40.13 Two types of LFSR

One of the most important properties of LFSRs is their recurrence relationship. The recurrence
relation guarantees that the states of a LFSR are repeated in a certain order. For a given sequence
of numbers a0, a1, a2,…………an,…….. We can define a generating function:
G(x) = a0 + a1x + a2x2 + …………+ amxm + ……

 =
0

m
m

m

a x
α

=
∑

{ } { }0 1 2, , ,......
where 1or 0depending on theout put stageand time .

m

i i

a a a a
a t
=

=

The initial states are a-n, a-n+1,…….,a-2, a-1. The recurrent relation defining {am}is

1

where 0,meansoutput is not fed back
1,otherwise

n

m i m i
i

i

a c a

c

−
=

=

=

=

∑

Version 2 EE IIT, Kharagpur 14

()

()
()

0 1

1 0

1
1

1 0

1
1

1

1

....

....

1

n
m

i m i
m i
n

i m
i m i

i m

n
i i

i i m
i m

n
i i

i i
i

n
i

i
i

G x c a x

c x a x

c x a x a x a x

c x a x a x
G x

c x

α

α

α

−
= =

−
= =

−
− −

= =

−
− −

=

=

=

=

m⎡ ⎤= + + +⎢ ⎥⎣ ⎦

+ +
=

−

∑∑

∑ ∑

∑ ∑

∑

∑

G(x) has been expressed in terms of the initial state and the feedback coefficients. The

denominator of the polynomial G(x), ()
1

1
n

i
i

i

f x c
=

= − x∑ is called the characteristic polynomial of

the LFSR.

3.5 LFSR for Response Compaction: Signature Analysis

 It uses cyclic redundancy check code (CRCC) generator (LFSR) for response compacter
 In this method, data bits from circuit Pos to be compacted as a decreasing order

coefficient polynomial
 CRCC divides the PO polynomial by its characteristic polynomial that leaves remainder

of division in LFSR. LFSR must be initialized to seed value (usually 0) before testing.
 After testing, signature in LFSR is compared to known good machine signature

For an output sequence of length N, there is a total of 2N-1 faulty sequence. Let the input
sequence is represented as P(x) as P(x)=Q(X)G(x)+R(x). G(x) is the characteristic polynomial;
Q(x) is the quotient; and R(x) is the remainder or signature. For those aliasing faulty sequence,
the remainder R(x) will be the same as the fault-free one. Since, P(x) is of order N and G(x) is of
order r, hence Q(x) has an order of N-r. Hence, there are 2N-r possible Q(x) or P(x). One of them
is fault-free. Therefore, the aliasing probability is shown as follows:

2 1() 2
2 1

N r
r

NP M
−

−−
= ≅

− for large N. Masking probabilities is independent of input sequence.

Figure 40.14 illustrates a modular LFSR as a response compactor.

CLOCK

D Q

X1 X0

D D D D Q Q Q Q 01010001

X2 X3 X4

Characteristics Polynomial x5 + x3 + x + 1

x2
 x3

 x4
 x 1

Fig. 40.14 Modular LFSR as a response compactor
Version 2 EE IIT, Kharagpur 15

 Any divisor polynomial G(x) with two or more non-zero coefficients will detect all
single-bit errors.

3.6 Multiple-Input Signature Register (MISR)

 The problem with ordinary LFSR response compacter is too much hardware overhead if
one of these is put on each primary output (PO).

 Multiole-input signature register (MISR) is the solution that compacts all outputs into one
LFSR. It works because LFSR is linear and obeys superposition principle.

 All responses are superimposed in one LFSR. The final remainder is XOR sum of
remainders of polynomial divisions of each PO by the characteristic polynomial.

L
F
S
R

C
U
T

M
I
S
R

Signature
Analyzer

Golden
signature

.

.

.

.

.

.

m

Test
patterns

Response
Ri(x)

Si(x)

Fig. 40.15 Multiple input signature register

Figure 40.15 illustrates a m-stage MISR. After test cycle i, the test responses are stable on CUT
outputs, but the shifting clock has not yet been applied.
Ri(x)= (m-1)th polynomial representing the test responses after test cycle i.
Si(x)=polynomial representing the state of the MISR after test cycle i.

()
()
() () () ()

()

1 2
, 1 , 2 ,1 ,0

1 2
, 1 , 2 ,1 ,0

1

........

........

mod

is thecharacteristic polynomial

m m
i i m i m i i

m m
i i m i m i

i i i

R x r x r x r x r

S x S x S x S x S

S x R x xS x G x

G x

− −
− −

− −
− −

+

= + + + +

= + + + +

= +⎡ ⎤⎣ ⎦

i

Assume initial state of MISR is 0. So,
()
() () () () ()
() () () () () () ()

() () () () () ()

0

1 0 0 0

2 1 1 1 0

1 2
0 1 2 1

0

mod

mod mod

.

.

....... modn n
n n

S x

S x R x xS x G x R x

S x R x xS x G x R x R x G x

S x x R x x R x xR x R x G x− −
− −

=

= + =⎡ ⎤⎣ ⎦
= + = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤= + + + +⎣ ⎦n

This is the signature left in MISR after n patterns are applied. Let us consider a n-bit response
compactor with m-bit error polynomial. Then the error polynomial is of (m+n-2) degree that

Version 2 EE IIT, Kharagpur 16

gives (2m+n-1-1) non-zero values. G(x) has 2n-1-1 nonzero multiples that result m polynomials of
degree <=m+n-2.

Probability of masking

1

1

2 1()
2 1
1

2

n

m n

m

P M
−

+ −

−
=

−

≈

3.7 Logic BIST Architecture

 Test-per-clock system
• More hardware, less test time.
• BILBO: Built in logic bloc observer

 Test-per-scan system.
• Less hardware, more test time.
• STUMPS: Self-Test using a MISR and Parallel Shift register.

 Circular self-test path
• Lowest hardware, lowest fault coverage.

3.7.1 Test-Per-Clock BIST

Two different test-per-clock BIST structures are shown in Figure 40.16. For every test clock,
LFSR generates a test vector and Signature Analyzer (MISR) compresses a response vector. In
every clock period some new set of faults is tested. This system requires more hardware. It takes
less test time. It can be used for exhaustive test, pseudo-exhaustive test, pseudorandom testing,
and weight pseudorandom testing.

LFSR LFSR

CUT CUT

MISR MISR

Shift Register

Fig. 40.16 Test-Per-Clock BIST structure

3.7.2 Built-in Logic Block Observer (BILBO)[1]

Built-in logic block observation is a well known approach for pipelined architecture. It adds
some extra hardware to the existing registers (D flip-flop, pattern generator, response
compacter, & scan chain) to make them multifunctional. All FFs are reset to 0. The circuit
diagram of a BILBO module is shown in Figure 40.17. The BILBO has two control signals (B1
and B2).

Version 2 EE IIT, Kharagpur 17

D1 D2 Dn-1 Dn B1

B2

S1 SOD
C

D
C

D
C D Q

C 0
1 Clock

MUX

Q1 Q2

Qn-1 Qn

Fig. 40.17 BILBO Example

Q Q Q

Four different modes of BILBO operation
(a) Scan-in-Scan-out: shift register
(b) Normal register mode: PIPO register
(c) Pattern generator mode: LFSR
(d) Response compactor mode: MISR

3.7.3 BILBO Usage for multi-CUT structure [1]

As shown in Figure 40.18, in this BILBO structure, multiple modules can be tested
simultaneously. The total operation is done in two phase as stated below.

(a) Example test configuration.

L
F
S
R

C
U
T
A

B
I
L
B
O
1

B
I
L
B
O
2

C
U
T
B

C
U
T
C

M
I
S
R

Fig. 40.18 Circuit configured with BILBO
Phase 1
In this mode of operation BILBO1 operates in MISR mode and BILBO2 operates in LFSR
mode. CUT A and CUT C are tested in parallel.

Phase 2
In this of operation BILBO1 operates in LFSR mode and BILBO2 operates in MISR mode. Only
CUT B is tested in this mode of operation.

3.7.4 Test-Per-Scan BIST

Instead of using LFSR and MISR for every input/output pins, this approach combine
LFSR/MISR with shift register to minimize the hardware overhead. Figure 40.19 shows the basic
circuit structure of a test-per-scan BIST. In BIST mode, LFSR generates test vectors and shifted
to the inputs of the CUT via scan register. At the same time, the response are scanned in and
compressed by the LFSR. Due to the use of scan chain for the delivery of test patterns and

Version 2 EE IIT, Kharagpur 18

responses, the test speed is much slower than the test-per-clock approach. The clocks required
for a test cycle is the maximal of the scan stages of input and output scan registers. Also fall in
this category include CEBS, LOCST, and STUMP.

LFSR

CUT

MISR

Scan Register SRI

Scan Register SRO

(a) Simple system

SO

SI
LFSR

CUT

MISR

Scan Register SRI

Scan Register SRO

(b) Alternative system

SO

SI

Fig. 40.19 Basic test-per-scan structure

3.7.5 Self-Testing Using MISR and Parallel Shift register
 sequence generator (STUMP)

 The architecture of the self-testing using MISR and parallel SRSG (STUMP) is shown in
Figure 40.20. Instead of using only one scan chain, it uses multiple scan chains to minimize the
test time. Since the scan chains may have different lengths, the LFSR runs for N cycles (the
length of the longest scan chain) to load all the chains. For such a design, the internal type LFSR
is preferred. If the external type is used, the difference between two LFSR output bits is only the
time shift. Hence, the correlation between two scan chains can be very high.

Pseudo-Random Test Pattern Generator

Input Phase Shifting Network

SR1 SR2 CUT CUT SR
n

SR
n-1

MISR

Fig. 40.20 STUMPS test-per-scan testing system

Test Procedure of STUMP

1. Scan in patterns from LFSR to all scan chain.
2. Switch to normal function mode and apply one clock.
3. Scan out chains into MISR.
4. Overlap steps 1 and 3.

Version 2 EE IIT, Kharagpur 19

4. BIST for Structured Circuits

Structured design techniques are the keys to the high integration of VLSI circuits. The structured
circuits include read only memories (ROM), random access memories (RAM), programmable
logic array (PLA), and many others. In this section, we would like to focus on PLAs because
they are tightly coupled with the logic circuits. While, memories are usually categorized as
different category. Due to the regularity of the structure and the simplicity of the design, PLAs
are commonly used in digital systems. PLAs are efficient and effective for the implementation of
arbitrary logic functions, combinational or sequential. Therefore, in this section, we would like to
discuss the BIST for PLAs.

 A PLA is conceptually a two level AND-OR structure realization of Boolean function. Figure
40.21 shows a general structure of a PLA. A PLA typically consists of three parts, input
decoders, the AND plane, the OR plane, and the output buffer. The input decoders are usually
implemented as single-bit decoders which produce the direct and the complement form of inputs.
The AND plane is used to generate all the product terms. The OR plane sum the required product
terms to form the output bits. In the physical implementation, they are implemented as NAND-
NAND or NOR-NOR structure.

AND Plane

First NOR Plane

Input Decoders
. . .

. . .
PLA Inputs

OR Plane

Second NOR Plane

Output Buffers
. . .

. . .
PLA Outputs

product
lines

.

.

Fig. 40.21 A general structure of a PLA.

As mentioned earlier in the fault model section, PLAs has the following faults, stuck-at faults,
bridging faults, and crosspoint faults. Test generation for PLAs is more difficult than that for the
conventional logic. This is because that PLAs have more complicated fault models. Further, a
typical PLA may have as many as 50 inputs, 67 inputs, and 190 product terms [10-11].
Functional testing of such PLAs can be a difficult task. PLAs often contain unintentional and
unidentifiable redundancy which might cause fault masking. Further more, PLAs are often
embedded in the logic which complicates the test application and response observation.
Therefore, many people proposed the use of BIST to handle the test of PLAs.

5. BIST Applications

Manufactures are increasingly employing BIST in real products. Examples of such applications
are given to illustrate the use of BIST in semiconductor, communications, and computer
industrial.

Version 2 EE IIT, Kharagpur 20

5.1 Exhaustive Test in the Intel 80386 [12]

Intel 80386 has BIST logic for the exhaustive test of three control PLAs and three control
ROMs. For PLAs, the exhaustive patterns are generated by LFSRs embedded in the input
registers. For ROMs, the patterns are generated by the microprogram counter which is part of the
normal logic. The largest PLA has 19 input bits. Hence, the test length is 512K clock cycles. The
test responses are compressed by MISRs at the outputs. The contents of MISRs are continuously
shifted out to an LFSR. At the end of testing, the contents of LFSRs are compared.

5.2 Pseudorandom Test in the IBM RISC/6000 [13]

 The RISC/6000 has extensive BIST structure to cover the entire system. In accord with
their tradition, RISC/6000 has full serial scan. Hence, the BIST it uses is the pseudorandom
testing in the form of STUMPS. For embedded RAMs, it performs self-test and delay testing. For
the BIST, it has a on chip processor (COP) on each chip. In COP, there are an LFSR for pattern
generation, a MISR for response compression, and a counter for address counting in RAM bist.
The COP counts for less than 3% of the chip area.

5.3 Embedded Cache Memories BIST of MC68060 [14]

MC68060 has two test approaches for embedded memories. First it has adhoc direct memory

access for manufacturing testing because it has the only memory approach that meets all the
design goals. The adhoc direct memory acess uses additional logic to make address, data in, data
out, and control line for each memory accessible through package pins. An additional set of
control signals selects which memory is activated. The approach makes each memory visible
through the chip pins as though it is a stand-alone memory array. For the burn-in test, it builds
the BIST hardware around the adhoc test logic. The two-scheme approach is used because it
meets the burn-in requirements with little additional logic.

5.4 ALU Based Programmable MISR of MC68HC11 [15]

Broseghini and Lenhert implemented an ALU-Based self-test system on a MC68HC11 Family
microcontroller. A fully programmable pseudorandom pattern generator and MISR are used to
reduce test length and aliasing probabilities. They added microcodes to configure ALU into a
LFSR or MISR. It transforms the adder into a LFSR by forcing the carry input to 0. With such a
feature, the hardware overhead is minimized. The overhead is only 25% as compare to the
implementation by dedicated hardware.

References

[1] M. L. Bushnell and V. D Agarwal, “Essentials of Electronic Testing” Kluwer academic

Publishers, Norwell, MA, 2000.
[2] H. Al-Asaad, B. T. Murray, and J. P. Hayes, “Online BIST for embedded systems” IEEE

Design & Test of Computers, Volume 15, Issue 4, Oct.-Dec. 1998 Page(s): 17 – 24
[3] M. Abramovici, M.A. Breuer, AND A.D. Friedman, “Digital Systems Testing and

Testable Design”, IEEE Press 1990.
[4] R. Zurawski, “Embedded Systems Handbook”, Taylor & Francis, 2005.

Version 2 EE IIT, Kharagpur 21

[5] C. V. Krishna, A. Jalas, and N. A. Tauba, “Test vector encoding using partial LFSR
reseeding”, in Proceeding of the International Test Conference, pp. 885-893, 2001.

[6] J. Rajski, J. Tyszer, and N. Zacharia, “Test data decompression for multiple scan designs
with boundary scan”, IEEE Transactions on Computers, 47, pp. 1188-1200, 1998.

[7] N. A. Tauba and E.J.MaCluskey, “Altering a pseudo-random bit sequence for scan
based”, in Proceedings of International Test Conference, 1996, pp. 167-175.

[8] S. Wang, “Low hardware overhead scan based 3-weight weighted random BIST”, in
Proceedings of International Test Conference, 2001, pp. 868-877.

[9] H. –J. Wunderlich and G.Kiefer, “Bit-flipping BIST”, in Proceedings of International
Conference on Computer-Aided Design, 1996, pp. 337-343.

[10] C.Y. Liu, K.K Saluja, and J.S. Ypadhyaya, “BIST-PLA: A Built-in Self-Test Design of
Large Programmable Logic Arrays,” Proc. 24th Design Automation Conf., June 1987, pp.
385-391.

[11] C.Y.Liu and K.K.Saluja, “Built -In Self-Test Techniques for Programmable logic
Arrays,” in VLSI Fault Modeling and Testing Techniques, G. W. Zobrist,ed., Ablex
Publishing, Norwood, N.J.,1993.

[12] P. Gelsinger, “Design and Test of the 80386,” IEEE Design & Test of Computers, Vol. 4,
No. 3, June 1987, pp.42-50.

[13] I.M. Ratiu and H.B. Bakouglu, “Pseudorandom Built-In Self-Test Methodology and
implementation for the IBM RISC System/6000 Processor,” IBM J. Research and
Development, Vol. 34. 1990, pp.78-84.

[14] A.L. Crouch, M. Pressly, J. Circello, “Testability Features of the MC68060
Microprocessor,” Proc. Int’l Test Conf., 1994, pp. 60-69.

[15] J. Broseghini and D.H. Lenhert, “An ALU-Based Programmable MISR/Pseudorandom
Generator for a MC68HC11 Family Self-Test,” Proc. Int’l Test Conf., 1993, pp. 349-358.

Problems

1. What is Built-In-Self-Test? Discuss the issues and benefits of BIST. Describe BIST
architecture and its operation.

2. Excluding the circuit under test, what are the four basic components of BIST and what
function does each component perform?

3. Which two BIST components are necessary for system-level testing and why?
4. What are the different techniques for test pattern generation?
5. Discuss exhaustive and pseudo-exhaustive pattern generation. Give an example to show

that pseudo-exhaustive testing requires less number of test pattern than exhaustive
testing.

6. What is pseudorandom pattern generation? What is an LFSR? Describe pattern
generation using LFSR.

7. Make a comparison of different test strategies based on fault coverage, hardware
overhead, test time overhead and design effort.

8. An LFSR based signature register compresses an n-bit input pattern into an m-bit
signature. Derive an expression for the probability of aliasing. Clearly state any
assumptions you make.

9. Design a weighted pseudo-random pattern generator with programmable weights 1/2, 1/4,
11/32 and 1/16.

10. Prove that the number of 1’s in an m-sequence differs from the number of 0’s by one.

Version 2 EE IIT, Kharagpur 22

11. Consider a LFSR based pattern generator where the feedback network is a single XOR
gate before the first stage. If the number of (feedback) inputs to the XOR is odd, is it
possible for the LFSR to generate maximal length sequence? Justify or contradict.

12. Show the schematic diagram of a 4-bit BILBO register.
13. A given data path has p number of n-bit registers. For having BIST capability, suppose

a% of the registers are converted to BILBO. Estimate the percentage overhead in the
registers in terms of extra hardware. All gates may be assumed to have unit cost in your
calculation.

14. It is said that by adding some extra hardware, a combinational circuit can be made
syndrome testable for single stuck-at faults. Illustrate the process for a circuit realizing
the Boolean function f = AB + B’C.

15. Define the following:
a) Compression
b) Compaction
c) Signature analysis
d) Aliasing or masking

16. Describe different response compaction techniques.
17. What are different types of LFSR? What is modular LFSR? What is characteristic

polynomial?
18. Implement a standard LFSR for the characteristic polynomial f(x) = x8+x7+x2+1.
19. Given the polynomial P(x)=x4+x2+x+1:

a. Design an external feedback LSFR with characteristic polynomial P(x).
b. Starting this LFSR in the all 1s state, determine the sequence produced.
c. Is this a maximal length LFSR?
d. Is the characteristic polynomial primitive?

20. Describe how LFSR is used in signature analysis for response compaction.
21. For an internal feedback Signature Analysis Register (SAR) with characteristic

polynomial P(x)=x6+x2+1:
a) Draw a logic diagram for the complete register.
b) Determine the resultant signature that would be obtained for the following serial

sequence of output responses produced by a known good CUT assuming the SAR
is initialized to the all 0s state. Give the binary value of the resultant signature as
it would be contained in the SAR in your logic diagram above.

101001010010 ← time
22. What is MISR? Give architecture of an m-stage MISR and derive its signature. What is

the masking probability of MISR?
23. Describe with example and diagram what are test-per-clock system and test-per-scan

system. What is the difference between them?
24. What is BILBO? Describe BILBO architecture and its operation?
25. Describe how BILBO is implemented in digital circuits?
26. Describe STUMPS testing system and its test procedure.
27. Give some examples of practical BIST application in industry.

Version 2 EE IIT, Kharagpur 23

	Testing of Embedded System
	Built-In-Self-Test (BIST) for Embedded Systems
	Instructional Objectives
	Built-In-Self-Test (BIST) for Embedded Systems
	Introduction
	Issues for BIST
	Benefits of BIST

	BIST Test Pattern Generation Techniques
	Stored patterns
	Exhaustive patterns
	Pseudo-exhaustive patterns
	Pseudo-Random Pattern Generation
	Pattern Generation by Counter
	Weighted Pseudo-random Pattern Generation
	Cellular Automata for Pattern Generation
	Comparison of Test Generation Strategies

	BIST Response Compression/Compaction Techniques
	Ones Count
	Transition Count
	Syndrome Testing
	LFSR Structure
	LFSR for Response Compaction: Signature Analysis
	Multiple-Input Signature Register (MISR)
	Logic BIST Architecture
	Test-Per-Clock BIST
	Built-in Logic Block Observer (BILBO)[1]
	Four different modes of BILBO operation

	BILBO Usage for multi-CUT structure [1]
	Test-Per-Scan BIST
	Self-Testing Using MISR and Parallel Shift register sequence generator (STUMP)

	BIST for Structured Circuits
	BIST Applications
	Exhaustive Test in the Intel 80386 [12]
	Pseudorandom Test in the IBM RISC/6000 [13]
	Embedded Cache Memories BIST of MC68060 [14]
	ALU Based Programmable MISR of MC68HC11 [15]

	References
	Problems

