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Convolutional codes

Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?
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Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G−1(D) such that G(D)G−1(D) = D l for some positive l .
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Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G−1(D) such that G(D)G−1(D) = D l for some positive l .

Then v(D)G−1(D) = u(D)G(D)G−1(D) = u(D)ID l = u(D)D l
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Convolutional codes

Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G−1(D) such that G(D)G−1(D) = D l for some positive l .

Then v(D)G−1(D) = u(D)G(D)G−1(D) = u(D)ID l = u(D)D l

For a rate R=1/n code, a feedforward inverse exists if and only if

GCD{g0(D), g1(D), · · · , gn−1(D)} = D l
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Convolutional codes

Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G−1(D) such that G(D)G−1(D) = D l for some positive l .

Then v(D)G−1(D) = u(D)G(D)G−1(D) = u(D)ID l = u(D)D l

For a rate R=1/n code, a feedforward inverse exists if and only if

GCD{g0(D), g1(D), · · · , gn−1(D)} = D l

For a rate k/n code, a feedforward inverse exists if and only if

GCD{Δi(D) = D l}

where {Δi(D)} is the set of all determinants of k × k submatrices.
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Convolutional codes

Let G(D) = [1 + D2 + D3 1 + D + D2 + D3].
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Convolutional codes

Let G(D) = [1 + D2 + D3 1 + D + D2 + D3].

GCD {1 + D2 + D3, 1 + D + D2 + D3} = 1. Hence feedforward
inverse exists.
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Let G(D) = [1 + D2 + D3 1 + D + D2 + D3].

GCD {1 + D2 + D3, 1 + D + D2 + D3} = 1. Hence feedforward
inverse exists.

In this case,

G−1(D) =

(
1 + D + D2

D + D2

)
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Convolutional codes

Let

G(D) =

(
1 + D D 1 + D

D 1 1

)
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Convolutional codes

Let

G(D) =

(
1 + D D 1 + D

D 1 1

)

2× 2 determinants are given by {1 + D + D2, 1 + D2, 1}
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Let

G(D) =

(
1 + D D 1 + D

D 1 1

)

2× 2 determinants are given by {1 + D + D2, 1 + D2, 1}

GCD {1 + D + D2, 1 + D2, 1} = 1
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Let

G(D) =

(
1 + D D 1 + D

D 1 1

)

2× 2 determinants are given by {1 + D + D2, 1 + D2, 1}

GCD {1 + D + D2, 1 + D2, 1} = 1

Hence, feedforward inverse exists and is given by

G−1(D) =

⎛
⎝ 0 0

1 1 + D

1 D

⎞
⎠
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Convolutional codes

Catastrophic encoders do not have a feedforward inverse.
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Catastrophic encoders do not have a feedforward inverse.

Example. Consider a convolutional encoder with
G(D) = [1 + D 1 + D2].
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Convolutional codes

Catastrophic encoders do not have a feedforward inverse.

Example. Consider a convolutional encoder with
G(D) = [1 + D 1 + D2].

GCD {1 + D, 1 + D2} = 1 + D.
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Catastrophic encoders do not have a feedforward inverse.

Example. Consider a convolutional encoder with
G(D) = [1 + D 1 + D2].

GCD {1 + D, 1 + D2} = 1 + D.

There doesn’t exist any feedforward inverse.
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Convolutional codes

Catastrophic encoders do not have a feedforward inverse.

Example. Consider a convolutional encoder with
G(D) = [1 + D 1 + D2].

GCD {1 + D, 1 + D2} = 1 + D.

There doesn’t exist any feedforward inverse.

Let u(D) = 1(1 + D) = 1 + D + D2 + · · · , then

v(D) = u(D)G(D) = 1/(1 + D)[1 + D 1 + D2] = [1 1 + D]
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Convolutional codes

Catastrophic encoders do not have a feedforward inverse.

Example. Consider a convolutional encoder with
G(D) = [1 + D 1 + D2].

GCD {1 + D, 1 + D2} = 1 + D.

There doesn’t exist any feedforward inverse.

Let u(D) = 1(1 + D) = 1 + D + D2 + · · · , then

v(D) = u(D)G(D) = 1/(1 + D)[1 + D 1 + D2] = [1 1 + D]

This is a catastrophic encoder since infinite input weight sequence
will result in finite weight output sequence.
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Convolutional codes

Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g0(D) g1(D)] satisfy

g0(D) + Dβg1(D) = Dα

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
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Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g0(D) g1(D)] satisfy

g0(D) + Dβg1(D) = Dα

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.

Solution: QLI encoders have a simple feedforward inverse

G−1(D) =

(
1
Dβ

)

hence are noncatastrophic
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Convolutional codes

Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g0(D) g1(D)] satisfy

g0(D) + Dβg1(D) = Dα

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.

Solution: QLI encoders have a simple feedforward inverse

G−1(D) =

(
1
Dβ

)

hence are noncatastrophic

Further, the information sequence u(D) can be recovered directly
from v(D) = [v0(D) v1(D)] using an encoder inverse with only two
taps.

v(D)G−1(D) = v0(D) + Dβv1(D) = Dαu(D)
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Problem # 3: An important distance measure for convolutional
codes is the column distance function. Let

[v]l = (v
(0)
0 v

(1)
0 · · · v

(n−1)
1 , v

(0)
1 v

(1)
1 · · · v

(n−1)
1 , · · · , v

(0)
l

v
(1)
l

· · · v
(n−1)
l

)

denote the lth truncation of the codeword v and let

[u]l = (u
(0)
0 u

(1)
0 · · · u

(n−1)
1 , u

(0)
1 u

(1)
1 · · · u

(n−1)
1 , · · · , u

(0)
l

u
(1)
l

· · · u
(n−1)
l

)

denote the lth truncation of the information sequence u. The
column distance function of order l, dl is defined as

dl = min
[u′]l ,[u

′′ ]l

{d([v′]l , [v
′′

]l ) : [u
′]0 �= [u

′′

]0}

= min
[u]j

{w [v]l : [u]0 �= 0}

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

lim
l→∞

dl = dfree
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Convolutional codes

Solution: By definition, dfree is the minimum weight path that has
diverged from and remerged with the all-zero state.
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Solution: By definition, dfree is the minimum weight path that has
diverged from and remerged with the all-zero state.

Assume that [v]j represents the shortest remerged path through the
state diagram with weight dfree .
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Solution: By definition, dfree is the minimum weight path that has
diverged from and remerged with the all-zero state.

Assume that [v]j represents the shortest remerged path through the
state diagram with weight dfree .

Let [dl ]re be the minimum weight of all remerged paths of length l,
it follows that [dl ]re = dfree for all l ≥ j .
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Solution: By definition, dfree is the minimum weight path that has
diverged from and remerged with the all-zero state.

Assume that [v]j represents the shortest remerged path through the
state diagram with weight dfree .

Let [dl ]re be the minimum weight of all remerged paths of length l,
it follows that [dl ]re = dfree for all l ≥ j .

Also, for a noncatastrophic encoder, any path that remains
unmerged must accumulate weight.
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Solution: By definition, dfree is the minimum weight path that has
diverged from and remerged with the all-zero state.

Assume that [v]j represents the shortest remerged path through the
state diagram with weight dfree .

Let [dl ]re be the minimum weight of all remerged paths of length l,
it follows that [dl ]re = dfree for all l ≥ j .

Also, for a noncatastrophic encoder, any path that remains
unmerged must accumulate weight.

Let [dl ]un be the minimum weight of all unmerged paths of length l,
it follows that

lim
l→∞

[dl ]un → ∞
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Solution: By definition, dfree is the minimum weight path that has
diverged from and remerged with the all-zero state.

Assume that [v]j represents the shortest remerged path through the
state diagram with weight dfree .

Let [dl ]re be the minimum weight of all remerged paths of length l,
it follows that [dl ]re = dfree for all l ≥ j .

Also, for a noncatastrophic encoder, any path that remains
unmerged must accumulate weight.

Let [dl ]un be the minimum weight of all unmerged paths of length l,
it follows that

lim
l→∞

[dl ]un → ∞

Therefore

lim
l→∞

= min

{
lim
l→∞

[dl ]re, lim
l→∞

[dl ]un

}
= dfree
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