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Bounds on the size of a code

The basic problem is to find the largest code of a given length, n
and minimum distance, d .
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Bounds on the size of a code

The basic problem is to find the largest code of a given length, n
and minimum distance, d .

Let A(n, d) be the maximum number of codewords in any binary
code of length n and minimum distance d between the codewords.
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Bounds on the size of a code

The basic problem is to find the largest code of a given length, n
and minimum distance, d .

Let A(n, d) be the maximum number of codewords in any binary
code of length n and minimum distance d between the codewords.

We are interested in finding the maximum number of binary
codewords A(n, d) from the n-dimensional vector space.
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Bounds on the size of a code

The basic problem is to find the largest code of a given length, n
and minimum distance, d .

Let A(n, d) be the maximum number of codewords in any binary
code of length n and minimum distance d between the codewords.

We are interested in finding the maximum number of binary
codewords A(n, d) from the n-dimensional vector space.

In other words, we are interested in finding the minimum parity bits
(n − k) required for a t−correcting binary code of length n.
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Hamming Bound

For any binary (n, k) linear code with minimum distance 2t + 1 or
greater, the number of parity-check bits satisfies the following
inequality:

n − k ≥ log2

[
1 +

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

t

)]

Proof:
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Hamming Bound

For any binary (n, k) linear code with minimum distance 2t + 1 or
greater, the number of parity-check bits satisfies the following
inequality:

n − k ≥ log2

[
1 +
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1

)
+
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n

2

)
+ · · ·+

(
n

t

)]

Proof:

Recall that all the vectors of weight t or less can be used as coset
leaders.
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Hamming Bound

For any binary (n, k) linear code with minimum distance 2t + 1 or
greater, the number of parity-check bits satisfies the following
inequality:

n − k ≥ log2

[
1 +

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

t

)]

Proof:

Recall that all the vectors of weight t or less can be used as coset
leaders.

Number of vectors (n-tuple) of weight t or less are:

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

t

)
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Hamming Bound

Total number of coset leaders are 2n−k .
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Hamming Bound

Total number of coset leaders are 2n−k .

Therefore, we have

2n−k ≥

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

t

)
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Hamming Bound

Total number of coset leaders are 2n−k .

Therefore, we have

2n−k ≥

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

t

)

Taking logarithm on both sides of the inequality, we get

n− k ≥ log2

[
1 +

(
n

1

)
+ · · ·+

(
n

t

)]

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Perfect code

A t−error correcting (n, k) block code is called a perfect code, if its
standard array has all the error patterns of t or fewer errors and no
other error pattern as their coset leaders.
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Perfect code

A t−error correcting (n, k) block code is called a perfect code, if its
standard array has all the error patterns of t or fewer errors and no
other error pattern as their coset leaders.

Perfect code satisfies the Hamming bound with equality.
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Perfect code

A t−error correcting (n, k) block code is called a perfect code, if its
standard array has all the error patterns of t or fewer errors and no
other error pattern as their coset leaders.

Perfect code satisfies the Hamming bound with equality.

Examples of perfect codes: single error correcting Hamming code,
triple error correcting (23,12) Golay code.
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Perfect code

A t−error correcting (n, k) block code is called a perfect code, if its
standard array has all the error patterns of t or fewer errors and no
other error pattern as their coset leaders.

Perfect code satisfies the Hamming bound with equality.

Examples of perfect codes: single error correcting Hamming code,
triple error correcting (23,12) Golay code.

Note perfect codes are not the best error correcting codes.
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Singleton Bound

The minimum distance dmin of an (n, k) linear code satisfies the
following inequality

dmin ≤ n − k + 1

Proof:
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Singleton Bound

The minimum distance dmin of an (n, k) linear code satisfies the
following inequality

dmin ≤ n − k + 1

Proof:

For an (n, k) code that an (n − k)× n parity check matrix, H, the
row rank of any H is (n-k).
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Singleton Bound

The minimum distance dmin of an (n, k) linear code satisfies the
following inequality

dmin ≤ n − k + 1

Proof:

For an (n, k) code that an (n − k)× n parity check matrix, H, the
row rank of any H is (n-k).

Hence, the column rank of any H is (n-k). Any combinations of
(n-k+1) columns of H must be linearly dependent.
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Singleton Bound

The minimum distance dmin of an (n, k) linear code satisfies the
following inequality

dmin ≤ n − k + 1

Proof:

For an (n, k) code that an (n − k)× n parity check matrix, H, the
row rank of any H is (n-k).

Hence, the column rank of any H is (n-k). Any combinations of
(n-k+1) columns of H must be linearly dependent.

Recall, that the minimum distance of a code is equal to the
minimum number of nonzero columns in H that are linearly
dependent.
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Singleton Bound

The minimum distance dmin of an (n, k) linear code satisfies the
following inequality

dmin ≤ n − k + 1

Proof:

For an (n, k) code that an (n − k)× n parity check matrix, H, the
row rank of any H is (n-k).

Hence, the column rank of any H is (n-k). Any combinations of
(n-k+1) columns of H must be linearly dependent.

Recall, that the minimum distance of a code is equal to the
minimum number of nonzero columns in H that are linearly
dependent.

Hence,
dmin ≤ n − k + 1
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Singleton Bound

Another proof:

Any nonzero codeword with only one information weight can atmost
have n − k + 1 codeword weight.
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Singleton Bound

Another proof:

Any nonzero codeword with only one information weight can atmost
have n − k + 1 codeword weight.

Since, minimum distance of a code is equal to the minimum weight
of a nonzero codeword.

dmin ≤ n − k + 1
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Maximum Distance Separable (MDS) Codes

MDS codes satisfies the Singleton bound with equality, i.e.

n − k = d − 1
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Maximum Distance Separable (MDS) Codes

MDS codes satisfies the Singleton bound with equality, i.e.

n − k = d − 1

MDS code has the maximum possible distance between the
codewords.
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Maximum Distance Separable (MDS) Codes

MDS codes satisfies the Singleton bound with equality, i.e.

n − k = d − 1

MDS code has the maximum possible distance between the
codewords.

Example: Repetition codes, Single parity check codes,
Reed-Solomon codes.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Plotkin Bound

The minimum distance dmin of an (n, k) linear code satisfies the
following inequality

dmin ≤
n · 2k−1

2k − 1

Proof:
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Plotkin Bound

The minimum distance dmin of an (n, k) linear code satisfies the
following inequality

dmin ≤
n · 2k−1

2k − 1

Proof:

Consider an (n, k) linear code C with generator matrix G. Arrange
the 2k codewords of C as a 2k × n array.
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Plotkin Bound

The minimum distance dmin of an (n, k) linear code satisfies the
following inequality

dmin ≤
n · 2k−1

2k − 1

Proof:

Consider an (n, k) linear code C with generator matrix G. Arrange
the 2k codewords of C as a 2k × n array.

Each column of this array has 2k−1 zeros and 2k−1 ones.
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Plotkin Bound

The minimum distance dmin of an (n, k) linear code satisfies the
following inequality

dmin ≤
n · 2k−1

2k − 1

Proof:

Consider an (n, k) linear code C with generator matrix G. Arrange
the 2k codewords of C as a 2k × n array.

Each column of this array has 2k−1 zeros and 2k−1 ones.

Show that the number of codewords that “1” at the l-th position is

same as number of codewords that have “0” at the l-th position.
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Plotkin Bound

Proof (contd.):

In the code array, each column contains at least one nonzero entry.
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Plotkin Bound

Proof (contd.):

In the code array, each column contains at least one nonzero entry.

Consider the l−th column of the code array. Let S0 be the
codewords with a “0” at the l−th position and S1 be the codewords
with a “1” at the l−th position. Let x be a codeword from S1.
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Plotkin Bound

Proof (contd.):

In the code array, each column contains at least one nonzero entry.

Consider the l−th column of the code array. Let S0 be the
codewords with a “0” at the l−th position and S1 be the codewords
with a “1” at the l−th position. Let x be a codeword from S1.

Adding x to each vector in S0, we obtain a set S ′

1 of codewords with
a “1” at the l−th position.

|S ′

1| = |S0| and S
′

1 ⊆ S1
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Plotkin Bound

Proof (contd.):

In the code array, each column contains at least one nonzero entry.

Consider the l−th column of the code array. Let S0 be the
codewords with a “0” at the l−th position and S1 be the codewords
with a “1” at the l−th position. Let x be a codeword from S1.

Adding x to each vector in S0, we obtain a set S ′

1 of codewords with
a “1” at the l−th position.

|S ′

1| = |S0| and S
′

1 ⊆ S1

The above condition implies that

|S0| ≤ |S1| (1)
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Plotkin Bound

Proof (contd.):

Adding x to each vector in S1, we obtain a set S ′

0 of codewords with
a “0” at the l−th position.

|S ′

0| = |S1| and S
′

0 ⊆ S0
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Plotkin Bound

Proof (contd.):

Adding x to each vector in S1, we obtain a set S ′

0 of codewords with
a “0” at the l−th position.

|S ′

0| = |S1| and S
′

0 ⊆ S0

- The above condition implies that

|S1| ≤ |S0| (2)

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Plotkin Bound

Proof (contd.):

Adding x to each vector in S1, we obtain a set S ′

0 of codewords with
a “0” at the l−th position.

|S ′

0| = |S1| and S
′

0 ⊆ S0

- The above condition implies that

|S1| ≤ |S0| (2)

From (1) and (2), we get |S0| = |S1|. Therefore l−th column
contains 2k−1 zeros and 2k−1 ones.
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Plotkin Bound

Proof (contd.):

Adding x to each vector in S1, we obtain a set S ′

0 of codewords with
a “0” at the l−th position.

|S ′

0| = |S1| and S
′

0 ⊆ S0

- The above condition implies that

|S1| ≤ |S0| (2)

From (1) and (2), we get |S0| = |S1|. Therefore l−th column
contains 2k−1 zeros and 2k−1 ones.

Thus the total number of ones in the array is n · 2k−1.
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Plotkin Bound

Each nonzero codeword has weight atleast dmin. Hence,

(2k − 1) · dmin ≤ n · 2k−1
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Plotkin Bound

Each nonzero codeword has weight atleast dmin. Hence,

(2k − 1) · dmin ≤ n · 2k−1

This implies that

dmin ≤
n · 2k−1

2k − 1
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Gilbert-Varshamov Bound

There exists an (n, k) linear code with a minimum distance of at
least d that satisfies the following inequality

1 +

(
n − 1
1

)
+ · · ·+

(
n − 1
d − 2

)
< 2n−k

Proof:
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Gilbert-Varshamov Bound

There exists an (n, k) linear code with a minimum distance of at
least d that satisfies the following inequality

1 +

(
n − 1
1

)
+ · · ·+

(
n − 1
d − 2

)
< 2n−k

Proof:

We shall construct an n − k × n parity check matrix, H with the
property that no d − 1 columns are linearly dependent.
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Gilbert-Varshamov Bound

There exists an (n, k) linear code with a minimum distance of at
least d that satisfies the following inequality

1 +

(
n − 1
1

)
+ · · ·+

(
n − 1
d − 2

)
< 2n−k

Proof:

We shall construct an n − k × n parity check matrix, H with the
property that no d − 1 columns are linearly dependent.

Recall, that this will ensure a minimum distance of d .
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Gilbert-Varshamov Bound

There exists an (n, k) linear code with a minimum distance of at
least d that satisfies the following inequality

1 +

(
n − 1
1

)
+ · · ·+

(
n − 1
d − 2

)
< 2n−k

Proof:

We shall construct an n − k × n parity check matrix, H with the
property that no d − 1 columns are linearly dependent.

Recall, that this will ensure a minimum distance of d .

The first column could be any nonzero n − k-tuple.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Gilbert-Varshamov Bound

There exists an (n, k) linear code with a minimum distance of at
least d that satisfies the following inequality

1 +

(
n − 1
1

)
+ · · ·+

(
n − 1
d − 2

)
< 2n−k

Proof:

We shall construct an n − k × n parity check matrix, H with the
property that no d − 1 columns are linearly dependent.

Recall, that this will ensure a minimum distance of d .

The first column could be any nonzero n − k-tuple.

Suppose we have chosen i columns so that no d − 1 columns are
linearly dependent.
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Gilbert-Varshamov Bound

Maximum number of distinct linear combinations of these i columns
taken d − 2 or fewer at a time is given by Ni

Ni =

(
i

1

)
+ · · ·+

(
i

d − 2

)
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Gilbert-Varshamov Bound

Maximum number of distinct linear combinations of these i columns
taken d − 2 or fewer at a time is given by Ni

Ni =

(
i

1

)
+ · · ·+

(
i

d − 2

)

If this number, Ni is less than all possible nonzero n − k-tuple, i.e.
2n−k − 1, we can add another column different from these linear
combinations, and keep the property that any d − 1 columns of the
new (n − k)× (i + 1) array are linearly independent.
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Gilbert-Varshamov Bound

Maximum number of distinct linear combinations of these i columns
taken d − 2 or fewer at a time is given by Ni

Ni =

(
i

1

)
+ · · ·+

(
i

d − 2

)

If this number, Ni is less than all possible nonzero n − k-tuple, i.e.
2n−k − 1, we can add another column different from these linear
combinations, and keep the property that any d − 1 columns of the
new (n − k)× (i + 1) array are linearly independent.

We continue doing this as long as as the following condition is
satisfied. (

i

1

)
+ · · ·+

(
i

d − 2

)
< 2n−k − 1
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Gilbert-Varshamov Bound

Maximum number of distinct linear combinations of these i columns
taken d − 2 or fewer at a time is given by Ni

Ni =

(
i

1

)
+ · · ·+

(
i

d − 2

)

If this number, Ni is less than all possible nonzero n − k-tuple, i.e.
2n−k − 1, we can add another column different from these linear
combinations, and keep the property that any d − 1 columns of the
new (n − k)× (i + 1) array are linearly independent.

We continue doing this as long as as the following condition is
satisfied. (

i

1

)
+ · · ·+

(
i

d − 2

)
< 2n−k − 1

The above condition should hold for all n columns of the parity
check matrix, H.
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