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BCJR Algorithm

Outline of the lecture

BCJR algorithm for convolutional codes
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BCJR Algorithm

To minimize the bit error rate (BER), the a-posteriori probability
P(ûl = ul |r) that an information bit ul is correctly decoded must be
maximized.
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P(ûl = ul |r) that an information bit ul is correctly decoded must be
maximized.
An algorithm that maximizes P(ûl = ul |r) is called maximum
a-posteriori probability (MAP) decoder.
In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algorithm.
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BCJR Algorithm

To minimize the bit error rate (BER), the a-posteriori probability
P(ûl = ul |r) that an information bit ul is correctly decoded must be
maximized.
An algorithm that maximizes P(ûl = ul |r) is called maximum
a-posteriori probability (MAP) decoder.
In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algorithm.
The BCJR algorithm computes the a-posteriori L-values (APP
L-value) of each information bit.

L(ul ) = ln

[
P(ul = +1|r)
P(ul = −1|r)

]
(1)
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BCJR Algorithm

To minimize the bit error rate (BER), the a-posteriori probability
P(ûl = ul |r) that an information bit ul is correctly decoded must be
maximized.
An algorithm that maximizes P(ûl = ul |r) is called maximum
a-posteriori probability (MAP) decoder.
In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algorithm.
The BCJR algorithm computes the a-posteriori L-values (APP
L-value) of each information bit.

L(ul ) = ln

[
P(ul = +1|r)
P(ul = −1|r)

]
(1)

The decoder output is given by

ûl =

{
+1 if L(ul ) > 0
−1 if L(ul ) < 0

, l = 0, 1, · · · , k − 1. (2)
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BCJR Algorithm

The APP value P(ul = +1|r) as follows:

P(ul = +1|r) = p(ul = +1, r)

P(r)
=

∑
u∈U+

l

p(r|v)P(u)∑
u p(r|v)P(u)

, (3)

where
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BCJR Algorithm

The APP value P(ul = +1|r) as follows:

P(ul = +1|r) = p(ul = +1, r)

P(r)
=

∑
u∈U+

l

p(r|v)P(u)∑
u p(r|v)P(u)

, (3)

where

U+
l
is the set of all information sequences u such that ul = +1,

v is the transmitted codeword corresponding to the information
sequence u, and
p(r|v) is the pdf of the received sequence r given v .
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BCJR Algorithm

The expression in equation (1) for the APP L-value becomes

L(ul) = ln

[∑
u∈U+

l

p(r|v)P(u)∑
u∈U

−

l

p(r|v)P(u)

]
, (4)

where U−
l

is the set of all information sequences u such that
ul = −1.
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BCJR Algorithm

The expression in equation (1) for the APP L-value becomes

L(ul) = ln

[∑
u∈U+

l

p(r|v)P(u)∑
u∈U

−

l

p(r|v)P(u)

]
, (4)

where U−
l

is the set of all information sequences u such that
ul = −1.

For short constraint length convolutional codes equation (4) can be
simplified by employing a recursive computational procedure based
on the trellis structure of the code.
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BCJR Algorithm

Equation (3) can be re-written as

P(ul = +1|r) = p(ul = +1, r)

P(r)
=

∑
(s′,s)∈Σ+

l

p(sl = s ′, sl+1 = s, r)

P(r)
,

(5)
where Σ+

l
is the set of all state pairs sl = s ′ and sl+1 = s that

correspond to the input bit ul = +1 at time l .
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BCJR Algorithm

Equation (3) can be re-written as

P(ul = +1|r) = p(ul = +1, r)

P(r)
=

∑
(s′,s)∈Σ+

l

p(sl = s ′, sl+1 = s, r)

P(r)
,

(5)
where Σ+

l
is the set of all state pairs sl = s ′ and sl+1 = s that

correspond to the input bit ul = +1 at time l .

Similarly, equation (4) can be written as

L(ul) = ln

{∑
(s′,s)∈Σ+

l

p(sl = s ′, sl+1 = s, r)∑
(s′,s)∈Σ−

l

p(sl = s ′, sl+1 = s, r)

}
, (6)

where Σ−
l
is the set of all state pairs sl = s ′ and sl+1 = s that

correspond to the input bit ul = −1 at time l .
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BCJR Algorithm

The joint pdf’s p(s ′, s, r) in equation (6) can be evaluated recursively

p(s ′, s, r) = p(s ′, s, rt<l , rl , rt>l )

= p(rt>l |s ′, s, rt<l , rl)p(s
′, s, rt<l , rl)

= p(rt>l |s ′, s, rt<l , rl)p(s, rl |s ′, rt<l)p(s
′, rt<l )

= p(rt>l |s)p(s, rl |s ′)p(s ′, rt<l), (7)

where rt<l represents the portion of the received sequence r before
time l and rt>l represents the portion of the received sequence r

after time l .
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BCJR Algorithm

Defining
αl (s

′) ≡ p(s ′, rt<l) (8)

γl (s
′, s) ≡ p(s, rl |s ′) (9)

βl+1(s) ≡ p(rt>l |s), (10)
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BCJR Algorithm

Defining
αl (s

′) ≡ p(s ′, rt<l) (8)

γl (s
′, s) ≡ p(s, rl |s ′) (9)

βl+1(s) ≡ p(rt>l |s), (10)

Equation (7) can be written as

p(s ′, s, r) = βl+1(s)γl (s
′, s)αl (s

′). (11)
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The expression for the probability αl+1(s) can now be rewritten as

αl+1(s) = p(s, rt<l+1) =
∑
s′∈σl

p(s ′, s, rt<l+1)

=
∑
s′∈σl

p(s, rl |s ′, rt<l )p(s
′, rt<l )

=
∑
s′∈σl

p(s, rl |s ′)p(s ′, rt<l)

=
∑
s′∈σl

γl(s
′, s)αl (s

′), (12)

where σl is the set of all states at time l .

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



BCJR Algorithm

Similarly expression or the probability βl(s
′) can be written as

βl(s
′) ≡ p(rt>(l−1)|s ′) (13)

=
∑

s∈σl+1

p(rt>(l−1), s|s ′)

=
∑

s∈σl+1

p(rt>l , rl , s|s ′)

=
∑

s∈σl+1

p(rt>l |s ′, s, rl)p(s, rl |s ′)

=
∑

s∈σl+1

p(rt>l |s)p(s, rl |s ′)

=
∑

s∈σl+1

βl+1(s)γl (s
′, s)

where σl+1 is the set of all states at time l + 1.
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BCJR Algorithm

The branch metric γl(s
′, s) can be written as

γl (s
′, s) = p(s, rl |s ′) = p(s ′, s, rl)

P(s ′)
(14)

=

[
P(s ′, s)

P(s ′)

] [
p(s ′, s, rl)

P(s ′, s)

]
= P(s|s ′)p(rl |s ′, s) = P(ul)p(rl |vl),

where ul is the input bit and vl the output bits corresponding to the
state transition s ′ → s at time l .
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BCJR Algorithm

For a continuous output AWGN channel, if s ′ → s is a valid state
transition,

γl (s
′, s) = P(ul)p(rl |vl) = P(ul)

(√
Es

πN0

)n

e
− Es

N0
||rl−vl ||

2

, (15)

where ||rl − vl ||2 is the squared Euclidean distance between the
(normalized by

√
E s) received branch rl and the transmitted branch

vl at time l .
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BCJR Algorithm

For a continuous output AWGN channel, if s ′ → s is a valid state
transition,

γl (s
′, s) = P(ul)p(rl |vl) = P(ul)

(√
Es

πN0

)n

e
− Es

N0
||rl−vl ||

2

, (15)

where ||rl − vl ||2 is the squared Euclidean distance between the
(normalized by

√
E s) received branch rl and the transmitted branch

vl at time l .

On the other hand, if s ′ → s is not a valid state transition, P(s|s ′)
and γl(s

′, s) are both zero.
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BCJR Algorithm

Initial conditions for recursion

Forward recursion:

α0(s) =

{
1, s = 0

0, s �= 0
, (16)
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BCJR Algorithm

Initial conditions for recursion

Forward recursion:

α0(s) =

{
1, s = 0

0, s �= 0
, (16)

Backward recursion:

βK (s) =

{
1, s = 0

0, s �= 0
, (17)
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BCJR Algorithm

Step 1 : Initialize the forward and backward metrics α0(s) and βK (s) using
equation (16) and (17).

Step 2 : Compute the branch metrics γl(s
′, s), l = 0, 1, · · · ,K − 1, using

equation (14).

Step 3 : Compute the forward metrics αl+1(s), l = 0, 1, · · · ,K − 1, using
equation (12).

Step 4 : Compute the backward metrics βl(s
′), l = K − 1,K − 2, · · · , 0,

using equation (13).

Step 5 : Compute the APP L-values L(ul), using equations (6) and (11).

Step 6 : Compute the hard decisions ûl using equation (2).
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BCJR Algorithm
Example:

Consider the (2, 1, 1) systematic recursive convolutional code with
generator matrix

G(D) = [1 1/(1 + D)]

We assume an AWGN channel with SNR of
Es/N0 = 1/4 (−6.02dB). The received vector (normalized by

√
Es)

is given by

r = (r0, r1, r2, r3) = (r
(0)
0 , r

(1)
0 ; r

(0)
1 , r

(1)
1 ; r

(0)
2 , r

(1)
2 ; r

(0)
3 , r

(1)
3 )

= (+0.8,+0.1;+1.0,−0.5;−1.8,+1.1;+1.6,−1.6).
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BCJR Algorithm

v(0)

(1)v

u

S0 S0 S0 S0S0

S1 S1 S1

=(+0.8,+0.1r +1.0,−0.5 −1.8,+1.1 +1.6,−1.6)

+1
/+
1,
+1

+1
/+
1,
+1

+1
/+
1,
+1

−1/−1,−1 −1/−1,−1 −1/−1,−1 −1/−1,−1

+1/+1,−1

+1/+1,−1

+1/+1,−1

−1/−1,+1 −1/−1,+1
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BCJR Algorithm

Step 1 : Initialize the forward and backward metrics α0(s) and βK (s) using
equation (16) and (17).

Initial conditions for recursion

Forward recursion:

α0(s) =

{
1, s = 0

0, s �= 0
,

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



BCJR Algorithm

Step 1 : Initialize the forward and backward metrics α0(s) and βK (s) using
equation (16) and (17).

Initial conditions for recursion

Forward recursion:

α0(s) =

{
1, s = 0

0, s �= 0
,

Backward recursion:

βK (s) =

{
1, s = 0

0, s �= 0
,
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BCJR Algorithm: Example

Step 2 : Compute the branch metrics γl(s
′, s), l = 0, 1, · · · ,K − 1, using

equation (14).

γ0(S0, S0) = e−0.45 = 0.6376

γ0(S0, S1) = e0.45 = 1.5683

γ1(S0, S0) = e−0.25 = 0.7788

γ1(S0, S1) = e0.25 = 1.2840

γ1(S1, S1) = e−0.75 = 0.4724

γ1(S1, S0) = e0.75 = 2.1170

γ2(S0, S0) = e0.35 = 1.4191

γ2(S0, S1) = e−0.35 = 0.7047

γ2(S1, S1) = e1.45 = 4.2631

γ2(S1, S0) = e−1.45 = 0.2346

γ3(S0, S0) = e0 = 1.0

γ3(S1, S0) = e1.6 = 4.9530
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BCJR Algorithm: Forward Recursion

v(0)

(1)v

u

S0 S0 S0 S0S0

S1 S1 S1

=(+0.8,+0.1r +1.0,−0.5 −1.8,+1.1 +1.6,−1.6)

+1
/+
1,
+1

+1
/+
1,
+1

+1
/+
1,
+1

−1/−1,−1 −1/−1,−1 −1/−1,−1 −1/−1,−1

+1/+1,−1

+1/+1,−1

+1/+1,−1

−1/−1,+1 −1/−1,+1
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BCJR Algorithm: Forward Recursion

Step 3 : Compute the forward metrics αl+1(s), l = 0, 1, · · · ,K − 1, using
equation (12).

α1(S0) = α0(S0)γ0(S0, S0) = 0.6376 (0.2890)

α1(S1) = α0(S0)γ0(S0, S1) = 1.5683 (0.7110)

α2(S0) = α1(S0)γ1(S0, S0) + α1(S1)γ1(S1, S0) = 3.8167 (0.7099)

α2(S1) = α1(S0)γ1(S0, S1) + α1(S1)γ1(S1, S1) = 1.5595 (0.2901)

α3(S0) = α2(S0)γ2(S0, S0) + α2(S1)γ2(S1, S0) = 5.7821 (0.3824)

α3(S1) = α2(S0)γ2(S0, S1) + α2(S1)γ2(S1, S1) = 9.3379 (0.6176)
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BCJR Algorithm: Backward Recursion

v(0)

(1)v

u

S0 S0 S0 S0S0

S1 S1 S1

=(+0.8,+0.1r +1.0,−0.5 −1.8,+1.1 +1.6,−1.6)

+1
/+
1,
+1

+1
/+
1,
+1

+1
/+
1,
+1

−1/−1,−1 −1/−1,−1 −1/−1,−1 −1/−1,−1

+1/+1,−1

+1/+1,−1

+1/+1,−1

−1/−1,+1 −1/−1,+1
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BCJR Algorithm: Backward Recursion

Step 4 : Compute the backward metrics βl(s
′), l = K − 1,K − 2, · · · , 0,

using equation (13).

β3(S0) = β4(S0)γ3(S0, S0) = 1.0 (0.1680)

β3(S1) = β4(S0)γ3(S1, S0) = 4.9530 (0.8320)

β2(S0) = β3(S0)γ2(S0, S0) + β3(S1)γ2(S0, S1) = 4.9095 (0.1870)

β2(S1) = β3(S0)γ2(S1, S0) + β3(S1)γ2(S1, S1) = 21.3497 (0.8130)

β1(S0) = β2(S0)γ1(S0, S0) + β2(S1)γ1(S0, S1) = 31.2365 (0.6040)

β1(S1) = β2(S0)γ1(S1, S0) + β2(S1)γ1(S1, S1) = 20.4790 (0.3960)
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BCJR Algorithm: APP values

v(0)

(1)v

u

S0 S0 S0 S0S0

S1 S1 S1

=(+0.8,+0.1r +1.0,−0.5 −1.8,+1.1 +1.6,−1.6)

+1
/+
1,
+1

+1
/+
1,
+1

+1
/+
1,
+1

−1/−1,−1 −1/−1,−1 −1/−1,−1 −1/−1,−1

+1/+1,−1

+1/+1,−1

+1/+1,−1

−1/−1,+1 −1/−1,+1
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BCJR Algorithm: APP values

Step 5 : Compute the APP L-values L(ul), using equations (6) and (11).

L(u0) = ln

{
α0(S0)γ0(S0, S1)β1(S1)

α0(S0)γ0(S0, S0)β1(S0)

}
= 0.4778

L(u1) = ln

{
α1(S0)γ1(S0, S1)β2(S1) + α1(S1)γ1(S1, S0)β2(S0)

α1(S0)γ1(S0, S0)β2(S0) + α1(S1)γ1(S1, S1)β2(S1)

}
= 0.6154

L(u2) = ln

{
α2(S0)γ2(S0, S1)β3(S1) + α2(S1)γ2(S1, S0)β3(S0)

α2(S0)γ2(S0, S0)β3(S0) + α2(S1)γ2(S1, S1)β3(S1)

}
= −1.0301

Step 6 : Compute the hard decisions ûl using equation (2).

û = (+1,+1,−1)
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