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Introduction

Shannon’s noisy channel coding theorem implies that arbitrarily low
decoding error probabilities can be achieved at any transmission rate
R less than the channel capacity C by using long block lengths.
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properties for a code.
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Introduction

Shannon’s noisy channel coding theorem implies that arbitrarily low
decoding error probabilities can be achieved at any transmission rate
R less than the channel capacity C by using long block lengths.

Shannon proved that the average performance of a randomly chosen
ensemble of codes results in an exponentially decreasing decoding
error probability with increasing block length.

Typically, the code designs contain a large amount of structure, since
it can be used to guarantee good minimum distance properties for
the code as well as it is easier to decode a highly structured code.

However, structure does not always result in the best distance
properties for a code.

Turbo codes have random-like code design with just enough
structure to allow for an efficient iterative decoding method.
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Turbo Codes

Encoder structure consists of

Recursive systematic convolutional encoder as constituent encoders
in a parallel concatenation scheme.
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Turbo Codes

Encoder structure consists of

Recursive systematic convolutional encoder as constituent encoders
in a parallel concatenation scheme.

An interleaver denoted by π1.
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Turbo Codes

Encoder structure consists of

Recursive systematic convolutional encoder as constituent encoders
in a parallel concatenation scheme.

An interleaver denoted by π1.

Example of rate R=1/3 turbo code shown in next slide.
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BER performance of rate R=1/3, turbo code with input information
blocklength of 65536 bits.
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Turbo Codes

The best performance at moderate BER’s down to about 10−5 is
achieved with short constraint length constituent encoders, typically
ν = 4 or less.
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Turbo Codes

The best performance at moderate BER’s down to about 10−5 is
achieved with short constraint length constituent encoders, typically
ν = 4 or less.

If the constituent encoders of a turbo code are same, it is known as
a symmetric turbo code, otherwise, it is an asymmetric turbo code.
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The best performance at moderate BER’s down to about 10−5 is
achieved with short constraint length constituent encoders, typically
ν = 4 or less.

If the constituent encoders of a turbo code are same, it is known as
a symmetric turbo code, otherwise, it is an asymmetric turbo code.

Recursive systematic encoders give much better performance than
nonrecursive systematic encoders when used as constituent encoders
in a turbo code.

Bits can be punctured from the parity sequences in order to produce
higher code rates.
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Turbo Codes

The best performance at moderate BER’s down to about 10−5 is
achieved with short constraint length constituent encoders, typically
ν = 4 or less.

If the constituent encoders of a turbo code are same, it is known as
a symmetric turbo code, otherwise, it is an asymmetric turbo code.

Recursive systematic encoders give much better performance than
nonrecursive systematic encoders when used as constituent encoders
in a turbo code.

Bits can be punctured from the parity sequences in order to produce
higher code rates.

Bits can also be punctured from the information sequence. If some
of the information bits are punctured, it is known as partially
systematic turbo code. If all the information bits are punctured, it is
known as nonsystematic turbo code.
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Turbo Codes

Additional constituent codes and interleavers can be used to produce
lower rate codes. For example, rate 1/4 can be achieved with three
constituent codes and two interleavers. This is known as a multiple
turbo code.
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Turbo Codes

Additional constituent codes and interleavers can be used to produce
lower rate codes. For example, rate 1/4 can be achieved with three
constituent codes and two interleavers. This is known as a multiple
turbo code.

The interleavers are usually constructed in a random fashion.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory

Turbo Codes

Additional constituent codes and interleavers can be used to produce
lower rate codes. For example, rate 1/4 can be achieved with three
constituent codes and two interleavers. This is known as a multiple
turbo code.

The interleavers are usually constructed in a random fashion.

Suboptimum iterative decoding, which employs individual soft input,
soft output (SISO) decoders for each of the constituent codes in an
iterative manner, achieves performance typically within a few tenths
of a dB of overall ML or MAP decoding.
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of a dB of overall ML or MAP decoding.

The best performance is obtained when the BCJR, or MAP,
algorithm is used as the SISO decoder for each constituent code.
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Turbo Codes

Additional constituent codes and interleavers can be used to produce
lower rate codes. For example, rate 1/4 can be achieved with three
constituent codes and two interleavers. This is known as a multiple
turbo code.

The interleavers are usually constructed in a random fashion.

Suboptimum iterative decoding, which employs individual soft input,
soft output (SISO) decoders for each of the constituent codes in an
iterative manner, achieves performance typically within a few tenths
of a dB of overall ML or MAP decoding.

The best performance is obtained when the BCJR, or MAP,
algorithm is used as the SISO decoder for each constituent code.

Since the MAP decoder uses a forward-backward algorithm, the
information is arranged in blocks.
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Turbo Codes

The first constituent encoder is terminated by appending ν bits to
return it to the all-zero state.
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Turbo Codes

The first constituent encoder is terminated by appending ν bits to
return it to the all-zero state.

Because the interleaver reorders the input sequence, the second
encoder will not normally return to the zero state. However, if
desired, modifications can be made to insure termination of both
encoders.
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The first constituent encoder is terminated by appending ν bits to
return it to the all-zero state.
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The first constituent encoder is terminated by appending ν bits to
return it to the all-zero state.

Because the interleaver reorders the input sequence, the second
encoder will not normally return to the zero state. However, if
desired, modifications can be made to insure termination of both
encoders.

Block codes can also be used as constituent codes in turbo encoders.

Turbo codes have few disadvantages:

a large decoding delay.
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Turbo Codes

The first constituent encoder is terminated by appending ν bits to
return it to the all-zero state.

Because the interleaver reorders the input sequence, the second
encoder will not normally return to the zero state. However, if
desired, modifications can be made to insure termination of both
encoders.

Block codes can also be used as constituent codes in turbo encoders.

Turbo codes have few disadvantages:

a large decoding delay.

significantly weakened performance at BER’s below 10−6.
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Turbo Codes: Key Developments

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo codes,” in Proc. IEEE
International Conference on Communications (ICC 93), (Geneva,
Switzerland), pp. 1064–1070, May 1993.
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