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Dual code

Two n-tuples u and v are orthogonal if their inner product (u, v) is
zero, i.e.,

(u, v) =

n∑
i=1

(ui · vi ) = 0
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Dual code

Two n-tuples u and v are orthogonal if their inner product (u, v) is
zero, i.e.,

(u, v) =

n∑
i=1

(ui · vi ) = 0

For a binary linear (n, k) block code C , the (n, n − k) dual code, Cd

is defined as set of all codewords, v that are orthogonal to all the
codewords u ∈ C .
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Two n-tuples u and v are orthogonal if their inner product (u, v) is
zero, i.e.,

(u, v) =

n∑
i=1

(ui · vi ) = 0

For a binary linear (n, k) block code C , the (n, n − k) dual code, Cd

is defined as set of all codewords, v that are orthogonal to all the
codewords u ∈ C .

(n, n − k) dual code, Cd is also a linear code.
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Dual code

Two n-tuples u and v are orthogonal if their inner product (u, v) is
zero, i.e.,

(u, v) =

n∑
i=1

(ui · vi ) = 0

For a binary linear (n, k) block code C , the (n, n − k) dual code, Cd

is defined as set of all codewords, v that are orthogonal to all the
codewords u ∈ C .

(n, n − k) dual code, Cd is also a linear code.

Proof: Let x, y ∈ Cd , then x · u = y · u = 0 for every u ∈ C
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Dual code

Two n-tuples u and v are orthogonal if their inner product (u, v) is
zero, i.e.,

(u, v) =

n∑
i=1

(ui · vi ) = 0

For a binary linear (n, k) block code C , the (n, n − k) dual code, Cd

is defined as set of all codewords, v that are orthogonal to all the
codewords u ∈ C .

(n, n − k) dual code, Cd is also a linear code.

Proof: Let x, y ∈ Cd , then x · u = y · u = 0 for every u ∈ C

Thus,

(λx + μy) · u = λ(x · u) + μ(y · u) = 0

for every u ∈ C
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Dual code

Two n-tuples u and v are orthogonal if their inner product (u, v) is
zero, i.e.,

(u, v) =

n∑
i=1

(ui · vi ) = 0

For a binary linear (n, k) block code C , the (n, n − k) dual code, Cd

is defined as set of all codewords, v that are orthogonal to all the
codewords u ∈ C .

(n, n − k) dual code, Cd is also a linear code.

Proof: Let x, y ∈ Cd , then x · u = y · u = 0 for every u ∈ C

Thus,

(λx + μy) · u = λ(x · u) + μ(y · u) = 0

for every u ∈ C

This implies λx+ μy ∈ Cd
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Dual code

Let C be a linear code with generator matrix G. Then x ∈ Cd if and
only if xGT = 0
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Dual code

Let C be a linear code with generator matrix G. Then x ∈ Cd if and
only if xGT = 0

Let G be given by

G =

⎡
⎢⎢⎣

g0
g1
· · ·
gk−1

⎤
⎥⎥⎦

where {g0} is some basis of G.
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Dual code

Let C be a linear code with generator matrix G. Then x ∈ Cd if and
only if xGT = 0

Let G be given by

G =

⎡
⎢⎢⎣

g0
g1
· · ·
gk−1

⎤
⎥⎥⎦

where {g0} is some basis of G.

Also, xGT = (x · g0, · · · , x · gk−1).
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Dual code

Let C be a linear code with generator matrix G. Then x ∈ Cd if and
only if xGT = 0

Let G be given by

G =

⎡
⎢⎢⎣

g0
g1
· · ·
gk−1

⎤
⎥⎥⎦

where {g0} is some basis of G.

Also, xGT = (x · g0, · · · , x · gk−1).

If x ∈ Cd , then x · g
i
= 0 for every i , so xGT = 0.
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Dual code

If xGT = 0, then x · gi = 0 for every i . If c ∈ C , then c =
∑

i
λigi

for some binary λi , so

x · c = x ·

(∑
i

λigi

)
=

∑
i

λi (xi · gi) = 0

and thus x ∈ Cd
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Dual code

If xGT = 0, then x · gi = 0 for every i . If c ∈ C , then c =
∑

i
λigi

for some binary λi , so

x · c = x ·

(∑
i

λigi

)
=

∑
i

λi (xi · gi) = 0

and thus x ∈ Cd

Thus the generator matrix G of a linear (n, k) block code, is the
parity check matrix H of its dual code and vice-versa.
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Self-Dual code

A linear block code C that is equal to its dual code Cd is called
self-dual code.
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Self-Dual code

A linear block code C that is equal to its dual code Cd is called
self-dual code.

The code rate of self-dual code, R = 1/2.
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Self-Dual code

A linear block code C that is equal to its dual code Cd is called
self-dual code.

The code rate of self-dual code, R = 1/2.

Code length of self-dual code n is even, and dimension k of the code
is n/2.
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Self-Dual code

A linear block code C that is equal to its dual code Cd is called
self-dual code.

The code rate of self-dual code, R = 1/2.

Code length of self-dual code n is even, and dimension k of the code
is n/2.

(24, 12) Golay code is a self-dual code.
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Repetition code

A repetition code of length n is a linear (n, 1) block code.
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Repetition code

A repetition code of length n is a linear (n, 1) block code.

It consists of two codewords, all zero codeword 0 = (0, 0, · · · , 0) and
all one codeword 1 = (1, 1, · · · , 1).
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Repetition code

A repetition code of length n is a linear (n, 1) block code.

It consists of two codewords, all zero codeword 0 = (0, 0, · · · , 0) and
all one codeword 1 = (1, 1, · · · , 1).

Codeword is obtained by repeating the information bit n times.
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Repetition code

A repetition code of length n is a linear (n, 1) block code.

It consists of two codewords, all zero codeword 0 = (0, 0, · · · , 0) and
all one codeword 1 = (1, 1, · · · , 1).

Codeword is obtained by repeating the information bit n times.

Generator matrix is given by

G = [1 1 · · · 1]
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Repetition code

A repetition code of length n is a linear (n, 1) block code.

It consists of two codewords, all zero codeword 0 = (0, 0, · · · , 0) and
all one codeword 1 = (1, 1, · · · , 1).

Codeword is obtained by repeating the information bit n times.

Generator matrix is given by

G = [1 1 · · · 1]

Decoding is based on majority decision of n coded bits.
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Repetition code

A repetition code of length n is a linear (n, 1) block code.

It consists of two codewords, all zero codeword 0 = (0, 0, · · · , 0) and
all one codeword 1 = (1, 1, · · · , 1).

Codeword is obtained by repeating the information bit n times.

Generator matrix is given by

G = [1 1 · · · 1]

Decoding is based on majority decision of n coded bits.

Minimum distance of the code is n.
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Single parity check code

It is a linear (k + 1, k) block code with single parity bit.
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Single parity check code

It is a linear (k + 1, k) block code with single parity bit.

If u = (u0, u1, · · · , uk−1), then the parity check bit is given by

p = u0 + u1 + · · ·+ uk−1
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Single parity check code

It is a linear (k + 1, k) block code with single parity bit.

If u = (u0, u1, · · · , uk−1), then the parity check bit is given by

p = u0 + u1 + · · ·+ uk−1

Each codeword is of the form

v = (p, u0, u1, · · · , uk−1)
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Single parity check code

It is a linear (k + 1, k) block code with single parity bit.

If u = (u0, u1, · · · , uk−1), then the parity check bit is given by

p = u0 + u1 + · · ·+ uk−1

Each codeword is of the form

v = (p, u0, u1, · · · , uk−1)

The generator matrix for the single parity check code in systematic
form is given by

G =

⎡
⎢⎢⎢⎢⎢⎣

1 1 0 0 0 · · · 0
1 0 1 0 0 · · · 0
1 0 0 1 0 · · · 0
...

...
1 0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦
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Single parity check code

The parity check matrix for the single parity check code in
systematic form is given by

H = [1 1 · · · 1]
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Single parity check code

The parity check matrix for the single parity check code in
systematic form is given by

H = [1 1 · · · 1]

All codewords of the single parity check (SPC) codes are even
weight.
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Single parity check code

The parity check matrix for the single parity check code in
systematic form is given by

H = [1 1 · · · 1]

All codewords of the single parity check (SPC) codes are even
weight.

Minimum distance of SPC code is 2.
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Single parity check code

The parity check matrix for the single parity check code in
systematic form is given by

H = [1 1 · · · 1]

All codewords of the single parity check (SPC) codes are even
weight.

Minimum distance of SPC code is 2.

SPC code can detect all error patterns with odd number of error.
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Single parity check code

The parity check matrix for the single parity check code in
systematic form is given by

H = [1 1 · · · 1]

All codewords of the single parity check (SPC) codes are even
weight.

Minimum distance of SPC code is 2.

SPC code can detect all error patterns with odd number of error.

The (n, n − 1) SPC code and (n, 1) repetition code are dual to each
other.
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Hamming code

Hamming codes are single error correcting codes.
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Hamming code

Hamming codes are single error correcting codes.

For any m ≥ 3, there exist a Hamming code with following
parameters

Code length: n = 2m − 1
Information bits: k = 2m −m − 1
Parity bits: n − k = m

Error correcting capability: t = 1
Minimum distance: dmin = 3
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Hamming code

Hamming codes are single error correcting codes.

For any m ≥ 3, there exist a Hamming code with following
parameters

Code length: n = 2m − 1
Information bits: k = 2m −m − 1
Parity bits: n − k = m

Error correcting capability: t = 1
Minimum distance: dmin = 3

The parity check matrix

H =
[
Im : PT

]
,

where the 2m −m − 1 columns of PT consists of all m-tuples of
weight 2 or more.
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Hamming code

For m = 3, the Hamming code is of length n = 23 − 1 = 7,
k = 23 − 3− 1 = 4, that has parity check matrix H,

H =

⎡
⎣ 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤
⎦

and generator matrix G,

G =

⎡
⎢⎢⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤
⎥⎥⎦
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Hamming code

We can rearrange the columns of the parity check matrix of
Hamming code such that column in position i represents the integer
i .
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Hamming code

We can rearrange the columns of the parity check matrix of
Hamming code such that column in position i represents the integer
i .

For example for m = 3, the Hamming code is of length
n = 23 − 1 = 7, k = 23 − 3− 1 = 4, that has parity check matrix H,

H =

⎡
⎣ 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎦
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Hamming code

We can rearrange the columns of the parity check matrix of
Hamming code such that column in position i represents the integer
i .

For example for m = 3, the Hamming code is of length
n = 23 − 1 = 7, k = 23 − 3− 1 = 4, that has parity check matrix H,

H =

⎡
⎣ 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎦

Here the column (x , y , z)T represents the number
x(20) + y(21) + z(22).
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Hamming code

Let r be the received vector. For decoding we compute the
syndrome rHT .
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Hamming code

Let r be the received vector. For decoding we compute the
syndrome rHT .

If at most one error has occurred, the syndrome would be either the
zero vector or a column of H.
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Hamming code

Let r be the received vector. For decoding we compute the
syndrome rHT .

If at most one error has occurred, the syndrome would be either the
zero vector or a column of H.

When one error has happened, the number represented by the
column of the calculated syndrome is the position in codeword which
is in error, and since we considered binary code, it can be corrected.
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Hamming code

Let 0 1 0 1 0 1 0 be a codeword in [7, 4] Hamming code. Suppose
we received the vector 0 0 0 1 0 1 0.
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Hamming code

Let 0 1 0 1 0 1 0 be a codeword in [7, 4] Hamming code. Suppose
we received the vector 0 0 0 1 0 1 0.

Syndrome is given by

s = rHT =
[
0 0 0 1 0 1 0

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (0 1 0)
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Hamming code

Let 0 1 0 1 0 1 0 be a codeword in [7, 4] Hamming code. Suppose
we received the vector 0 0 0 1 0 1 0.

Syndrome is given by

s = rHT =
[
0 0 0 1 0 1 0

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (0 1 0)

The number represented by syndrome is 2, hence the error is in
second bit position. Hence estimated codeword is 0 1 0 1 0 1 0.
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Shortened Hamming code

If we delete any l columns from the parity check matrix of a
Hamming code, we get shortened Hamming code with following
parameters

Code length: n = 2m − l − 1
Information bits: k = 2m −m − l − 1
Parity bits: n − k = m

Minimum distance: dmin ≥ 3

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Shortened Hamming code

If we delete any l columns from the parity check matrix of a
Hamming code, we get shortened Hamming code with following
parameters

Code length: n = 2m − l − 1
Information bits: k = 2m −m − l − 1
Parity bits: n − k = m

Minimum distance: dmin ≥ 3

H matrix of (7,4) Hamming code given by

H =

⎡
⎣ 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎦
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Shortened Hamming code

If we delete any l columns from the parity check matrix of a
Hamming code, we get shortened Hamming code with following
parameters

Code length: n = 2m − l − 1
Information bits: k = 2m −m − l − 1
Parity bits: n − k = m

Minimum distance: dmin ≥ 3

H matrix of (7,4) Hamming code given by

H =

⎡
⎣ 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎦

Shortened (6,3) Hamming code has a parity check matrix

H1 =

⎡
⎣ 1 0 1 1 1 1

0 1 0 0 1 1
0 0 0 1 0 1

⎤
⎦
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Expurgated Hamming code

Let C be a (n, k) Hamming code with parity check matrix H. Let us
define a new code C1 with parity check matrix H1. (all one vector as
the last row.)

H1 =

⎛
⎝ H

· · · · · ·
1 · · · 1

⎞
⎠
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Expurgated Hamming code

Let C be a (n, k) Hamming code with parity check matrix H. Let us
define a new code C1 with parity check matrix H1. (all one vector as
the last row.)

H1 =

⎛
⎝ H

· · · · · ·
1 · · · 1

⎞
⎠

Since the parity check matrix of Hamming code doesnt have an all
one vector in any of the rows, any linear combination including the
last row of H1 will never yield a zero vector.
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Expurgated Hamming code

Let C be a (n, k) Hamming code with parity check matrix H. Let us
define a new code C1 with parity check matrix H1. (all one vector as
the last row.)

H1 =

⎛
⎝ H

· · · · · ·
1 · · · 1

⎞
⎠

Since the parity check matrix of Hamming code doesnt have an all
one vector in any of the rows, any linear combination including the
last row of H1 will never yield a zero vector.

Thus all the rows of H1 are linearly independent. Hence the row
space of H1 has dimension (n − k + 1).
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Expurgated Hamming code

The dimension of its null space C1 is:

dim(C1) = (n) − (n − k + 1) = k − 1
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Expurgated Hamming code

The dimension of its null space C1 is:

dim(C1) = (n) − (n − k + 1) = k − 1

Hence C1 is an (n, k − 1) linear code. This is an expurgated
Hamming code.
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Expurgated Hamming code

The dimension of its null space C1 is:

dim(C1) = (n) − (n − k + 1) = k − 1

Hence C1 is an (n, k − 1) linear code. This is an expurgated
Hamming code.
Now, since the last row of H1 is an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
odd weight vector v,

vHT �= 0

and so v can not be a codeword.
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Expurgated Hamming code

The dimension of its null space C1 is:

dim(C1) = (n) − (n − k + 1) = k − 1

Hence C1 is an (n, k − 1) linear code. This is an expurgated
Hamming code.
Now, since the last row of H1 is an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
odd weight vector v,

vHT �= 0

and so v can not be a codeword.
Thus, this expurgated Hamming code only has even weight
codewords (all odd weight codewords are expurgated).
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Expurgated Hamming code

The dimension of its null space C1 is:

dim(C1) = (n) − (n − k + 1) = k − 1

Hence C1 is an (n, k − 1) linear code. This is an expurgated
Hamming code.
Now, since the last row of H1 is an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
odd weight vector v,

vHT �= 0

and so v can not be a codeword.
Thus, this expurgated Hamming code only has even weight
codewords (all odd weight codewords are expurgated).
The submatrix formed by the original Hamming code insures that all
nonzero codewords must have a weight of atleast three.
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Expurgated Hamming code

The dimension of its null space C1 is:

dim(C1) = (n) − (n − k + 1) = k − 1

Hence C1 is an (n, k − 1) linear code. This is an expurgated
Hamming code.
Now, since the last row of H1 is an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
odd weight vector v,

vHT �= 0

and so v can not be a codeword.
Thus, this expurgated Hamming code only has even weight
codewords (all odd weight codewords are expurgated).
The submatrix formed by the original Hamming code insures that all
nonzero codewords must have a weight of atleast three.
The expurgated parity check matrix defines a code with minimum
distance four.
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Expurgated Hamming code: Example

H matrix of (7,4) Hamming code given by

H =

⎡
⎣ 1 0 0 1 1 1 1

0 1 1 0 0 1 1
0 0 1 0 1 0 1

⎤
⎦
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Expurgated Hamming code: Example

H matrix of (7,4) Hamming code given by

H =

⎡
⎣ 1 0 0 1 1 1 1

0 1 1 0 0 1 1
0 0 1 0 1 0 1

⎤
⎦

Distance-4 expurgated Hamming code has a parity check matrix H1

given by

H1 =

⎡
⎢⎢⎣

1 0 0 1 1 1 1
0 1 1 0 0 1 1
0 0 1 0 1 0 1
1 1 1 1 1 1 1

⎤
⎥⎥⎦
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Extended Hamming code

Let C be a (n, k) Hamming code with parity check matrix H. Let us
define a new code C1 with parity check matrix H1. (all one vector as
the last row.)

H1 =

⎛
⎝ H 0

· · · · · · · · ·
1 · · · 1 1

⎞
⎠
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Extended Hamming code

Let C be a (n, k) Hamming code with parity check matrix H. Let us
define a new code C1 with parity check matrix H1. (all one vector as
the last row.)

H1 =

⎛
⎝ H 0

· · · · · · · · ·
1 · · · 1 1

⎞
⎠

Since the parity check matrix of Hamming code doesnt have an all
one vector in any of the rows, any linear combination including the
last row of H1 will never yield a zero vector.
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Extended Hamming code

Let C be a (n, k) Hamming code with parity check matrix H. Let us
define a new code C1 with parity check matrix H1. (all one vector as
the last row.)

H1 =

⎛
⎝ H 0

· · · · · · · · ·
1 · · · 1 1

⎞
⎠

Since the parity check matrix of Hamming code doesnt have an all
one vector in any of the rows, any linear combination including the
last row of H1 will never yield a zero vector.

Thus all the rows of H1 are linearly independent. Hence the row
space of H1 has dimension (n − k + 1).
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Extended Hamming code

The dimension of its null space C1 is:

dim(C1) = (n + 1)− (n − k + 1) = k
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Extended Hamming code

The dimension of its null space C1 is:

dim(C1) = (n + 1)− (n − k + 1) = k

Hence C1 is an (n + 1, k) linear code. This is an extended Hamming
code.
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Extended Hamming code

The dimension of its null space C1 is:

dim(C1) = (n + 1)− (n − k + 1) = k

Hence C1 is an (n + 1, k) linear code. This is an extended Hamming
code.

Now, since the last row of H1 is an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
odd weight vector v,

vHT �= 0

and so v cannot be a codeword.
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Extended Hamming code

The dimension of its null space C1 is:

dim(C1) = (n + 1)− (n − k + 1) = k

Hence C1 is an (n + 1, k) linear code. This is an extended Hamming
code.

Now, since the last row of H1 is an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
odd weight vector v,

vHT �= 0

and so v cannot be a codeword.

Thus, this extended Hamming code only has even weight codewords.
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Extended Hamming code

The dimension of its null space C1 is:

dim(C1) = (n + 1)− (n − k + 1) = k

Hence C1 is an (n + 1, k) linear code. This is an extended Hamming
code.

Now, since the last row of H1 is an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
odd weight vector v,

vHT �= 0

and so v cannot be a codeword.

Thus, this extended Hamming code only has even weight codewords.

The submatrix formed by the original Hamming code insures that all
nonzero codewords must have a weight of atleast three.
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Extended Hamming code

The dimension of its null space C1 is:

dim(C1) = (n + 1)− (n − k + 1) = k

Hence C1 is an (n + 1, k) linear code. This is an extended Hamming
code.

Now, since the last row of H1 is an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
odd weight vector v,

vHT �= 0

and so v cannot be a codeword.

Thus, this extended Hamming code only has even weight codewords.

The submatrix formed by the original Hamming code insures that all
nonzero codewords must have a weight of atleast three.

The extended parity check matrix defines a code with minimum
distance four.
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Extended Hamming code: Example

H matrix of Hamming code given by

H =

⎡
⎣ 1 0 0 1 1 1 1

0 1 1 0 0 1 1
0 0 1 0 1 0 1

⎤
⎦
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Extended Hamming code: Example

H matrix of Hamming code given by

H =

⎡
⎣ 1 0 0 1 1 1 1

0 1 1 0 0 1 1
0 0 1 0 1 0 1

⎤
⎦

Distance-4 extended hamming code has a parity check matrix H1

given by

H1 =

⎡
⎢⎢⎣

1 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎤
⎥⎥⎦
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