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Linear block code

Problem # 1: Consider a linear block code, C with parity check
matrix given by

H =

⎡
⎢⎢⎣

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 1 1 0 0 1 0

⎤
⎥⎥⎦

What is (n, k) of C?
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Linear block code

Problem # 1: Consider a linear block code, C with parity check
matrix given by

H =

⎡
⎢⎢⎣

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 1 1 0 0 1 0

⎤
⎥⎥⎦

What is (n, k) of C?

Solutions: Rank of H matrix is 3. So, n = 7, k = 7− 3 = 4.
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Linear block code

Problem # 2: Consider the following binary block code, C,

C = {000000, 110011, 011101, 111111}

Is C a linear block code? Justify your answer.
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Linear block code

Problem # 2: Consider the following binary block code, C,

C = {000000, 110011, 011101, 111111}

Is C a linear block code? Justify your answer.

Solutions: No.
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Linear block code

Problem # 2: Consider the following binary block code, C,

C = {000000, 110011, 011101, 111111}

Is C a linear block code? Justify your answer.

Solutions: No.

Sum of two codewords for a linear block code is a valid codeword.
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Linear block code

Problem # 2: Consider the following binary block code, C,

C = {000000, 110011, 011101, 111111}

Is C a linear block code? Justify your answer.

Solutions: No.

Sum of two codewords for a linear block code is a valid codeword.

Let v0 = 000000, v1 = 110011, v2 = 011101, and v3 = 111111, then
v1 + v2, v1 + v3, v2 + v3, and v1 + v2 + v3 must also be a valid
codeword.

v1 + v2 = 101110

v1 + v3 = 001100

v2 + v3 = 100010

v1 + v2 + v3 = 010001
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Problem # 2 (contd.)

Thus a linear block code should have the following codewords

C = {000000, 110011, 011101, 111111, 101110, 001100, 100010, 010001}
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Problem # 2 (contd.)

Thus a linear block code should have the following codewords

C = {000000, 110011, 011101, 111111, 101110, 001100, 100010, 010001}

This is a (6,3) linear binary code.
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Problem # 2 (contd.)

Thus a linear block code should have the following codewords

C = {000000, 110011, 011101, 111111, 101110, 001100, 100010, 010001}

This is a (6,3) linear binary code.

One example of generator matrix for this code

G =

⎡
⎣

1 1 0 0 1 1
0 1 1 1 0 1
1 1 1 1 1 1

⎤
⎦
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Problem # 2 (contd.): Generator matrix in systematic
form

How to write the generator matrix in systematic form?

G =

⎡
⎣

1 1 0 0 1 1
0 1 1 1 0 1
1 1 1 1 1 1

⎤
⎦
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Problem # 2 (contd.): Generator matrix in systematic
form

How to write the generator matrix in systematic form?

G =

⎡
⎣

1 1 0 0 1 1
0 1 1 1 0 1
1 1 1 1 1 1

⎤
⎦

Row 3 → Row 3 + Row 1

G =

⎡
⎣

1 1 0 0 1 1
0 1 1 1 0 1
0 0 1 1 0 0

⎤
⎦
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Problem # 2 (contd.): Generator matrix in systematic
form

How to write the generator matrix in systematic form?

G =

⎡
⎣

1 1 0 0 1 1
0 1 1 1 0 1
1 1 1 1 1 1

⎤
⎦

Row 3 → Row 3 + Row 1

G =

⎡
⎣

1 1 0 0 1 1
0 1 1 1 0 1
0 0 1 1 0 0

⎤
⎦

Row 2 → Row 3 + Row 2

G =

⎡
⎣

1 1 0 0 1 1
0 1 0 0 0 1
0 0 1 1 0 0

⎤
⎦
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Problem # 2 (contd.): Generator matrix in systematic
form

Row 1 → Row 1 + Row 2

G =

⎡
⎣

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0

⎤
⎦
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Problem # 2 (contd.): Generator matrix in systematic
form

Row 1 → Row 1 + Row 2

G =

⎡
⎣

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0

⎤
⎦

Similarly parity check matrix in systematic form can be written as

H =

⎡
⎣

0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤
⎦
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Linear block code

Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C1 with the following parity-check matrix

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
... H

0
· · · · · ·
1 11 · · ·1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Linear block code

Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C1 with the following parity-check matrix

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
... H

0
· · · · · ·
1 11 · · ·1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 Show that C1 is an (n + 1, k) linear code.
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Linear block code

Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C1 with the following parity-check matrix

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
... H

0
· · · · · ·
1 11 · · ·1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 Show that C1 is an (n + 1, k) linear code.
2 Show that every codeword of C1 has even weight.
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Linear block code

Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C1 with the following parity-check matrix

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
... H

0
· · · · · ·
1 11 · · ·1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 Show that C1 is an (n + 1, k) linear code.
2 Show that every codeword of C1 has even weight.
3 Show that C1 can be obtained from C by adding an extra parity

check digit, denoted by v∞ to the left of each codeword v as follows
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Linear block code

Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C1 with the following parity-check matrix

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
... H

0
· · · · · ·
1 11 · · ·1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 Show that C1 is an (n + 1, k) linear code.
2 Show that every codeword of C1 has even weight.
3 Show that C1 can be obtained from C by adding an extra parity

check digit, denoted by v∞ to the left of each codeword v as follows
1) if v has odd weight, then v∞ = 1, and
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Linear block code

Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C1 with the following parity-check matrix

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
... H

0
· · · · · ·
1 11 · · ·1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 Show that C1 is an (n + 1, k) linear code.
2 Show that every codeword of C1 has even weight.
3 Show that C1 can be obtained from C by adding an extra parity

check digit, denoted by v∞ to the left of each codeword v as follows
1) if v has odd weight, then v∞ = 1, and
2) if v has even weight, then v∞ = 0
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Problem # 3 (contd.)

The matrix H1 is an (n − k + 1)× (n + 1) matrix.
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Problem # 3 (contd.)

The matrix H1 is an (n − k + 1)× (n + 1) matrix.

First we note that the n− k rows of H are linearly independent. It is
clear that the first (n − k) rows of H1 are also linearly independent.
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Problem # 3 (contd.)

The matrix H1 is an (n − k + 1)× (n + 1) matrix.

First we note that the n− k rows of H are linearly independent. It is
clear that the first (n − k) rows of H1 are also linearly independent.

The last row of H1 has a “1” at its first position but other rows of
H1 have a “0” at their first position. Any linear combination
including the last row of H1 will never yield a zero vector.
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Problem # 3 (contd.)

The matrix H1 is an (n − k + 1)× (n + 1) matrix.

First we note that the n− k rows of H are linearly independent. It is
clear that the first (n − k) rows of H1 are also linearly independent.

The last row of H1 has a “1” at its first position but other rows of
H1 have a “0” at their first position. Any linear combination
including the last row of H1 will never yield a zero vector.

Thus all the rows of H1 are linearly independent. Hence the row
space of H1 has dimension n-k+1.
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Problem # 3 (contd.)

The matrix H1 is an (n − k + 1)× (n + 1) matrix.

First we note that the n− k rows of H are linearly independent. It is
clear that the first (n − k) rows of H1 are also linearly independent.

The last row of H1 has a “1” at its first position but other rows of
H1 have a “0” at their first position. Any linear combination
including the last row of H1 will never yield a zero vector.

Thus all the rows of H1 are linearly independent. Hence the row
space of H1 has dimension n-k+1.

The dimension of its null space, C1 , is then equal to

dim(C1) = (n + 1)− (n − k + 1) = k
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Problem # 3 (contd.)

The matrix H1 is an (n − k + 1)× (n + 1) matrix.

First we note that the n− k rows of H are linearly independent. It is
clear that the first (n − k) rows of H1 are also linearly independent.

The last row of H1 has a “1” at its first position but other rows of
H1 have a “0” at their first position. Any linear combination
including the last row of H1 will never yield a zero vector.

Thus all the rows of H1 are linearly independent. Hence the row
space of H1 has dimension n-k+1.

The dimension of its null space, C1 , is then equal to

dim(C1) = (n + 1)− (n − k + 1) = k

Hence C1 is an (n + 1, k) linear code.
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Problem # 3 (contd.)

Show that every codeword of C1 has even weight.
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Problem # 3 (contd.)

Show that every codeword of C1 has even weight.

Solution: The last row of H1 is an all-one vector.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Problem # 3 (contd.)

Show that every codeword of C1 has even weight.

Solution: The last row of H1 is an all-one vector.

The inner product of a vector with odd weight and the all-one vector
is “1” . Hence, for any odd weight vector v,

vHT

1 �= 0

and v cannot be a code word in C1.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory

Problem # 3 (contd.)

Show that every codeword of C1 has even weight.

Solution: The last row of H1 is an all-one vector.

The inner product of a vector with odd weight and the all-one vector
is “1” . Hence, for any odd weight vector v,

vHT

1 �= 0

and v cannot be a code word in C1.

Therefore, C1 consists of only even-weight code words.
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Problem # 3 (contd.)

Show that C1 can be obtained from C by adding an extra parity
check digit, denoted by v∞ to the left of each codeword v as follows
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Problem # 3 (contd.)

Show that C1 can be obtained from C by adding an extra parity
check digit, denoted by v∞ to the left of each codeword v as follows

1) if v has odd weight, then v∞ = 1, and
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Problem # 3 (contd.)

Show that C1 can be obtained from C by adding an extra parity
check digit, denoted by v∞ to the left of each codeword v as follows

1) if v has odd weight, then v∞ = 1, and
2) if v has even weight, then v∞ = 0
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Problem # 3 (contd.)

Show that C1 can be obtained from C by adding an extra parity
check digit, denoted by v∞ to the left of each codeword v as follows

1) if v has odd weight, then v∞ = 1, and
2) if v has even weight, then v∞ = 0

Solution: Let v be a code word in C. Then vHT = 0. Extend v by
adding a digit v∞ to its left.
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Problem # 3 (contd.)

Show that C1 can be obtained from C by adding an extra parity
check digit, denoted by v∞ to the left of each codeword v as follows

1) if v has odd weight, then v∞ = 1, and
2) if v has even weight, then v∞ = 0

Solution: Let v be a code word in C. Then vHT = 0. Extend v by
adding a digit v∞ to its left.

This results in a vector of n+1 digits,

v1 = (v∞, v) = (v∞, v0, v1, · · · , vn−1).
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Problem # 3 (contd.)

Show that C1 can be obtained from C by adding an extra parity
check digit, denoted by v∞ to the left of each codeword v as follows

1) if v has odd weight, then v∞ = 1, and
2) if v has even weight, then v∞ = 0

Solution: Let v be a code word in C. Then vHT = 0. Extend v by
adding a digit v∞ to its left.

This results in a vector of n+1 digits,

v1 = (v∞, v) = (v∞, v0, v1, · · · , vn−1).

For v1 to be a vector in C1 , we must require that

v1H
T
1 = 0
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Problem # 3 (contd.)

Note that the inner product of v1 with any of the first n-k rows of
H1 is 0.
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Problem # 3 (contd.)

Note that the inner product of v1 with any of the first n-k rows of
H1 is 0.

The inner product of v1 with the last row of H1 is

v∞ + v0 + v1 + · · ·+ vn−1
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Problem # 3 (contd.)

Note that the inner product of v1 with any of the first n-k rows of
H1 is 0.

The inner product of v1 with the last row of H1 is

v∞ + v0 + v1 + · · ·+ vn−1

For this sum to be zero, we must require that v∞ = 1 if the vector v
has odd weight and v∞ = 0 if the vector v has even weight.
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Problem # 3 (contd.)

Note that the inner product of v1 with any of the first n-k rows of
H1 is 0.

The inner product of v1 with the last row of H1 is

v∞ + v0 + v1 + · · ·+ vn−1

For this sum to be zero, we must require that v∞ = 1 if the vector v
has odd weight and v∞ = 0 if the vector v has even weight.

Therefore, any vector v1 formed as above is a codeword in C1, there
are 2k such codewords.
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Problem # 3 (contd.)

Note that the inner product of v1 with any of the first n-k rows of
H1 is 0.

The inner product of v1 with the last row of H1 is

v∞ + v0 + v1 + · · ·+ vn−1

For this sum to be zero, we must require that v∞ = 1 if the vector v
has odd weight and v∞ = 0 if the vector v has even weight.

Therefore, any vector v1 formed as above is a codeword in C1, there
are 2k such codewords.

The dimension of C1 is k, these 2k codewords are all the code words
of C1 .
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