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Fundamental limit

Problem # 1: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Eb/N0 required?
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Fundamental limit

Problem # 1: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Eb/N0 required?

Solution: Capacity of Gaussian memoryless channel with two-sided
noise power spectral density N0/2 and without bandwidth limitation
is given by

C∞ = lim
W→∞

W log

(
1 +

S

N0W

)

=
S

N0 ln 2
bits/s

where W denotes the bandwidth and S is the signaling power.
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Fundamental limit

Problem # 1: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Eb/N0 required?

Solution: Capacity of Gaussian memoryless channel with two-sided
noise power spectral density N0/2 and without bandwidth limitation
is given by

C∞ = lim
W→∞

W log

(
1 +

S

N0W

)

=
S

N0 ln 2
bits/s

where W denotes the bandwidth and S is the signaling power.

If we transmit K information bits over τ seconds, where τ is a
multiple of T, we have

Eb =
Sτ

K
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Fundamental limit

Since the data transmission rate Rt = K/τ bits/s, energy per bit
can be written as

Eb =
S

Rt
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Fundamental limit

Since the data transmission rate Rt = K/τ bits/s, energy per bit
can be written as

Eb =
S

Rt

Thus we have
C∞

Rt

=
Eb

N0 ln 2
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Fundamental limit

Since the data transmission rate Rt = K/τ bits/s, energy per bit
can be written as

Eb =
S

Rt

Thus we have
C∞

Rt

=
Eb

N0 ln 2

For reliable communication, we must have Rt < C∞. Thus we have

Eb

N0
> ln 2 = 0.69 = −1.6 dB
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Fundamental limit

Since the data transmission rate Rt = K/τ bits/s, energy per bit
can be written as

Eb =
S

Rt

Thus we have
C∞

Rt

=
Eb

N0 ln 2

For reliable communication, we must have Rt < C∞. Thus we have

Eb

N0
> ln 2 = 0.69 = −1.6 dB

Thus signal to noise ratio Eb/N0 cannot be less than Shannon limit
-1.6 dB for reliable communications.
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Coding Limits

Problem # 2: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Eb/N0 required if we are
using a rate R=K/N code?
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Coding Limits

Problem # 2: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Eb/N0 required if we are
using a rate R=K/N code?

Solutions: Capacity of bandlimited Gaussian channel is given by

CW = W log

(
1 +

S

N0W

)
bits/s

where W denotes the bandwidth and S is the signaling power.
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Coding Limits

Problem # 2: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Eb/N0 required if we are
using a rate R=K/N code?

Solutions: Capacity of bandlimited Gaussian channel is given by

CW = W log

(
1 +

S

N0W

)
bits/s

where W denotes the bandwidth and S is the signaling power.

Assuming we are transmitting at a rate of 2W samples per second
and using a rate R=K/N block code. If we transmit K information
bits during τ seconds, we have

N = 2W τ samples per codeword
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Coding Limits

Problem # 2: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Eb/N0 required if we are
using a rate R=K/N code?

Solutions: Capacity of bandlimited Gaussian channel is given by

CW = W log

(
1 +

S

N0W

)
bits/s

where W denotes the bandwidth and S is the signaling power.

Assuming we are transmitting at a rate of 2W samples per second
and using a rate R=K/N block code. If we transmit K information
bits during τ seconds, we have

N = 2W τ samples per codeword

Hence
Rt = K/τ = 2WK/N = 2WR bits/s
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Coding Limits

Since, Eb = S/Rt, we have

S

WN0
= 2REb/N0
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Coding Limits

Since, Eb = S/Rt, we have

S

WN0
= 2REb/N0

For reliable communications, we must have Rt < CW , thus

Rt = 2WR < W log

(
1 +

2REb

N0

)
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Coding Limits

Since, Eb = S/Rt, we have

S

WN0
= 2REb/N0

For reliable communications, we must have Rt < CW , thus

Rt = 2WR < W log

(
1 +

2REb

N0

)
We can write equivalently

Eb/N0 >
22R − 1

2R
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Coding Limits

Since, Eb = S/Rt, we have

S

WN0
= 2REb/N0

For reliable communications, we must have Rt < CW , thus

Rt = 2WR < W log

(
1 +

2REb

N0

)
We can write equivalently

Eb/N0 >
22R − 1

2R

Since RHS is an increasing function of R, in order to communicate
close to Shannon limit, we have to use both an information rate Rt

and code rate R close to zero.
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Coding Limits

Since, Eb = S/Rt, we have

S

WN0
= 2REb/N0

For reliable communications, we must have Rt < CW , thus

Rt = 2WR < W log

(
1 +

2REb

N0

)
We can write equivalently

Eb/N0 >
22R − 1

2R

Since RHS is an increasing function of R, in order to communicate
close to Shannon limit, we have to use both an information rate Rt

and code rate R close to zero.
If we let R → 0, we get Eb/N0 > ln 2.
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Coding Limits

Since, Eb = S/Rt, we have

S

WN0
= 2REb/N0

For reliable communications, we must have Rt < CW , thus

Rt = 2WR < W log

(
1 +

2REb

N0

)
We can write equivalently

Eb/N0 >
22R − 1

2R

Since RHS is an increasing function of R, in order to communicate
close to Shannon limit, we have to use both an information rate Rt

and code rate R close to zero.
If we let R → 0, we get Eb/N0 > ln 2.

If we let R = 1/2, we get Eb/N0 > 1 = 0 dB.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory

Convolutional codes

Problem # 3: Prove that every convolutional code C has a
generator matrix that is delayfree.
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Convolutional codes

Problem # 3: Prove that every convolutional code C has a
generator matrix that is delayfree.

Solution: Let G(D) be any generator matrix for C. The nonzero
entries of G(D) can be written as

gij(D) = Dsij fij(D)/qij(D)

where sij is an integer such that
fij(0) = qij(0) = 1, 1 ≤ i ≤ k , 1 ≤ j ≤ n.
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Convolutional codes

Problem # 3: Prove that every convolutional code C has a
generator matrix that is delayfree.

Solution: Let G(D) be any generator matrix for C. The nonzero
entries of G(D) can be written as

gij(D) = Dsij fij(D)/qij(D)

where sij is an integer such that
fij(0) = qij(0) = 1, 1 ≤ i ≤ k , 1 ≤ j ≤ n.

The number sij is the delay of the sequence

gij(D) = Dsij fij(D)/qij(D) = Dsij + gsij+1D
sij+1 + · · ·
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Convolutional codes

Problem # 3: Prove that every convolutional code C has a
generator matrix that is delayfree.

Solution: Let G(D) be any generator matrix for C. The nonzero
entries of G(D) can be written as

gij(D) = Dsij fij(D)/qij(D)

where sij is an integer such that
fij(0) = qij(0) = 1, 1 ≤ i ≤ k , 1 ≤ j ≤ n.

The number sij is the delay of the sequence

gij(D) = Dsij fij(D)/qij(D) = Dsij + gsij+1D
sij+1 + · · ·

Let s = mini ,j{sij}, then

G ′(D) = D−sG(D)

is both delayfree and realizable and both G(D) and G’(D) generate
the same convolutional code.
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Convolutional codes

Problem # 4: Prove that every convolutional code C has a
polynomial delayfree generator matrix.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Convolutional codes

Problem # 4: Prove that every convolutional code C has a
polynomial delayfree generator matrix.

Solutions: Let G(D) be any realizable and delayfree generator for C
and let q(D) be the least common multiple of all the denominators
of the nonzero entries of G(D).
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Convolutional codes

Problem # 4: Prove that every convolutional code C has a
polynomial delayfree generator matrix.

Solutions: Let G(D) be any realizable and delayfree generator for C
and let q(D) be the least common multiple of all the denominators
of the nonzero entries of G(D).

Since q(D) is a delayfree polynomial, we have

G ′(D) = q(D)G(D)

is a polynomial delayfree generator matrix for C.
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Convolutional codes

Problem # 5: The dual code C⊥ to a convolutional code C is the
set of all n-tuples of sequences v⊥ such that the inner product

(v, v⊥) = v(v⊥)
T

is zero.
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Convolutional codes

Problem # 5: The dual code C⊥ to a convolutional code C is the
set of all n-tuples of sequences v⊥ such that the inner product

(v, v⊥) = v(v⊥)
T

is zero.

Let rate k/n convolutional code be generated by the semi-infinite
generator matrix G and the rate R = (n − k)/n dual code C⊥ be
generated by the semi-infinite generator matrix G⊥, where

G⊥ =

⎛
⎜⎝

G⊥
0 G⊥

1 · · · G⊥
m

G⊥
0 G⊥

1 · · · G⊥
m

. . .
. . .

. . .

⎞
⎟⎠

Then
G(G⊥) = 0
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Convolutional codes

Let v = uG and v⊥ = u⊥G⊥, where v and v⊥ are orthogonal. Then
we have

v(v⊥)T = uG(u⊥G⊥)T = uG(G⊥)T(u⊥)T = 0
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Convolutional codes

Let v = uG and v⊥ = u⊥G⊥, where v and v⊥ are orthogonal. Then
we have

v(v⊥)T = uG(u⊥G⊥)T = uG(G⊥)T(u⊥)T = 0

Thus we have
G(G⊥) = 0
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Convolutional codes

Let v = uG and v⊥ = u⊥G⊥, where v and v⊥ are orthogonal. Then
we have

v(v⊥)T = uG(u⊥G⊥)T = uG(G⊥)T(u⊥)T = 0

Thus we have
G(G⊥) = 0

The convolutional dual code C⊥ to a convolutional code C which is
encoded by the rate R = k/n generator matrix G(D) is the set of all
codewords encoded by any rate R = (n − k)/n generator matrix
G⊥(D) such that

G(D)GT
⊥(D) = 0
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Convolutional codes

Problem # 6: The convolutional dual to the code encoded by the
generator matrix G(D) is the reversal of the convolutional code dual
to the code encoded by G(D).
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Convolutional codes

Problem # 6: The convolutional dual to the code encoded by the
generator matrix G(D) is the reversal of the convolutional code dual
to the code encoded by G(D).

Let us consider a rate R = k/n convolutional code encoded by the
polynomial generator matrix

G(D) = G0 + G1D + · · ·+ GmD
m
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Convolutional codes

Problem # 6: The convolutional dual to the code encoded by the
generator matrix G(D) is the reversal of the convolutional code dual
to the code encoded by G(D).

Let us consider a rate R = k/n convolutional code encoded by the
polynomial generator matrix

G(D) = G0 + G1D + · · ·+ GmD
m

Let G̃⊥(D) denote the rate R=(n− k)/n polynomial generator
matrix

G̃⊥(D) = G⊥
m + Gm⊥−1D + · · ·+ G0D

m⊥

which is the reciprocal of the generator matrix

G⊥(D) = G⊥
0 + G⊥

1 D + · · ·+ G⊥
m⊥

for the dual code C⊥.
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Convolutional codes

Then we have

G(D)(G̃ (D))T = G0(G
⊥
m⊥)

T + G0(G
⊥
m⊥−1)

T + G1(G
⊥
m⊥)D

+ · · ·+ Gm(G
⊥
0 )TDm+m⊥

=

⎛
⎝ m⊥∑

j=−m

(
m∑
i=0

Gi (G
⊥
i+j)

T

)⎞
⎠Dm+j = 0

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory

Convolutional codes

Problem # 7: Show that the free distance for any binary rate
R = k/n convolutional code encoded by a minimal encoding matrix
of memory m and overall constraint length ν satisfies

dfree ≤ min
i≥1

{⌊
(m + i)n

2(1− 2ν−k(m+i))

⌋}

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Convolutional codes

Problem # 7: Show that the free distance for any binary rate
R = k/n convolutional code encoded by a minimal encoding matrix
of memory m and overall constraint length ν satisfies

dfree ≤ min
i≥1

{⌊
(m + i)n

2(1− 2ν−k(m+i))

⌋}

A rate R = k/n convolutional code can be encoded by a minimal
encoding matrix whose realization in controller canonical form has
2ν encoder states.
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Convolutional codes

Problem # 7: Show that the free distance for any binary rate
R = k/n convolutional code encoded by a minimal encoding matrix
of memory m and overall constraint length ν satisfies

dfree ≤ min
i≥1

{⌊
(m + i)n

2(1− 2ν−k(m+i))

⌋}

A rate R = k/n convolutional code can be encoded by a minimal
encoding matrix whose realization in controller canonical form has
2ν encoder states.

Consider 2k(m+i), i = 1, 2, · · · information sequences.
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Convolutional codes

Problem # 7: Show that the free distance for any binary rate
R = k/n convolutional code encoded by a minimal encoding matrix
of memory m and overall constraint length ν satisfies

dfree ≤ min
i≥1

{⌊
(m + i)n

2(1− 2ν−k(m+i))

⌋}

A rate R = k/n convolutional code can be encoded by a minimal
encoding matrix whose realization in controller canonical form has
2ν encoder states.

Consider 2k(m+i), i = 1, 2, · · · information sequences.

There exist 2k(m+i)/2ν information sequences starting in the zero
state leading to the zero state.
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Convolutional codes

Problem # 7: Show that the free distance for any binary rate
R = k/n convolutional code encoded by a minimal encoding matrix
of memory m and overall constraint length ν satisfies

dfree ≤ min
i≥1

{⌊
(m + i)n

2(1− 2ν−k(m+i))

⌋}

A rate R = k/n convolutional code can be encoded by a minimal
encoding matrix whose realization in controller canonical form has
2ν encoder states.

Consider 2k(m+i), i = 1, 2, · · · information sequences.

There exist 2k(m+i)/2ν information sequences starting in the zero
state leading to the zero state.

Corresponding code sequences constitute a block code with
M = 2k(m+i)−ν codewords and blocklength N = (m + i)n for
i = 1, 2, · · · .
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Convolutional codes

From Plotkin bound, we have

dmin ≤

⌊
NM

2(M − 1)

⌋
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Convolutional codes

From Plotkin bound, we have

dmin ≤

⌊
NM

2(M − 1)

⌋

Putting the value of N and M, we get the desired bound.
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Convolutional codes

Problem #8: The free distance for any binary R = k/n
convolutional code encoded by minimal encoding matrix of memory
m satisfies

dfree ≤ min
i≥1

{
(m + i)n

2(1− 2−ki)

}
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Convolutional codes

Problem #8: The free distance for any binary R = k/n
convolutional code encoded by minimal encoding matrix of memory
m satisfies

dfree ≤ min
i≥1

{
(m + i)n

2(1− 2−ki)

}
Also

lim
m→∞

dfree

mn
≤

1

2
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Convolutional codes

Problem #8: The free distance for any binary R = k/n
convolutional code encoded by minimal encoding matrix of memory
m satisfies

dfree ≤ min
i≥1

{
(m + i)n

2(1− 2−ki)

}
Also

lim
m→∞

dfree

mn
≤

1

2

Solutions: Since ν ≤ km, the bound follows from the result of the
last question.
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Convolutional codes

Problem #8: The free distance for any binary R = k/n
convolutional code encoded by minimal encoding matrix of memory
m satisfies

dfree ≤ min
i≥1

{
(m + i)n

2(1− 2−ki)

}
Also

lim
m→∞

dfree

mn
≤

1

2

Solutions: Since ν ≤ km, the bound follows from the result of the
last question.

Let m → ∞, and noting that (1− 2−ki ) < 1, we get the desired
result.
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