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Distance properties of block codes

Let v = (v0, v1, · · · , vn−1) be a binary n-tuple. The Hamming weight

of v, denoted by d(v) is defined as number of nonzero components
of v.
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of v, denoted by d(v) is defined as number of nonzero components
of v.

Let v, and w be two n-tuples. The Hamming distance between v

and w, denoted by d(v,w) is defined as the number of places where
they differ.
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Distance properties of block codes

Let v = (v0, v1, · · · , vn−1) be a binary n-tuple. The Hamming weight

of v, denoted by d(v) is defined as number of nonzero components
of v.

Let v, and w be two n-tuples. The Hamming distance between v

and w, denoted by d(v,w) is defined as the number of places where
they differ.

Example 3.1: The Hamming distance between v= (1 0 0 1 0 1 1)
and w= (0 1 0 0 0 1 1) is 3.
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Distance properties of block codes

Let v = (v0, v1, · · · , vn−1) be a binary n-tuple. The Hamming weight

of v, denoted by d(v) is defined as number of nonzero components
of v.

Let v, and w be two n-tuples. The Hamming distance between v

and w, denoted by d(v,w) is defined as the number of places where
they differ.

Example 3.1: The Hamming distance between v= (1 0 0 1 0 1 1)
and w= (0 1 0 0 0 1 1) is 3.

Let v, w, and x be three binary n-tuples. Then

d(v,w) + d(w, x) ≥ d(v, x) (Triangle inequality)
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Distance properties of block codes

Proof: Let v, w, and x be three binary n-tuples, we can write

d(v,w) = w(v +w)

d(w, x) = w(w + x)

d(v, x) = w(v + x)
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Distance properties of block codes

Proof: Let v, w, and x be three binary n-tuples, we can write

d(v,w) = w(v +w)

d(w, x) = w(w + x)

d(v, x) = w(v + x)

- For any two code vectors a and b,

w(a) + w(b) ≥ w(a+ b)
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Distance properties of block codes

Proof: Let v, w, and x be three binary n-tuples, we can write

d(v,w) = w(v +w)

d(w, x) = w(w + x)

d(v, x) = w(v + x)

- For any two code vectors a and b,

w(a) + w(b) ≥ w(a+ b)

- Let a= v+w and b= w+x, we get

w(v +w) + w(w+ x) ≥ w(v +w +w+ x) = w(v + x)
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Distance properties of block codes

Proof: Let v, w, and x be three binary n-tuples, we can write

d(v,w) = w(v +w)

d(w, x) = w(w + x)

d(v, x) = w(v + x)

- For any two code vectors a and b,

w(a) + w(b) ≥ w(a+ b)

- Let a= v+w and b= w+x, we get

w(v +w) + w(w+ x) ≥ w(v +w +w+ x) = w(v + x)

Thus,
d(v,w) + d(w, x) ≥ d(v, x)
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Distance properties of block codes

The minimum distance, dmin of a linear block code C is defined as

dmin
Δ
= min {d(v,w) : v,w ∈ C , v �= w} .
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Distance properties of block codes

The minimum distance, dmin of a linear block code C is defined as

dmin
Δ
= min {d(v,w) : v,w ∈ C , v �= w} .

The minimum weight, wmin of C is defined as

wmin
Δ
= min {w(v) : v ∈ C , v �= 0}
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Distance properties of block codes

The minimum distance, dmin of a linear block code C is defined as

dmin
Δ
= min {d(v,w) : v,w ∈ C , v �= w} .

The minimum weight, wmin of C is defined as

wmin
Δ
= min {w(v) : v ∈ C , v �= 0}

Note:

dmin = min {d(v,w) : v,w ∈ C , v �= w}

= min {w(v +w) : v,w ∈ C , v �= w}

= min {w(x) : x ∈ C , x �= 0}

= wmin.
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Distance properties of block codes

Theorem:

Let C be an (n,k) linear code with parity check matrix H. For each
codeword of Hamming weight l , there exist l columns of H such
that the vector sum of these l columns is equal to the zero vector.

Proof:
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Theorem:

Let C be an (n,k) linear code with parity check matrix H. For each
codeword of Hamming weight l , there exist l columns of H such
that the vector sum of these l columns is equal to the zero vector.

Proof:

Let’s represent the parity check matrix, H as

H = [h0, h1, · · · , hn−1],

where hi represents the ith column of H.
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Distance properties of block codes

Theorem:

Let C be an (n,k) linear code with parity check matrix H. For each
codeword of Hamming weight l , there exist l columns of H such
that the vector sum of these l columns is equal to the zero vector.

Proof:

Let’s represent the parity check matrix, H as

H = [h0, h1, · · · , hn−1],

where hi represents the ith column of H.

Let vi1 , vi2 , · · · , vil be the l nonzero components of the codeword v,
where 0 ≤ i1 ≤ i2 ≤ · · · < il ≤ n − 1, then vi1 = vi2 = · · · = vil = 1.
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Distance properties of block codes

Proof (contd.):

Since v is a codeword, we must have

0 = v ·HT

= v0h0 + v1h1 + · · ·+ vn−1hn−1

= vi1hi1 + vi2hi2 + · · ·+ vilhil

= hi1 + hi2 + · · ·+ hil
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Distance properties of block codes

Theorem:

If there exists l columns of H whose vector sum is zero vector, there
exists a codeword of Hamming weight l in C.

Proof:

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Distance properties of block codes

Theorem:

If there exists l columns of H whose vector sum is zero vector, there
exists a codeword of Hamming weight l in C.

Proof:

Suppose hi1 , hi2 , · · · , hil
are the l columns of H such that

hi1 + hi2 + · · ·+ hil
= 0
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Distance properties of block codes

Theorem:

If there exists l columns of H whose vector sum is zero vector, there
exists a codeword of Hamming weight l in C.

Proof:

Suppose hi1 , hi2 , · · · , hil
are the l columns of H such that

hi1 + hi2 + · · ·+ hil
= 0

Let’s form a binary n-tuple x = (x1, x2, · · · , xn−1) whose nonzero
components are xi1 , xi2 , · · · , xil . The Hamming weight of x is l.
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Distance properties of block codes

Proof (contd.):

Consider the product

x ·HT = x0h0 + x1h1 + · · ·+ xn−1hn−1

= xi1hi1 + xi2hi2 + · · ·+ xilhil

= hi1 + hi2 + · · ·+ hil

= 0
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Distance properties of block codes

Proof (contd.):

Consider the product

x ·HT = x0h0 + x1h1 + · · ·+ xn−1hn−1

= xi1hi1 + xi2hi2 + · · ·+ xilhil

= hi1 + hi2 + · · ·+ hil

= 0

Thus, x is a codeword of weight l in C.
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Distance properties of block codes

Let C be a linear block code with parity check matrix H. If no d − 1
or fewer columns of H add to 0, the code has minimum weight at
least d .
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Distance properties of block codes

Let C be a linear block code with parity check matrix H. If no d − 1
or fewer columns of H add to 0, the code has minimum weight at
least d .

Let C be a linear block code with parity check matrix H. The
minimum weight of C, dmin is equal to the fewest number of
columns of H (rows of HT) that add to 0.
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