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Linear block code

Problem # 1: Let C be a linear code with both even and odd
weight codewords. Show that the number of even weight codewords
is equal to the number of odd-weight codewords.
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Problem # 1: Let C be a linear code with both even and odd
weight codewords. Show that the number of even weight codewords
is equal to the number of odd-weight codewords.

Solutions: Let Ce be the set of code words in C with even weight
and let Co be the set of code words in C with odd weight.
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Linear block code

Problem # 1: Let C be a linear code with both even and odd
weight codewords. Show that the number of even weight codewords
is equal to the number of odd-weight codewords.

Solutions: Let Ce be the set of code words in C with even weight
and let Co be the set of code words in C with odd weight.

Let x be any odd-weight code vector from Co . Adding x to each
vector in Co , we obtain a set of C ′

e
of even weight vector.
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Problem # 1: Let C be a linear code with both even and odd
weight codewords. Show that the number of even weight codewords
is equal to the number of odd-weight codewords.

Solutions: Let Ce be the set of code words in C with even weight
and let Co be the set of code words in C with odd weight.

Let x be any odd-weight code vector from Co . Adding x to each
vector in Co , we obtain a set of C ′

e
of even weight vector.

The number of vectors in C ′

e is equal to the number of vectors in
Co , i.e. |C

′

e
| = |Co |. Also |C ′

e
| ≤ |Ce |. Thus |Co | ≤ |Ce |.
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Linear block code

Problem # 1: Let C be a linear code with both even and odd
weight codewords. Show that the number of even weight codewords
is equal to the number of odd-weight codewords.

Solutions: Let Ce be the set of code words in C with even weight
and let Co be the set of code words in C with odd weight.

Let x be any odd-weight code vector from Co . Adding x to each
vector in Co , we obtain a set of C ′

e
of even weight vector.

The number of vectors in C ′

e is equal to the number of vectors in
Co , i.e. |C

′

e
| = |Co |. Also |C ′

e
| ≤ |Ce |. Thus |Co | ≤ |Ce |.

Now adding x to each vector in Ce , we obtain a set C ′

o of odd
weight code words.
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Problem # 1: Let C be a linear code with both even and odd
weight codewords. Show that the number of even weight codewords
is equal to the number of odd-weight codewords.

Solutions: Let Ce be the set of code words in C with even weight
and let Co be the set of code words in C with odd weight.

Let x be any odd-weight code vector from Co . Adding x to each
vector in Co , we obtain a set of C ′

e
of even weight vector.

The number of vectors in C ′

e is equal to the number of vectors in
Co , i.e. |C

′

e
| = |Co |. Also |C ′

e
| ≤ |Ce |. Thus |Co | ≤ |Ce |.

Now adding x to each vector in Ce , we obtain a set C ′

o of odd
weight code words.

The number of vectors in C ′

o
is equal to the number of vectors in Ce

and |C ′

o | ≤ |Co |. Hence |Ce | ≤ |Co |.
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Linear block code

Problem # 1: Let C be a linear code with both even and odd
weight codewords. Show that the number of even weight codewords
is equal to the number of odd-weight codewords.

Solutions: Let Ce be the set of code words in C with even weight
and let Co be the set of code words in C with odd weight.

Let x be any odd-weight code vector from Co . Adding x to each
vector in Co , we obtain a set of C ′

e
of even weight vector.

The number of vectors in C ′

e is equal to the number of vectors in
Co , i.e. |C

′

e
| = |Co |. Also |C ′

e
| ≤ |Ce |. Thus |Co | ≤ |Ce |.

Now adding x to each vector in Ce , we obtain a set C ′

o of odd
weight code words.

The number of vectors in C ′

o
is equal to the number of vectors in Ce

and |C ′

o | ≤ |Co |. Hence |Ce | ≤ |Co |.

Both these conditions are true only when |Ce | = |Co |
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Linear block code

Problem # 2: Consider an (n, k) linear code C whose generator
matrix G contains no zero column. Arrange all the codewords of C
as rows of a 2k by n array
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Linear block code

Problem # 2: Consider an (n, k) linear code C whose generator
matrix G contains no zero column. Arrange all the codewords of C
as rows of a 2k by n array

a) Show that no column of the array contains only zeros.
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Problem # 2: Consider an (n, k) linear code C whose generator
matrix G contains no zero column. Arrange all the codewords of C
as rows of a 2k by n array

a) Show that no column of the array contains only zeros.

Solution: From the given condition on G, we see that, for any digit
position, there is a row in G with a nonzero component at that
position.
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Linear block code

Problem # 2: Consider an (n, k) linear code C whose generator
matrix G contains no zero column. Arrange all the codewords of C
as rows of a 2k by n array

a) Show that no column of the array contains only zeros.

Solution: From the given condition on G, we see that, for any digit
position, there is a row in G with a nonzero component at that
position.

This row is a code word in C. Hence in the code array, each column
contains at least one nonzero entry.
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Linear block code

Problem # 2: Consider an (n, k) linear code C whose generator
matrix G contains no zero column. Arrange all the codewords of C
as rows of a 2k by n array

a) Show that no column of the array contains only zeros.

Solution: From the given condition on G, we see that, for any digit
position, there is a row in G with a nonzero component at that
position.

This row is a code word in C. Hence in the code array, each column
contains at least one nonzero entry.

Therefore no column in the code array contains only zeros.
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Linear block code

Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2k by n array
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Linear block code

Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2k by n array

b) Show that each column of the array consists of 2k−1 zeros and 2k−1

ones.
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Linear block code

Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2k by n array

b) Show that each column of the array consists of 2k−1 zeros and 2k−1

ones.
Solution: To prove that each column of this array has 2k−1 zeros
and 2k−1 ones, we will show that the number of codewords that “1”
at the l-th position is same as number of codewords that have “0”
at the l-th position.
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Linear block code

Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2k by n array

b) Show that each column of the array consists of 2k−1 zeros and 2k−1

ones.
Solution: To prove that each column of this array has 2k−1 zeros
and 2k−1 ones, we will show that the number of codewords that “1”
at the l-th position is same as number of codewords that have “0”
at the l-th position.
In the code array, each column contains at least one nonzero entry.
Consider the l−th column of the code array.
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Linear block code

Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2k by n array

b) Show that each column of the array consists of 2k−1 zeros and 2k−1

ones.
Solution: To prove that each column of this array has 2k−1 zeros
and 2k−1 ones, we will show that the number of codewords that “1”
at the l-th position is same as number of codewords that have “0”
at the l-th position.
In the code array, each column contains at least one nonzero entry.
Consider the l−th column of the code array.
Let S0 be the codewords with a “0” at the l−th position and S1 be
the codewords with a “1” at the l−th position.
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Linear block code

Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2k by n array

b) Show that each column of the array consists of 2k−1 zeros and 2k−1

ones.
Solution: To prove that each column of this array has 2k−1 zeros
and 2k−1 ones, we will show that the number of codewords that “1”
at the l-th position is same as number of codewords that have “0”
at the l-th position.
In the code array, each column contains at least one nonzero entry.
Consider the l−th column of the code array.
Let S0 be the codewords with a “0” at the l−th position and S1 be
the codewords with a “1” at the l−th position.
Let x be a codeword from S1. Adding x to each vector in S0, we
obtain a set S ′

1 of codewords with a “1” at the l−th position.

|S ′

1| = |S0| and S ′

1 ⊆ S1
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Linear block code

Problem 2 (contd.): The above condition implies that

|S0| ≤ |S1| (1)
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Linear block code

Problem 2 (contd.): The above condition implies that

|S0| ≤ |S1| (1)

Adding x to each vector in S1, we obtain a set S ′

0 of codewords with
a “0” at the l−th position.

|S ′

0| = |S1| and S ′

0 ⊆ S0
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Linear block code

Problem 2 (contd.): The above condition implies that

|S0| ≤ |S1| (1)

Adding x to each vector in S1, we obtain a set S ′

0 of codewords with
a “0” at the l−th position.

|S ′

0| = |S1| and S ′

0 ⊆ S0

The above condition implies that

|S1| ≤ |S0| (2)
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Linear block code

Problem 2 (contd.): The above condition implies that

|S0| ≤ |S1| (1)

Adding x to each vector in S1, we obtain a set S ′

0 of codewords with
a “0” at the l−th position.

|S ′

0| = |S1| and S ′

0 ⊆ S0

The above condition implies that

|S1| ≤ |S0| (2)

From (1) and (2), we get |S0| = |S1|. Therefore l−th column
contains 2k−1 zeros and 2k−1 ones.
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Linear block code

c) Problem 2 (contd.): Show that the minimum distance dmin of C
satisfies the following inequality

dmin ≤
n · 2k−1

2k − 1
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Linear block code

c) Problem 2 (contd.): Show that the minimum distance dmin of C
satisfies the following inequality

dmin ≤
n · 2k−1

2k − 1

Solution: The total number of ones in the array is n · 2k−1. Each
nonzero codeword has weight atleast dmin. Hence,

(2k − 1) · dmin ≤ n · 2k−1
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Linear block code

c) Problem 2 (contd.): Show that the minimum distance dmin of C
satisfies the following inequality

dmin ≤
n · 2k−1

2k − 1

Solution: The total number of ones in the array is n · 2k−1. Each
nonzero codeword has weight atleast dmin. Hence,

(2k − 1) · dmin ≤ n · 2k−1

This implies that

dmin ≤
n · 2k−1

2k − 1
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Minimum distance of a code

Problem # 3 What should be the minimum distance of a linear
block code C so that it can simultaneously correct ν errors and e

erasures. Prove your result.
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Minimum distance of a code

Problem # 3 What should be the minimum distance of a linear
block code C so that it can simultaneously correct ν errors and e

erasures. Prove your result.
Solution: The minimum distance dmin should be

dmin ≥ 2ν + e + 1
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Minimum distance of a code

Problem # 3 What should be the minimum distance of a linear
block code C so that it can simultaneously correct ν errors and e

erasures. Prove your result.
Solution: The minimum distance dmin should be

dmin ≥ 2ν + e + 1

Delete from all the codewords the e components where the receiver
has declared erasures.
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Minimum distance of a code

Problem # 3 What should be the minimum distance of a linear
block code C so that it can simultaneously correct ν errors and e

erasures. Prove your result.
Solution: The minimum distance dmin should be

dmin ≥ 2ν + e + 1

Delete from all the codewords the e components where the receiver
has declared erasures.
This deletion results in a shortened code of length n− e.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory

Minimum distance of a code

Problem # 3 What should be the minimum distance of a linear
block code C so that it can simultaneously correct ν errors and e

erasures. Prove your result.
Solution: The minimum distance dmin should be

dmin ≥ 2ν + e + 1

Delete from all the codewords the e components where the receiver
has declared erasures.
This deletion results in a shortened code of length n− e.
The minimum distance of this shortened code should be atleast
dmin − e ≥ 2ν + 1.
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Minimum distance of a code

Problem # 3 What should be the minimum distance of a linear
block code C so that it can simultaneously correct ν errors and e

erasures. Prove your result.
Solution: The minimum distance dmin should be

dmin ≥ 2ν + e + 1

Delete from all the codewords the e components where the receiver
has declared erasures.
This deletion results in a shortened code of length n− e.
The minimum distance of this shortened code should be atleast
dmin − e ≥ 2ν + 1.
Hence, the ν errors in the unerased positions can be corrected. As a
result the shortened code with e components erased can be
recovered.
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Minimum distance of a code

Problem # 3 What should be the minimum distance of a linear
block code C so that it can simultaneously correct ν errors and e

erasures. Prove your result.
Solution: The minimum distance dmin should be

dmin ≥ 2ν + e + 1

Delete from all the codewords the e components where the receiver
has declared erasures.
This deletion results in a shortened code of length n− e.
The minimum distance of this shortened code should be atleast
dmin − e ≥ 2ν + 1.
Hence, the ν errors in the unerased positions can be corrected. As a
result the shortened code with e components erased can be
recovered.
Finally, since dmin ≥ e + 1, there is only one and only one codeword
in the original code that agrees with the unerased components.
Hence, the entire codeword can be recovered.
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Minimum distance of a code

Problem # 4 Prove that a linear code is capable of correcting λ or
fewer errors and simultaneously detecting l(l > λ) or fewer errors if
its minimum distance dmin ≥ λ+ l + 1.
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Minimum distance of a code

Problem # 4 Prove that a linear code is capable of correcting λ or
fewer errors and simultaneously detecting l(l > λ) or fewer errors if
its minimum distance dmin ≥ λ+ l + 1.
Solutions: From the given condition, we see that λ < � dmin−1

2
�.
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Minimum distance of a code

Problem # 4 Prove that a linear code is capable of correcting λ or
fewer errors and simultaneously detecting l(l > λ) or fewer errors if
its minimum distance dmin ≥ λ+ l + 1.
Solutions: From the given condition, we see that λ < � dmin−1

2
�.

It means that all the error patterns of λ or fewer errors can be used
as coset leaders in a standard array. Hence, they are correctable.
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Minimum distance of a code

Problem # 4 Prove that a linear code is capable of correcting λ or
fewer errors and simultaneously detecting l(l > λ) or fewer errors if
its minimum distance dmin ≥ λ+ l + 1.
Solutions: From the given condition, we see that λ < � dmin−1

2
�.

It means that all the error patterns of λ or fewer errors can be used
as coset leaders in a standard array. Hence, they are correctable.
In order to show that any error pattern of l or fewer errors is
detectable, we need to show that no error pattern x of l or fewer
errors can be in the same coset as an error pattern y of λ or fewer
errors.
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Minimum distance of a code

Problem # 4 Prove that a linear code is capable of correcting λ or
fewer errors and simultaneously detecting l(l > λ) or fewer errors if
its minimum distance dmin ≥ λ+ l + 1.
Solutions: From the given condition, we see that λ < � dmin−1

2
�.

It means that all the error patterns of λ or fewer errors can be used
as coset leaders in a standard array. Hence, they are correctable.
In order to show that any error pattern of l or fewer errors is
detectable, we need to show that no error pattern x of l or fewer
errors can be in the same coset as an error pattern y of λ or fewer
errors.
Suppose that x and y are in the same coset. Then x + y is a
nonzero code word. The weight of this code word satisfies

wt(x + y) ≤ wt(x) + wt(y) ≤ l + λ ≤ dmin
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Minimum distance of a code

Problem # 4 Prove that a linear code is capable of correcting λ or
fewer errors and simultaneously detecting l(l > λ) or fewer errors if
its minimum distance dmin ≥ λ+ l + 1.
Solutions: From the given condition, we see that λ < � dmin−1

2
�.

It means that all the error patterns of λ or fewer errors can be used
as coset leaders in a standard array. Hence, they are correctable.
In order to show that any error pattern of l or fewer errors is
detectable, we need to show that no error pattern x of l or fewer
errors can be in the same coset as an error pattern y of λ or fewer
errors.
Suppose that x and y are in the same coset. Then x + y is a
nonzero code word. The weight of this code word satisfies

wt(x + y) ≤ wt(x) + wt(y) ≤ l + λ ≤ dmin

This is impossible since the minimum weight of the code is dmin.
Hence x and y are in different cosets. As a result, when x occurs, it
will not be mistaken as y. Therefore x is detectable.
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Minimum distance of a code

Problem # 5 Let Ci be the binary (n, ki) linear code with generator
matrix Gi and minimum distance di , respectively. Let C be the
binary (2n, k1 + k2) linear code with generator matrix

G =

[
G1 G1

0 G2

]

where 0 is a k2 × n zero matrix. Calculate the minimum distance of
C. Prove your result.
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Minimum distance of a code

Problem # 5 Let Ci be the binary (n, ki) linear code with generator
matrix Gi and minimum distance di , respectively. Let C be the
binary (2n, k1 + k2) linear code with generator matrix

G =

[
G1 G1

0 G2

]

where 0 is a k2 × n zero matrix. Calculate the minimum distance of
C. Prove your result.
Solution: Let u = (u0, u1, · · · , un−1) and v = (v0, v1, · · · , vn−1) be
two binary n-tuples. We form 2n-tuple from u and v as follows

|u|u+ v| = (u0, u1, · · · , un−1, u0 + v0, u1 + v1, · · ·+ un−1 + vn−1)
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Minimum distance of a code

Problem # 5 Let Ci be the binary (n, ki) linear code with generator
matrix Gi and minimum distance di , respectively. Let C be the
binary (2n, k1 + k2) linear code with generator matrix

G =

[
G1 G1

0 G2

]

where 0 is a k2 × n zero matrix. Calculate the minimum distance of
C. Prove your result.
Solution: Let u = (u0, u1, · · · , un−1) and v = (v0, v1, · · · , vn−1) be
two binary n-tuples. We form 2n-tuple from u and v as follows

|u|u+ v| = (u0, u1, · · · , un−1, u0 + v0, u1 + v1, · · ·+ un−1 + vn−1)

The linear block code C is

C = |C1|C1 + C2|

= {|u|u+ v| : u ∈ C1, and v ∈ C2}
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Minimum distance of a code

Problem #5 (contd.): The minimum distance of C is

dmin = min{2d1, d2}
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Minimum distance of a code

Problem #5 (contd.): The minimum distance of C is

dmin = min{2d1, d2}

Let x = |u|u+ v| and y = |u′|u′+ v′| be two distinct codewords in C.

d(x, y) = w(u+ u′) + w(u+ u′ + v + v′)

where w(z) is the Hamming weight of z.
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Minimum distance of a code

Problem #5 (contd.): The minimum distance of C is

dmin = min{2d1, d2}

Let x = |u|u+ v| and y = |u′|u′+ v′| be two distinct codewords in C.

d(x, y) = w(u+ u′) + w(u+ u′ + v + v′)

where w(z) is the Hamming weight of z.
Consider two cases v = v′ and v �= v′. If v = v′, since x �= y, we
must have u �= u′. In this case

d(x, y) = w(u + u′) + w(u+ u′)
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Minimum distance of a code

Problem #5 (contd.): The minimum distance of C is

dmin = min{2d1, d2}

Let x = |u|u+ v| and y = |u′|u′+ v′| be two distinct codewords in C.

d(x, y) = w(u+ u′) + w(u+ u′ + v + v′)

where w(z) is the Hamming weight of z.
Consider two cases v = v′ and v �= v′. If v = v′, since x �= y, we
must have u �= u′. In this case

d(x, y) = w(u + u′) + w(u+ u′)

Since u+ u′ is a nonzero codeword in C1, w(u+ u′) ≥ d1. Therefore

d(x, y) ≥ 2d1 (3)
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Minimum distance of a code

Problem #5 (contd.): The minimum distance of C is

dmin = min{2d1, d2}

Let x = |u|u+ v| and y = |u′|u′+ v′| be two distinct codewords in C.

d(x, y) = w(u+ u′) + w(u+ u′ + v + v′)

where w(z) is the Hamming weight of z.
Consider two cases v = v′ and v �= v′. If v = v′, since x �= y, we
must have u �= u′. In this case

d(x, y) = w(u + u′) + w(u+ u′)

Since u+ u′ is a nonzero codeword in C1, w(u+ u′) ≥ d1. Therefore

d(x, y) ≥ 2d1 (3)

From triangle inequality, we have

d(x, y) ≥ d(x, z)− d(y, z)

w(x+ y) ≥ wt(x+ z)− wt(y + z)
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Minimum distance of a code

Problem #5 (contd.): Let x+ z = v + v′ and y + z = u+ u′,
then we get

w(u+ u′ + v + v′) ≥ w(v + v′)− w(u+ u′)
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Minimum distance of a code

Problem #5 (contd.): Let x+ z = v + v′ and y + z = u+ u′,
then we get

w(u+ u′ + v + v′) ≥ w(v + v′)− w(u+ u′)

If v �= v′, we have

d(x, y) ≥ w(u+ u′) + w(v + v′)− w(u+ u′)

= w(v + v′)
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Minimum distance of a code

Problem #5 (contd.): Let x+ z = v + v′ and y + z = u+ u′,
then we get

w(u+ u′ + v + v′) ≥ w(v + v′)− w(u+ u′)

If v �= v′, we have

d(x, y) ≥ w(u+ u′) + w(v + v′)− w(u+ u′)

= w(v + v′)

Since v + v′ is a nonzero codeword in C2, w(v + v′) ≥ d2, we have

d(x, y) ≥ d2 (4)
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Minimum distance of a code

Problem #5 (contd.): Let x+ z = v + v′ and y + z = u+ u′,
then we get

w(u+ u′ + v + v′) ≥ w(v + v′)− w(u+ u′)

If v �= v′, we have

d(x, y) ≥ w(u+ u′) + w(v + v′)− w(u+ u′)

= w(v + v′)

Since v + v′ is a nonzero codeword in C2, w(v + v′) ≥ d2, we have

d(x, y) ≥ d2 (4)

From (3) and (4) we have

d(x, y) ≥ min {2d1, d2}
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Minimum distance of a code

Problem #5 (contd.): Let u0 and v0 be two minimum-weight
codewords in C1 and C2 respectively.
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Minimum distance of a code

Problem #5 (contd.): Let u0 and v0 be two minimum-weight
codewords in C1 and C2 respectively.

The vector |u0|u0| is a codeword in C with weight 2d1.
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Minimum distance of a code

Problem #5 (contd.): Let u0 and v0 be two minimum-weight
codewords in C1 and C2 respectively.

The vector |u0|u0| is a codeword in C with weight 2d1.

Similarly the vector |0|v0| is a codeword in C with weight d2..
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Minimum distance of a code

Problem #5 (contd.): Let u0 and v0 be two minimum-weight
codewords in C1 and C2 respectively.

The vector |u0|u0| is a codeword in C with weight 2d1.

Similarly the vector |0|v0| is a codeword in C with weight d2..

Therefore
d(x, y) = min {2d1, d2}
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