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Distance properties of block codes

Example 3.2: Let k = 3 and n = 6. The table gives a (6, 3) linear block
code.

Message Codewords
(u0, u1, u2) (v0, v1, v2, v3, v4, v5)
(0 0 0) (0 0 0 0 0 0)
(1 0 0) (0 1 1 1 0 0)
(0 1 0) (1 0 1 0 1 0)
(1 1 0) (1 1 0 1 1 0)
(0 0 1) (1 1 0 0 0 1)
(1 0 1) (1 0 1 1 0 1)
(0 1 1) (0 1 1 0 1 1)
(1 1 1) (0 0 0 1 1 1)
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Distance properties of block codes

Let Ai be the number of codewords in C with Hamming weight i .
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Distance properties of block codes

Let Ai be the number of codewords in C with Hamming weight i .

The set {A0,A1, · · · ,An} is called the weight distribution of C.
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Distance properties of block codes

Let Ai be the number of codewords in C with Hamming weight i .

The set {A0,A1, · · · ,An} is called the weight distribution of C.

Note that A0 = 1, and
∑n

i=0 Ai = 2k .
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Distance properties of block codes

Let Ai be the number of codewords in C with Hamming weight i .

The set {A0,A1, · · · ,An} is called the weight distribution of C.

Note that A0 = 1, and
∑n

i=0 Ai = 2k .

Example 3.3: For the (6,3) code in example 3.2

A0 = 1,A1 = 0,A2 = 0,A3 = 4,A4 = 3,A5 = 0,A6 = 0.
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Distance properties of block codes

Let Ai be the number of codewords in C with Hamming weight i .

The set {A0,A1, · · · ,An} is called the weight distribution of C.

Note that A0 = 1, and
∑n

i=0 Ai = 2k .

Example 3.3: For the (6,3) code in example 3.2

A0 = 1,A1 = 0,A2 = 0,A3 = 4,A4 = 3,A5 = 0,A6 = 0.

dmin in the above example is 3.
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Error detecting properties of block codes

The probability of undetected error on a BSC is given by

Pu(E ) =
n∑

i=1

Aip
i (1− p)n−i
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Error detecting properties of block codes

The probability of undetected error on a BSC is given by

Pu(E ) =
n∑

i=1

Aip
i (1− p)n−i

Example 3.4: For the (6, 3) code in example 3.2,

Pu(E ) = 4p3(1− p)3 + 3p4(1− p)2 ≈ 4p3 (for small p)
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Error detecting properties of block codes

There exist (n,k) linear block codes for which

Pu(E ) ≤ 2−(n−k) for all p ≤ 1/2

on a BSC.
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Error detecting properties of block codes

There exist (n,k) linear block codes for which

Pu(E ) ≤ 2−(n−k) for all p ≤ 1/2

on a BSC.

The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n − k in a linear code.
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Error detecting properties of block codes

There exist (n,k) linear block codes for which

Pu(E ) ≤ 2−(n−k) for all p ≤ 1/2

on a BSC.

The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n − k in a linear code.

For a codeword with minimum distance dmin, no error pattern with
weight dmin − 1 or less can change a transmitted codeword into
another codeword.
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Error detecting properties of block codes

There exist (n,k) linear block codes for which

Pu(E ) ≤ 2−(n−k) for all p ≤ 1/2

on a BSC.

The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n − k in a linear code.

For a codeword with minimum distance dmin, no error pattern with
weight dmin − 1 or less can change a transmitted codeword into
another codeword.

Therefore, all error patterns with dmin − 1 or fewer errors are
detectable, and dmin − 1 is called the random error detecting

capability of a block code.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Error correcting properties of block codes

Theorem:

A block code C with minimum distance dmin is capable of correcting
all error patterns of weight t or less, where t is an integer such that
2t + 1 ≤ dmin ≤ 2t + 2.

Proof:
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Error correcting properties of block codes

Theorem:

A block code C with minimum distance dmin is capable of correcting
all error patterns of weight t or less, where t is an integer such that
2t + 1 ≤ dmin ≤ 2t + 2.

Proof:

Assuming codeword v is transmitted and r is the received sequence.
Let w �= v be any other codeword. Then d(v,w) ≤ d(v, r) + d(r,w)
(triangle inequality).
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Error correcting properties of block codes

Theorem:

A block code C with minimum distance dmin is capable of correcting
all error patterns of weight t or less, where t is an integer such that
2t + 1 ≤ dmin ≤ 2t + 2.

Proof:

Assuming codeword v is transmitted and r is the received sequence.
Let w �= v be any other codeword. Then d(v,w) ≤ d(v, r) + d(r,w)
(triangle inequality).

If the error pattern has weight t’, then d(v,r) = t’.
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Error correcting properties of block codes

Proof (contd):

Since v, and w are codewords,

d(v,w) ≥ dmin ≥ 2t + 1

Therefore,

d(r,w) ≥ d(v,w)− d(v, r) ≥ 2t + 1− t ′.
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Error correcting properties of block codes

Proof (contd):

Since v, and w are codewords,

d(v,w) ≥ dmin ≥ 2t + 1

Therefore,

d(r,w) ≥ d(v,w)− d(v, r) ≥ 2t + 1− t ′.

If t’ ≤ t, then

d(r,w) ≥ t + 1 > t and d(v, r) = t ′ ≤ t.
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Error correcting properties of block codes

Proof (contd):

Since v, and w are codewords,

d(v,w) ≥ dmin ≥ 2t + 1

Therefore,

d(r,w) ≥ d(v,w)− d(v, r) ≥ 2t + 1− t ′.

If t’ ≤ t, then

d(r,w) ≥ t + 1 > t and d(v, r) = t ′ ≤ t.

Hence r is closer to v than any other codeword w, and an ML
decoder will decode correctly.
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Error correcting properties of block codes

Theorem:

For all l ≥ t + 1, there is atleast one error pattern of weight l that
may not be correctly decoded by an ML decoder.

Proof:

Let v and w be two codewords such that d(v,w) = dmin. Let e1, and
e2 be two error patterns such that

(i) e1 + e2 = v + w

(ii) w(e1 + e2) = w(e1) + w(e2) (nonoverlapping 1’s)
(iii) w(e1) = l ≥ t + 1

Then,

w(e1) + w(e2) = w(e1 + e2) = w(v +w) = d(v +w) = dmin.
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Error correcting properties of block codes

Assuming v is transmitted and r = v + e1 is received. Then

d(w, r) = w(w + r) = w(w+ v + e1) = w(e2) = dmin − w(e1)

< 2t + 2− (t + 1) = t + 1
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Error correcting properties of block codes

Assuming v is transmitted and r = v + e1 is received. Then

d(w, r) = w(w + r) = w(w+ v + e1) = w(e2) = dmin − w(e1)

< 2t + 2− (t + 1) = t + 1

Therefore d(w, r) ≤ d(v, r) and an ML decoder may decode
incorrectly.
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Error correcting properties of block codes

Assuming v is transmitted and r = v + e1 is received. Then

d(w, r) = w(w + r) = w(w+ v + e1) = w(e2) = dmin − w(e1)

< 2t + 2− (t + 1) = t + 1

Therefore d(w, r) ≤ d(v, r) and an ML decoder may decode
incorrectly.

Hence for a block code with minimum distance dmin, an ML decoder

will correctly decode any error pattern of weight t
Δ
= � dmin−1

2 � or less.
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Error correcting properties of block codes

Assuming v is transmitted and r = v + e1 is received. Then

d(w, r) = w(w + r) = w(w+ v + e1) = w(e2) = dmin − w(e1)

< 2t + 2− (t + 1) = t + 1

Therefore d(w, r) ≤ d(v, r) and an ML decoder may decode
incorrectly.

Hence for a block code with minimum distance dmin, an ML decoder

will correctly decode any error pattern of weight t
Δ
= � dmin−1

2 � or less.

t is called the random error correcting capability of the code.
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Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, all the
n-tuples of weight t = �(dmin − 1)/2� or less can be used as coset
leaders of a standard array of C.

Proof
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Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, all the
n-tuples of weight t = �(dmin − 1)/2� or less can be used as coset
leaders of a standard array of C.

Proof

Since minimum distance of C is dmin, minimum weight of C is also
dmin.
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Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, all the
n-tuples of weight t = �(dmin − 1)/2� or less can be used as coset
leaders of a standard array of C.

Proof

Since minimum distance of C is dmin, minimum weight of C is also
dmin.

Let x and y be two n−tuples of weight t or less.
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Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, all the
n-tuples of weight t = �(dmin − 1)/2� or less can be used as coset
leaders of a standard array of C.

Proof

Since minimum distance of C is dmin, minimum weight of C is also
dmin.

Let x and y be two n−tuples of weight t or less.

w(x+ y) ≤ w(x) + w(y) ≤ 2t < dmin
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Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, all the
n-tuples of weight t = �(dmin − 1)/2� or less can be used as coset
leaders of a standard array of C.

Proof

Since minimum distance of C is dmin, minimum weight of C is also
dmin.

Let x and y be two n−tuples of weight t or less.

w(x+ y) ≤ w(x) + w(y) ≤ 2t < dmin

Suppose x and y are in the same coset, then x+ y must be a
nonzero codeword in C.
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Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, all the
n-tuples of weight t = �(dmin − 1)/2� or less can be used as coset
leaders of a standard array of C.

Proof

Since minimum distance of C is dmin, minimum weight of C is also
dmin.

Let x and y be two n−tuples of weight t or less.

w(x+ y) ≤ w(x) + w(y) ≤ 2t < dmin

Suppose x and y are in the same coset, then x+ y must be a
nonzero codeword in C.

This is impossible as weight of x+ y < dmin.
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Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, if all the
n-tuples of weight t = �(dmin − 1)/2� or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight t + 1 that cannot be used as coset leader.

Proof:

Let v be the minimum weight codeword of C
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Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, if all the
n-tuples of weight t = �(dmin − 1)/2� or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight t + 1 that cannot be used as coset leader.

Proof:

Let v be the minimum weight codeword of C

Let x and y be two n-tuples that satisfies the following conditions:

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory

Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, if all the
n-tuples of weight t = �(dmin − 1)/2� or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight t + 1 that cannot be used as coset leader.

Proof:

Let v be the minimum weight codeword of C

Let x and y be two n-tuples that satisfies the following conditions:

x+ y = v.
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Error correcting properties of block codes

Theorem:

For an (n, k) linear code C with minimum distance dmin, if all the
n-tuples of weight t = �(dmin − 1)/2� or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight t + 1 that cannot be used as coset leader.

Proof:

Let v be the minimum weight codeword of C

Let x and y be two n-tuples that satisfies the following conditions:

x+ y = v.
x and y do not have nonzero component in common places.
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Error correcting properties of block codes

Proof (contd.)

From definition, x and y must be in the same coset, and

w(x) + w(y) = w(v) = dmin.
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Error correcting properties of block codes

Proof (contd.)

From definition, x and y must be in the same coset, and

w(x) + w(y) = w(v) = dmin.

If we choose w(y) = t + 1, then w(x) = t or t + 1 (since
2t + 1 ≤ dmin ≤ 2t + 2).
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Error correcting properties of block codes

Proof (contd.)

From definition, x and y must be in the same coset, and

w(x) + w(y) = w(v) = dmin.

If we choose w(y) = t + 1, then w(x) = t or t + 1 (since
2t + 1 ≤ dmin ≤ 2t + 2).

Therefore if x is chosen as coset leader, y cannot be coset leader.
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