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Classification of convolutional encoders

Feedforward Encoder:
@ The encoder corresponding to a polynomial generator matrix does
not contain any feedback path, and hence it is known as a
feedforward encoder.
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Classification of convolutional encoders

Feedforward Encoder:

@ The encoder corresponding to a polynomial generator matrix does
not contain any feedback path, and hence it is known as a
feedforward encoder.

@ The output of a feedforward encoder can be represented as a linear
combination of the current input and a finite number of past inputs.
This is also referred as nonrecursive encoder.

u(D) *‘i@

v(D)

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory




Classification of convolutional encoders

Feedforward Encoder:

@ The encoder corresponding to a polynomial generator matrix does
not contain any feedback path, and hence it is known as a
feedforward encoder.

@ The output of a feedforward encoder can be represented as a linear
combination of the current input and a finite number of past inputs.
This is also referred as nonrecursive encoder.

@ In figure, the encoder diagram of a rate R = 1, 2-state feedforward
encoder with generator matrix G(D) = [1 + D] is shown using a

shift register implementation.
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Example: Feedforward encoder
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Classification of convolutional encoders

Feedback Encoder:

@ The encoder corresponding to a rational generator matrix with
atleast one nonpolynomial transfer function contains a feedback
path and is known as a feedback encoder.
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Classification of convolutional encoders

Feedback Encoder:

@ The encoder corresponding to a rational generator matrix with
atleast one nonpolynomial transfer function contains a feedback
path and is known as a feedback encoder.

@ The output of a feedback encoder can be represented as a linear
combination of past inputs as well as past outputs.
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Classification of convolutional encoders

Feedback Encoder:

@ The encoder corresponding to a rational generator matrix with
atleast one nonpolynomial transfer function contains a feedback
path and is known as a feedback encoder.

@ The output of a feedback encoder can be represented as a linear
combination of past inputs as well as past outputs.

@ Hence the output depends on infinite number of past inputs. This is
also sometimes referred as recursive encoder.
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Classification of convolutional encoders

Feedback Encoder:

@ The encoder corresponding to a rational generator matrix with
atleast one nonpolynomial transfer function contains a feedback
path and is known as a feedback encoder.

@ The output of a feedback encoder can be represented as a linear
combination of past inputs as well as past outputs.

@ Hence the output depends on infinite number of past inputs. This is
also sometimes referred as recursive encoder.

@ In figure, the encoder diagram of a rate R = 1/2, 2-state feedback

encoder with generator matrix G(D) = [1 =5] is shown.
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Classification of convolutional encoders
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Example: Feedback encoder
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Classification of convolutional encoders

Systematic Encoder:

@ A rate R = k/n convolutional encoder whose k information
sequences appear unchanged among the n code sequences is called a
systematic encoder, and its generator matrix is called a systematic
generator matrix.
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Classification of convolutional encoders

Systematic Encoder:

@ A rate R = k/n convolutional encoder whose k information
sequences appear unchanged among the n code sequences is called a
systematic encoder, and its generator matrix is called a systematic
generator matrix.

@ In figure, a systematic rate R = 1/2 feedback convolutional encoder
is shown.
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Classification of convolutional encoders

Nonsystematic Encoder:

@ In a nonsystematic convolutional encoder, the k information
sequences do not appear unchanged in the n code sequences.
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Classification of convolutional encoders

Nonsystematic Encoder:

@ In a nonsystematic convolutional encoder, the k information
sequences do not appear unchanged in the n code sequences.

@ In figure, a nonsystematic rate R = 1/2 feedforward convolutional
encoder is shown.
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Equivalent Encoder

@ Two convolutional generator matrices G(D) and G (D) are
equivalent if they encode the same code.
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Equivalent Encoder

@ Two convolutional generator matrices G(D) and G (D) are
equivalent if they encode the same code.

@ Two convolutional encoders are equivalent if their generator
matrices are equivalent.
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Equivalent Encoder

@ Two convolutional generator matrices G(D) and G (D) are
equivalent if they encode the same code.

@ Two convolutional encoders are equivalent if their generator
matrices are equivalent.

@ Two generator matrices G(D) and G (D) are equivalent if and only
if there exists a rational invertible matrix T(D) such that

G (D) = T(D)G(D)
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Equivalent Encoder

@ Two convolutional generator matrices G(D) and G (D) are
equivalent if they encode the same code.

@ Two convolutional encoders are equivalent if their generator
matrices are equivalent.

@ Two generator matrices G(D) and G (D) are equivalent if and only
if there exists a rational invertible matrix T(D) such that

@ Example: The generator matrix, G(D) = [1 H%] and
G (D) =[1+ D 1] are equivalent.
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Equivalent Encoder

@ Consider the nonsystematic encoder

1+D D 1+D
D 1 1
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Equivalent Encoder

@ Consider the nonsystematic encoder

1+D D 1+D
G(D):[ D 1 1 ]

@ Step 1: Row 1 = [1/(1+D)][Row 1].

6,(D) — “) D/(11+D) ”
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Equivalent Encoder

@ Consider the nonsystematic encoder

1+D D 1+D
G(D):[ D 1 1 ]

@ Step 1: Row 1 = [1/(1+D)][Row 1].

6,(D) = “) D/(11+D) ”

@ Step 2: Row 2 = Row 2 + [D][Row 1].

1 D/(1 + D) 1
G2(D) = [ 0 (1+D+D?)/(1+D) 1+D]
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Equivalent Encoder

@ Consider the nonsystematic encoder

1+D D 1+D
G(D):[ D 1 1 ]

@ Step 1: Row 1 = [1/(1+D)][Row 1].

6,(D) = [ é D/(11+ D) i ]
® Step 2: Row 2 = Row 2 + [D][Row 1].
G2(D) = [ (1) (1+DDJ/r(});L)/[2+D) 1+10 ]
@ Step 3: Row 2 = [(1+D)/(1+ D + D?)][Row 2].
Gs(D) = [ é D/(11+ 7 (1+D2)/(11+D+D2) ]
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Equivalent Encoder

@ Step 4: Row 1 = Row 1 + [D/(1+D)][Row 2].
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Equivalent Encoder

@ Step 4: Row 1 = Row 1 + [D/(1+D)][Row 2].

@ Modified Systematic generator matrix

G/(D) = 1 (1) 1/(1+ D+ D?)

0 (1+ D?)/(1L+ D+ D?)
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Catastrophic Encoder

@ A convolutional encoder is catastrophic if it encodes some
information sequence with infinitely many non-zero symbols into a
code sequence with finitely many non-zero symbols.
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Catastrophic Encoder

@ A convolutional encoder is catastrophic if it encodes some
information sequence with infinitely many non-zero symbols into a
code sequence with finitely many non-zero symbols.

@ This means that a finite number of channel errors may result in
infinitely many errors in the receiver.
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Catastrophic Encoder

@ A convolutional encoder is catastrophic if it encodes some
information sequence with infinitely many non-zero symbols into a
code sequence with finitely many non-zero symbols.

@ This means that a finite number of channel errors may result in
infinitely many errors in the receiver.

@ Example:
G(D)=[1+D 1+ D’
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Catastrophic Encoder

@ A convolutional encoder is catastrophic if it encodes some
information sequence with infinitely many non-zero symbols into a
code sequence with finitely many non-zero symbols.

@ This means that a finite number of channel errors may result in
infinitely many errors in the receiver.

@ Example:
G(D)=[1+D 1+ D’
o If the input sequence u(D) = [H%} =1+ D+ D?+ -+, then the

output sequence, [1 1+ D] has only weight 3, even thought the
information sequence has infinite weight.
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Controller Canonical Form Realization

@ In controller canonical form realization, to realize a rate R = k/n
convolutional encoder, k shift register are used for input sequences,
and n adders are used to form the output sequences.
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Controller Canonical Form Realization

@ In controller canonical form realization, to realize a rate R = k/n
convolutional encoder, k shift register are used for input sequences,
and n adders are used to form the output sequences.

@ the k input sequences enter the shift registers at the left end of each
shift register.
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Controller Canonical Form Realization

@ In controller canonical form realization, to realize a rate R = k/n
convolutional encoder, k shift register are used for input sequences,
and n adders are used to form the output sequences.

@ the k input sequences enter the shift registers at the left end of each
shift register.

@ The n adders used to obtain output sequences are external to the
shift register.
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Controller Canonical Form Realization

@ In controller canonical form realization, to realize a rate R = k/n
convolutional encoder, k shift register are used for input sequences,
and n adders are used to form the output sequences.

@ the k input sequences enter the shift registers at the left end of each
shift register.

@ The n adders used to obtain output sequences are external to the
shift register.

@ In Figure 3.6(a) (next page), a rate R = 1, nonsystematic
convolutional encoder with following generator function G(D) is
implemented in controller canonical form realization.

_ [ +AD+ -+ fy D"+ £, D7

G(D
(5) 1+ gD+ q@D?>+ -+ gD
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Controller Canonical Form Realization

(@)

Figure 3.6
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Observer Canonical Form Realization

@ In observer canonical form realization, to realize a rate R = k/n
convolutional encoder, n shift register are used for output sequences.
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Observer Canonical Form Realization

@ In observer canonical form realization, to realize a rate R = k/n
convolutional encoder, n shift register are used for output sequences.

@ The k input sequences enter the adders internal to the shift registers.
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Observer Canonical Form Realization

@ In observer canonical form realization, to realize a rate R = k/n
convolutional encoder, n shift register are used for output sequences.

@ The k input sequences enter the adders internal to the shift registers.

@ The lowest degree term in the generator polynomial represent the
connections to the right hand side of the shift registers.
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Observer Canonical Form Realization

@ In observer canonical form realization, to realize a rate R = k/n
convolutional encoder, n shift register are used for output sequences.

@ The k input sequences enter the adders internal to the shift registers.

@ The lowest degree term in the generator polynomial represent the
connections to the right hand side of the shift registers.

@ In Figure 3.6(b) (next page), a rate R = 1, nonsystematic
convolutional encoder with following generator function G(D) is
implemented in observer canonical form realization.

G(D) - fo+ AD+ - + fua D71 4 £, D7
| 1+ @D+ q@D?+-- -+ qnD"
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Observer Canonical Form Realization

RRR %
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Figure 3.6
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Realization of Convolutional encoder

Example 3.7:

@ Let's consider a rate R = 2/3 systematic feedforward encoder with
generator matrix
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Realization of Convolutional encoder

Example 3.7:

@ Let's consider a rate R = 2/3 systematic feedforward encoder with
generator matrix

[1 0 14+D+D?
c';(D)_[01 1+D ]

@ The parity check matrix can be written as

H(D) = [hO(D) h®(D) 1}:[1+D+D2 1+D 1].
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Realization of Convolutional encoder

Example 3.7:

@ Let's consider a rate R = 2/3 systematic feedforward encoder with
generator matrix

[1 0 14+D+D?
c';(D)_[01 1+D ]

@ The parity check matrix can be written as
H(D) = [hO(D) h®(D) 1} ~1+D+D* 1+D 1],

@ The controller canonical form realization results in (3,2, 3) encoder.
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Realization of Convolutional encoder

Example 3.7:

@ Let's consider a rate R = 2/3 systematic feedforward encoder with
generator matrix

[1 0 14+D+D?
c';(D)_[01 1+D ]

@ The parity check matrix can be written as
H(D) = [hO(D) h®(D) 1} ~1+D+D* 1+D 1],

@ The controller canonical form realization results in (3,2, 3) encoder.

@ The observer canonical form realization results in (3,2,2) encoder.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory

Controller Canonical Form Realization

~ (0
@,
- 1
u® \
w\ )
N '
(a)
Example 3.7

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Observer Canonical Form Realization
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Example 3.7
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Minimal encoder

@ A generator matrix of a convolutional code is minimal if its number
of states is minimal over all equivalent generator matrices.
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Minimal encoder

@ A generator matrix of a convolutional code is minimal if its number
of states is minimal over all equivalent generator matrices.

@ A minimal encoder is a realization of a minimal encoding matrix
G(D) with the minimal number of memory elements over all
realizations of G(D).
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