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Probabilistic decoding

Theorem:

Consider a sequence of m independent random variables
A = [A1,A2, . . . ,Am], where P(Ak = 1) = pk . Then

P(A has even parity) =
1

2
+

1

2

m∏
k=1

(1− 2pk)

and

P(A has odd parity) =
1

2
−

1

2

m∏
k=1

(1− 2pk).
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Probabilistic decoding

Consider the function
∏m

l=1(1− Pl + Pl t)

The coefficient of t i is the probability of t i’s.

The function
∏m

l=1(1− Pl − Pl t) is identical except for the fact that
all odd powers of t are negative.

Adding these two functions, all even powers of t double up and odd
powers cancel each other.

Letting t = 1, and dividing by 2 we get the probability of getting
even ones.

P(A has even parity) =
1

2
+

1

2

m∏
k=1

(1− 2pk)

Similarly we can prove

P(A has odd parity) =
1

2
−

1

2

m∏
k=1

(1− 2pk).
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Notation

Consider the code with parity check matrix, H:

H =

⎡
⎢⎢⎣

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

⎤
⎥⎥⎦
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Consider the code with parity check matrix, H:

H =

⎡
⎢⎢⎣

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

⎤
⎥⎥⎦

c = [c0, c1, . . . , cn−1] is the codeword under consideration.
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⎡
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1 1 1 0 0 0 0 0
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1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

⎤
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c = [c0, c1, . . . , cn−1] is the codeword under consideration.

Xi = (−1)ci ∈ {+1,−1}, the BPSK-modulated version of ci .
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Consider the code with parity check matrix, H:

H =

⎡
⎢⎢⎣

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

⎤
⎥⎥⎦

c = [c0, c1, . . . , cn−1] is the codeword under consideration.

Xi = (−1)ci ∈ {+1,−1}, the BPSK-modulated version of ci .

Yi = Xi + ni , where ni is zero-mean Gaussian with variance σ2.
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Notation

Consider the code with parity check matrix, H:

H =

⎡
⎢⎢⎣

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

⎤
⎥⎥⎦

c = [c0, c1, . . . , cn−1] is the codeword under consideration.

Xi = (−1)ci ∈ {+1,−1}, the BPSK-modulated version of ci .

Yi = Xi + ni , where ni is zero-mean Gaussian with variance σ2.

Rj = {i : hj,i = 1} = location of 1’s in row j of H = the indices of
the bits checked by the j th parity check.
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Notation

Consider the code with parity check matrix, H:

H =

⎡
⎢⎢⎣

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

⎤
⎥⎥⎦

c = [c0, c1, . . . , cn−1] is the codeword under consideration.

Xi = (−1)ci ∈ {+1,−1}, the BPSK-modulated version of ci .

Yi = Xi + ni , where ni is zero-mean Gaussian with variance σ2.

Rj = {i : hj,i = 1} = location of 1’s in row j of H = the indices of
the bits checked by the j th parity check.

Ci = {j : hj,i = 1} = location of 1’s in column i of H = the parity
checks involving the i th codebit.
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Notation

Rj\i = Rj\{i}
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Rj\i = Rj\{i}

Ci\j = Ci\{j}

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Notation

Rj\i = Rj\{i}

Ci\j = Ci\{j}

ck,j(i) = k th bit in the j th parity check involving the code bit ci . (So
j ∈ Ci and k ∈ Rj .)
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Ci\j = Ci\{j}

ck,j(i) = k th bit in the j th parity check involving the code bit ci . (So
j ∈ Ci and k ∈ Rj .)

Yk,j(i) = (−1)ck,j (i)+ nk,j(i), received signal corresponding to ck,j(i).
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Notation

Rj\i = Rj\{i}

Ci\j = Ci\{j}

ck,j(i) = k th bit in the j th parity check involving the code bit ci . (So
j ∈ Ci and k ∈ Rj .)

Yk,j(i) = (−1)ck,j (i)+ nk,j(i), received signal corresponding to ck,j(i).

pi = P(ci = 1|Yi = yi ) = P(Xi = −1|Yi = yi ) =
1/(1 + exp(2yi/σ

2)).
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Notation

Rj\i = Rj\{i}

Ci\j = Ci\{j}

ck,j(i) = k th bit in the j th parity check involving the code bit ci . (So
j ∈ Ci and k ∈ Rj .)

Yk,j(i) = (−1)ck,j (i)+ nk,j(i), received signal corresponding to ck,j(i).

pi = P(ci = 1|Yi = yi ) = P(Xi = −1|Yi = yi ) =
1/(1 + exp(2yi/σ

2)).

pk,j(i) = P(ck,j(i) = 1|yk,j(i)).
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Theorem

The a posteriori probability (APP) ratio for ci given the received
word y = [y0, y1, . . . , yn−1] and given the event Si = { the bits in c

satisfy the parity check constraints involving ci}, is given by

P(ci = 0|y, Si)

P(ci = 1|y, Si)
=

(1− pi)

pi

∏
j∈Ci

(
1 +

∏
i ′∈Rj\i

(1 − 2pi ′j(i))
)

∏
j∈Ci

(
1−

∏
i ′∈Rj\i

(1 − 2pi ′j(i))
)
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Proof

From Bayes’ rule:

P(ci = 0|y, Si)

P(ci = 1|y, Si)
=

1−pi︷ ︸︸ ︷
P(ci = 0|yi )P(Si |ci = 0, y)

P(ci = 1|yi )︸ ︷︷ ︸
pi

P(Si |ci = 1, y)
.
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Proof

From Bayes’ rule:

P(ci = 0|y, Si)

P(ci = 1|y, Si)
=

1−pi︷ ︸︸ ︷
P(ci = 0|yi )P(Si |ci = 0, y)

P(ci = 1|yi )︸ ︷︷ ︸
pi

P(Si |ci = 1, y)
.

Let’s consider the term P(Si |ci = 0, y). Given ci = 0, Si holds if
each of wc parity checks involving ci has the property that the
wr − 1 bits in the check other than ci have even parity.
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Proof

From Bayes’ rule:

P(ci = 0|y, Si)

P(ci = 1|y, Si)
=

1−pi︷ ︸︸ ︷
P(ci = 0|yi )P(Si |ci = 0, y)

P(ci = 1|yi )︸ ︷︷ ︸
pi

P(Si |ci = 1, y)
.

Let’s consider the term P(Si |ci = 0, y). Given ci = 0, Si holds if
each of wc parity checks involving ci has the property that the
wr − 1 bits in the check other than ci have even parity.

For parity check j ∈ Ci , the probability that the wr − 1 bits other
than ci have even parity is given by the lemma to be:

1

2
+

1

2

∏
i ′∈Rj\i

(1− 2pi ′,j(i)).
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Probabilistic Decoding

The independence of the yi ’s means that the probability that all wc

parity checks involving ci are satisfied (given ci = 0) is just

P(Si |ci = 0, y) =
∏
j∈Ci

⎛
⎝1

2
+

1

2

∏
i ′∈Rj\i

(1− 2pi ′j(i))

⎞
⎠ .
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Probabilistic Decoding

The independence of the yi ’s means that the probability that all wc

parity checks involving ci are satisfied (given ci = 0) is just

P(Si |ci = 0, y) =
∏
j∈Ci

⎛
⎝1

2
+

1

2

∏
i ′∈Rj\i

(1− 2pi ′j(i))

⎞
⎠ .

Similar analysis assuming ci = 1 yields

P(Si |ci = 1, y) =
∏
j∈Ci

⎛
⎝1

2
−

1

2

∏
i ′∈Rj\i

(1− 2pi ′j(i))

⎞
⎠ .
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Probabilistic Decoding

rj,i (x) is the message passed from the j th check node to the bit node
Xi = x .

rj,i (+1) = P(Parity check j satisfied|ci = 0, other bits

in check j have distributions given by q)

=
1

2
+

1

2

∏
i ′∈Rj\i

(1− 2qi ′,j(−1)).

and so

rj,i (−1) = P(Parity check j satisfied|ci = 1, other bits

in check j have distributions given by q)

= P(Parity check j not satisfied|ci = 0, other bits

in check j have distributions given by q)
= 1− rj,i (+1).
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Probabilistic Decoding

qi ,j(x) is the message passed from the bit node Xi = x to the j th

check node.

qi ,j(+1) = P(Xi = +1| yi , information from check nodes

other than j th check node).

qi ,j(+1)

qi ,j(−1)
=

(1 − pi)

pi

∏
j′∈Ci\j

rj′,i(+1)∏
j′∈Ci\j

rj′,i(−1)
.
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Probabilistic Decoding

For all i , j such that hj,i = 1. (So i indexes the bit nodes and j indexes
the parity checks.)

Step 0: Initialize:
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Probabilistic Decoding

For all i , j such that hj,i = 1. (So i indexes the bit nodes and j indexes
the parity checks.)

Step 0: Initialize:

Set pi = P(ci = 1|Yi = yi ) = 1/(1 + exp(2yi/σ
2)).
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Probabilistic Decoding

For all i , j such that hj,i = 1. (So i indexes the bit nodes and j indexes
the parity checks.)

Step 0: Initialize:

Set pi = P(ci = 1|Yi = yi ) = 1/(1 + exp(2yi/σ
2)).

qi,j(+1) = 1− pi .
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Probabilistic Decoding

For all i , j such that hj,i = 1. (So i indexes the bit nodes and j indexes
the parity checks.)

Step 0: Initialize:

Set pi = P(ci = 1|Yi = yi ) = 1/(1 + exp(2yi/σ
2)).

qi,j(+1) = 1− pi .
qi,j(−1) = pi .
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Probabilistic Decoding

For all i , j such that hj,i = 1. (So i indexes the bit nodes and j indexes
the parity checks.)

Step 0: Initialize:

Set pi = P(ci = 1|Yi = yi ) = 1/(1 + exp(2yi/σ
2)).

qi,j(+1) = 1− pi .
qi,j(−1) = pi .

Step 1: Pass information from check nodes to bit nodes:
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Probabilistic Decoding

For all i , j such that hj,i = 1. (So i indexes the bit nodes and j indexes
the parity checks.)

Step 0: Initialize:

Set pi = P(ci = 1|Yi = yi ) = 1/(1 + exp(2yi/σ
2)).

qi,j(+1) = 1− pi .
qi,j(−1) = pi .

Step 1: Pass information from check nodes to bit nodes:

rj,i (+1) = 1
2
+ 1

2

∏
i′∈Rj\i

(1− 2qi′,j (−1))
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Probabilistic Decoding

For all i , j such that hj,i = 1. (So i indexes the bit nodes and j indexes
the parity checks.)

Step 0: Initialize:

Set pi = P(ci = 1|Yi = yi ) = 1/(1 + exp(2yi/σ
2)).

qi,j(+1) = 1− pi .
qi,j(−1) = pi .

Step 1: Pass information from check nodes to bit nodes:

rj,i (+1) = 1
2
+ 1

2

∏
i′∈Rj\i

(1− 2qi′,j (−1))

rj,i (−1) = 1− rj,i (+1).
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Probabilistic Decoding

Step 2: Pass information from bit nodes to check nodes:
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Probabilistic Decoding

Step 2: Pass information from bit nodes to check nodes:

qi,j(+1) = Ki,j(1− pi )
∏

j′∈Ci\j
rj′,i(+1)
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qi,j(+1) = Ki,j(1− pi )
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qi,j(−1) = Ki,jpi
∏
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Probabilistic Decoding

Step 2: Pass information from bit nodes to check nodes:

qi,j(+1) = Ki,j(1− pi )
∏

j′∈Ci\j
rj′,i(+1)

qi,j(−1) = Ki,jpi
∏

j′∈Ci\j
rj′,i(−1)

Here, the constants Ki,j are chosen so as to guarantee that
qi,j(+1) + qi,j(−1) = 1.
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Step 2: Pass information from bit nodes to check nodes:

qi,j(+1) = Ki,j(1− pi )
∏

j′∈Ci\j
rj′,i(+1)

qi,j(−1) = Ki,jpi
∏

j′∈Ci\j
rj′,i(−1)

Here, the constants Ki,j are chosen so as to guarantee that
qi,j(+1) + qi,j(−1) = 1.

Step 3: Compute the APP ratios for each bit position i :
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Probabilistic Decoding

Step 2: Pass information from bit nodes to check nodes:

qi,j(+1) = Ki,j(1− pi )
∏

j′∈Ci\j
rj′,i(+1)

qi,j(−1) = Ki,jpi
∏

j′∈Ci\j
rj′,i(−1)

Here, the constants Ki,j are chosen so as to guarantee that
qi,j(+1) + qi,j(−1) = 1.

Step 3: Compute the APP ratios for each bit position i :

Qi (+1) = Ki (1− pi )
∏

j∈Ci
rj,i(+1)
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Probabilistic Decoding

Step 2: Pass information from bit nodes to check nodes:

qi,j(+1) = Ki,j(1− pi )
∏

j′∈Ci\j
rj′,i(+1)

qi,j(−1) = Ki,jpi
∏

j′∈Ci\j
rj′,i(−1)

Here, the constants Ki,j are chosen so as to guarantee that
qi,j(+1) + qi,j(−1) = 1.

Step 3: Compute the APP ratios for each bit position i :

Qi (+1) = Ki (1− pi )
∏

j∈Ci
rj,i(+1)

Qi (−1) = Kipi
∏

j∈Ci
rj,i(−1)
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Probabilistic Decoding

Step 2: Pass information from bit nodes to check nodes:

qi,j(+1) = Ki,j(1− pi )
∏

j′∈Ci\j
rj′,i(+1)

qi,j(−1) = Ki,jpi
∏

j′∈Ci\j
rj′,i(−1)

Here, the constants Ki,j are chosen so as to guarantee that
qi,j(+1) + qi,j(−1) = 1.

Step 3: Compute the APP ratios for each bit position i :

Qi (+1) = Ki (1− pi )
∏

j∈Ci
rj,i(+1)

Qi (−1) = Kipi
∏

j∈Ci
rj,i(−1)

Here, the constants Ki are chosen so as to guarantee that
Qi (+1) + Qi (−1) = 1.
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Probabilistic Decoding

Step 4: Compute the hard decisions and decide if it’s time to stop.

ĉi =

{
1 if Qi (−1) ≥ 0.5;
0 otherwise.
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Probabilistic Decoding

Step 4: Compute the hard decisions and decide if it’s time to stop.

ĉi =

{
1 if Qi (−1) ≥ 0.5;
0 otherwise.

If( ([ĉ0, ĉ1, . . . , ĉn−1]H
T = 0) or (Maximum # of iterations reached)

then stop, else repeat Steps 1-4.
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Example

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

Consider the code with parity check matrix, H:

H =

⎡
⎢⎢⎣

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

⎤
⎥⎥⎦
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Example

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

Consider the code with parity check matrix, H:

H =

⎡
⎢⎢⎣

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

⎤
⎥⎥⎦

n = 8, m = n − k = 4, dmin = 3
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Example
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Example

1

1

1

1

1

1

0

0

+1

+1

−1 −1

−1 −1

−1−1

+0.2 +0.2 −0.9

+0.6 +0.5 −1.1

−0.4 −1.2

= 0.5
2

modulation

transmission
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Example

Initialization:

qi ,j(x) = 1/(1 + exp(−2xyi/σ
2)) for each i , j such that hj,i = 1.

Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

An introduction to coding theory



Example

Initialization:

qi ,j(x) = 1/(1 + exp(−2xyi/σ
2)) for each i , j such that hj,i = 1.

q0,0(−1) = q0,2(−1) = 0.310 and q0,0(+1) = q0,2(−1) = 0.690.
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Example

Initialization:

qi ,j(x) = 1/(1 + exp(−2xyi/σ
2)) for each i , j such that hj,i = 1.

q0,0(−1) = q0,2(−1) = 0.310 and q0,0(+1) = q0,2(−1) = 0.690.

q1,0(−1) = q1,3(−1) = 0.310 and q1,0(+1) = q1,3(+1) = 0.690.
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Example

Initialization:

qi ,j(x) = 1/(1 + exp(−2xyi/σ
2)) for each i , j such that hj,i = 1.

q0,0(−1) = q0,2(−1) = 0.310 and q0,0(+1) = q0,2(−1) = 0.690.

q1,0(−1) = q1,3(−1) = 0.310 and q1,0(+1) = q1,3(+1) = 0.690.

q2,0(−1) = 0.973 and q2,0(+1) = 0.027.
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Example

Initialization:

qi ,j(x) = 1/(1 + exp(−2xyi/σ
2)) for each i , j such that hj,i = 1.

q0,0(−1) = q0,2(−1) = 0.310 and q0,0(+1) = q0,2(−1) = 0.690.

q1,0(−1) = q1,3(−1) = 0.310 and q1,0(+1) = q1,3(+1) = 0.690.

q2,0(−1) = 0.973 and q2,0(+1) = 0.027.

q3,1(−1) = q3,2(−1) = 0.083 and q3,1(+1) = q3,1(+1) = 0.917.
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Example

q4,1(−1) = q4,3(−1) = 0.119 and q4,1(+1) = q4,3(+1) = 0.881.
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Example

q4,1(−1) = q4,3(−1) = 0.119 and q4,1(+1) = q4,3(+1) = 0.881.

q5,1(−1) = 0.988 and q5,1(+1) = 0.012.
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Example

q4,1(−1) = q4,3(−1) = 0.119 and q4,1(+1) = q4,3(+1) = 0.881.

q5,1(−1) = 0.988 and q5,1(+1) = 0.012.

q6,2(−1) = 0.832 and q6,2(+1) = 0.168.
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Example

q4,1(−1) = q4,3(−1) = 0.119 and q4,1(+1) = q4,3(+1) = 0.881.

q5,1(−1) = 0.988 and q5,1(+1) = 0.012.

q6,2(−1) = 0.832 and q6,2(+1) = 0.168.

q7,3(−1) = 0.992 and q7,3(+1) = 0.008.
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Example

Now compute rj,i ’s from qi ,j ’s:

r0,0(+1) =
1

2
+

1

2

∏
i ′∈R0\0

(1− 2qi ′,0(−1))

=
1

2
+

1

2
(1 − 2q1,0(−1))(1− 2q2,0(−1))

=
1

2
+

1

2
(1 − 2(0.31))(1− 2(0.973))

= 0.320.
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Now compute rj,i ’s from qi ,j ’s:

r0,0(+1) =
1
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+
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∏
i ′∈R0\0

(1− 2qi ′,0(−1))

=
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+
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(1 − 2q1,0(−1))(1− 2q2,0(−1))

=
1

2
+

1

2
(1 − 2(0.31))(1− 2(0.973))

= 0.320.

In a similar way:
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Example

Now compute rj,i ’s from qi ,j ’s:

r0,0(+1) =
1

2
+

1

2

∏
i ′∈R0\0

(1− 2qi ′,0(−1))

=
1

2
+

1

2
(1 − 2q1,0(−1))(1− 2q2,0(−1))

=
1

2
+

1

2
(1 − 2(0.31))(1− 2(0.973))

= 0.320.

In a similar way:

r0,1(+1) = 0.5 + 0.5(1− 2(0.31))(1 − 2(0.973)) = 0.32
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Example

Now compute rj,i ’s from qi ,j ’s:

r0,0(+1) =
1

2
+

1

2

∏
i ′∈R0\0

(1− 2qi ′,0(−1))

=
1

2
+

1

2
(1 − 2q1,0(−1))(1− 2q2,0(−1))

=
1

2
+

1

2
(1 − 2(0.31))(1− 2(0.973))

= 0.320.

In a similar way:

r0,1(+1) = 0.5 + 0.5(1− 2(0.31))(1 − 2(0.973)) = 0.32
r0,2(+1) = 0.5 + 0.5(1− 2(0.31))(1 − 2(0.31)) = 0.57
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Example

Now compute rj,i ’s from qi ,j ’s:

r0,0(+1) =
1

2
+

1

2

∏
i ′∈R0\0

(1− 2qi ′,0(−1))

=
1

2
+

1

2
(1 − 2q1,0(−1))(1− 2q2,0(−1))

=
1

2
+

1

2
(1 − 2(0.31))(1− 2(0.973))

= 0.320.

In a similar way:

r0,1(+1) = 0.5 + 0.5(1− 2(0.31))(1 − 2(0.973)) = 0.32
r0,2(+1) = 0.5 + 0.5(1− 2(0.31))(1 − 2(0.31)) = 0.57
r1,3(+1) = 0.5 + 0.5(1− 2(0.119))(1 − 2(0.988)) = 0.128
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Now compute rj,i ’s from qi ,j ’s:

r0,0(+1) =
1

2
+
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∏
i ′∈R0\0

(1− 2qi ′,0(−1))

=
1

2
+

1

2
(1 − 2q1,0(−1))(1− 2q2,0(−1))

=
1

2
+

1

2
(1 − 2(0.31))(1− 2(0.973))

= 0.320.

In a similar way:

r0,1(+1) = 0.5 + 0.5(1− 2(0.31))(1 − 2(0.973)) = 0.32
r0,2(+1) = 0.5 + 0.5(1− 2(0.31))(1 − 2(0.31)) = 0.57
r1,3(+1) = 0.5 + 0.5(1− 2(0.119))(1 − 2(0.988)) = 0.128
r2,0(+1) = 0.5 + 0.5(1− 2(0.083))(1 − 2(0.832)) = 0.223.
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Example

Now compute rj,i ’s from qi ,j ’s:

r0,0(+1) =
1

2
+

1

2

∏
i ′∈R0\0

(1− 2qi ′,0(−1))

=
1

2
+

1

2
(1 − 2q1,0(−1))(1− 2q2,0(−1))

=
1

2
+

1

2
(1 − 2(0.31))(1− 2(0.973))

= 0.320.

In a similar way:

r0,1(+1) = 0.5 + 0.5(1− 2(0.31))(1 − 2(0.973)) = 0.32
r0,2(+1) = 0.5 + 0.5(1− 2(0.31))(1 − 2(0.31)) = 0.57
r1,3(+1) = 0.5 + 0.5(1− 2(0.119))(1 − 2(0.988)) = 0.128
r2,0(+1) = 0.5 + 0.5(1− 2(0.083))(1 − 2(0.832)) = 0.223.

rj,i (−1) = 1− rj,i (+1).
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Example

Now compute qi ,j ’s from rj,i ’s:

q̃0,0(+1) = (1− p0)
∏

j′∈C0\0

rj′,0(+1)

= (0.69)r2,0(+1)

= (0.69)(0.223) = 0.154.

and

q̃0,0(−1) = p0
∏

j′∈C0\0

rj′,0(−1)

= 0.31r2,0(−1)

= 0.31(0.777) = 0.241.
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Example

This means

q0,0(+1) =
0.154

0.154 + 0.241
= 0.39

and

q0,0(−1) =
0.241

0.154 + 0.241
= 0.61.
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Example

This means

q0,0(+1) =
0.154

0.154 + 0.241
= 0.39

and

q0,0(−1) =
0.241

0.154 + 0.241
= 0.61.

Finally, compute the APP’s:
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Example

This means

q0,0(+1) =
0.154

0.154 + 0.241
= 0.39

and

q0,0(−1) =
0.241

0.154 + 0.241
= 0.61.

Finally, compute the APP’s:

Note: Q̃i (+1) = q̃i ,j(+1) · rj,i (+1), which means

Q̃0(+1) = q̃0,0(+1) · r0,0(+1) = 0.154 · 0.32 = 0.0493

and

Q̃0(−1) = q̃0,0(−1) · r0,0(−1) = 0.241 · 0.68 = 0.164.
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Example

This yields the APP

Q0(+1) =
0.0493

0.0493 + 0.164
= 0.23

and

Q0(−1) =
0.164

0.0493 + 0.164
= 0.77.
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Example

This yields the APP

Q0(+1) =
0.0493

0.0493 + 0.164
= 0.23

and

Q0(−1) =
0.164

0.0493 + 0.164
= 0.77.

The other Qi ’s can be computed similarly.
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Probabilistic Decoding

The most significant feature of this decoding scheme is that the
computation per digit per iteration is independent of block length.
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Probabilistic Decoding

The most significant feature of this decoding scheme is that the
computation per digit per iteration is independent of block length.

Average number of iterations required to decode is bounded by a
quantity proportional to the log of the log of the block length.
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