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Linear block code

Problem #1: Is it possible to have a linear (16, 10, 8) binary block
code? Justify your answer.
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Linear block code

Problem #1: Is it possible to have a linear (16, 10, 8) binary block
code? Justify your answer.

Solutions: No, according to singleton bound dmin ≤ n − k + 1
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Linear block code

Problem #2: Is (24,12,8) binary Golay code, a perfect code? Give
reasons?
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Linear block code

Problem #2: Is (24,12,8) binary Golay code, a perfect code? Give
reasons?

Solutions: No, it doesn’t satisfies Hamming bound with equality.
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Linear block code

Problem #2: Is (24,12,8) binary Golay code, a perfect code? Give
reasons?

Solutions: No, it doesn’t satisfies Hamming bound with equality.

Hamming Bound: For any binary (n, k) linear code with minimum
distance 2t + 1 or greater, the number of parity-check bits satisfies
the following inequality:
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Perfect codes satisfy Hamming bound with equality.
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Problem #2: Is (24,12,8) binary Golay code, a perfect code? Give
reasons?

Solutions: No, it doesn’t satisfies Hamming bound with equality.

Hamming Bound: For any binary (n, k) linear code with minimum
distance 2t + 1 or greater, the number of parity-check bits satisfies
the following inequality:
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Perfect codes satisfy Hamming bound with equality.

(24, 12, 8) Golay code is a triple error correcting code.
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Problem #2: Is (24,12,8) binary Golay code, a perfect code? Give
reasons?

Solutions: No, it doesn’t satisfies Hamming bound with equality.

Hamming Bound: For any binary (n, k) linear code with minimum
distance 2t + 1 or greater, the number of parity-check bits satisfies
the following inequality:
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Perfect codes satisfy Hamming bound with equality.

(24, 12, 8) Golay code is a triple error correcting code.

R.H.S. of the Hamming bound =
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= 1 + 24 + 276 + 2024 = 2325
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Problem #2: Is (24,12,8) binary Golay code, a perfect code? Give
reasons?

Solutions: No, it doesn’t satisfies Hamming bound with equality.

Hamming Bound: For any binary (n, k) linear code with minimum
distance 2t + 1 or greater, the number of parity-check bits satisfies
the following inequality:
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Perfect codes satisfy Hamming bound with equality.

(24, 12, 8) Golay code is a triple error correcting code.

R.H.S. of the Hamming bound =

1 +
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= 1 + 24 + 276 + 2024 = 2325

However, L.H.S. of the Hamming bound is 212 = 4096.
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Linear block code

Problem #3: If C is maximum distance separable (MDS) code, its
dual is also MDS code.
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Linear block code

Problem #3: If C is maximum distance separable (MDS) code, its
dual is also MDS code.

Solutions: If C is a MDS code, then d = (n − k + 1).
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Linear block code

Problem #3: If C is maximum distance separable (MDS) code, its
dual is also MDS code.

Solutions: If C is a MDS code, then d = (n − k + 1).

This implies that no (n − k) or fewer columns of H are linearly
dependent.
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Linear block code

Problem #3: If C is maximum distance separable (MDS) code, its
dual is also MDS code.

Solutions: If C is a MDS code, then d = (n − k + 1).

This implies that no (n − k) or fewer columns of H are linearly
dependent.

The dual code Cd has H as the generator matrix. So, the length of
Cd is n and dimension n − k .
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Linear block code

Problem #3: If C is maximum distance separable (MDS) code, its
dual is also MDS code.

Solutions: If C is a MDS code, then d = (n − k + 1).

This implies that no (n − k) or fewer columns of H are linearly
dependent.

The dual code Cd has H as the generator matrix. So, the length of
Cd is n and dimension n − k .

To prove that the dual code is MDS, we have to show that the dual
code has minimum distance of k + 1 (n − (n − k) + 1).
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Linear block code

Problem #3: If C is maximum distance separable (MDS) code, its
dual is also MDS code.

Solutions: If C is a MDS code, then d = (n − k + 1).

This implies that no (n − k) or fewer columns of H are linearly
dependent.

The dual code Cd has H as the generator matrix. So, the length of
Cd is n and dimension n − k .

To prove that the dual code is MDS, we have to show that the dual
code has minimum distance of k + 1 (n − (n − k) + 1).

Suppose there exists a codeword, v of weight d ′ ≤ k . Then v has
atmost k ones and (n − k) zero coordinates. Lets assume the last
(n − k) coordinates are zero.
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Linear block code

We can write the matrix H(n−k)×n as
[
A(n−k)×k H′

(n−k)×(n−k)

]
,

where H’ has (n − k) independent columns, so invertible.
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We can write the matrix H(n−k)×n as
[
A(n−k)×k H′

(n−k)×(n−k)

]
,

where H’ has (n − k) independent columns, so invertible.

Hence the rows of H’ are also independent.
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Linear block code

We can write the matrix H(n−k)×n as
[
A(n−k)×k H′

(n−k)×(n−k)

]
,

where H’ has (n − k) independent columns, so invertible.

Hence the rows of H’ are also independent.

To get zero in all the last (n − k) coordinates such as v, is to use
zero linear combination of the rows H’. Therefore the entire
codeword is zero. So d

′ ≥ k + 1.
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Linear block code

We can write the matrix H(n−k)×n as
[
A(n−k)×k H′

(n−k)×(n−k)

]
,

where H’ has (n − k) independent columns, so invertible.

Hence the rows of H’ are also independent.

To get zero in all the last (n − k) coordinates such as v, is to use
zero linear combination of the rows H’. Therefore the entire
codeword is zero. So d

′ ≥ k + 1.

But from singleton bound we know d
′ ≤ k +1. So we get d ′ = k +1
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