
Digital Control Module 11 Lecture 1

Module 11: Introduction to Optimal Control

Lecture Note 1

1 Introduction to optimal control

In the past lectures, although we have designed controllers based on some criteria, but we have
never considered optimality of the controller with respect to some index. In this context, Linear
Quadratic Regular is a very popular design technique.

The optimal control theory relies on design techniques that maximize or minimize a given
performance index which is a measure of the effectiveness of the controller.

Euler-Lagrange equation is a very popular equation in the context of minimization or maxi-
mization of a functional.

A functional is a mapping or transformation that depends on one or more functions and the
values of the functionals are numbers. Examples of functionals are performance indices which
will be introduced later.

In the following section we would discuss the Euler-Lagrange equation for discrete time sys-
tems.

1.1 Discrete Euler-Lagrange Equation

A large class of optimal digital controller design aims to minimize or maximize a performance
index of the following form.

J =
N−1
∑

k=0

F (k,x(k),x(k + 1),u(k))

where F (k,x(k),x(k + 1),u(k)) is a differentiable scalar function and x(k) ∈ Rn, u(k) ∈ Rm.

The minimization or maximization of J is subject to the following constraint.

x(k + 1) = f(k,x(k),u(k))
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The above can be the state equation of the system, as well as other equality or inequality con-
straints.

Design techniques for optimal control theory mostly rely on the calculus of variation, according
to which, the problem of minimizing one function while it is subject to equality constraints is
solved by adjoining the constraint to the function to be minimized.

Let λ(k + 1) ∈ Rn×1 be defined as the Lagrange multiplier. Adjoining J with the constraint
equation,

Ja =
N−1
∑

k=0

F (k,x(k),x(k + 1),u(k))+ < λ(k + 1), [x(k + 1)− f(k,x(k),u(k))] >

where < . > denotes the inner product.

Calculus of variation says that the minimization of J with constraint is equivalent to the mini-
mization of Ja without any constraint.

Let x∗(k), x∗(k + 1), u∗(k)) and λ∗(k + 1) represent the vectors corresponding to optimal
trajectories. Thus one can write

x(k) = x∗(k) + ǫη(k)

x(k + 1) = x∗(k + 1) + ǫη(k + 1)

u(k) = u∗(k) + δµ(k)

λ(k + 1) = λ∗(k + 1) + γν(k + 1)

where η(k), µ(k), ν(k) are arbitrary vectors and ǫ, δ, γ are small constants.

Substituting the above four equations in the expression of Ja,

Ja =
N−1
∑

k=0

F (k,x∗(k) + ǫη(k),x∗(k + 1) + ǫη(k + 1),u∗(k) + δµ(k)) +

< λ∗(k + 1) + γν(k + 1), [x∗(k + 1) + ǫη(k + 1)− f(k,x∗(k) + ǫη(k),u∗(k) + δµ(k))] >

To simplify the notation, let us denote Ja as

Ja =
N−1
∑

k=0

Fa(k,x(k),x(k + 1),u(k)),λ(k + 1))
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Expanding Fa using Taylor series around x∗(k), x∗(k + 1), u∗(k)) and λ∗(k + 1), we get

Fa(k,x(k),x(k + 1),u(k),λ(k + 1)) = Fa(k,x
∗(k),x∗(k + 1),u∗(k),λ∗(k + 1)) +

〈

ǫη(k),
∂F ∗

a (k)

∂x∗(k)

〉

+

〈

ǫη(k + 1),
∂F ∗

a (k)

∂x∗(k + 1)

〉

+

〈

δµ(k),
∂F ∗

a (k)

∂u∗(k)

〉

+

〈

γν(k + 1),
∂F ∗

a (k)

∂λ∗(k + 1)

〉

+ higher order terms

where
F ∗

a (k) = Fa(k,x
∗(k),x∗(k + 1),u∗(k),λ∗(k + 1))

The necessary condition for Ja to be minimum is

∂Ja

∂ǫ

∣

∣

∣

∣

ǫ=δ=γ=0

= 0

∂Ja

∂δ

∣

∣

∣

∣

ǫ=δ=γ=0

= 0

∂Ja

∂γ

∣

∣

∣

∣

ǫ=δ=γ=0

= 0

Substituting Fa into the expression of Ja and applying the necessary conditions,

N−1
∑

k=0

[〈

η(k),
∂F ∗

a (k)

∂x∗(k)

〉

+

〈

η(k + 1),
∂F ∗

a (k)

∂x∗(k + 1)

〉]

= 0 (1)

N−1
∑

k=0

〈

µ(k),
∂F ∗

a (k)

∂u∗(k)

〉

= 0 (2)

N−1
∑

k=0

〈

ν(k + 1),
∂F ∗

a (k)

∂λ∗(k + 1)

〉

= 0 (3)

Equation (1) can be rewritten as

N−1
∑

k=0

〈

η(k),
∂F ∗

a (k)

∂x∗(k)

〉

= −

N
∑

k=1

〈

η(k),
∂F ∗

a (k − 1)

∂x∗(k)

〉

= −

N−1
∑

k=0

〈

η(k),
∂F ∗

a (k − 1)

∂x∗(k)

〉

+

〈

η(k),
∂F ∗

a (k − 1)

∂x∗(k)

〉∣

∣

∣

∣

k=0

−

〈

η(k),
∂F ∗

a (k − 1)

∂x∗(k)

〉∣

∣

∣

∣

k=N
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where
F ∗

a (k − 1) = Fa(k − 1,x∗(k − 1),x∗(k),u∗(k − 1),λ∗(k))

Rearranging terms in the last equation, we get

N−1
∑

k=0

〈

η(k),
∂F ∗

a (k)

∂x∗(k)
+

∂F ∗

a (k − 1)

∂x∗(k)

〉

+

〈

η(k),
∂F ∗

a (k − 1)

∂x∗(k)

〉∣

∣

∣

∣

k=N

k=0

= 0 (4)

According to the fundamental lemma of calculus of variation, equation (4) is satisfied for any
η(k) only when the two components of the equation are individually zero. Thus,

∂F ∗

a (k)

∂x∗(k)
+

∂F ∗

a (k − 1)

∂x∗(k)
= 0 (5)

〈

η(k),
∂F ∗

a (k − 1)

∂x∗(k)

〉∣

∣

∣

∣

k=N

k=0

= 0 (6)

Equation (5) is known as the discrete Euler-Lagrange equation and equation (6) is called the
transversality condition which is nothing but the boundary condition needed to solve equation
(5).

Discrete Euler-Lagrange equation is the necessary condition that must be satisfied for Ja to
be an extremal.

With reference to the additional conditions (2) and (3), for arbitrary µ(k) and ν(k + 1),

∂F ∗

a (k)

∂u∗

j(k)
= 0, j = 1, 2, · · ·m (7)

∂F ∗

a (k)

∂λ∗

i (k + 1)
= 0, i = 1, 2, · · ·n (8)

Equation (8) leads to

x∗(k + 1) = f(k,x∗(k),u∗(k))

which means that the state equation should satisfy the optimal trajectory. Equation (7) gives
the optimal control u∗(k) in terms of λ∗(k + 1)

In a variety of the design problems, the initial state x(0) is given. Thus η(0) = 0 since x(0) is
fixed. Hence the tranversality condition reduces to

〈

η(k),
∂F ∗

a (k − 1)

∂x∗(k)

〉∣

∣

∣

∣

k=N

= 0
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Again, a number of optimal control problems are classified according to the final conditions.

If x(N) is given and fixed, the problem is known as fixed-endpoint design. On the other
hand, if x(N) is free, the problem is called a free endpoint design.

For fixed endpoint (x(N) = fixed, η(N) = 0) problems, no transversality condition is required
to solve.

For free endpoint the transversality condition is given as follows.

∂F ∗

a (k − 1)

∂x∗(k)

∣

∣

∣

∣

k=N

= 0

For more details, one can consult Digital Control Systems by B. C. Kuo.
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