Digital Control Module 11 Lecture 3

Module 11: Introduction to Optimal Control
Lecture Note 3

1 Linear Quadratic Regulator

Consider a linear system modeled by

x(k+1) = Ax(k) + Bu(k), x(ko) = xo

where x(k) € R" and u(k) € R™. The pair (A, B) is controllable.

The objective is to design a stabilizing linear state feedback controller u(k) = —Kax(k) which
will minimize the quadratic performance index, given by,

7= (@ (k)Q(k) + u” (k) Rul(k))

k=0
where, Q@ = QT > 0 and R = RT > 0. Such a controller is denoted by u*.

We first assume that a linear state feedback optimal controller exists such that the closed
loop system

z(k+1)=(A—- BK)x(k)

is asymptotically stable.

This assumption implies that there exists a Lyapunov function V(x(k)) = =(k)? Pz(k) for
the closed loop system, for which the forward difference

AV(xz(k)) =V(x(k+1)) — V(x(k))

is negative definite.

We will now use the theorem as discussed in the previous lecture which says if the controller w*
is optimal, then
min(AV (z(k)) + =’ (k)Qz(k) + u” (k)Ru(k)) =0
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Now, finding an optimal controller implies that we have to find an appropriate Lyapunov func-

tion which is then used to construct the optimal controller.

Let us first find the w* that minimizes the function
[ = fu(k)) = AV (z(k)) + 2" (k)Qx(k) + u' (k) Ru(k)

If we substitute AV in the above expression, we get

fu(k)) = ' (k+1)Px(k+1) -z (k)Pz(k) + =" (k)Qx(k) + u” (k) Ru(k)

(
= (Ax(k) + Bu(k))" P(Az(k) + Bu(k)) — ' (k) Px(k) + =" (k)Qz (k) + u”

Taking derivative of the above function with respect to w(k),

If (u(k)) _ T T
—8u(k) = 2(Axz(k) + Bu(k))" PB+2u' R

= 22" (k)A"PB + 2u” (k)(B"PB + R)
= 07

(k) Ru(k)

The matrix BT PB + R is positive definite since R is positive definite, thus it is invertible.

Hence,

u*(k) = —(B"PB + R)'B"PAz(k) = —Kz(k)

where K = (BTPB + R)"'BTPA. Let us denote BTPB + R by S. Thus

u*(k) = —S'BTPAx(k)

We will now check whether or not w* satisfies the second order sufficient condition for mini-

mization. Since

Pfluk)) 0
ou?(k) ou(k)
= 2(B"PB+R)>0

(22" (k)ATPB + 2u” (k)(BTPB + R))

u* satisfies the second order sufficient condition to minimize f.
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The optimal controller can thus be constructed if an appropriate Lyapunov matrix P is found.
For that let us first find the closed loop system after introduction of the optimal controller.

x(k+1)=(A—-BS'BTPA)x(k)

Since the controller satisfies the hypothesis of the theorem, discussed in the previous lecture,

' (k+1)Px(k +1) — 27 (k) Px(k) + =7 (k)Qz(k) + w*" (k)Ru*(k) = 0
Putting the expression of u* in the above equation,

' (k)(A - BS'BTPA)Y'P(A - BS'B"PA)x(k) — ' (k)Px(k) + =" (k)Qz(k) +
' (k)ATPBST'RS™'BT PAx(k)
x’ (K)ATPAz(k) — 2" (k)A" PBS™' BT PAx (k) — " (k)A"PBS™'BT PAx(k) +
T(K)ATPBS™'BTPBS'BT PAx(k) — " (k) Pz(k) + =" (k)Qx (k) +
T(k)ATPBS™'RS™'B" P Az (k)
=7 (k) AT PAx(k) — " (k) Pz (k) + = (k)Qx (k) — 22" (k)A' PBS™' BT PAx (k) +
" (K)A'PBS ' (B"PB + R)S'BTPAz(k)
= 2T (K)ATPAx(k) — 7 (k)Px(k) + =7 (k)Qx (k) —
227 (k)ATPBS™'SS'BTPAx(k) + = (k)AT PBS™ ' BT PAx (k)
=x"(k)(A"PA— P+ Q- A"PBS'B"PA)x(k) =0

r
Zr

The above equation should hold for any value of (k). Thus

ATPA—-P+Q—-ATPBS™'BTPA=0

which is the well known discrete Algebraic Riccati Equation (ARE). By solving this equation
we can get P to form the optimal regulator to minimize a given quadratic performance index.

Example 1: Consider the following linear system

2(k+1) = {095 0?8} w(k)+m u(k), @ — m

y(k) = [1 0] =(k)
Design an optimal controller to minimize the following performance index.

J =Y (22 +z139 + 25 + 0.107)
k=0

I. Kar 3



Digital Control Module 11 Lecture 3

Also, find the optimal cost.

Solution: The performance index J can be rewritten as

7= (" (k) {0%5 Oﬂ (k) + 0.1u?)

k=0
1 05
Thus, @ = [0_5 1 } and R =0.1.
Let us take P as
P _ |:p1 p2:|
P2 P3
Then,
0.25p3 — ;1 0.5p2 + 0.4p3 — p2
ATPA-P=
|:05p2 + 04])3 — P2 D1 + 16]92 + 064]?3 — P3

0.25p3 —p1 + 1 0.4p3 — 0.5ps + 0.5
ATpA—P =
@ {0.4193 —0.5p + 0.5 p1+1.6ps — 0.36ps + 1

Tpp_ | 0.5p3 T4 _ B
ATPB = Lh L 0.8p | B'"PA=1[0.5p; p2+08ps], S=0.1+p;
_ 1 05]93
ATPBST'BTPA = = 0.5 +0.8
0.1 +p3 Do + 08p3 |: P3 P2 p3]
B 1 0.25p3 0.5pops + 0.4p3
" 0.1+ p3 |0.5paps + 0.4p2  p2 + 1.6paps + 0.64p3

The discrete ARE is

ATPA—-P+Q—ATPBS'BTPA = 0

Or,
0.5paps + 0.4p2
0.25p; — 1 + 1 — g2bi 0.4p5 — 0.5py + 0.5 — pgﬁ:p Ps [0 0}
. 3 =
0.4ps — 0.5py + 0.5 — S22 0Ny 4 ) Gy — 0.36py + 1 — LL0P2s 000 00
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We can get three equations from the discrete ARE. These are

0.25p3
0.25ps —p1 +1— =0
P3 — D1 0.1 + ps

0.5paps + 0.4p3

=0
0.1+ p3

0.4ps — 0.5py + 0.5 —

p3 + 1.6paps + 0.64p3

=0
0.1+ p3

p1+ 1.6ps — 0.36ps + 1 —

Since the above three equations comprises three unknown parameters, these parameters can be
solved uniquely, as

pr=1.0238, po=0.5513, p;=1.9811

The optimal control law can be found out as

u*(k) = —(R+ B"PB) 'B"PAx(k)
= —[0.4760  1.0265]x(k)
= —0.4760z, (k) — 1.026525(k)

The optimal cost can be found as

J = =z Pz
~ [1.0238 0.5513} H
0.5513 1.98111| |1

= 4.1075
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