
Digital Control Module 9 Lecture 2

Module 9: State Feedback Control Design

Lecture Note 2

1 Set Point Tracking

We discussed in the last lecture that a state feedback design can be done to place poles such
that the system is stable. However, the tracking is not guaranteed.

1.1 Feed Forward Gain Design

Consider the state space model

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

A control law is selected
u(k) = −Kx(k) +Nr(k)

as shown in figure 1 so that output can track any step reference command signal r. The closed
loop dynamics of this configuration becomes

x(k + 1) = (A−BK)x(k) +BNr(k)
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Figure 1: State feedback controller with feed forward gain for set point tracking
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At steady state, say x = xss, y = Cxss = r and u = uss. Since the states or the output do not
change with time in steady state, we can write

xss = Axss + Buss

Let us assume

ũ(k) = u(k)− uss, x̃(k) = x(k)− xss, ỹ(k) = y(k)− r

Thus in shifted domain,

x̃(k + 1) = Ax(k) + Bu(k)− Axss −Buss

= Ax̃(k) + Bũ(k)

ỹ(k) = Cx̃(k)

If we design a stable control ũ(k) = −Kx̃(k) in the shifted domain, it will drive the state
variables in shifted domain to 0.

x̃(k) → 0 ⇒ x(k) → xss ⇒ y(k) → r

The problem of tracking is thus converted into a simple regulator problem.

u(k)− uss = −Kx(k) +Kxss

⇒ u(k) = −Kx(k) + uss +Kxss

We know that xss = Axss + Buss. Thus

0 = (A− I)xss + Buss

= (A− I)xss + BKxss − BKxss + Buss

(A− BK − I)xss +B(uss +Kxss)

⇒ xss = −(A− BK − I)−1B(uss +Kxss)

Now,
Cxss = −C(A− BK − I)−1B(uss +Kxss) = r

Thus the possible solution for N is uss +Kxss = Nr where

N−1 = −C(A−BK − I)−1B

and the control input is
u(k) = −Kx(k) +Nr

Example 1: Consider the following system

x(k + 1) =

[

0 1
−0.47 1.47

]

x(k) +

[

0
1

]

u(k)

y(k) = [0.007 0.009] x(k)
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Design a state feedback controller such that the output follows a step input with the desired
closed loop poles at 0.5 and 0.6.

Solution: Desired characteristic equation:

z2 − 1.1z + 0.3 = 0

Open loop characteristic equation:

z2 − 1.47z + 0.47 = 0

The controller can be designed using the following expression

u(k) = −Kx(k) +Nr

Since the system is in controllable canonical form, where the controllability matrix is UC =
[

0 1
1 1.47

]

(non singular), the state feedback gain can be straight away designed as

K = [0.3− 0.47 − 1.1 + 1.47] = [−0.17 0.37]

N can be designed as
N−1 = −C(A− BK − I)−1B = 0.08

Thus
u(k) = −[−0.17 0.37] x(k) + 12.5 r

1.2 State Feedback with Integral Control

Calculation of feed forward gain requires exact knowledge of the system parameters. Change in
parameters will effect the steady state error.

In this scheme we feedback the states as well as the integral of the output error which will
eventually make the actual output follow the desired one.

One way to introduce the integrator is to augment the integral state v with the plant state
vector x.

v integrates the difference between the output y(k) and reference r. By using backward rectan-
gular integration, it can be defined as

v(k) = v(k − 1) + y(k)− r
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Thus

v(k + 1) = v(k) + y(k + 1)− r

= v(k) + C[Ax(k) + Bu(k)]− r

If we augment the above with the state equation,

[

x(k + 1)
v(k + 1)

]

=

[

A 0

CA 1

] [

x(k)
v(k)

]

+

[

B

CB

]

u(k) +

[

0

−1

]

r

Since r is constant, if the system is stable, then x(k + 1) = x(k) and v(k + 1) = v(k) in the
steady state. So, in steady state,

[

0

−1

]

r =

[

xss

vss

]

−

[

A 0

CA 1

] [

xss

vss

]

−

[

B

CB

]

uss

Let us define x̃a = [x− xss v − vss]
T and ũ = u− uss. This implies

x̃a(k + 1) = Āx̃a(k) + B̄ũ(k)

where Ā =

[

A 0

CA 1

]

and B̄ =

[

B

CB

]

The design problem is now converted to a standard regulation problem. We need to design

ũ(k) = −Kx̃a(k)

where K = [Kp Ki], Ki is the integral gain. Now,

u− uss = −[Kp Ki]

[

x− xss

v − vss

]

= −Kp(x− xss)−Ki(v − vss)

The steady state terms in the above expression must balance, which implies

u(k) = −Kpx(k)−Kiv(k)

At steady state,

x̃a(k + 1)− x̃a(k) = 0

v(k + 1)− v(k) = = 0

We can write from the above expression y(k) − r = 0 at steady state. In other words, y(k)
follows r at steady state. The block diagram of state feedback with integral control is shown in
Figure 2.
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Figure 2: State feedback controller with integral control for set point tracking

Example: Consider the problem of digital control of the following plant

G(s) =
1

s(s+ 2)

for a sampling period T = 0.1 sec using a state feedback with integral control such that the
plant output follows a step input. The closed loop continuous poles of the system must be
located at −1± j and −5 respectively.

Solution:

Discretization of the plant model gives

G(z) = Z

[(

1− e−Ts

s

)(

1

s(s+ 2)

)]

=
0.005z + 0.004

z2 − 1.82z + 0.82

The discrete state space model of the plant is:

x(k + 1) =

[

0 1
−0.82 1.82

]

x(k) +

[

0
1

]

u(k)

y(k) = [0.004 0.005] x(k)

Augmenting the plant state vector with the integral state v(k), defined by

v(k) = v(k − 1) + y(k)− r

we obtain




x1(k + 1)
x2(k + 1)
v(k + 1)



 =





0 1 0
−0.82 1.82 0
−0.004 0.013 1









x1(k)
x2(k)
v(k)



+





0
1

0.005



 u(k) +





0
0
−1



 r
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In terms of the state variables representing deviations from the steady state,

x̃a(k + 1) =





0 1 0
−0.82 1.82 0
−0.004 0.013 1



 x̃a(k) +





0
1

0.005



 ũ(k)

where x̃a = [x − xss v − vss]
T and ũ = u − uss. ũ(k) can be designed for the desired pole

locations, 0.9± 0.1j and 0.6 (in discrete domain) using Ackermann’s formula, as,

ũ(k) = −Kx̃a(k) = −[−0.328 0.416 0.889] x̃a(k)

Thus
u(k) = −[−0.328 0.416] x(k)− 0.889 v(k)
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