
Digital Control Module 5 Lecture 6

Module 5: Design of Sampled Data Control Systems

Lecture Note 6

1 Compensator Design Using Bode Plot

In this lecture we would revisit the continuous time design techniques using frequency domain
since these can be directly applied to design for digital control system by transferring the
loop transfer function in z-plane to w-plane.

1.1 Phase lead compensator

If we look at the frequency response of a simple PD controller, it is evident that the magni-
tude of the compensator continuously grows with the increase in frequency.

The above feature is undesirable because it amplifies high frequency noise that is typically
present in any real system.

In lead compensator, a first order pole is added to the denominator of the PD controller
at frequencies well higher than the corner frequency of the PD controller.

A typical lead compensator has the following transfer function.

C(s) = K
τs+ 1

ατs+ 1
, where, α < 1

1

α
is the ratio between the pole zero break point (corner) frequencies.

Magnitude of the lead compensator is K

√
1 + ω2τ 2

√
1 + α2ω2τ 2

. And the phase contributed by the

lead compensator is given by

φ = tan−1 ωτ − tan−1 αωτ

Thus a significant amount of phase is still provided with much less amplitude at high fre-
quencies.
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The frequency response of a typical lead compensator is shown in Figure 1 where the magni-

tude varies from 20 log
10
K to 20 log

10

K

α
and maximum phase is always less than 90o (around

60o in general).
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Figure 1: Frequency response of a lead compensator

It can be shown that the frequency where the phase is maximum is given by

ωmax =
1

τ
√
α

The maximum phase corresponds to

sinφmax =
1− α

1 + α

⇒ α =

(

1− sin(φmax)

1 + sin(φmax)

)

The magnitude of C(s) at ωmax is
K
√
α
.
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Example 1: Consider the following system

G(s) =
1

s(s+ 1)
, H(s) = 1

Design a cascade lead compensator so that the phase margin (PM) is at least 45o and steady
state error for a unit ramp input is ≤ 0.1.

The lead compensator is

C(s) = K
τs+ 1

ατs+ 1
, where, α < 1

When s → 0, C(s) → K.

Steady state error for unit ramp input is

1

lims→0 sC(s)G(s)
=

1

C(0)
=

1

K

Thus
1

K
= 0.1, or K = 10.

PM of the closed loop system should be 45o. Let the gain crossover frequency of the uncom-
pensated system with K be ωg.

G(jω) =
1

jω(jω + 1)

Mag. =
1

ω
√
1 + ω2

Phase = −90o − tan−1 ω

⇒
10

ωg

√

1 + ω2
g

= 1

100

ω2
g
(1 + ω2

g
)

= 1

⇒ ωg = 3.1

Phase angle at ωg = 3.1 is −90 − tan−1 3.1 = −162o. Thus the PM of the uncompensated
system with K is 18o.

If it was possible to add a phase without altering the magnitude, the additional phase lead
required to maintain PM=45o is 45o − 18o = 27o at ωg = 3.1 rad/sec.

However, maintaining same low frequency gain and adding a compensator would increase

I. Kar 3



Digital Control Module 5 Lecture 6

the crossover frequency. As a result of this, the actual phase margin will deviate from the
designed one. Thus it is safe to add a safety margin of ǫ to the required phase lead so that if
it devaites also, still the phase requirement is met. In general ǫ is chosen between 5o to 15o.

So the additional phase requirement is 27o + 10o = 37o. The lead part of the compen-
sator will provide this additional phase at ωmax.

Thus

φmax = 37o

⇒ α =

(

1− sin(φmax)

1 + sin(φmax)

)

= 0.25

The only parameter left to be designed is τ . To find τ , one should locate the frequency at

which the uncompensated system has a logarithmic magnitude of −20 log
10

1
√
α
.

Select this frequency as the new gain crossover frequency since the compensator provides

a gain of 20 log
10

1
√
α

at ωmax. Thus

ωmax = ωgnew
=

1

τ
√
α

In this case ωmax = ωgnew
= 4.41. Thus

τ =
1

4.41
√
α

= 0.4535

The lead compensator is thus

C(s) = 10
0.4535s+ 1

0.1134s+ 1

With this compensator actual phase margin of the system becomes 49.6o which meets the
design criteria. The corresponding Bode plot is shown in Figure 2

Example 2:

Now let us consider that the system as described in the previous example is subject to a
sampled data control system with sampling time T = 0.2 sec. Thus

Gz(z) = (1− z−1)Z
[

1

s2(s+ 1)

]

=
0.0187z + 0.0175

z2 − 1.8187z + 0.8187

I. Kar 4



Digital Control Module 5 Lecture 6

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram
Gm = Inf dB (at Inf rad/sec) ,  Pm = 49.6 deg (at 4.41 rad/sec)

Frequency  (rad/sec)

Figure 2: Bode plot of the compensated system for Example 1

The bi-linear transformation

z =
1 + wT/2

1− wT/2
=

(1 + 0.1w)

(1− 0.1w)

will transfer Gz(z) into w-plane, as

Gw(w) =

(

1 + w

300

) (

1− w

10

)

w(w + 1)
[please try the simplification]

We need first design a phase lead compensator so that PM of the compensated system is at
least 500 with Kv = 2 . The compensator in w-plane is

C(w) = K
1 + τw

1 + ατw
0 < α < 1

Design steps are as follows.

• K has to be found out from the Kv requirement.

• Compute the gain crossover frequency ωg and phase margin of the uncompensated
system after introducing K in the system.

• At ωg check the additional/required phase lead, add safety margin, find out φmax.
Calculate α from the required φmax.

I. Kar 5



Digital Control Module 5 Lecture 6

• Since the lead part of the compensator provides a gain of 20 log
10

1
√
α
, find out the fre-

quency of the uncompensated system where the logarithmic magnitude is−20 log
10

1
√
α
.

This will be the new gain crossover frequency where the maximum phase lead should
occur.

• Make ωmax = ωgnew
.

• Calculate τ from the relation

ωgnew
= ωmax =

1

τ
√
α

Now,

Kv = lim
w→0

wC(w)Gw(w) = 2

⇒ K = 2

Using MATLAB command “margin”, phase margin of the system with K = 2 is computed
as 31.60 with ωg = 1.26 rad/sec, as shown in Figure 3.
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Figure 3: Bode plot of the uncompensated system for Example 2

Thus the required phase lead is 50o−31.6o = 18.4o. After adding a safety margin of 11.6o,
φmax becomes 30o. Hence

α =

(

1− sin(30o)

1 + sin(30o)

)

= 0.33
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From the frequency response of the system it can be found out that at ω = 1.75 rad/sec, the

magnitude of the system is −20 log
10

1
√
α
. Thus ωgnew

= ωmax = 1.75 rad/sec. This gives

1.75 =
1

τ
√
α

Or,

τ =
1

1.75
√
0.33

= 0.99

Thus the controller in w-plane is

C(w) = 2
1 + 0.99w

1 + 0.327w

The Bode plot of the compensated system is shown in Figure 4.
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Figure 4: Bode plot of the compensated system for Example 2

Re-transforming the above controller into z-plane using the relation w = 10
z − 1

z + 1
, we get

the controller in z-plane, as

Cz(z) ∼= 2
2.55z − 2.08

z − 0.53
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