
Digital Control Module 9 Lecture 3

Module 9: State Feedback Control Design

Lecture Note 3

1 State Estimators or Observers

• One should note that although state feedback control is very attractive because of precise
computation of the gain matrixK, implementation of a state feedback controller is possible
only when all state variables are directly measurable with help of some kind of sensors.

• Due to the excess number of required sensors or unavailability of states for measurement,
in most of the practical situations this requirement is not met.

• Only a subset of state variables or their combinations may be available for measurements.
Sometimes only output y is available for measurement.

• Hence the need for an estimator or observer is obvious which estimates all state variables
while observing input and output.

Full Order Observer: If the state observer estimates all the state variables, regardless of
whether some are available for direct measurements or not, it is called a full order observer.

Reduced Order Observer: An observer that estimates fewer than “n” states of the sys-
tem is called reduced order observer.

Minimum Order Observer: If the order of the observer is minimum possible then it is
called minimum order observer.

2 Full Order Observers

Consider the following system

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

where x ∈ Rn×1, u ∈ Rm×1 and y ∈ Rp×1.

Assumption: The pair (A, C) is observable.
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Goal: To construct a dynamic system that will estimate the state vector based on the in-
formation of the plant input u and output y.

2.1 Open Loop Estimator

The schematic of an open loop estimator is shown in Figure 1.

u(k)
x(k + 1) = Ax(k) + Bu(k) C

x(k) y(k)

x̂(k + 1) = Ax̂(k) + Bu(k) C
x̂(k) ŷ(k)

Figure 1: Open Loop Observer

The dynamics of this estimator are described by the following

x̂(k + 1) = Ax̂(k) +Bu(k)

ŷ(k) = Cx̂(k)

where x̂ is the estimate of x and ŷ is the estimate of y.

Let x̃ = x̂− x be the estimation error. Then the error dynamics are defined by

x̃(k + 1) = x̂(k + 1)− x(k + 1)

= Ax̂(k) + Bu(k)− Ax(k)−Bu(k)

= Ax̃(k)

with the initial estimation error as

x̃(0) = x̂(0)− x(0)

If the eigenvalues of A are inside the unit circle then x̃ will converge to 0. But we have no
control over the convergence rate.

Moreover, A may have eigenvalues outside the unit circle. In that case x̃ will diverge from
0. Thus the open loop estimator is impractical.
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2.2 Luenberger State Observer

Consider the system x(k+1) = Ax(k)+Bu(k). Luenberger observer is shown in Figure 2. The
observer dynamics can be expressed as:

x̂(k + 1) = Ax̂(k) + Bu(k) + L(y(k)− ŷ(k)) (1)

u(k)
x(k + 1) = Ax(k) + Bu(k)

x(k)
C

+

−

y(k)

B

ŷ(k)+
+

+

z−1
x̂(k)

C

L

x̂(k + 1)

A

Figure 2: Luenberger observer

The closed loop error dynamics can be derived as:

x̃(k) = x̂(k)− x(k)

x̂(k + 1)− x(k + 1) = A(x̂(k)− x(k)) + LC(x(k)− x̂(k))

x̃(k + 1) = (A− LC)x̃(k)

It can be seen that x̃ → 0 if L can be designed such that (A − LC) has eigenvalues inside the
unit circle of z-plane.

The convergence rate can also be controlled by properly choosing the closed loop eigenvalues.

Computation of Observer gain matrix L

The task is to place the poles of |A−LC|. Necessary and sufficient condition for arbitrary pole
placement is that the pair should be controllable.

Assumption: The pair (A, C) is observable. Thus, from the theorem of duality, the pair
(AT , CT ) is controllable.
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You should note that the eigenvalues of AT − CTLT are same as that of A − LC. It is same
as a hypothetical pole placement problem for the system x̄(k+ 1) = AT x̄(k) +CT ū(k), using a
control law ū(k) = −LT x̄(k).

Example:

x(k + 1) =

[

0 1
20 0

]

x(k) +

[

0
1

]

u(k)

y(k) = [1 0]x(k)

The observability matrix

UO =

[

C

CA

]

=

[

1 0
0 1

]

is non singular. Thus the pair (A, C) is observable. The observer dynamics are

x̂(k + 1) = Ax̂(k) + Bu(k) + LC(x(k)− x̂(k))

L should be designed such that the observer poles are at 0.2 and 0.3.

We design LT such that AT − CTLT has eigenvalues at 0.2 and 0.3.

AT =

[

0 20
1 0

]

, CT =

[

1
0

]

Using Ackermann’s formula, LT = [−0.5 20.06]. Thus

L =

[

−0.5
20.06

]

2.3 Controller with Observer

The observer dynamics:

x̂(k + 1) = Ax̂(k) + Bu(k) + LC(x(k)− x̂(k))

Combining with the system dynamics

[

x(k + 1)
x̂(k + 1)

]

=

[

A 0
LC A− LC

] [

x(k)
x̂(k)

]

+

[

B

B

]

u(k)

y(k) = [C 0]

[

x(k)
x̂(k)

]

Since the states are unavailable for measurements, the control input is

u(k) = −Kx̂(k)
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Putting the control law in the augmented equation

[

x(k + 1)
x̂(k + 1)

]

=

[

A −BK

LC A− LC −BK

] [

x(k)
x̂(k)

]

y(k) = [C 0]

[

x(k)
x̂(k)

]

The error dynamics is
x̃(k + 1) = (A− LC)x̃(k)

If we augment the above with the system dynamics, we get

[

x(k + 1)
x̃(k + 1)

]

=

[

A− BK −BK

0 A− LC

] [

x(k)
x̃(k)

]

y(k) = [C 0]

[

x(k)
x̃(k)

]

where the dimension of the augmented system matrix is R2n×2n. Looking at the matrix one
can easily understand that 2n eigenvalues of the augmented matrix are equal to the individual
eigenvalues of A−BK and A− LC.

Conclusion: We can reach to a conclusion from the above fact is the design of control law,
i.e., A− BK is separated from the design of the observer, i.e., A− LC.

The above conclusion is commonly referred to as separation principle.

The block diagram of controller with observer is shown in Figure 3.
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x(k + 1) = Ax(k) + Bu(k)
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Figure 3: Controller with observer
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