
Digital Control Module 1 Lecture 3

Module 1: Introduction to Digital Control

Lecture Note 3

1 Mathematical Modeling of Sampling Process

Sampling operation in sampled data and digital control system is used to model either the
sample and hold operation or the fact that the signal is digitally coded. If the sampler is used
to represent S/H (Sample and Hold) and A/D (Analog to Digital) operations, it may involve
delays, finite sampling duration and quantization errors. On the other hand if the sampler
is used to represent digitally coded data the model will be much simpler. Following are two
popular sampling operations:

1. Single rate or periodic sampling

2. Multi-rate sampling

We would limit our discussions to periodic sampling only.

1.1 Finite pulse width sampler

In general, a sampler is the one which converts a continuous time signal into a pulse modulated
or discrete signal. The most common type of modulation in the sampling and hold operation is
the pulse amplitude modulation.

The symbolic representation, block digram and operation of a sampler are shown in Figure 1.
The pulse duration is p second and sampling period is T second. Uniform rate sampler is a
linear device which satisfies the principle of superposition. As in Figure 1, p(t) is a unit pulse
train with period T .

p(t) =
∞
∑

k=−∞

[us(t− kT )− us(t− kT − p)]

where us(t) represents unit step function. Assume that leading edge of the pulse at t = 0
coincides with t = 0. Thus f ∗

p (t) can be written as

f ∗

p (t) = f(t)
∞
∑

k=−∞

[us(t− kT )− us(t− kT − p)]
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Figure 1: Finite pulse width sampler:(a)Symbolic representation (b)Block diagram (c)Operation

Frequency domain characteristics:

Since p(t) is a periodic function, it can be represented by a Fourier series, as

p(t) =
∞
∑

n=−∞

Cne
jnwst

where

ws =
2π

T
is the sampling frequency and Cn’s are the complex Fourier series coefficients.

Cn =
1

T

∫ T

0

p(t)e−jnwstdt

Since p(t) = 1 for 0 ≤ t ≤ p and 0 for rest of the period,

Cn =
1

T

∫ p

0

e−jnwstdt

=

[

1

−jnwsT
.e−jnwst

]p

0

=
1− e−jnwsp

jnwsT
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Cn can be rearranged as,

Cn = =
e−jnwsp/2(ejnwsp/2 − e−jnwsp/2)

jnwsT

=
2je−jnwsp/2 sin(nwsp/2)

jnwsT

=
p

T

sin(nwsp/2)

nwsp/2
e−jnwsp/2

Since f ∗

p (t) is also periodic, it can be written as

f ∗

p (t) =
∞
∑

n=−∞

Cnf(t)e
jnwst

⇒ F ∗

p (jw) = F [f ∗

p (t)], where F represents Fourier transform

=

∫

∞

−∞

f ∗

p (t)e
−jwtdt

Using complex shifting theorem of Fourier transform

F
[

ejnwstf(t)
]

= F (jw − jnws)

⇒ F ∗

p (jw) =
∞
∑

n=−∞

CnF (jw − jnws)

Since n is from −∞ to ∞, the above equation can also be written as

F ∗

p (jw) =
∞
∑

n=−∞

CnF (jw + jnws)

where,

Co = lim
n→0

Cn

=
p

T

F ∗

p (jw)|n=0 = C0F (jw) =
p

T
F (jw)

The above equation implies that the frequency contents of the original signal f(t) are still
present in the sampler output except that the amplitude is multiplied by the factor p

T
.

For n 6= 0, Cn is a complex quantity, the magnitude of which is,

|Cn| =
p

T

∣

∣

∣

∣

sin(nwsp/2)

nwsp/2

∣

∣

∣

∣
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Magnitude of F ∗

p (jw)

∣

∣F ∗

p (jw)
∣

∣ =

∣

∣

∣

∣

∣

∞
∑

n=−∞

CnF (jw + jnws)

∣

∣

∣

∣

∣

≤

∞
∑

n=−∞

|Cn||F (jw + jnws)|

Sampling operation retains the fundamental frequency but in addition, sampler output also
contains the harmonic components.

F (jw + jnws) for n = ±1,±2, .....

According to Shannon’s sampling theorem, “if a signal contains no frequency higher than wc

rad/sec, it is completely characterized by the values of the signal measured at instants of time
separated by T = π/wc sec.”

Sampling frequency rate should be greater than the Nyquist rate which is twice the high-
est frequency component of the original signal to avoid aliasing.

If the sampling rate is less than twice the input frequency, the output frequency will be different
from the input which is known as aliasing. The output frequency in that case is called alias

frequency and the period is referred to as alias period.

The overlapping of the high frequency components with the fundamental component in the

frequency spectrum is sometimes referred to as folding and the frequency
ws

2
is often known

as folding frequency. The frequency wc is called Nyquist frequency.

A low sampling rate normally has an adverse effect on the closed loop stability. Thus, often we
might have to select a sampling rate much higher than the theoretical minimum.

1.2 Flat-top approximation of finite-pulsewidth sampling

The Laplace transform of f ∗

p (t) can be written as

F ∗

p (s) =
∞
∑

n=−∞

1− e−jnwsp

jnwsT
F (s+ jnws)

If the sampling duration p is much smaller than the sampling period T and the smallest time
constant of the signal f(t), the sampler output can be approximated by a sequence of rectangular
pulses since the variation of f(t) in the sampling duration will be less significant. Thus for
k = 0, 1, 2, .........., f ∗

p (t) can be expressed as an infinite series

f ∗

p (t) =
∞
∑

k=0

f(kT ) [us(t− kT )− us(t− kT − p)]
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Taking Laplace transform,

F ∗

p (s) =
∞
∑

k=0

f(kT )

[

1− e−ps

s

]

e−kTs

Since p is very small, e−ps can be approximated by taking only the first 2 terms, as

1− e−ps = 1− [1− ps+
(ps)2

2!
.......]

∼= ps

Thus, F ∗

p (s)
∼= p

∞
∑

k=0

f(kT )e−kTs

In time domain,

f ∗

p (t) = p
∞
∑

k=0

f(kT )δ(t− kT )

where, δ(t) represents the unit impulse function. Thus the finite pulse width sampler can be
viewed as an impulse modulator or an ideal sampler connected in series with an attenuator with
attenuation p.

1.3 The ideal sampler

In case of an ideal sampler, the carrier signal is replaced by a train of unit impulse as shown in
Figure 2. The sampling duration p approaches 0, i.e., its operation is instantaneous.

t

t

T

f(t)
f(t)δT (t)

δT (t)

f∗(t)

Figure 2: Ideal sampler operation
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The output of an ideal sampler can be expressed as

f ∗(t) =
∞
∑

k=0

f(kT )δ(t− kT )

⇒ F ∗(s) =
∞
∑

k=0

f(kT )e−kTs

One should remember that practically the output of a sampler is always followed by a hold
device which is the reason behind the name sample and hold device. Now, the output of a hold
device will be the same regardless the nature of the sampler and the attenuation factor p can
be dropped in that case. Thus the sampling process can be be always approximated by an ideal
sampler or impulse modulator.
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