
Digital Control Module 4 Lecture 2

Module 4: Time Response of discrete time systems

Lecture Note 2

1 Prototype second order system

The study of a second order system is important because many higher order system can be
approximated by a second order model if the higher order poles are located so that their contri-
butions to transient response are negligible. A standard second order continuous time system
is shown in Figure 1. We can write

+ _

R(s) C(s)E(s) ω2
n

s(s+ 2ξωn)

Figure 1: Block Diagram of a second order continuous time system

G(s) =
ω2
n

s(s+ 2ξωn)

Closed loop: Gc(s) =
ω2
n

s2 + 2ξωns+ ω2
n

where, ξ = damping ratio

ωn = natural undamped frequency

Roots: −ξωn ± jωn

√

1− ξ2

1.1 Comparison between continuous time and discrete time systems

The simplified block diagram of a space vehicle control system is shown in Figure 2. The
objective is to control the attitude in one dimension, say in pitch. For simplicity vehicle body
is considered as a rigid body.
Position c(t) and velocity v(t) are fedback. The open loop transfer function can be calculated
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Figure 2: Space vehicle attitude control

as

G(s) =
C(s)

E(s)

= KKP × 1

KR + Jvs
× 1

s

=
KKP

s(Jvs+KR)

Closed loop transfer function is

Gcs =
G(s)

1 +G(s)

=
KKp

Jvs2 +KRs+KKP

KP = Position Sensor gain = 1.65× 106

KR = Rate sensor gain = 3.71× 105

K = Amplifier gain which is a variable

Jv = Moment of inertia = 41822

With the above parameters,

G(s) =
39.45K

s(s+ 8.87)

C(s)

R(s)
=

39.45K

s2 + 8.87s+ 39.45K

Characteristics equation ⇒ s2 + 8.87s+ 39.45K = 0

ωn =
√
39.45K rad/sec, ξ =

8.87

2ωn

Since the system is of 2nd order, the continuous time system will always be stable ifKP , KR, K, Jv
are all positive.

Now, consider that the continuous data system is subject to sampled data control as shown
in Figure 3.
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Figure 3: Discrete representation of space vehicle attitude control

For comparison purpose, we assume that the system parameters are same as that of the con-
tinuous data system.

G(s) =
C(s)

E∗(s)

= Gho(s)Gp(s)

=
1− e−Ts

s
.

KKp/Jv
s(s+KR/Jv)

G(z) = (1− z−1)
KKp

KR

Z
[

1

s2
− Jv

KRs
+

Jv
KR(s+KR/Jv)

]

= (1− z−1)
KKp

KR

[

Tz

(z − 1)2
− Jvz

KR(z − 1)
+

Jvz

KR(z − e−KRT/Jv)

]

=
KKp

K2
R

[

(TKR − Jv + Jve
−KRT/Jv)z − (TKR + Jv)e

−KRT/Jv + Jv
(z − 1)(z − e−KRT/Jv)

]

Characteristic equation of the closed loop system: z2 + α1z + α0 = 0, where

α1 = f1(K,Kp,KR, Jv)

α0 = f0(K,Kp,KR, Jv)

Substituting the known parameters:

α1 = 0.000012K(3.71× 105T − 41822 + 41822e−8.87T )− 1− e−8.87T

α0 = e−8.87T + 0.000012K
[

41822− (3.71× 105T + 41822)e−8.87T
]

For stability

(1) |α0| < 1

(2) P (1) = 1 + α1 + α0 > 0

= 1− e−8.87T > 0 always satisfied since T is positive

(3) P (−1) = 1− α1 + α0 > 0

Choice of K and T : If we plot K versus T then according to conditions (1) and (3) the
stable region is shown in Figure 4. Pink region represents the situation when condition (1)
is satisfied but the (3) is not. Red region depicts the situation when condition (1) is satis-
fied, not the (3). Yellow is the stable region where both the conditions are satisfied. If we
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Figure 4: K vs. T for space vehicle attitude control system

want a comparatively large T , such as 0.2, the gain K is limited by the range K < 5. Similarly
if we want a comparatively high gain such as 25, we have to go for T as small as 0.08 or even less.

From studies of continuous time systems it is well known that increasing the value of K gen-
erally reduces the damping ratio, increases peak overshoot, bandwidth and reduces the steady
state error if it is finite and nonzero.

2 Correlation between time response and root locations

in s-plane and z-pane

The mapping between s-plane and z-plane was discussed earlier. For continuous time systems,
the correlation between root location in s-plane and time response is well established and known.

• A root in negative real axis of s-plane produces an output exponentially decaying with
time.

• Complex conjugate pole pairs in negative s-plane produce damped oscillations.

• Imaginary axis conjugate poles produce undamped oscillations.

• Complex conjugate pole pairs in positive s-plane produce growing oscillations.

Digital control systems should be given special attention due to sampling operation. For ex-
ample, if the sampling theorem is not satisfied, the folding effect can entirely change the true
response of the system.
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The pole-zero map and natural response of a continuous time second order system is shown
in Figure 5.
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Figure 5: Pole zero map and natural response of a second order system

If the system is subject to sampling with frequency ωs < 2ω1, it will generate an infinite
number of poles in the s-plane at s = σ1 ± jω1 + jnωs for n = ±1,±2, ........ The sampling
operation will fold the poles back into the primary strip where −ωs/2 < ω < ωs/2. The net
effect is equivalent to having a system with poles at s = σ1 ± j(ωs − ω1). The corresponding
plot is shown in Figure 6.
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Figure 6: Pole zero map and natural response of a second order system

Root locations in z-plane and the corresponding time responses are shown in Figure 7.
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Figure 7: Pole zero map and natural response of a second order system

3 Dominant Closed Loop Pole Pairs

As in case of s-plane, some of the roots in z-plane have more effects on the system response
than the others. It is important for design purpose to separate out those roots and give them
the name dominant roots.
In s-plane, the roots that are closest to jω axis in the left plane are the dominant roots because
the corresponding time response has slowest decay. Roots that are for away from jω axis
correspond to fast decaying response.

• In Z-plane dominant roots are those which are inside and closest to the unit circle whereas
insignificant region is near the origin.

• The negative real axis is generally avoided since the corresponding time response is oscil-
latory in nature with alternate signs.
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Figure 8 shows the regions of dominant and insignificant roots in s-plane and z-plane.
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Figure 8: Pole zero map of a second order system

In s-plane the insignificant roots can be neglected provided the dc-gain (0 frequency gain)
of the system is adjusted. For example,

10

(s2 + 2s+ 2)(s+ 10)
≈ 1

(s2 + 2s+ 2)

In z-plane, roots near the origin are less significant from the maximum overshoot and damping
point of view.

However these roots cannot be completely discarded since the excess number of poles over
zeros has a delay effect in the initial region of the time response, e.g., adding a pole at z = 0
would not effect the maximum overshoot or damping but the time response would have an
additional delay of one sampling period.

The proper way of simplifying a higher order system in z-domain is to replace the poles near
origin by Poles at z = 0 which will simplify the analysis since the Poles at z = 0 correspond to
pure time delays.
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