
Digital Control Module 7 Lecture 1

Module 7: Discrete State Space Models

Lecture Note 1

1 Introduction to State Variable Model

In the preceding lectures, we have learned how to design a sampled data control system or
a digital system using the transfer function of the system to be controlled. Transfer function
approach of system modeling provides final relation between output variable and input variable.
However, a system may have other internal variables of importance. State variable representa-
tion takes into account of all such internal variables. Moreover, controller design using classical
methods, e.g., root locus or frequency domain method are limited to only LTI systems, partic-
ularly SISO (single input single output) systems since for MIMO (multi input multi output)
systems controller design using classical approach becomes more complex. These limitations of
classical approach led to the development of state variable approach of system modeling and
control which formed a basis of modern control theory.

State variable models are basically time domain models where we are interested in the dynamics
of some characterizing variables called state variables which along with the input represent the
state of a system at a given time.

• State: The state of a dynamic system is the smallest set of variables, x ∈ Rn, such that
given x(t0) and u(t), t > t0, x(t), t > t0 can be uniquely determined.

• Usually a system governed by a nth order differential equation or nth order transfer function
is expressed in terms of n state variables: x1, x2, . . . , xn.

• The generic structure of a state-space model of a nth order continuous time dynamical
system with m input and p output is given by:

ẋ(t) = Ax(t) + Bu(t) : State Equation (1)

y(t) = Cx(t) +Du(t) : Output Equation

where, x(t) is the n dimensional state vector, u(t) is the m dimensional input vector, y(t)
is the p dimensional output vector and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

Example

Consider a nth order differential equation

dny

dtn
+ a1

dn−1y

dtn−1
+ . . .+ any = u
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Define following variables,

y = x1
dy

dt
= x2

... =
...

dn−1y

dtn−1 = xn
dny

dtn
= −a1xn−1 − a2xn−2 − . . .− anx1 + u

The nth order differential equation may be written in the form of n first order differential
equations as

ẋ1 = x2

ẋ2 = x3

... =
...

ẋn = −a1xn−1 − a2xn−2 − . . .− anx1 + u

or in matrix form as,
ẋ = Ax+ Bu

where

A =











0 1 0 . . . 0
0 0 1 . . . 0
... . . .

...
0 0 0 . . . 1











B =











0
0
...
1











The output can be one of states or a combination of many states. Since, y = x1,

y = [1 0 0 0 . . . 0]x

1.1 Correlation between state variable and transfer functions models

The transfer function corresponding to state variable model (1), when u and y are scalars, is:

G(s) =
Y (s)

U(s)
= C(sI − A)−1B +D (2)

=
Q(s)

|sI − A|

where |sI − A| is the characteristic polynomial of the system.

1.2 Solution of Continuous Time State Equation

The solution of state equation (1) is given as

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

where eAt = Φ(t) is known as the state transition matrix and x(t0) is the initial state of the
system.
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2 State Variable Analysis of Digital Control Systems

The discrete time systems, as discussed earlier, can be classified in two types.

1. Systems that result from sampling the continuous time system output at discrete instants
only, i.e., sampled data systems.

2. Systems which are inherently discrete where the system states are defined only at discrete
time instants and what happens in between is of no concern to us.

2.1 State Equations of Sampled Data Systems

Let us assume that the following continuous time system is subject to sampling process with
an interval of T .

ẋ(t) = Ax(t) + Bu(t) : State Equation (3)

y(t) = Cx(t) +Du(t) : Output Equation

We know that the solution to above state equation is:

x(t) = Φ(t− t0)x(t0) +

∫ t

t0

Φ(t− τ)Bu(τ)dτ

Since the inputs are constants in between two sampling instants, one can write:

u(τ) = u(kT ) for, kT ≤ τ ≤ (k + 1)T

which implies that the following expression is valid within the interval kT ≤ τ ≤ (k+1)T if we
consider t0 = kT :

x(t) = Φ(t− kT )x(kT ) +

∫ t

kT

Φ(t− τ)Bu(kT )dτ

Let us denote

∫ t

kT

Φ(t− τ)Bdτ by θ(t−KT ). Then we can write:

x(t) = Φ(t− kT )x(kT ) + θ(t−KT )u(kT )

If t = (k + 1)T ,

x((k + 1)T ) = Φ(T )x(kT ) + θ(T )u(kT ) (4)

where Φ(T ) = eAT and θ(T ) =

∫ (k+1)T

kT

Φ((k + 1)T − τ)Bdτ . If t′ = τ − kT , we can rewrite

θ(T ) as θ(T ) =

∫ T

0

Φ(T − t′)Bdt′. Equation (4) has a similar form as that of equation (3) if we

consider φ(T ) = Ā and θ(T ) = B̄. Similarly by setting t = kT , one can show that the output
equation also has a similar form as that of the continuous time one.
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When T = 1,

x(k + 1) = Φ(1)x(k) + θ(1)u(k)

y(k) = Cx(k) +Du(k)

2.2 State Equations of Inherently Discrete Systems

When a discrete system is composed of all digital signals, the state and output equations can
be described by

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) +Du(k)

2.3 Discrete Time Approximation of A Continuous Time State Space

Model

Let us consider the dynamical system described by the state space model (3). By approximating
the derivative at t = kT using forward difference, we can write:

ẋ(t)
∣

∣

t=kT
=

1

T
[x((k + 1)T )− x(kT )]

⇒
1

T
[x((k + 1)T )− x(kT )] = Ax(kT ) + Bu(kT )

and, y(kT ) = Cx(kT ) +Du(kT )

Rearranging the above equations,

x((k + 1)T ) = (I + TA)x(kT ) + TBu(kT )

If, T = 1 ⇒ x(k + 1) = (I + A)x(k) + Bu(k)

and y(k) = Cx(k) +Du(k)

We can thus conclude from the discussions so far that the discrete time state variable model
of a system can be described by

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) +Du(k)

where A, B are either the descriptions of an all digital system or obtained by sampling the
continuous time process.
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