
Digital Control Module 11 Lecture 2

Module 11: Introduction to Optimal Control

Lecture Note 2

1 Performance Indices

Whenever we use the term optimal to describe the effectiveness of a given control strategy, we
do so with respect to some performance measure or index.

We generally assume that the value of the performance index decreases with the quality of
the control law.

Constructing a performance index can be considered as a part of the system modeling. We
would now discuss some typical performance indices which are popularly used.

Let us first consider the following system

x(k + 1) = Ax(k) + Bu(k), x(k0) = x0

y(k) = Cx(k)

Suppose that the objective is to control the system such that over a fixed interval [N0, Nf ], the
components of the state vector are as small as possible. A suitable performance to be minimized
is

J1 =

Nf
∑

k=N0

x
T (k)x(k)

When J1 is very small, ‖x(k)‖ is also very small.

If we want to minimize the output over a fixed interval [N0, Nf ], a suitable performance would
be

J2 =
Nf
∑

k=N0

y
T (k)y(k)

=
Nf
∑

k=N0

x
T (k)CTCx(k)
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If CTC = Q, which is a symmetric matrix,

J2 =

Nf
∑

k=N0

x
T (k)Qx(k)

When the objective is to control the system in such a way that the control input is not too
large, the corresponding performance index is

J3 =

Nf
∑

k=N0

u
T (k)u(k)

Or,

J4 =

Nf
∑

k=N0

u
T (k)Ru(k)

where the weight matrix R is symmetric positive definite.

We cannot simultaneously minimize the performance indices J1 and J3 because minimization
of J1 requires large control input whereas minimization of J3 demands a small control. A
compromise between the two conflicting objects is

J5 = λJ1 + (1− λ)J3

=

Nf
∑

k=N0

[

λxT (k)x(k) + (1− λ)uT (k)u(k)
]

A generalization of the above performance index is

J6 =

Nf
∑

k=N0

[

x
T (k)Qx(k) + u

T (k)Ru(k)
]

which is the most commonly used quadratic performance index.

In certain applications, we may wish the final state to be close to 0. Then a suitable per-
formance index is

J7 = x
T (Nf )Fx(Nf )

When the control objective is to keep the state small, the control input not too large and
the final state as close to 0 as possible, we can combine J6 and J7, to get the most general
performance index

J8 =
1

2
x
T (Nf )Fx(Nf ) +

1

2

Nf
∑

k=N0

[

x
T (k)Qx(k) + u

T (k)Ru(k)
]
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1/2 is introduced to simplify the manipulation.

Sometimes we want the system state to track a desired trajectory throughout the interval
[N0, Nf ]. In that case the performance index J8 can be modified as

J9 =
1

2

[

(xd(Nf )− x(Nf ))
TF (xd(Nf )− x(Nf ))

]

+
1

2

Nf
∑

k=N0

[

(xd(k)− x(k))TQ(xd(k)− x(k)) + u
T (k)Ru(k)

]

For infinite time problem, the performance index is

J =
∞
∑

k=N0

[

x
T (k)Qx(k) + u

T (k)Ru(k)
]

In most cases, N0 is considered to be 0.

Example: Consider the dynamical system

x(k + 1) =

[

0 1
0 0

]

x(k) +

[

0
1

]

u(k), x(0) = x0

y(k) = [2 0]x(k)

Suppose that we want to minimize the output as well as the input with equal weightage along
the convergence trajectory. Construct the associated performance index.

Since the initial condition of the system is x(0) = x0 and we have to minimize the perfor-
mance index over the whole convergence trajectory, we need to take summation from 0 to ∞.

Again, since the output and input are to be minimized with equal weightage, we can write
the cost function or performance index as

J =
∞
∑

k=0

(y2(k) + u2(k))

=
∞
∑

k=0

(xT (k)[2 0]T [2 0]x(k) + u2(k))

=
∞
∑

k=0

(xT (k)

[

4 0
0 0

]

x(k) + u2(k))
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Comparing with the standard cost function, we can say that here Q =

[

4 0
0 0

]

and R = 1.

In the next lecture we will discuss design of Linear Quadratic Regulator (LQR) by solving
Algebraic Riccati Equation (ARE). To derive ARE, we need the following theorem.

Consider the system
x(k + 1) = Ax(k) + Bu(k)

where x(k) ∈ Rn, u(k) ∈ Rm and x(0) = x0.

Theorem 1: If the state feedback controller u
∗(k) = −Kx(k) is such that

min
u

(∆V (x(k)) + x
T (k)Qx(k) + u

T (k)Ru(k)) = 0 (1)

for some Lyapunov function V (k) = x
T (k)Px(k), then u

∗(k) is optimal. Here the cost function

is

J(u) =
∞
∑

k=0

(xT (k)Qx(k) + u
T (k)Ru(k))

and we assume that the closed loop system is asymptotically stable.

Proof: Equation (1) can also be represented as

∆V (x(k))|u=u
∗ + x

T (k)Qx(k) + u
∗T (k)Ru

∗(k)

Hence, we can write

∆V (x(k))|u=u
∗ = (V (x(k + 1))− V (x(k)))|u=u

∗ = −x
T (k)Qx(k)− u

∗T (k)Ru
∗(k)

We can sum both sides of the above equation from 0 to ∞ and get

V (x(∞))− V (x(0)) = −

∞
∑

k=0

(xT (k)Qx(k) + u
∗T (k)Ru

∗(k))

Since the closed loop system is stable by assumption, x(∞) = 0 and hence V (x(∞)) = 0. Thus

V (x(0)) =
∞
∑

k=0

(xT (k)Qx(k) + u
∗T (k)Ru

∗(k))

Now, V (x(0)) = x
T
o Px0.
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Thus if a linear state feedback controller satisfies the hypothesis of the theorem the value
of the resulting cost function is

J(u∗) = x
T
o Px0

To show that such a controller is indeed optimal, we will use a proof by contradiction.

Assume that the hypothesis of the theorem holds true but the controller is not optimal. Thus
there exists a controller ū such that

J(ū) < J(u∗)

Using the theorem, we can write

∆V (x(k))|u=ū + x
T (k)Qx(k) + ū

T (k)Rū(k) ≥ 0

The above can be rewritten as

∆V (x(k))|u=ū ≥ −x
T (k)Qx(k)− ū

T (k)Rū(k)

Summing the above from 0 to ∞,

V (x(0)) ≤
∞
∑

k=0

(xT (k)Qx(k) + ū
T (k)Rū(k))

The above inequality implies that

J(u∗) ≤ J(ū)

which is a contradiction of our earlier assumption. Thus u∗ is optimal.

For more details one may consult Systems and Control by Stanislaw H. Żak
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