
Digital Control Module 5 Lecture 7

Module 5: Design of Sampled Data Control Systems

Lecture Note 7

1 Lag Compensator Design

In the previous lecture we discussed lead compensator design. In this lecture we would see
how to design a phase lag compensator

1.1 Phase lag compensator

The essential feature of a lag compensator is to provide an increased low frequency gain, thus
decreasing the steady state error, without changing the transient response significantly.

For frequency response design it is convenient to use the following transfer function of a
lag compensator.

Clag(s) = α
τs+ 1

ατs+ 1
, where, α > 1

The above expression is only the lag part of the compensator. The overall compensator is

C(s) = KClag(s)

when, s → 0, Clag(s) → α

when, s → ∞, Clag(s) → 1

Typical objective of lag compensator design is to provide an additional gain of α in the low
frequency region and to leave the system with sufficient phase margin.

The frequency response of a lag compensator, with α = 4 and τ = 3, is shown in Figure 1
where the magnitude varies from 20 log

10
α dB to 0 dB.

Since the lag compensator provides the maximum lag near the two corner frequencies, to
maintain the PM of the system, zero of the compensator should be chosen such that ω = 1/τ
is much lower than the gain crossover frequency of the uncompensated system.
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Bode Diagram of a lag compensator
Gm = Inf ,  Pm = −180 deg (at Inf rad/sec)

Frequency  (rad/sec)

Figure 1: Frequency response of a lag compensator

In general, τ is designed such that 1/τ is at least one decade below the gain crossover
frequency of the uncompensated system. Following example will be comprehensive to under-
stand the design procedure.

Example 1: Consider the following system

G(s) =
1

(s+ 1)(0.5s+ 1)
, H(s) = 1

Design a lag compensator so that the phase margin (PM) is at least 50o and steady state
error to a unit step input is ≤ 0.1.

The overall compensator is

C(s) = KClag(s) = Kα
τs+ 1

ατs+ 1
, where, α > 1

When s → 0, C(s) → Kα.

Steady state error for unit step input is

1

1 + lims→0C(s)G(s)
=

1

1 + C(0)
=

1

1 +Kα
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Thus,
1

1 +Kα
= 0.1, or, Kα = 9.

Now let us modify the system transfer function by introducing K with the original system.
Thus the modified system becomes

Gm(s) =
K

(s+ 1)(0.5s+ 1)

PM of the closed loop system should be 50o. Let the gain crossover frequency of the uncom-
pensated system with K be ωg.

Gm(jω) =
K

(jω + 1)(0.5jω + 1)

Mag. =
K

√
1 + ω2

√
1 + 0.25ω2

Phase = − tan−1 ω − tan−1 0.5ω

Required PM is 50o. Since the PM is achieved only by selecting K, it might be deviated
from this value when the other parameters are also designed. Thus we put a safety margin
of 5o to the PM which makes the required PM to be 55o.

⇒ 180o − tan−1 ωg − tan−1 0.5ωg = 55o

or, tan−1
ωg + 0.5ωg

1− 0.5ω2
g

= 125o

or, tan−1
1.5ωg

1− 0.5ω2
g

= tan 125o = −1.43

or, 0.715ω2

g − 1.5ωg − 1.43 = 0

⇒ ωg = 2.8 rad/sec

To make ωg = 2.8 rad/sec, the gain crossover frequency of the modified system, magnitude
at ωg should be 1. Thus

K
√

1 + ω2
g

√

1 + 0.25ω2
g

= 1

Putting the value of ωg in the last equation, we get K = 5.1.

Thus,

α =
9

K
= 1.76
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The only parameter left to be designed is τ .

Since the desired PM is already achieved with gain K, we should place ω = 1/τ such that
it does not much effect the PM of the modified system with K. If we place 1/τ one decade
below the gain crossover frequency, then

1

τ
=

2.8

10
, or, τ = 3.57

The overall compensator is

C(s) = 9
3.57s+ 1

6.3s+ 1

With this compensator actual phase margin of the system becomes 52.7o, as shown in Figure
2, which meets the design criteria.

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = Inf dB (at Inf rad/sec) ,  Pm = 52.7 deg (at 2.8 rad/sec)
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Figure 2: Bode plot of the compensated system for Example 1

Example 2:

Now let us consider that the system as described in the previous example is subject to a
sampled data control system with sampling time T = 0.1 sec. We would use MATLAB to
derive the plant transfer function w-plane.
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Use the below commands.

>> s=tf(’s’);

>> gc=1/((s+1)*(0.5*s+1));

>> gz=c2d(Gp,0.1,’zoh’);

You would get

Gz(z) =
0.009z + 0.0008

z2 − 1.724z + 0.741

The bi-linear transformation

z =
1 + wT/2

1− wT/2
=

(1 + 0.05w)

(1− 0.05w)

will transfer Gz(z) into w-plane. Use the below commands

>> aug=[0.1,1];

>> gwss = bilin(ss(gz),-1,’S_Tust’,aug)

>> gw=tf(gwss)

to find out the transfer function in w-plane, as

Gw(w) =
1.992− 0.09461w − 0.00023w2

w2 + 2.993w + 1.992

∼=
−0.00025(w − 20)(w + 400)

(w + 1)(w + 2)

The Bode plot of the uncompensated system is shown in Figure 3.

We need to design a phase lag compensator so that PM of the compensated system is at least
500 and steady state error to a unit step input is ≤ 0.1. The compensator in w-plane is

C(w) = Kα
1 + τw

1 + ατw
α > 1

where,

C(0) = Kα

Since Gw(0) = 1, Kα = 9 for 0.1 steady state error.
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Figure 3: Bode plot of the uncompensated system for Example 2

Now let us modify the system transfer function by introducing K to the original system.
Thus the modified system becomes

Gm(w) =
−0.00025K(w − 20)(w + 400)

(w + 1)(w + 2)

PM of the closed loop system should be 50o. Let the gain crossover frequency of the uncom-
pensated system with K be ωg. Then,

Mag.(Gm) =
0.00025K

√
400 + ω2

√
160000 + ω2

√
1 + ω2

√
4 + ω2

Phase(Gm) = − tan−1 ω − tan−1 0.5ω − tan−1 0.05ω + tan−1 0.0025ω

Required PM is 50o. Let us put a safety margin of 5o. Thus the PM of the system modified
with K should be 55o.

⇒ 180o − tan−1 ωg − tan−1 0.5ωg − tan−1 0.05ωg + tan−1 0.0025ωg = 55o

or, tan−1
ωg + 0.5ωg

1− 0.5ω2
g

+ tan−1
0.05ωg − 0.0025ωg

1 + 0.000125ω2
g

= 125o

By solving the above, ωg = 2.44 rad/sec. Thus the magnitude at ωg should be 1.

⇒
0.00025K

√

400 + ω2
g

√

160000 + ω2
g

√

1 + ω2
g

√

4 + ω2
g

= 1
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Putting the value of ωg in the last equation, we get K = 4.13. Thus,

α =
9

K
= 2.18

If we place 1/τ one decade below the gain crossover frequency, then

1

τ
=

2.44

10
, or, τ = 4.1

Thus the controller in w-plane is

C(w) = 9
1 + 4.1w

1 + 8.9w

Re-transforming the above controller into z-plane using the relation w = 20
z − 1

z + 1
, we get

Cz(z) = 9
1 + 20× 4.1×

z − 1

z + 1

1 + 20× 8.9×
z − 1

z + 1

= 9
83z − 81

179z − 177

The Bode plot of the uncompensated system is shown in Figure 3.
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Figure 4: Bode plot of the compensated system for Example 2

In the next lecture, we would discuss lag-lead and PID controllers and conclude the topic of
compensator design.
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