
Digital Control Module 11 Lecture 3

Module 11: Introduction to Optimal Control

Lecture Note 3

1 Linear Quadratic Regulator

Consider a linear system modeled by

x(k + 1) = Ax(k) + Bu(k), x(k0) = x0

where x(k) ∈ Rn and u(k) ∈ Rm. The pair (A, B) is controllable.

The objective is to design a stabilizing linear state feedback controller u(k) = −Kx(k) which
will minimize the quadratic performance index, given by,

J =
∞
∑

k=0

(xT (k)Qx(k) + u
T (k)Ru(k))

where, Q = QT ≥ 0 and R = RT > 0. Such a controller is denoted by u
∗.

We first assume that a linear state feedback optimal controller exists such that the closed
loop system

x(k + 1) = (A−BK)x(k)

is asymptotically stable.

This assumption implies that there exists a Lyapunov function V (x(k)) = x(k)TPx(k) for
the closed loop system, for which the forward difference

∆V (x(k)) = V (x(k + 1))− V (x(k))

is negative definite.

We will now use the theorem as discussed in the previous lecture which says if the controller u∗

is optimal, then
min
u

(∆V (x(k)) + x
T (k)Qx(k) + u

T (k)Ru(k)) = 0
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Now, finding an optimal controller implies that we have to find an appropriate Lyapunov func-
tion which is then used to construct the optimal controller.

Let us first find the u
∗ that minimizes the function

f = f(u(k)) = ∆V (x(k)) + x
T (k)Qx(k) + u

T (k)Ru(k)

If we substitute ∆V in the above expression, we get

f(u(k)) = x
T (k + 1)Px(k + 1)− x

T (k)Px(k) + x
T (k)Qx(k) + u

T (k)Ru(k)

= (Ax(k) + Bu(k))TP (Ax(k) + Bu(k))− x
T (k)Px(k) + x

T (k)Qx(k) + u
T (k)Ru(k)

Taking derivative of the above function with respect to u(k),

∂f(u(k))

∂u(k)
= 2(Ax(k) + Bu(k))TPB + 2uTR

= 2xT (k)ATPB + 2uT (k)(BTPB +R)

= 0T

The matrix BTPB + R is positive definite since R is positive definite, thus it is invertible.
Hence,

u
∗(k) = −(BTPB +R)−1BTPAx(k) = −Kx(k)

where K = (BTPB +R)−1BTPA. Let us denote BTPB +R by S. Thus

u
∗(k) = −S−1BTPAx(k)

We will now check whether or not u
∗ satisfies the second order sufficient condition for mini-

mization. Since

∂2f(u(k))

∂u2(k)
=

∂

∂u(k)
(2xT (k)ATPB + 2uT (k)(BTPB +R))

= 2(BTPB +R) > 0

u
∗ satisfies the second order sufficient condition to minimize f .
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The optimal controller can thus be constructed if an appropriate Lyapunov matrix P is found.
For that let us first find the closed loop system after introduction of the optimal controller.

x(k + 1) = (A−BS−1BTPA)x(k)

Since the controller satisfies the hypothesis of the theorem, discussed in the previous lecture,

x
T (k + 1)Px(k + 1)− x

T (k)Px(k) + x
T (k)Qx(k) + u

∗T (k)Ru
∗(k) = 0

Putting the expression of u∗ in the above equation,

x
T (k)(A−BS−1BTPA)TP (A−BS−1BTPA)x(k)− x

T (k)Px(k) + x
T (k)Qx(k) +

x
T (k)ATPBS−1RS−1BTPAx(k)

= x
T (k)ATPAx(k)− x

T (k)ATPBS−1BTPAx(k)− x
T (k)ATPBS−1BTPAx(k) +

x
T (k)ATPBS−1BTPBS−1BTPAx(k)− x

T (k)Px(k) + x
T (k)Qx(k) +

x
T (k)ATPBS−1RS−1BTPAx(k)

= x
T (k)ATPAx(k)− x

T (k)Px(k) + x
T (k)Qx(k)− 2xT (k)ATPBS−1BTPAx(k) +

x
T (k)ATPBS−1(BTPB +R)S−1BTPAx(k)

= x
T (k)ATPAx(k)− x

T (k)Px(k) + x
T (k)Qx(k)−

2xT (k)ATPBS−1SS−1BTPAx(k) + x
T (k)ATPBS−1BTPAx(k)

= x
T (k)(ATPA− P +Q− ATPBS−1BTPA)x(k) = 0

The above equation should hold for any value of x(k). Thus

ATPA− P +Q− ATPBS−1BTPA = 0

which is the well known discrete Algebraic Riccati Equation (ARE). By solving this equation
we can get P to form the optimal regulator to minimize a given quadratic performance index.

Example 1: Consider the following linear system

x(k + 1) =

[

0 1
0.5 0.8

]

x(k) +

[

0
1

]

u(k), x0 =

[

1
1

]

y(k) =
[

1 0
]

x(k)

Design an optimal controller to minimize the following performance index.

J =
∞
∑

k=0

(x2

1 + x1x2 + x2

2 + 0.1u2)
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Also, find the optimal cost.

Solution: The performance index J can be rewritten as

J =
∞
∑

k=0

(xT (k)

[

1 0.5
0.5 1

]

x(k) + 0.1u2)

Thus, Q =

[

1 0.5
0.5 1

]

and R = 0.1.

Let us take P as

P =

[

p1 p2
p2 p3

]

Then,

ATPA− P =

[

0.25p3 − p1 0.5p2 + 0.4p3 − p2
0.5p2 + 0.4p3 − p2 p1 + 1.6p2 + 0.64p3 − p3

]

ATPA− P +Q =

[

0.25p3 − p1 + 1 0.4p3 − 0.5p2 + 0.5
0.4p3 − 0.5p2 + 0.5 p1 + 1.6p2 − 0.36p3 + 1

]

ATPB =

[

0.5p3
p2 + 0.8p3

]

, BTPA =
[

0.5p3 p2 + 0.8p3
]

, S = 0.1 + p3

ATPBS−1BTPA = =
1

0.1 + p3

[

0.5p3
p2 + 0.8p3

]

[

0.5p3 p2 + 0.8p3
]

=
1

0.1 + p3

[

0.25p23 0.5p2p3 + 0.4p23
0.5p2p3 + 0.4p23 p22 + 1.6p2p3 + 0.64p23

]

The discrete ARE is

ATPA− P +Q− ATPBS−1BTPA = 0

Or,





0.25p3 − p1 + 1−
0.25p2

3

0.1+p3
0.4p3 − 0.5p2 + 0.5−

0.5p2p3 + 0.4p23
0.1 + p3

0.4p3 − 0.5p2 + 0.5−
0.5p2p3+0.4p2

3

0.1+p3
p1 + 1.6p2 − 0.36p3 + 1−

p2
2
+1.6p2p3+0.64p2

3

0.1+p3



 =

[

0 0
0 0

]
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We can get three equations from the discrete ARE. These are

0.25p3 − p1 + 1−
0.25p23
0.1 + p3

= 0

0.4p3 − 0.5p2 + 0.5−
0.5p2p3 + 0.4p23

0.1 + p3
= 0

p1 + 1.6p2 − 0.36p3 + 1−
p22 + 1.6p2p3 + 0.64p23

0.1 + p3
= 0

Since the above three equations comprises three unknown parameters, these parameters can be
solved uniquely, as

p1 = 1.0238, p2 = 0.5513, p3 = 1.9811

The optimal control law can be found out as

u∗(k) = −(R + BTPB)−1BTPAx(k)

= −[0.4760 1.0265]x(k)

= −0.4760x1(k)− 1.0265x2(k)

The optimal cost can be found as

J = x
T
0 Px0

=
[

1 1
]

[

1.0238 0.5513
0.5513 1.9811

] [

1
1

]

= 4.1075
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