
Run-time Environments - 3

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  What is run-time support? (in part 1)
n  Parameter passing methods (in part 1)
n  Storage allocation (in part 2)
n  Activation records (in part 2)
n  Static scope and dynamic scope
n  Passing functions as parameters
n  Heap memory management
n  Garbage Collection

Y.N. Srikant 3

Static Scope and Dynamic Scope

n  Static Scope
q  A global identifier refers to the identifier with that name that

is declared in the closest enclosing scope of the program
text

q  Uses the static (unchanging) relationship between blocks in
the program text

n  Dynamic Scope
q  A global identifier refers to the identifier with that name

associated with the most recent activation record
q  Uses the actual sequence of calls that is executed in the

dynamic (changing) execution of the program
n  Both are identical as far as local variables are

concerned

Y.N. Srikant 4

Static Scope and Dynamic Scope :
An Example
int x = 1, y = 0;
int g(int z)
 { return x+z;}
int f(int y) {

 int x; x = y+1;
 return g(y*x);

}
y = f(3);

After the call to g,
Static scope: x = 1
Dynamic scope: x = 4

x 1

y 3

x 4

z 12

outer block

f(3)

g(12)

Stack of activation records
after the call to g

y 0

Y.N. Srikant 5

Static Scope and Dynamic Scope:
Another Example
float r = 0.25;
void show() { printf(“%f”,r); }
void small() {
 float r = 0.125; show();
}
int main (){
show(); small(); printf(“\n”);
show(); small(); printf(“\n”);
}

n  Under static scoping,
the output is

 0.25 0.25
 0.25 0.25
n  Under dynamic

scoping, the output is
 0.25 0.125
 0.25 0.125

Y.N. Srikant 6

Implementing Dynamic Scope –
Deep Access Method
n  Use dynamic link as static link
n  Search activation records on the stack to find the

first AR containing the non-local name
n  The depth of search depends on the input to the

program and cannot be determined at compile time
n  Needs some information on the identifiers to be

maintained at runtime within the ARs
n  Takes longer time to access globals, but no

overhead when activations begin and end

Deep Access Method - Example

Y.N. Srikant 7

x? Main

x? R

x? Q

 R
Base

Next

Currently active
procedure

Stack of activation
records

Calling sequence:
Main à R à Q à R Global

variable
search
direction

Y.N. Srikant 8

Implementing Dynamic Scope –
Shallow Access Method
n  Allocate maximum static storage needed for each name

(based on the types)
n  When a new AR is created for a procedure p, a local

name n in p takes over the static storage allocated to
name n
q  Global variables are also accessed from the static storage
q  Temporaries are located in the AR
q  Therefore, all variable (not temp) accesses use static addresses

n  The previous value of n held in static storage is saved in
the AR of p and is restored when the activation of p ends

n  Direct and quick access to globals, but some overhead is
incurred when activations begin and end

Shallow Access Method - Example

Y.N. Srikant 9

Space for temps and
for saving variables
from static storage

Space for temps and
for saving variables
from static storage

Space for temps and
for saving variables
from static storage

Base

Next

Currently active
procedure

Stack of activation
records

Calling sequence:
Main à R à Q à R

Main

R

Q

R

Static storage
for UNIQUE

names
(max storage

based on
types of the

names)

Y.N. Srikant 10

Passing Functions as Parameters

An example:
main()
{ int x = 4;
 int f (int y) {
 return x*y;
 }
 int g (int → int h){
 int x = 7;
 return h(3) + x;
 }
 g(f);
}

n  A language has first-class functions
if functions can be
q  declared within any scope
q  passed as arguments to other

functions
q  returned as results of functions

n  In a language with first-class
functions and static scope, a function
value is generally represented by a
closure
q  a pair consisting of a pointer to

function code and
q  a pointer to an activation record

n  Passing functions as arguments is
very useful in structuring of systems
using callbacks

Y.N. Srikant 11

Passing Functions as Parameters –
Implementation

x=4
main

SL

x=7

SL

y=3

g(f)

h(3)

SL chain

closure for
parameter h

pointer to
code for f

AR for the
call f(3)

An example:
main()
{ int x = 4;
 int f (int y) {
 return x*y;
 }
 int g (int → int h){
 int x = 7;
 return h(3) + x;
 }
 g(f);
}

Y.N. Srikant 12

Passing Functions as Parameters: Implementation

An example:
main()
{ int x = 4;
 int f (int y) {
 return x*y;
 }
 int g (int → int h){
 int x = 7;
 return h(3) + x;
 }
 g(f);
}

n  In this example, when executing the
call h(3), h is really f and 3 is the
parameter y of f

n  Without passing a closure, the AR of
the main program cannot be
accessed, and hence, the value of x
within f will not be 4

n  In the call g(f), f is passed as a
closure

n  Closure may also contain information
needed to set up AR (e.g., size of
space for local variables, etc.)

n  When processing the call h(3), after
setting up an AR for h (i.e., f), the SL
for the AR is set up using the AR
pointer in the closure for f that has
been passed to the call g(f)

Y.N. Srikant 13

Heap Memory Management

n  Heap is used for allocating space for objects created
at run time
q  For example: nodes of dynamic data structures such as

linked lists and trees
n  Dynamic memory allocation and deallocation based

on the requirements of the program
q  malloc() and free() in C programs
q  new() and delete() in C++ programs
q  new() and garbage collection in Java programs

n  Allocation and deallocation may be completely
manual (C/C++), semi-automatic (Java), or fully
automatic (Lisp)

Y.N. Srikant 14

Memory Manager

n  Manages heap memory by implementing
mechanisms for allocation and deallocation, both
manual and automatic

n  Goals
q  Space efficiency: minimize fragmentation
q  Program efficiency: take advantage of locality of objects in

memory and make the program run faster
q  Low overhead: allocation and deallocation must be efficient

n  Heap is maintained either as a doubly linked list or
as bins of free memory chunks (more on this later)

Y.N. Srikant 15

Allocation and Deallocation

n  In the beginning, the heap is one large and
contiguous block of memory

n  As allocation requests are satisfied, chunks are cut
off from this block and given to the program

n  As deallocations are made, chunks are returned to
the heap and are free to be allocated again (holes)

n  After a number of allocations and deallocations,
memory becomes fragmented and is not contiguous

n  Allocation from a fragmented heap may be made
either in a first-fit or best-fit manner

n  After a deallocation, we try to coalesce contiguous
holes and make a bigger hole (free chunk)

Y.N. Srikant 16

First-Fit and Best-Fit Allocation Strategies

n  The first-fit strategy picks the first available
chunk that satisfies the allocation request

n  The best-fit strategy searches and picks the
smallest (best) possible chunk that satisfies
the allocation request

n  Both of them chop off a block of the required
size from the chosen chunk, and return it to the
program

n  The rest of the chosen chunk remains in the
heap

Y.N. Srikant 17

First-Fit and Best-Fit Allocation Strategies

n  Best-fit strategy has been shown to reduce
fragmentation in practice, better than first-fit
strategy

n  Next-fit strategy tries to allocate the object in
the chunk that has been split recently
q  Tends to improve speed of allocation
q  Tends to improve spatial locality since objects

allocated at about the same time tend to have
similar reference patterns and life times (cache
behaviour may be better)

Y.N. Srikant 18

Bin-based Heap

n  Free space is organized into bins according to their
sizes (Lea Memory Manager in GCC)
q  Many more bins for smaller sizes, because there are many

more small objects
q  A bin for every multiple of 8-byte chunks from 16 bytes to

512 bytes
q  Then approximately logarithmically (double previous size)
q  Within each “small size bin”, chunks are all of the same

size
q  In others, they are ordered by size
q  The last chunk in the last bin is the wilderness chunk, which

gets us a chunk by going to the operating system

Y.N. Srikant 19

Bin-based Heap – An Example

16 24 32 231 ... 640 576 512 ...

 2 3 exact bins ... 64 65 sorted bins 127

Ref: From Lea’s
article on memory
manager in GCC

index

size

chunks

Y.N. Srikant 20

Managing and Coalescing Free Space

n  Should coalesce adjacent chunks and reduce
fragmentation
q  Many small chunks together cannot hold one large

object
q  In the Lea memory manager, no coalescing in the

exact size bins, only in the sorted bins
q  Boundary tags (free/used bit and chunk size) at

each end of a chunk (for both used and free
chunks)

q  A doubly linked list of free chunks

Y.N. Srikant 21

Boundary Tags and Doubly Linked List

0 200 200 0 0 100 100 0 1 120 120 1

Chunk A Chunk B Chunk C

free freed
just
now

occupied

... ..

3 adjacent chunks. Chunk B has been freed just now
and returned to the free list. Chunks A and B can be
merged, and this is done just before inserting it into
the linked list. The merged chunk AB may have to be
placed in a different bin.

Y.N. Srikant 22

Problems with Manual Deallocation

n  Memory leaks
q  Failing to delete data that cannot be referenced
q  Important in long running or nonstop programs

n  Dangling pointer dereferencing
q  Referencing deleted data

n  Both are serious and hard to debug
n  Solution: automatic garbage collection

Y.N. Srikant 23

Garbage Collection

n  Reclamation of chunks of storage holding objects
that can no longer be accessed by a program

n  GC should be able to determine types of objects
q  Then, size and pointer fields of objects can be determined

by the GC
q  Languages in which types of objects can be determined at

compile time or run-time are type safe
n  Java is type safe
n  C and C++ are not type safe because they permit type

casting, which creates new pointers
n  Thus, any memory location can be (theoretically) accessed at

any time and hence cannot be considered inaccessible

Y.N. Srikant 24

Reachability of Objects

n  The root set is all the data that can be accessed
(reached) directly by a program without having to
dereference any pointer

n  Recursively, any object whose reference is stored in
a field of a member of the root set is also reachable

n  New objects are introduced through object
allocations and add to the set of reachable objects

n  Parameter passing and assignments can propagate
reachability

n  Assignments and ends of procedures can terminate
reachability

