Introduction to
Machine-Independent Optimizations - 4
Data-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Data-Flow Analysis

Outline of the Lecture

@ What is code optimization? (in part 1)

@ lllustrations of code optimizations (in part 1)

@ Examples of data-flow analysis

@ Fundamentals of control-flow analysis

@ Algorithms for two machine-independent optimizations
@ SSA form and optimizations

Y.N. Srikant Data-Flow Analysis

Foundations of Data-flow Analysis

@ Basic questions to be answered

@ In which situations is the iterative DFA algorithm correct?

@ How precise is the solution produced by it?

@ Will the algorithm converge?

© What is the meaning of a “solution”?
e A DFA framework (D, V, A, F) consists of

: Adirection of the dataﬂow either forward or backward

A domain of values
A meet operator; (V, A) form a semi-lattice
A family of transfer functions, V — V
F includes constant transfer functions for the
ENTRY/EXIT nodes as well

m><0

Y.N. Srikant Data-Flow Analysis

Properties of the lterative DFA Algorithm

@ If the iterative algorithm converges, the result is a solution
to the DF equations

@ If the framework is monotone, then the solution found is the
maximum fixpoint (MFP) of the DF equations
e An MFP solution is such that in any other solution, values of
IN[B] and OUTB] are < the corresponding values of the
MFP (i.e., less precise)
© If the semi-lattice of the framework is monotone and is of
finite height, then the algorithm is guaranteed to converge
e Dataflow values decrease with each iteration

Max no. of iterations = height of the lattice x no. of nodes in
the flow graph

Y.N. Srikant Data-Flow Analysis

Meaning of the Ideal Data-flow Solution

@ Find all possible execution paths from the start node to the
beginning of B

@ (Assuming forward flow) Compute the data-flow value at
the end of each path (using composition of transfer
functions)

@ No execution of the program can produce a smaller value
for that program point than

IDEAL[B] = A fp(Vini)

P, a possible execution path from start node to B

@ Answers greater (in the sense of <) than IDEAL are
incorrect (one or more execution paths have been ignored)

@ Any value smaller than or equal to IDEAL is conservative,
i.e., safe (one or more infeasible paths have been included)

@ Closer the value to IDEAL, more precise it is

Y.N. Srikant Data-Flow Analysis

Meaning of the Meet-Over-Paths Data-flow Solution

@ Since finding all execution paths is an undecidable
problem, we approximate this set to include all paths in the
flow graph

MOP[B] = A fe(Vinit)

P, a path from start node to B

@ MOP[B] < IDEAL[B], since we consider a superset of the
set of execution paths

Y.N. Srikant Data-Flow Analysis

Meaning of the Maximum Fixpoint Data-flow Solution

@ Finding all paths in a flow graph may still be impossible, if it
has cycles
@ The iterative algorithm does not try this
e It visits all basic blocks, not necessarily in execution order
o It applies the A operator at each join point in the flow graph
e The solution obtained is the Maximum Fixpoint solution
(MFP)
@ If the framework is distributive, then the MOP and MFP
solutions will be identical
@ Otherwise, with just monotonicity, MFP < MOP < IDEAL,
and the solution provided by the iterative algorithm is safe

Y.N. Srikant Data-Flow Analysis

Product of Two Lattices and Lattice of Constants

'lr 'i' Product lattice (T,T)
T
0o X1 = Ty oD D
I
T ©,1) S
\/
Constant propagation 02

lattice T (UNDEF) \

b
.3 240123 ..

T\ [sxsi=is sl

(@b)<(cd)iffa<c&b<d
L (nac)

Y.N. Srikant Data-Flow Analysis

The Constant Propagation Framework

@ The lattice of the DF values in the CP framework is the
product of the semi-lattices of the variables (one lattice for
each variable)

@ In a product lattice, (a1, by) < (ao, bo) iff @y <4 a and
b1 <pg b, assuming ai,a, € Aand by, b, € B

@ Each variable v is associated with a map m, and m(v) is
its abstract value (as in the lattice)

@ Each element of the product lattice has a similar, but
“larger” map m

e Thus, m < n7 (in the product lattice), iff for all variables v,
m(v) < m'(v)

Y.N. Srikant Data-Flow Analysis

Transfer Functions for the CP Framework

@ Assume one statement per basic block

@ Transfer functions for basic blocks containing many
statements may be obtained by composition

@ m(v) is the abstract value of the variable v in a map m.

@ The set F of the framework contains transfer functions
which accept maps and produce maps as outputs

@ F contains an identity map

@ Map for the Start block is mg(v) = UNDEF, for all
variables v

@ This is reasonable since all variables are undefined before
a program begins

Y.N. Srikant Data-Flow Analysis

Transfer Functions for the CP Framework

@ Let f; be the transfer function of the statement s
o If m = fs(m), then fs is defined as follows

@ If sis not an assignment, fs is the identity function
@ If sis an assignment to a variable x, then m’(v) = m(v), for
all v # x, and,
(a) If the RHS of sis a constant ¢, then m’(x) = ¢
(b) If the RHS is of the form y + z, then

m'(x) m(y) + m(z), if m(y) and m(z) are constants
NAC, if either m(y) or m(z) is NAC

UNDEF, otherwise

(c) Ifthe RHS is any other expression, then m’(x) = NAC

Y.N. Srikant Data-Flow Analysis

Monotonicity of the CP Framework

It must be noted that the transfer function (m’ = fs(m)) always
produces a “lower” or same level value in the CP lattice,
whenever there is a change in inputs

my) | m@z || m

UNDEF || UNDEF T (UNDEF)
UNDEF & UNDEF

NAC NAC

UNDEF || UNDEF 3 2 4012 3
4] Co C1 +Co

NAC NAC W

UNDEF NAC 1 (NAC)
NAC & NAC

NAC NAC

Y.N. Srikant Data-Flow Analysis

Non-distributivity of the CP Framework

Start

B1

B2

- X
mn
N W

The iterative method
determines zto be a
non-constant

B3 | z=x+y .
Z is always a constant
but this cannot be
determined by the
iterative method
stop
Y.N. Srikant Data-Flow Analysis

Non-distributivity of the CF Framework - Example

e If i, f, f3 are transfer functions of B1, B2, B3 (resp.), then
f3(fi(mo) A f2(mo)) < f3(F1(mo)) A f3(F2(mo))
as shown in the table, and therefore the CF framework is
non-distributive

| m | m(x) | m(y) | m(z) |
mg UNDEF | UNDEF | UNDEF
fi(mp) 2 3 UNDEF
fo(mp) 3 2 UNDEF
fi(mo) N fo(mg) NAC NAC UNDEF
f3(f1 (mo) A fg(mo)) NAC NAGC NAC
(7 (o) 2 | 3 | 5
f3(f2(mo)) 3 2 5
f3(f1 (mo)) A fg(fg(mo)) NAC NAGC 5

Y.N. Srikant Data-Flow Analysis

Introduction to Control-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Control-Flow Analysis

Outline of the Lecture

@ Why control-flow analysis?
@ Dominators and natural loops
@ Depth of a control-flow graph

Y.N. Srikant Control-Flow Analysis

Why Control-Flow Analysis?

Control-flow analysis (CFA) helps us to understand the
structure of control-flow graphs (CFQG)

@ To determine the loop structure of CFGs
@ To compute dominators - useful for code motion

@ To compute dominance frontiers - useful for the
construction of the static single assignment form (SSA)

@ To compute control dependence - needed in parallelization

Y.N. Srikant Control-Flow Analysis

Dominators

@ We say that a node d in a flow graph dominates node n,
written d dom n, if every path from the initial node of the
flow graph to n goes through d

@ Initial node is the root, and each node dominates only its
descendents in the dominator tree (including itself)

@ The node x strictly dominates y, if x dominates y and
X#Yy

@ x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y

@ A dominator tree shows all the immediate dominator
relationships

@ Principle of the dominator algorithm

o If py,po, ..., Pk, are all the predecessors of n, and d # n,
then d dom n, iff d dom p; for each i

Y.N. Srikant Control-Flow Analysis

Dominator Algorithm Principle

Intial node
d
All paths fromiton d dom n
go through d iff
d dom p, for all i
P1 Px
n

Y.N. Srikant Control-Flow Analysis

An Algorithm for finding Dominators

@ D(n) = OUT|n] for all nin N (the set of nodes in the flow
graph), after the following algorithm terminates
@ {/* ny = initial node; N = set of all nodes; */
OUT[no] = {no};
fornin N —{ny} do OUT[n] = N;
while (changes to any OUT[n] or IN[n] occur) do
fornin N —{ny} do

IN[n] = N OUTIPY;

P a predecessor of n

OUT[n] = {n}UINI[n]

Y.N. Srikant Control-Flow Analysis

Dominator Example - 1

BO Start

For determining
dominators, assume
visit order of nodes in
the CFG to be
BO,...B8

i=0
read n

\
53[even(n)] [print i]54

BS B8

n=3*n+1|B6 Stop

init: OUT[B1,...,B8] = {B0,... B8}, OUT[B0] = (B0}
1: IN[B1] = OUT[BO] = {B0}, OUT[B1] = {B0,B1}
2: IN[B2] =OUT[B1] N OUT[B7] = {B0,B1}, OUT[B2] = {B0,B1,B2}
3: IN[B3] = {B0,B1,B2}, OUT[B3] = {B0,B1,82,B3}
IN[B4] = {B0,B1,B2}, OUT[B4] = {B0,B1,B2,B4} = IN[BS]
4: IN[B5] = {B0,B1,B2,B3} = IN[B6], OUT[BS5] = {B0,B1,B2,B3,B5)
OUT[B6] = {B0,B1,62,B3,B6}, OUT[BB] = {B0,B1,B2,B4,B8}
5: IN[B7] = OUT[B5] N OUT[B6] = {B0,B1,B2,B3}
OUT[BT7] = {B0,B1,B2,B3,B7}

Y.N. Srikant Control-Flow Analysis

Dominator Example - 2

Dominator Tree

Adapted from the
“Dragon Book”,
A-WW, 1986

Flow Graph

Y.N. Srikant Control-Flow Analysis

Dominator Example - 3

Dominator Tree

Adapted from the
“Dragon Book”,
A-WW, 1986

Flow Graph

Y.N. Srikant Control-Flow Analysis

Dominators and Natural Loops

@ Edges whose heads dominate their tails are called back
edges(a— b: b= head, a= tail)
@ Given a back edge n — d
e The natural loop of the edge is d plus the set of nodes that

can reach n without going through d
e d is the header of the loop
@ A single entry point to the loop that dominates all nodes in
the loop
@ At least one path back to the header exists (so that the loop
can be iterated)

Y.N. Srikant Control-Flow Analysis

