Introduction to
Machine-Independent Optimizations - 5
Control-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Control-Flow Analysis

Outline of the Lecture

@ What is code optimization? (in part 1)

@ lllustrations of code optimizations (in part 1)

@ Examples of data-flow analysis (in parts 2,3, and 4)

@ Fundamentals of control-flow analysis

@ Algorithms for two machine-independent optimizations
@ SSA form and optimizations

Y.N. Srikant Control-Flow Analysis

Dominators and Natural Loops

@ Edges whose heads dominate their tails are called back
edges(a— b: b= head, a= tail)
@ Given a back edge n — d
e The natural loop of the edge is d plus the set of nodes that

can reach n without going through d
e d is the header of the loop
@ A single entry point to the loop that dominates all nodes in
the loop
@ At least one path back to the header exists (so that the loop
can be iterated)

Y.N. Srikant Control-Flow Analysis

Algorithm for finding the Natural Loop of a Back Edge

/* The back edge under considerationis n — d /*
{ stack = empty; loop = {d};
/* This ensures that we do not look at predecessors of d */
insert(n);
while (stack is not empty) do {
pop(m, stack);
for each predecessor p of m do insert(p);
}
}

procedure insert(m) {
if m ¢ loop then {
loop = loop U {m};
push(m, stack);
}
}

Y.N. Srikant Control-Flow Analysis

Dominators, Back Edges, and Natural Loops

Dominator Tree

Adapted from the
“Dragon Book”,

“ AWV, 1986
\
\
'
/)
1
1
[}
1
1
1
1
1
- Back edges and their natural loops

724 1007 |43 10>3 11->1

{4,5,6,7,8, | {7.8,10} {3.4,56,7, | {3.456.7, {1,2,34.5,
10} 8,10} 8,10} 6,7,8,9,10,11}

Flow Graph

Y.N. Srikant Control-Flow Analysis

Dominators, Back Edges, and Natural Loops

Flow Graph

Dominator Tree

Adapted from the

\ “Dragon Book”,
“ AWV, 1986
\
1
1
1
1
|
[}
1
1
1
1
1
- Back edges and their natural loops
7->3 10>7 |43 10->3 11->1
{34,56,78, | {7.810} | {34} {3.4,56,7, {1,2,34.5,
10} 8,10} 6,7,8,9,10,11}
Y.N. Srikant Control-Flow Analysis

Depth-First Numbering of Nodes in a CFG

void dfs-numlint n) {
mark node n “visited”;
for each node s adjacent to r7 do {
if s is “unvisited” {
add edge n >sto dfstree T,
dfs-num(s);
}
depth-first-num[n] =i ; i- ;
H
// Main program
{ T=-empty; mark all hodes of CFG as “unvisited”;
i = number of nodes of CFG;
dfs-num(ng);// n, is the entry node of the CFG

}

Y.N. Srikant Control-Flow Analysis

Depth-First Numbering Example 1

retreating

edge
P /tree edge
4
BS[even(n)] [printi]54
\ B8

Y.N. Srikant Control-Flow Analysis

Depth-First Numbering Example 2

Dominator Tree

]
1 Adapted from the
I “Dragon Book”,
1 \ AWV, 1986
I \
| \
1 1
1 1
R !
crosk edge :
' I
1 1
1
|
\ 1
\

Nodes of the CFG show the
DF-numbering

retreating \
edge M-
Flow Graph

tree edge

Y.N. Srikant Control-Flow Analysis

Inner Loops

@ Unless two loops have the same header, they are either
disjoint or one is nested within the other

@ Nesting is checked by testing whether the set of nodes of a
loop A is a subset of the set of nodes of another loop B

@ Similarly, two loops are disjoint if their sets of nodes are
disjoint

@ When two loops share a header, neither of these may hold
(see next slide)

@ In such a case the two loops are combined and
transformed as in the next slide

Y.N. Srikant Control-Flow Analysis

Inner Loops and Loops with the same header

Adapted from the

C->A D->A E—->A
“Dragon Book”,
AW, 1036 {A,BC} |{ABD} {ABC,
D,E}
A
\
\ ®) vy
\
1
\ G = @
1
1l © (D) @ (D)
[}
! (E)
1
,’ E is a dummy node
1
Back edges and their natural loops
723 1027 |4=>3 [10>3 | 111
{34,586, | {7.8,10} | {34} |{34,58, | {1,2345,
7.8,10} 7,810} | 6,7,8,9,10,11}

Y.N. Srikant

Control-Flow Analysis

loop L loop L

«O» «F»r «

U]
i
U]
)
0
i)

Depth of a Flow Graph and Convergence of DFA

@ Given a depth-first spanning tree of a CFG, the largest
number of retreating edges on any cycle-free path is the
depth of the CFG

@ The number of passes needed for convergence of the
solution to a forward DFA problem is (1 + depth of CFG)

@ One more pass is needed to determine no change, and
hence the bound is actually (2 + depth of CFG)

@ This bound can be actually met if we traverse the CFG
using the depth-first numbering of the nodes

@ For a backward DFA, the same bound holds, but we must
consider the reverse of the depth-first numbering of nodes

@ Any other order will still produce the correct solution, but
the number of passes may be more

Y.N. Srikant Control-Flow Analysis

Depth of a CFG - Example 1

Dominator Tree

]
] Adapted from the
I “Dragon Book”,
[' AW, 1986
I \
| \
1 1
1 1
r _— !
crosk edge :
' I
1 1
1
|
\ 1
\

Nodes of the CFG show the
DF-numbering

retreating \ tree edge
\ -
edge - Depth of the CFG = 2 (10-7-3)
Flow Graph

Y.N. Srikant Control-Flow Analysis

Depth of a CFG - Example 2

Adapted from the

\ “Dragon Book”,
\‘ AW, 1986
\
N
'
/
P 1
1
| Depth of the CFG =3 (10-7-4-3)
I
1
1

Flow Graph

Y.N. Srikant Control-Flow Analysis

Algorithms for Machine-Independent
Optimizations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Machine-Independent Optimizations

Outline of the Lecture

@ Global common sub-expression elimination
@ Copy propagation

@ Simple constant propagation

@ Loop invariant code motion

Y.N. Srikant Machine-Independent Optimizations

Elimination of Global Common Sub-expressions

@ Needs available expression information

@ Forevery s: x:=y+ z, such that y + z is available at the
beginning of s’ block, and neither y nor z is defined prior to
s in that block, do the following

@ Search backwards from s’ block in the flow graph, and find
first block in which y + z is evaluated. We need not go
through any block that evaluates y + z.

@ Create a new variable u and replace each statement
w := y + z found in the above step by the code segment
{u:=y+ 2z, w:=u},and replace sby x .= u

© Repeat 1 and 2 above for every predecessor block of s’
block

@ Repeated application of GCSE may be needed to catch
“deep” CSE

Y.N. Srikant Machine-Independent Optimizations

GCSE Conceptual Example

= = = u:=y+z ui=y+z ui=y+z
k:i=y+z l:=y+z m:=y+z e
I
GCSE
SIXISy+z
a=x+y e ur=xry ey
b:=atz a:=u . vi=u*z
i b:=a*z i bi=v
m——
—_— —_—
GCSE Copy GCSE
propagation
CiI=X+ c:=u
d:=c*¥ d:=c*z e =

Demonstrating the need for repeated application of GCSE

Y.N. Srikant Machine-Independent Optimizations

GCSE on Running Example - 1

BS

t1 =i>1
if 1t1 goto B9

t5 = a[t4]
16 = j+1
t7=4" 16
18 = a[t7]
19 =15>t8
if 1t9 goto B7

L fae

t10 = 47
t11 = a[t10]
temp = t11
t12 = 4%
t13=a+t12
t14 = j+1
t15=4*t14
t16 = a[t15]
13 =116
t17 = j+1
t18=4"1t17
t19=a+t18
*t19 = temp

B6

\

t20 = j+1
j=1t20
goto B4

Machine-Independent Optimizations

B7

GCSE on Running Example - 2

B1

B2

B4

BS

t1=1>1
if 1t1 goto B9
false l
ji=o
B3 |42 =1

if 1t3 goto B8

false l
t4 = 4%j
15 = a[td]
t6 = j+1
t7=4+*1t6
18 = a[t7]
t9=t5>1t8

-+
=
c
1]

if !t9 goto B7

false

B9

l t% B8
. t21 = t2
13 = j<t2 i =t21

goto B2

t10=14
t11 = a[t10]
temp = t11
ti2=14
t13=a+ 112
t14 =16
t15=4*t14
t16 = a[t15]
13 =t16
t17 =16
t18=4*t17
t19=a+t18
*t19 = temp

B6

t20 = t6
j=t20
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

Copy Propagation

@ Eliminate copy statements of the form s: x := y, by
substituting y for x in all uses of x reached by this copy
@ Conditions to be checked

@ u-d chain of use u of x must consist of s only. Then, s is the
only definition of x reaching u

@ On every path from s to v, including paths that go through u
several times (but do not go through s a second time), there
are no assignments to y. This ensures that the copy is valid

@ The second condition above is checked by using
information obtained by a new data-flow analysis problem

e c_gen[B] is the set of all copy statements, s: x := y in B,
such that there are no subsequent assignments to either x
or y within B, after s

e c_kill[B] is the set of all copy statements, s: x := y, s notin
B, such that either x or y is assigned a value in B

o Let U be the universal set of all copy statements in the
program

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation - The Data-flow Equations

@ c_in[B] is the set of all copy statements, x := y reaching
the beginning of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path

@ c_out[B] is the set of all copy statements, x := y reaching
the end of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path

c_in[B] = N c_out[P], B not initial

P is a predecessor of B
c_out[B] = c_gen[B] U (c_in[B] — c_kill[B])
c_in[B1] = ¢, where B1 is the initial block
c_out[B] = U—c_killlB], for all B+# B1 (initialization only)

Y.N. Srikant Machine-Independent Optimizations

Algorithm for Copy Propagation

For each copy, s : x := y, do the following

@ Using the du — chain, determine those uses of x that are
reached by s
@ For each use u of x found in (1) above, check that
(i) u-d chain of u consists of s only

@ This implies that s is the only definition of x that reaches this
block

(i) sisin c_in[B], where Bis the block to which u belongs.

@ This ensures that no definitions of x or y appear on this path
from sto B

(iii) no definitions x or y occur within B prior to u found in (1)
above

© If s meets the conditions above, then remove s and replace
all uses of x found in (1) above by y

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation Example 1

B sl:x:=y | C_in[Bi]=®
C_in[B2] = {s1,52} $2: pi=q | C_out[B1] = {s1,52}

C_out[B2] = {s2,s4}
B3 C_in[B3] = {s1,52}
C_out[B3] = {s2,s5}

C_in[B4] = {s2,s65}
C_out[B4] = {s2,s5}

X in s6 can be B4 | s6: k:=x+6
replaced by z in 85

X in s7 cannot be

replaced by z in s4 s7: m:=x+9 | g5 C_in[B5] = {s2}

or s5 (two different s8: n:=p C_out[B5] = {s2,s8}
copies of z)

p in s8 can be Adapted from
replaced by q in s2 “The Dragon Book”
(s2 reaches B5 thro’ AW 1986

both the paths)

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation on Running Example 1.1

B1

B2

B4

BS

t1=1>1
if 1t1 goto B9
false l
j=0
B3 |42 =1

if 1t3 goto B8

false l

-+
=
c
1]

t4 = 4%
15 = a[td]
t6 = j+1
t7=4+16
18 = a[t7]
t9=15>1t8
if 1t9 goto B7

B9

l t% B8
. t21 = t2
13 = j<t2 i =t21

goto B2

false

t10=14
t11 = a[t10]
temp = t11
ti2=14
t13=a+ 112
t14 =16
t15=4*t14
t16 = a[t15]
13 =t16
t17 =16
t18=4*t17
t19=a+t18
*t19 = temp

B6

t20 = t6
j=t20
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

Copy Propagation on Running Example 1.2

B1

B2

t1=i>1
if 1t1 gote B9

B3 |42 = i1

B4

false l

j=0

l tr

13 = j<t2
if 1t3 goto B8

false l

u

BS

t4 = 4%
15 = a[td]
t6 = j+1

18 = a[t7]
t9=15>1t8
if 1t9 goto B7

false

B9

B8

j E/:e:

i=1t2
goto B2

true

t11 = a[t4]
temp = t11
t13=a+t4

t16 = a[t15]
13 = 116

t19=a+ 118
*t19 = temp

B6

\

j=t6
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

GCSE and Copy Propagation on Running Example 1.1

B1

B2

B4

BS

t1=1>1
if 1t1 goto B9
false l
j=0
B3 |42 = i1

l tr

13 = j<t2
if 1t3 goto B8

false l

u

j E/:e:

t4 = 4%
15 = a[td]
t6 = j+1

18 = a[t7]
t9=15>1t8
if 1t9 goto B7

false

B9

B8

i=1t2
goto B2

true

t11 = a[t4]
temp = t11
t13=a+t4

t16 = a[t15]
13 = 116

t19=a+ 118
*t19 = temp

B6

\

j=t6
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

GCSE and Copy Propagation on Running Example 1.2

B1

B2

t1=i>1
if 1t1 gote B9

B3 |42 = i1

B4

false l
j=0

l tru

13 = j<t2
if 1t3 goto B8

false l

BS

t4 = 4%
15 = a[td]
t6 = j+1

18 = a[t7]
t9=15>1t8

if !t9 goto B7

false

B9

B8

j E/:e:

i=t2
goto B2

true

t11 = a[t4]
temp = t11
t13=a+t4
t16 = a[t7]
13 =t16
t19=a+
*t19 = temp

B6

\

j=té
goto B4

Y.N. Srikant

Machine-Independent Optimizations

B7

Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {
S = remove(Stmtpile);
if S is of the form x = ¢ for some constant ¢
for all statements T in the du-chain of x do
if usage of x in T is reachable only by S
{ substitute ¢ for x in T; simplify T
Stmtpile = Stmtpile U {T}

}

Note: If all usages of x are replaced by c, then x = ¢ becomes
dead code and a separate dead code elimination pass will
remove it.

Y.N. Srikant Machine-Independent Optimizations

Simple Constant Propagation Example

dl: x=7 u1 is reached by only d1.
Hence x in u1 can be
replaced by value of x in d1

u1 and u2 are =x+6(ul)
usages of def d1 d2: x=9

=X+ 3 (u2)

u2 is reached by both d1 and d2.
Hence x in u2 cannot be replaced
by either value of x

Y.N. Srikant Machine-Independent Optimizations

