Instruction Scheduling and
Software Pipelining - 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Instruction Scheduling

Outline

@ Instruction Scheduling

@ Simple Basic Block Scheduling
@ Trace, Superblock and Hyperblock scheduling

@ Software pipelining

Y.N. Srikant Instruction Scheduling

Basic Block Scheduling

@ Basic block consists of micro-operation sequences (MOS),
which are indivisible

@ Each MOS has several steps, each requiring resources

@ Each step of an MOS requires one cycle for execution

@ Precedence constraints and resource constraints must be
satisfied by the scheduled program

@ PC's relate to data dependences and execution delays
@ RC'’s relate to limited availability of shared resources

Y.N. Srikant Instruction Scheduling

The Basic Block Scheduling Problem

@ Basic block is modelled as a digraph, G = (V,E)

@ R: number of resources
@ Nodes (V): MOS; Edges (E): Precedence
@ Label on node v

@ resource usage functions, py (i) for each step of the MOS
associated with v
@ length I(v) of node v

@ Label on edge e: Execution delay of the MOS, d(e)
@ Problem: Find the shortest schedule ¢ : V — N such that
Ve = (u,v) € E, o(v) —o(u) > d(e) and
vev
Vi, pu(i — o(v)) <R, where

length of the schedule is ma{/x{a()+ 1(v)}
ve

Y.N. Srikant Instruction Scheduling

Instruction Scheduling - Precedence and Resource
Constraints

MOS substeps (time)
0|12 |34

ofu)
ofv,)=0 | 1 1 @ 2
d | d=o(v)-ofu)
ofv,)=1 | 2 1 2
Schedule { ’ @ @
o(v) Time o(u) o(v,)=2 @ 1 @
olv)=3 | 1 @ 3|2
Precedence
constraint Resource constraint

Consider R = 5. Each MOS substep takes 1 time unit.

Q At =4, Gyl 11+G,5(2+6o(3)4G,4(4) = 2424140 =5 < R, satisfied

O AL i=2, ,5(01+G,,(1)+G,4(2) = 3+3+2 =8 > R, NOT satisfied

Y.N. Srikant Instruction Scheduling

A Simple List Scheduling Algorithm

Find the shortest schedule o : V — N, such that precedence
and resource constraints are satisfied. Holes are filled with
NOPs.

FUNCTION ListSchedule (V,E)
BEGIN
Ready = root nodes of V; Schedule = ¢;
WHILE Ready # ¢ DO
BEGIN
v = highest priority node in Ready;
Lb = SatisfyPrecedenceConstraints (v, Schedule, o);
o(v) = SatisfyResourceConstraints (v, Schedule, o, Lb);
Schedule = Schedule + {v};
Ready = Ready — {v} + {u|NOT (u € Schedule)
AND VY (w,u) € E, w € Schedule};
END
RETURN o;
END

Y.N. Srikant Instruction Scheduling

List Scheduling - Ready Queue Update

Unscheduled nodes
which will get into the @
Ready queue now

Currently scheduled node @ Unscheduled nodes @

Already scheduled nodes

®

Y.N. Srikant Instruction Scheduling

Constraint Satisfaction Functions

FUNCTION SatisfyPrecedenceConstraint(v, Sched, o)
BEGIN
RETURN (max o(u)+d(u,v))

ueSched
END

FUNCTION SatisfyResourceConstraint(v, Sched, o, Lb)
BEGIN

FORi:=Lb TO c0c DO
ueSched

IFV0 <j <I(v), p(i)+ > puli+j—o(u)) <RTHEN
RETURN (i);
END

Y.N. Srikant Instruction Scheduling

Precedence Constraint Satisfaction

o(uy)=25

o(u)=10 @ @ @ o{u;)=18
4

2 3

Lower bound for o(v) = 29

Already scheduled nodes @ Precedence constraint satisfaction:

v cah be scheduled only after all
of u,, u,, and, us, finish

Node to be scheduled @ Lower bound for o(v)
= max(10+2, 25+4, 18+3)
=max(12, 29, 21) = 29

Y.N. Srikant Instruction Scheduling

Resource Constraint Satisfaction

Resource constraint satisfaction MOS substeps (time)
Consider R = 5. Each MOS
substep takes 1 time unit. 0 1 2|1 3| 4

ov)=0 | 1 | 1|22

o<1 1 2 | 3 1 1 2
Schedule

Time o(u) 2

ofvb4 | 3 | 1 | 2

o= | 1 | 2 | 3| 2

Time slots 2 and 3 are vacant because scheduling
node v; in either of them violates resource constraints

Y.N. Srikant Instruction Scheduling

List Scheduling - Priority Ordering for Nodes

© Height of the node in the DAG (i.e., longest path from the
node to a terminal node
@ Estart, and Lstart, the earliest and latest start times

@ Violating Estart and Lstart may result in pipeline stalls
o Estart(v) = Taxk(Estart(ui) +d(ui,Vv))
=1,

where uy, U, - - - , Uy are predecessors of v. Estart value of
the source node is 0.
o Lstart(u) = rlnin k(Lstart(vi) —d(u,v))
=1,

where vy, Vy, - - - , Vi are successors of u. Lstart value of the
sink node is set as its Estart value.

@ Estart and Lstart values can be computed using a
top-down and a bottom-up pass, respectively, either
statically (before scheduling begins), or dynamically during
scheduling

Y.N. Srikant Instruction Scheduling

25 45 16
Estart (v) = max (Esart (u;) + d;)
i=1,.3
d,.7 = max(25+4, 45+7, 16+2)

d,4 .2 = max(29, 52, 18) = 52

Lstart (v) =| g’ll’n {é_sarf (wy) - dp)

= min(12-2, 36-1, 21-3)
=min(10, 35, 18) =10

List Scheduling - Slack

© A node with a lower Estart (or Lstart) value has a higher
priority
@ Slack = Lstart — Estart

@ Nodes with lower slack are given higher priority
@ Instructions on the critical path may have a slack value of
zero and hence get priority

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 1

INSTRUCTION SCHEDULING - EXAMPLE

LEGEND

path length | nodeno.] exectime

latency

path length (n) = exectime(n) , if nisaleaf

= max { latency (n,m) + path length (m) }
m € succ(n)

Schedule={3, 1, 2, 4, 6, 5}

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2

@ latencies
@ add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles

@ path length and slack are shown on the left side and right
side of the pair of numbers in parentheses

70,1

(at+4)+(a-2)*b;
b+3;

(a) High-Level Code

il: |t1 + 1load a
i2: | t2 + 1load b ' o °
. R i6 i9 /
i3: [t3 ¢+ t1+4 @ / .90
id: [t4 « t1 -2
i6: [t56 ¢+ t2 + 3 ' ’

i6: | t6 <+ t4 x t2

i7: | t7 + t3 + t6

i8: | ¢ — st t7

i9: | b < st tb 17,70

(b) 3-Address Code
(c) DAG with (Estart, Lstart) Values

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2 (contd.)

@ latencies
@ add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles
@ 2 Integer units and 1 Multiplication unit, all capable of load
and store as well

@ Heuristic used: height of the node or slack

int1 int2 mult | Cycle # | Instr.No. | Instruction
1 1 0 0 i1,i2 t < load a, t, «+ load b
1 1 0 |1
1 1 0 |2 i4, i3 b+ th—-23+ t+4
1 0 1 3 i6, i5 E+ b+3 g+ hxb
0 0 1 4 i5 not sched. in cycle 2
0 0 1 5 due to shortage of inf units
1 0 0 6 i7 LB+
1 0 0 7 i8 cC+— Sttty
1 0 0 |8 i9 b« st 5

Y.N. Srikant Instruction Scheduling

Resource Usage Models -
Instruction Reservation Table

nn || Rk| R34
Lhl1]0[1]2]0
|1 170101
L10]0|0]|2|1
3] 0]1]0]0/1

No. of resources in the machine: 4

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

o | 'L | I'2 'm
o |10 1 0
b 110 1
20|00 1
tr

M: No. of resources in the machine
T: Length of the schedule

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

e ¢ ¢ ¢

GRT is constructed as the schedule is built (cycle by cycle)
All entries of GRT are initialized to O
GRT maintains the state of all the resources in the machine
GRTs can answer questions of the type:
“can an instruction of class | be scheduled in the current
cycle (say t¢)?”
Answer is obtained by ANDing RT of | with the GRT
starting from row ty

@ If the resulting table contains only Q’s, then YES, otherwise

NO

The GRT is updated after scheduling the instruction with a
similar OR operation

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Disadvantages

@ Checking resource constraints is inefficient here because it
involves repeated ANDing and ORing of bit matrices for
many instructions in each scheduling step

@ Space overhead may become considerable, but still
manageable

Y.N. Srikant Instruction Scheduling

Global Acyclic Scheduling

@ Average size of a basic block is quite small (5 to 20
instructions)
o Effectiveness of instruction scheduling is limited
@ This is a serious concern in architectures supporting
greater ILP
@ VLIW architectures with several function units
@ superscalar architectures (multiple instruction issue)
@ Global scheduling is for a set of basic blocks
@ Overlaps execution of successive basic blocks
@ Trace scheduling, Superblock scheduling, Hyperblock
scheduling, Software pipelining, etc.

Y.N. Srikant Instruction Scheduling

Trace Scheduling

@ A Trace is a frequently executed acyclic sequence of basic
blocks in a CFG (part of a path)
@ Identifying a trace

@ Identify the most frequently executed basic block
@ Extend the trace starting from this block, forward and
backward, along most frequently executed edges

@ Apply list scheduling on the trace (including the branch
instructions)

@ Execution time for the trace may reduce, but execution time
for the other paths may increase

@ However, overall performance will improve

Y.N. Srikant Instruction Scheduling

Trace Example

for (i=0; i < 100; i++)
{
if (A[i] == 0)
B[i] = B[i] + s;
else
B[i]l = A[il;
sum = sum + B[i];

(a) High-Level Code

Bl:

B2:

B3:

B4:

%% rl + 0

%% r5 «+ 0

%% r6 <« 400

%% r7 + s
il: |r2 <+ load a(ril)
i2: [if (r2 != 0) goto i7
i3: [r3 <+ load b(ril)
i4: |rd4 +— r3 + 7
i5: |b(rl) <« r4
i6: |goto i9
i7: |rd4 — r2
i8: |b(rl) +« r2
i9: |rb5 +— rb +rd
i10: |r1 — rl + 4
i11:|if (r1 < r6) goto il
(b) Assembly Code (¢) Control Flow Graph

Y.N. Srikant Instruction Scheduling

Trace - Basic Block Schedule

@ 2-way issue architecture with 2 integer units
@ add, sub, store: 1 cycle, load: 2 cycles, goto: no stall
@ 9 cycles for the main trace and 6 cycles for the off-trace

Time Int. Unit 1 Int. Unit 2

0 il: r2 + load a(rl)

1

2 i2: | if (r2 != 0) goto i7

3 i3: r3 + load b(rl)

4

5 i4: rd — r3 + 17

6 i6: | b(rl) <+ r4 i6: | goto i9

3 i7: rd — r2 i8: b(rl) <+ 12
7(4) | i9: |5 +— 15+ 14 i10: | r1 — rl+4
8 (5) | itl: | if (r1 < r6) goto il

Y.N. Srikant Instruction Scheduling

Trace Schedule

Trace Scheduling : Example

(i1) load 12, a(rl)
(i2) bnezr2, 17

N [(13) load 13, b(rl)
(14) add 14, 13,17
(15) stb(rl), r4
(16) _brio

(i7) mov r4, 12
(18) stb(rl), 2

(19) addrs, 15,14
(i10) add rl, 11, 4
(i11) bleq 11, 16, il

Y.N. Srikant Instruction Scheduling

Trace Schedule

@ 6 cycles for the main trace and 7 cycles for the off-trace

Time Int. Unit 1 Int. Unit 2
0 il: r2 < 1load a(ril) | i3: r3 < 1load b(ril)
1
2 i2: if (r2 != 0) goto i7 | i4: |r4 — 13 + 17
3 i5: b(rl) +«+ r4
4(5) | 19: | 5 — 15+ r4 i10: | r1 — r1+4
5(6) | i11: | if (r1 < r6) goto il
3 i7: r4d — r2 i8: b(rl) <« 1r2
4 i12: | goto 19

Y.N. Srikant Instruction Scheduling

Trace Scheduling - Issues

@ Side exits and side entrances are ignored during
scheduling of a trace

@ Required compensation code is inserted during
book-keeping (after scheduling the trace)

@ Speculative code motion - load instruction moved ahead of
conditional branch

@ Example: Register r3 should not be live in block B3
(off-trace path)
@ May cause unwanted exceptions

@ Requires additional hardware support!

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Compensation Code

L] L]

L] L]

L] L]
Instr 1 Instr 2
Instr 2 Instr 3
Instr 3 Instr 4
Instr 4 Instr 1
Instr 5 Instr 5

L] L]

L] L]

L] L]

What compensation code is required when Instr 1
is moved below the side exit in the trace?

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Compensation Code (contd.)

L] L]

L] L]

L] L]
Instr 1 Instr 2
Instr 2 Instr 3
Instr 3 Instr 4 nstr 1
Instr 4 Instr 1 et
Instr 5 Instr 5

L] L]

L] L]

L] L]

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Compensation Code (contd.)

L] L]

L] L]

L] L]
Instr 1 Instr 1
Instr 2 Instr 5
Instr 3 Instr 2
Instr 4 Instr 3
Instr 5 Instr 4

L] L]

L] L]

L] L]

What compensation code is required when Instr 5
moves above the side entrance in the trace?

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Compensation Code (contd.)

L] L]

L] L]

L] L]
Instr 1 Instr 1 [T
Instr 2 Instr 5
Instr 3 Instr 2
Instr 4 Instr 3
Instr 5 Instr 4

L] L]

L] L]

L] L]

Y.N. Srikant Instruction Scheduling

