
Introduction to
Machine-Independent Optimizations - 4

Data-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Data-Flow Analysis



Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Data-Flow Analysis



Foundations of Data-flow Analysis

Basic questions to be answered
1 In which situations is the iterative DFA algorithm correct?
2 How precise is the solution produced by it?
3 Will the algorithm converge?
4 What is the meaning of a “solution”?

A DFA framework (D,V ,∧,F ) consists of
D : A direction of the dataflow, either forward or backward
V : A domain of values
∧ : A meet operator; (V ,∧) form a semi-lattice
F : A family of transfer functions, V −→ V

F includes constant transfer functions for the
ENTRY/EXIT nodes as well

Y.N. Srikant Data-Flow Analysis



Properties of the Iterative DFA Algorithm

1 If the iterative algorithm converges, the result is a solution
to the DF equations

2 If the framework is monotone, then the solution found is the
maximum fixpoint (MFP) of the DF equations

An MFP solution is such that in any other solution, values of
IN[B] and OUT [B] are ≤ the corresponding values of the
MFP (i.e., less precise)

3 If the semi-lattice of the framework is monotone and is of
finite height, then the algorithm is guaranteed to converge

Dataflow values decrease with each iteration
Max no. of iterations = height of the lattice × no. of nodes in
the flow graph

Y.N. Srikant Data-Flow Analysis



Meaning of the Ideal Data-flow Solution

Find all possible execution paths from the start node to the
beginning of B
(Assuming forward flow) Compute the data-flow value at
the end of each path (using composition of transfer
functions)
No execution of the program can produce a smaller value
for that program point than

IDEAL[B] =
∧

P, a possible execution path from start node to B

fP(vinit)

Answers greater (in the sense of ≤) than IDEAL are
incorrect (one or more execution paths have been ignored)
Any value smaller than or equal to IDEAL is conservative,
i.e., safe (one or more infeasible paths have been included)
Closer the value to IDEAL, more precise it is

Y.N. Srikant Data-Flow Analysis



Meaning of the Meet-Over-Paths Data-flow Solution

Since finding all execution paths is an undecidable
problem, we approximate this set to include all paths in the
flow graph

MOP[B] =
∧

P, a path from start node to B

fP(vinit)

MOP[B] ≤ IDEAL[B], since we consider a superset of the
set of execution paths

Y.N. Srikant Data-Flow Analysis



Meaning of the Maximum Fixpoint Data-flow Solution

Finding all paths in a flow graph may still be impossible, if it
has cycles
The iterative algorithm does not try this

It visits all basic blocks, not necessarily in execution order
It applies the ∧ operator at each join point in the flow graph
The solution obtained is the Maximum Fixpoint solution
(MFP)

If the framework is distributive, then the MOP and MFP
solutions will be identical
Otherwise, with just monotonicity, MFP ≤ MOP ≤ IDEAL,
and the solution provided by the iterative algorithm is safe

Y.N. Srikant Data-Flow Analysis



Product of Two Lattices and Lattice of Constants

Y.N. Srikant Data-Flow Analysis



The Constant Propagation Framework

The lattice of the DF values in the CP framework is the
product of the semi-lattices of the variables (one lattice for
each variable)
In a product lattice, (a1,b1) ≤ (a2,b2) iff a1 ≤A a2 and
b1 ≤B b2 assuming a1,a2 ∈ A and b1,b2 ∈ B
Each variable v is associated with a map m, and m(v) is
its abstract value (as in the lattice)
Each element of the product lattice has a similar, but
“larger” map m

Thus, m ≤ m′ (in the product lattice), iff for all variables v ,
m(v) ≤ m′(v)

Y.N. Srikant Data-Flow Analysis



Transfer Functions for the CP Framework

Assume one statement per basic block
Transfer functions for basic blocks containing many
statements may be obtained by composition
m(v) is the abstract value of the variable v in a map m.
The set F of the framework contains transfer functions
which accept maps and produce maps as outputs
F contains an identity map
Map for the Start block is m0(v) = UNDEF , for all
variables v
This is reasonable since all variables are undefined before
a program begins

Y.N. Srikant Data-Flow Analysis



Transfer Functions for the CP Framework

Let fs be the transfer function of the statement s
If m′ = fs(m), then fs is defined as follows

1 If s is not an assignment, fs is the identity function
2 If s is an assignment to a variable x , then m′(v) = m(v), for

all v 6= x , and,
(a) If the RHS of s is a constant c, then m′(x) = c
(b) If the RHS is of the form y + z, then

m′(x) = m(y) + m(z), if m(y) and m(z) are constants

= NAC, if either m(y) or m(z) is NAC

= UNDEF , otherwise

(c) If the RHS is any other expression, then m′(x) = NAC

Y.N. Srikant Data-Flow Analysis



Monotonicity of the CP Framework

It must be noted that the transfer function (m′ = fs(m)) always
produces a “lower” or same level value in the CP lattice,
whenever there is a change in inputs

m(y) m(z) m′(x)

UNDEF UNDEF

UNDEF c2 UNDEF

NAC NAC

UNDEF UNDEF

c1 c2 c1 + c2

NAC NAC

UNDEF NAC

NAC c2 NAC

NAC NAC

Y.N. Srikant Data-Flow Analysis



Non-distributivity of the CP Framework

Y.N. Srikant Data-Flow Analysis



Non-distributivity of the CF Framework - Example

If f1, f2, f3 are transfer functions of B1,B2,B3 (resp.), then
f3(f1(m0) ∧ f2(m0)) < f3(f1(m0)) ∧ f3(f2(m0))
as shown in the table, and therefore the CF framework is
non-distributive

m m(x) m(y) m(z)
m0 UNDEF UNDEF UNDEF

f1(m0) 2 3 UNDEF

f2(m0) 3 2 UNDEF

f1(m0) ∧ f2(m0) NAC NAC UNDEF

f3(f1(m0) ∧ f2(m0)) NAC NAC NAC

f3(f1(m0)) 2 3 5
f3(f2(m0)) 3 2 5
f3(f1(m0)) ∧ f3(f2(m0)) NAC NAC 5

Y.N. Srikant Data-Flow Analysis



Introduction to Control-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Control-Flow Analysis



Outline of the Lecture

Why control-flow analysis?
Dominators and natural loops
Depth of a control-flow graph

Y.N. Srikant Control-Flow Analysis



Why Control-Flow Analysis?

Control-flow analysis (CFA) helps us to understand the
structure of control-flow graphs (CFG)

To determine the loop structure of CFGs
To compute dominators - useful for code motion
To compute dominance frontiers - useful for the
construction of the static single assignment form (SSA)
To compute control dependence - needed in parallelization

Y.N. Srikant Control-Flow Analysis



Dominators

We say that a node d in a flow graph dominates node n,
written d dom n, if every path from the initial node of the
flow graph to n goes through d
Initial node is the root, and each node dominates only its
descendents in the dominator tree (including itself)
The node x strictly dominates y , if x dominates y and
x 6= y
x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y
A dominator tree shows all the immediate dominator
relationships
Principle of the dominator algorithm

If p1,p2, ...,pk , are all the predecessors of n, and d 6= n,
then d dom n, iff d dom pi for each i

Y.N. Srikant Control-Flow Analysis



Dominator Algorithm Principle

Y.N. Srikant Control-Flow Analysis



An Algorithm for finding Dominators

D(n) = OUT [n] for all n in N (the set of nodes in the flow
graph), after the following algorithm terminates
{ /* n0 = initial node; N = set of all nodes; */

OUT [n0] = {n0};
for n in N − {n0} do OUT [n] = N;
while (changes to any OUT [n] or IN[n] occur) do

for n in N − {n0} do

IN[n] =
⋂

P a predecessor of n

OUT [P];

OUT [n] = {n} ∪ IN[n]

}

Y.N. Srikant Control-Flow Analysis



Dominator Example - 1

Y.N. Srikant Control-Flow Analysis



Dominator Example - 2

Y.N. Srikant Control-Flow Analysis



Dominator Example - 3

Y.N. Srikant Control-Flow Analysis



Dominators and Natural Loops

Edges whose heads dominate their tails are called back
edges (a→ b : b = head , a = tail)
Given a back edge n→ d

The natural loop of the edge is d plus the set of nodes that
can reach n without going through d
d is the header of the loop

A single entry point to the loop that dominates all nodes in
the loop
At least one path back to the header exists (so that the loop
can be iterated)

Y.N. Srikant Control-Flow Analysis


