Machine Code Generation - 4

Y. N. Srikant

Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Outline of the Lecture

Mach. code generation — main issues (in part 1)
Samples of generated code (in part 2)
Two Simple code generators (in part 2)

Optimal code generation

o Sethi-Ullman algorithm (in part 3)

o Dynamic programming based algorithm (in part 3)
o Tree pattern matching based algorithm

Code generation from DAGs

Peephole optimizations

Y.N. Srikant

Code Generation based on Dynamic
Programming - Limitations

Several instructions require even-odd register
o example: multiplication in x86

0 may require non-contiguous evaluation to ensure
optimality

o cannot be handled by DP

Y.N. Srikant 3

Code Generation by Tree Rewriting

Caters to complex instruction sets and very
general machine models

Can produce locally optimal code (basic
block level)

Non-contiguous evaluation orders are
possible without sacrificing optimality

Easily retargetable to different machines

Automatic generation from specifications is
possible

Y.N. Srikant

‘ Example

Tree intermediate
code for afi] = b+1,

a and j are local, and
b is global

Y.N. Srikant

Some Tree Rewriting Rules and
Assoclated Actions

reg; < const, { Load #a, reg;, }
reg; < +(reg; , reg;) { Add reg; , reg; }
reg; < ind (+(const, , reg;)) { Load #c(reg)), reg; }
reg; < +(reg;, ind (+(const, , reg;)))
{ Add #c(reg;), reg; }
reg; € mem, { Load b, reg, }

reg, €< +(reg;, const,) { Inc reg, }
mem < :=(ind (reg;) , reg;) { Load reg; , *reg; }

Y.N. Srikant ¢

‘ Match #1

Pattern
reg; € const,

Code
Load #a, R0

Code so far:
Load #a, R0

5 N @
Wﬂ—J Y.N. Srikant

}'I%Tr

‘ Match #2

Pattern
reg; & +(reg; , reg))

Code
Add SP, RO

Code so far:
Load #a, RO
Add SP, RO

Y.N. Srikant

Match #3

W ® [
o @ @ Add #i(SP), RO

-

-
/”
yig

Add SP, RO

Pattern
reg; < ind (+(const_, reg;))
OR
reg; < *+(reg;, ind (+(const_, reg;)))

Code for 2" alternative (chosen)
Add #i(SP), RO

Y.N. Srikant

Match #4

Code so far:
Load #a, RO
Add SP, RO
Add #i(SP), RO
Load b, R1

JaC

Pattern
reg; € mem,

Code
Load b, R1

Y.N. Srikant

10

Match #5

|
Code so far: :
Load #a, RO \:/
Add SP, R0 Pattern
Add #i(SP), RO reg; € +(reg,; , const,)
Load b, R1
Inc R1 Code

Inc R1

Y.N. Srikant 11

Match #6

Code so far:
Load #a, R0
Add SP, RO
Add #i(SP), RO
Load b, R1

Inc R1

Load R1, *R0O

Pattern
mem € :=(ind (reg;) , reg;)

Code
Load R1, *R0O

Y.N. Srikant

12

Code Generator Generators (CGG)

Based on tree pattern matching and dynamic
programming

Accept tree patterns, associated costs, and
semantic actions (for register allocation and object
code emission)

Produce tree matchers that produce a cover of
minimum cost

Make two passes

o First pass is a bottom-up pass and finds a set of patterns
that cover the tree with minimum cost

o Second pass executes the semantic actions associated
with the minimum cost patterns at the nodes they matched

Twig, BURG, and IBURG are such CGGs

Y.N. Srikant 13

Code Generator Generators (2)

IBURG

o Uses dynamic programming (DP) at compile time
o Costs can involve arbitrary computations

o The matcher is hard coded

TWIG

o Uses a table-driven tree pattern matcher based on Aho-Corasick string
pattern matcher

o High overheads, could take O(n?) time, n being the number of nodes in the
subject tree

o Uses DP at compile time
o Costs can involve arbitrary computations
BURG

o Uses BURS (bottom-up rewrite system) theory to move DP to compile-
compile time (matcher generation time)

o Table-driven, more complex, but generates optimal code in O(n) time
o Costs must be constants

Y.N. Srikant

14

Code Generation from DAGs

Optimal code generation from DAGs is NP-
Complete

DAGSs are divided into trees and then
processed

We may replicate shared trees
o Code size increases drastically

We may store result of a tree (root) into
memory and use it in all places where the
tree is used

o May result in sub-optimal code

Y.N. Srikant 15

‘ DAG example: Duplicate shared trees

Y.N. Srikant 16

DAG example: Compute shared trees

once and share results

3

After computing
tree 1, the
computation of
subtree 4-7-8
of tree 3 can be
done before or
after tree 2

Y.N. Srikant

17

Peephole Optimizations

Simple but effective local optimization

Usually carried out on machine code, but
intermediate code can also benefit from it

Examines a sliding window of code (peephole), and

replaces it by a shorter or faster sequence, if
possible

Each improvement provides opportunities for
additional improvements

Therefore, repeated passes over code are needed

Y.N. Srikant 18

Peephole Optimizations

Some well known peephole optimizations

o 0O O O O O

eliminating redundant instructions
eliminating unreachable code
eliminating jumps over jumps
algebraic simplifications

strength reduction

use of machine idioms

Y.N. Srikant 19

Basic block B

Load X, RO
{no modifications
to X or RO here}
Store RO, X

Store instruction
can be deleted

Hlimination of Redundant ILoads and Stores

Basic block B

Load X, RO
{no modifications
to X or RO here}
Load X, RO

Second Load instr
can be deleted

Basic block B

Store RO, X
{no modifications
to X or RO here}
Load X, RO

Load instruction
can be deleted

Y.N. Srikant

Basic block B

Store RO, X
{no modifications
to X or RO here}
Store RO, X

Second Store instr
can be deleted

20

Eliminating Unreachable Code

An unlabeled instruction immediately
following an unconditional jump may be
removed

o May be produced due to debugging code
iIntroduced during development

o Or due to updates to programs (changes for fixing

bugs) without considering the whole program
segment

Y.N. Srikant 21

Eliminating Unreachable Code

L1
L2

if print==1 goto L1

goto L2
: print instructions

—>

goto L2
print instructions

=

L2:

L2:

if print!=1 goto L2
print instructions

print initialized
to 0 at the beginning
of the program

-

Y.N. Srikant

L2:

if0!=1goto L2
print instructions

goto L2 print instructions are now
unreachable and hence
can be eliminated

22

Flow-ot-Control Optimizations

always executes “goto L1”

goto L1

L1: if a<b goto L2
L3:

L1: goto L2 :C L1: goto L2

No jumps
goto L1 gotoL2 | to L1
L1: goto L2 [L1: goto L2 {
if a<b goto L1 if a<b goto L2

Only one jump to
L1, L1 is preceded
by an unconditional

goto
—>

Y.N. Srikant

goto L2

)

Statement L1: ... can
be removed only if it
is preceded by an
unconditional jump

sometimes skips “goto L3”

if a<b goto L2
goto L3

L3:

23

Reduction in Strength and Use of Machine
Idioms

X2 is cheaper to implement as x*x, than
as a call to an exponentiation routine

For integers, x*23 is cheaper to
implement as x << 3 (x left-shifted by 3
bits)

For integers, x/22 is cheaper to

implement as x >> 2 (x right-shifted by 2
bits)

Y.N. Srikant 24

Reduction in Strength and Use of Machine
Idioms

Floating point division by a constant can be
approximated as multiplication by a constant

Auto-increment and auto-decrement

addressing modes can be used wherever

possible

o Subsume INCREMENT and DECREMENT
operations (respectively)

Multiply and add is a more complicated

pattern to detect

Y.N. Srikant 25

Implementing
Object-Oriented Languages

Y.N. Srikant

Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Outline of the Lecture

Language requirements

Mapping names to methods

Variable name visibility

Code generation for methods

Simple optimizations

Parts of this lecture are based on the book,
“Engineering a Compiler”, by Keith Cooper and

Linda Torczon, Morgan Kaufmann, 2004,
sections 6.3.3 and 7.10.

Y.N. Srikant

27

Language Requirements

Objects and Classes
Inheritance, subclasses and superclasses

Inheritance requires that a subclass have all
the instance variables specified by its
superclass

o Necessary for superclass methods to work with
subclass objects

If A is B’ s superclass, then some or all of A’ s
methods/instance variables may be
redefined in B

Y.N. Srikant 28

Example of Class I-

Complete Method Tables

terarchy with

three

two

Y.N. Srikant

29

Mapping Names to Methods

Method invocations are not always static calls

a.fee() invokes one.fee(), a.foe() invokes two.foe(),
and a.fum() invokes three.fum()

Conceptually, method lookup behaves as if it
performs a search for each procedure call

a

a

These are called virtual calls

Search for the method in the receiver’ s class; if it fails,
move up to the receiver’ s superclass, and further

To make this search efficient, an implementation places a
complete method table in each class

Or, a pointer to the method table is included (virtual tbl ptr)

Y.N. Srikant 30

Mapping Names to Methods

If the class structure can be determined wholly at
compile time, then the method tables can be
statically built for each class

If classes can be created at run-time or loaded
dynamically (class definition can change too)

o full lookup in the class hierarchy can be performed at run-
time or

o use complete method tables as before, and include a
mechanism to update them when needed

Y.N. Srikant 31

