Instruction Scheduling and
Software Pipelining - 3

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Instruction Scheduling

Outline

@ Instruction Scheduling

@ Simple Basic Block Scheduling
@ Trace, Superblock and Hyperblock scheduling

@ Software pipelining

Y.N. Srikant Instruction Scheduling

Global Acyclic Scheduling

@ Average size of a basic block is quite small (5 to 20
instructions)
o Effectiveness of instruction scheduling is limited
@ This is a serious concern in architectures supporting
greater ILP
@ VLIW architectures with several function units
@ superscalar architectures (multiple instruction issue)
@ Global scheduling is for a set of basic blocks
@ Overlaps execution of successive basic blocks
@ Trace scheduling, Superblock scheduling, Hyperblock
scheduling, Software pipelining, etc.

Y.N. Srikant Instruction Scheduling

Trace Scheduling

@ A Trace is a frequently executed acyclic sequence of basic
blocks in a CFG (part of a path)
@ Identifying a trace

@ Identify the most frequently executed basic block
@ Extend the trace starting from this block, forward and
backward, along most frequently executed edges

@ Apply list scheduling on the trace (including the branch
instructions)

@ Execution time for the trace may reduce, but execution time
for the other paths may increase

@ However, overall performance will improve

Y.N. Srikant Instruction Scheduling

Superblock Scheduling

@ A Superblock is a trace without side entrances
@ Control can enter only from the top
@ Many exits are possible
@ Eliminates several book-keeping overheads
@ Superblock formation
o Trace formation as before
@ Tail duplication to avoid side entrances into a superblock
@ Code size increases

Y.N. Srikant Instruction Scheduling

Superblock Example

@ 5 cycles for the main trace and 6 cycles for the off-trace

(a) Control Flow Graph

Time Int. Unit 1 Int. Unit 2
0 [|it: [r2 + load a(r1)|i3: |[r3 + load b(rl)
1
2 |i2: |if (r2!=0) goto i7 |i4: |r4 — r3 + 17
3 |i5: |b(rl) « r4 i10: |r1 “— rl + 4
4 |19: |r5 < r5 + r4 i11: |if (r1<r6) goto il
3 |iT: r4 — r2 i8: b(rl) + r2
4 |19°: |rb < r5 + r4 i107:|r1 —rl+4
5 |i117:|if (r1<r6) goto il
(b) Superblock Schedule
Y.N. Srikant Instruction Scheduling

Hyperblock Scheduling

@ Superblock scheduling does not work well with
control-intensive programs which have many control flow
paths

@ Hyperblock scheduling was proposed to handle such
programs

@ Here, the control flow graph is IF-converted to eliminate
conditional branches

@ |F-conversion replaces conditional branches with
appropriate predicated instructions

@ Now, control dependence is changed to a data
dependence

Y.N. Srikant Instruction Scheduling

IF-Conversion Example

forl=1to 100 do {

A(l) =B(l) + 3

if (A(l) <= 0) then contnue

!

forl=1to 100 do {
P =(A(l)<=0)
('p) A()=B(l) +3

Y.N. Srikant

forl=1toNdo{

S81: A(l)=D(l)+1
S2: if (B(l) > 0) then
83: C(ly=c) +A()
S4: else D(I+1) =D(I+1) +1
end if
}
forl=1toNdo{
S1: A(ly=D(l) +1
S2: p=(B(l)>0)
S3: (p) C(I)=C(l) +A(l)
S4: (!p) D(I+1) =D(I+1) +1

Instruction Scheduling

Hyperblock Example Code

%% rl + 0
%% r5 «+ 0
%% r6 <« 400
for (i=0; i < 100; i++) %R xT s
{ Bl:| i1: |r2 <+ load a(ril)
if (A[i] == 0) i2: [if (r2 != 0) goto i7
B[i] = B[i] + s; B2:| i3: |3 <+ load b(rl)
else ’ i4: |rd4 +— r3 + 7
B[i] = A[il: i5: |b(rl) <« r4
sum = sum + B[il; i6: |goto i9
3 B3:| i7: |r4 — r2
i8: |b(rl) +« r2
(a) High-Level Code B4: .19; 5 5+
i10: |r1 — rl+ 4
i11:|if (r1 < r6) goto il

(b) Assembly Code (c) Control Flow Graph

Y.N. Srikant Instruction Scheduling

Hyperblock Example

@ 6 cycles for the entire set of predicated instructions

@ Instructions i3 and i4 can be executed speculatively and
can be moved up, instead of being scheduled after cycle 2

Int. Unit 2

i3:

i4:
i8:
i7:
i11:

r3 4+ load b(r1l)

r4 <~ r3 + r7

b(rl) + r2, if !p1
r4 <~ r2, if !pl
if (ri<r6) goto il

Time Int. Unit 1

0 |il: |r2 + load a(r1)

1

2 |i2’:|p1 — (r2 == 0)

3 |i5: |b(rl) <« r4, if pil

4 |i10:|r1 — rl + 4

5 |i9: |rb < 15 + rd
Hyperblock\ ~ \\
(a) Control Flow Graph

Y.N. Srikant Instruction Scheduling

(b) Hyperblock Schedule

Introduction to Software Pipelining

@ Overlaps execution of instructions from multiple iterations
of a loop

@ Executes instructions from different iterations in the same
pipeline, so that pipelines are kept busy without stalls

@ Objective is to sustain a high initiation rate

@ Initiation of a subsequent iteration may start even before
the previous iteration is complete

@ Unrolling loops several times and performing global
scheduling on the unrolled loop

@ Exploits greater ILP within unrolled iterations
@ Very little or no overlap across iterations of the loop

Y.N. Srikant Software Pipelining

Introduction to Software Pipelining - contd.

@ More complex than instruction scheduling

@ NP-Complete
@ Involves finding initiation interval for successive iterations

@ Trial and error procedure

@ Start with minimum II, schedule the body of the loop using
one of the approaches below and check if schedule length
is within bounds

@ Stop, if yes
@ Try next value of Il, if no
@ Requires a modulo reservation table (GRT with Il columns
and R rows)
@ Schedule lengths are dependent on Il, dependence
distance between instructions and resource contentions

Y.N. Srikant Software Pipelining

Software Pipelining Example-1

for (i=1; i<=n; i++) {
ali+1] = a[i] +1;
b[i] = ali+1]/2;
cli] = b[i] +3;
d[i] = c[i]

1y

(dep.dist, delay)

Y.N. Srikant

—

m < -
B O©o0o~NOOU~WNPRE

o

Iterations
S1
S2 S1
3 2 s1
$4 S3 2 S1
4 S3 2 S1
4 3 2 S1
4 S3 2 s1
A S3 2
A 3
4

Software Pipelining

Software Pipelining Example-2.1

No. of tokens present on an arc indicates the dependence
distance
for (i=0;1< n;i++) {

ai] = s * a[i];

(a) High-Level Code
h t0 < 0%

% 1« (a-1) % 13
% t2 «— s % @ i1 @
i0: | t3 < load a(t0)

il: | t4 — t2 *x t3

i2: | a(t0) <+ t4

i3: | t0 — t0 + 4

i4: | t1 — t1 -1 . .

i5: | if (t1 > 0) goto i0 '2 '5
(b) Instruction Sequence (c) Dependence graph

Software Pipelining Example

Y.N. Srikant Software Pipelining

Software Pipelining Example-2.2

e © ¢ ¢

Number of tokens present on an arc indicates the
dependence distance

Assume that the possible dependence from i2 to i0 can be
disambiguated

Assume 2 INT units (latency 1 cycle), 2 FP units (latency 2
cycles), and 1 LD/STR unit (latency 2 cycles/1 cycle)

Branch can be executed by INT units

Acyclic schedule takes 5 cycles (see figure)
Corresponds to an initiation rate of 1/5 iteration per cycle
Cyclic schedule takes 2 cycles (see figure)

Y.N. Srikant Software Pipelining

Acyclic and Cyclic Schedules

Acyclic Schedule

i0: load

i1: mult, i3: add, i4: sub

W IN| = |O

i2: store, i5: bge

Cyclic Schedule
4 i4: sub i1: mult | iO: load
5 | 1Zsore |
i5: bge
Y.N. Srikant Instruction Scheduling

Software Pipelining Example-2.3

Ts'trle‘; lter. 0 lter. 1 lter. 2
0| i0: Id
1
Prolog
2 | il: mult i0: Id
3 | i3: add
4 | i4: sub i1: mult i0: Id
E Kernel
5 12 g‘qg i3: add
6 i4: sub il: mult
i2: st .
’ i5: bge i3: add Epilog
8 i4: sub
i2: st
9 i5: hge

A Software Pipelined Schedule with IT = 2

Y.N. Srikant

Software Pipelining

Software Pipelining Example-3

fori=1ton{
0: tO[i] = a[i] + bl[il;
1: t1[i] = c[i] * constl;
2: t2[i] = d[i] + e[i-2];
3: t3[i] = tO[i] + cfi];
4: t4[i] = t1[i] + t2[i];
5: efi] = t3[i] * t4]i];

Program

L
Loop unrolled toreveal the @

software pipeline @

Y.N. Srikant

Dependence
Graph

PSO

Pipe stages

PS1

BERE

&

0@y

i

2 multipliers, 2 adders
1 cluster, single cycle
operations

Software Pipelining

Automatic Parallelization - 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Automatic Parallelization

Automatic Parallelization

@ Automatic conversion of sequential programs to parallel
programs by a compiler

@ Target may be a vector processor (vectorization), a
multi-core processor (concurrentization), or a cluster of
loosely coupled distributed memory processors
(parallelization)

@ Parallelism extraction process is normally a
source-to-source transformation

@ Requires dependence analysis to determine the
dependence between statements

@ Implementation of available parallelism is also a challenge

e For example, can all the iterations of a 2-nested loop be run
in parallel?

Y.N. Srikant Automatic Parallelization

Example 1

for I =1 to 100 do {
X(I) = X(I) + Y(I)
}

can be converted to

X(1:100) = X(1:100) + Y(1:100)

The above code can be run on a vector processor in O(1) time.
The vectors X and Y are fetched first and then the vector X is
written into

Y.N. Srikant Automatic Parallelization

Example 2

for I =1 to 100 do {
X(I) = X(I) + Y(I)

can be converted to

forall I =1 to 100 do {

X(I) = X(I) + Y(I)

The above code can be run on a multi-core processor with all
the 100 iterations running as separate threads. Each thread
“‘owns” a different | value

Y.N. Srikant Automatic Parallelization

Example 3

for I =1 to 100 do {

X(I+1l) = X(I) + Y (I)
cannot be converted to
X(2:101) = X(1:100) + Y(1:100)

because of dependence as shown below

X(2) = X(1) + Y(1)
X (3) X(2) + Y(2)
X(4) = X(3) + Y(3)

Y.N. Srikant Automatic Parallelization

Data Dependence Relations

S1:
Flow or true
dependence

S2:

S1:
Anti- l
dependence

§2: X=

S1: X=
Output l
dependence

§2: X=

Y.N. Srikant Automatic Parallelization

Data Dependence Direction Vector

Data dependence relations are augmented with a direction
of data dependence (direction vector)

There is one direction vector component for each loop in a
nest of loops

The data dependence direction vector (or direction vector)
sV = (W1 , Vo, ., \Ud), where Uy € {<, =>,<, >, #, *}
Forward or “<” direction means dependence from iteration i
to / + k (i.e., computed in iteration / and used in iteration
i+ K)

Backward or “>” direction means dependence from
iteration i to i — k (i.e., computed in iteration / and used in
iteration i — k). This is not possible in single loops and
possible in two or higher levels of nesting

Equal or “=” direction means that dependence is in the
same iteration (i.e., computed in iteration / and used in
iteration i)

Y.N. Srikant Automatic Parallelization

forJ]=1t0100do {
S: X)) =X() +c
}

forJ]=11to099do {
S: X({J+1) =X() +c
}

forJ=11to 99 do {
S: X)) = X(J+1) +c
}

for] =99 downto 1 do {
S: X(J) = X(J+1) +c
}

forJ]=21t0o 101 do {
S: X)) =X(-1) +c
}

Y.N. Srikant

Direction Vector Example 1

$5.S

$5.S

X(1) =X(1) +c
X(2) = X(2)+c

X(2) = X(1) +c
X(3) = X(2)+c

X(1) =X(2) +c
X(2) = X(3)+c

X(99) = X(100) +c
X(98) = X(99)+c
note ‘“ve’ increment

X(2) = X(1) +c
X{(3) = X(2)+c

Automatic Parallelization

