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Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis (in parts 2,3, and 4)
Fundamentals of control-flow analysis (in parts 4 and 5)
Algorithms for machine-independent optimizations (in part
6)
SSA form and optimizations
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SSA Form: A Definition

A program is in SSA form, if each use of a variable is
reached by exactly one definition
Flow of control remains the same as in the non-SSA form
A special merge operator, φ, is used for selection of values
in join nodes
Conditional constant propagation is faster and more
effective on SSA forms
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Conditional Constant Propagation - 1

SSA forms along with extra edges corresponding to d-u
information are used here

Edge from every definition to each of its uses in the SSA
form (called henceforth as SSA edges)

Uses both flow graph and SSA edges and maintains two
different work-lists, one for each (Flowpile and SSApile ,
resp.)
Flow graph edges are used to keep track of reachable
code and SSA edges help in propagation of values
Flow graph edges are added to Flowpile, whenever a
branch node is symbolically executed or whenever an
assignment node has a single successor
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Conditional Constant Propagation - 2

SSA edges coming out of a node are added to the SSA
work-list whenever there is a change in the value of the
assigned variable at the node
This ensures that all uses of a definition are processed
whenever a definition changes its lattice value.
This algorithm needs much lesser storage compared to its
non-SSA counterpart
Conditional expressions at branch nodes are evaluated
and depending on the value, either one of outgoing edges
(corresponding to true or false) or both edges
(corresponding to ⊥) are added to the worklist
However, at any join node, the meet operation considers
only those predecessors which are marked executable.
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CCP Algorithm - Example 2
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CCP Algorithm - Example 2 - Trace 1
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CCP Algorithm - Example 2 - Trace 2
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CCP Algorithm - Example 2 - Trace 3
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CCP Algorithm - Example 2 - Trace 4
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CCP Algorithm - Example 2 - Trace 5
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CCP Algorithm - Example 2 - Trace 6
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CCP Algorithm - Example 2 - Trace 7
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CCP Algorithm - Example 2 - Trace 8
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CCP Algorithm - Example 2 - Trace 9
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CCP Algorithm - Example 2 - Trace 10
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CCP Algorithm - Example 2 - Trace 11
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CCP Algorithm - Example 2 - Trace 12
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CCP Algorithm - Example 2 - Trace 13
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Outline

Instruction Scheduling
Simple Basic Block Scheduling
Trace, Superblock and Hyperblock scheduling

Software pipelining
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Instruction Scheduling

Reordering of instructions so as to keep the pipelines of
functional units full with no stalls

NP-Complete and needs heuristcs

Applied on basic blocks (local)

Global scheduling requires elongation of basic blocks
(super-blocks)
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Instruction Scheduling - Motivating Example

time: load - 2 cycles, op - 1 cycle
This code has 2 stalls, at i3 and at i5,
due to the loads

i1: r1  load ai2: r2  load bi3: r3  r1 + r2i4: r4  load 
i5: r5  r3 - r4i6: r6  r3 * r5i7: d  st r6(a) Sample Code Sequen
e

i1 i2 i4

i3

i5

i7

i6

load load load

add

sub

st

mult

(b) DAG
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Scheduled Code - no stalls

There are no stalls, but dependences are indeed satisfied

i1: r1  load ai2: r2  load bi4: r4  load 
i3: r3  r1 + r2i5: r5  r3 - r4i6: r6  r3 * r5i7: d  st r6
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Definitions - Dependences

Consider the following code:
i1 : r1← load(r2)
i2 : r3← r1 + 4
i3 : r1← r4 + r5

The dependences are
i1 δ i2 (flow dependence) i2 δ i3 (anti-dependence)
i1 δo i3 (output dependence)

anti- and ouput dependences can be eliminated by register
renaming
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Dependence DAG

full line: flow dependence, dash line: anti-dependence
dash-dot line: output dependence
some anti- and output dependences are because memory
disambiguation could not be done

i1: t1  load ai2: t2  load bi3: t3  t1 + 4i4: t4  t1 - 2i5: t5  t2 + 3i6: t6  t4 * t2i7: t7  t3 + t6i8: 
  st t7i9: b  st t5(a) Instru
tion Sequen
e
st

add

mult st

add

ldld

add sub

i1

i3 i4

i7

i8

i6

i2

i5

i9

(b) DAG
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Basic Block Scheduling

Basic block consists of micro-operation sequences (MOS),
which are indivisible

Each MOS has several steps, each requiring resources

Each step of an MOS requires one cycle for execution
Precedence constraints and resource constraints must be
satisfied by the scheduled program

PC’s relate to data dependences and execution delays
RC’s relate to limited availability of shared resources
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The Basic Block Scheduling Problem

Basic block is modelled as a digraph, G = (V ,E)

R: number of resources
Nodes (V ): MOS; Edges (E): Precedence
Label on node v

resource usage functions, ρv (i) for each step of the MOS
associated with v
length l(v) of node v

Label on edge e: Execution delay of the MOS, d(e)

Problem: Find the shortest schedule σ : V → N such that
∀e = (u, v) ∈ E , σ(v)− σ(u) ≥ d(e) and

∀i ,
v∈V∑

ρv (i − σ(v)) ≤ R, where
length of the schedule is max

v∈V
{σ(v) + l(v)}
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Instruction Scheduling - Precedence and Resource
Constraints
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A Simple List Scheduling Algorithm

Find the shortest schedule σ : V → N, such that precedence
and resource constraints are satisfied. Holes are filled with
NOPs.

FUNCTION ListSchedule (V,E)
BEGIN

Ready = root nodes of V; Schedule = φ;
WHILE Ready 6= φ DO
BEGIN

v = highest priority node in Ready;
Lb = SatisfyPrecedenceConstraints (v , Schedule, σ);
σ(v) = SatisfyResourceConstraints (v , Schedule, σ, Lb);
Schedule = Schedule + {v};
Ready = Ready − {v} + {u | NOT (u ∈ Schedule)

AND ∀ (w , u) ∈ E , w ∈ Schedule};
END
RETURN σ;

END
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List Scheduling - Ready Queue Update
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Constraint Satisfaction Functions

FUNCTION SatisfyPrecedenceConstraint(v, Sched, σ)
BEGIN

RETURN ( max
u∈Sched

σ(u) + d(u, v))

END

FUNCTION SatisfyResourceConstraint(v, Sched, σ, Lb)
BEGIN

FOR i := Lb TO∞ DO

IF ∀0 ≤ j < l(v), ρv (j) +
u∈Sched∑

ρu(i + j − σ(u)) ≤ R THEN
RETURN (i);

END
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Precedence Constraint Satisfaction
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Resource Constraint Satisfaction
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