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Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis (in parts 2,3, and 4)
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations
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Dominators and Natural Loops

Edges whose heads dominate their tails are called back
edges (a→ b : b = head , a = tail)
Given a back edge n→ d

The natural loop of the edge is d plus the set of nodes that
can reach n without going through d
d is the header of the loop

A single entry point to the loop that dominates all nodes in
the loop
At least one path back to the header exists (so that the loop
can be iterated)
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Algorithm for finding the Natural Loop of a Back Edge

/* The back edge under consideration is n→ d /*
{ stack = empty; loop = {d};

/* This ensures that we do not look at predecessors of d */
insert(n);
while (stack is not empty) do {

pop(m, stack);
for each predecessor p of m do insert(p);

}
}

procedure insert(m) {
if m /∈ loop then {

loop = loop ∪ {m};
push(m, stack);

}
}
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Dominators, Back Edges, and Natural Loops
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Dominators, Back Edges, and Natural Loops
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Depth-First Numbering of Nodes in a CFG
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Depth-First Numbering Example 1
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Depth-First Numbering Example 2
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Inner Loops

Unless two loops have the same header, they are either
disjoint or one is nested within the other
Nesting is checked by testing whether the set of nodes of a
loop A is a subset of the set of nodes of another loop B
Similarly, two loops are disjoint if their sets of nodes are
disjoint
When two loops share a header, neither of these may hold
(see next slide)
In such a case the two loops are combined and
transformed as in the next slide
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Inner Loops and Loops with the same header
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Preheader
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Depth of a Flow Graph and Convergence of DFA

Given a depth-first spanning tree of a CFG, the largest
number of retreating edges on any cycle-free path is the
depth of the CFG
The number of passes needed for convergence of the
solution to a forward DFA problem is (1 + depth of CFG)
One more pass is needed to determine no change, and
hence the bound is actually (2 + depth of CFG)
This bound can be actually met if we traverse the CFG
using the depth-first numbering of the nodes
For a backward DFA, the same bound holds, but we must
consider the reverse of the depth-first numbering of nodes
Any other order will still produce the correct solution, but
the number of passes may be more

Y.N. Srikant Control-Flow Analysis



Depth of a CFG - Example 1
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Depth of a CFG - Example 2
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Outline of the Lecture

Global common sub-expression elimination
Copy propagation
Simple constant propagation
Loop invariant code motion

Y.N. Srikant Machine-Independent Optimizations



Elimination of Global Common Sub-expressions

Needs available expression information
For every s : x := y + z, such that y + z is available at the
beginning of s’ block, and neither y nor z is defined prior to
s in that block, do the following

1 Search backwards from s’ block in the flow graph, and find
first block in which y + z is evaluated. We need not go
through any block that evaluates y + z.

2 Create a new variable u and replace each statement
w := y + z found in the above step by the code segment
{u := y + z;w := u}, and replace s by x := u

3 Repeat 1 and 2 above for every predecessor block of s’
block

Repeated application of GCSE may be needed to catch
“deep” CSE
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GCSE Conceptual Example
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GCSE on Running Example - 1
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GCSE on Running Example - 2
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Copy Propagation

Eliminate copy statements of the form s : x := y , by
substituting y for x in all uses of x reached by this copy
Conditions to be checked

1 u-d chain of use u of x must consist of s only. Then, s is the
only definition of x reaching u

2 On every path from s to u, including paths that go through u
several times (but do not go through s a second time), there
are no assignments to y . This ensures that the copy is valid

The second condition above is checked by using
information obtained by a new data-flow analysis problem

c_gen[B] is the set of all copy statements, s : x := y in B,
such that there are no subsequent assignments to either x
or y within B, after s
c_kill[B] is the set of all copy statements, s : x := y , s not in
B, such that either x or y is assigned a value in B
Let U be the universal set of all copy statements in the
program
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Copy Propagation - The Data-flow Equations

c_in[B] is the set of all copy statements, x := y reaching
the beginning of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path
c_out [B] is the set of all copy statements, x := y reaching
the end of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path

c_in[B] =
⋂

P is a predecessor of B

c_out [P], B not initial

c_out [B] = c_gen[B]
⋃

(c_in[B]− c_kill[B])

c_in[B1] = φ, where B1 is the initial block
c_out [B] = U − c_kill[B], for all B 6= B1 (initialization only)
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Algorithm for Copy Propagation

For each copy, s : x := y , do the following
1 Using the du − chain, determine those uses of x that are

reached by s
2 For each use u of x found in (1) above, check that

(i) u-d chain of u consists of s only
This implies that s is the only definition of x that reaches this
block

(ii) s is in c_in[B], where B is the block to which u belongs.
This ensures that no definitions of x or y appear on this path
from s to B

(iii) no definitions x or y occur within B prior to u found in (1)
above

3 If s meets the conditions above, then remove s and replace
all uses of x found in (1) above by y
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Copy Propagation Example 1
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Copy Propagation on Running Example 1.1
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Copy Propagation on Running Example 1.2
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GCSE and Copy Propagation on Running Example 1.1
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GCSE and Copy Propagation on Running Example 1.2
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Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {

S = remove(Stmtpile);
if S is of the form x = c for some constant c

for all statements T in the du-chain of x do
if usage of x in T is reachable only by S

{ substitute c for x in T; simplify T
Stmtpile = Stmtpile ∪ {T}

}
}

Note: If all usages of x are replaced by c, then x = c becomes
dead code and a separate dead code elimination pass will
remove it.
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Simple Constant Propagation Example
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