
Run-time Environments - 2

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  What is run-time support? (in part 1)
n  Parameter passing methods (in part 1)
n  Storage allocation
n  Activation records
n  Static scope and dynamic scope
n  Passing functions as parameters
n  Heap memory management
n  Garbage Collection

Y.N. Srikant 3

Code and Data Area in Memory

n  Most programming languages distinguish between
code and data

n  Code consists of only machine instructions and
normally does not have embedded data
q  Code area normally does not grow or shrink in size as

execution proceeds
n  Unless code is loaded dynamically or code is produced

dynamically
q  As in Java – dynamic loading of classes or producing classes and

instantiating them dynamically through reflection
q  Memory area can be allocated to code statically

n  We will not consider Java further in this lecture
n  Data area of a program may grow or shrink in size

during execution

Y.N. Srikant 4

Static Versus Dynamic Storage Allocation

n  Static allocation
q  Compiler makes the decision regarding storage allocation

by looking only at the program text
n  Dynamic allocation

q  Storage allocation decisions are made only while the
program is running

q  Stack allocation
n  Names local to a procedure are allocated space on a stack

q  Heap allocation
n  Used for data that may live even after a procedure call returns
n  Ex: dynamic data structures such as symbol tables
n  Requires memory manager with garbage collection

Y.N. Srikant 5

Static Data Storage Allocation

n  Compiler allocates space for
all variables (local and global)
of all procedures at compile
time
q  No stack/heap allocation; no

overheads
q  Ex: Fortran IV and Fortran 77
q  Variable access is fast since

addresses are known at compile
time

q  No recursion

Main program
variables

Procedure P1
variables

Procedure P2
variables

Procedure P4
variables

Main memory

Y.N. Srikant 6

Dynamic Data Storage Allocation

n  Compiler allocates space only for global
variables at compile time

n  Space for variables of procedures will be
allocated at run-time
q  Stack/heap allocation
q  Ex: C, C++, Java, Fortran 8/9
q  Variable access is slow (compared to static

allocation) since addresses are accessed through
the stack/heap pointer

q  Recursion can be implemened

Dynamic Stack Storage Allocation

Y.N. Srikant 7

Main

R

Q

R
Base

Next

Currently active
procedure

Stack of activation
records

Calling sequence:
Main à R à Q à R

Y.N. Srikant 8

Activation Record Structure

Note:

The position of the fields of
the act. record as
shown are only notional.

Implementations can
choose different orders;
e.g., function result could
be after local var.

Static and Dynamic links
(also called Access and Control link resp.)

(Address of) function result

Actual parameters

Local variables

Temporaries

Saved machine status

Space for local arrays

Return address

Y.N. Srikant 9

Variable Storage Offset Computation

n  The compiler should compute
q  the offsets at which variables and constants will

be stored in the activation record (AR)
n  These offsets will be with respect to the

pointer pointing to the beginning of the AR
n  Variables are usually stored in the AR in the

declaration order
n  Offsets can be easily computed while

performing semantic analysis of declarations

Overlapped Variable Storage for Blocks in C

Y.N. Srikant 10

int example(int p1, int p2)
B1 { a,b,c; /* sizes - 10,10,10;
 offsets 0,10,20 */
 ...
 B2 { d,e,f; /* sizes - 100, 180, 40;
 offsets 30, 130, 310 */
 ...}
 B3 { g,h,i; /* sizes - 20,20,10;
 offsets 30, 50, 70 */
 ...
 B4 { j,k,l; /* sizes - 70, 150, 20;
 offsets 80, 150, 300 */
 ... }
 B5 { m,n,p; /* sizes - 20, 50, 30;
 offsets 80, 100, 150 */
 ... }
 }
 }

Overlapped
storage

Overlapped
storage

Storage required =
B1+max(B2,(B3+max(B4,B5))) =
30+max(320,(50+max(240,100))) =
 30+max(320, (50+240)) =
 30+max(320,290) = 350

Overlapped Variable Storage for Blocks in C (Ex.)

Y.N. Srikant 11

B1=30

B2=320

B3=50

B4=240

B1=30

B3=50

B5=100

B1=30 Storage required =
B1+max(B2,(B3+max(B4,B5))) =
30+max(320,(50+max(240,100))) =
 30+max(320, (50+240)) =
 30+max(320,290) = 350

0

350

Y.N. Srikant 12

Allocation of Activation Records
(nested procedures)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

SL chain DL chain

Next

Base

Activation records are
created at procedure entry
time and destroyed at
procedure exit time

Y.N. Srikant 13

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Base

Next

Y.N. Srikant 14

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R
Base

Next

Y.N. Srikant 15

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Base

Next

Y.N. Srikant 16

Allocation of Activation Records (contd.)

1 program RTST;
2 procedure P;
3 procedure Q;
 begin R; end
3 procedure R;
 begin Q; end
 begin R; end
 begin P; end

RTST1 -> P2 -> R3 -> Q3 -> R3

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Static Link
Dynamic Link

R

Base

Next

Y.N. Srikant 17

Allocation of Activation Records (contd.)
Skip L1-L2+1 records
starting from the caller’s
AR and establish the
static link to the AR
reached
L1 – caller, L2 – Callee
RTST1 -> P2 -> R3 -> Q3 -> R3

Ex: Consider P2 -> R3

2-3+1=0; hence the SL of R
points to P
Consider R3 -> Q3
3-3+1=1; hence skipping one
link starting from R, we get P;
SL of Q points to P

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Static Link
Dynamic Link

R

Base

Next

Y.N. Srikant 18

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q <- R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Base

Next

Return from R

Y.N. Srikant 19

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R <- Q

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R
Base

Next

Return from Q

Y.N. Srikant 20

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P <- R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Base

Next

Return from R

Y.N. Srikant 21

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST <- P

Static Link
Dynamic Link

RTST

SL chain DL chain

Next

Base

Return from P

Y.N. Srikant 22

Display Stack of Activation Records
1 program RTST;
2 procedure P;
3 procedure Q;
 begin R; end
3 procedure R;
 begin Q; end
 begin R; end
 begin P; end

Pop L1-L2+1 records off the display
of the caller and push the pointer to
AR of callee (L1 – caller, L2 – Callee)

The popped pointers are stored in
the AR of the caller and restored to
the DISPLAY after the callee returns

RTST RTST

RTST RTST

RTST

P

P P

P

Q

R

R

call

return

Y.N. Srikant 23

Static Scope and Dynamic Scope

n  Static Scope
q  A global identifier refers to the identifier with that name that

is declared in the closest enclosing scope of the program
text

q  Uses the static (unchanging) relationship between blocks in
the program text

n  Dynamic Scope
q  A global identifier refers to the identifier associated with the

most recent activation record
q  Uses the actual sequence of calls that are executed in the

dynamic (changing) execution of the program
n  Both are identical as far as local variables are

concerned

Y.N. Srikant 24

Static Scope and Dynamic Scope :
An Example
int x = 1, y = 0;
int g(int z)
 { return x+z;}
int f(int y) {

 int x; x = y+1;
 return g(y*x);

}
y = f(3);

After the call to g,
Static scope: x = 1
Dynamic scope: x = 4

x 1

y 3

x 4

z 12

outer block

f(3)

g(12)

Stack of activation records
after the call to g

y 0

Y.N. Srikant 25

Static Scope and Dynamic Scope:
Another Example
float r = 0.25;
void show() { printf(“%f”,r); }
void small() {
 float r = 0.125; show();
}
int main (){
show(); small(); printf(“\n”);
show(); small(); printf(“\n”);
}

n  Under static scoping,
the output is

 0.25 0.25
 0.25 0.25
n  Under dynamic

scoping, the output is
 0.25 0.125
 0.25 0.125

