
Instruction Scheduling and
Software Pipelining - 3

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Instruction Scheduling

Outline

Instruction Scheduling
Simple Basic Block Scheduling
Trace, Superblock and Hyperblock scheduling

Software pipelining

Y.N. Srikant Instruction Scheduling

Global Acyclic Scheduling

Average size of a basic block is quite small (5 to 20
instructions)

Effectiveness of instruction scheduling is limited
This is a serious concern in architectures supporting
greater ILP

VLIW architectures with several function units
superscalar architectures (multiple instruction issue)

Global scheduling is for a set of basic blocks
Overlaps execution of successive basic blocks
Trace scheduling, Superblock scheduling, Hyperblock
scheduling, Software pipelining, etc.

Y.N. Srikant Instruction Scheduling

Trace Scheduling

A Trace is a frequently executed acyclic sequence of basic
blocks in a CFG (part of a path)
Identifying a trace

Identify the most frequently executed basic block
Extend the trace starting from this block, forward and
backward, along most frequently executed edges

Apply list scheduling on the trace (including the branch
instructions)

Execution time for the trace may reduce, but execution time
for the other paths may increase

However, overall performance will improve

Y.N. Srikant Instruction Scheduling

Superblock Scheduling

A Superblock is a trace without side entrances
Control can enter only from the top
Many exits are possible
Eliminates several book-keeping overheads

Superblock formation
Trace formation as before
Tail duplication to avoid side entrances into a superblock
Code size increases

Y.N. Srikant Instruction Scheduling

Superblock Example

5 cycles for the main trace and 6 cycles for the off-trace

B1

B2

B4

B3

B4’

SuperBlock 1

SuperBlock 2

(a) Control Flow Graph
Time Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2: if (r2!=0) goto i7 i4: r4 r3 + r73 i5: b(r1) r4 i10: r1 r1 + 44 i9: r5 r5 + r4 i11: if (r1<r6) goto i13 i7: r4 r2 i8: b(r1) r24 i9': r5 r5 + r4 i10': r1 r1 + 45 i11': if (r1<r6) goto i1(b) Superblo
k S
hedule

Y.N. Srikant Instruction Scheduling

Hyperblock Scheduling

Superblock scheduling does not work well with
control-intensive programs which have many control flow
paths

Hyperblock scheduling was proposed to handle such
programs

Here, the control flow graph is IF-converted to eliminate
conditional branches

IF-conversion replaces conditional branches with
appropriate predicated instructions

Now, control dependence is changed to a data
dependence

Y.N. Srikant Instruction Scheduling

IF-Conversion Example

Y.N. Srikant Instruction Scheduling

Hyperblock Example Code

for (i=0; i < 100; i++){ if (A[i℄ == 0)B[i℄ = B[i℄ + s;elseB[i℄ = A[i℄;sum = sum + B[i℄;} (a) High-Level Code

%% r1 0%% r5 0%% r6 400%% r7 sB1: i1: r2 load a(r1)i2: if (r2 != 0) goto i7B2: i3: r3 load b(r1)i4: r4 r3 + r7i5: b(r1) r4i6: goto i9B3: i7: r4 r2i8: b(r1) r2B4: i9: r5 r5 + r4i10: r1 r1 + 4i11: if (r1 < r6) goto i1(b) Assembly Code
B2

B1

B3

B4

main trace(
) Control Flow Graph
Y.N. Srikant Instruction Scheduling

Hyperblock Example

6 cycles for the entire set of predicated instructions

Instructions i3 and i4 can be executed speculatively and
can be moved up, instead of being scheduled after cycle 2

B2

B1

B3

B4

Hyperblock(a) Control Flow Graph

Time Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2': p1 (r2 == 0) i4: r4 r3 + r73 i5: b(r1) r4, if p1 i8: b(r1) r2, if !p14 i10: r1 r1 + 4 i7: r4 r2, if !p15 i9: r5 r5 + r4 i11: if (r1<r6) goto i1(b) Hyperblo
k S
hedule

151

Y.N. Srikant Instruction Scheduling

Introduction to Software Pipelining

Overlaps execution of instructions from multiple iterations
of a loop

Executes instructions from different iterations in the same
pipeline, so that pipelines are kept busy without stalls
Objective is to sustain a high initiation rate

Initiation of a subsequent iteration may start even before
the previous iteration is complete

Unrolling loops several times and performing global
scheduling on the unrolled loop

Exploits greater ILP within unrolled iterations
Very little or no overlap across iterations of the loop

Y.N. Srikant Software Pipelining

Introduction to Software Pipelining - contd.

More complex than instruction scheduling

NP-Complete
Involves finding initiation interval for successive iterations

Trial and error procedure
Start with minimum II, schedule the body of the loop using
one of the approaches below and check if schedule length
is within bounds

Stop, if yes
Try next value of II, if no

Requires a modulo reservation table (GRT with II columns
and R rows)

Schedule lengths are dependent on II, dependence
distance between instructions and resource contentions

Y.N. Srikant Software Pipelining

Software Pipelining Example-1

for (i=1; i<=n; i++) {
 a[i+1] = a[i] + 1;
 b[i] = a[i+1]/2;
 c[i] = b[i] + 3;
 d[i] = c[i]
}

(1,1)

(0,1)

(0,1)

(0,1)

4

1

2

3

(dep.dist, delay)

 Iterations

1 S1
2 S2 S1
3 S3 S2 S1
4 S4 S3 S2 S1
5 S4 S3 S2 S1

7 S4 S3 S2 S1
6 S4 S3 S2 S1

8 S4 S3 S2
9 S4 S3
10 S4

T

I

M

E

Y.N. Srikant Software Pipelining

Software Pipelining Example-2.1

No. of tokens present on an arc indicates the dependence
distancefor (i = 0; i < n; i++) fa[i℄ = s * a[i℄;g (a) High-Level Code% t0 0 %% t1 (n-1) %% t2 s %i0: t3 load a(t0)i1: t4 t2 * t3i2: a(t0) t4i3: t0 t0 + 4i4: t1 t1 - 1i5: if (t1 � 0) goto i0(b) Instru
tion Sequen
e

i0

i1

i2

add

i3

i4

i5

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

ld

mult

st

sub

bge(
) Dependen
e graphSoftware Pipelining Example

152

Y.N. Srikant Software Pipelining

Software Pipelining Example-2.2

Number of tokens present on an arc indicates the
dependence distance

Assume that the possible dependence from i2 to i0 can be
disambiguated

Assume 2 INT units (latency 1 cycle), 2 FP units (latency 2
cycles), and 1 LD/STR unit (latency 2 cycles/1 cycle)

Branch can be executed by INT units

Acyclic schedule takes 5 cycles (see figure)

Corresponds to an initiation rate of 1/5 iteration per cycle

Cyclic schedule takes 2 cycles (see figure)

Y.N. Srikant Software Pipelining

Acyclic and Cyclic Schedules

Y.N. Srikant Instruction Scheduling

Software Pipelining Example-2.3

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

0

1

2

3

4

5

6

7

8

9

Iter. 1 Iter. 2Iter. 0Time
Step

Prolog

Epilog

Kernel

A Software Pipelined S
hedule with II = 2

153

Y.N. Srikant Software Pipelining

Software Pipelining Example-3

3+

0+ 1*

5*

2+

4+

(0,1)

(0,1)

(0,1)

(0,1)

(0,1)

(2,1)

for i = 1 to n {
 0: t0[i] = a[i] + b[i];
 1: t1[i] = c[i] * const1;
 2: t2[i] = d[i] + e[i−2];
 3: t3[i] = t0[i] + c[i];
 4: t4[i] = t1[i] + t2[i];
 5: e[i] = t3[i] * t4[i];
}

Program

0+

0+

0+

1*

1*

1* 2+

2+

2+

3+

3+

3+ 4+

4+

4+

5*

5*

5*

Dependence
 Graph

i = 1

i = 2

i = 3

Loop unrolled to

3+

5* 0+ 1* 2+

PS0 PS1

1

0t
i
m
e

2 multipliers, 2 adders,
1 cluster, single cycle
operations

reveal the
software pipeline

Pipe stages

4+

Y.N. Srikant Software Pipelining

Automatic Parallelization - 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Automatic Parallelization

Automatic Parallelization

Automatic conversion of sequential programs to parallel
programs by a compiler
Target may be a vector processor (vectorization), a
multi-core processor (concurrentization), or a cluster of
loosely coupled distributed memory processors
(parallelization)
Parallelism extraction process is normally a
source-to-source transformation
Requires dependence analysis to determine the
dependence between statements
Implementation of available parallelism is also a challenge

For example, can all the iterations of a 2-nested loop be run
in parallel?

Y.N. Srikant Automatic Parallelization

Example 1

for I = 1 to 100 do {
X(I) = X(I) + Y(I)

}

can be converted to

X(1:100) = X(1:100) + Y(1:100)

The above code can be run on a vector processor in O(1) time.
The vectors X and Y are fetched first and then the vector X is
written into

Y.N. Srikant Automatic Parallelization

Example 2

for I = 1 to 100 do {
X(I) = X(I) + Y(I)

}

can be converted to

forall I = 1 to 100 do {
X(I) = X(I) + Y(I)

The above code can be run on a multi-core processor with all
the 100 iterations running as separate threads. Each thread
“owns” a different I value

Y.N. Srikant Automatic Parallelization

Example 3

for I = 1 to 100 do {
X(I+1) = X(I) + Y(I)

}

cannot be converted to

X(2:101) = X(1:100) + Y(1:100)

because of dependence as shown below

X(2) = X(1) + Y(1)
X(3) = X(2) + Y(2)
X(4) = X(3) + Y(3)
...

Y.N. Srikant Automatic Parallelization

Data Dependence Relations

Y.N. Srikant Automatic Parallelization

Data Dependence Direction Vector

Data dependence relations are augmented with a direction
of data dependence (direction vector)
There is one direction vector component for each loop in a
nest of loops
The data dependence direction vector (or direction vector)
is Ψ = (Ψ1,Ψ2, ...,Ψd), where Ψk ∈ {<,=, >,≤,≥, 6=, ∗}
Forward or “<” direction means dependence from iteration i
to i + k (i.e., computed in iteration i and used in iteration
i + k)
Backward or “>” direction means dependence from
iteration i to i − k (i.e., computed in iteration i and used in
iteration i − k). This is not possible in single loops and
possible in two or higher levels of nesting
Equal or “=” direction means that dependence is in the
same iteration (i.e., computed in iteration i and used in
iteration i)

Y.N. Srikant Automatic Parallelization

Direction Vector Example 1

Y.N. Srikant Automatic Parallelization

