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Outline of the Lecture 

n  What is run-time support? (in part 1) 
n  Parameter passing methods (in part 1) 
n  Storage allocation (in part 2) 
n  Activation records (in part 2) 
n  Static scope and dynamic scope 
n  Passing functions as parameters 
n  Heap memory management 
n  Garbage Collection 
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Static Scope and Dynamic Scope 

n  Static Scope 
q  A global identifier refers to the identifier with that name that 

is declared in the closest enclosing scope of the program 
text 

q  Uses the static (unchanging) relationship between blocks in 
the program text 

n  Dynamic Scope 
q  A global identifier refers to the identifier with that name 

associated with the most recent activation record 
q  Uses the actual sequence of calls that is executed in the 

dynamic (changing) execution of the program 
n  Both are identical as far as local variables are 

concerned 
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Static Scope and Dynamic Scope : 
An Example 
int x = 1, y = 0; 
int g(int z)  
  { return x+z;} 
int f(int y) { 

 int x; x = y+1; 
 return g(y*x); 

} 
y = f(3); 
-------------------------------- 
After the call to g, 
Static scope: x = 1 
Dynamic scope: x = 4 

x            1 

y            3 

x            4 

z           12 

outer block 

f(3) 

g(12) 

Stack of activation records 
after the call to g 

y            0 
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Static Scope and Dynamic Scope: 
Another Example 
float r = 0.25; 
void show() { printf(“%f”,r); } 
void small() { 
   float r = 0.125; show(); 
} 
int main (){ 
show(); small(); printf(“\n”); 
show(); small(); printf(“\n”); 
}    

n  Under static scoping, 
the output is 

    0.25  0.25 
    0.25  0.25 
n  Under dynamic 

scoping, the output is 
    0.25  0.125 
    0.25  0.125 
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Implementing Dynamic Scope – 
Deep Access Method 
n  Use dynamic link as static link 
n  Search activation records on the stack to find the 

first AR containing the non-local name 
n  The depth of search depends on the input to the 

program and cannot be determined at compile time 
n  Needs some information on the identifiers to be 

maintained at runtime within the ARs 
n  Takes longer time to access globals, but no 

overhead when activations begin and end 



Deep Access Method - Example 
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x?          Main 

x?                R 

x?                Q 

                     R 
Base 

Next 

Currently active 
procedure 

Stack of activation 
records 

Calling sequence: 
Main à R à Q à R Global 

variable 
search 
direction 
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Implementing Dynamic Scope – 
Shallow Access Method 
n  Allocate maximum static storage needed for each name 

(based on the types) 
n  When a new AR is created for a procedure p, a local 

name n in p takes over the static storage allocated to 
name n 
q  Global variables are also accessed from the static storage 
q  Temporaries are located in the AR 
q  Therefore, all variable (not temp) accesses use static addresses 

n  The previous value of n held in static storage is saved in 
the AR of p and is restored when the activation of p ends 

n  Direct and quick access to globals, but some overhead is 
incurred when activations begin and end 



Shallow Access Method - Example 
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Space for temps and 
for saving variables 
from static storage 

Space for temps and 
for saving variables 
from static storage 

Space for temps and 
for saving variables 
from static storage 

Base 

Next 

Currently active 
procedure 

Stack of activation 
records 

Calling sequence: 
Main à R à Q à R 

Main 

R 

Q 

R 

Static storage 
for UNIQUE 

names 
(max storage 

based on 
types of the 

names) 
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Passing Functions as Parameters 

An example: 
main() 
{ int x = 4; 
  int f (int y) { 
     return x*y; 
  } 
  int g (int → int h){   
     int x = 7; 
     return h(3) + x; 
   } 
   g(f); 
} 

n  A language has first-class  functions 
if functions can be 
q  declared within any scope 
q  passed as arguments to other 

functions 
q  returned as results of functions 

n  In a language with first-class 
functions and static scope, a function 
value is generally represented by a 
closure 
q  a pair consisting of a pointer to 

function code and 
q  a pointer to an activation  record  

n  Passing functions as arguments is 
very useful in structuring of systems 
using callbacks 
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Passing Functions as Parameters – 
Implementation 

x=4 
main 

SL 
 
 
 

x=7 

SL 
 

y=3 

g(f) 

h(3) 

SL chain 

closure for 
parameter h 

pointer to 
code for f 

AR for the 
call f(3) 

An example: 
main() 
{ int x = 4; 
  int f (int y) { 
     return x*y; 
  } 
  int g (int → int h){   
     int x = 7; 
     return h(3) + x; 
   } 
   g(f); 
} 
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Passing Functions as Parameters: Implementation 

An example: 
main() 
{ int x = 4; 
  int f (int y) { 
     return x*y; 
  } 
  int g (int → int h){   
     int x = 7; 
     return h(3) + x; 
   } 
   g(f); 
} 

n  In this example, when executing the 
call h(3), h is really f and 3 is the 
parameter y of f 

n  Without passing a closure, the AR of 
the main program cannot be 
accessed, and hence, the value of x 
within f will not be 4 

n  In the call g(f), f is passed as a 
closure 

n  Closure may also contain information 
needed to set up AR (e.g., size of 
space for local variables, etc.) 

n  When processing the call h(3), after 
setting up an AR for h (i.e., f), the SL 
for the AR is set up using the AR 
pointer in the closure for f that has 
been passed to the call g(f) 
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Heap Memory Management 

n  Heap is used for allocating space for objects created 
at run time 
q  For example: nodes of dynamic data structures such as 

linked lists and trees 
n  Dynamic memory allocation and deallocation based 

on the requirements of the program 
q  malloc() and free() in C programs 
q  new() and delete() in C++ programs 
q  new() and garbage collection in Java programs 

n  Allocation and deallocation may be completely 
manual (C/C++), semi-automatic (Java), or fully 
automatic (Lisp) 
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Memory Manager 

n  Manages heap memory by implementing 
mechanisms for allocation and deallocation, both 
manual and automatic 

n  Goals 
q  Space efficiency: minimize fragmentation 
q  Program efficiency: take advantage of locality of objects in 

memory and make the program run faster 
q  Low overhead: allocation and deallocation must be efficient 

n  Heap is maintained either as a doubly linked list or 
as bins of free memory chunks (more on this later) 
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Allocation and Deallocation 

n  In the beginning, the heap is one large and 
contiguous block of memory 

n  As allocation requests are satisfied, chunks are cut 
off from this block and given to the program 

n  As deallocations are made, chunks are returned to 
the heap and are free to be allocated again (holes) 

n  After a number of allocations and deallocations, 
memory becomes fragmented and is not contiguous 

n  Allocation from a fragmented heap may be made 
either in a first-fit or best-fit manner 

n  After a deallocation, we try to coalesce contiguous 
holes and make a bigger hole (free chunk) 
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First-Fit and Best-Fit Allocation Strategies 

n  The first-fit strategy picks the first available 
chunk that satisfies the allocation request 

n  The best-fit strategy searches and picks the 
smallest (best) possible chunk that satisfies 
the allocation request 

n  Both of them chop off a block of the required 
size from the chosen chunk, and return it to the 
program 

n  The rest of the chosen chunk remains in the 
heap 
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First-Fit and Best-Fit Allocation Strategies 

n  Best-fit strategy has been shown to reduce 
fragmentation in practice, better than first-fit 
strategy 

n  Next-fit strategy tries to allocate the object in 
the chunk that has been split recently 
q  Tends to improve speed of allocation 
q  Tends to improve spatial locality since objects 

allocated at about the same time tend to have 
similar reference patterns and life times (cache 
behaviour may be better) 



Y.N. Srikant 18 

Bin-based Heap  

n  Free space is organized into bins according to their 
sizes (Lea Memory Manager in GCC) 
q  Many more bins for smaller sizes, because there are many 

more small objects 
q  A bin for every multiple of 8-byte chunks from 16 bytes to 

512 bytes 
q  Then approximately logarithmically (double previous size) 
q  Within each “small size bin”, chunks are all of the same 

size 
q  In others, they are ordered by size 
q  The last chunk in the last bin is the wilderness chunk, which 

gets us a chunk by going to the operating system  
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Bin-based Heap – An Example 

16 24 32 231 ... 640 576 512 ... 

  2       3   exact bins ...  64      65 sorted bins   127  

Ref: From Lea’s 
article on memory  
manager in GCC 

index 

size 

 

 

chunks 
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Managing and Coalescing Free Space 

n  Should coalesce adjacent chunks and reduce 
fragmentation 
q  Many small chunks together cannot hold one large 

object 
q  In the Lea memory manager, no coalescing in the 

exact size bins, only in the sorted bins 
q  Boundary tags (free/used bit and chunk size) at 

each end of a chunk (for both used and free 
chunks) 

q  A doubly linked list of free chunks 
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Boundary Tags and Doubly Linked List 

0 200                         200 0 0 100                       100  0 1 120                             120 1  

Chunk A Chunk B Chunk C 

free freed 
just 
now 

occupied 

... .. 

3 adjacent chunks. Chunk B has been freed just now  
and returned to the free list. Chunks A and B can be 
merged, and this is done just before inserting it into 
the linked list. The merged chunk AB may have to be 
placed in a different bin. 
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Problems with Manual Deallocation 

n  Memory leaks  
q  Failing to delete data that cannot be referenced 
q  Important in long running or nonstop programs 

n  Dangling pointer dereferencing  
q  Referencing deleted data 

n  Both are serious and hard to debug 
n  Solution: automatic garbage collection 
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Garbage Collection 

n  Reclamation of chunks of storage holding objects 
that can no longer be accessed by a program 

n  GC should be able to determine types of objects 
q  Then, size and pointer fields of objects can be determined 

by the GC 
q  Languages in which types of objects can be determined at 

compile time or run-time are type safe 
n  Java is type safe 
n  C and C++ are not type safe because they permit type 

casting, which creates new pointers 
n  Thus, any memory location can be (theoretically) accessed at 

any time and hence cannot be considered inaccessible 
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Reachability of Objects 

n  The root set is all the data that can be accessed 
(reached) directly by a program without having to 
dereference any pointer 

n  Recursively, any object whose reference is stored in 
a field of a member of the root set is also reachable 

n  New objects are introduced through object 
allocations and add to the set of reachable objects 

n  Parameter passing and assignments can propagate 
reachability 

n  Assignments and ends of procedures can terminate 
reachability 


