
Instruction Scheduling and

Software Pipelining - 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Instruction Scheduling

Outline

Instruction Scheduling
Simple Basic Block Scheduling
Trace, Superblock and Hyperblock scheduling

Software pipelining

Y.N. Srikant Instruction Scheduling

Basic Block Scheduling

Basic block consists of micro-operation sequences (MOS),
which are indivisible

Each MOS has several steps, each requiring resources

Each step of an MOS requires one cycle for execution
Precedence constraints and resource constraints must be
satisfied by the scheduled program

PC’s relate to data dependences and execution delays
RC’s relate to limited availability of shared resources

Y.N. Srikant Instruction Scheduling

The Basic Block Scheduling Problem

Basic block is modelled as a digraph, G = (V ,E)

R: number of resources
Nodes (V): MOS; Edges (E): Precedence
Label on node v

resource usage functions, ρv (i) for each step of the MOS
associated with v
length l(v) of node v

Label on edge e: Execution delay of the MOS, d(e)

Problem: Find the shortest schedule σ : V → N such that
∀e = (u, v) ∈ E , σ(v)− σ(u) ≥ d(e) and

∀i ,
v∈V∑

ρv (i − σ(v)) ≤ R, where
length of the schedule is max

v∈V
{σ(v) + l(v)}

Y.N. Srikant Instruction Scheduling

Instruction Scheduling - Precedence and Resource
Constraints

Y.N. Srikant Instruction Scheduling

A Simple List Scheduling Algorithm

Find the shortest schedule σ : V → N, such that precedence
and resource constraints are satisfied. Holes are filled with
NOPs.

FUNCTION ListSchedule (V,E)
BEGIN

Ready = root nodes of V; Schedule = φ;
WHILE Ready 6= φ DO
BEGIN

v = highest priority node in Ready;
Lb = SatisfyPrecedenceConstraints (v , Schedule, σ);
σ(v) = SatisfyResourceConstraints (v , Schedule, σ, Lb);
Schedule = Schedule + {v};
Ready = Ready − {v} + {u | NOT (u ∈ Schedule)

AND ∀ (w , u) ∈ E , w ∈ Schedule};
END
RETURN σ;

END
Y.N. Srikant Instruction Scheduling

List Scheduling - Ready Queue Update

Y.N. Srikant Instruction Scheduling

Constraint Satisfaction Functions

FUNCTION SatisfyPrecedenceConstraint(v, Sched, σ)
BEGIN

RETURN (max
u∈Sched

σ(u) + d(u, v))

END

FUNCTION SatisfyResourceConstraint(v, Sched, σ, Lb)
BEGIN

FOR i := Lb TO∞ DO

IF ∀0 ≤ j < l(v), ρv (j) +
u∈Sched∑

ρu(i + j − σ(u)) ≤ R THEN
RETURN (i);

END

Y.N. Srikant Instruction Scheduling

Precedence Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

Resource Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

List Scheduling - Priority Ordering for Nodes

1 Height of the node in the DAG (i.e., longest path from the
node to a terminal node

2 Estart, and Lstart, the earliest and latest start times
Violating Estart and Lstart may result in pipeline stalls
Estart(v) = max

i=1,··· ,k
(Estart(ui) + d(ui , v))

where u1,u2, · · · ,uk are predecessors of v . Estart value of
the source node is 0.
Lstart(u) = min

i=1,··· ,k
(Lstart(vi)− d(u, vi))

where v1, v2, · · · , vk are successors of u. Lstart value of the
sink node is set as its Estart value.
Estart and Lstart values can be computed using a
top-down and a bottom-up pass, respectively, either
statically (before scheduling begins), or dynamically during
scheduling

Y.N. Srikant Instruction Scheduling

Estart Computation

Y.N. Srikant Instruction Scheduling

Lstart Computation

Y.N. Srikant Instruction Scheduling

List Scheduling - Slack

1 A node with a lower Estart (or Lstart) value has a higher
priority

2 Slack = Lstart − Estart
Nodes with lower slack are given higher priority
Instructions on the critical path may have a slack value of
zero and hence get priority

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 1

1

3

6

2

4

5

1

0

1

1

2 0

1 2

2

1

1

4

5

1 2

3

node no.path length exec time

LEGEND

latency

path length (n) = exec time (n) , if n is a leaf

 = max { latency (n,m) + path length (m) }
ε m succ (n)

Schedule = {3, 1, 2, 4, 6, 5}

INSTRUCTION SCHEDULING - EXAMPLE

3

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles

path length and slack are shown on the left side and right
side of the pair of numbers in parentheses
 = (a+4)+(a-2)*b;b = b+3;(a) High-Level Codei1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8:
 st t7i9: b st t5(b) 3-Address Code

ld

sub

mult st

add

st

add

ld

add

5(3, 3)0

6(2, 2)0

8(0, 0)0

3(2, 5)3 1(2, 7)5

7(0, 1)1

0(8, 8)0

2(6, 6)0

1(7, 7)0

i1

i3 i4

i7

i8

i6

i2

i5

i9

(
) DAG with (Estart, Lstart) Values
Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2 (contd.)

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles

2 Integer units and 1 Multiplication unit, all capable of load

and store as well

Heuristic used: height of the node or slack

int1 int2 mult Cycle # Instr.No. Instruction

1 1 0 0 i1, i2 t1 ← load a, t2 ← load b

1 1 0 1

1 1 0 2 i4, i3 t4 ← t1 − 2, t3 ← t1 + 4

1 0 1 3 i6, i5 t5 ← t2 + 3, t6 ← t4 ∗ t2
0 0 1 4 i5 not sched. in cycle 2

0 0 1 5 due to shortage of int units

1 0 0 6 i7 t7 ← t3 + t6
1 0 0 7 i8 c ← st t7
1 0 0 8 i9 b ← st t5

Y.N. Srikant Instruction Scheduling

Resource Usage Models -

Instruction Reservation Table

r0 r1 r2 r3 r4

t0 1 0 1 2 0

t1 1 1 0 0 1

t2 0 0 0 2 1

t3 0 1 0 0 1

No. of resources in the machine: 4

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

r0 r1 r2 · · · rM

t0 1 0 1 0
t1 1 1 0 1
t2 0 0 0 1

tT

M: No. of resources in the machine
T: Length of the schedule

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

GRT is constructed as the schedule is built (cycle by cycle)

All entries of GRT are initialized to 0

GRT maintains the state of all the resources in the machine

GRTs can answer questions of the type:
“can an instruction of class I be scheduled in the current
cycle (say tk)?”
Answer is obtained by ANDing RT of I with the GRT
starting from row tk

If the resulting table contains only 0’s, then YES, otherwise
NO

The GRT is updated after scheduling the instruction with a
similar OR operation

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Disadvantages

Checking resource constraints is inefficient here because it
involves repeated ANDing and ORing of bit matrices for
many instructions in each scheduling step

Space overhead may become considerable, but still
manageable

Y.N. Srikant Instruction Scheduling

Global Acyclic Scheduling

Average size of a basic block is quite small (5 to 20
instructions)

Effectiveness of instruction scheduling is limited
This is a serious concern in architectures supporting
greater ILP

VLIW architectures with several function units
superscalar architectures (multiple instruction issue)

Global scheduling is for a set of basic blocks
Overlaps execution of successive basic blocks
Trace scheduling, Superblock scheduling, Hyperblock
scheduling, Software pipelining, etc.

Y.N. Srikant Instruction Scheduling

Trace Scheduling

A Trace is a frequently executed acyclic sequence of basic
blocks in a CFG (part of a path)
Identifying a trace

Identify the most frequently executed basic block
Extend the trace starting from this block, forward and
backward, along most frequently executed edges

Apply list scheduling on the trace (including the branch
instructions)

Execution time for the trace may reduce, but execution time
for the other paths may increase

However, overall performance will improve

Y.N. Srikant Instruction Scheduling

Trace Example

for (i=0; i < 100; i++){ if (A[i℄ == 0)B[i℄ = B[i℄ + s;elseB[i℄ = A[i℄;sum = sum + B[i℄;} (a) High-Level Code

%% r1 0%% r5 0%% r6 400%% r7 sB1: i1: r2 load a(r1)i2: if (r2 != 0) goto i7B2: i3: r3 load b(r1)i4: r4 r3 + r7i5: b(r1) r4i6: goto i9B3: i7: r4 r2i8: b(r1) r2B4: i9: r5 r5 + r4i10: r1 r1 + 4i11: if (r1 < r6) goto i1(b) Assembly Code
B2

B1

B3

B4

main trace(
) Control Flow Graph
Y.N. Srikant Instruction Scheduling

Trace - Basic Block Schedule

2-way issue architecture with 2 integer units
add, sub, store: 1 cycle, load: 2 cycles, goto: no stall
9 cycles for the main trace and 6 cycles for the off-traceTime Int. Unit 1 Int. Unit 20 i1: r2 load a(r1)12 i2: if (r2 != 0) goto i73 i3: r3 load b(r1)45 i4: r4 r3 + r76 i5: b(r1) r4 i6: goto i93 i7: r4 r2 i8: b(r1) r27 (4) i9: r5 r5 + r4 i10: r1 r1 + 48 (5) i11: if (r1 < r6) goto i1

Y.N. Srikant Instruction Scheduling

Trace Schedule

Y.N. Srikant Instruction Scheduling

Trace Schedule

6 cycles for the main trace and 7 cycles for the off-traceTime Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2: if (r2 != 0) goto i7 i4: r4 r3 + r73 i5: b(r1) r44 (5) i9: r5 r5 + r4 i10: r1 r1 + 45 (6) i11: if (r1 < r6) goto i13 i7: r4 r2 i8: b(r1) r24 i12: goto i9
Y.N. Srikant Instruction Scheduling

Trace Scheduling - Issues

Side exits and side entrances are ignored during
scheduling of a trace

Required compensation code is inserted during
book-keeping (after scheduling the trace)
Speculative code motion - load instruction moved ahead of
conditional branch

Example: Register r3 should not be live in block B3
(off-trace path)
May cause unwanted exceptions

Requires additional hardware support!

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Y.N. Srikant Instruction Scheduling

