Machine Code Generation - 3

Y. N. Srikant

Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Outline of the Lecture

Mach. code generation — main issues (in part 1)
Samples of generated code (in part 2)
Two Simple code generators (in part 2)

Optimal code generation

o Sethi-Ullman algorithm

o Dynamic programming based algorithm
o Tree pattern matching based algorithm

Code generation from DAGs
Peephole optimizations

Y.N. Srikant

Optimal Code Generation
- The Sethi-Ullman Algorithm

Generates the shortest sequence of instructions
o Provably optimal algorithm (w.r.t. length of the sequence)

Suitable for expression trees (basic block level)

Machine model
o All computations are carried out in registers
o Instructions are of the form op R,R or op M,R

Always computes the left subtree into a register
and reuses it immediately

Two phases
o Labelling phase
o Code generation phase

Y.N. Srikant

The Labelling Algorithm

Labels each node of the tree with an integer:

o fewest no. of registers required to evaluate the tree
with no intermediate stores to memory

o Consider binary trees

For leaf nodes
o Ifn is the leftmost child of its parent then

label(n) := 1 else label(n) :=0
For internal nodes
a label(n) = max (I, I,), if 1,<>1,
=1, +1,if =1,

Y.N. Srikant

‘ Labelling - Example

Y.N. Srikant

Code Generation Phase —
Procedure GENCODE(n)

RSTACK — stack of registers, R,,...,R .4
TSTACK — stack of temporaries, T,,T,,...

A call to Gencode(n) generates code to evaluate a

tree T, rooted at node n, into the register top

(RSTACK) ,and

o the rest of RSTACK remains in the same state as the one
before the call

A swap of the top two registers of RSTACK is

needed at some points in the algorithm to ensure

that a node is evaluated into the same register as its

left child.

Y.N. Srikant

The Code Generation Algorithm (1)

Procedure gencode(n);
{/* case 0 */
if
n is a leaf representing N
operand N and is the leat node
leftmost child of its parent
then
print(LOAD N, top(RSTACK))

Y.N. Srikant

The Code Generation Algorithm (2)

[* case 17/
else if
n is an interior node with operator
OP, left child n1, and right child n2
then
if label(n2) == 0 then {
let N be the operand for n2;
gencode(n1);
print(OP N, top(RSTACK));

}

leaf node

Y.N. Srikant 38

The Code Generation Algorithm (3)

[* case 2 */

else if ((1 < label(n1) < label(n2))
and(label(n1) <))
then { @ @
swap(RSTACK); gencode(n2);
R := pop(RSTACK); gencode(n1);
/* R holds the result of n2 */
print(OP R, top(RSTACK));
The swap() function ensures

push (RSTACK,R); that a node is evaluated into

swap(RSTACK); the same register as its left
} child

<r >label(n1)

Y.N. Srikant 9

The Code Generation Algorithm (4)

OP
[* case 3 */)
else if ((1 < label(n2) < label(n1))
and(label(n2) <))
then { m n2

gencode(n1);

R := pop(RSTACK); gencode(n2); =2label(n2) <r
/* R holds the result of n1 */

print(OP top(RSTACK), R);

push (RSTACK,R);

}

Y.N. Srikant 10

The Code Generation Algorithm (5)

[* case 4, both labels are > r */
else {
gencode(n2); T:= pop(TSTACK);) n2)
print(LOAD top(RSTACK), T);
gencode(n1);
2r 2r

print(OP T, top(RSTACK));
push(TSTACK, T);

}

Y.N. Srikant

11

Code Generation Phase — Example 1

No. of registers = r = 2

n5 > n3 > nl 2> a-> Load a, RO
- op,; b, RO
- n2 2 ¢ 2 Load c, R1
- op,, d, R1
- op,3 R1, RO
- n4 > e > Load e, R1
2> op,4 f, RI
- op,s R1, RO

Y.N. Srikant 12

Code Generation Phase — Example 2

No. of registers =r = 1.
Here we choose rst first so that /st can be
computed into RO later (case 4)

n5 > n4 > e 2 Load e, RO
> op,, f, RO
- Load RO, TO {release RO}
> n3 2> n2 2> c=> Load ¢, RO
- op,, d, RO
- Load RO, T1 {release RO}
- nl 2 a=> Load a, RO
- op,; b, RO
= 0p,3 I'l, RO {release T1}
= 0p,s 10, RO {release TO}

Y.N. Srikant 13

Dynamic Programming based
Optimal Code Generation for Trees

Broad class of register machines
o rinterchangeable registers, R,,...,R.;

o Instructions of the form R;:= E

If E involves registers, R, must be one of them
RI = M’ RI = RI Op Rj’ RI = RI Op M, RI = Rj’ MI = R]

Based on principle of contiguous evaluation

Produces optimal code for trees (basic block
level)

Can be extended to include a different cost
for each instruction

Y.N. Srikant

14

Contiguous Evaluation

First evaluate subtrees of T
that need to be evaluated into
memory. Then,

o Restof T1, T2, op, in that
order, OR,

o Restof T2, T1, op, in that
order

Part of T7, part of T2, part of

T'1 again, etc., is not

contiguous evaluation

Contiguous evaluation is

optimal!

a2 No higher cost and no more

registers than optimal
evaluation

Y.N. Srikant

T1

Tree T

T2

15

The Algorithm (1)

1. Compute in a bottom-up manner, for each
node n of T, an array of costs, C

o C[i] = min cost of computing the complete
subtree rooted at n, assuming / registers to be

available

Consider each machine instruction that matches at n
and consider all possible contiguous evaluation orders
(using dynamic programming)

Add the cost of the instruction that matched at node n

Y.N. Srikant 16

The Algorithm (2)

Using C, determine the subtrees that must be
computed into memory (based on cost)

Traverse T, and emit code

2 memory computations first

o rest later, in the order needed to obtain optimal
cost

Cost of computing a tree into memory = cost

of computing the tree using all registers + 1

(store cost)

Y.N. Srikant 17

An Example

Max no. of registers = 2
Node 2: matching instructions

Ri=Ri—M (i = 0,1) and
Ri = Ri—Rj (i,j = 0,1)

C2[1] = C4[1] + C5[0] + 1
= 1+0+1 = 2

C2[2] = Min{ C4[2] + C5[1] + 1,
C4[2] + C5[0] + 1,
C4[1] + C5[2] + 1,

C4[1] + C5[1] + 1, RO=c
C4[1] + C5[0] + 1} R1=d
= Min{1+141,1+0+1,1+1+1, R1=R1/e
14+1+1,1+0+1} RO = RO * R1 > Generated sequence
= Min{3,2,3,3,2} = 2 R1=a of instructions
R1=R1-b
C2[0] = 1+ C2[2] = 1+2=3 RO = R1 + RO

Y.N. Srikant 18

Example — continued
Cost of computing node 3 with 2 registers

#regs for node 6 | #regs for node 7 | cost for node 3
2 0 1+3+1 =5
2 1 1+2+1 =4
1 0 1+3+1 =5
1 1 1+2+1 =4
1 2 1+2+1 =4
min value 4

Cost of computing with 1 register = 5 (row 4, red) Triole = (5.5.4
Cost of computing into memory=4+1=5 P (5,5,4)

Y.N. Srikant

Example — continued

Traversal and Generating Code

Min cost for node 1=7, Instruction: RO := R1+R0
Compute RST(3) with 2 regs into RO
Compute LST(2) into R1

For node 3, instruction: RO := RO * R1
Compute RST(7) with 2 regs into R1
Compute LST(6) into RO

For node 7, instruction: R1 :=R1 /e
Compute RST(9) into memory
(already available)

Compute LST(8) into R1

For node 8, instruction: R1 :=d

For node 6, instruction: RO :=c

For node 2, instruction: R1 :=R1-Db
Compute RST(5) into memory (available already)
Compute LST(4) into R1

For node 4, instruction: R1 := a

RO=R1+R0 (8,8,7)
RO=RO*R1

Y.N. Srikant

20

