
Introduction to
Machine-Independent Optimizations - 5

Control-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Control-Flow Analysis



Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis (in parts 2,3, and 4)
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Control-Flow Analysis



Dominators and Natural Loops

Edges whose heads dominate their tails are called back
edges (a→ b : b = head , a = tail)
Given a back edge n→ d

The natural loop of the edge is d plus the set of nodes that
can reach n without going through d
d is the header of the loop

A single entry point to the loop that dominates all nodes in
the loop
At least one path back to the header exists (so that the loop
can be iterated)

Y.N. Srikant Control-Flow Analysis



Algorithm for finding the Natural Loop of a Back Edge

/* The back edge under consideration is n→ d /*
{ stack = empty; loop = {d};

/* This ensures that we do not look at predecessors of d */
insert(n);
while (stack is not empty) do {

pop(m, stack);
for each predecessor p of m do insert(p);

}
}

procedure insert(m) {
if m /∈ loop then {

loop = loop ∪ {m};
push(m, stack);

}
}

Y.N. Srikant Control-Flow Analysis



Dominators, Back Edges, and Natural Loops

Y.N. Srikant Control-Flow Analysis



Dominators, Back Edges, and Natural Loops

Y.N. Srikant Control-Flow Analysis



Depth-First Numbering of Nodes in a CFG

Y.N. Srikant Control-Flow Analysis



Depth-First Numbering Example 1

Y.N. Srikant Control-Flow Analysis



Depth-First Numbering Example 2

Y.N. Srikant Control-Flow Analysis



Inner Loops

Unless two loops have the same header, they are either
disjoint or one is nested within the other
Nesting is checked by testing whether the set of nodes of a
loop A is a subset of the set of nodes of another loop B
Similarly, two loops are disjoint if their sets of nodes are
disjoint
When two loops share a header, neither of these may hold
(see next slide)
In such a case the two loops are combined and
transformed as in the next slide

Y.N. Srikant Control-Flow Analysis



Inner Loops and Loops with the same header

Y.N. Srikant Control-Flow Analysis



Preheader

Y.N. Srikant Control-Flow Analysis



Depth of a Flow Graph and Convergence of DFA

Given a depth-first spanning tree of a CFG, the largest
number of retreating edges on any cycle-free path is the
depth of the CFG
The number of passes needed for convergence of the
solution to a forward DFA problem is (1 + depth of CFG)
One more pass is needed to determine no change, and
hence the bound is actually (2 + depth of CFG)
This bound can be actually met if we traverse the CFG
using the depth-first numbering of the nodes
For a backward DFA, the same bound holds, but we must
consider the reverse of the depth-first numbering of nodes
Any other order will still produce the correct solution, but
the number of passes may be more

Y.N. Srikant Control-Flow Analysis



Depth of a CFG - Example 1

Y.N. Srikant Control-Flow Analysis



Depth of a CFG - Example 2

Y.N. Srikant Control-Flow Analysis



Algorithms for Machine-Independent
Optimizations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Machine-Independent Optimizations



Outline of the Lecture

Global common sub-expression elimination
Copy propagation
Simple constant propagation
Loop invariant code motion

Y.N. Srikant Machine-Independent Optimizations



Elimination of Global Common Sub-expressions

Needs available expression information
For every s : x := y + z, such that y + z is available at the
beginning of s’ block, and neither y nor z is defined prior to
s in that block, do the following

1 Search backwards from s’ block in the flow graph, and find
first block in which y + z is evaluated. We need not go
through any block that evaluates y + z.

2 Create a new variable u and replace each statement
w := y + z found in the above step by the code segment
{u := y + z;w := u}, and replace s by x := u

3 Repeat 1 and 2 above for every predecessor block of s’
block

Repeated application of GCSE may be needed to catch
“deep” CSE

Y.N. Srikant Machine-Independent Optimizations



GCSE Conceptual Example

Y.N. Srikant Machine-Independent Optimizations



GCSE on Running Example - 1

Y.N. Srikant Machine-Independent Optimizations



GCSE on Running Example - 2

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation

Eliminate copy statements of the form s : x := y , by
substituting y for x in all uses of x reached by this copy
Conditions to be checked

1 u-d chain of use u of x must consist of s only. Then, s is the
only definition of x reaching u

2 On every path from s to u, including paths that go through u
several times (but do not go through s a second time), there
are no assignments to y . This ensures that the copy is valid

The second condition above is checked by using
information obtained by a new data-flow analysis problem

c_gen[B] is the set of all copy statements, s : x := y in B,
such that there are no subsequent assignments to either x
or y within B, after s
c_kill[B] is the set of all copy statements, s : x := y , s not in
B, such that either x or y is assigned a value in B
Let U be the universal set of all copy statements in the
program

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation - The Data-flow Equations

c_in[B] is the set of all copy statements, x := y reaching
the beginning of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path
c_out [B] is the set of all copy statements, x := y reaching
the end of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path

c_in[B] =
⋂

P is a predecessor of B

c_out [P], B not initial

c_out [B] = c_gen[B]
⋃

(c_in[B]− c_kill[B])

c_in[B1] = φ, where B1 is the initial block
c_out [B] = U − c_kill[B], for all B 6= B1 (initialization only)

Y.N. Srikant Machine-Independent Optimizations



Algorithm for Copy Propagation

For each copy, s : x := y , do the following
1 Using the du − chain, determine those uses of x that are

reached by s
2 For each use u of x found in (1) above, check that

(i) u-d chain of u consists of s only
This implies that s is the only definition of x that reaches this
block

(ii) s is in c_in[B], where B is the block to which u belongs.
This ensures that no definitions of x or y appear on this path
from s to B

(iii) no definitions x or y occur within B prior to u found in (1)
above

3 If s meets the conditions above, then remove s and replace
all uses of x found in (1) above by y

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation Example 1

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation on Running Example 1.1

Y.N. Srikant Machine-Independent Optimizations



Copy Propagation on Running Example 1.2

Y.N. Srikant Machine-Independent Optimizations



GCSE and Copy Propagation on Running Example 1.1

Y.N. Srikant Machine-Independent Optimizations



GCSE and Copy Propagation on Running Example 1.2

Y.N. Srikant Machine-Independent Optimizations



Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {

S = remove(Stmtpile);
if S is of the form x = c for some constant c

for all statements T in the du-chain of x do
if usage of x in T is reachable only by S

{ substitute c for x in T; simplify T
Stmtpile = Stmtpile ∪ {T}

}
}

Note: If all usages of x are replaced by c, then x = c becomes
dead code and a separate dead code elimination pass will
remove it.

Y.N. Srikant Machine-Independent Optimizations



Simple Constant Propagation Example

Y.N. Srikant Machine-Independent Optimizations


