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Outline of the Lecture 

n  Mach. code generation – main issues (in part 1) 
n  Samples of generated code (in part 2) 
n  Two Simple code generators (in part 2) 
n  Optimal code generation 

q  Sethi-Ullman algorithm (in part 3) 
q  Dynamic programming based algorithm (in part 3) 
q  Tree pattern matching based algorithm 

n  Code generation from DAGs 
n  Peephole optimizations 



Code Generation based on Dynamic 
Programming - Limitations 
n  Several instructions require even-odd register 

pairs – (R0,R1), (R2,R3), etc. 
q  example: multiplication in x86 
q  may require non-contiguous evaluation to ensure 

optimality 
q  cannot be handled by DP 
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Code Generation by Tree Rewriting 

n  Caters to complex instruction sets and very 
general machine models 

n  Can produce locally optimal code (basic 
block level) 

n  Non-contiguous evaluation orders are 
possible without sacrificing optimality 

n  Easily retargetable to different machines 
n  Automatic generation from specifications is 

possible 
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Example 
:= 

ind + 

const1 memb + 

+ ind 

+ 

consti regsp 

regsp consta 

Tree intermediate 
code for a[i] = b+1, 
a and i are local, and 
b is global 



Some Tree Rewriting Rules and 
Associated Actions 
1.  regi ß consta { Load #a, regi } 
2.  regi ß +(regi , regj) { Add regi , regj } 
3.  regi ß ind (+(constc , regj)) { Load #c(regj), regi } 
4.  regi ß +(regi , ind (+(constc , regj)))  
                 { Add #c(regj), regi } 
5.  regi ß mema { Load b, regi } 

6.  regi ß +(regi , const1) { Inc regi } 
7.  mem ß :=(ind (regi) , regj) { Load regj , *regi } 
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Match #1 
:= 

ind + 

const1 memb + 

+ ind 

+ 

consti regsp 

regsp consta 

Pattern 
regi ß consta 

 
Code 

Load #a, R0 

Code so far: 
Load #a, R0 

reg0 
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Match #2 
:= 

ind + 

const1 memb + 

+ ind 

+ 

consti regsp 

regsp reg0 

Pattern 
regi ß +(regi , regj) 

 
Code 

Add SP, R0 

Code so far: 
Load #a, R0 
Add SP, R0 

reg0 
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ind 

:= 

Match #3 

+ 

const1 memb + 

reg0 ind 

+ 

consti regsp 

Pattern 
regi ß ind (+(constc , regj)) 

OR 
regi ß +(regi , ind (+(constc , regj))) 

 
Code for 2nd alternative (chosen) 

Add #i(SP), R0 

Code so far: 
Load #a, R0 
Add SP, R0 
Add #i(SP), R0 

reg0 
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Match #4 
:= 

ind + 

const1 memb 

Pattern 
regi ß mema 

 
Code 

Load b, R1 

reg0 
Code so far: 
Load #a, R0 
Add SP, R0 
Add #i(SP), R0 
Load b, R1 

reg1 
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Match #5 
:= 

ind + 

const1 reg1 reg0 

Pattern 
regi ß +(regi , const1) 

  
Code 
Inc R1 

Code so far: 
Load #a, R0 
Add SP, R0 
Add #i(SP), R0 
Load b, R1 
Inc R1 

reg1 
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Match #6 
:= 

ind reg1 

reg0 

Pattern 
mem ß :=(ind (regi) , regj) 

  
Code 

Load R1, *R0 

Code so far: 
Load #a, R0 
Add SP, R0 
Add #i(SP), R0 
Load b, R1 
Inc R1 
Load R1, *R0 

mem 
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Code Generator Generators (CGG) 

n  Based on tree pattern matching and dynamic 
programming 

n  Accept tree patterns, associated costs, and 
semantic actions (for register allocation and object 
code emission) 

n  Produce tree matchers that produce a cover of 
minimum cost 

n  Make two passes 
q  First pass is a bottom-up pass and finds a set of patterns 

that cover the tree with minimum cost 
q  Second pass executes the semantic actions associated 

with the minimum cost patterns at the nodes they matched 
n  Twig, BURG, and IBURG are such CGGs 



Y.N. Srikant 14 

Code Generator Generators (2) 

n  IBURG 
q  Uses dynamic programming (DP) at compile time 
q  Costs can involve arbitrary computations 
q  The matcher is hard coded 

n  TWIG 
q  Uses a table-driven tree pattern matcher based on Aho-Corasick string 

pattern matcher 
q  High overheads, could take O(n2) time, n being the number of nodes in the 

subject tree 
q  Uses DP at compile time 
q  Costs can involve arbitrary computations 

n  BURG 
q  Uses BURS (bottom-up rewrite system) theory to move DP to compile-

compile time (matcher generation time) 
q  Table-driven, more complex, but generates optimal code in O(n) time 
q  Costs must be constants 
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Code Generation from DAGs 

n  Optimal code generation from DAGs is NP-
Complete 

n  DAGs are divided into trees and then 
processed 

n  We may replicate shared trees 
q  Code size increases drastically 

n  We may store result of a tree (root) into 
memory and use it in all places where the 
tree is used 
q  May result in sub-optimal code 
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DAG example: Duplicate shared trees 
1 

2 3 

4 6 

7 8 

10 11 

5 

9 8 

10 11 

5 

9 8 

10 11 

1 

2 3 

4 5 6 

8 9 

10 11 

7 
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DAG example: Compute shared trees 
once and share results 

1 

2 3 

4 5 6 

8 9 

10 11 

7 

1 

2 3 

4 5 6 5 

7 

5 

8 

8 9 

8 

10 11 

1 2 

3 

After computing 
tree 1, the 
computation of 
subtree 4-7-8 
of tree 3 can be 
done before or 
after tree 2 



Y.N. Srikant 18 

Peephole Optimizations 

n  Simple but effective local optimization 
n  Usually carried out on machine code, but 

intermediate code can also benefit from it 
n  Examines a sliding window of code (peephole), and 

replaces it by a shorter or faster sequence, if 
possible 

n  Each improvement provides opportunities for 
additional improvements 

n  Therefore, repeated passes over code are needed 
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Peephole Optimizations 

n  Some well known peephole optimizations 
q  eliminating redundant instructions 
q  eliminating unreachable code 
q  eliminating jumps over jumps 
q  algebraic simplifications 
q  strength reduction 
q  use of machine idioms 
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Elimination of Redundant Loads and Stores 
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Eliminating Unreachable Code 

n  An unlabeled instruction immediately 
following an unconditional jump may be 
removed 
q  May be produced due to debugging code 

introduced during development 
q  Or due to updates to programs (changes for fixing 

bugs) without considering the whole program 
segment 
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Eliminating Unreachable Code 
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Flow-of-Control Optimizations 
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Reduction in Strength and Use of Machine 
Idioms 
n  x2 is cheaper to implement as x*x,  than 

as a call to an exponentiation routine 
n  For integers, x*23 is cheaper to 

implement as x << 3 (x left-shifted by 3 
bits) 

n  For integers, x/22 is cheaper to 
implement as x >> 2 (x right-shifted by 2 
bits) 
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Reduction in Strength and Use of Machine 
Idioms 
n  Floating point division by a constant can be 

approximated as multiplication by a constant 
n  Auto-increment and auto-decrement 

addressing modes can be used wherever 
possible 
q  Subsume INCREMENT and DECREMENT 

operations (respectively) 
n  Multiply and add is a more complicated 

pattern to detect 
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Outline of the Lecture 

n  Language requirements 
n  Mapping names to methods 
n  Variable name visibility 
n  Code generation for methods 
n  Simple optimizations 
n  Parts of this lecture are based on the book, 
“Engineering a Compiler”, by Keith Cooper and 
Linda Torczon, Morgan Kaufmann, 2004, 
sections 6.3.3 and 7.10. 
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Language Requirements 

n  Objects and Classes 
n  Inheritance, subclasses and superclasses 
n  Inheritance requires that a subclass have all 

the instance variables specified by its 
superclass 
q  Necessary for superclass methods to work with 

subclass objects 
n  If A is B’s superclass, then some or all of A’s 

methods/instance variables  may be 
redefined in B 
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Example of Class Hierarchy with 
Complete Method Tables 

n: 0 
fee 
fum 

n: 1 
fee 
fum 

n: 2 
fee 
fum 

x: 5 

x: 5 
y: 3 
z: 

foe foe 
fie 

x: 2 
y: 0 
z: 

y: 3 

fum 
... 

fee 
... 

foe 
... 

fee 
... 

fee 
... 

fie 
... 

one 
two 

three 
c 

a 
b 

object 
class 

method 
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Mapping Names to Methods 

n  Method invocations are not always static calls 
n  a.fee() invokes one.fee(), a.foe() invokes two.foe(), 

and a.fum() invokes three.fum() 
n  Conceptually, method lookup behaves as if it 

performs a search for each procedure call 
q  These are called virtual calls 
q  Search for the method in the receiver’s class; if it fails, 

move up to the receiver’s superclass, and further 
q  To make this search efficient, an implementation places a 

complete method table in each class 
q  Or, a pointer to the method table is included (virtual tbl ptr) 
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Mapping Names to Methods 

n  If the class structure can be determined wholly at 
compile time, then the method tables can be 
statically built for each class 

n  If classes can be created at run-time or loaded 
dynamically (class definition can change too) 
q  full lookup in the class hierarchy can be performed at run-

time or  
q  use complete method tables as before, and include a 

mechanism to update them when needed 


