
Machine Code Generation - 4

Y. N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  Mach. code generation – main issues (in part 1)
n  Samples of generated code (in part 2)
n  Two Simple code generators (in part 2)
n  Optimal code generation

q  Sethi-Ullman algorithm (in part 3)
q  Dynamic programming based algorithm (in part 3)
q  Tree pattern matching based algorithm

n  Code generation from DAGs
n  Peephole optimizations

Code Generation based on Dynamic
Programming - Limitations
n  Several instructions require even-odd register

pairs – (R0,R1), (R2,R3), etc.
q  example: multiplication in x86
q  may require non-contiguous evaluation to ensure

optimality
q  cannot be handled by DP

Y.N. Srikant 3

Y.N. Srikant 4

Code Generation by Tree Rewriting

n  Caters to complex instruction sets and very
general machine models

n  Can produce locally optimal code (basic
block level)

n  Non-contiguous evaluation orders are
possible without sacrificing optimality

n  Easily retargetable to different machines
n  Automatic generation from specifications is

possible

Y.N. Srikant 5

Example
:=

ind +

const1 memb +

+ ind

+

consti regsp

regsp consta

Tree intermediate
code for a[i] = b+1,
a and i are local, and
b is global

Some Tree Rewriting Rules and
Associated Actions
1.  regi ß consta { Load #a, regi }
2.  regi ß +(regi , regj) { Add regi , regj }
3.  regi ß ind (+(constc , regj)) { Load #c(regj), regi }
4.  regi ß +(regi , ind (+(constc , regj)))
 { Add #c(regj), regi }
5.  regi ß mema { Load b, regi }

6.  regi ß +(regi , const1) { Inc regi }
7.  mem ß :=(ind (regi) , regj) { Load regj , *regi }

Y.N. Srikant 6

Y.N. Srikant 7

Match #1
:=

ind +

const1 memb +

+ ind

+

consti regsp

regsp consta

Pattern
regi ß consta

Code

Load #a, R0

Code so far:
Load #a, R0

reg0

Y.N. Srikant 8

Match #2
:=

ind +

const1 memb +

+ ind

+

consti regsp

regsp reg0

Pattern
regi ß +(regi , regj)

Code

Add SP, R0

Code so far:
Load #a, R0
Add SP, R0

reg0

Y.N. Srikant 9

ind

:=

Match #3

+

const1 memb +

reg0 ind

+

consti regsp

Pattern
regi ß ind (+(constc , regj))

OR
regi ß +(regi , ind (+(constc , regj)))

Code for 2nd alternative (chosen)

Add #i(SP), R0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0

reg0

Y.N. Srikant 10

Match #4
:=

ind +

const1 memb

Pattern
regi ß mema

Code

Load b, R1

reg0
Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1

reg1

Y.N. Srikant 11

Match #5
:=

ind +

const1 reg1 reg0

Pattern
regi ß +(regi , const1)

Code
Inc R1

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1
Inc R1

reg1

Y.N. Srikant 12

Match #6
:=

ind reg1

reg0

Pattern
mem ß :=(ind (regi) , regj)

Code

Load R1, *R0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1
Inc R1
Load R1, *R0

mem

Y.N. Srikant 13

Code Generator Generators (CGG)

n  Based on tree pattern matching and dynamic
programming

n  Accept tree patterns, associated costs, and
semantic actions (for register allocation and object
code emission)

n  Produce tree matchers that produce a cover of
minimum cost

n  Make two passes
q  First pass is a bottom-up pass and finds a set of patterns

that cover the tree with minimum cost
q  Second pass executes the semantic actions associated

with the minimum cost patterns at the nodes they matched
n  Twig, BURG, and IBURG are such CGGs

Y.N. Srikant 14

Code Generator Generators (2)

n  IBURG
q  Uses dynamic programming (DP) at compile time
q  Costs can involve arbitrary computations
q  The matcher is hard coded

n  TWIG
q  Uses a table-driven tree pattern matcher based on Aho-Corasick string

pattern matcher
q  High overheads, could take O(n2) time, n being the number of nodes in the

subject tree
q  Uses DP at compile time
q  Costs can involve arbitrary computations

n  BURG
q  Uses BURS (bottom-up rewrite system) theory to move DP to compile-

compile time (matcher generation time)
q  Table-driven, more complex, but generates optimal code in O(n) time
q  Costs must be constants

Y.N. Srikant 15

Code Generation from DAGs

n  Optimal code generation from DAGs is NP-
Complete

n  DAGs are divided into trees and then
processed

n  We may replicate shared trees
q  Code size increases drastically

n  We may store result of a tree (root) into
memory and use it in all places where the
tree is used
q  May result in sub-optimal code

Y.N. Srikant 16

DAG example: Duplicate shared trees
1

2 3

4 6

7 8

10 11

5

9 8

10 11

5

9 8

10 11

1

2 3

4 5 6

8 9

10 11

7

Y.N. Srikant 17

DAG example: Compute shared trees
once and share results

1

2 3

4 5 6

8 9

10 11

7

1

2 3

4 5 6 5

7

5

8

8 9

8

10 11

1 2

3

After computing
tree 1, the
computation of
subtree 4-7-8
of tree 3 can be
done before or
after tree 2

Y.N. Srikant 18

Peephole Optimizations

n  Simple but effective local optimization
n  Usually carried out on machine code, but

intermediate code can also benefit from it
n  Examines a sliding window of code (peephole), and

replaces it by a shorter or faster sequence, if
possible

n  Each improvement provides opportunities for
additional improvements

n  Therefore, repeated passes over code are needed

Y.N. Srikant 19

Peephole Optimizations

n  Some well known peephole optimizations
q  eliminating redundant instructions
q  eliminating unreachable code
q  eliminating jumps over jumps
q  algebraic simplifications
q  strength reduction
q  use of machine idioms

Y.N. Srikant 20

Elimination of Redundant Loads and Stores

Y.N. Srikant 21

Eliminating Unreachable Code

n  An unlabeled instruction immediately
following an unconditional jump may be
removed
q  May be produced due to debugging code

introduced during development
q  Or due to updates to programs (changes for fixing

bugs) without considering the whole program
segment

Y.N. Srikant 22

Eliminating Unreachable Code

Y.N. Srikant 23

Flow-of-Control Optimizations

Y.N. Srikant 24

Reduction in Strength and Use of Machine
Idioms
n  x2 is cheaper to implement as x*x, than

as a call to an exponentiation routine
n  For integers, x*23 is cheaper to

implement as x << 3 (x left-shifted by 3
bits)

n  For integers, x/22 is cheaper to
implement as x >> 2 (x right-shifted by 2
bits)

Y.N. Srikant 25

Reduction in Strength and Use of Machine
Idioms
n  Floating point division by a constant can be

approximated as multiplication by a constant
n  Auto-increment and auto-decrement

addressing modes can be used wherever
possible
q  Subsume INCREMENT and DECREMENT

operations (respectively)
n  Multiply and add is a more complicated

pattern to detect

Implementing
Object-Oriented Languages

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 27

Outline of the Lecture

n  Language requirements
n  Mapping names to methods
n  Variable name visibility
n  Code generation for methods
n  Simple optimizations
n  Parts of this lecture are based on the book,
“Engineering a Compiler”, by Keith Cooper and
Linda Torczon, Morgan Kaufmann, 2004,
sections 6.3.3 and 7.10.

Y.N. Srikant 28

Language Requirements

n  Objects and Classes
n  Inheritance, subclasses and superclasses
n  Inheritance requires that a subclass have all

the instance variables specified by its
superclass
q  Necessary for superclass methods to work with

subclass objects
n  If A is B’s superclass, then some or all of A’s

methods/instance variables may be
redefined in B

Y.N. Srikant 29

Example of Class Hierarchy with
Complete Method Tables

n: 0
fee
fum

n: 1
fee
fum

n: 2
fee
fum

x: 5

x: 5
y: 3
z:

foe foe
fie

x: 2
y: 0
z:

y: 3

fum
...

fee
...

foe
...

fee
...

fee
...

fie
...

one
two

three
c

a
b

object
class

method

Y.N. Srikant 30

Mapping Names to Methods

n  Method invocations are not always static calls
n  a.fee() invokes one.fee(), a.foe() invokes two.foe(),

and a.fum() invokes three.fum()
n  Conceptually, method lookup behaves as if it

performs a search for each procedure call
q  These are called virtual calls
q  Search for the method in the receiver’s class; if it fails,

move up to the receiver’s superclass, and further
q  To make this search efficient, an implementation places a

complete method table in each class
q  Or, a pointer to the method table is included (virtual tbl ptr)

Y.N. Srikant 31

Mapping Names to Methods

n  If the class structure can be determined wholly at
compile time, then the method tables can be
statically built for each class

n  If classes can be created at run-time or loaded
dynamically (class definition can change too)
q  full lookup in the class hierarchy can be performed at run-

time or
q  use complete method tables as before, and include a

mechanism to update them when needed

