
Run-time Environments - 4

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  What is run-time support? (in part 1)
n  Parameter passing methods (in part 1)
n  Storage allocation (in part 2)
n  Activation records (in part 2)
n  Static scope and dynamic scope (in part 3)
n  Passing functions as parameters (in part 3)
n  Heap memory management (in part 3)
n  Garbage Collection

Y.N. Srikant 3

Problems with Manual Deallocation

n  Memory leaks
q  Failing to delete data that cannot be referenced
q  Important in long running or nonstop programs

n  Dangling pointer dereferencing
q  Referencing deleted data

n  Both are serious and hard to debug
n  Solution: automatic garbage collection

Y.N. Srikant 4

Garbage Collection

n  Reclamation of chunks of storage holding objects
that can no longer be accessed by a program

n  GC should be able to determine types of objects
q  Then, size and pointer fields of objects can be determined

by the GC
q  Languages in which types of objects can be determined at

compile time or run-time are type safe
n  Java is type safe
n  C and C++ are not type safe because they permit type

casting, which creates new pointers
n  Thus, any memory location can be (theoretically) accessed at

any time and hence cannot be considered inaccessible

Y.N. Srikant 5

Reachability of Objects

n  The root set is all the data that can be accessed
(reached) directly by a program without having to
dereference any pointer

n  Recursively, any object whose reference is stored in
a field of a member of the root set is also reachable

n  New objects are introduced through object
allocations and add to the set of reachable objects

n  Parameter passing and assignments can propagate
reachability

n  Assignments and ends of procedures can terminate
reachability

Y.N. Srikant 6

Reachability of Objects

n  Similarly, an object that becomes
unreachable can cause more objects to
become unreachable

n  A garbage collector periodically finds all
unreachable objects by one of the two
methods
q  Catch the transitions as reachable objects

become unreachable
q  Or, periodically locate all reachable objects and

infer that all other objects are unreachable

Y.N. Srikant 7

Reference Counting Garbage Collector

n  This is an approximation to the first approach
mentioned before

n  We maintain a count of the references to an
object, as the mutator (program) performs
actions that may change the reachability set

n  When the count becomes zero, the object
becomes unreachable

n  Reference count requires an extra field in the
object and is maintained as below

Y.N. Srikant 8

Maintaining Reference Counts

n  New object allocation. ref_count=1 for the new object
n  Parameter passing. ref_count++ for each object passed

into a procedure
n  Reference assignments. For u:=v, where u and v are

references, ref_count++ for the object *v, and ref_count--
for the object *u

n  Procedure returns. ref_count-- for each object pointed to
by the local variables

n  Transitive loss of reachability. Whenever ref_count of an
object becomes zero, we must also decrement the
ref_count of each object pointed to by a reference within
the object

Y.N. Srikant 9

Reference Counting GC:
Disadvantages and Advantages
n  High overhead due to reference maintenance
n  Cannot collect unreachable cyclic data structures

(ex: circularly linked lists), since the reference
counts never become zero

n  Garbage collection is incremental
q  overheads are distributed to the mutator’s operations and

are spread out throughout the life time of the mutator
n  Garbage is collected immediately and hence space

usage is low
n  Useful for real-time and interactive applications,

where long and sudden pauses are unacceptable

Y.N. Srikant 10

Unreachable Cyclic Data Structure

1

1

2

2

Indicated numbers
are reference counts
None of them are zero
None of the nodes can
be collected

None of the nodes
are in the root set

Mark-and-Sweep Garbage Collector

n  Memory recycling steps
q  Program runs and requests memory allocations
q  GC traces and finds reachable objects
q  GC reclaims storage from unreachable objects

n  Two phases
q  Marking reachable objects
q  Sweeping to reclaim storage

n  Can reclaim unreachable cyclic data structures
n  Stop-the-world algorithm

Y.N. Srikant 11

Mark-and-Sweep Algorithm - Mark

/* marking phase */
1.  Start scanning from root set, mark all reachable objects

(set reached-bit = 1), place them on the list Unscanned
2.  while (Unscanned ≠ Φ) do
 { object o = delete(Unscanned);
 for (each object o1 referenced in o) do
 { if (reached-bit(o1) == 0)
 { reached-bit(o1) = 1; place o1 on Unscanned;}
 }
 }

Y.N. Srikant 12

02/10/13 13

Mark-and-Sweep GC Example - Mark

0

0 0
0

0 0

0 0

0

0 0

1

0 0
1

0 0

0 0

0

0 0

1

1 1
1

1 1

0 0

0

0 0

1

1 1
1

1 1

1 1

0

0 0

1

1 1
1

1 1

1 1

0

0 0

1 2 3

5 4

Mark-and-Sweep Algorithm - Sweep

n  /* Sweeping phase, each object in the heap
 is inspected only once */
3.  Free = Φ;
 for (each object o in the heap) do
 { if (reached-bit(o) == 0) add(Free, o);
 else reached-bit(o) = 0;
 }

Y.N. Srikant 14

02/10/13 15

Mark-and-Sweep GC Example - Sweep

0

0 0
0

0 0

0 0

0

0 0

1

0 0
1

0 0

0 0

0

0 0

1

1 1
1

1 1

0 0

0

0 0

1

1 1
1

1 1

1 1

0

0 0

1

1 1
1

1 1

1 1

0

0 0

0

0 0
0

0 0

0 0

1 2 3

6 5 4

Control-Flow Graph and
Local Optimizations - Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Local Optimizations

Outline of the Lecture

What is code optimization and why is it needed?
Types of optimizations
Basic blocks and control flow graphs
Local optimizations
Building a control flow graph
Directed acyclic graphs and value numbering

Y.N. Srikant Local Optimizations

Machine-independent Code Optimization

Intermediate code generation process introduces many
inefficiencies

Extra copies of variables, using variables instead of
constants, repeated evaluation of expressions, etc.

Code optimization removes such inefficiencies and
improves code
Improvement may be time, space, or power consumption
It changes the structure of programs, sometimes of beyond
recognition

Inlines functions, unrolls loops, eliminates some
programmer-defined variables, etc.

Code optimization consists of a bunch of heuristics and
percentage of improvement depends on programs (may be
zero also)
Optimizations may be classified as local and global

Y.N. Srikant Local Optimizations

Local and Global Optimizations

Local optimizations: within basic blocks
Local common subexpression elimination
Dead code (instructions that compute a value that is never
used) elimination
Reordering computations using algebraic laws

Global optimizations: on whole procedures/programs
Global common sub-expression elimination
Constant propagation and constant folding
Loop invariant code motion
Partial redundancy elimination
Loop unrolling and function inlining
Vectorization and Concurrentization

Y.N. Srikant Local Optimizations

Basic Blocks and Control-Flow Graphs

Basic blocks are sequences of intermediate code with a
single entry and a single exit
We consider the quadruple version of intermediate code
here, to make the explanations easier
Control flow graphs show control flow among basic blocks
Basic blocks are represented as directed acyclic
blocks(DAGs), which are in turn represented using the
value-numbering method applied on quadruples
Optimizations on basic blocks

Y.N. Srikant Local Optimizations

Example of Basic Blocks and Control Flow Graph

Y.N. Srikant Local Optimizations

Algorithm for Partitioning into Basic Blocks

1 Determine the set of leaders, the first statements of basic
blocks

The first statement is a leader
Any statement which is the target of a conditional or
unconditional goto is a leader
Any statement which immediately follows a conditional goto
is a leader

2 A leader and all statements which follow it upto but not
including the next leader (or the end of the procedure), is
the basic block corresponding to that leader

3 Any statements, not placed in a block, can never be
executed, and may now be removed, if desired

Y.N. Srikant Local Optimizations

Example of Basic Blocks and CFG

Y.N. Srikant Local Optimizations

Control Flow Graph

The nodes of the CFG are basic blocks
One node is distinguished as the initial node
There is a directed edge B1 −→ B2, if B2 can immediately
follow B1 in some execution sequence; i.e.,

There is a conditional or unconditional jump from the last
statement of B1 to the first statement of B2, or
B2 immediately follows B1 in the order of the program, and
B1 does not end in an unconditional jump

A basic block is represented as a record consisting of
1 a count of the number of quadruples in the block
2 a pointer to the leader of the block
3 pointers to the predecessors of the block
4 pointers to the successors of the block

Note that jump statements point to basic blocks and not
quadruples so as to make code movement easy

Y.N. Srikant Local Optimizations

Example of a Directed Acyclic Graph (DAG)

Y.N. Srikant Local Optimizations

Value Numbering in Basic Blocks

A simple way to represent DAGs is via value-numbering
While searching DAGs represented using pointers etc., is
inefficient, value-numbering uses hash tables and hence is
very efficient
Central idea is to assign numbers (called value numbers)
to expressions in such a way that two expressions receive
the same number if the compiler can prove that they are
equal for all possible program inputs
We assume quadruples with binary or unary operators
The algorithm uses three tables indexed by appropriate
hash values:
HashTable, ValnumTable, and NameTable
Can be used to eliminate common sub-expressions, do
constant folding, and constant propagation in basic blocks
Can take advantage of commutativity of operators, addition
of zero, and multiplication by one

Y.N. Srikant Local Optimizations

