
Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/1 

Module 20: More on LINUX 
Linux Kernel Architecture  

The Big Picture: 

It is a good idea to look at the Linux kernel within the overall system’s overall context.. 

 
Applications and OS services:  

These are the user application running on the Linux system. These applications are not 

fixed but typically include applications like email clients, text processors etc. OS services 

include utilities and services that are traditionally considered part of an OS like the 

windowing system, shells, programming interface to the kernel, the libraries and 

compilers etc. 

Linux Kernel:  

Kernel abstracts the hardware to the upper layers. The kernel presents the same view of 

the hardware even if the underlying hardware is ifferent. It mediates and controls access 

to system resources.  

Hardware:  

This layer consists of the physical resources of the system that finally do the actual work. 

This includes the CPU, the hard disk, the parallel port controllers, the system RAM etc. 

The Linux Kernel:  

After looking at the big picture we should zoom into the Linux kernel to get a closer look. 

Purpose of the Kernel:  

The Linux kernel presents a virtual machine interface to user processes. Processes are 

written without needing any knowledge (most of the time) of the type of the physical 

hardware that constitutes the computer. The Linux kernel abstracts all hardware into a 

consistent interface.  



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/2 

In addition, Linux Kernel supports multi-tasking in a manner that is transparent to user 

processes: each process can act as though it is the only process on the computer, with 

exclusive use of main memory and other hardware resources. The kernel actually runs 

several processes concurrently, and   mediates access to hardware resources so that each 

process has fair access while inter-process security is maintained. 

The kernel code executes in privileged mode called kernel mode. Any code that does not 

need to run in privileged mode is put in the system library. The interesting thing about 

Linux kernel is that it has a modular architecture – even with binary codes: Linux kernel 

can load (and unload) modules dynamically (at run time) just as it can load or unload the 

system library modules.   

Here we shall explore the conceptual view of the kernel without really bothering about 

the implementation issues (which keep on constantly changing any way). Kernel code 

provides for arbitrations and for protected access to HW resources. Kernel supports 

services for the applications through the system libraries. System calls within applications 

(may be written in C) may also use system library. For instance, the buffered file 

handling is operated and managed by Linux kernel through system libraries. Programs 

like utilities that are needed to initialize the system and configure network devices are 

classed as user mode programs and do not run with kernel privileges (unlike in Unix). 

Programs like those that handle login requests are run as system utilities and also do not 

require kernel privileges (unlike in Unix). 

The Linux Kernel Structure Overview:  

The “loadable” kernel modules execute in the privileged kernel mode – and therefore 

have the capabilities to communicate with all of HW.  

Linux kernel source code is free. People may develop their own kernel modules. 

However, this requires recompiling, linking and loading. Such a code can be distributed 

under GPL. More often the modality is:  

Start with the standard minimal basic kernel module. Then enrich the environment by the 

addition of customized drivers.  

This is the route presently most people in the embedded system area are adopting world-

wide. 

The commonly loaded Linux system kernel can be thought of comprising of the 

following main components: 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/3 

Process Management: User process as also the kernel processes seek the cpu and other 

services. Usually a fork system call results in creating a new process. System call execve 

results in execution of a newly forked process. Processes, have an id (PID) and also have 

a user id (UID) like in Unix. Linux additionally has a personality associated with a 

process. Personality of a process is used by emulation libraries to be able to cater to a 

range of implementations. Usually a forked process inherits parent’s environment.  

In Linux Two vectors define a process: these are argument vector and environment 

vector. The environment vector essentially has a (name, value) value list wherein 

different environment variable values are specified. The argument vector has the 

command line arguments used by the process. Usually the environment is inherited 

however, upon execution of execve the process body may be redefined with a new set of 

environment variables. This helps in the customization of a process’s operational 

environment. Usually a process also has some indication on its scheduling context. 

Typically a process context includes information on scheduling, accounting, file tables, 

capability on signal handling and virtual memory context. 

In Linux, internally, both processes and threads have the same kind of representation. 

Linux processes and threads are POSIX compliant and are supported by a threads library 

package which provides for two kinds of threads: user and kernel. User-controlled 

scheduling can be used for user threads. The kernel threads are scheduled by the kernel. 

While in a single processor environment there can be only one kernel thread scheduled. 

In a multiprocessor environment one can use the kernel supported library and clone 

system call to have multiple kernel threads created and scheduled. 

Scheduler:  

Schedulers control the access to CPU by implementing some policy such that the CPU is 

shared in a way that is fair and also the system stability is maintained. In Linux 

scheduling is required for the user processes and the kernel tasks. Kernel tasks may be 

internal tasks on behalf of the drivers or initiated by user processes requiring specific OS 

services. Examples are: a page fault (induced by a user process) or because some device 

driver raises an interrupt. In Linux, normally, the kernel mode of operation can not be 

pre-empted. Kernel code runs to completion - unless it results in a page fault, or an 

interrupt of some kind or kernel code it self calls the scheduler. Linux is a time sharing 

system. So a timer interrupt happens and rescheduling may be initiated at that time. Linux 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/4 

uses a credit based scheduling algorithm. The process with the highest credits gets 

scheduled. The credits are revised after every run. If all run-able processes exhaust all the 

credits a priority based fresh credit allocation takes place. The crediting system usually 

gives higher credits to interactive or IO bound processes – as these require immediate 

responses from a user. Linux also implements Unix like nice process characterization. 

 
The Memory Manager:  

Memory manager manages the allocation and de-allocation of system memory amongst 

the processes that may be executing concurrently at any time on the system. The memory 

manager ensures that these processes do not end up corrupting each other’s memory area.  

Also, this module is responsible for implementing virtual memory and the paging 

mechanism within it. The loadable kernel modules are managed in two stages:  

First the loader seeks memory allocation from the kernel. Next the kernel returns the 

address of the area for loading the new module. 

 The linking for symbols is handled by the compiler because whenever a new 

module is loaded recompilation is imperative.  

The Virtual File System (VFS):  

Presents a consistent file system interface to the kernel. This allows the kernel code to be 

independent of the various file systems that may be supported (details on virtual file 

system VFS follow under the files system). 

The Network Interface:  

Provides kernel access to various network hardware and protocols. 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/5 

Inter Process Communication (IPC): 

The IPC primitives for processes also reside on the same system. With the explanation 

above we should think of the typical loadable kernel module in Linux to have three main 

components:  

 Module management,  

 Driver registration and  

 Conflict resolution mechanism. 

Module Management:  

For new modules this is done at two levels – the management of kernel referenced 

symbols and the management of the code in kernel memory. The Linux kernel 

maintains a symbol table and symbols defined here can be exported (that is these 

definitions can be used elsewhere) explicitly. The new module must seek these 

symbols. In fact this is like having an external definition in C and then getting the 

definition at the kernel compile time. The module management system also defines 

all the required communications interfaces for this newly inserted module. With this 

done, processes can request the services (may be of a device driver) from this module. 

Driver registration:  

The kernel maintains a dynamic table which gets modified once a new module is 

added – some times one may wish to delete also. In writing these modules care is 

taken to ensure that initializations and cleaning up operations are defined for the 

driver. A module may register one or more drivers of one or more types of drivers. 

Usually the registration of drivers is maintained in a registration table of the module.  

The registration of drives entails the following: 

1. Driver context identification: as a character or bulk device or a network driver.  

2. File system context: essentially the routines employed to store files in Linux virtual 

file system or network file system like NFS. 

3. Network protocols and packet filtering rules. 

4. File formats for executable and other files. 

Conflict Resolution:  

The PC hardware configuration is supported by a large number of chip set 

configurations and with a large range of drivers for SCSI devices, video display 

devices and adapters, network cards. This results in the situation where we have 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/6 

module device drivers which vary over a very wide range of capabilities and options. 

This necessitates a conflict resolution mechanism to resolve accesses in a variety of 

conflicting concurrent accesses. The conflict resolution mechanisms help in 

preventing modules from having an access conflict to the HW – for example an 

access to a printer. Modules usually identify the HW resources it needs at the time of 

loading and the kernel makes these available by using a reservation table. The kernel 

usually maintains information on the address to be used for accessing HW - be it 

DMA channel or an interrupt line. The drivers avail kernel services to access HW 

resources. 

System Calls:  

Let us explore how system calls are handled. A user space process enters the kernel. 

From this point the mechanism is some what CPU architecture dependent. Most 

common examples of system calls are: - open, close, read, write, exit, fork, exec, kill, 

socket calls etc. 

The Linux Kernel 2.4 is non preemptable. Implying once a system call is executing it 

will run till it is finished or it relinquishes control of the CPU. However, Linux kernel 

2.6 has been made partly preemptable. This has improved the responsiveness 

considerably and the system behavior is less ‘jerky’. 

Systems Call Interface in Linux:  

System call is the interface with which a program in user space program accesses 

kernel functionality. At a very high level it can be thought of as a user process calling 

a function in the Linux Kernel. Even though this would seem like a normal C function 

call, it is in fact handled differently. The user process does not issue a system call 

directly - in stead, it is internally invoked by the C library. 

Linux has a fixed number of system calls that are reconciled at compile time. A user 

process can access only these finite set of services via the system call interface. Each 

system call has a unique identifying number. The exact mechanism of a system call 

implementation is platform dependent. Below we discuss how it is done in the x86 

architecture. 

To invoke a system call in x86 architecture, the following needs to be done. First, a 

system call number is put into the EAX hardware register. Arguments to the system 

call are put into other hardware registers. Then the int0x80 software interrupt is 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/7 

issued which then invokes the kernel service. 

Adding one’s own system call is a pretty straight forward (almost) in Linux. Let us 

try to implement our own simple system call which we will call ‘simple’ and whose 

source we will put in simple.c. 

/* simple.c */ 

/* this code was never actually compiled and tested */ 

#include<linux/simple.h> 

asmlinkage int sys_simple(void) 

{ 

return 99; 

} 

As can be seen that this a very dumb system call that does nothing but return 99. But 

that is enough for our purpose of understanding the basics. 

This file now has to be added to the Linux source tree for compilation by executing: 

/usr/src/linux.*.*/simple.c 

Those who are not familiar with kernel programming might wonder what 

“asmlinkage” stands for in the system call. ‘C’ language does not allow access 

hardware directly. So, some assembly code is required to access the EAX register etc. 

The asmlinkage macro does the dirty work fortunately. 

 The asmlinkage macro is defined in XXXX/linkage.h. It  initiates another 

macro_syscall in XXXXX/unistd.h. The header file for a typical system call will 

contain the following. 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/8 

 
After defining the system call we need to assign a system call number. This can be 

done by adding a line to the file unistd.h . unistd.h has a series of #defines of the form: 

#define _NR_sys_exit 1 

Now if the last system call number is 223 then we enter the following line at the bottom 

#define _NR_sys_simple 224 

After assigning a number to the system call it is entered into system call table. The 

system call number is the index into a table that contains a pointer to the actual routine. 

This table is defined in the kernel file ‘entry.S’ .We add the following line to the file : 

* this code was never actually compiled and tested  

*/.long SYSMBOL_NAME(sys_simple) 

Finally, we need to modify the makefile so that our system call is added to the kernel 

when it is compiled. If we look at the file /usr/src/linux.*.*/kernel/Makefile we get a line 

of the following format. 

obj_y= sched.o + dn.o …….etc we add: obj_y  += simple.o 

Now we need to recompile the kernel. Note that there is no need to change the config file. 

With the source code of the Linux freely available, it is possible for users to make their 

own versions of the kernel. A user can take the source code select only the parts of the 

kernel that are relevant to him and leave out the rest. It is possible to get a working Linux 

kernel in single 1.44 MB floppy disk. A user can modify the source for the kernel so that 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/9 

the kernel suits a targeted application better. This is one of the reasons why Linux is the 

successful (and preferred) platform for developing embedded systems In fact, Linux has 

reopened the world of system programming.  

The Memory Management Issues 

The two major components in Linux memory management are: 
- The page management 

- The virtual memory management 

1. The page management: Pages are usually of a size which is a power of 2. Given 

the main memory Linux allocates a group of pages using a buddy system. The 

allocation is the responsibility of a software called “page allocator”. Page 

allocator software is responsible for both allocation, as well as, freeing the 

memory. The basic memory allocator uses a buddy heap which allocates a 

contiguous area of size 2n > the required memory with minimum n obtained by 

successive generation of “buddies” of equal size. We explain the buddy allocation 

using an example. 

An Example: Suppose we need memory of size 1556 words. Starting with a 

memory size 16K we would proceed as follows: 

1. First create 2 buddies of size 8k from the given memory size ie. 16K 

2. From one of the 8K buddy create two buddies of size 4K each 

3. From one of the 4k buddy create two buddies of size 2K each. 

4. Use one of the most recently generated buddies to accommodate the 1556 

size memory requirement.  

Note that for a requirement of 1556 words, memory chunk of size 2K words satisfies the 

property of being the smallest chunk larger than the required size. 

Possibly some more concepts on page replacement, page aging, page flushing and the 

changes done in Linux 2.4 and 2.6 in these areas. 

2. Virtual memory Management: The basic idea of a virtual memory system is 

to expose address space to a process. A process should have the entire address 

space exposed to it to make an allocation or deallocation. Linux makes a 

conscious effort to allocate logically, “page aligned” contiguous address 

space. Such page aligned logical spaces are called regions in the memory. 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/10 

Linux organizes these regions to form a binary tree structure for fast access. In 

addition to the above logical view the Linux kernel maintains the physical 

view ie maps the hardware page table entries that determine the location of the 

logical page in the exact location on a disk. The process address space may 

have private or shared pages. Changes made to a page require that locality is 

preserved for a process by maintaining a copy-on-write when the pages are 

private to the process where as these have to be visible when they are shared.  

A process, when first created following a fork system call, finds its allocation with a new 

entry in the page table – with inherited entries from the parent. For any page which is 

shared amongst the processes (like parent and child), a reference count is maintained. 

Linux has a far more efficient page swapping algorithm than Unix – it uses a second 

chance algorithm dependent on the usage pattern. The manner it manifests it self is that a 

page gets a few chances of survival before it is considered to be no longer useful. 

Frequently used pages get a higher age value and a reduction in usage brings the age 

closer to zero – finally leading to its exit.  

The Kernel Virtual Memory: Kernel also maintains for each process a certain amount 

of “kernel virtual memory” –  the page table entries for these are marked ”protected”. 
The kernel virtual memory is split into two regions. First there is a static region which 

has the core of the kernel and page table references for all the normally allocated pages 

that can not be modified. The second region is dynamic - page table entries created here 

may point anywhere and can be modified. 
Loading, Linking and Execution: For a process the execution mode is entered 

following an exec system call. This may result in completely rewriting the previous 

execution context – this, however, requires that the calling process is entitled an access to 

the called code. Once the check is through the loading of the code is initiated. Older 

versions of Linux used to load binary files in the a.out format. The current version also 

loads binary files in ELF format. The ELF format is flexible as it permits adding 

additional information for debugging etc. A process can be executed when all the needed 

library routines have also been linked to form an executable module. Linux supports 

dynamic linking. The dynamic linking is achieved in two stages: 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/11 

1. First the linking process downloads a very small statically linked function – 

whose task is to read the list of library functions which are to be dynamically 

linked. 
2. Next the dynamic linking follows - resolving all symbolic references to get a 

loadable executable. 

Linux File Systems 
Introduction:  

Linux retains most fundamentals of the Unix file systems. While most Linux systems 

retain Minix file systems as well, the more commonly used file systems are VFS and 

ext2FS which stand for virtual file system and extended file systems. We shall also 

examine some details of proc file system and motivation for its presence in Linux file 

systems. 
 As in other UNIXES in Linux the files are mounted in one huge tree rooted at /. The file 

may actually be on different drives on the same or on remotely networked machines. 

Unlike windows, and like unixes, Linux does not have drive numbers like A: B: C: etc.  

The mount operation: The unixes have a notion of mount operation. The mount 

operation is used to attach a filesystem to an existing filesystem on a hard disk or any 

other block oriented device. The idea is to attach the filesystem within the file hierarchy 

at a specified mount point. The mount point is defined by the path name for an identified 

directory. If that mount point has contents before the mount operation they are hidden till 

the file system is un-mounted. The un-mount requires issuance of umount command.  

Linux supports multiple filesystems. These include ext, ext2, xia, minix, umsdos, msdos,  

vfat, proc, smb, ncp, iso9660,sysv, hpfs, affs and  ufs etc. More file systems will be 

supported in future versions of LINUX. All block capable devices like floppy drives, IDE 

hard disks etc. can run as a filesystem. The “look and feel” of the files is the same 

regardless of the type of underlying block media. The Linux filesystems treat nearly all 

media as if they are linear collection of blocks. It is the task of the device driver to 

translate the file system calls into appropriate cylinder head number etc. if needed. A 

single disk partition or the entire disk (if there are no partitions) can have only one 

filesystem. That is, you cannot have a half the file partition running EXT2 and the 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/12 

remaining half running FAT32. The minimum granularity of a file system is a hard disk 

partition.  

 On the whole the EXT2 filesystem is the most successful file system. It is also now a 

part of the more popular Linux Distributions. Linux originally came with the Minix 

filesystem which was quite primitive and 'academic' in nature. To improve the situation a 

new file system was designed for Linux in 1992 called the Exteneded File System or the 

EXT file system. Mr Remy Card (Rémy Card, Laboratoire MASI--Institut Blaise Pascal, 

E-Mail: card@masi.ibp.fr) further improved the system to offer the Extended File System 

-2 or the ext-2 file system. This was an important addition to Linux that was added along 

with the virtual file system which permitted Linux to interoperate with different 

filesystems. 

Description: 

Basic File Systems concepts: 

Every Linux file system implements the basic set of concepts that have been a part of the 

Unix filesystem along the lines described in “The Design of the Unix” Book by Maurice 

Bach. Basically, these concepts are that every file is represented by an inode. Directories 

are nothing but special files with a list of entries. I/O to devices can be handled by simply 

reading or writing into special files (Example: To read data from the serial port we can do 

cat /dev/ttyS0). 

Superblock: 

Super block contains the meta-data for the entire filesystem.  

Inodes: 

Each file is associated with a structure called an inode. Inode stores the attributes of the 

file which include File type, owner time stamp, size pointers to data blocks etc. 

Whenever a file is accessed the kernel translates the offset into a block number and then 

uses the inode to figure out the actual address of the block. This address is then used to 

read/write to the actual physical block on the disk. The structure of an inode is as shown 

below in the figure. 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/13 

 
Directories: 

Directories are implemented as special files. Actually, a directory is nothing but a file 

containing a list of entries. Each entry contains a file name and a corresponding inode 

number. Whenever a path is resolved by the kernel it looks up these entries for the 

corresponding inode number. If the inode number is found it is loaded in the memory and 

used for further file access. 

 

 

 

 

 

 

 

 

 

 

Links: 

UNIX operating systems implement the concept of links. Basically there are two types of 

links: Hard links and soft links. Hard link is just another entry in directory structure 

pointing to the same inode number as the file name it is linked to. The link count on the 

pointed inode is incremented. If a hard link is deleted the link count is decremented. If the 

Name1 I1 

Name2 I2 

Name3 I3 

Name4 I4 

Name5 I5 

Directory  Inode Table 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/14 

link count becomes zero the inode is deallocated if the linkcount becoms zero. It is 

impossible to have cross file systems hard links.  

Soft links are just files which contain the name of the file they are pointing to. Whenever 

the kernel encounters a soft link in a path it replaces the soft-link with it contents and 

restarts the path resolution. With soft links it is possible to have cross file system links. 

Softlinks that are not linked to absolute paths can lead to havoc in some cases. Softlinks 

also degrade system performance. 

Device specific files: 

UNIX operating systems enable access to devices using special files. These file do not 

take up any space but are actually used to connect the device to the correct device driver. 

The device driver is located based on the major number associated with the device file. 

The minor number is passed to the device driver as an argument. Linux kernel 2.4 

introduced a new file system for accessing device files called as the device file system. 

(Look at the section on device drivers) 

The Virtual File system: 

When the Linux Kernel has to access a filesystem it uses a filesystem type independent 

interface, which allows the system to carry out operations on a File System without 

knowing its construction or type. Since the kernel is independent of File System type or 

construction, it is flexible enough to accommodate future File Systems as and when they 

become available.  

Virtual File System is an interface providing a clearly defined link between the operating 

system kernel and the different File Systems.  



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/15 

 
The VFS Structure and file management in VFS: 

For management of files, VFS employs an underlying definition for three kinds of 

objects:  

1. inode object  

2. file object  

3. file system object 

Associated with each type of object is a function table which contains the operations that 

can be performed. The function table basically maintains the addresses of the operational 

routines. The file objects and inode objects maintain all the access mechanism for each 

file’s access. To access an inode object the process must obtain a pointer to it from the 

corresponding file object. The file object maintains from where a certain file is currently 

being read or written to ensure sequential IO. File objects usually belong to a single 

 

User Process 

System call Interface 

VFS 

F 
A 
T 

M 
I 
N 
I
X 
F 
S 

E 
X 
T 
2 
 

Buffer Cache

      Device Driver 

Disk Controller 

Linux Kernel

Hardware



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/16 

process. The inode object maintains such information as the owner, time of file creation 

and modification.  

The VFS knows about file-system types supported in the kernel. It uses a table defined 

during the kernel configuration. Each entry in this table describes filesystem type: it 

contains the name of the filesystem type and a pointer to a function called during the 

mount operation. When a file-system is to be mounted, the appropriate mount function is 

called. This function is responsible for reading the super-block from the disk, initializing 

its internal variables, and returning a mounted file-system descriptor to the VFS. The 

VFS functions can use this descriptor to access the physical file-system routines 

subsequently. A mounted file-system descriptor contains several kinds of data: 

information that is common to every file-system type, pointers to functions provided by 

the physical file-system kernel code, and private data maintained by the physical file-

system code. The function pointers contained in the file-system descriptors allow the 

VFS to access the file-system internal routines. Two other types of descriptors are used 

by the VFS: an inode descriptor and an open file descriptor. Each descriptor contains 

information related to files in use and a set of operations provided by the physical file-

system code. While the inode descriptor contains pointers to functions that can be used to 

act on any file (e.g. create, unlink), the file descriptors contains pointer to functions 

which can only act on open files (e.g. read, write).  

The Second Extended File System (EXT2FS) 

Standard Ext2fs features: 

This is the most commonly used file system in Linux. In fact, it extends the original 

Minix FS which had several restrictions – such as file name length being limited to 14 

characters and the file system size limited to 64 K etc. The ext2FS permits three levels of 

indirections to store really large files (as in BSD fast file system). Small files and 

fragments are stored in 1KB (kilo bytes) blocks. It is possible to support 2KB or 4KB 

blocks sizes. 1KB is the default size. The Ext2fs supports standard *nix file types: regular 

files, directories, device special files and symbolic links. Ext2fs is able to manage file 

systems created on really big partitions. While the original kernel code restricted the 

maximal file-system size to 2 GB, recent work in the VFS layer have raised this limit to 4 

TB. Thus, it is now possible to use big disks without the need of creating many partitions.  



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/17 

Not only does Ext2fs provide long file names it also uses variable length directory 

entries. The maximal file name size is 255 characters. This limit could be extended to 

1012, if needed. Ext2fs reserves some blocks for the super user (root). Normally, 5% of 

the blocks are reserved. This allows the administrator to recover easily from situations 

where user processes fill up file systems.  

As we had earlier mentioned physical block allocation policy attempts to place logically 

related blocks physically close so that IO is expedited. This is achieved by having two 

forms of groups: 

1. Block group 

2. Cylinder group.  

Usually the file allocation is attempted with the block group with the inode of the file in 

the same block group. Also within a block group physical proximity is attempted. As for 

the cylinder group, the distribution depends on the way head movement can be 

optimized. 

Advanced Ext2fs features 

In addition to the standard features of the *NIX file systems ext2fs supports several 

advanced features. 

File attributes allow the users to modify the kernel behavior when acting on a set of files. 

One can set attributes on a file or on a directory. In the later case, new files created in the 

directory inherit these attributes. (Examples: Compression Immutability etc) 

BSD or System V Release 4 semantics can be selected at mount time. A mount option 

allows the administrator to choose the file creation semantics. On a file-system mounted 

with BSD semantics, files are created with the same group id as their parent directory. 

System V semantics are a bit more complex: if a directory has the setgid bit set, new files 

inherit the group id of the directory and subdirectories inherit the group id and the setgid 

bit; in the other case, files and subdirectories are created with the primary group id of the 

calling process.  

BSD-like synchronous updates can be used in Ext2fs. A mount option allows the 

administrator to request that metadata (inodes, bitmap blocks, indirect blocks and 

directory blocks) be written synchronously on the disk when they are modified. This can 

be useful to maintain a strict metadata consistency but this leads to poor performances.  



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/18 

Ext2fs allows the administrator to choose the logical block size when creating the file-

system. Block sizes can typically be 1024, 2048 and 4096 bytes.  

Ext2fs implements fast symbolic links. A fast symbolic link does not use any data block 

on the file-system. The target name is not stored in a data block but in the inode itself. 

Ext2fs keeps track of the file-system state. A special field in the superblock is used by the 

kernel code to indicate the status of the file system. When a file-system is mounted in 

read or write mode, its state is set to ``Not Clean''. Whenever filesystem is unmounted, or 

re-mounted in read-only mode, its state is reset to: ``Clean''. At boot time, the file-system 

checker uses this information to decide if a file-system must be checked. The kernel code 

also records errors in this field. When an inconsistency is detected by the kernel code, the 

file-system is marked as ``Erroneous''. The file-system checker tests this to force the 

check of the file-system regardless of its apparently clean state.  

Always skipping filesystem checks may sometimes be dangerous, so Ext2fs provides two 

ways to force checks at regular intervals. A mount counter is maintained in the 

superblock. Each time the filesystem is mounted in read/write mode, this counter is 

incremented. When it reaches a maximal value (also recorded in the superblock), the 

filesystem checker forces the check even if the filesystem is ``Clean''. A last check time 

and a maximal check interval are also maintained in the superblock. These two fields 

allow the administrator to request periodical checks. When the maximal check interval 

has been reached, the checker ignores the filesystem state and forces a filesystem check. 

Ext2fs offers tools to tune the filesystem behavior like tune2fs 

Physical Structure: 

The physical structure of Ext2 filesystems has been strongly influenced by the layout of 

the BSD filesystem .A filesystem is made up of block groups. The physical structure of a 

filesystem is represented in this table: 

Boot Sector Block Grp 1 Block Grp2 …….. Block Grp N 
Each block group contains a redundant copy of crucial filesystem control informations 

(superblock and the filesystem descriptors) and also contains a part of the filesystem (a 

block bitmap, an inode bitmap, a piece of the inode table, and data blocks). The structure 

of a block group is represented in this table: 

Super 
Block 

FS 
descriptors 

Block 
Bitmap 

Inode 
Bitmap 

Inode Table Data Blocks 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/19 

Using block groups is a big factor contributing to the reliability of the file system: since 

the control structures are replicated in each block group, it is easy to recover from a 

filesystem where the superblock has been corrupted. This structure also helps to get good 

performances: by reducing the distance between the inode table and the data blocks, it is 

possible to reduce the disk head seeks during I/O on files.  

In Ext2fs, directories are managed as linked lists of variable length entries. Each entry 

contains the inode number, the entry length, the file name and its length. By using 

variable length entries, it is possible to implement long file names without wasting disk 

space in directories.  

As an example, the next table represents the structure of a directory containing three files: 

File, Very_long_name, and F2. The first entry in the table is inode number; the second 

entry is the entire entry length: the third field indicates the length of the file name and the 

last entry is the name of the file itself 

I1 15 05 File 

I2 40 30 Very_very_very_long_file_name

I3 12 03  

 

 

 

   

 

I1 15 5 3040 I2 File Very_very_very_long_file_name 

Inode Table 

0 
15 40 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/20 

The EXT3 file system: The ext2 file system is in fact a robust and well tested system. 

Even so some problem areas have been identified with ext2fs. These are mostly with the 

shutdown fsck (for filesystem health check at the time of shutdown). It takes unduly long 

to set it right using e2fsck . The solution was to add journaling to the filesystem. One 

more line about journaling. Another issue with the ext2 file system is its poor capability 

to scale to very large drives and files. The EXT3 file system which is in some sense an 

extension of the ext2 filesystem will try to address these shortcomings and also offer 

many other enhancements.  

THE PROC FILE SYSTEM: 

Proc file system shows the power of the Linux virtual file system. The Proc file system is 

a special file system which actually displays the present state of the system. In fact we 

can call it a ‘pretend’ file system. If one explores the /proc directory one notices that all 

the files have zero bytes as the file size. Many commands like ps actually parse the /proc 

files to generate their output. Interestingly enough Linux does not have any system call to 

get process information. It can only be accessed by reading the proc file system. The proc 

file system has a wealth of information.  For example the file /proc/cpuinfo gives a lot of 

things about the host processor.  

A sample output could be as shown below:  

processor  : 0 

vendor_id   : AuthenticAMD 

cpu family  : 5 

model       : 9 

model name  : AMD-K6(tm) 3D+ Processor 

stepping    : 1 

cpu MHz     : 400.919 

cache size  : 256 KB 

fdiv_bug    : no 

hlt_bug     : no 

f00f_bug    : no 

coma_bug    : no 

fpu     : yes 

fpu_exception   : yes 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/21 

cpuid level : 1 

wp      : yes 

flags       : fpu vme de pse tsc msr mce cx8 pge mmx syscall 3dnow k6_mtrr 

bogomips    : 799.53 

/proc also contains, apart from other things, properties of all the processes running on the 

system at that moment. Each property is grouped together into a directory with a name 

equal to the PID of the process. Some of the information that can be obtained is shown as 

follows. 

 /proc/PID/cmdline  

Command line arguments. 

/proc/PID/cpu  

Current and last cpu in which it was executed. 

/proc/PID/cwd  

Link to the current working directory. 

/proc/PID/environ  

Values of environment variables. 

/proc/PID/exe  

Link to the executable of this process. 

/proc/PID/fd  

Directory, which contains all file descriptors. 

/proc/PID/maps  

Memory maps to executables and library files. 

/proc/PID/mem  

Memory held by this process. 

/proc/PID/root  

Link to the root directory of this process. 

/proc/PID/stat  

Process status. 

/proc/PID/statm  

Process memory status information. 

/proc/PID/status  



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/22 

Process status in human readable form 

DEVICE DRIVERS ON LINUX 

Introduction: 

Most of the Linux code is independent of the hardware it runs on. Applications are often 

agnostic to the internals of a hardware device they interact with. They interact with the 

devices as a black box using operating system defined interfaces. As far as applications 

are concerned, inside the black box sits a program that exercises a protocol to interact 

with the device completely. This program interacts with the device at a very low level 

and abstracts away all the oddities and peculiarities of the underlying hardware to the 

invoking application. Obviously every device has a different device driver. The demand 

for device drivers is increasing as more and more devices are being introduced and the 

old ones become obsolete.  

In the context of Linux as an open source OS, device drivers are in great demand. There 

are two principal drivers behind this. Firstly, many hardware manufacturers do not ship a 

Linux driver so it is left for someone from the open source community to implement a 

driver. Second reason is the large proliferation of Linux in the embedded system market. 

Some believe that Linux today is number one choice for embedded system development 

work. Embedded devices have special devices attached to them that require specialized 

drivers. An example could be a microwave oven running Linux and having a special 

device driver to control its turntable motor. 

In Linux the device driver can be linked into the kernel at compile time. This implies that 

the driver is now a part of the kernel and it is always loaded. The device driver can also 

be linked into the kernel dynamically at runtime as a pluggable module. 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/23 

 
Almost every system call eventually maps to a physical device. With the exception of the 

processor, memory and a few other entities, all device control operations are performed 

by code that is specific to the device. This code as we know is called the device driver. 

Kernel must have device drivers for all the peripherals that are present in the system right 

from the keyboard to the hard disk etc.  

Device classes: 

Char devices: 

These devices have a stream oriented nature where data is accessed as a stream of bytes 

example serial ports. The drivers that are written for these devices are usually called 

“char device drivers”. These devices are accessed using the normal file system. Usually 

they are mounted in the /dev directory. If  ls –al command is typed on the command 

prompt in the /dev directory these devices appear with a ‘c’ in the first column. 

Example: 

crw-rw-rw-    1 root     tty        2, 176 Apr 11  2002 ptya0 

crw-rw-rw-    1 root     tty        2, 177 Apr 11  2002 ptya1 

crw-rw-rw-    1 root     tty        2, 178 Apr 11  2002 ptya2 

crw-rw-rw-    1 root     tty        2, 179 Apr 11  2002 ptya3 

Block devices: 

Applicati
on  
Code 

Kernel 
Subsystems 
: 
Examples: 
I/O 
controllers, 
File 
Systems 
etc. 

Device 
Drivers: 
Examples
:Keyboard 
driver, 
Scsi 
Driver 
etc. 

Physical 
device: 
Example: 
Keyboard
, Hard 
Disk etc. 

System call 
interface 

Hardware interface 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/24 

These devices have a ‘block’ oriented nature where data is provided by the devices in 

blocks. The drivers that are written for these devices are usually called as block device 

drivers. Classic example of a block device is the hard disk.  These devices are accessed 

using the normal file system. Usually they are mounted in the /dev directory. If a ls –al 

command is typed on the command prompt in the /dev directory these devices appear 

with a ‘b’ in the first column. 

Example: 

brw-rw----    1 root     disk      29,   0 Apr 11  2002 aztcd 

brw-rw----    1 root     disk      41,   0 Apr 11  2002 bpcd 

brw-rw----    1 root     floppy     2,   0 Apr 11  2002 fd0 

Network devices: 

These devices handle the network interface to the system. These devices are not accessed 

via the file system. Usually the kernel handles these devices by providing special names 

to the network interfaces e.g. eth0 etc. 

Note that Linux permits a lot of experimentation with regards to checking out new device 

drivers. One need to learn to load, unload and recompile to check out the efficacy of any 

newly introduced device driver. The cycle of testing is beyond the scope of discussion 

here. 

Major/minor numbers: 

Most devices are accessed through nodes in the file system. These nodes are called 

special files or device files or simply nodes of the file system tree. These names are 

usually mounted in the /dev/ directory. 

If a ls –al command is issued in this directory we can see two comma separated numbers 

that appear where usually the file size is mentioned. The first number (from left side) is 

called the device major number and the second number is called the device minor 

number. 

Example: crw-rw-rw-    1 root     tty        2, 176 Apr 11 2002 ptya0  

Here the major number is 2 and the minor number is 176 

The major number is used by the kernel to locate the device driver for that device. It is an 

index into a static array of the device driver entry points (function pointers). The minor 

number is passed to the driver as an argument and the kernel does not bother about it. The 

minor number may be used by the device driver to distinguish between the different types 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/25 

of devices of the same type it supports. It is left to the device driver, what it does with the 

minor numbers. For the Linux kernel 2.4 the major and minor numbers are eight bit 

quantities. So at a given time you can have utmost 256 drivers of a particular type and 

256 different types of devices loaded in a system. This value is likely to increase in future 

releases of the kernel.  

Kernel 2.4 has introduced a new (optional) file system to handle device. This file system 

is called the device file system . In this file system the management of devices is much 

more simplified. Although it has lot of user visible incompatibilities with the previous file 

system, at present device file system is not a standard part of most Linux distributions.  

In future, things might change in favour of the device file system. Here it must be 

mentioned that the following discussion is far from complete. There is no substitute for 

looking at the actual source code. The following section will mainly help the reader to 

know what to grep for in the source code.   

We will now discuss each of the device class drivers that is block, character and network 

drivers in more detail. 

Character Drivers: 
Driver Registeration/Uregisteration: 

We register a device driver with the Linux kernel by invoking a routine (<Linux/fs.h>) 

int register_chrdev(unsigned int major, const char  * name, struct file_operations * fops); 

Here the major argument is the major number associated with the device. Name signifies 

the device driver as it will appear in the /proc/devices once it is successfully registered. 

The fops is a pointer to the structure containing function pointers to the devices’ 

functionalities. We will discuss fops in detail later. 

Now the question arises: how do we assign a major number to our driver: 

Assigning major numbers: 

Some numbers are permanently allocated to some common devices. The reader may like 

to explore:  /Documentation/devices.txt in the source tree. So if we are writing device 

drivers for these devices we simply use these major numbers. 

If that is not the case then we can use major numbers that are allocated for experimental 

usage. Major numbers in the range 60-63, 120-127, 240-254 are for experimental usage.  



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/26 

But how do we know that a major number is not already used especially when we are 

shipping a driver to some other computer.  

By far the best approach is to dynamically assign the major number. The idea is to get a 

free major number by looking at the present state of the system and then assigning it to 

our driver. If the register_chrdev  function is invoked with a zero in the major number 

field, the function, if it registers the driver successfully, returns the major number 

allocated to it.  What it does is that it searches the system for an unused major number, 

assigns it to the driver and then returns it. The story does not end here. To access our 

device we need to add our device to the file system tree. That is, we need to do mknod for 

the device into the tree. For that we need to know the major number for the driver. For a 

statically assigned major number that is not a problem. Just use that major number you 

assigned to the device. But for a dynamically assigned number how do we get the major 

number? The answer is: parse the /proc/devices file and find out the major number 

assigned to our device. A script can also be written to do the job. 

Removing a driver from the system is easy. We invoke the unregister_chrdev(unsigned 

int major, const char * name); 

Important Data Structure: 

The file Structure<linux/fs.h>: 

Every Linux open file has a corresponding file structure associated with it. Whenever a 

method of the device driver is invoked the kernel will pass the associated file structure to 

the method. The method can then use the contents of this structure to do its job. We list 

down some important fields of this structure. 

mode_t f_mode; 

This field indicates the mode of the file i.e for read write or both etc. 

loff_t f_pos; 

The current offset in the file. 

unsigned int f_flags; 

This fields contains the flags for driver access for example synchronous access (blocking) 

or asynchronus(non blocking) access etc. 

struct file_operations * fops; 

This structure contains the entry points for the methods that device driver supports. This 

is an important structure we will look at it in more detail in the later sections. 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/27 

void * private_data; 

This pointer can be allocated memory by the device driver for its own personal use. Like 

for maintaining states of the driver across different function calls. 

sruct dentry * f_dentry; 

The directory entry associated with the file. 

Etc. 

The file operations structure(fops):<linux/fs.h> 

This is the most important structure as far as device driver writer are concerned. It 

contains pointers to the driver functions. The file structure discussed in the previous 

section contains a pointer to the fops structure. The file (device) is the object and fops 

contains the methods that act on this object. We can see here object oriented approach in 

the Linux Kernel. 

Before we look at the members of the fops structure it will be useful if we look at taggd 

structure initialization: 

Tagged structure initializations: 

The fops structure has been expanding with every kernel release. This can lead to 

compatibility problems of the driver across different kernel versions.  

This problem is solved by using tagged structure initialization. Tagged structure 

initialization is an extension of ANSI C by GNU. It allows initialization of structure by 

name tags rather than positional initialization as in standard C.  

Example: 

struct fops myfops={ 

…………………….. 

…………………. 

open : myopen; 

close : myclose: 

………….. 

………… 

} 

The intilization can now be oblivious of the change in the structure (Provided obviously 

that the fields have not been removed). 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/28 

Pointers to functions that are implemented by the driver are stored in the fops structure. 

Methods that are not implemented are made NULL. 

Now we look at some of the members of the fops structure: 

loff_t (*llseek) (struct file *,loff_t); 

/* This method can be used to change the present offset in a file. */ 

ssize_t (*read) (struct file*,char *,size_t,loff_t *); 

/* Read data from a device.*/ 

ssize_t(*write) (struct file *,const char *,size_t,loff_t *); 

/* Write data to the device. */ 

int (* readdir) (struct file *,void *,fill_dir_t); 

/* Reading directories. Useful for file systems.*/ 

unsigned int (* poll) (struct file *,struct poll_table_struct *); 

/* Used to check the state of the device. */ 

int (*ioctl)(struct inode *,struct file *,unsigned int,unsigned long); 

/* The ioctl is used to issue device specific calls(example setting the baud rate of the 

serial port). */ 

int (*mmap) (struct file *,struct vm_area_struct *); 

/* Map to primary memory */ 

int (* open) (struct inode *,struct file *); 

/ * Open device.*/ 

int ( *flush) (struct file *) ; 

/* flush the device*/ 

int (*release) (struct inode *,struct file *); 

/* Release the file structure */ 

int(*fsync) (struct inode *,struct dentry *); 

/* Flush any pending data to the device. */ 

Etc. 

Advance Char Driver Operations: 

Although most of the following discussion is valid to character as well as network and 

block drivers, the actual implementation of these features is explained with respect to 

char drivers. 

 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/29 

Blocking and non-blocking operations: 

Device drivers usually interact with hardware devices that are several orders of time 

slower than the processor. Typically if a modern PC processor takes a second to process a 

byte of data from a keyboard, the keyboard takes several thousand years to produce a 

single byte of data. It will be very foolish to keep the processor waiting for data to arrive 

from a hardware device. It could have severe impact on the overall system performance 

and throughput. Another cause that can lead to delays in accessing devices, which has 

nothing to do with the device characteristics, is the policy in accessing the device. There 

might be cases where device may be blocked by other drivers . For a device driver writer 

it is of paramount importance that the processor is freed to perform other tasks when the 

device is not ready.  

We can achieve this by the following ways.  

One way is blocking or the synchronous driver access. In this way of access we cause the 

invoking process to sleep till the data arrives. The CPU is then available for other 

processes in the system. The process is then awakened when the device is ready.  

Another method is in which the driver returns immediately whether the device is ready or 

not allowing the application to poll the device.  

Also the driver can be provided asynchronous methods for indicating to the application 

when the data is available.  

Let us briefly look at the Linux kernel 2.4 mechanisms to achieve this.  

There is a flag called O_NONBLOCK flag in filp->f_flags ( <linux/fcntl.h> ). 

If this flag is set it implies that the driver is being used with non-blocking access. This 

flag is cleared by default. This flag is examined by the driver to implement the correct 

semantics. 

Blocking IO: 

There are several ways to cause a process to sleep in Linux 2.4. All of them will use the 

same basic data structure, the wait queue (wait_queue_head_t). This queue maintains a 

linked list of processes that are waiting for an event.  

A wait queue is declared and initialized as follows:  

wait_queue_head_t my_queue; /* declaration */ 

init_waitqueue_head(&my_queue) /* initialization */ 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/30 

/* 2.4 kernel requires you to intialize the wait queue, although some earlier versions of 

the kernel did not */ 

The process can be made to sleep by calling any of the following: 

sleep_on(wait_queue_head_t * queue); 

/* Puts the process to sleep on this queue. */ 

/* This routine puts the process into non-interruptible sleep */ 

/* this a dangerous sleep since the process may end up sleeping forever */ 

interruptible_sleep_on(wait_queue_head_t * queue) 

/* same as sleep_on with the exception that the process can be awoken by a signal */ 

sleep_on_timeout(wait_queue_head_t * queue,long timeout) 

/* same as sleep_on except that the process will be awakened when a timeout happens. 

The timeout parameter is measured in jiffies */ 

interruptible_sleep_on_timeout(wait_queue_head_t * queue,long timeout)  

/* same as interruptible_sleep_on except that the process will be awakened when a 

timeout happens. The timeout parameter is measured in jiffies */ 

void wait_event(wait_queue_head_t * queue,int condition) 

int wait_event_interruptible(wait_queue_head_t * queue, int condition) 

/* sleep until the condition evaluates to true that is non-zero value */ 

/* preferred way to sleep */ 

If a driver puts a process to sleep there is usually some other part of the driver that 

awakens it, typically it is the interrupt service routine.  

One more important point is that if a process is in interruptible sleep it might wake up 

even on a signal even if the event it was waiting on, has not occurred. The driver must in 

this case put a process in sleep in a loop checking for the event as a condition in the loop. 

The kernel routines that are available to wake up a process are as follows: 

wake_up(wait_queue_head_t * queue) 

/* Wake proccess in the queue */ 

wake_up_interruptible(wait_queue_head_t * queue) 

/* wake process in the queue that are sleeping on interruptible sleep in the queue rest of 

the procccess are left undisturbed */ 

wake_up_sync(wait_queue_head_t_ * queue) 

wake_up_interruptible_sync(wait_queue_head_t_ * queue) 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/31 

/* The normal wake up calls can cause an immediate reschedule of the processor */ 

/* these calls will only cause the process to go into runnable state without rescheduling 

the CPU */ 

Non Blocking IO: 

If O_NONBLOCK flag is set then driver does not block even if data is not available for 

the call to complete. The normal semantics for a non-blocking IO is to return -EAGAIN 

which really tells the invoking application to try again. Usually devices that are using 

non-blocking access to devices will use the poll system call to find out if the device is 

ready with the data. This is also very useful for an application that is accessing multiple 

devices without blocking. 

Polling methods: Linux provides the applications 'poll' and 'select' system calls to check 

if the device is ready without blocking. (There are two system calls offering the same 

functionality for historical reasons. These calls were implemented in UNIX at nearly 

same time by two different distributions: BSD Unix (select)   System 5(poll))  

Both the calls have the following prototype: 

unsigned int (*poll)(struct file * ,poll_table *); 

The poll method returns a bit mask describing what operations can be performed on the 

device without blocking.  

Asynchronous Notification: 

Linux provides a mechanism by which a drive can asynchronously notify the application 

if data arrives. Basically a driver can signal a process when the data arrives. User 

processes have to execute two steps to enable asynchronous notification from a device.  

1. The process invokes the F_SETOWN command using the fcntl system call, 

the process ID of the process is saved in filp->f_owner. This is the step 

needed basically for the kernel to route the signal to the correct process. 

2. The asynchronous notification is then enabled by setting the FASYNC flag in 

the device by means of F_SETFEL fcntl command.  

After these two steps have been successfully executed the user process can request the 

delivery of a SIGIO signal whenever data arrives.  

Interrupt Handling in LINUX 2.4 

The Linux kernel has a single entry point for all the interrupts. The number of interrupt 

lines is platform dependent. The earlier X86 processors had just 16 interrupt lines. But 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/32 

now this is no longer true. The current processors have much more than that. Moreover 

new hardware comes with programmable interrupt controllers that can be programmed 

among other things to distribute interrupts in an intelligent and a programmable way to 

different processors for a multi-processors system. Fortunately the device driver writer 

does not have to bother too much about the underlying hardware, since the Linux kernel 

nicely abstracts it. For the Intel x86 architecture the Linux kernel still uses only 16 lines.  

The Linux kernel handles all the interrupts in the same manner. On the receipt of an 

interrupt the kernel first acknowledges the interrupt.  Then it looks for registered handlers 

for that interrupt. If a handler is registered, it is invoked. The device driver has to register 

a handler for the interrupts caused by the device.  

The following API is used to register an interrupt handler. 

<linux/sched.h> 

int request_irq(unsigned int irq, void ( * interruptHandler ) (int, void *,struct pt_regs *), 

unisgned long flags, const char * dev_name, void * dev_id); 

/* irq -> The interrupt number being requested */ 

/* interruptHandler -> function pointer to the interrupt handler */ 

/* flags -> bitwise orable flags one of  

SA_INTERRUPT implies 'fast handler' which basically means that the interrupt handler 

finishes its job quickly and can be run in the interrupt context with interrupts disabled.  

SA_SHIRQ implies that the interrupt is shared  

SA_SAMPLE_RANDOM implies that the interrupt can be used to increase the entropy 

of the system */ 

/* dev_name ->A pointer to a string which will appear in /proc/interrupts to signify the 

owner of the interrupt */ 

/* dev_id-> A unique identifier signifying which device is interrupting. Is mostly used 

when the interrupt line is shared. Otherwise kept NULL*/ 

/* the interrupt can be freeed implying that the handler associated with it can be removed 

*/void free_irq(unsigned int irq,void * dev_id); 

/* by calling the following function. Here the meaning of the parameters is the same as in 

request_irq  

*/Now the question that arises: how do we know which interrupt line our device is going 

to use. Some device use predefined fixed interrupt lines. So they can be used. Some 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/33 

devices have jumper settings on them that let you decide which interrupt line the device 

will use. There are devices (like device complying to the PCI standard) that can on 

request tell which interrupt line they are going to use. But there are devices for which we 

cannot tell before hand which interrupt number they are going to use. For such device we 

need the driver  to probe the IRQ number. Basically what is done is the device is asked to 

interrupt and then we look at all the free interrupt lines to figure out which line got 

interrupted. This is not a clean method and ideally a device should itself announce which 

interrupt it wants to use. (Like PCI). 

The kernel provides helper functions for probing of interrupts( <linux/interrupt.h> 

probe_irq_on , probe_irq_off) or the drive can do manual probing for interrupts.  

Top Half And Bottom Half Processing: 

One problem with interrupt processing is that some interrupt service routines are rather 

long and take a long time to process. These can then cause interrupts to be disabled for a 

long time degrading system responsiveness and performance. The method used in Linux 

(and in many other systems) to solve this problem is to split up the interrupt handler into 

two parts : The “top half” and the “bottom half”. The top half is what is actually invoked 

at the interrupt context. It will just do the minimum required processing and then wake up 

the bottom half. The top half is kept very short and fast. The bottom half then does the 

time consuming processing at a safer time.  

Earlier Linux had a predefined fixed number of bottom halves (32 of them) for use by the 

driver. But now the (Kernel 2.3 and later) the kernel uses “tasklets” to do the bottom half 

processing. Tasklet is a special function that may be scheduled to run in interrupt context, 

at a system determined safe time. A tasklet may be scheduled to run multiple times, but it 

only runs once. An interesting consequence of this is that a top half may be executed 

several times before a bottom half gets a chance to execute. Now since only a single 

tasklet will be run, the tasklet should be able to handle such a situation. The top half 

should keep a count of the number of interrupts that have happened. The tasklet can use 

this count to figure out what to do. 

/* Takelets are declared using the following macro */ 

DECLARE_TASKLET(taskLetName,Function,Data); 

/* taskLetName -> Name of the tasklet */ 

/* the function to be run as a tasklet. The function has the following prototype */ 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/34 

/* void Function(usigned long ) */ 

/* Data is the argument to be passed to the function */ 

/* the tasklet can be scheduled using this function */ 

tasklet_schedule(&takletName)  

Interprocess Communication in Linux: 

Again there is considerable similarity with Unix. For example, in Linux, signals may be 

utilized for communication between parent and child processes. Processes may 

synchronize using wait instruction. Processes may communicate using pipe mechanism. 

Processes may use shared memory mechanism for communication. 

Probably need some more points on this topic on IPC and the different mechanisms 

available. I found a good url “http://cne.gmu.edu/modules/ipc/map.html”. 

(Show these using animation) 

Let us examine how the communication is done in the networked environment. The 

networking features in Linux are implemented in three layers: 

1. Socket interface 

2. Protocol drivers 

3. Network drivers. 

Typically a user applications’ first I/F is the socket. The socket definition is similar to 

BSD 4.3 Unix which provides a general purpose interconnection framework. The 

protocol layer supports what is often referred to as protocol stack. The data may come 

from either an application or from a network driver. The protocol layer manages 

routing, error reporting, reliable retransmission of data 

For networking the most important support is the IP suite which guides in routing of 

packets between hosts. On top of the routing are built higher layers like UDP or TCP. 

The routing is actually done by IP driver. The IP driver also helps in disassembly / 

assembly of the packets. The routing gets done in two ways:  

1. By using recent cached routing decisions  

2. By using a table which acts as a persistent forwarding base 

Generally the packets are stored in a buffer and have a tag to identify the protocol that 

need to be used. After the selection of the appropriate protocol the IP driver then 

hands it over to the network device driver to manage the packet movement.  



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/35 

As for security, the firewall management maintains several chains – with each chain 

having its own set of rules of filtering the packets. 

Real Time Linux: 

Large number of projects both open source and commercial have been dedicated to get 

real time functionality from the Linux kernel.  Some of the projects are listed below 

Commercial distributions: 

FSMLabs: RTLinuxPro 

Lineo Solutions: uLinux 

LynuxWorks: BlueCat RT 

MontaVista Software: Real-Time Solutions for Linux 

Concurrent: RedHawk 

REDSonic: REDICE-Linux 

Open source distributions: 

ADEOS – 

ART Linux 

KURT -- The KU Real-Time Linux 

Linux/RK 

QLinuxRealTimeLinux.org 

RED-Linux 

RTAI 

RTLinux 

Linux Installation 
Amongst various flavors of UNIX, Linux is currently the most popular OS. Linux is also 

part of the GNU movement which believes in free software distribution. A large 

community of programmers subscribe to it. Linux came about mainly through the efforts 

of Linus Torvalds from Finland who wanted a UNIX environment on his PC while he 

was a university student. He drew inspiration from Prof. Andrew Tanenbaum of 

University of Amsterdam, who had earlier designed a small OS called Minix. Minix was 

primarily used as a teaching tool with its code made widely available and distributed. 

Minix code could be modified and its capability extended. Linus Torvalds not only 

designed a PC-based Unix for his personal use, but also freely distributed it. Presently, 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/36 

there is a very large Linux community worldwide. Every major university, or urban 

centre, has a Linux group. Linux found ready acceptance and the spirit of free distribution 

has attracted many willing voluntary contributors. Now a days Linux community 

regulates itself by having all contributions evaluated to ensure quality and to take care of 

compatibility. This helps in ensuring a certain level of acceptance. If you do a Google 

search you will get a lot of information on Linux. Our immediate concerns here are to 

help you have your own Linux installation so that you can practice with many of the tools 

available under the broad category of Unix-based OSs. 

20.1 The Installation 

Linux can be installed on a wide range of machines. The range may span from one's own 

PDA to a set of machines which cooperate like Google's 4000 node Linux cluster. For 

now we shall assume that we wish to install it on a PC. Most PCs have a bootable CD 

player and BIOS. This means in most cases we can use the CD boot and install 

procedure. Older PC's did not have these features. In that case one was required to use a 

set of floppies. The first part of this basic guide is about getting the installation program 

up and running: using either a CD or a set of floppies. 

20.2 The Installation Program 

In this section we describe the Linux installation. The main point in the installation is to 

select the correct configuration. 

Typically Red Hat Linux is installed by booting to the install directory from a CD-ROM. 

The other options may include the following. 

* Booting to install using a floppy disk. 

* Using a hard drive partition to hold the installation software. 

* Booting from a DOS Command line. 

* Booting to an install and installing software using FTP or HTTP protocols. 

* Booting to an install and installing software from an NFS-mounted hard drive. 

Installing from CD-ROM : Most PCs support booting directly from a CD-ROM drive. Set 

your PC's BIOS (if required). Now insert the CD-ROM and reboot to the PC to install 

Red Hat Linux. You should see a boot screen that offers a variety of options for booting 

.The options typically would be as follows: 

* <ENTER> - Start the installation using a Graphical interface 

* text - Start the install using a text interface 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/37 

* nofb - Start the install using a video frame buffer 

* expert 

* Linux rescue 

* Linux dd 

At this stage if you press key F2 then it provides a help screen for the text-based 

installation. Type the word text at the boot prompt and press Enter to continue.  

You shall be asked to select a language. So select a language of your choice. Highlight 

OK button and press Enter. You will then be asked to select a keyboard for install. So 

highlight OK Button and press Enter after selecting a keyboard. You shall be next asked 

to select a pointing device, select a suitable mouse and press OK. 

Next you will be asked: Select the type of installation from? 

* Workstation 

* Server 

* Laptop 

* Custom 

* Upgrade an existing system 

Select the suitable option, for example, select server install and press Enter. Next you will 

choose a partitioning scheme. The choices include the following: 

* Auto Partition 

* Disk Druid 

* Fdisk 

The Auto Partition will the format hard drive according to the type of selected 

installation. It will automatically configure the partitions for use with Linux. The Disk 

Druid will launch a graphical editor listing the free spaces available. The Fdisk option 

offers an ability to create nearly 60 different types of partitions. 

 On clicking Disk Druid, you will get an option of creating new partitions if you are using 

a new hard drive. If you are using an old hard disk the partitions are recognized. Create 

the appropriate partitions or use existing ones as the case may be. Finally, press OK to 

continue. 

Red Hat Linux requires a minimum of two partitions. One is a swap partition and the 

other a root(/) partition. The swap partition should be more than twice as large as the 



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/38 

installed amount of memory. Other partitions may be /remote and /home. These can be 

created after the installation as well.  

You will now be as asked to select a boot-loader for booting Linux. The choice of not 

using a boot-loader is also available. The options available are GRUB and LILO. Select 

the appropriate boot loader and press OK. Grub and Lilo are typically installed in the 

MBR of the first IDE hard drive in the PC. You will now be asked for to choose kernel 

parameters for booting Linux. Enter the arguments in the dialog box or use the OK 

Button to continue. 

If for some reason we cannot arrive at dual booting automatically, then add this code at 

the end of the file /etc/boot/grud/grub.conf file 

 title Windows  

rootnoverify(hd0,0) 

chainloader +1 

makeactive 

You can now configure a dual boot system, if required by configuring the boot-loader. 

When finished click OK and you will be asked to select a firewall configuration. Use a 

security level from 

* High 

* Medium 

* None 

After this you will have to set the incoming service requests followed by a time-zone 

selection dialog box. Select the appropriate settings and press OK to continue.  

You will now be prompted to enter a user-id and password. The password will not be 

echoed onto the screen. Now is the time to create user accounts. Each has home directory 

home usually under /home/usr directory. 

Next you have to select packages you want to install. Use the spacebar to select the 

various groups of software packages. The size of the installed software will dynamically 

reflect the choices. Use the select individual package item to choose the individual 

software packages. The installer will now start installing the packages selected from the 

CD-ROM drive onto the new Linux partitions. 

At the end of the installation you will get an option of creating a boot-disk for later use. 

You can create the boot disk later using the mkbootdisk command.  



Operating Systems/More on Linux      Lecture Notes 

PCP Bhatt/IISc, Bangalore                                                                               M20/V1/June 04/39 

After this, your installation is done. Press OK and Red Hat Linux will eject the CD ROM 

and reboot. After rebooting you will be able to log onto a Linux session. To shutdown 

your computer use the shutdown -h now command. 

Usually most distributions allow you to Test the set-up. It helps to see if it works. The 

auto detection (like in Red Hat) takes care of most of the cards and monitor types. 

20.2.1 Finishing the installation 

With the above steps, we should have installed a good working Linux machine. The 

install program will usually prompt to take out all boot-disks, etc. and the machine will 

be rebooted (sometimes you may have to reboot). You will see the Linux loader coming 

up. It is also known as LILO. Newer versions or distributions like Mandrake come up 

with their own LILO's. RedHat 7.X comes with a graphical screen and menu for startup. 

Anyway, one may see options like Linux and/or DOS or Windows . Normally we fill in 

these names during the installations. Another popular boot-loader called GRUB has 

become the default for RedHat. 


