
Operating Systems/Search and Sort Tools Lecture Notes

PCP Bhatt/IISc, Bangalore M11/V1/June 04/1

Module 11: Search and Sort Tools

Unix philosophy is to provide a rich set of generic tools, each with a variety of options.

These primitive Unix tools can be combined in imaginative ways (by using pipes) to

enhance user productivity. The tool suite also facilitates to build either a user customized

application or a more sophisticated and specialised tool.

We shall discuss many primitive tools that are useful in the context of text files. These

tools are often called “filters” because these tools help in searching the presence or

absence of some specified pattern(s) of text in text files. Tools that fall in this category

include ls, grep, and find. For viewing the output from these tools one uses tools like

more, less, head, tail. The sort tool helps to sort and tools like wc help to obtain statistics

about files. In this chapter we shall dwell upon each of these tools briefly. We shall also

illustrate some typical contexts of usage of these tools.

11.1 grep, egrep and fgrep

grep stands for general regular expression parser. egrep is an enhanced version of grep. It

allows a greater range of regular expressions to be used in pattern matching. fgrep is for

fast but fixed string matching. As a tool, grep usage is basic and it follows the syntax:

grep options pattern files with the semantics that search the file(s) for lines with the

pattern and options as command modifiers. The following example1 shows how we can

list the lines with int declarations in a program called add.c. Note that we could use this

trick to collate all the declarations from a set of files to make a common include file of

definitions.

bhatt@SE-0 [~/UPE] >>grep int ./C/add.c

extern int a1; /* First operand */

extern int a2; /* Second operand */

extern int add();

printf("The addition gives %d \n", add());

Table 11.1: Regular expression options.

Operating Systems/Search and Sort Tools Lecture Notes

PCP Bhatt/IISc, Bangalore M11/V1/June 04/2

Table 11.2: Regular expression combinations.

Note: print has int in it !!

In other words, grep matches string literals. A little later we will see how we may use

options to make partial patterns for intelligent searches. We could have used *.c to list

the lines in all the c programs in that directory. In such a usage it is better to use it as

shown in the example below

grep int ./C/*.c | more

This shows the use of a pipe with another tool more which is a good screen viewing tool.

more offers a one screen at a time view of a long file. As stated in the last chapter, there

is a program called less which additionally permits scrolling.

Regular Expression Conventions: Table 11.1 shows many of the grep regular

expression conventions. In Table 11.1, RE, RE1, and RE2 denote regular expressions. In

practice we may combine Regular Expressions in arbitrary ways as shown in Table 11.2.

egrep is an enhanced grep that allows additionally the above pattern matching

capabilities. Note that an RE may be enclosed in parentheses. To practice the above we

make a file called testfile with entries as shown. Next, we shall try matching patterns

using various options. Below we show a session using our text file called testfile.

aaa

a1a1a1

456

10000001

This is a test file.

bhatt@SE-0 [F] >>grep '[0-9]' testfile

a1a1a1

456

10000001

bhatt@SE-0 [F] >>grep '^4' testfile

456

bhatt@SE-0 [F] >>grep '1$' testfile

a1a1a1

Operating Systems/Search and Sort Tools Lecture Notes

PCP Bhatt/IISc, Bangalore M11/V1/June 04/3

10000001

bhatt@SE-0 [F] >>grep '[A-Z]' testfile

This is a test file.

bhatt@SE-0 [F] >>grep '[0-4]' testfile

a1a1a1

456

10000001

bhatt@SE-0 [F] >>fgrep '000' testfile

10000001

bhatt@SE-0 [F] >>egrep '0..' testfile

10000001

\ The back slash is used to consider a special character literally. This is required when the

character used is also a command option as in case of -, * etc.

See the example below where we are matching a period symbol.

bhatt@SE-0 [F] >>grep '\.' testfile

This is a test file.

We may use a character's characteristics as options in grep. The options available are

shown in Table 11.3.

bhatt@SE-0 [F] >>grep -v 'a1' testfile

aaa

456

10000001

Table 11.3: Choosing match options.

This is a test file.

bhatt@SE-0 [F] >>grep 'aa' testfile

aaa

bhatt@SE-0 [F] >>grep -w 'aa' testfile

bhatt@SE-0 [F] >>grep -w 'aaa' testfile

aaa

bhatt@SE-0 [F] >>grep -l 'aa' testfile

Operating Systems/Search and Sort Tools Lecture Notes

PCP Bhatt/IISc, Bangalore M11/V1/June 04/4

testfile

Context of use: Suppose we wish to list all sub-directories in a certain directory.

ls -l | grep ^d

bhatt@SE-0 [M] >>ls -l | grep ^d

drwxr-xr-x 2 bhatt bhatt 512 Oct 15 13:15 M1

drwxr-xr-x 2 bhatt bhatt 512 Oct 15 12:37 M2

drwxr-xr-x 2 bhatt bhatt 512 Oct 15 12:37 M3

drwxr-xr-x 2 bhatt bhatt 512 Oct 16 09:53 RAND

Suppose we wish to select a certain font and also wish to find out if it is available as a

bold font with size 18. We may list these with the instruction shown below.

xlsfonts | grep bold\-18 | more

bhatt@SE-0 [M] >>xlsfonts | grep bold\-18 | more

lucidasans-bold-18

lucidasans-bold-18

lucidasanstypewriter-bold-18

lucidasanstypewriter-bold-18

Suppose we wish to find out at how many terminals a certain user is logged in at the

moment. The following command will give us the required information:

who | grep username | wc -l > count

The wc with -l options gives the count of lines. Also, who|grep will output one line for

every line matched with the given pattern (username) in it.

11.2 Using find

find is used when a user, or a system administrator, needs to determine the location of a

certain file under a specified subtree in a file hierarchy. The syntax and use of find is:

find path expression action

where path identifies the subtree, expression helps to identify the file and the action

specifies the action one wishes to take. Let us now see a few typical usages.

 List all the files in the current directory.

 bhatt@SE-0 [F] >>find . -print /* only path and action specified */

 .

 /ReadMe

 ./testfile

Operating Systems/Search and Sort Tools Lecture Notes

PCP Bhatt/IISc, Bangalore M11/V1/June 04/5

 Finding files which have been created after a certain other file was created.

 bhatt@SE-0 [F] >>find . -newer testfile

 .

 /ReadMe

There is an option mtime to find modified files in a certain period over a number

of days.

 List all the files which match the partial pattern test. One should use only shell

meta-characters for partial matches.

 bhatt@SE-0 [F] >>find . -name test*

 ./testfile

 bhatt@SE-0 [F] >>find ../../ -name test*

 ../../COURSES/OS/PROCESS/testfile

 ../../UPE/F/testfile

 I have a file called linkedfile with a link to testfile. The find command can be

used to find the links.

 bhatt@SE-0 [F] >>find ./ -links 2

 ./

 ./testfile

 ./linkedfile

 Finding out the subdirectories under a directory.

 bhatt@SE-0 [F] >>find ../M -type d

../M

../M/M1

../M/M2

../M/M3

../M/RAND

 Finding files owned by a certain user.

bhatt@SE-0 [F] >>find /home/georg/ASM-WB -user georg -type d

/home/georg/ASM-WB

/home/georg/ASM-WB/examples

/home/georg/ASM-WB/examples/Library

/home/georg/ASM-WB/examples/SimpleLang

Operating Systems/Search and Sort Tools Lecture Notes

PCP Bhatt/IISc, Bangalore M11/V1/June 04/6

/home/georg/ASM-WB/examples/InstructionSet

/home/georg/ASM-WB/Projects

/home/georg/ASM-WB/FirstTry

The file type options are: f for text file, c for character special file, b for blocked files

and p for pipes.

Strings: Sometimes one may need to examine if there are ascii strings in a certain

object or a binary file. This can be done using a string command with the syntax :

string binaryfileName | more

As an example see its use below2:

bhatt@SE-0 [F] >>strings ../M/RAND/main | more

The value of seed is %d at A

The value is %f at B

ctags and etags: These commands are useful in the context when one wishes to look

up patterns like c function calls. You may look up man pages for its description if you are

a power user of c.

11.2.1 Sort Tool

For sort tool Unix treats each line in a text file as data. In other words, it basically sorts

lines of text in text file. It is possible to give an option to list lines in ascending or

descending order. We shall demonstrate its usage through examples given below.

Table 11.4: Sort options.

bhatt@SE-0 [F] >>sort

aaa

bbb

aba

^d terminates the inputsee the output below

aaa

aba

bbb

bhatt@SE-0 [F] >>sort testfile

Operating Systems/Search and Sort Tools Lecture Notes

PCP Bhatt/IISc, Bangalore M11/V1/June 04/7

10000001

456

This is a test file.

a1a1a1

aaa

(Use -r option for descending order).

bhatt@SE-0 [F] >>sort testfile -o outfile

bhatt@SE-0 [F] >>

One can see the outfile for sorted output. sort repeats all identical lines. It helps to use a

filter uniq to get sorted output with unique lines. Let us now modify our testfile to have

repetition of a few lines and then use uniq as shown below.

bhatt@SE-0 [F] >>sort testfile|uniq|more

10000001

456

This is a test file.

a1a1a1

aaa

In table 11.4 we list the options that are available with sort. sort can also be used to

merge files. Next, we will split a file and then show the use of merge. Of course, the

usage is in the context of merge-sort.

One often uses filtering commands like sort, grep etc. in conjunction with wc, more, head

and tail commands available in Unix. System administrators use who in conjunction with

grep, sort, find to track of terminal usage and also for lost or damaged files.

split: split command helps one to split a file into smaller sized segments. For instance, if

we split ReadMe file with the following command :

split -l 20 ReadMe seg

Upon execution we get a set of files segaa, segab,etc. each with 20 lines in it. (Check

the line count using wc). Now merge using sorted segaa with segab.

sort -m segaa segab > check

A clever way to merge all the split files is to use cat as shown below:

cat seg* > check

Operating Systems/Search and Sort Tools Lecture Notes

PCP Bhatt/IISc, Bangalore M11/V1/June 04/8

The file check should have 40 lines in it. Clearly, split and merge would be useful to

support merge-sort and for assembling a set of smaller files that can be sent over a

network using e-mail whenever there are restrictions on the size of attached files.

In the next module we shall learn about the AWK tool in Unix. Evolution of AWK is a

very good illustration of how more powerful tools can be built. AWK evolves from the

(seemingly modest) generic tool grep!!

