
Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/1

Module 12: AWK Tool in Unix
AWK was developed in 1978 at the famous Bell Laboratories by Aho, Weinberger and

Kernighan [3]1 to process structured data files. In programming languages it is very

common to have a definition of a record which may have one or more data fields. In this

context, it is common to define a file as a collection of records. Records are structured

data items arranged in accordance with some specification, basically as a pre-assigned

sequence of fields. The data fields may be separated by a space or a tab. In a data

processing environment it very common to have such record-based files. For instance, an

organisation may maintain a personnel file. Each record may contain fields like employee

name, gender, date of joining the organisation, designation, etc. Similarly, if we look at

files created to maintain pay accounts, student files in universities, etc. all have structured

records with a set of fields. AWK is ideal for the data processing of such structured set of

records. AWK comes in many flavors [14]. There is gawk which is GNU AWK.

Presently we will assume the availability of the standard AWK program which comes

bundled with every flavor of the Unix OS. AWK is also available in the MS environment.

12.1 The Data to Process

As AWK is used to process a structured set of records, we shall use a small file called

awk.test given below. It has a structured set of records. The data in this file lists employee

name, employee's hourly wage, and the number of hours the employee has worked.

(File awk.test)

bhatt 4.00 0

ulhas 3.75 2

ritu 5.0 4

vivek 2.0 3

We will use this candidate data file for a variety of processing requirements. Suppose we

need to compute the amount due to each employee and print it as a report. One could

write a C language program to do the task. However, using a tool like AWK makes it

simpler and perhaps smarter. Note that if we have a tool, then it is always a good idea to

use it. This is because it takes less time to get the results. Also, the process is usually less

error prone. Let us use the awk command with input file awk.test as shown below:

bhatt@falerno [CRUD] =>awk '$3 > 0 { print $1, $2 * $3 }' awk.test

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/2

ulhas 7.5

ritu 20

vivek 6

Note some features of the syntax above | the awk command, the quoted string following it

and the data file name. We shall next discuss first a few simple syntax rules. More

advanced features are explained through examples that are discussed in Section 12.2.

12.1.1 AWK Syntax

To run an AWK program we simply give an “awk” command with the following syntax:

awk [options] <awk_program> [input_file]

where the options may be like a file input instead of a quoted string. The following

should be noted:

 Note that in the syntax awk 'awk_program' [input_files] , the option on input

files may be empty. That suggests that awk would take whatever is typed

immediately after the command is given.

 Also, note that fields in the data file are identified with a $ symbol prefix as in $1.

In the example above we have a very small AWK program. It is the quoted string

reproduced below:

 '$3 > 0 {print $1, $2 * $3}'

The interpretation is to print the name corresponding to $1, and the wages due by

taking a product of rate corresponding to $2 multiplied with the number of hours

corresponding to $3. In this string the $ prefixed integers identify the fields we

wish to use.

 In preparing the output: {print} or {print $0} prints the whole line of output.

{print $1, $3} will print the selected fields.

 In the initial example we had a one line awk program. Basically, we tried to match a

pattern and check if that qualified the line for some processing or action. In general, we

may have many patterns to match and actions to take on finding a matching pattern. In

that case the awk program may have several lines of code. Typically such a program shall

have the following structure:

pattern {action}

pattern {action}

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/3

pattern {action}

.

.

If we have many operations to perform we shall have many lines in the AWK program. It

would be then imperative to put such a program in a file and AWKing it would require

using a file input option as shown below. So if the awk program is very long and kept in a

file, use the -f option as shown below:

awk -f 'awk_program_file_name' [input_files]

where the awk program file name contains the awk program.

12.2 Programming Examples

We shall now give a few illustrative examples. Along with the examples we shall also

discuss many other features that make the task of processing easier.

• Example 1

Suppose we now need to find out if there was an employee who did no work.

Clearly his hours work field should be equal to 0. We show the AWK

program to get that.

bhatt@falerno [CRUD] =>awk '$3 == 0 {print $1}' awk.test bhatt

The basic operation here was to scan a sequence of input lines searching for

the lines that match any of the patterns in the program. Patterns like $3 > 0

match the 3rd field when the field has a value > 0 in it.

An Aside: Try a few errors and see the error detection on the one line awk

programs.

 Example 2

In this example we shall show the use of some of the built-in variables which

help in organizing our data processing needs. These variables acquire meaning in

the context of the data file. NF is a built in variable which stores the number of

fields and can be used in such context as fprint NF, $1, $NFg which prints the

number of fields, the first and the last field. Another built-in variable is NR,

which takes the value of the number of lines read so far and can also be used in a

print statement.

bhatt@falerno [CRUD] =>awk '$3 > 0 {print NR, NF, $1, $NF }' awk.test

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/4

3 3 ulhas 2

4 3 ritu 4

5 3 vivek 3

 Example 3

The formatted data in files is usually devoid of any redundancy. However, one

needs to generate verbose output. This requires that we get the values and

interspread the desired strings and generate a verbose and meaningful output. In

this example we will demonstrate such a usage.

bhatt@falerno [CRUD] =>awk '$3 > 0 {print "person ", NR, $1, "be paid",

$2*$3,

"dollarperson 3 ulhas be paid 7.5 dollars

person 4 ritu be paid 20 dollars

person 5 vivek be paid 6 dollars

One can use printf to format the output like in the C programs.

bhatt@falerno [CRUD] =>awk '$3 > 0 {printf("%-8s be paid $%6.2f dollars

“n", $1,

$2*$3ulhas be paid $ 7.50 dollars

ritu be paid $ 20.00 dollars

vivek be paid $ 6.00 dollars

An Aside: One could sort the output by <awk_program> | sort i.e. by a pipe to

sort.

 Example 4

In the examples below we basically explore many selection possibilities. In

general the selection of lines may be by comparison involving computation. As an

example, we may use $2 > 3.0 to mean if the rate of payment is greater than 3.0.

We may check for if the total due is > 5, as $2*$3 > 5:0, which is an example of

comparison by computation.

One may also use a selection by text content (essentially comparison in my

opinion). This is done by enclosing the test as /bhatt/ to identify $1 being string

“bhatt" as in $1 == /bhatt/.

Tests on patterns may involve relational or logical operators as $ >=; ||

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/5

Awk is excellent for data validation. Checks like the following may be useful.

. NF != 3 ... no. of fields not equal to 3

. $2 < 2.0 .. wage rate below min. stipulated

. $2 > 10.0exceeding max.

. $3 < 0 ...no. of hrs worked -ve etc.

It should be remarked that data validation checks are a very important part of data

processing activity. Often an organization may employ or outsource data

preparation. An online data processing may result in disasters if the data is not

validated. For instance, with a wrong hourly wage field we may end up creating a

pay cheque which may be wrong. One needs to ensure that the data is in expected

range lest an organization ends up paying at a rate below the minimum legal wage

or pay extra-ordinarily high amounts to a low paid worker!

 Example 5

In these examples we demonstrate how we may prepare additional pads to give

the formatted data a look of a report under preparation. For instance, we do not

have headings for the tabulated output. One can generate meaningful headers and

trailers for a tabulated output. Usually, an AWK program may have a BEGIN key

word to identify some pre-processing that can help prepare headers before

processing the data file. Similarly, an AWK program may be used to generate a

trailer with END key word. The next example illustrates such a usage. For our

example the header can be generated by putting BEGIN {print "Name Rate

Hours"} as preamble to the AWK program as shown below.

bhatt@falerno [CRUD] =>awk 'BEGIN{ print"name rate hours"; print""} “

{print}' awk.test

name rate hours

bhatt 4.00 0

ulhas 3.75 2

ritu 5.0 4

vivek 2.0 3

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/6

Note that print "" prints a blank line and the next print reproduces the input. In

general, BEGIN matches before the first line of input and END after the last line

of input. The ; is used to separate the actions. Let us now look at a similar

program with -f option.

file awk.prg is

BEGIN {print "NAME RATE HOURS"; print ""} { print $1," ",$2," ",$3,"..."}

bhatt@falerno [CRUD] =>!a

awk -f awk.prg awk.test

NAME RATE HOURS

bhatt 4.00 0 ...

ulhas 3.75 2 ...

ritu 5.0 4 ...

vivek 2.0 3 ...

 Example 6

Now we shall attempt some computing within awk. To perform computations we

may sometimes need to employ user-defined variables. In this example “pay"

shall

be used as a user defined variable. The program accumulates the total amount to

be paid in “pay". So the printing is done after the last line in the data file has been

processed, i.e. in the END segment of awk program. In NR we obtain all the

records processed (so the number of employees can be determined). We are able

to do the computations like “pay" as a total as well as compute the average salary

as the last step.

BEGIN {print "NAME RATE HOURS"; print ""}

{ pay = pay + $2*$3 }

END {print NR "employees"

 print "total amount paid is : ", pay

 print "with the average being :", pay/NR}

bhatt@falerno [CRUD] =>!a

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/7

awk -f prg2.awk awk.test

4 employees

total amount paid is : 33.5

with the average being : 8.375

A better looking output could be produced by using printf statement as in c. Here

is another program with its output. In this program, note the computation of

“maximum" values and also the concatenation of names in “emplist". These are

user-defined data-structures. Note also the use of “last" to store the last record

processed, i.e. $0 gets the record and we keep storing it in last as we go along.

BEGIN {print "NAME RATE HOURS"; print ""}

{pay = pay + $2*$3}

$2 > maxrate {maxrate = $2; maxemp = $1}

{emplist = emplist $1 " "}

{last = $0}

END {print NR " employees"

 print "total amount paid is : ", pay

 print "with the average being :", pay/NR

 print "highest paid rate is for " maxemp, " @ of : ", maxrate

 print emplist

 print ""

 print "the last employee record is : ", last}

output is

bhatt@falerno [CRUD] =>!a

awk -f prg3.awk test.data

4 employees

total amount paid is : 33.5

with the average being : 8.375

highest paid rate is for ritu @ of : 5.0

bhatt ulhas ritu vivek

the last employee record is : vivek 2.0 3

 Example 7

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/8

There are some builtin functions that can be useful. For instance, the function

“length" helps one to compute the length of the argument field as the number of

characters in that field. See the program and the corresponding output below:

{ nc = nc + length($1) + length($2) + length($3) + 4 }

{ nw = nw + NF }

END {print nc " characters and "; print ""

 print nw " words and "; print ""

 print NR, " lines in this file "}

bhatt@falerno [CRUD] =>!a

awk -f prg4.awk test.data

53 characters and

12 words and

4 lines in this file

 Example 8

AWK supports many control flow statements to facilitate programming. We will

first use the if-else construct. Note the absence of "then" and how the statements

are grouped for the case when the if condition evaluates to true. Also, in the

program note the protection against division by 0.

BEGIN {print "NAME RATE HOURS"; print ""}

$2 > 6 {n = n+1; pay = pay + $2*$3}

$2 > maxrate {maxrate = $2; maxemp = $1}

{emplist = emplist $1 " "}

{last = $0}

END {print NR " employees in the company "

 if (n > 0) {print n, "employees in this bracket of salary. "

 print "with an average salary of ", pay/n, "dollars"

} else print " no employee in this bracket of salary. "

 print "highest paid rate is for " maxemp, " @ of : ", maxrate

 print emplist

 print ""}

This gives the result shown below:

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/9

bhatt@falerno [CRUD] =>!a

awk -f prg5.awk data.awk

4 employees in the company

no employee in this bracket of salary.

highest paid rate is for ritu @ of : 5.0

bhatt ulhas ritu vivek

Next we shall use a “while" loop2. In this example, we simply compute the

compound interest that accrues each year for a five year period.

#compound interest computation

#input : amount rate years

#output: compounded value at the end of each year

{ i = 1; x = $1;

 while (i <= $3)

 { x = x + (x*$2)

 printf("“t%d”t%8.2f”n",i, x)

 i = i + 1

 }

}

The result is shown below:

bhatt@falerno [CRUD] =>!a

awk -f prg6.awk

1000 0.06 5

1 1060.00

2 1123.60

3 1191.02

4 1262.48

5 1338.23

AWK also supports a “for" statement as in

for (i = 1; i <= $3; i = i + 1)

which will have the same effect. AWK supports arrays too, as the program below

demonstrates.

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/10

reverse - print the input in reverse order ...

BEGIN {print "NAME RATE HOURS"; print ""}

{line_ar [NR] = $0} # remembers the input line in array line_ar

END {# prepare to print in reverse order as input is over now

for (i = NR; i >= 1; i = i-1)

print line_ar[i]

}

The result is shown below.

bhatt@falerno [CRUD] =>awk -f prg7.awk data.awk

NAME RATE HOURS

vivek 2.0 3

ritu 5.0 4

ulhas 3.75 2

bhatt 4.00 0

12.2.1 Some One-liners

Next we mention a few one-liners that are now folklore in the AWK programming

community. It helps to remember some of these at the time of writing programs in AWK.

1. Print the total no. of input lines: END {print NR}.

2. Print the 10th input line: NR = 10.

3. Print the last field of each line: “{print “$NF”}.

4. Print the last field of the last input line:

 {field = $NF}

 END {print field}

5. Print every input line with more than 4 fields: NF > 4.

6. Print every input line i which the last field is more than 4: $NF > 4.

7. Print the total number of fields in all input lines.

 {nf = nf + NF}

 END {print nf}

8. Print the total number of lines containing the string “bhatt".

 /bhatt/ {nlines = nlines + 1}

 END {print nlines}

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/11

9. Print the largest first field and the line that contains it.

 $1 > max {max = $1; maxline = $0}

 END {print max, maxline}

10. Print every line that has at least one field: NF > 0.

11. Print every line with > 80 characters: length($0) > 80.

12. Print the number of fields followed by the line itself.

 {print NF, $0}

13. Print the first two fields in opposite order: {print $2, $1}.

14. Exchange the first two fields of every line and then print the line:

 {temp = $1; $1 = $2, $2 = temp, print}

15. Print every line with the first field replaced by the line number:

 {$1 = NR; print}

16. Print every line after erasing the second field:

 {$2 = ""; print}

17. Print in reverse order the fields of every line:

 {for (i = NF; i > 0; i = i-1) printf("%s ", $i)

 printf("“n")}

18. Print the sums of fields of every line:

 {sum = 0

 for (i = 1; i <= NF; i = i+1) sum = sum + $i

 print sum}

19. Add up all the fields in all the lines and print the sum:

 {for (i = 1; i <= NF; i = i+1) sum = sum + $i}

 END {print sum}

20. Print every line after replacing each field by its absolute value:

 {for (i = 1; i <= NF; i = i+1) if ($i < 0) $i = -$i

 print}

12.3 AWK Grammar

At this stage it may be worth our while to recapitulate some of the grammar rules. In

particular we shall summarize the patterns which commonly describe the AWK grammar.

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/12

The reader should note how right across all the tools and utilities, Unix maintains the

very same regular expression conventions for programming.

1. BEGIN{statements}: These statements are executed once before any input is

 processed.

2. END{statements}: These statements are executed once all the lines in the data input

 file have been read.

3. expr.{statements}: These statements are executed at each input line where the

 expr is true.

4. /regular expr/{statements}: These statements are executed at each input line

 that contains a string matched by regular expression.

5. compound pattern{statements}: A compound pattern combines patterns with

 && (AND), || (OR) and ! (NOT) and parentheses; the statements are executed

 at each input line where the compound pattern is true.

6. pattern1, pattern2 {statements}: A range pattern matches each input line from

 a line matched by “pattern1" to the next line matched by “pattern2", inclusive; the

 statements are executed at each matching line.

7. “BEGIN" and “END" do not combine with any other pattern. “BEGIN" and “END"

 also always require an action. Note “BEGIN" and “END" technically do not match

 any input line. With multiple “BEGIN" and “END" the action happen in the order

 of their appearance.

8. A range pattern cannot be part of any other pattern.

9. “FS" is a built-in variable for field separator.

Note that expressions like $3/$2 > 0.5= match when they evaluate to true. Also

“The" < “Then" and “Bonn" > “Berlin". Now, let us look at some string matching

considerations. In general terms, the following rules apply.

1. /regexpr/ matches an input line if the line contains the specified substring. As

 an example : /India/ matches “ India " (with space on both the sides), just as it

 detects presence of India in “Indian".

2. expr ~ /regexpr/ matches, if the value of the expr contains a substring matched

 by regexpr. As an example, $4 ~ /India/ matches all input lines where the

 fourth field contains “India" as a substring.

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/13

3. expr !~/regexpr/ same as above except that the condition of match is opposite. As

 an example, $4 !~/India/ matches when the fourth field does not have a substring

 “India".

The following is the summary of the Regular Expression matching rules.

^C : matches a C at the beginning of a string

C$: matches a C at the end of a string

^C$: matches a string consisting of the single character C

^.$: matches single character strings

^...$: matches exactly three character strings

... : matches any three consecutive characters

“.$: matches a period at the end of a string

* : zero or more occurrences

? : zero or one occurrence

+ : one or more occurrence

The regular expression meta characters are:

1. \ ^ $. [] | () * + ?

2. A basic RE is one of the following:

A non meta character such as A that matches itself

An escape sequence that matches a special symbol: “t matches a tab.

A quoted meta-character such as “* that matches meta-ch literally

^, which matches beginning of a string

$, which matches end of a string

., which matches any single character

A character class such as [ABC] matches any of the A or B or C

Character abbreviations [A-Za-z] matches any single character

A complemented character class such as [^0-9] matches non digit characters

3. These operators combine REs into larger ones:

alteration : A|B matches A or B

concatenation : AB matches A immediately followed by B

closure : A* matches zero or more A's

positive closure : A+ matches one or more A's

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/14

zero or one : A? matches null string or one A

parentheses : (r) matches same string as r does.

The operator precedence being |, concatenation, (*, +, ?) in increasing

value. i.e. *, +, ? bind stronger than |

The escape sequences are:

 “b : backspace; “f : form feed; “n : new-line; “c literally c (““ for “)

“r : carriage return; “t : tab; “ddd octal value ddd

Some useful patterns are:

/^[0-9]+$/ : matches any input that consists of only digits

/^(“+|-)?[0-9]+”.?[0-9]/ : matches a number with optional sign and optional

 fractional part

/^[A-Za-z][A-Za-z0-9]*$/ : matches a letter followed by any letters or digits, an awk

 variable

/^[A-Za-z]$|^[A-Za-z][0-9]$/ : matches a letter or a letter followed by any letters or digits

 (a variable in Basic)

Now we will see the use of FILENAME (a built-in variable) and the use of range

operators in the RE.

12.3.1 More Examples

For the next set of examples we shall consider a file which has a set of records describing

the performance of some of the well-known cricketers of the recent past. This data is easy

to obtain from any of the cricket sites like khel.com or cricinfo.com or the International

Cricket Councils' website. The data we shall be dealing with is described in Table 12.1.

In Table 12.1, we have information such as the name of the player, his country affliation,

matches played, runs scored, wickets taken, etc. We should be able to scan the cricket.

data file and match lines to yield desired results. For instance, if we were to look for

players with more than 10,000 runs scored, we shall expect to see SGavaskar and

ABorder. Similarly, for anyone with more than 400 wickets we should expect to see

Kapildev and RHadlee3.

So let us begin with our example programs.

1. Example – 1

In this program we identify Indian cricketers and mark them with ***.

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/15

We try to find cricketers with most runs, most wickets and most catches

BEGIN {FS = "“t" # make the tab as field separator

printf("%12s %5s %7s %4s %6s %7s %4s %8s %8s %3s %7s %7s”n”n",

"Name","Country","Matches","Runs","Batavg","Highest","100s","Wkts",

Table 12.1: The cricket data file.

"Bowlavg","Rpo","Best","Catches")}

$2 ~/IND/ { printf("%12s %5s %7s %6s %6s %7s %4s %8s %8s %4s %7s %7s %3s”n",

$1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,"***")}

$4 > runs {runs = $4;name1 = $1}

$8 > wickets {wickets = $8;name2 = $1}

$12 > catches {catches = $12;name3 = $1}

END

 {printf("“n %15s is the highest scorer with %6s runs",name1,runs)

 printf("“n %15s is the highest wicket taker with %8s wickets",name2,wickets)

 printf("“n %15s is the highest catch taker with %7s catches”n",name3,catches)

 }

bhatt@falerno [AWK] =>!a

awk -f cprg.1 cricket.data
Name Country Matches Runs Batavg Highest 100s Wkts Bowlavg RPO Best Catches

SGavaskar IND 125 10122 51.12 236 34 1 206.00 3.25 1-34 108 ***

MAmarnath IND 69 4378 42.50 138 11 32 55.69 2.91 4-43 47 ***

BSBedi IND 67 656 8.99 50 0 266 28.71 2.14 10-194 26 ***

Kapildev IND 131 5248 31.05 163 8 434 29.65 2.78 11-146 64 ***

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/16

AR.Border is the highest scorer with 11174 runs

Kapildev is the highest wicket taker with 434 wickets

MTaylor is the highest catch taker with 157 catches

2. Example 2 In this example we use the built-in variable FILENAME and also

 match a few patterns.

In this example we use FILENAME built in variable and print data from

first three lines of cricket.data file. In addition we print data from

ImranKhan to ABorder

BEGIN {FS = "“t" # make the tab as the field separator

 printf("%25s “n","First three players")

NR == 1, NR == 5 {print FILENAME ": " $0}

{printf("%12s %5s “n", $1,$2)}

/ImranKhan/, /ABorder/ {num = num + 1; line[num] = $0}

END

{printf("Player list from Imran Khan to Allen Border “n",

 printf("%12s %5s %7s %4s %6s %7s %4s %8s %8s %3s %7s %7s”n”n",

 "Name","Country","Matches","Runs","Batavg","Highest","100s","Wkts",

 "Bowlavg","Rpo","Best","Catches")}

 for(i=1; i <= num; i = i+1)

 print(line[i]) }

 bhatt@falerno [AWK] =>!a

awk -f cprg.2 cricket.data

First three players

cricket.data SGavaskar IND

cricket.data MAmarnath IND

cricket.data BSBedi IND

Player list from Imran Khan to Allen Border
Name Country Matches Runs Batavg Highest 100s Wkts Bowlavg RPO Best Catches

ImranKhan PAK 88 3807 37.69 136 6 362 22.81 2.55 14-116 28

MarkTaylor AUS 104 7525 43.5 334 19 1 26.0 3.71 1-11 157

DLillie AUS 70 905 13.71 73 0 355 23.92 2.76 11-123 23

DBradman AUS 52 6996 99.94 334 29 2 36.0 2.7 1-15 32

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/17

ABorder AUS 156 11174 50.56 265 27 39 39.10 2.28 11-96 156

At this time it may be worth our while to look at some of the list of the built-in

variables that are available in AWK. (See Table 12.2).

12.3.2 More on AWK Grammar

Continuing our discussion with some aspects of the AWK grammar, we shall describe the

nature of statements and expressions permissible within AWK. The statements

Table 12.2: Built-in variables in AWK.

are essentially invoke actions. In this description, “expression" may be with constants,

variables, assignments, or function calls. Essentially, these statements are program

actions as described below:

1. print expression-list

2. printf(format, expression-list)

3. if (expression) statement

4. while (expression) statement

5. for (expression; expression; expression) statement

6. for (variable in array) expression note : “in" is a key word

7. do statement while (expression)

8. break: immediately leave the innermost enclosing while loop

9. continue: start next iteration of the innermost enclosing while loop

10 next: start the next iteration of the main input loop

11 exit: go immediately to the END action

12 exit expression: same with return expression as status of program

13 statements

; : is an empty statement

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/18

We should indicate the following here:

1. Primary Expressions are: numeric and string constants, variables, fields, function

calls, and array elements

2. The following operators help to compose expressions:

(a) assignment operators =;+ =;¡ =; ¤ =; = =; % =;=

(b) conditional operator ?:

(c) logical operators || && !

(d) matching operators ~ and !~

(e) relational operators <;<=;==; ! =;>=

(f) concatenation operator (see the string operator below)

(g) arithmetic +, -, *, /, % ^ unary + and -

(h) incrementing and decrementing operators ++ and -- (pre- as well as post-fix)

(i) parentheses and grouping as usual.

For constructing the expressions the following built-in functions are available:

atan2(y,x) arctan of y/x in the range of -pi to +pi

cos(x) cosine of x; x in radians

exp(x)

int(x) truncated towards 0 when x > 0

log(x) natural (base e) log of x

rand(x) random no. r, where 0<= r < 1

sin(x) sine of x; x in radians

sqrt(x) square root of x

srand(x) x is the new seed for rand()

To compute base 10 log use log(x)/log(10)

randint = int(n* rand()) + 1 sets randint to a random no. between 1 and n inclusive

3. Example 3 We next look at string operations. Let us first construct a small recognizer.

The string concatenation operation is rather implicit. String expressions are created by

writing constants, vars, fields, array elements, function values and others placed next to

each other. The program {print NR ": " $0} concatenates as expected ": " to each line of

output. In the example below, we shall use some of these facilities which we have

discussed.

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/19

this program is a small illustration of building a recognizer

BEGIN {

 sign = "[+-]?"

 decimal = "[0-9]+[.]?[0-9]*"

 fraction = "[.][0-9]+"

 exponent ="([eE]" sign "[0-9]+)?"

 number ="^" sign "(" decimal "|" fraction ")" exponent "$"

 }

$0 ~ number {print}

Note that in this example if /pattern/ were to be used then meta-characters would be

recognized with an escape sequence, i.e. using “. for . and so on. Run this program using

gawk with the data given below:

Table 12.3: Various string function in AWK.

1.2e5

129.0

abc

129.0

You should see the following as output:

bhatt@falerno [AWK] =>gawk -f flt_num_rec.awk flt_num.data

1.2e5

129.0

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/20

129.0

4. Example 4 Now we shall use some string functions that are available in AWK. We

shall match partial strings and also substitute strings in output (like the substitute

command in vi editor). AWK supports many string oriented operations. These are listed

in Table 12.3.

Let us now suppose we have the following AWK program line:

x = sprintf("%10s %6d",$1, $2)

This program line will return x in the specified format. Similarly, observe the behaviour

of the program segment given below:

{x = index("ImranKhan", "Khan"); print "x is :", x}

bhatt@falerno [AWK] =>!a

awk -f dummy.rec

x is : 6

In the response above, note that the index on the string begins with 1. Also, if we use

gsub command it will act like vi substitution command as shown below:

{ gsub(/KDev/, "kapildev"); print}.

Let us examine the program segment below.

BEGIN {OFS = "“t"}

{$1 = substr($1, 1, 4); x = length($0); print $0, x}

{s = s substr($1, 1, 4) " "}

END {print s}

Clearly, the output lines would be like the one shown below. We have shown only one

line of output.

SGav IND 125 10122 51.12 236 34 1 206.00 3.25 1-34 108 54

....

....

We next indicate how we may count the number of centuries scored by Indian players

and players from Pakistan.

/IND/ {century["India"] += $7 }

/PAK/ {century["Pakistan"] += $7 }

/AUS/ {catches["Australia"] += $12; k = k+1; Aus[k] = $0}

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/21

END {print "The Indians have scored ", century["India"], "centuries"

 print "The Pakistanis have scored ", century["Pakistan"], "centuries"

 print "The Australians have taken ", catches["Australia"], "catches"}

The response is:

The Indians have scored 53 centuries

The Pakistanis have scored 21 centuries

The Australians have taken 368 catches

5. Example 5 Now we shall demonstrate the use of Unix pipe within the AWK program.

This program obtains output and then pipes it to give us a sorted output.

This program demonstrates the use of pipe.

BEGIN{FS = "“t"}

{wickets[$2] += $8}

END {for (c in wickets)

 printf("%10s”t%5d”t%10s”n", c, wickets[c], "wickets") | "sort -t'“t' +1rn" }

bhatt@falerno [AWK] =>awk -f recog5.awk cricket.data

 IND 733 wickets

 NZ 445 wickets

 AUS 397 wickets

 PAK 367 wickets

 WI 291 wickets

 ENG 7 wickets

Suppose we have a program line as follows:

egrep "BRAZIL" cricket.data | awk 'program'

The obvious response is reproduced below :4

Normally, a file or a pipe is created and opened only during the run of a program. If the

file, or pipe, is explicitly closed and then reused, it will be reopened. The statement

close(expression) closes a file, or pipe, denoted by expression. The string value of

expression must be the same as the string used to create the file, or pipe, in the first place.

Close is essential if we write and read on a file, or pipe, alter in the same program. There

is always a system defined limit on the number of pipes, or files that a program may

open.

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/22

One good use of pipes is in organizing input. There are several ways of providing the

input data with the most common arrangement being:

awk 'program' data

AWK reads standard input if no file names are given; thus a second common

arrangement is to have another program pipe its output into AWK. For example, egrep

selects input lines containing a specified regular expression, but does this much faster

than AWK does. So, we can type in a command egrep 'IND' countries.data | awk

'program' to get the desired input

bhatt@falerno [AWK] =>egrep 'BRAZIL' cricketer.data | awk -f recog3.awk

egrep: NO such file or directory

6. Example 6 Now we shall show the use of command line arguments. An AWK

command line may have any of the several forms below:

awk 'program' f1 f2 ...

awk -f programfile f1 f2 ...

awk -Fsep 'program' f1 f2 ...

awk -Fsep programfile f1 f2 ...

If a file name has the form var=text (note no spaces), however, it is treated as an

assignment of text to var, performed at the time when that argument would be otherwise a

file. This type of assignment allows vars to be changed before and after a file is read.

The command line arguments are available to AWK program in a built-in array called

ARGV. The value of ARGC is one more than the number of arguments. With the

command line awk -f progfile a v=1 bi, ARGC is 4 and the array ARGV has the

following values : ARGV[0] is awk, ARGV[1] is a ARGV[2] is v=1 and finally, ARGV

is b. ARGC is one more than the number of arguments as awk is counted as the zeroth

argument. Here is another sample program with its response shown:

#echo - print command line arguments

BEGIN{ for(i = 1; i < ARGC; i++)

 print("%s , “n", ARGV[i])}

outputs

bhatt@falerno [AWK] =>!g

gawk -f cmd_line1.awk cricket.data

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/23

cricket.data ,

7. Example - 7 Our final example shows the use of shell scripts. 5 Suppose we wish to

have a shell program in file sh1.awk. We shall have to proceed as follows.

 step 1: make the file sh1.awk as gawk '{print $1}' $* .

 step 2: chmod sh1.swk to make it executable.

bhatt@falerno [AWK] => chmod +x sh1.awk

 step 3: Now execute it under the shell command

bhatt@falerno [AWK] => sh sh1.awk cricket.data file1.data file2.data

 step 4: See the result.

bhatt@falerno [AWK] =>sh sh1.awk cricket.data

SGavaskar

.......

.......

MartinCrowe

RHadlee

Here is an interesting program that swaps the fields:

#field swap bring field 4 to 2; 2 to 3 and 3 to 4

#usage : sh2.awk 1 4 2 3 cricket.data to get the effect

gawk '

BEGIN {for (i = 1; ARGV[i] ~ /^[0-9]+$/; i++) {# collect numbers

fld[++nf] = ARGV[i]

#print " the arg is :", fld[nf]

ARGV[i] = ""}

#print "exited the loop with the value of i : ", i

if (i >= ARGC) #no file names so force stdin

ARGV[ARGC++] = "-"

}

{print "testing if here"}

{for (i = 1; i <= nf; i++)

 #print

 printf("%8s", $fld[i])

Operating Systems/AWK Tool in Unix Lecture Notes

PCP Bhatt/IISc, Bangalore M12/V1/June 04/24

}

 { print "" }' $*

bhatt@falerno [AWK] =>!s

sh sh2.awk 1 2 12 3 4 5 6 7 8 9 10 11 cricket.data

SGavaskar IND 108 125 10122 51.12 236 34 1 206.00 3.25 1-34

......

......

ABorder AUS 156 156 11174 50.56 265 27 39 39.10 2.28 11-96

In the examples above we have described a very powerful tool. It is hoped that with these

examples the reader should feel comfortable with the Unix tools suite.

