
Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/1

Module 15: Make Tool In UNIX
In Unix environment, Make is both a productivity enhancement utility as well as a

program management tool. It is particularly useful in managing the development of large-

sized programs. A program may be considered to be large sized when it uses a very large

number of functions or it may involve a large number of developers. It is more often the

case that different teams of programmers are engaged in developing different functions or

sub-parts of a large programming project. In most large-sized projects, one often requires

that some common definitions hold across all the functions under development. This is

more often the case and is true regardless of the number of persons involved in the

development (of large programming project). Clearly, all the teams must use and interpret

all common definitions consistently.

In this chapter we shall discuss the facilities which make tool makes available. Make tool

not only facilitates consistent usage of definitions in the large program development

context, but also helps to avoid wasteful re-compilations. Thus it enhances the

productivity of individuals as well as that of teams. As we shall, see it is also useful in the

context of software installations.

15.1 When to Use Make

Let us examine a commonly occurring scenario in a c program development effort

involving a large team of programmers. They all may be sharing a common (.h) file

which may have some commonly used data definitions. In case each member of such a

team has his own copy of (.h) file, then it would be very difficult to ensure consistency.

Not every member may compile his program with a consistent and current data

definitions. The problem becomes even more acute when, within a set of files, there are

frequent updates.

Let us illustrate how problems may arise in yet another scenario. For instance, suppose

some project implementation involves generating a large user-defined library for later use

and subsequent integration. Such a library may evolve over time. Some groups may offer

updated or new library modules and definitions for use by the rest of the project group

pretty regularly. Consistent use of a new and evolving library is imperative in such a

project. If different team members use inconsistent definitions or interpretations, then this

can potentially have disastrous consequences.

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/2

Note that both these scenarios correspond to large-sized applications development

environment. In such cases it is imperative that we maintain consistency of all the

definitions which may be spread over several files. Also, such development scenarios

often require very frequent re-compilations.

Make or make helps in the management of programs that spread over several files. The

need arises in the context of programming projects using any high level programming

language or even a book writing project in TEX. Mainly changes in the definitions like

(.h) files or modification of (.c) files and libraries of user-defined functions require to be

linked to generate a new executable. Large programs and projects require very frequent

re-compilations. Make can be also be used in a Unix context where tasks can be

expressed as Unix shell commands to account for certain forms of dependencies amongst

files. In these situation the use of make is advised.

Make is also useful in installation of new software. In almost all new installations, one

needs to relate with the present software configuration and from it, derive the

interpretations. This helps to determine what definitions the new software should assume.

Towards the end of this chapter we will briefly describe how installations software use a

mastermakefile. They essentially use several minimakefiles which helps in generating the

appropriate installation configuration. Both Windows and Unix offer their makefile

versions. Most of the discussion would apply to both these environments 1.

15.2 How Make Works

Make avoids unnecessary compiling. It checks recency of an object code relative to its

source. Suppose a certain source file has been modified but is not re-compiled. Make

would find that the compiled file is now older than the source. So, the dependency of the

object on the source will ensure re-compilation of source to generate new object file.

To ensure a consistency, make uses a rule-based inferencing system to determine the

actions needed. It checks on object code dependencies on sources by comparing its

recency with regards to time of their generation or modification. Actions in command

lines ensure consistency using rules of dependence. Any time a (.c) or a (.h) file is

modified, all the dependent objects are recreated.

Now we can state how make works: make ensures that a file, which is dependent on its

input files, is consistent with the latest definitions prevailing in the input files. This also

ensures that in the ensuing compilation, linking can be fully automated by Make. Thus, it

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/3

helps in avoiding typing out long error prone command sequences. Even the clean-up

process following re-compilation can be automated as we will see later.

Makefile Structure: The basic structure of make file is a sequence of targets,

dependencies, and commands as shown below:

| <TARGET> : SET of DEPENDENCIES /* Inline comments */|

| <TAB> command /* Note that command follows a tab */ |

| <TAB> command /* There may be many command lines */ |

| . |

| . |

| <TAB> command /* There may be many command lines */ |

--

The box above has one instance of a target with its dependencies paired with a possible

set of commands in sequence. A makefile is a file of such paired sequences.

The box above defines one rule in a makefile. A makefile may have several such rules.

Each rule identifies a target and its dependencies. Note that every single rule defines a

direct dependency. However, it is possible that there are nested dependencies, i.e. “a"

depends on “b" and “b" depends on “c". Dependencies are transitive and the dependency

of “a" on “c" is indirect (or we may say implied). Should any of the dependencies

undergo a modification, the reconstruction of the target is imperative. This is achieved

automatically upon execution of makefiles.

Nesting of dependencies happens when a certain dependency is a sub-target. The

makefile is then a description of a tree of sub-targets where the leaves are the elementary

files like (.c) or (.h) files or libraries which may be getting updated ever so often. We

shall use a one-level tree description for our first example. In subsequent examples, we

shall deal with multi-level target trees.

As a simple case, consider the following “helloworld" program. We will demonstrate the

use of a make file through this simple example.

Step1: Create a program file helloWorld.c as shown below:

#include<stdio.h>

#include<ctype.h>

main

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/4

{

printf("HelloWorld \n");

 }

Step2: Prepare a file called “Makefile" as follows:

This may be a comment

hello: helloWorld.c

cc -o hello helloWorld.c

this is all in this make file

Step3: Now give a command as follows:

make

Step4: Execute helloWorld to see the result.

To see the effect of make, first repeat the command make and note how make responds

to indicate that files are up to date needing no re-compilation. Now modify the program.

Let us change the statement in printf to:

printf("helloWorld here I come ! \n")

Now execute make again.

One can choose a name different from Makefile. However, in that case use:

make -f given_file_name.

To force make to re-compile a certain file one can simply update its time by a Unix touch

command as given below:

touch <filename> /* this updates its recent modification time */

Make command has the following other useful options:

• -n option: With this option, make goes through all the commands in makefile

 without executing any of them. Such an option is useful to just check out the

 makefile itself.

• -p option: With this option, make prints all the macros and targets as it progresses.

• -s option: With this option, make is silent. Essentially, it is the opposite of -p

 option.

• -i option : With this option make ignores any errors or exceptions which are

 thrown up. This is indeed very helpful in a development environment. During

 development, sometimes one needs to focus on a certain part of a program. One

 may have to do this with several modules in place. In these situations, one often

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/5

 wishes to ignore some obvious exceptions. This ensures that one is not bogged down

 in reaching the point of test which is in focus at the moment.

Another Example: This time around we shall consider a two-level target definition.

Suppose our executable \fin" depends upon two object files (a.o) and (b.o) as shown in

Figure 15.1. We may further have (a.o) depend upon (a.cc) and (x.h) and (y.h). Similarly,

(b.o) may depend upon (b.cc, z.h) and (y.h). In that case our dependencies would be as

shown in Figure 15.1. These dependencies dictate the following:

 Figure 15.1: Dependencies amongst files.

• A change in x.h will result in re-compiling to get a new a.o and fin.

• A change in y.h will result in re-compiling to get a new a.o, b.o, and fin.

• A change in z.h will result in re-compiling to get a new b.o and fin.

• A change in a.cc will result in re-compiling to get a new a.o and fin.

• A change in b.cc will result in re-compiling to get a new b.o and fin.

Assuming we are using a gnu g++ compiler, we shall then have a make file with the

following rules:

fin : a.o b.o /* the top level of target */

g++ -o fin a.o b.o /* the action required */

a.o : a.c x.h y.h /* the next level of targets */

g++ -g -Wall -c a.cc -o a.o /* hard coded command line */

b.o : b.c z.h y.h /* the next level of targets */

g++ -g -Wall -c b.cc -o b.o

x.h : /* empty dependencies */

y.h :

z.h : /* these rules are not needed */

The bottom three lines in the example have empty dependencies. These are also referred

to as pseudo targets. This make file clearly brings out the two levels of dependencies.

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/6

Also, all the command lines in this example use hard-coded commands. Hard-coded

commands are specific commands which are relevant only in that programming

environment. For instance, all commands here are relevant in the g++ context only. To

make make files more portable, we shall have to use generic symbols. Each such symbol

then can be assigned specific values by using macros as we shall see a little later.

Linking with Libraries: In Unix and c program development environments it is a

common practice to let users develop there own libraries. This helps in creating a

customized computing environment. In fact, come to think of it, the X series of graphics

package is nothing but a set of libraries developed by a team of programmers. These are

now available to support our windows and graphics packages.

In this example we shall think of our final executable to be fin which depends upon a.o

which in turn depends upon x.h, y.h and as in the last example. The library we shall

linkup with is defined as thelib and is generated by a program thelib.cc using definitions

from thelib.h. We shall make use of comments to elaborate upon and explain the purpose

of various make lines.

fin depends on a.o and a library libthelib.a

fin : a.o libthelib.a

g++ -o fin a.o -L -lthelib

a.o depends on three files a.c, x.h and y.h

The Wall option is a very thorough checking option

available under g++

a.o : a.cc x.h y.h

g++ -g -Wall -c a.cc

Now the empty action lines.

x.h :

y.h :

thelib.h :

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/7

Now the rules to rebuild the library libthelib.a

libthelib.a thelib.o

ar rv libthelib.a thelib.o

thelib.o: thelib.cc thelib.h

g++ -g -Wall thelib.cc

end of make file

If we run this make file we should expect to see the following sequence of actions

1. g++ -c a.cc

2. cc -c thelib.cc

3. ar rv libthelib.a thelib.o

4. a - thelib.o

5. g++ -o fin a.o -L -lthelib

15.3 Macros, Abstractions, and Shortcuts

We have now seen three make files. Let us examine some aspects of these files.

1. If we wish to use a c compiler we need to use the cc cmd. However, if we shift to MS

environment we shall have to use cl in place of cc. If we use the Borland compiler

then we need to use bcc. We, therefore, need to modify make files.

In addition, there are many repeated forms. For instance, the compiler used is always

gnu (g++) compiler.

Both of the factors above can be handled by using variables. We could define a

variable, say CC, which could be assigned the appropriate value like cl, cc, g++,

or bcc depending on which environment is being used.

Variables in make are defined and interpreted exactly as in shell scripts. For instance

we could define a variable as follows:

CC = g++ /* this is a variable definition */

the definition extends up to new line character or

up the beginning of the inline comment

In fact almost all environments support CC macro which expands to appropriate

compiler command, i.e., it expands to cc in Unix, cl in MS and bcc for Borland. A

typical usage in a command is shown below:

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/8

$(CC) -o p p.c /* here p refers to an executable */

Note that an in-built or a user-defined macro is used as $(defined Macro). Note that

the characters $ and () are required. Such a definition of a macro helps in porting

make files across the platforms. We may define CC also as a user defined macro.

2. We should notice some typical patterns used to generate targets. These may require

 some intermediate target which itself is further dependent on some sources.

 Consequently, many file-name stems are often repeated in the make file.

 In addition, we have also seen repeated use of the compilation options as in -g -Wall.

 One way to avoid having to make mistakes during the preparation of make files is to

 use user defined macros to capture both file name stems and flag patterns.

 Let us look at flags first. Suppose we have a set of flags for c compilation. We may

define a new macro as shown below :

CFLAGS = -o -L -lthelib

These are now captured as follows:

$(CC) $(CFLAGS) p.c

Another typical usage is when we have targets that require many objects as in the

example below:

t : p1.o p2.o p3.o /* here t is the target and pi the program stems */

We can now define macros as follows:

TARGET = t

OBJS = p1.o p2.o p3.o

$(TARGET): $(OBJS)

Now let us address the issue with file name or program name stems. Often we have a

situation in which a target like p.o is obtained by compiling p.c, i.e., we have the stem,

(i.e. the part of string without extension) repeated for source. All systems allow the use of

a macro ($*) to get the stem. The target itself is denoted by macro

($@).

So if we have a situation as follows:

target : several objects

cc cflags target target_stem.c

This can be encoded as follows :

$(TARGET): $(OBJS)

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/9

$(CC) $(CFLAGS) $@ $*.c

15.4 Inference Rules in Make

The use of macros results in literal substitutions. However, it also gives a sense of

generalization for use of a rule pattern. This is what precisely an inference rule does. In

an inference rule we define the basic dependency and invoke it repeatedly to get the

desired effect. For instance, we need a.c file to get an object or a.tex file to get a.dvi file.

These are established patterns and can be encoded as inference rules for make files.

An inference rule begins with a (.) (period) symbol and establishes the relationship. So a

.c.o means we need an a.c file for generating the a.o file and it may appear as follows:

.c.o:

 $(CC) $(CFLAGS) $*.c

In fact because the name stems of .c and o. file is to be the same we can use a built-in

macro ($<) to code the above set of lines as follows:

.c.o:

 $(CC) $(CFLAGS) $<

15.5 Some Additional Options

make allows use of some convenient options. For instance, if we wish to extend the range

of options for the file extensions then we define a suffix rule as follows:

.SUFFIXES .tex .in

This allows us to use the file extensions .tex and .in in our makefile. Suppose we wish to

use only a certain selected set of extensions. This can be done as follows

.SUFFIXES # this line erases all extension options

.SUFFIXES .in .out # this adds the selections .in and .out

Suppose we do not wish to see the enlisted sequences of makefile outputs then we may

use a rule as follows :

.SILENT (also make -s as an option)

Suppose we wish that makefile on run should not abort when an error occurs, then we can

choose an option -i or IGNORE rule.

.IGNORE (or use make -i as an option)

Use make -p to elicit information on the macros used in makefile.

We may on occasions like to use a makefile but may wish to get rid of all the

intermediate outputs. This can be done by using pseudo-targets as shown below.

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/10

cleanup: # absence of dependency means always true

rm *.o # remove the .o files

rm *.k # remove some other files that are not needed

As the case above shows we may have more than one action when multiple actions are

required to be taken.

In case a command line in a make file is very long and spills beyond the terminal window

width, then we can extend it to continue on the next line. This is done by using \

(backslash) at the end. This also is useful to make some statement more explicitly

readable as shown below.

p.o : p.c \

p.h

Table 15.1: Use of conventions.

Gnumake: Amongst the facilities, gnu make allows us to include files. This is useful in

the context of defining a set of make variables in one file for an entire project and include

it when needed. The include statement is used as follows:

include project.mk common_vars.mk other_files.mk

Some Standard Conventions: Over the years some conventions have emerged in using

make files. These identify some often used target names. In Table 15.1 we list these with

their interpretations.

Typically, one provides a makefile for each directory in which one codes. One can create

a top level directory and have the make commands executed to change the directory and

run the make there as shown below:

all:

(cd src; make)

(cd math; make)

(cd ui; make)

Each command launched by make gets launched within its own shell. Typically this is

Bourne shell.

Operating Systems/Make Tool In UNIX Lecture Notes

PCP Bhatt/IISc, Bangalore M15/V1/June 04/11

Imake: Imake program generates platform specific make files. One writes a set of

general rules and if configured properly, it yields a suitable makefile for the individual

platforms. This is achieved through a template file called “Imake.tmpl" which first

determines the machine configuration and the OS (as sun.cf for sun and sgi.cf for sgi).

Next it looks for the local customization in site.def and project specific configuration in

“Project.tmpl". If needed, it also uses the X11 release and motif-related information. The

best way to create Imake files is to use an older file as a template and modify it to suit the

present needs.

15.6 Mastermakefiles

We notice that we had to specify the dependencies explicitly. Of course, we now had the

luxury of the file name stems which could be encoded. However, it often helps to use

some compiler options which generate the dependencies. The basic idea is to generate

such dependencies and use these repeatedly. For instance, the gnu compiler g++ with –

MM option gets all the dependencies.

Once we use the (-MM) type of option to generate the options, clearly we are generating

minimakefiles within a mastermakefile. This form of usage is also done by programs that

install make using makefiles.

