
Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/1

Module 9: OS and Security
Computers, with their ubiquitous presence, have ceased to be a wonder they once were.

Their usage is pervasive. Information access and delivery from, and to, a remote location

via internet is common. Today many societal services like railway time-table or election

results are rendered through computers. The notion of electronic commerce has given

fillip to provisioning commercial services as well. Most individuals use computers to

store private information at home and critical professional information at work. They also

use computers to access information from other computers anywhere on the net. In this

kind of scenario, information is the key resource and needs to be protected.

The OS, being the system's resource regulator, must provide for security mechanisms. It

must not only secure the information to protect the privacy but also prevent misuse of

system resources. Unix designers had aimed to support large-scale program development

and team work. The main plank of design was flexibility and support tools. The idea was

to promote creation of large programs through cooperative team efforts. All this was long

before 9/11. Security has become a bigger issue now. Much of Unix provisioning of

services was with the premise that there are hardly, if any, abuses of system. So, Unix

leaves much to be desired in respect of security. And yet, Unix has the flexibility to

augment mechanisms that primarily protect users resources like files and programs. Unix

incorporates security through two mechanisms, user authentication and access control.

We shall elaborate on both these aspects and study what could be adequate security

measures. We begin with some known security breaches. That helps to put security

measures in proper perspective.

9.1 Security Breaches

We first need to comprehend the types of security breaches that may happen. Breaches

may happen with malicious intent or may be initiated by users inadvertently, or

accidentally. They may end up committing a security breach through a mis-typed

command or ill understood interpretation of some command. In both these instances the

OS must protect the interest of legitimate users of the system. Unix also does not rule out

a malicious access with the intent to abuse the system. It is well known that former

disgruntled employees often attempt access to systems to inflict damages or simply

corrupt some critical information. Some malicious users' actions may result in one of the

following three kinds of security breaches:

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/2

1. Disclosure of information.

2. Compromising integrity of data.

3. Denial of service to legitimate users of the system.

To launch an attack, an attacker may correctly guess a weak password of a legitimate

user. He can then access the machine and all HW and SW resources made available to

that user. Note that a password is an intended control (a means to authenticate a user) to

permit legitimate access to system resources. Clearly, a malicious user may employ

password racking methods with the explicit intent to bypass the intended controls. He

may access classified information and may also misuse the system resources. An un

authorized access ay be launched to steal precious processor cycles resulting in denial of

service. Or, he may be able to acquire privileged access to modify critical files corrupting

sensitive data. This would be an act of active misuse. Some activities like watching the

traffic on a system or browsing without modifying files may be regarded as an act of

passive misuse. Even this is a breach of security as it does lead to disclosure. It may

result in some deterioration, albeit not noticeable, in the overall services as well.

9.1.1 Examples of Security Breaches

Here we shall discuss a few well known attacks that have happened and have been

recorded. Study of these examples helps us to understand how security holes get created.

Besides, it helps us to determine strategies to plug security holes as they manifest. Next

we describe a few attack scenarios. Not all of these scenarios can be handled by OS

control mechanisms. Nonetheless, it is very revealing to see how the attacks happen.

 External Masquerading: This is the case of unauthorized access. The access

may be via a communication media tap, recording and playback. For instance, a

login session may be played back to masquerade another user. The measures

require a network-based security solution.

 Pest Programs: A malicious user may use a pest program to cause a subsequent

harm. Its effect may manifest at some specified time or event. The Trojan horse

and virus attacks fall in this category. The main difference between a Trojan horse

and a virus is that, a virus is a self reproducing program. Some virus writers have

used the Terminate and Stay Resident (TSR) program facility in Micro-soft

environments to launch such attacks. The pest programs require internal controls

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/3

to counter. Generally, the time lag helps the attacker to cover the tracks.

Typically, a virus propagation involves the following steps:

 Remote copy: In this step a program is copied to a remote machine.

 Remote execute: The copied program is instructed to execute. The step requires

repeating the previous step on the other connected machine, thereby propagating

the virus.

 Bypassing internal controls: This is achieved usually by cracking passwords, or

using compiler generated attack to hog or deny resources.

 Use a given facility for a different purpose: This form of attack involves use of

a given facility for a purpose other than it was intended for. For example, in Unix

we can list files in any directory. This can be used to communicate secret

information without being detected. Suppose `userB' is not permitted to

communicate or access files of `userA'. When `userB' access files of `userA' he

will always get a message permission denied. However, `userA' may name his

files as atnine, tonight, wemeet. When `userB' lists the files in the directory of

`userA' he gets the message “at nine tonight we meet", thereby defeating the

access controls.

 Active authority misuse: This happens when an administrator (or an individual)

abuses his user privileges. A user may misuse the resources advanced to him in

good faith and trust. An administrator may falsify book keeping data or a user

may manipulate accounts data or some unauthorized person may be granted an

access to sensitive information.

 Abuse through inaction: An administrator may choose to be sloppy (as he may

be disgruntled) in his duties and that can result in degraded services.

 Indirect abuse: This does not quite appear like an attack and yet it may be. For

instance, one may work on machine `A' to crack a protection key on machine `B'.

It may appear as a perfectly legal study on machine `A' while the intent is to break

the machine `B' internal controls.

We next discuss the commonly used methods of attacks. It is recommended to try a few

of these in off-line mode. With that no damage to the operating environment occurs nor is

the operation of an organization affected.

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/4

 The Password spoof program: We consider the following Trojan horse and the

effect it generates. It is written in a Unix like command language.

B1='ORIGIN: NODE whdl MODULE 66 PORT 12'

B2='DESTINATION:'

FILE=$HOME/CRYPT/SPOOFS/TEST

trap '' 1 2 3 5 15

echo $B1

sleep 1

echo ''

echo $B2

read dest

echo 'login:

read login

stty -echo

echo 'password:

read password

stty echo

echo ''

echo $login $passwd >> spooffile

echo 'login incorrect'

exec login

The idea is quite simple. The program on execution leaves a login prompt

on the terminal. To an unsuspecting user it seems the terminal is available

for use. A user would login and his login session with password shall be

simply copied on to spooffile. The attacker can later retrieve the login

name and password from the spooffile and now impersonate the user.

 Password theft by clever reasoning: In the early days passwords in Unix

systems were stored in an encrypted form under /etc/password. The current

practice of using a shadow file will be discussed later. So, in early days, the safety

of password lay in the difficulty associated with decrypting just this file. So

attackers used to resort to a clever way of detecting passwords. One such attack

was through an attempt to match commonly used mnemonics, or use of

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/5

convenient word patterns. Usually, these are words that are easy to type or recall.

The attacker generated these and used the encrypting function to encrypt them.

Once the encrypted pattern matched, the corresponding password was

compromised.

 Logic Bomb: A logic bomb is usually a set-up like the login spoof described

earlier. The attacker sets it up to go off when some conditions combine to happen.

It may be long after the attacker (a disgruntled employee for instance) has quit the

organization. This may leave no trail. Suppose we use an editor that allows setting

of parameters to OS shell, the command interpreter. Now suppose one sets up a

Unix command rm *.* and puts it in a file called EditMe and sends it over to the

system administrator. If the system administrator opens the file and tries to edit

the file, it may actually remove all the files unless he opens it in a secure

environment.

Also, if the administrator attempts opening this as a user, damage would be less,

compared to when he opens it as a root.

 Scheduled File Removal: One of the facilities available on most OSs is

scheduled execution of a program or a shell script. Under Unix this is done by

using at command. A simple command like : rm -f /usr at 0400 saturday attack

This can result in havoc. The program may be kept in a write protected directory

and then executed at some specified time. The program recursively removes files

without diagnostic messages from all users under usr.

 Field Separator Attack: The attack utilizes some OS features. The following

steps describe the attack :

1. The attacker redefines the field separator to include backslash character so

that path names such as /coo/koo are indistinguishable from coo koo.

2. The attacker knowing that some system program, say sysprog, uses

administrative privilege to open a file called /coo/koo creates a program

coo and places it in an accessible directory. The program is coded to

transfer privileges from the system to the user via a copied OS shell.

3. The attacker invokes sysprog which will try to open /coo/koo with the

administrative privileges but will actually open the file coo since the field

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/6

separator has been redefined. This will have the desired effect of

transferring privileges to the user, just as the attacker intended.

 Insertion of Compiler Trojan Horse: To launch an attack with a very widely

distributed effect an attacker may choose a popular filtering program based Trojan

horse. A compiler is a good candidate for such an attack. To understand an attack

via a compiler Trojan horse, let us first describe how a compiler works:

Compile: get (line);

Translate (line);

A real compiler is usually more complex than the above description. Even this

models a lexical analysis followed by the translating phases in a compiler. The

objective of the Trojan horse would be to look for some patterns in the input

programs and replace these with some trap door that will allow the attacker to

attack the system at a later time. Thus the operation gets modified to:

Compile : get (line);

if line == "readpwd(p)" then translate (Trojan horse insertion)

else

translate (line);

 The Race Condition Attack: A race condition occurs when two or more

operations occur in an undefined manner. Specifically, the attacker attempts to

change the state of the file system between two file system operations. Usually,

the program expects these two operations to apply to the same file, or expects the

information retrieved to be the same. If the file operations are not atomic, or do

not reference the same file this cannot be guaranteed without proper care.

In Solaris 2.x's ps utility had a security hole that was caused by a race condition.

The utility would open a temporary file, and then use the chown() system call

with the file's full path to change its ownership to root. This sequence of events

was easily exploitable. All that an attacker now had to do was to first slow down

the system, and find the file so created, delete it, and then slip in a new SUID

world writable file. Once the new file was created with that mode and with the

ownership changed by chown to root by the insecure process, the attacker simply

copies a shell into the file. The attacker gets a root shell.

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/7

The problem was that the second operation used the file name and not the file

descriptor. If a call to fchown() would have been used on the file descriptor

returned from the original open() operation, the security hole would have been

avoided. File names are not unique. The file name /tmp/foo is really just an entry

in the directory /tmp. Directories are special files. If an attacker can create, and

delete files from a directory the program cannot trust file names taken from it. Or,

to look at it in a more critical way, because the directory is modifiable by the

attacker, a program cannot trust it as a source of valid input. Instead it should use

file descriptors to perform its operations. One solution is to use the sticky bit (see

Aside). This will prevent the attacker from removing the file, but not prevent the

attacker from creating files in the directory. See below for a treatment of symbolic

link attacks.

An Aside: Only directories can have sticky bit set. When a directory has the

sticky bit turned on, anyone with the write permission can write (create a file) to

the directory, but he cannot delete a file created by other users.

 The Symlink Attack: A security hole reported for SUN's license manager

stemmed from the creation of a file without checking for symbolic links (or soft

links). An open() call was made to either create the file if it did not exist, or open

it if it did exist. The problem with a symbolic link is that an open call will follow

it and not consider the link to constitute a created file. So if one had /tmp/foo.

symlinked to /.rhosts or "/root/.rhosts), the latter file would be transparently

opened. The license manager seemed to have used the O_CREAT flag with the

open call making it create the file if it did not exist. To make matters worse, it

created the file with world writable permissions. Since it ran as root, the .rhosts

file could be created, written to, and root privileges attained.

9.2 Attack Prevention Methods

Attack prevention may be attempted at several levels. These include individual screening

and physical controls in operations. Individual screening would require that users are

screened to authenticate themselves and be responsible individuals. Physical controls

involve use of physical access control. Finally, there are methods that may require

configuration controls. We shall begin the discussion on the basic attack prevention with

the defenses that are built in Unix. These measures are directed at user authentication and

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/8

file access control.

9.2.1 User Authentication

First let us consider how a legitimate user establishes his identity to the system to access

permitted resources. This is achieved typically by username/password pair. When the

system finishes booting, the user is prompted for a username and then a password in

succession. The password typed is not echoed to the screen for obvious reasons. Once the

password is verified the user is given an interactive shell from where he can start issuing

commands to the system. Clearly, choosing a clever password is important. Too simple a

password would be an easy give away and too complex would be hard to remember.

So how can we choose a nice password?

Choosing a good password: A malicious user usually aims at obtaining a complete

control over the system. For this he must acquire the superuser or root status. Usually, he

attacks vulnerable points like using badly installed software, bugs in some system

software or human errors. There are several ways to hack a computer, but most ways

require extensive knowledge. A relatively easier way is to log in as a normal user and

search the system for bugs to become superuser. To do this, the attacker will have to have

a valid user code and password combination to start with. Therefore, it is of utmost

importance that all users on a system choose a password which is quite difficult to guess.

The security of each individual user is closely related to the security of the whole system.

Users often have no idea how a multi-user system works and do not realize that by

choosing an easy to remember password, they indirectly make it possible for an attacker

to manipulate the entire system. It is essential to educate the users well to avoid

lackadaisical attitudes. For instance, if some one uses a certain facility for printing or

reading some mails only, he may think that security is unimportant. The problem arises

when someone assumes his identity. Therefore, the users should feel involved with the

security of the system. It also means that it is important to notify the users of the security

guidelines. Or at least make them understand why good passwords are essential.

Picking good passwords: We will look at some methods for choosing good passwords.

A typical good password may consist up to eight characters. This means passwords like

`members only' and `members and guests' may be mutually inter-changeable. A password

should be hard to guess but easy to remember. If a password is not easy to remember then

users will be tempted to write down their password on yellow stickers which makes it

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/9

futile. So, it is recommended that a password should not only have upper or lowercase

alphabets, but also has a few non-alphanumeric characters in it. The non-alphanumeric

characters may be like (%,,*, =) etc. The use of control characters is possible, but not all

control characters can be used, as that can create problems with some networking

protocols. We next describe a few simple methods to generate good passwords.

 Concatenate two words that together consist of seven characters and that have no

connection to each other. Concatenate them with a punctuation mark in the

middle and convert some characters to uppercase like in 'abLe+pIG'.

 Use the first characters of the words of not too common a sentence. From the

sentence “My pet writers are Wodehouse and Ustinov", as an example, we can

create password “MpwaW+U!”. Note in this case we have an eight-character

password with uppercase characters as well as punctuation marks.

 Alternatively, pick a consonant and one or two vowels resulting in a

pronounceable (and therefore easy to remember) word like 'koDuPaNi'.

This username/password information is kept traditionally in the /etc/passwd file,

commonly referred to simply as the password file. A typical entry in the password file is

shown below:

user:x:504:504::/home/user:/bin/bash

There are nine colon separated fields in the above line. They respectively refer to the user

name, password x (explained later), UID, GID, the GECOS field 1, home directory and

users' default shell. In the early implementations of the Unix, the password information

was kept in the passwd file in plain text. The passwd file has to be world readable as

many programs require to authenticate themselves against this file. As the expected trust

level enhanced, it became imperative to encrypt the password as well. So, the password

field is stored in an encrypted format. Initially, the crypt function was used extensively to

do this. As the speed of the machines increased the encrypted passwords were rendered

useless by the brute force techniques. All a potential attacker needed to do is to get the

passwd file and then do a dictionary match of the encrypted password. This has led to

another innovation in the form of the shadow suite of programs. In modern systems

compatible with the shadow suite the password information is now kept in the

/etc/shadow file and the password field in the passwd file is filled with an x (as indicated

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/10

above). The actual encrypted password is kept in the /etc/shadow file in the following

format :

user:1UaV6PunD$vpZUg1REKpHrtJrVi12HP.:11781:0:99999:7:::

The second field here is the password in an md5 hash 2. The other fields relate to special

features which the shadow suite offers. It offers facilities like aging of the passwords,

enforcing the length of the passwords etc. The largest downside to using the shadow

passwords is the difficulty of modifying all of the programs that require passwords from

the appropriate file to use /etc/shadow instead. Implementing other new security

mechanisms presents the same difficulty. It would be ideal if all of these programs used a

common framework for authentication and other security related measures, such as

checking for weak passwords and printing the message of the day.

Pluggable authentication modules Red Hat and Debian Linux distributions ship with

“Pluggable Authentication Modules" (PAM for short) and PAM-aware applications.

PAM offers a flexible framework which may be customized as well. The basic PAM-

based security model is shown in Figure 9.1. Essentially, the figure shows that one may

have multiple levels of authentication, each invoked by a separate library module. PAM

aware applications use these library modules to authenticate. Using PAM modules, the

administrator can control exactly how authentication may proceed upon login. Such

authentications go beyond the traditional /etc/passwd file checks. For instance, a certain

application may require the pass-word as well as a form of bio-metric authentication. The

basic strategy is to incorporate a file (usually called /etc/pam.d/login) which initiates a

series of authentication checks for every login attempt. This file ensures that a certain

authentication check sequence is observed. Technically, the library modules may be

selectable. These selections may depend upon the severity of the authentication required.

The administrator can customize the needed choices in the script. At the next level, we

may even have an object based security model in which every object access would

require authentication for access, as well as methods invocation.

For now we shall examine some typical security policies and how Unix translates

security policies in terms of access control mechanisms.

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/11

9.2.2 Security Policy and Access Control

Most access control mechanisms emanate from a stated security policy. It is important to

learn to design a security policy and offer suitable access mechanisms that can support

security policies. Security policy models have evolved from many real-life operating

scenarios. For instance, if we were to follow a regime of defense forces, we may resort to

a hierarchy based policy. In such a policy, the access to resources shall be determined by

associating ranks with users. This requires a security-related labeling on information to

permit access. The access is regulated by examining the rank of the user in relation to the

security label of the information being sought. For a more detailed discussion the reader

may refer where there is a discussion on how to specify security policies as well.

If we were to model the security policies based on commercial and business practices or

the financial services model, then data integrity would take a very high precedence. This

like, the accounts and audit practices, preserves the integrity of data at all times. In

practice, however, we may have to let the access be governed by ownership (who own

the information) and role definitions of the users. For instance, in an organization, an

individual user may own some information but some critical information may be owned

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/12

by the institution. Also, its integrity should be impregnable. And yet the role of a system

manager may require that he has access privileges which may allow him a free reign in

running the system smoothly.

Almost all OSs provide for creating system logs of usage. These logs are extremely

useful in the design of Intrusion Detection Systems (IDS). The idea is quite simple. All

usages of resources are tracked by the OS and recorded. On analysis of the recorded logs

it is possible to determine if there has been any misuse. The IDS helps to detect if a

breach has occurred. Often this is after the event has taken place. To that extent the IDS

provides a lot of input in designing security tools. With IDS in place one can trace how

the attack happened. One can prevent attacks from happening in future. A full study and

implementation of IDS is beyond the scope of this book. We would refer the reader to

Amoroso's recent book on the subject.

Defenses in Unix: Defenses in Unix are built around the access control 3. Unix's access

control is implemented through its file system. Each file (or directory) has a number of

attributes, including a file name, permission bits, a UID and a GID. The UID of a file

specifies its owner. In Chapter 2, we had explained that the permission bits are used to

specify permissions to read (r), write (w), and execute (x). These permissions are

associated with every file of every user, for the members of the user's group, and for all

other users of that system. For instance, the permission string rwxr-x--x specifies that the

owner may read, write and execute, the user's group members are allowed to read and

execute it, while all the other users of the system may be permitted to only execute this

file. A dash (`-') in the permission set indicates that the access rights are not permitted.

Furthermore, each process in Unix has an effective and a real UID as well as an effective

and a real GID associated with it. The real UID (and GID) are the primary identifications

that Unix systems continually maintain based on the identifications assigned at the time

of accounts creation. However, access rights and privileges evolve over time. The

effective identifications precisely reflect that. A process's effective identification

indicates the access privileges. Whenever a process attempts to access a file, the kernel

will use the process's effective UID and GID to compare them with the UID and the GID

associated with the file to decide whether or not to grant the request.

As we stated earlier, Unix logs the systems' usage. Unix kernel, and system processes,

store pertinent information in the log files. The logs may be kept either locally, or

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/13

centrally, on an network server. Sometimes logs are prepared for a fixed duration of time

(like for 1 to 30 days) or archived. The logs may be analyzed on-line or off-line on a

secured isolated system. An analysis on a secured isolated system has the advantage that

it cannot be modified by an attacker (to erase his trace). Also, the analysis can be very

detailed as this is the only purpose of such a system.

With the security concerns coming into focus, security standards have emerged. Usually

the security standards recommend achieving minimal assured levels of security through

some form of configuration management. Most OSs, Unix included, permit a degree of

flexibility in operations by appropriately configuring the system resources. In addition,

modern Unix systems support a fairly comprehensive type of auditing known as C2 audit.

This is so named because it fulfils the audit requirements for the TCSEC C2 security

level.

Networking concerns: Realistically speaking almost all machines are networked. In any

case every machine has built-in network (NW) support. The default NW support is

TCP/IP or its variant. This is very assuring from the point of compatibility. The range of

NW services support includes remote terminal access and remote command execution

using rsh, rlogin commands and remote file transfer using ftp command. The remote

service soliciting commands are collectively known as the r commands. The NW File

System (NFS) is designed to offer transparency to determine the location of the file. This

is done by supporting mounting of a remote file as if it was on the local file system. In

fact, NFS technically supports multiple hosts to share files over a local area network

(LAN). The Network Information System (NIS), formally known as the Sun Yellow

Pages, enables hosts to share systems and NW databases. The NW databases contain data

concerning user account information, group membership, mail aliases etc. The NFS

facilitates centralized administration of the

file system. Basically, the r commands are not secure. There are many reasons why these

are insecure operations. We delineate some of these below.

 The primary one being that Unix was designed to facilitate usage with a view to

cooperating in flexible ways. The initial design did not visualize a climate of

suspicion. So, they assumed that all hosts in the network are trusted to play by the

rules, e.g. any request arising out of a TCP/IP port below 1024 is considered to be

trusted.

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/14

 These commands require a simple address-based authentication, i.e. the source

address of a request is used to decide whether or not to grant an access or offer a

service.

 They send clear text passwords over the network.

Now a days there are other better alternatives to the r commands, namely ssh, slogin and

scp, respectively, which use strong ssl public key infrastructure to encrypt their traffic.

Before an NFS client can access files on a file system exported by an NFS server, it needs

to mount the file system. If a mount operation succeeds, the server will respond with a

file handle, which is later used in all accesses to that file system in order to verify that the

request is coming from a legitimate client. Only clients that are trusted by the server are

allowed to mount a file system. The primary problem with NFS is the weak

authentication of the mount request. Usually the authentication is based on IP address of

the client machine. Note that it is not difficult to fake an IP address!!. So, one may

configure NIS to operate with an added security protocol as described below.

 Ensure minimally traditional Unix authentication based on machine identification

and UID.

 Augment data encryption standard (DES) authentication .

The DES authentication provides quite strong security. The authentication based on

machine identification or UID is used by default while using NFS. Yet another

authentication method based on Kerberos is also supported by NIS. The servers as well as

the clients are sensitive to attacks, but some are of the opinion that the real security

problem with NIS lies in the client side. It is easy for an intruder to fake a reply from the

NIS server. There are more secure replacements for the NIS as well (like LDAP), and

other directory services.

Unix security mechanisms rely heavily on its access control mechanisms. We shall study

the access control in more detail a little later. However, before we do that within the

broad framework of network concerns we shall briefly indicate what roles the regulatory

agencies play. This is because NWs are seen as a basic infrastructure.

Internet security concerns and role of security agencies: In USA, a federally funded

Computer Emergency Response Team (CERT) continuously monitors the types of

attacks that happen. On its site it offers a lot of advisory information. It even helps

organizations whose systems may be under attack. Also, there is critical infrastructure

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/15

protection board within whose mandate it is to protect internet from attack. The National

Security Agency (NSA) acts as a watchdog body and influences such decisions as to what

level of security products may be shipped out of USA. The NSA is also responsible to

recommend acceptable security protocols and standards in USA. NSA is the major

security research agency in USA. For instance, it was NSA that made the

recommendation on product export restriction beyond a certain level of DES security (in

terms of number of bits).

In India too, we have a board that regulates IT infrastructure security. For instance, it has

identified the nature of Public Key Infrastructure. Also, it has identified organizations

that may offer security-related certification services. These services assure of

authentication and support non-repudiation in financial and legal transactions. It has set

standards for acceptable kind of digital signatures.

For now let us return to the main focus of this section which is on access control. We

begin with the perspective of file permissions.

File permissions: The file permissions model presents some practical difficulties. This is

because Unix generally operates with none or all for group permissions. Now consider

the following scenario:

There are three users with usernames Bhatt, Kulish, and Srimati and they belong to the

group users. Is there anyway for Bhatt to give access to a file that he owns to Kulish

alone. Unfortunately it is not possible unless Bhatt and Kulish belong to an identifiable

group (and only these two must be members of that group) of which Srimati is not a

member. To allow users to create their own groups and share files, there are programs

like sudo which the administrator can use to give limited superuser privileges to ordinary

users. But it is cumbersome to say the least. There is another option in the BSD family of

Unix versions, where a user must belong to the Wheel group to run programs like sudo or

su. This is where the Access Control Lists (ACLs) and the extended attributes come into

picture. Since access control is a major means of securing in Unix we next discuss that.

More on access control in Unix: Note that in Unix all information is finally in the form of

a file. So everything in Unix is a file. All the devices are files (one notable exception

being the network devices and that too for historical reasons). All data is kept in the form

of files. The configuration for the servers running on the system is kept in files. Also, the

authentication information itself is stored as files. So, the file system's security is the

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/16

most important aspect in Unix security model. Unix provides access control of the

resources using the two mechanisms:

(a) The file permissions, uid, gid.

(b) User-name and password authentication.

The file access permissions determine whether a user has access permissions to seek

requested services. Username and password authentication is required to ensure that the

user is who he claims to be. Now consider the following rwx permissions for user, group

and others.

$ ls -l

drwxrwxr-x 3 user group 4096 Apr 12 08:03 directory

-rw-rw-r-- 1 user group 159 Apr 20 07:59 sample2e.aux

The first line above shows the file permissions associated with the file identified as a

directory. It has read, write and execute permission for the user and his group and read

and execute for others. The first letter `d' shows that it is a directory which is a file

containing information about other files. In the second line the first character is empty

which indicates that it is a regular file. Occasionally, one gets to see two other characters

in that field. These are `s' and `l', where `s' indicates a socket and `l' indicates that the file

is a link. There are two kinds of links in Unix. The hard link and the soft link (also known

as symbolic links). A hard link is just an entry in the directory pointing to the same file

on the hard disk. On the other hand, the symbolic link is another separate file pointing to

the original file. The practical difference is that a hard link has to be on the same device

as the original but the symbolic link can be on a different device. Also, if we remove a

file, the hard link for the file will also be removed. In the case of a symbolic link, it will

still exist pointing no where.

In Unix every legitimate user is given a user account which is associated with a user id

(Unix only knows and understands user ids here to in referred as UIDs).The mapping of

the users is maintained in the file /etc/passwd. The UID 0 is reserved. This user id is a

special superuser id and is assigned to the user ROOT. The SU ROOT has unlimited

privileges on the system. Only SU ROOT can create new user accounts on a system. All

other UIDs and GIDs are basically equal.

A user may belong to one or more groups up to 16. A user may be enjoined to other

groups or leave some groups as long as the number remains below the number permitted

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/17

by the system. At anytime the user must belong to at least one group. Different flavors of

Unix follow different conventions. Linux follows the convention of creating one group

with the same name as the username whenever a new user id is created. BSDs follow the

convention of having all the ordinary users belong to a group called users.

It is to be noted that the permissions are matched from left to right. As a consequence, the

following may happen. Suppose a user owns a file and he does not have some

permission. However, suppose the group (of which he also is a member) has the

permission. In this situation because of the left to right matching, he still cannot have

permission to operate on the file. This is more of a quirk as the user can always change

the permissions whichever way he desires if he owns the file. The user of the system

must be able to perform certain security critical functions on the system normally

exclusive to the system administrator, without having access to the same security

permissions. One way of giving users' a controlled access to a limited set of system

privileges is for the system to allow the execution of a specified process by an ordinary

user, with the same permissions as another user, i.e. system privileges. This specified

process can then perform application level checks to insure that the process does not

perform actions that the user was not intended to be able to perform. This of course

places stringent requirements on the process in terms of correctness of execution, lest the

user be able to circumvent the security checks, and perform arbitrary actions, with system

privileges.

Two separate but similar mechanisms handle impersonation in Unix, the so called set

UID, (SUID), and set-GID (SGID) mechanisms. Every executable file on a file system so

configured, can be marked for SUID/SGID execution. Such a file is executed with the

permissions of the owner/group of the file, instead of the current user. Typically, certain

services that require superuser privileges are wrapped in a SUID superuser program, and

the users of the system are given permission to execute this program. If the program can

be subverted into performing some action that it was not originally intended to perform,

serious breaches of security can result.

The above system works well in a surprising number of situations. But we will illustrate a

few situations where it fails to protect or even facilitates the attacker. Most systems today

also support some form of access control list (ACL) based schemes

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/18

Access control lists: On Unix systems, file permissions define the file mode as well. The

file mode contains nine bits that determine access permissions to the file plus three

special bits. This mechanism allows to define access permissions for three classes of

users: the file owner, the owning group, and the rest of the world. These permission bits

are modified using the chmod utility. The main advantage of this mechanism is its

simplicity. With a couple of bits, many permission scenarios can be modeled. However,

there often is a need to specify relatively fine-grained access permissions.

Access Control Lists (ACLs) support more fine grained permissions. Arbitrary users and

groups can be granted or denied access in addition to the three traditional classes of users.

The three classes of users can be regarded as three entries of an Access Control List.

Additional entries can be added that define the permissions which the specific users or

groups are granted.

An example of the use of ACLs: Let's assume a small company producing soaps for all

usages. We shall call it Soaps4All. Soaps4All runs a Linux system as its main file server.

The system administrator of Soaps4All is called Damu. One particular team of users, the

Toileteers, deals with the development of new toilet accessories. They keep all their

shared data in the sub-directory /home/toileteers/shared. Kalyan is the administrator of

the Toileteers team. Other members are Ritu, Vivek, and Ulhas.

Username Groups Function

Damu users System administrator

Kalyan toileteers, jumboT, perfumedT administrator

ritu toileteers, jumboT

vivek toileteers, perfumedT

ulhas toileteers, jumboT, perfumedT

Inside the shared directory, all Toileteers shall have read access. Kalyan, being the

Toileteers administrator, shall have full access to all the sub-directories as well as to files

in those sub-directories. Everybody who is working on a project shall have full access to

the project's sub-directory in /home/toileteers/shared.

Suppose two brand new soaps are under development at the moment. These are called

Jumbo and Perfumed. Ritu is working on Jumbo. Vivek is working on Perfumed. Ulhas is

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/19

working on both the projects. This is clearly reflected by the users' group membership in

the table above.

We have the following directory structure:

$ ls -l

drwx------ 2 Kalyan toileteers 1024 Apr 12 12:47 Kalyan

drwx------ 2 ritu toileteers 1024 Apr 12 12:47 ritu

drwxr-x--- 2 Kalyan toileteers 1024 Apr 12 12:48 shared

drwx------ 2 ulhas toileteers 1024 Apr 12 13:23 ulhas

drwx------ 2 vivek toileteers 1024 Apr 12 12:48 vivek

/shared$ls -l

drwxrwx--- 2 Kalyan jumbo 1024 Sep 25 14:09 jumbo

drwxrwx--- 2 Kalyan perfumed 1024 Sep 25 14:09 perfumed

Now note the following:

 Ritu does not have a read access to /home/toileteers/shared/perfumed.

 Vivek does not have read access to /home/toileteers/shared/jumbo.

 Kalyan does not have write access to files which others create in any project sub-

directory.

The first two problems could be solved by granting everyone read access to the

/home/toileteers/shared/ directory tree using the others permission bits (making the

directory tree world readable). Since nobody else but Toileteers have access to the

/home/toileteers directory, this is safe. However, we would need to take great care of the

other permissions of the /home/toileteers directory.

Adding anything to the toileteers directory tree later that is world readable is impossible.

With ACLs, there is a better solution. The third problem has no clean solution within the

traditional permission system.

The solution using ACLs: The /home/toileteers/shared/ sub-directories can be made

readable for Toileteers, and fully accessible for the respective project group. For Kalyan's

administrative rights, a separate ACL entry is needed. This is the command to grant read

access to the Toileteers. This is in addition to the existing permissions of other users and

groups:

$setfacl -m g:toileteers:rx *

$getfacl *

Operating Systems/OS and Security Lecture Notes

PCP Bhatt/IISc, Bangalore M9/V1/June 04/20

file: jumbo

owner: Kalyan

group: jumbo

user::rwx

group::rwx

group:toileteers:r-x

mask:rwx

other:---

file: perfumed

owner: Kalyan

group: perfumed

user::rwx

group::rwx

group:toileteers:r-x

mask:rwx

other:---

Incidentally, AFS(Andrew File System), and XFS (SGI's eXtended File System) support

ACLs.

