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Module 7: Inter-Process Communication 
Processes execute to accomplish specified computations. An interesting and innovative 

way to use a computer system is to spread a given computation over several processes. 

The need for such communicating processes arises in parallel and distributed processing 

contexts. Often it is possible to partition a computational task into segments which can be 

distributed amongst several processes. Clearly, these processes would then form a set of 

communicating processes which cooperate in advancing a solution. In a highly 

distributed, multi-processor system, these processes may even be resident on different 

machines. In such a case the communication is supported over a network. A 

comprehensive coverage of distributed systems is beyond the scope of this book. There 

are texts like Tanenbaum and Steen [8] which are exclusively devoted to this topic. All 

the same, we shall study some of the basics to be able to do the following: 

 How to spawn (or create) a new process. 

 How to assign a task for execution to this newly spawned process. 

 A few mechanisms to enable communication amongst processes. 

 Synchronization amongst these processes. 

In most cases an IPC package is used to establish inter-process communication. 

Depending upon the nature of the chosen IPC, the package sets up a data structure in 

kernel space. These data structures are often persistent. So once the purpose of IPC has 

been fulfilled, this set-up needs to be deleted (a clean up operation). The usage pattern of 

the IPC package in a system (like system V Unix) can be seen by using explicit 

commands like ipcs. A user can also remove any unused kernel resources by using a 

command like ipcrm. 

For our discussions here, we shall assume Unix like environment. Hopefully, the 

discussion here offers enough information to partially satisfy and raise the level of 

curiosity about the distributed computing area. 

7.1 Creating A New Process: The fork() System Call 

One way to bring in a new process into an existing execution environment is to execute 

fork() system call. Just to recap how system calls are handled, the reader may refer to 

Figure 7.1. An application raises a system call using a library of call functions. A system 

call in turn invokes its service (from the kernel) which may result in memory allocation, 
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device communication or a process creation. The system call fork() spawns a new process 

which, in fact, is a copy of the parent process from where it was invoked!! The newly 

spawned process inherits its parent's execution environment. In Table 7.1 we list some of 

the attributes which the child process inherits from its parent. 

 
Note that a child process is a process in its own right. It competes with the parent process 

to get processor time for execution. In fact, this can be easily demonstrated (as we shall 

later see). The questions one may raise are: 

 Can one identify when the processor is executing the parent and when it is 

executing the child process? 

 What is the nature of communication between the child and parent processes? 

 
The answer to the first question is yes. It is possible to identify when the parent or child is 

in execution. The return value of fork() system call is used to determine this. Using the 

return value, one can segment out the codes for execution in parent and child. We will 

show that in an example later. 
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The most important communication from parent to child is the execution environment 

which includes data and code segments. Also, when the child process terminates, the 

parent process receives a signal. In fact, a signal of the termination of a child process, is 

one feature very often exploited by programmers. For instance, one may choose to keep 

parent process in wait mode till all of its own child processes have terminated. Signaling 

is a very powerful inter-process communication mechanism (using signals) which we 

shall learn in Section 7.3.5. The following program demonstrates how a child process 

may be spawned. 

The program: Demonstration of the use of fork() system call 

main() 

{ int i, j; 

if ( fork() ) /* must be parent */ 

{ printf("\t\t In Parent \n"); 

printf("\t\t pid = %d and ppid = %d \n\n", getpid(), getppid()); 

for (i=0; i<100; i=i+5) 

{ for (j=0; j<100000; j++); 

printf("\t\t\t In Parent %d \n", i); 

} 

wait(0); /* wait for child to terminate */ 

printf("In Parent: Now the child has terminated \n"); 

} 

else 

{ printf("\t In child \n"); 

printf("\t pid = %d and ppid = %d \n\n", getpid(), getppid() ); 

for (i=0; i<100; i=i+10) 

{ for (j=0; j<100000; j++); 

printf("\t In child %d \n", i); 

} } } 

The reader should carefully examine the structure of the code above. In particular, note 

how the return value of system call fork() is utilized. On perusing the code we note that, 

the code is written to execute in different parts of the program code for the child and the 
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parent. The program makes use of true return value of fork() to print “In parent", i.e. if 

the parent process is presently executing. The dummy loop not only slows down the 

execution but also ensures that we obtain interleaved outputs with a manageable number 

of lines on the viewing screen. 

Response of this program: 

[bhatt@iiitbsun IPC]$./a.out 

In child 

pid = 22484 and ppid = 22483 

In child 0 

In child 10 

In child 20 

In Parent 

pid = 22483 and ppid = 22456 

In Parent 0 

In Parent 5 

In Parent 10 

In Parent 15 

In child 30 

....... 

....... 

In child 90 

In Parent 20 

In Parent 25 

...... 

...... 

In Parent: Now the child has terminated; 

Let us study the response. From the response, we can determine when the parent process 

was executing and when the child process was executing. The final line shows the result 

of the execution of line following wait command in parent. It executes after the child has 

fallen through its code. Just as we used a wait command in the parent, we could have also 

used an exit command explicitly in the child to exit its execution at any stage. The 

command pair wait and exit are utilized to have inter-process communication. In 
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particular, these are used to synchronize activities in processes. This program 

demonstrated how a process may be spawned. However, what one would wish to do is to 

spawn a process and have it execute a planned task. Towards this objective, we shall next 

populate the child code segment with a code for a specified task. 

7.2 Assigning Task to a Newly Spawned Process 

By now one thing should be obvious: if the child process is to execute some other code, 

then we should first identify that executable (the one we wish to see executed). For our 

example case, let us first generate such an executable. We compile a program entitled 

get_int.c with the command line cc get_int.c -o int.o. So, when int.o executes, it reads in 

an integer. 

The program to get an integer : 

#include <stdio.h> 

#include <ctype.h> 

int get_integer( n_p ) 

int *n_p; 

{ int c; 

int mul, sign; 

int integer_part; 

*n_p = 0; 

mul = 10; 

while( isspace( c = getchar() ) ); /* skipping white space */ 

if( !isdigit(c) && c != EOF && c != '+' && c != '-' ) 

{ /* ungetchar(c); */ 

printf("Found an invaild character in the integer description \n"); 

return 0; 

} 

if (c == '-') sign = -1.0; 

if (c == '+') sign = 1.0; 

if (c == '-' || c == '+' ) c = getchar(); 

for ( integer_part = 0; isdigit(c); c = getchar() ) 

{ integer_part = mul * integer_part + (c - '0'); 

}; 
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*n_p = integer_part; 

if ( sign == -1 ) *n_p = - *n_p; 

if ( c == EOF ) return (*n_p); 

} 

main() 

{ int no; 

int get_integer(); 

printf("Input a number as signed or unsigned integer e.g. +5 or -6 or 23\n"); 

get_integer(&no); 

printf("The no. that was input was %d \n", no); 

} 

Clearly, our second step is to have a process spawned and have it execute the program 

int.o. Unix offers a way of directing the execution from a specified code segment by 

using an exec command. In the program given below, we spawn a child process and 

populate its code segment with the program int.o obtained earlier. We shall entitle this 

program as int_wait.c. 

Program int_wait.c 

#include <stdio.h> 

main() 

{ 

if (fork() == 0) 

{ /* In child process execute the selected command */ 

execlp("./int.o", "./int.o", 0); 

printf("command not found \n"); /* execlp failed */ 

fflush(stdout); 

 
exit(1); 
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} 

else 

{ printf("Waiting for the child to finish \n"); 

wait(0); 

printf("Waiting over as child has finished \n"); 

} 

} 

To see the programs in action follow the steps: 

1. cc get_int.c -o int.o 

2. cc int_wait.c 

3. ./a.out 

The main point to note here is that the forked child process gets populated by the code of 

program int.o with the parent int_wait.c. Also, we should note the arguments 

communicated in the exec command line. 

Before we discuss some issues related to the new execution environment, a short 

discussion on exec command is in order. The exec family of commands comes in several 

flavors. We may choose an exec command to execute an identified executable defined 

using a relative or absolute path name. The exec() command may use some other 

arguments as well. Also, it may be executed with or without the inherited execution 

environment. 

Most Unix systems support exec commands with the description in Table 7.2. The 

example above raises a few obvious questions. The first one is: Which are the properties 

the child retains after it is populated by a different code segment? In Table 7.3 we note 

that the process ID and user ID of the child process are carried over to the implanted 

process. However, the data and code segments obtain new information. Though, usually, 

a child process inherits open file descriptors from the parent, the implanted process may 

have some restrictions based on file access controls. 

With this example we now have a way to first spawn and then populate a child process 

with the code of an arbitrary process. The implanted process still remains a child process 

but has its code independent of the parent. A process may spawn any number of child 

processes. However, much ingenuity lies in how we populate these processes and what 

form of communication we establish amongst these to solve a problem. 
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7.3 Establishing Inter-process Communication 

In this section we shall study a few inter-process communication mechanisms. Each of 

these uses a different method to achieve communication amongst the processes. The first 

mechanism we study employs pipes. Pipes, as used in commands like ls|more, direct the 

output stream of one process to feed the input of another process. So for IPC, we need to 

create a pipe and identify the direction of feeding the pipe. Another way to communicate 

would be to use memory locations. We can have one process write into a memory 

location and expect the other process to read from it. In this case the memory location is a 

shared memory location. Finally, there is one more mechanism in which one may send a 

message to another process. The receiving process may interpret the message. Usually, 

the messages are used to communicate an event. We next study these mechanisms. 

7.3.1 Pipes as a Mechanism for Inter-process Communication 

Let us quickly recap the scheme which we used in section 7.2. The basic scheme has 

three parts: spawn a process; populate it and use the wait command for synchronization. 

Let us now examine what is involved in using pipes for establishing a communication 

between two processes. As a first step we need to identify two executables that need to 

communicate. As an example, consider a case where one process gets a character string 

input and communicates it to the other process which reverses strings. Then we have two 

processes which need to communicate. Next we define a pipe and connect it between the 

processes to facilitate communication. One process gets input strings and writes into the 

pipe. The other process, which reverses strings, gets its input (i.e. reads) from the pipe. 

Figure 7.2 explains how the pipes are used. As shown in the upper part of the figure, a 

pipe has an input end and an output end. One can write into a pipe from the input end and 

read from the output end. A pipe descriptor, therefore, has an array that stores two 

pointers. One pointer is for its input end and the other is for its output end. When a   
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process defines a pipe it gets both the addresses, as shown in the middle part of Figure 

7.2. Let us suppose array pp is used to store the descriptors. pp[0] stores the write end 

address and pp[1] stores the read end address. Suppose two processes, Process A and 

Process B, need to communicate, then it is imperative that the process which writes 

closes its read end of the pipe and the process which read closes its write end of the pipe. 

Essentially, for a communication from Process A to process B the following should 

happen. Process A should keep its write end open and close read end of the pipe. 

Similarly, Process B should keep its read end open and close its write end. This is what is 

shown in the lower part of Figure 7.2. Let us now describe how we may accomplish this. 

1. First we have a parent process which declares a pipe in it. 

2. Next we spawn two child processes. Both of these would get the pipe definition 

which we have defined in the parent. The child processes, as well as the parent, 

have both the write and read ends of the pipe open at this time. 

3. Next, one child process, say Process A, closes its read end and the other child 

process, Process B, closes its write end. 

4. The parent process closes both write and read ends. 

5. Next, Process A is populated with code to get a string and Process B is populated 

to reverse a string. 
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With the above arrangement the output from Process A is piped as input to Process B. 

The programs given below precisely achieve this. 

In reading the programs, the following interpretations have to be borne in mind: 

1. The pipe is defined by the declaration pipe(p_des). 

2. The dup command replaces the standard I/O channels by pipe descriptors. 

3. The execlp command is used to populate the child process with the desired code. 

4. The close command closes the appropriate ends of the pipe. 

5. The get_str and rev_str processes are pre-compiled to yield the required 

executables. 

The reader should be able to now assemble the programs correctly to see the operation of 

the programs given below: 

pipe.c 

#include <stdio.h> 

#include <ctype.h> 

main() 

{ int p_des[2]; 

pipe( p_des ); /* The pipe descriptor */ 

printf("Input a string \n"); 

if ( fork () == 0 ) 

{ 

dup2(p_des[1], 1); 

close(p_des[0]); /* process-A closing read end of the pipe */ 

execlp("./get_str", "get_str", 0); 

/*** exit(1); ***/ 

} 

else 

if ( fork () == 0 ) 

{ dup2(p_des[0], 0); 

close(p_des[1]); /* process-B closing write end of the pipe */ 

execlp("./rev_str", "rev_str", 0); 

/*** exit(1); ****/ 

} 
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else 

{ close(p_des[1]); /* parent closing both the ends of pipe */ 

close(p_des[0]); 

wait(0); 

wait(0); 

} 

fflush(stdout); 

} 

get_str.c 

#include <stdio.h> 

#include <ctype.h> 

void get_str(str) 

char str[]; 

{ char c; 

int ic; 

c = getchar(); 

ic = 0; 

while ( ic < 10 && ( c != EOF && c != '\n' && c != '\t' )) 

{ str[ic] = c; 

c = getchar(); 

ic++; 

} 

str[ic] = '\0'; 

return; 

} 

rev_str.c 

void rev_str(str1, str2) 

char str1[]; 

char str2[]; 

{ char c; 

int ic; 

int rc; 
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ic = 0; 

c = str1[0]; 

while( ic < 10 && (c != EOF && c != '\0' && c != '\n') ) 

{ ic++; 

c = str1[ic]; 

} 

str2[ic] = '\0'; 

rc = ic - 1; 

ic = 0; 

while (rc-ic > -1) 

{ str2[rc-ic] = str1[ic]; 

ic++; 

} 

return; 

} 

It is important to note the following about pipes as an IPC mechanism: 

1. Unix pipes are buffers managed from within the kernel. 

2. Note that as a channel of communication, a pipe operates in one direction only. 

3. Some plumbing (closing of ends) is required to use a pipe. 

4. Pipes are useful when both the processes are schedulable and are resident on the 

same machine. So, pipes are not useful for processes across networks. 

5. The read end of a pipe reads any way. It does not matter which process is 

connected to the write end of the pipe. Therefore, this is a very insecure mode of 

communication. 

6. Pipes cannot support broadcast. 

There is one other method of IPC using special files called “named pipes". We shall leave 

out its details. Interested readers should explore the suggested reading list of books. In 

particular, books by Stevenson, Chris Brown or Leach [28], [12], [24] are recommended. 

7.3.2 Shared Files 

One very commonly employed strategy for IPC is to share files. One process, identified 

as a writer process, writes into a file. Another process, identified as a reader process, 

reads from this file. The write process may continually make changes in a file and the 
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other may read these changes as these happen. Unlike other IPC methods, this method 

does not require special system calls. It is, therefore, relatively easily portable. Of course, 

for creating processes we shall use the standard system calls fork() and execlp(). Besides 

these, there are no other system calls needed. However, we do need code for file creation, 

access and operations on files. A word of caution is in order. If the reader is faster than 

the writer, then this method shall have errors. Similarly, if a writer continues writing then 

the file may grow to unbounded lengths. Both these situations result in errors. This 

problem of a mismatch in the speed of reader and writer is called the reader writer 

problem. We earlier learned to resolve similar problems using mutual exclusion of 

resource sharing. In this case too we can program for mutually exclusive writes and 

reads. 

Shared file pointers: Another way to handle files would be to share file pointers instead 

of files themselves. Sharing the file pointers with mutual exclusion could be easily done 

using semaphores. 

The shared file pointer method of IPC operates in two steps. In the first step, one process 

positions a file pointer at a location in a file. In the second step, another process reads 

from this file from the communicated location. Note that if the reader attempts to read a 

file even before the writer has written something on a file, we shall have an error. So, in 

our example we will ensure that the reader process sleeps for a while (so that the writer 

has written some bytes). We shall use a semaphore simulation to achieve mutual 

exclusion of access to the file pointer, and hence, to the file. 

This method can be used when the two processes are related. This is because the shared 

file pointer must be available to both. In our example, these two processes shall be a 

parent and its child. Clearly, if a file has been opened before the child process is 

spawned, then the file descriptors created by the parent are available to the child process 

as well. Note that when a process tries to create a file which some other process has 

already created, then an error is reported. 

To understand the programs in the example, it is important to understand some 

instructions for file operations. We shall use lseek() system command. It is used to access 

a sequence of bytes from a certain offset in the file. The first byte in the file is considered 

to have an offset of 0. It has the syntax long lseek(int fd, long offset, int arg) with the 

following interpretation. 
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 With arg = 0, the second argument is treated as an offset from the first byte in file. 

 With arg = 1, the current position of the file pointer is changed to sum of the 

current file pointer and the value of the second argument. 

 With arg = 2, the current position of the file pointer is changed to the sum of the 

size of file and value of the second argument. The value of the second argument 

can be negative as long as the overall result of the sum is positive or zero. 

The example here spans three programs, a main, a reader and a writer program. Let us 

look at the code for the main program. 

#include <stdio.h> 

#include <fcntl.h> 

#define MAXBYTES 4096 

void sem_simulation(); 

main(argc, argv) 

int argc; 

char *argv[]; 

{/* the program communicates from parent to child using a shared file pointer */ 

FILE *fp; 

char message[MAXBYTES]; 

long i; 

int mess_num, n_bytes, j, no_of_mess; 

int sid, status; 

if ( argc < 3 ) 

{ fputs("Bad argument count \n", stderr); 

fputs("Usage: num_messages num_bytes \n", stderr); 

exit(1); 

} 

no_of_mess = atoi(argv[1]); 

n_bytes = atoi(argv[2]); 

printf("no_of_mess : %6d and n_bytes : %6d \n", no_of_mess, n_bytes ); 

if(n_bytes > MAXBYTES) 

{ fputs("Number of bytes exceeds maximum", stderr); 

exit(1); 
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} /* open a file before creating a child process to share a file pointer*/ 

else if( ( fp = fopen("./temp_file", "w+" )) == NULL ) 

{ fputs("Cannot open temp_file for writing \n", stderr); 

exit(1); 

} 

/* create processes and begin communication */ 

switch (fork ()) 

{ case -1: fputs("Error in fork ", stderr); 

exit( 1 ); 

case 0: sleep(2); 

if(execlp("./readfile", "./readfile", argv[1], argv[2], NULL) == -1) 

fputs("Error in exec in child \n", stderr); 

exit( 1 ); 

default: if(execlp("./writefile", "./writefile", argv[1], argv[2], NULL) == -1) 

fputs("Error in exec in parent \n", stderr); 

exit( 1 ); 

} /* end switch */ 

} 

Now we describe the reader process. 

#include <stdio.h> 

#include <fcntl.h> 

#define MAXBYTES 4096 

void sem_simulation() 

{ if (creat( "creation", 0444) == -1) 

{ fputs("Error in create \n", stderr); 

system("rm creation"); 

} 

else fputs(" No error in creat \n", stderr); 

} 

main (argc, argv) 

int argc; 

char *argv[]; 
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{ FILE *fp; 

long i; 

char message[MAXBYTES]; 

int mess_num, n_bytes, j, no_of_mess; 

int sid, status; 

void sem_simulation(); 

no_of_mess = atoi(argv[1]); 

n_bytes = atoi(argv[2]); 

printf("in read_child \n"); 

/* read messages from the shared file */ 

for ( i=0; i < no_of_mess; i++ ) 

{ sem_simulation(); 

fseek(fp, i*n_bytes*1L, 0); 

while((fgets(message, n_bytes+1, fp)) == NULL ) ; 

fseek(fp, i*n_bytes*1L, 0); 

sem_simulation(); 

} /* end of for loop */ 

exit(0); 

} 

Now let us describe the writer process. 

#include <stdio.h> 

#include <fcntl.h> 

#define MAXBYTES 4096 

void sem_simulation() 

{ if (creat( "creation", 0444) == -1) 

{ fputs("Error in create \n", stderr); 

system("rm creation"); 

} 

else fputs(" No error in create \n", stderr); 

} 

main (argc, argv) 

int argc; 
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char *argv[]; 

{ FILE *fp; 

long i, j, status, message_num; 

char message[MAXBYTES]; 

int n_bytes, no_of_mess; 

void sem_simulation(); 

no_of_mess = atoi(argv[1]); 

n_bytes = atoi(argv[2]); 

printf("in parent with write option \n"); 

printf("no_of_mess : %6d n_bytes : %6d \n"); 

for ( i=0; i < no_of_mess; i++ ) 

{ /* Create a message with n_bytes */ 

message_num = i; 

for ( j = message_num; j < n_bytes; j++ ) 

message[j] = 'd'; 

printf("%s \n", message); 

/* Use semaphore to control synchronization, write to end of file */ 

sem_simulation(); 

fseek(fp, 0L, 2); 

while( ( fputs(message, fp) ) == -1) 

fputs("Cannot write message", stderr ); 

fseek(fp, 0L, 2); 

sem_simulation(); 

} 

wait(&status); 

unlink("creation"); 

unlink("./temp_file"); 

fclose(fp); 

} 

The shared file pointer method is quite an elegant solution and is often a preferred 

solution where files need to be shared. However, many parallel algorithms require that 
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“objects" be shared. The basic concept is to share memory. Our discussion shall now veer 

to IPC using shared memory communication. 

7.3.3 Shared Memory Communication 

Ordinarily, processes use memory areas within the scope of virtual memory space. 

However, memory management systems ensure that every process has a well-defined and 

distinct data and code area. For shared memory communication, one process would write 

into a certain commonly accessed area and another process would read subsequently from 

 
that area. One other point which we can debate is: do the processes have to be related? 

We have seen that a parent may share a data area or files with a child. Also, by using the 

exec() function call we may be able to populate a process with another code segment or 

data. Clearly, the shared memory method can allow access to a common data area even 

amongst the processes that are not related. However, in that case an area like a process 

stack may not be shareable. Also, it should be noted that it is important that the shared 

data integrity may get compromised when an arbitrary sequence of reads and writes 

occurs. To maintain data integrity, the access is planned carefully under a user program 

control. That then is the key to shared memory protocol. 

The shared memory model has the following steps of execution. 

1. First we have to set up a shared memory mechanism in the kernel. 

2. Next an identified \safe area" is attached to each of the processes. 

3. Use this attached shared data space in a consistent manner. 

4. When finished, detach the shared data space from all processes to which it was 

attached. 

5. Delete the information concerning the shared memory from the kernel. 

Two important .h files in this context are: shm.h and ipc.h which are included in all the 

process definitions. The first step is to set up shared memory mechanism in kernel. The 

required data structure is obtained by using shmget() system call with the following 

syntax. 
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int shmget( key_t key, int size, int flag ); 

The parameter key_t is usually a long int. It is declared internally as key_t key. key_t is 

an alias defined in sys/types.h using a typedef structure. If this key is set to 

IPC_PRIVATE, then it always creates a shared memory region. The second parameter, 

size is the size of the sh-mem-region in bytes. The third parameter is a combination of 

usual file access permissions of r/w/e for o/g/w with the interpretation of non-zero 

constants as explained in Table 7.4. 

A successful call results in the creation of a shared memory data structure with a defined 

id. This data structure has the following information in it. 

struct shmid_ds 

{ struct ipc_perm shm_perm; 

int shm_seg_segsz /* size of segments in bytes */ 

struct region *shm_reg; /* pointer to region struct */ 

char pad[4]; /* for swap compatibility */ 

ushort shm_lpid; /* pid of last shmop */ 

ushort shm_cpid; /* pid of creator */ 

ushort shm_nattch; /* used for shm_info */ 

ushort shm_cnattch; /* used for shm_info */ 

time_t shm_atime; /* last attach time */ 

time_t shm_dtime; /* last detach time */ 

time_t shm_ctime; /* last change time */ 

} 

Once this is done we would have created a shared memory data space. The next step 

requires that we attach it to processes that would share it. This can be done using the 

system call shmat(). The system call shmat() has its syntax shown below.  

char *shamt( int shmid, char *shmaddr, int shmflg ); 

The second argument should be set to zero as in (char *)0, if the kernel is to determine 

the attachment. The system uses three possible flags which are: SHM_RND, 

SHM_RDONLY and the combination SHM_RND | SHM_RDONLY. The 

SHM_RDONLY flag indicates the shared region is read only. Otherwise, it is both for 

read and write operations. The flag SHM_RND requires that the system enforces use of 
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the byte address of the shared memory region to coincide with a double word boundary 

by rounding. 

Now that we have a well-defined shared common area, reading and writing can be done 

in this shared memory region. However, the user must write a code to ensure locking of 

the shared region. For instance, we should be able to block a process attempting to write 

while a reader process is reading. This can be done by using a synchronization method 

such as semaphores. In most versions of Unix, semaphores are available to enforce 

mutual exclusion. At some stage a process may have finished using the shared memory 

region. In that case this region can be detached for that process. This is done by using the 

shmdt() system call. This system call detaches that process from future access. This 

information is kept within the kernel data-space. The system call shmdt() takes a single 

argument, the address of the shared memory region. The return value from the system 

call is rarely used except to check if an error has occurred (with -1 as the return value). 

The last step is to clean up the kernel's data space using the system call shmctl(). The 

system call shmctl() takes three parameters as input, a shared memory id, a set of flags, 

and a buffer that allows copying between the user and the kernel data space. 

A considerable amount of information is pointed to by the third parameter. A call to 

shmctl() with the command parameter set to IPC_STAT gives the following information. 

 User's id                                                          

 Creator's group id                                   

 Operation permissions  

 Key 

 segment size                           

 Process id of creator                                         *  

 Current number of attached segments in the memory. 

 Last time of attachment      

 User's group id  

 Creator's id 

  Last time of detachment  

  Last time of change 

 Current no. of segments attached 

 Process id of the last shared memory operation 
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Now let us examine the shmget() system call. 

int shmget( key_t key, int region_size, int flags ); 

Here key is a user-defined integer, the size of the shared region to be attached is in bytes. 

The flags usually turn on the bits in IPC_CREAT. Depending upon whether there is key 

entry in the kernel's shared memory table, the shmget() call takes on one of the following 

two actions. If there is an entry, then shmget() returns an integer indicating the position of 

the entry. If there is no entry, then an entry is made in the kernel's shared memory table. 

Also, note that the size of the shared memory is specified by the user. It, however, should 

satisfy some system constraints which may be as follows. 

struct shminfo 

{ int shmmax,           /* Maximum shared memory segment size 131072 for some */ 

shmmin,                   /* minimum shared memory segment size 1 for some */ 

shmni,                     /* No. of shared memory identifiers */ 

shmseg,                 /* Maximum attached segments per process */ 

shmall;                /* Max. total shared memory system in pages */ 

}; 

The third parameter in shmget() corresponds to the flags which set access permissions as 

shown below: 

400 read by user ...... Typically in shm.h file as constant SHM_R 

200 write by user .......Typically in shm.h file as constant SHM_W 

040 read by group 

020 write by group 

004 read by others 

002 read by others ......All these are octal constants. 

For example, let us take a case where we have read/write permissions by the user's group 

and no access by others. To be able to achieve this we use the following values. 

SHM_R | SHM_W | 0040 | IPC_CREAT as a flag to a call to shmget(). 

Now consider the shmat() system call. 

char *shmat( int shmid, char *address, int flags ); 

This system call returns a pointer to the shared memory region to be attached. It must be 

preceded by a call to shmget(). The first argument is a shmid (returned by shmget()). It is 

an integer. The second argument is an address. We can let the compiler decide where to 
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attach the shared memory data space by giving the second argument as (char *) 0. The 

flags in arguments list are to communicate the permissions only as SHM_RND and 

SHM_RDONLY. The shmdt() system call syntax is as follows: 

int shmdt(char * addr ); 

This system call is used to detach. It must follow a call shmat() with the same base 

address which is returned by shmat(). The last system call we need is shmctl(). It has the 

following syntax. 

int shmctl( int shmid, int command, struct shm_ds *buf_ptr ); 

The shmctl() call is used to change the ownership and permissions of the shared region. 

The first argument is the one earlier returned by shmget() and is an integer. The command 

argument has five possibilities: 

• IPC_STAT : returns the status of the associated data structure for the shared       

                       memory pointed by buffer pointer. 

• IPC_RMID :  used to remove the shared memory id. 

• SHM_LOCK : used to lock 

• SHM_UNLOCK : used to unlock 

• IPC_SET : used to set permissions. 

When a region is used as a shared memory data space it must be from a list of free data 

space. Based on the above explanations, we can arrive at the code given below. 

include <stdio.h> 

#include <string.h> 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/sem.h> 

#include <sys/shm.h> 

#define MAXBYTES 4096 /* Maximum bytes per shared segment */ 

main(argc, argv) 

int argc; 

char *argv[]; 

{ /* Inter process communication using shared memory */ 

char message[MAXBYTES]; 
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int i, message_num, j, no_of_mess, nbytes; 

int key = getpid(); 

int semid; 

int segid; 

char *addr; 

if (argc != 3) { printf("Usage : %s num_messages"); 

printf("num_of_bytes \n", argv[0]); 

exit(1); 

} 

else 

{ no_of_mess = atoi(argv[1]); 

nbytes = atoi(argv[2]); 

if (nbytes > MAXBYTES) nbytes = MAXBYTES; 

if ( (semid=semget( (key_t)key, 1, 0666 | IPC_CREAT ))== -1) 

{ printf("semget error \n"); 

exit(1); 

} 

/* Initialise the semaphore to 1 */ 

V(semid); 

if ( (segid = shmget( (key_t) key, MAXBYTES, 0666 | 

IPC_CREAT ) ) == -1 ) 

{ printf("shmget error \n"); 

exit(1); 

} 

/*if ( (addr = shmat(segid, (char * )0,0)) == (char *)-1) */ 

if ( (addr = shmat(segid, 0, 0)) == (char *) -1 ) 

{ printf("shmat error \n"); 

exit(1); 

} 

switch (fork()) 

{ case -1 : printf("Error in fork \n"); 

exit(1); 
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case 0 : /* Child process, receiving messages */ 

for (i=0; i < no_of_mess; i++) 

if(receive(semid, message, sizeof(message))); 

exit(0); 

default : /* Parent process, sends messages */ 

for ( i=0; i < no_of_mess; i++) 

{ for ( j=i; j < nbytes; j++) 

message[j] = 'd'; 

if (!send(semid, message, sizeof(message))) 

printf("Cannot send the message \n"); 

} /* end of for loop */ 

} /* end of switch */ 

} /* end of else part */ 

} 

/* Semaphores */ 

#include <stdio.h> 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/sem.h> 

#include <sys/shm.h> 

int sid; 

cleanup(semid, segid, addr) 

int semid, segid; 

char *addr; 

{ int status; 

/* wait for the child process to die first */ 

/* removing semaphores */ 

wait(&status); 

semctl(semid, 0, IPC_RMID, 0); 

shmdt(addr); 

shmctl(segid, 0, IPC_RMID, 0); 

}; 
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P(sid) 

int sid; 

{ /* Note the difference in this and previous structs */ 

struct sembuf *sb; 

sb = (struct sembuf *) malloc(sizeof(struct sembuf *)); 

sb -> sem_num = 0; 

sb -> sem_op = -1; 

sb -> sem_flg = SEM_UNDO; 

if( (semop(sid, sb, 1)) == -1) puts("semop error"); 

}; 

V(sid) 

int sid; 

{ struct sembuf *sb; 

sb = (struct sembuf *) malloc(sizeof(struct sembuf *)); 

sb -> sem_num = 0; 

sb -> sem_op = 1; 

sb -> sem_flg = SEM_UNDO; 

if( (semop(sid, sb, 1)) == -1) puts("semop error"); 

}; 

/* send message from addr to buf */ 

send(semid, addr, buf, nbytes) 

int semid; 

char *addr, *buf; 

int nbytes; 

{ P(semid); 

memcpy(addr, buf, nbytes); 

V(semid); 

} 

/* receive message from addr to buf */ 

receive(semid, addr, buf, nbytes) 

int semid; 

char *addr, *buf; 
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int nbytes; 

{ P(semid); 

memcpy(buf, addr, nbytes); 

V(semid); 

} 

From the programs above, we notice that any process is capable of accessing the shared 

memory area once the key is known to that process. This is one clear advantage over any 

other method. Also, within the shared area the processes enjoy random access for the 

stored information. This is a major reason why shared memory access is considered 

efficient. In addition, shared memory can support many-to-many communication quite 

easily. We shall next explore message-based IPC. 

7.3.4 Message-Based IPC 

Messages are a very general form of communication. Messages can be used to send and 

receive formatted data streams between arbitrary processes. Messages may have types. 

This helps in message interpretation. The type may specify appropriate permissions for 

processes. Usually at the receiver end, messages are put in a queue. Messages may also 

be formatted in their structure. This again is determined by the application process. 

Messages are also the choice for many parallel computers such as Intel's hyper-cube. The 

following four system calls achieve message transfers amongst processes. 

 msgget() returns (and possibly creates) message descriptor(s) to designate a 

message queue for use in other systems calls. 

 msgctl() has options to set and return parameters associated with a message 

descriptor. It also has an option to remove descriptors. 

 msgsnd() sends a message using a message queue. 

 msgrcv() receives a message using a message queue. 

Let us now study some details of these system calls. 

msgget() system call : The syntax of this call is as follows: 

int msgget(key_t key, int flag); 

The msgget() system call has one primary argument, the key, a second argument which is 

a flag. It returns an integer called a qid which is the id of a queue. The returned qid is an 

index to the kernel's message queue data-structure table. The call returns -1 if there is an 
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error. This call gets the resource, a message queue. The first argument key_t, is defined in 

sys/types.h file as being a long. The second argument uses the following flags: 

 MSG_R : The process has read permission 

 MSG_W : The process has write permission 

 MSG_RWAIT : A reader is waiting to read a message from message queue 

 MSG_WWAIT : A writer is waiting to write a message to message queue 

 MSD_LOCKED : The msg queue is locked 

 MSG_LOCKWAIT : The msg queue is waiting for a lock 

 IPC_NOWAIT : Described earlier 

 IPC_EXCL : .... 

In most cases these options can be used in bit-ored manner. It is important to have the 

readers and writers of a message identify the relevant queue for message exchange. This 

is done by associating and using the correct qid or key. The key can be kept relatively 

private between processes by using a makekey() function (also used for data encryption). 

For simple programs it is probably sufficient to use the process id of the creator process 

(assuming that other processes wishing to access the queue know it). Usually, kernel uses 

some algorithm to translate the key into qid. The access permissions for the IPC methods 

are stored in IPC permissions structure which is a simple table. Entries in kernel's 

message queue data structures are C structures. These resemble tables and have several 

fields to describe permissions, size of queue, and other information. The message queue 

data structure is as follows. 

struct meqid_ds 

{ struct ipc_perm meg_perm; /* permission structure */ 

struct msg *msg_first; /* pointer to first message */ 

struct msg *msg_last; /* ........... last ..........*/ 

ushort msg_cbytes; /* no. of bytes in queue */ 

ushort msg_qnum; /* no. of messages on queue */ 

ushort msg_qbytes; /* Max. no. of bytes on queue */ 

ushort msg_lspid; /* pid of last msgsnd */ 

ushort msg_lrpid; /* pid of the last msgrcv */ 

time_t msg_stime; /* last msgsnd time */ 

time_t msg_rtime; /* .....msgrcv................*/ 
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time_t msg_ctime; /* last change time */ 

} 

There is one message structure for each message that may be in the system. 

struct msg 

{ struct msg *msg_next; /* pointer to next message */ 

long msg_type; /* message type */ 

ushort msg_ts; /* message text size */ 

ushort msg_spot; /* internal address */ 

Note that several processes may send messages to the same message queue. The “type" of 

message is used to determine which process amongst the processes is the originator of the 

message received by some other process. This can be done by hard coding a particular 

number for type or using process-id of the sender as the msg_type. The msgctl() function 

call: This system call enables three basic actions. The most obvious one is to remove 

message queue data structure from the kernel. The second action allows a user to 

examine the contents of a message queue data structure by copying them into a buffer in 

user's data area. The third action allows a user to set the contents of a message queue data 

structure in the kernel by copying them from a buffer in the user's data area. The system 

call has the following syntax. 

int msgctl(int qid, int command, struct msqid_ds *ptr); 

This system call is used to control the resource (a message queue). The first argument is 

the qid which is assumed to exist before call to msgctl(). Otherwise the system is in error 

state. Note that if msgget() and msgctl() are called by two different processes then there is 

a potential for a \race" condition to occur. The second argument command is an integer 

which must be one of the following constants (defined in the header file sys/msg.h). 

 IPC STAT: Places the contents of the kernel structure indexed by the first 

argument, qid, into a data structure pointed to by the third argument, ptr. This 

enables the user to examine and change the contents of a copy of the kernel's data 

structure, as this is in user space. 

 IPC SET: Places the contents of the data structures in user space pointed to by the 

third argument, ptr, into the kernel's data structure indexed by first argument qid, 

thus enabling a user to change the contents of the kernel's data structure. The only 
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fields that a user can change are msg_perm.uid, msg_perm.gid, msg_perm.mode, 

and msg_qbytes. 

 IPC RMID : Removes the kernel data structure entry indexed by qid. 

The msgsnd() and msgrcv() system calls have the following syntax. 

int msgsnd(int qid, struct msgbuf *msg_ptr, int message_size, int flag ); 

int msgrcv(int qid, struct msgbuf *msg_ptr, int message_size, int msgtype, int flag ); 

Both of these calls operate on a message queue by sending and receiving messages 

respectively. The first three arguments are the same for both of these functions. The 

syntax of the buffer structure is as follows. 

struct msgbuf{ long mtype; char mtext[1]; } 

This captures the message type and text. The flags specify the actions to be taken if the 

queue is full, or if the total number of messages on all the message queues exceeds a 

prescribed limit. With the flags the following actions take place. If IPC_NOWAIT is set, 

no message is sent and the calling process returns without any error action. If 

IPC_NOWAIT is set to 0, then the calling process suspends until any of the following 

two events occur. 

1. A message is removed from this or from other queue. 

2. The queue is removed by another process. If the message data structure indexed 

by qid is removed when the flag argument is 0, an error occurs (msgsnd() returns  

-1). 

The fourth arg to msgrcv() is a message type. It is a long integer. The type argument is 

used as follows. 

o If the value is 0, the first message on the queue is received. 

o If the value is positive, the queue is scanned till the first message of this 

type is received. The pointer is then set to the first message of the queue. 

o If the value is -ve, the message queue is scanned to find the first message 

with a type whose value is less than, or equal to, this argument. 

The flags in the msgrcv() are treated the same way as for msgsnd(). 

A successful execution of either msgsnd(), or msgrcv() always updates the appropriate 

entries in msgid_ds data structure. With the above explanation, let us examine the 

message passing program which follows. 

#include <sys/types.h> 
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#include <sys/ipc.h> 

#include <sys/msg.h> 

main(argc, argv) 

int argc; 

char *argv[]; 

{ int status, pid, pid1; 

if (( pid=fork())==0) execlp("./messender", "messender", argv[1], argv[2], 0); 

if (( pid1=fork())==0) execlp("./mesrec", "mesrec", argv[1], 0); 

wait(&status); /* wait for some child to terminate */ 

wait(&status); /* wait for some child to terminate */ 

} 

Next we give the message sender program. 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/msg.h> 

main(argc, argv) 

int argc; 

char *argv[]; 

/* This is the sender. It sends messages using IPC system V messages queues.*/ 

/* It takes two arguments : */ 

/* No. of messages and no. of bytes */ 

/* key_t MSGKEY = 100; */ 

/* struct msgformat {long mtype; int mpid; char mtext[256]} msg; */ 

{ 

key_t MSGKEY = 100; 

struct msgformat { long mtype; 

int mpid; 

char mtext[256]; 

} msg; 

int i ; 

int msgid; 

int loop, bytes; 
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extern cleanup(); 

loop = atoi(argv[1]); 

bytes = atoi(argv[2]); 

printf("In the sender child \n"); 

for ( i = 0; i < bytes; i++ ) msg.mtext[i] = 'm'; 

printf("the number of 'm' s is : %6d \n", i); 

msgid = msgget(MSGKEY, 0660 | IPC_CREAT); 

msg.mtype = 1; 

msg.mpid = getpid(); 

/* Send number of messages specified by user argument */ 

for (i=0; i<loop; i++) msgsnd(msgid, &msg, bytes, 0); 

printf("the number of times the messages sent out is : %6d \n", i); 

/* Cleaning up; maximum number queues 32 */ 

for (i=0; i<32; i++) signal(i, cleanup); 

} 

cleanup() 

{ int msgid; 

msgctl(msgid, IPC_RMID, 0); 

exit(0); 

} 

|Now we give the receiver program listing. 

#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/msg.h> 

main(argc, argv) 

int argc; 

char *argv[]; 

/* The receiver of the two processes communicating message using */ 

/* IPC system V messages queues. */ 

/* It takes two arguments: No. of messages and no. of bytes */ 

/* key_t MSGKEY = 100; */ 

/* struct msgformat {long mtype; int mpid; char mtext[256]} msg; */ 
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{ 

key_t MSGKEY = 100; 

struct msgformat { long mtype; 

int mpid; 

char mtext[256]; 

} msg; 

int i, pid, *pint; 

int msgid; 

int loop, bytes; 

msgid = msgget(MSGKEY, 0777); 

loop = atoi(argv[1]); 

bytes = atoi(argv[2]); 

for ( i = 0; i <= bytes; i++ ) 

{ printf("receiving a message \n"); 

msgrcv(msgid, &msg, 256, 2, 0); 

} } 

If there are multiple writer processes and a single reader process, then the code shall be 

somewhat along the following lines. 

if ( mesg_type == 1) { search mesg_queue for type 1; process msg_type type 1 } 

. 

. 

if ( mesg_type == n) { search mesg_queue for type n; process msg_type type n } 

The number and size of messages available is limited by some constant in the IPC 

package. 

In fact this can be set in the system V IPC package when it is installed. Typically the 

constants and structure are as follows. 

MSGPOOL 8 

MSGMNB 2048                                                         /* Max. no. of bytes on queue */ 

MSGMNI 50                                                              /* No. of msg. queue identifiers */ 

MSGTQL 50                                                              /* No. of system message headers */ 

MSGMAP 100                                                           /* No. of entries in msg map */ 

MSGMAX ( MSGPOOL *1024 )                             /* Maximum message size */ 
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MSGSSZ 8                                                                /* Message segment size */ 

MSGSEG (( MSGPOOL *1024 ) / MSGSSZ )        /* No. of msg. segments */ 

Finally, we may note that the message queue information structure is as follows. 

struct msginfo{int msgmap, msgmax, msgmnb, msgmni, msgssz, msgtql; ushort msgseg} 

From the programs above, it should be obvious that the message-based IPC can also be 

used for merging multiple data streams (multiplexing). As messages carry senders' id it 

should also be possible to do de-multiplexing. The message type may also capture 

priorities. Prioritizing messages can be very useful in some application contexts. Also, 

note that the communicating parties need not be active at the same time. In our program 

descriptions we used signals. Note that signals too, are messages! Signals are important 

and so we shall discuss these in the next subsection. 

7.3.5 Signals as IPC 

Within the suite of IPC mechanisms, signals stand out for one very good reason. A signal, 

as a mechanism, is one clean way to communicate asynchronous events. In fact, we use 

signals more often than any other means of IPC. Every time we abort a program using ^c, 

a signal is generated to break. Similarly, if an unexpected value for a pointer is generated, 

we have core dump and a segmentation fault recognized. When we change a window 

size, a signal is generated. Note that in all these examples, an event happens within the 

process or the process receives it as an input. In general, a process may send a signal to 

another process. In all these situations the process receiving a signal needs to respond. 

We shall first enumerate typical sources of signal, and later examine the possible forms 

of responses that are generated. Below we list the sources for signal during a process 

execution: 

1. From the terminal: Consider a process which has been launched from a terminal 

and is running. Now if we input the interrupt character, ^c, from the keyboard 

then we have a signal SIGINT initiated. Suppose, we have disconnect of the 

terminal line (this may happen when we may close the window for instance), then 

there is a signal SIGHUP to capture the hanging up of the line. 

2. From window manager: This may be any of the mouse activity that may happen 

in the selected window. In case of change of size of the window the signal is 

SIGWINCH. 
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3. From other subsystems: This may be from memory or other subsystems. For 

instance, if a memory reference is out of the process's data or code space, then 

there shall be a signal SIGSEGV. 

4. From kernel: The typical usage of time in processes can be used to set an alarm. 

The alarm signal is SIGALARM. 

5. From the processes: It is not unusual to kill a child process. In fact, sometimes we 

may kill a job which may have entered an infinite loop. There may be other 

reasons to abort a process. The typical kill signal is SIGKILL. One of the uses is 

when a terminal hangs, the best thing to do is to log in from another terminal and 

kill the hanging process. One may also look upon the last case as a shell initiated 

signal. Note that a shell is it self a process. 

Above we have noted various sources from where signals may be generated. Usually this 

helps to define the signal type. A process may expect certain types of signals and make a 

provision for handling these by defining a set of signal handlers. The signal handlers can 

offer a set of responses which may even include ignoring certain signals! So next, we 

shall study the different kind of signal responses which processes may generate. 

 
In Figure 7.3 we see a program statement signal(SIGXXX, sighandler) to define how this 

process should respond to a signal. In this statement SIGXXX identifies the signal and 

sighandler identifies a signal service routine. In general, a process may respond to a given 

signal in one of the following ways. 

1. Ignore it: A process may choose to ignore some kinds of signal. Since processes 

may receive signals from any source, it is quite possible that a process would 

authenticate the process before honoring the signal. In some cases then a process 

may simply ignore the signal and offer no response at all. 
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2. Respond to it: This is quite often the case in the distributed computing scenarios 

where processes communicate to further computations in steps. These signals may 

require some response. The response is encoded in the signal handler. For 

instance, a debugger and the process being debugged would require signal 

communication quite often. Another usage might be to advise a clean-up 

operation. For instance, we need to clean-up following the shared memory mode 

of IPC. Users of Java would recognize that response for exception handling falls 

in the same category. 

3. Reconfigure: This is required whenever system services are dynamically 

reconfigured. This happens often in fault-tolerant systems or networked systems. 

The following is a good example of dynamic configuration. Suppose we have 

several application servers (like WebSphere) provisioning services. A dispatcher 

system allocates the servers. During operations, some server may fail. This entails 

redeployment by the dispatcher. The failure needs to be recognized and 

dispatching reconfigured for future. 

4. Turn on/off options: During debugging as well as profiling (as discussed in 

chapter on “Other Tools") we may turn some options \On" or \Off" and this may 

require some signals to be generated. 

5. Timer information: In real-time systems, we may have several timers to keep a tab 

on periodic events. The ideas is to periodically generate required signals to set up 

services, set alarms or offer other time-based services. 

In this chapter we examined the ways to establish communication amongst processes. Its 

a brief exposure. To comprehend the distributed computing field, it is important to look 

up the suggested reading list. Interested readers should explore PVM (parallel virtual 

machine) [30] and MPI (message passing interface) [31] as distributed computing 

environments. 


