
Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

Module 2
Contents

 Description of Instructions
 Assembly directives
 Algorithms with assembly software programs

Module 2 learning unit 5
Data Transfer Instructions GENERAL – PURPOSE BYTE OR WORD
TRANSFER INSTRUCTIONS:

MOV
PUSH
POP
XCHG
XLAT
SIMPLE INPUT AND OUTPUT PORT TRANSFER INSTRUCTIONS:
IN
OUT
SPECIAL ADDRESS TRANSFER INSTRUCTIONS
LEA
LDS
LES
FLAG TRANSFER INSTRUCTIONS:
LAHF
SAHF
PUSHF
POPF

Arithmetic Instructions
ADITION INSTRUCTIONS:
ADD
ADC
INC
AAA
DAA
SUBTRACTION INSTRUCTIONS:
SUB
SBB
DEC
NEG
CMP
AAS
DAS
MULTIPLICATION INSTRUCTIONS:
MUL
IMUL
AAM
DIVISION INSTRUCTIONS:
DIV

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/1

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

IDIV
AAD
CBW
CWD

Bit Manipulation Instructions LOGICAL INSTRUCTIONS:
NOT
AND
OR
XOR
TEST
SHIFT INSTRUCTIONS:
SHL / SAL
SHR
SAR
ROTATE INSTRUCTIONS:
ROL
ROR
RCL
RCR

String Instructions
REP
REPE / REPZ
REPNE / REPNZ
MOVS / MOVSB / MOVSW
COMPS / COMPSB / COMPSW
SCAS / SCASB / SCASW
LODS / LODSB / LODSW
STOS / STOSB / STOSW

Program Execution Transfer Instructions
UNCONDITIONAL TRANSFER INSTRUCTIONS:
CALL
RET
JMP
CONDITIONAL TRANSFER INSTRUCTIONS:
JA / JNBE
JAE / JNB
JB / JNAE
JBE / JNA
JC
JE / JZ
JG / JNLE
JGE / JNL
JL / JNGE
JLE / JNG
JNC
JNE / JNZ

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/2

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

JNO
JNP / JPO
JNS
JO
JP / JPE
JS
ITERATION CONTROL INSTRUCTIONS:
LOOP
LOOPE / LOOPZ
LOOPNE / LOOPNZ
JCXZ
INTERRUPT INSTRUCTIONS:
INT
INTO
IRET

Process Control Instructions FLAG SET / CLEAR INSTRUCTIONS:
STC
CLC
CMC
STD
CLD
STI
CLI
EXTERNAL HARDWARE SYNCHRONIZATION INSTRUCTIONS:
HLT
WAIT
ESC
LOCK
NOP

Instruction Description AAA Instruction - ASCII Adjust after Addition
AAD Instruction - ASCII adjust before Division
AAM Instruction - ASCII adjust after Multiplication
AAS Instruction - ASCII Adjust for Subtraction
ADC Instruction - Add with carry.
ADD Instruction - ADD destination, source
AND Instruction - AND corresponding bits of two operands

Example
AAA Instruction:

AAA converts the result of the addition of two valid unpacked BCD digits to a
valid 2-digit BCD number and takes the AL register as its implicit operand.

Two operands of the addition must have its lower 4 bits contain a number in the
range from 0-9.The AAA instruction then adjust AL so that it contains a correct BCD
digit. If the addition produce carry (AF=1), the AH register is incremented and the carry
CF and auxiliary carry AF flags are set to 1. If the addition did not produce a decimal
carry, CF and AF are cleared to 0 and AH is not altered. In both cases the higher 4 bits of
AL are cleared to 0.

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/3

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

AAA will adjust the result of the two ASCII characters that were in the range
from 30h (“0”) to 39h(“9”).This is because the lower 4 bits of those character fall in the
range of 0-9.The result of addition is not a ASCII character but it is a BCD digit.

Example:
 MOV AH, 0 ; Clear AH for MSD
 MOV AL, 6 ; BCD 6 in AL
 ADD AL, 5 ; Add BCD 5 to digit in AL
 AAA ; AH=1, AL=1 representing BCD 11.

AAD Instruction: ADD converts unpacked BCD digits in the AH and AL register into
a single binary number in the AX register in preparation for a division operation.

Before executing AAD, place the Most significant BCD digit in the AH register
and Last significant in the AL register. When AAD is executed, the two BCD digits are
combined into a single binary number by setting AL=(AH*10)+AL and clearing AH to 0.

Example:
 MOV AX, 0205h ; The unpacked BCD number 25
 AAD ; After AAD, AH=0 and
 ; AL=19h (25)

After the division AL will then contain the unpacked BCD quotient and AH will
contain the unpacked BCD remainder.

Example:
 ; AX=0607 unpacked BCD for 67 decimal
 ; CH=09H
 AAD ; Adjust to binary before division
 ; AX=0043 = 43H =67 decimal
 DIV CH ; Divide AX by unpacked BCD in CH
 ; AL = quotient = 07 unpacked BCD
 ; AH = remainder = 04 unpacked BCD

AAM Instruction - AAM converts the result of the multiplication of two valid
unpacked BCD digits into a valid 2-digit unpacked BCD number and takes AX as an
implicit operand.

To give a valid result the digits that have been multiplied must be in the range of
0 – 9 and the result should have been placed in the AX register. Because both operands of
multiply are required to be 9 or less, the result must be less than 81 and thus is
completely contained in AL.

AAM unpacks the result by dividing AX by 10, placing the quotient (MSD) in
AH and the remainder (LSD) in AL.

Example:
 MOV AL, 5
 MOV BL, 7
 MUL BL ; Multiply AL by BL, result in AX
 AAM ; After AAM, AX =0305h (BCD 35)

AAS Instruction: AAS converts the result of the subtraction of two valid unpacked
BCD digits to a single valid BCD number and takes the AL register as an implicit
operand.
The two operands of the subtraction must have its lower 4 bit contain number in the range
from 0 to 9.The AAS instruction then adjust AL so that it contain a correct BCD digit.

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/4

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 MOV AX, 0901H ; BCD 91
 SUB AL, 9 ; Minus 9
 AAS ; Give AX =0802 h (BCD 82)

 (a)

 ; AL =0011 1001 =ASCII 9
 ; BL=0011 0101 =ASCII 5
 SUB AL, BL ; (9 - 5) Result:
 ; AL = 00000100 = BCD 04, CF = 0
 AAS ; Result:
 ; AL=00000100 =BCD 04
 ; CF = 0 NO Borrow required

 (b)
 ; AL = 0011 0101 =ASCII 5
 ; BL = 0011 1001 = ASCII 9
SUB AL, BL ; (5 - 9) Result:
 ; AL = 1111 1100 = - 4
 ; in 2’s complement CF = 1
AAS ; Results:
 ; AL = 0000 0100 =BCD 04
 ; CF = 1 borrow needed.

ADD Instruction:
These instructions add a number from source to a number from some destination

and put the result in the specified destination. The add with carry instruction ADC, also
add the status of the carry flag into the result.

The source and destination must be of same type, means they must be a byte
location or a word location. If you want to add a byte to a word, you must copy the byte
to a word location and fill the upper byte of the word with zeroes before adding.

EXAMPLE:
 ADD AL, 74H ; Add immediate number 74H to content of AL
 ADC CL, BL ; Add contents of BL plus
 ; carry status to contents of CL.
 ; Results in CL
 ADD DX, BX ; Add contents of BX to contents
 ; of DX
 ADD DX, [SI] ; Add word from memory at
 ; offset [SI] in DS to contents of DX
 ; Addition of Un Signed numbers
 ADD CL, BL ; CL = 01110011 =115 decimal
 ; + BL = 01001111 = 79 decimal
 ; Result in CL = 11000010 = 194 decimal
 ; Addition of Signed numbers
 ADD CL, BL ; CL = 01110011 = + 115 decimal

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/5

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 ; + BL = 01001111 = +79 decimal
 ; Result in CL = 11000010 = - 62 decimal
 ; Incorrect because result is too large to fit in 7 bits.

AND Instruction:
This Performs a bitwise Logical AND of two operands. The result of the

operation is stored in the op1 and used to set the flags.
AND op1, op2

To perform a bitwise AND of the two operands, each bit of the result is set to 1 if
and only if the corresponding bit in both of the operands is 1, otherwise the bit in the
result I cleared to 0.
 AND BH, CL ; AND byte in CL with byte in BH
 ; result in BH
 AND BX, 00FFh ; AND word in BX with immediate
 ; 00FFH. Mask upper byte, leave
 ; lower unchanged
 AND CX, [SI] ; AND word at offset [SI] in data
 ; segment with word in CX
 ; register. Result in CX register.

 ; BX = 10110011 01011110
 AND BX, 00FFh ; Mask out upper 8 bits of BX
 ; Result BX = 00000000 01011110
 ; CF =0, OF = 0, PF = 0, SF = 0,

; ZF = 0
CALL Instruction

•Direct within-segment (near or intrasegment)
•Indirect within-segment (near or intrasegment)
•Direct to another segment (far or intersegment)
•Indirect to another segment (far or intersegment)

CBW Instruction - Convert signed Byte to signed word
CLC Instruction - Clear the carry flag
CLD Instruction - Clear direction flag
CLI Instruction - Clear interrupt flag
CMC Instruction - Complement the carry flag
CMP Instruction - Compare byte or word - CMP destination, source.
CMPS/CMPSB/

CMPSW Instruction - Compare string bytes or string words
CWD Instruction - Convert Signed Word to - Signed Double word

Example
CALL Instruction:

This Instruction is used to transfer execution to a subprogram or procedure. There
are two basic types of CALL’s: Near and Far.

A Near CALL is a call to a procedure which is in the same code segment as the
CALL instruction.

When 8086 executes the near CALL instruction it decrements the stack pointer by
two and copies the offset of the next instruction after the CALL on the stack. This offset

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/6

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

saved on the stack is referred as the return address, because this is the address that
execution will returns to after the procedure executes. A near CALL instruction will also
load the instruction pointer with the offset of the first instruction in the procedure.

A RET instruction at the end of the procedure will return execution to the
instruction after the CALL by coping the offset saved on the stack back to IP.

A Far CALL is a call to a procedure which is in a different from that which
contains the CALL instruction. When 8086 executes the Far CALL instruction it
decrements the stack pointer by two again and copies the content of CS register to the
stack. It then decrements the stack pointer by two again and copies the offset contents
offset of the instruction after the CALL to the stack.

Finally it loads CS with segment base of the segment which contains the
procedure and IP with the offset of the first instruction of the procedure in segment. A
RET instruction at end of procedure will return to the next instruction after the CALL by
restoring the saved CS and IP from the stack.
; Direct within-segment (near or intrasegment)
CALL MULTO ; MULTO is the name of the procedure. The assembler
determines displacement of MULTO from the instruction after the CALL and codes
this displacement in as part of the instruction.
; Indirect within-segment (near or intrasegment)
CALL BX ; BX contains the offset of the first instruction of the
procedure. Replaces contents of word of IP with contents o register BX.
CALL WORD PTR [BX] ; Offset of first instruction of procedure is in two
memory addresses in DS. Replaces contents of IP with contents of word memory
location in DS pointed to by BX.
; Direct to another segment- far or intersegment.
CALL SMART ; SMART is the name of the Procedure
SMART PROC FAR; Procedure must be declare as an far

CBW Instruction - CBW converts the signed value in the AL register into an
equivalent 16 bit signed value in the AX register by duplicating the sign bit to the left.
This instruction copies the sign of a byte in AL to all the bits in AH. AH is then said to be
the sign extension of AL.
Example:
; AX = 00000000 10011011 = - 155 decimal
CBW ; Convert signed byte in AL to signed word in AX.
; Result in AX = 11111111 10011011
; = - 155 decimal

CLC Instruction:
CLC clear the carry flag (CF) to 0 This instruction has no affect on the processor,

registers, or other flags. It is often used to clear the CF before returning from a procedure
to indicate a successful termination. It is also use to clear the CF during rotate operation
involving the CF such as ADC, RCL, RCR.
Example:
CLC ; Clear carry flag.

CLD Instruction:
This instruction reset the designation flag to zero. This instruction has no effect on

the registers or other flags. When the direction flag is cleared / reset SI and DI will

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/7

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

automatically be incremented when one of the string instruction such as MOVS, CMPS,
SCAS, MOVSB and STOSB executes.
Example:
CLD ; Clear direction flag so that string pointers auto increment

CLI Instruction:
This instruction resets the interrupt flag to zero. No other flags are affected. If the

interrupt flag is reset, the 8086 will not respond to an interrupt signal on its INTR input.
This CLI instruction has no effect on the nonmaskable interrupt input, NMI

CMC Instruction:
If the carry flag CF is a zero before this instruction, it will be set to a one after the

instruction. If the carry flag is one before this instruction, it will be reset to a zero after
the instruction executes. CMC has no effect on other flags.
Example:
CMC; Invert the carry flag.

CWD Instruction:
CWD converts the 16 bit signed value in the AX register into an equivalent 32 bit

signed value in DX: AX register pair by duplicating the sign bit to the left.
The CWD instruction sets all the bits in the DX register to the same sign bit of the

AX register. The effect is to create a 32- bit signed result that has same integer value as
the original 16 bit operand.
Example:
Assume AX contains C435h. If the CWD instruction is executed, DX will contain
FFFFh since bit 15 (MSB) of AX was 1. Both the original value of AX (C435h) and
resulting value of DX: AX (FFFFC435h) represents the same signed number.
Example:
 ; DX = 00000000 00000000
 ; AX = 11110000 11000111 = - 3897 decimal
 CWD ; Convert signed word in AX to signed double
 ; word in DX:AX
 ; Result DX = 11111111 11111111
 ; AX = 11110000 11000111 = -3897 decimal.

DAA Instruction - Decimal Adjust Accumulator
DAS Instruction - Decimal Adjust after Subtraction
DEC Instruction - Decrement destination register or memory DEC

destination.
DIV Instruction - Unsigned divide-Div source
ESC Instruction

When a double word is divided by a word, the most significant word of the double
word must be in DX and the least significant word of the double word must be in AX.
After the division AX will contain the 16 –bit result (quotient) and DX will contain a 16
bit remainder. Again, if an attempt is made to divide by zero or quotient is too large to fit
in AX (greater than FFFFH) the 8086 will do a type of 0 interrupt.
Example:
 DIV CX ; (Quotient) AX= (DX: AX)/CX
 : (Reminder) DX= (DX: AX)%CX

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/8

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

For DIV the dividend must always be in AX or DX and AX, but the source of the
divisor can be a register or a memory location specified by one of the 24 addressing
modes.

If you want to divide a byte by a byte, you must first put the dividend byte in AL
and fill AH with all 0’s. The SUB AH, AH instruction is a quick way to do.

If you want to divide a word by a word, put the dividend word in AX and fill DX
with all 0’s. The SUB DX, DX instruction does this quickly.

Example: ; AX = 37D7H = 14, 295 decimal
 ; BH = 97H = 151 decimal
 DIV BH ; AX / BH
 ; AX = Quotient = 5EH = 94 decimal
 ; AH = Remainder = 65H = 101 decimal

ESC Instruction - Escape instruction is used to pass instruction to a
coprocessor such as the 8087 math coprocessor which shares the address and data bus
with an 8086. Instruction for the coprocessor is represented by a 6 bit code embedded in
the escape instruction. As the 8086 fetches instruction byte, the coprocessor also catches
these bytes from data bus and puts them in its queue. The coprocessor treats all of the
8086 instruction as an NOP. When 8086 fetches an ESC instruction, the coprocessor
decodes the instruction and carries out the action specified by the 6 bit code. In most of
the case 8086 treats ESC instruction as an NOP.

HLT Instruction - HALT processing
IDIV Instruction - Divide by signed byte or word IDIV source
IMUL Instruction - Multiply signed number-IMUL source
IN Instruction - Copy data from a port

 IN accumulator, port
INC Instruction - Increment - INC destination
HALT Instruction - The HLT instruction will cause the 8086 to stop fetching

and executing instructions. The 8086 will enter a halt state. The only way to get the
processor out of the halt state are with an interrupt signal on the INTR pin or an interrupt
signal on NMI pin or a reset signal on the RESET input.

IDIV Instruction - This instruction is used to divide a signed word by a signed
byte or to divide a signed double word by a signed word.

Example:
 IDIV BL ; Signed word in AX is divided by signed byte in BL

IMUL Instruction - This instruction performs a signed multiplication.
IMUL op ; In this form the accumulator is the multiplicand and op is the
multiplier. op may be a register or a memory operand.
IMUL op1, op2 ; In this form op1 is always be a register operand and op2 may be a
register or a memory operand.

Example:
 IMUL BH ; Signed byte in AL times multiplied by
 ; signed byte in BH and result in AX.

Example:
 ; 69 * 14
 ; AL = 01000101 = 69 decimal
 ; BL = 00001110 = 14 decimal

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/9

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 IMUL BL ; AX = 03C6H = + 966 decimal
 ; MSB = 0 because positive result

 ; - 28 * 59
 ; AL = 11100100 = - 28 decimal
 ; BL = 00001110 = 14 decimal
 IMUL BL ; AX = F98Ch = - 1652 decimal
 ; MSB = 1 because negative result

IN Instruction: This IN instruction will copy data from a port to the AL or AX register.
For the Fixed port IN instruction type the 8 – bit port address of a port is specified

directly in the instruction.
Example:

 IN AL, 0C8H ; Input a byte from port 0C8H to AL
 IN AX, 34H ; Input a word from port 34H to AX
 A_TO_D EQU 4AH
 IN AX, A_TO_D ; Input a word from port 4AH to AX
 For a variable port IN instruction, the port address is loaded in DX register before
IN instruction. DX is 16 bit. Port address range from 0000H – FFFFH.

Example:
 MOV DX, 0FF78H ; Initialize DX point to port
 IN AL, DX ; Input a byte from a 8 bit port
 ; 0FF78H to AL
 IN AX, DX ; Input a word from 16 bit port to
 ; 0FF78H to AX.

INC Instruction:
INC instruction adds one to the operand and sets the flag according to the result.

INC instruction is treated as an unsigned binary number.
Example:

 ; AX = 7FFFh
 INC AX ; After this instruction AX = 8000h
 INC BL ; Add 1 to the contents of BL register
 INC CL ; Add 1 to the contents of CX register.

INT Instruction - Interrupt program
INTO Instruction - Interrupt on overflow.
IRET Instruction - Interrupt return
JA/JNBE Instruction - Jump if above/Jump if not below nor equal.
JAE/JNB/JNC Instructions- Jump if above or equal/ Jump if not below/

 Jump if no carry.
JA / JNBE - This instruction performs the Jump if above (or) Jump if not below

or equal operations according to the condition, if CF and ZF = 0.
Example:

(1)

 CMP AX, 4371H ; Compare by subtracting 4371H
 ; from AX

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/10

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 JA RUN_PRESS ; Jump to label RUN_PRESS if
 ; AX above 4371H
 (2)
 CMP AX, 4371H ; Compare (AX – 4371H)
 JNBE RUN_PRESS ; Jump to label RUN_PRESS if
 ; AX not below or equal to 4371H

JAE / JNB / JNC - This instructions performs the Jump if above or equal,
Jump if not below, Jump if no carry operations according to the condition, if CF = 0.

Examples:
1. CMP AX, 4371H ; Compare (AX – 4371H)
 JAE RUN ; Jump to the label RUN if AX is
 ; above or equal to 4371H.
2. CMP AX, 4371H ; Compare (AX – 4371H)
 JNB RUN_1 ; Jump to the label RUN_1 if AX
 ; is not below than 4371H
3. ADD AL, BL ; Add AL, BL. If result is with in JNC OK
 ; acceptable range, continue

JB/JC/JNAE Instruction - Jump if below/Jump if carry/
 Jump if not above nor equal

JBE/JNA Instructions- Jump if below or equal /
 Jump if not above

JCXZ Instruction - Jump if the CX register is zero
JE/JZ Instruction - Jump if equal/Jump if zero
JG/JNLE Instruction- Jump if greater/Jump if not

 less than nor equal
JB/JC/JNAE Instruction - This instruction performs the Jump if below (or)

Jump if carry (or) Jump if not below/ equal operations according to the condition,
 if CF = 1

Example:
1. CMP AX, 4371H ; Compare (AX – 4371H)
 JB RUN_P ; Jump to label RUN_P if AX is
 ; below 4371H

2. ADD BX, CX ; Add two words and Jump to
 JC ERROR ; label ERROR if CF = 1

JBE/JNA Instruction - This instruction performs the Jump if below or
equal (or) Jump if not above operations according to the condition, if CF and ZF = 1

Example:
 CMP AX, 4371H ; Compare (AX – 4371H)
 JBA RUN ; Jump to label RUN if AX is
 ; below or equal to 4371H
 CMP AX, 4371H ; Compare (AX – 4371H)
 JNA RUN_R ; Jump to label RUN_R if AX is
 ; not above than 4371H

JCXZ Instruction:

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/11

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

This instruction performs the Jump if CX register is zero. If CX does not contain
all zeros, execution will simply proceed to the next instruction.

Example:
 JCXZ SKIP_LOOP ; If CX = 0, skip the process

 NXT: SUB [BX], 07H ; Subtract 7 from data value
 INC BX ; BX point to next value
 LOOP NXT ; Loop until CX = 0
 SKIP_LOOP ; Next instruction

JE/JZ Instruction:
This instruction performs the Jump if equal (or) Jump if zero operations according

to the condition if ZF = 1
Example:

 NXT: CMP BX, DX ; Compare (BX – DX)
 JE DONE ; Jump to DONE if BX = DX,
 SUB BX, AX ; Else subtract Ax
 INC CX ; Increment counter
 JUMP NXT ; Check again
 DONE: MOV AX, CX; Copy count to AX

Example:
 IN AL, 8FH ; read data from port 8FH
 SUB AL, 30H ; Subtract minimum value
 JZ STATR ; Jump to label if result of
 ; subtraction was 0

JG/JNLE Instruction:
This instruction performs the Jump if greater (or) Jump if not less than or equal

operations according to the condition if ZF =0 and SF = OF
Example:

 CMP BL, 39H ; Compare by subtracting
 ; 39H from BL
 JG NEXT1 ; Jump to label if BL is
 ; more positive than 39H
 CMP BL, 39H ; Compare by subtracting
 ; 39H from BL
 JNLE NEXT2 ; Jump to label if BL is not
 ; less than or equal 39H

JGE/JNL Instruction - Jump if greater than or equal/
 Jump if not less than

JL/JNGE Instruction - Jump if less than/Jump if not
 greater than or equal

JLE/JNG Instruction - Jump if less than or equal/
 Jump if not greater

JMP Instruction - Unconditional jump to -
 specified destination

JGE/JNL Instruction - This instruction performs the Jump if greater than
or equal / Jump if not less than operation according to the condition if SF = OF

Example:

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/12

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 CMP BL, 39H ; Compare by the
 ; subtracting 39H from BL
 JGE NEXT11 ; Jump to label if BL is
 ; more positive than 39H
 ; or equal to 39H
 CMP BL, 39H ; Compare by subtracting
 ; 39H from BL
 JNL NEXT22 ; Jump to label if BL is not
 ; less than 39H

JL/JNGE Instruction - This instruction performs the Jump if less than /
Jump if not greater than or equal operation according to the condition, if SF ≠ OF

Example:
 CMP BL, 39H ; Compare by subtracting 39H
 ; from BL
 JL AGAIN ; Jump to the label if BL is more
 ; negative than 39H
 CMP BL, 39H ; Compare by subtracting 39H
 ; from BL
 JNGE AGAIN1 ; Jump to the label if BL is not
 ; more positive than 39H or
 ; not equal to 39H

JLE/JNG Instruction - This instruction performs the Jump if less than or
equal / Jump if not greater operation according to the condition, if ZF=1 and SF ≠ OF

Example:
 CMP BL, 39h ; Compare by subtracting 39h
 ; from BL
 JLE NXT1 ; Jump to the label if BL is more
 ; negative than 39h or equal to 39h
 CMP BL, 39h ; Compare by subtracting 39h
 ; from BL
 JNG AGAIN2 ; Jump to the label if BL is not
 ; more positive than 39h

JNA/JBE Instruction - Jump if not above/Jump if
 below or equal

JNAE/JB Instruction - Jump if not above or equal/
 Jump if below

JNB/JNC/JAE Instruction - Jump if not below/Jump if
 no carry/Jump if above or equal

JNE/JNZ Instruction - Jump if not equal/Jump if
 not zero

JNE/JNZ Instruction - This instruction performs the Jump if not
equal / Jump if not zero operation according to the condition, if ZF=0

Example:

 NXT: IN AL, 0F8H ; Read data value from port
 CMP AL, 72 ; Compare (AL – 72)

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/13

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 JNE NXT ; Jump to NXT if AL ≠ 72
 IN AL, 0F9H ; Read next port when AL = 72
 MOV BX, 2734H ; Load BX as counter
NXT_1: ADD AX, 0002H ; Add count factor to AX
 DEC BX ; Decrement BX
 JNZ NXT_1 ; Repeat until BX = 0

JNG/JLE Instruction - Jump if not greater/ Jump
 if less than or equal

JNGE/JL Instruction - Jump if not greater than nor
 equal/Jump if less than

JNL/JGE Instruction - Jump if not less than/ Jump
 if greater than or equal

JNLE/JG Instruction - Jump if not less than nor
 equal to /Jump if greater than

JNO Instruction – Jump if no overflow
JNP/JPO Instruction – Jump if no parity/ Jump if parity odd
JNS Instruction - Jump if not signed (Jump if positive)
JNZ/JNE Instruction - Jump if not zero / jump if not equal
JO Instruction - Jump if overflow
JNO Instruction – This instruction performs the Jump if no overflow

operation according to the condition, if OF=0
Example:

 ADD AL, BL ; Add signed bytes in AL and BL
 JNO DONE ; Process done if no overflow -
 MOV AL, 00H ; Else load error code in AL

DONE: OUT 24H, AL ; Send result to display
JNP/JPO Instruction – This instruction performs the Jump if not parity /

Jump if parity odd operation according to the condition, if PF=0
Example:

 IN AL, 0F8H ; Read ASCII char from UART
 OR AL, AL ; Set flags
 JPO ERROR1 ; If even parity executed, if not
 ; send error message

JNS Instruction - This instruction performs the Jump if
not signed (Jump if positive) operation according to the condition, if SF=0

Example:
 DEC AL ; Decrement counter
 JNS REDO ; Jump to label REDO if counter has not
 ; decremented to FFH

JO Instruction - This instruction performs Jump if overflow
operation according to the condition OF = 0

Example:
 ADD AL, BL ; Add signed bits in AL and BL
 JO ERROR ; Jump to label if overflow occur
 ; in addition

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/14

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 MOV SUM, AL ; else put the result in memory
 ; location named SUM

JPE/JP Instruction - Jump if parity even/ Jump if
 parity

JPO/JNP Instruction - Jump if parity odd/ Jump if
 no parity

JS Instruction - Jump if signed (Jump if negative)
JZ/JE Instruction - Jump if zero/Jump if equal
JPE/JP Instruction - This instruction performs the Jump if parity even /

Jump if parity operation according to the condition, if PF=1
Example:
 IN AL, 0F8H ; Read ASCII char from UART
 OR AL, AL ; Set flags
 JPE ERROR2 ; odd parity is expected, if not
 ; send error message

JS Instruction - This instruction performs the Jump if sign operation
according to the condition, if SF=1

Example:
 ADD BL, DH ; Add signed bytes DH to BL
 JS JJS_S1 ; Jump to label if result is
 ; negative

LAHF Instruction - Copy low byte of flag
 register to AH

LDS Instruction - Load register and Ds with words from memory –
 LDS register, memory address of first word

LEA Instruction - Load effective address-LEA
 register, source

LES Instruction
Load register and ES with
words from memory –LES
register, memory address of
first word.

LAHF Instruction:
LAHF instruction copies the value of SF, ZF, AF, PF, CF, into bits of 7, 6, 4, 2, 0

respectively of AH register. This LAHF instruction was provided to make conversion of
assembly language programs written for 8080 and 8085 to 8086 easier.

LDS Instruction:
This instruction loads a far pointer from the memory address specified by op2 into

the DS segment register and the op1 to the register.
LDS op1, op2

Example:
LDS BX, [4326] ; copy the contents of the memory at displacement 4326H in
DS to BL, contents of the 4327H to BH. Copy contents of 4328H and 4329H in DS to
DS register.

LEA Instruction - This instruction indicates the offset of the variable or
memory location named as the source and put this offset in the indicated 16 – bit register.

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/15

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

Example:
 LEA BX, PRICE ; Load BX with offset of PRICE
 ; in DS
 LEA BP, SS:STAK ; Load BP with offset of STACK
 ; in SS
 LEA CX, [BX][DI] ; Load CX with EA=BX + DI

LOCK Instruction - Assert bus lock signal
LODS/LODSB/

 LODSW Instruction - Load string byte into AL or
 Load string word into AX.

LOOP Instruction - Loop to specified
 label until CX = 0

LOOPE /
 LOOPZ Instruction - loop while CX ≠ 0 and
 ZF = 1

LODS/LODSB/LODSW Instruction - This instruction copies a byte from a
string location pointed to by SI to AL or a word from a string location pointed to by SI to
AX. If DF is cleared to 0, SI will automatically incremented to point to the next element
of string.

Example:
 CLD ; Clear direction flag so SI is auto incremented
 MOV SI, OFFSET SOURCE_STRING ; point SI at start of the string
 LODS SOUCE_STRING ; Copy byte or word from
 ; string to AL or AX

LOOP Instruction - This instruction is used to repeat a series of
instruction some number of times

Example:
 MOV BX, OFFSET PRICE
 ; Point BX at first element in array
 MOV CX, 40 ; Load CX with number of
 ; elements in array

NEXT: MOV AL, [BX] ; Get elements from array
 ADD AL, 07H ; Ad correction factor
 DAA ; decimal adjust result
 MOV [BX], AL ; Put result back in array
 LOOP NEXT ; Repeat until all elements
 ; adjusted.

LOOPE / LOOPZ Instruction - This instruction is used to repeat a group of
instruction some number of times until CX = 0 and ZF = 0

Example:
 MOV BX, OFFSET ARRAY
 ; point BX at start of the array
 DEC BX
 MOV CX, 100 ; put number of array elements in
 ; CX

NEXT:INC BX ; point to next element in array

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/16

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 CMP [BX], 0FFH ; Compare array elements FFH
 LOOP NEXT

LOOPNE/LOOPNZ Instruction - This instruction is used to repeat a group of
instruction some number of times until CX = 0 and ZF = 1

Example:
 MOV BX, OFFSET ARRAY1
 ; point BX at start of the array
 DEC BX
 MOV CX, 100 ; put number of array elements in
 ; CX

NEXT:INC BX ; point to next elements in array
 CMP [BX], 0FFH ; Compare array elements 0DH
 LOOPNE NEXT

MOV Instruction - MOV destination, source
MOVS/MOVSB/

 MOVSW Instruction - Move string byte or string
 word-MOVS destination, source

MUL Instruction - Multiply unsigned bytes or
 words-MUL source

NEG Instruction - From 2’s complement –
 NEG destination

NOP Instruction - Performs no operation.
MOV Instruction - The MOV instruction copies a word or a byte of data from

a specified source to a specified destination.
 MOV op1, op2

Example:
 MOV CX, 037AH ; MOV 037AH into the CX.
 MOV AX, BX ; Copy the contents of register BX
 ; to AX
 MOV DL, [BX] ; Copy byte from memory at BX
 ; to DL, BX contains the offset of byte in DS.

MUL Instruction:
This instruction multiplies an unsigned multiplication of the accumulator by the

operand specified by op. The size of op may be a register or memory operand.
MUL op

 Example: ; AL = 21h (33 decimal)
 ; BL = A1h(161 decimal)
 MUL BL ; AX =14C1h (5313 decimal) since AH≠0,
 ; CF and OF will set to 1.
 MUL BH ; AL times BH, result in AX
 MUL CX ; AX times CX, result high word in DX,
 ; low word in AX.

NEG Instruction - NEG performs the two’s complement subtraction of the
operand from zero and sets the flags according to the result.
 ; AX = 2CBh
 NEG AX ; after executing NEG result AX =FD35h.

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/17

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 Example:
 NEG AL ; Replace number in AL with its 2’s complement
 NEG BX ; Replace word in BX with its 2’s complement

NEG BYTE PTR[BX]; Replace byte at offset BX in
; DS with its 2’s complement

NOP Instruction:
This instruction simply uses up the three clock cycles and increments the

instruction pointer to point to the next instruction. NOP does not change the status of any
flag. The NOP instruction is used to increase the delay of a delay loop.

NOT Instruction - Invert each bit of operand –NOT destination.
OR Instruction - Logically OR corresponding of two operands- OR

destination, source.
OUT Instruction - Output a byte or word to a port – OUT port, accumulator

AL or AX.
POP Instruction - POP destination
NOT Instruction - NOT perform the bitwise complement of op and stores the

result back into op.
NOT op
Example:
NOT BX ; Complement contents of BX register.
; DX =F038h
NOT DX ; after the instruction DX = 0FC7h

OR Instruction - OR instruction perform the bit wise logical OR of two
operands.Each bit of the result is cleared to 0 if and only if both corresponding bits in
each operand are 0, other wise the bit in the result is set to 1.
 OR op1, op2
 Examples:
 OR AH, CL ; CL ORed with AH, result in AH.
 ; CX = 00111110 10100101
 OR CX, FF00h ; OR CX with immediate FF00h
 ; result in CX = 11111111 10100101
 ; Upper byte are all 1’s lower bytes
 ; are unchanged.

OUT Instruction - The OUT instruction copies a byte from AL or a word from
AX or a double from the accumulator to I/O port specified by op. Two forms of OUT
instruction are available: (1) Port number is specified by an immediate byte constant, (0 -
255).It is also called as fixed port form. (2) Port number is provided in the DX register (
0 – 65535)

Example: (1)
OUT 3BH, AL ; Copy the contents of the AL to port 3Bh
OUT 2CH, AX ; Copy the contents of the AX to port 2Ch
 (2)
 MOV DX, 0FFF8H ; Load desired port address in DX
 OUT DX, AL ; Copy the contents of AL to
 ; FFF8h

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/18

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 OUT DX, AX ; Copy content of AX to port
 ; FFF8H

POP Instruction:
POP instruction copies the word at the current top of the stack to the operand

specified by op then increments the stack pointer to point to the next stack.
Example:

POP DX ; Copy a word from top of the stack to
; DX and increments SP by 2.

 POP DS ; Copy a word from top of the stack to
 ; DS and increments SP by 2.
 POP TABLE [BX]

 ; Copy a word from top of stack to memory in DS with
 ; EA = TABLE + [BX].

POPF Instruction - Pop word from top of stack to flag - register.
PUSH Instruction - PUSH source
PUSHF Instruction - Push flag register on the stack
RCL Instruction - Rotate operand around to the left through CF –

RCL destination, source.
 RCR Instruction - Rotate operand around to the right

 through CF- RCR destination, count
POPF Instruction - This instruction copies a word from the two memory

location at the top of the stack to flag register and increments the stack pointer by 2.
PUSH Instruction:

PUSH instruction decrements the stack pointer by 2 and copies a word from a
specified source to the location in the stack segment where the stack pointer pointes.

Example:
 PUSH BX ; Decrement SP by 2 and copy BX to stack
 PUSH DS ; Decrement SP by 2 and copy DS to stack
 PUSH TABLE[BX] ; Decrement SP by 2 and copy word
 ; from memory in DS at
 ; EA = TABLE + [BX] to stack.

PUSHF Instruction:
This instruction decrements the SP by 2 and copies the word in flag register to the

memory location pointed to by SP.
RCL Instruction:

RCL instruction rotates the bits in the operand specified by op1 towards left by
the count specified in op2.The operation is circular, the MSB of operand is rotated into a
carry flag and the bit in the CF is rotated around into the LSB of operand.

RCR op1, op2
Example:

 CLC ; put 0 in CF
 RCL AX, 1 ; save higher-order bit of AX in CF
 RCL DX, 1 ; save higher-order bit of DX in CF
 ADC AX, 0 ; set lower order bit if needed.

Example:

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/19

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 RCL DX, 1 ; Word in DX of 1 bit is moved to left, and
 ; MSB of word is given to CF and
 ; CF to LSB.
 ; CF=0, BH = 10110011
 RCL BH, 1 ; Result: BH =01100110
 ; CF = 1, OF = 1 because MSB changed
 ; CF =1, AX =00011111 10101001
 MOV CL, 2 ; Load CL for rotating 2 bit position
 RCL AX, CL ; Result: CF =0, OF undefined
 ; AX = 01111110 10100110

RCR Instruction - RCR instruction rotates the bits in the operand specified by
op1 towards right by the count specified in op2. RCR op1, op2

Example: (1)
 RCR BX, 1 ; Word in BX is rotated by 1 bit towards
 ; right and CF will contain MSB bit and
 ; LSB contain CF bit.
 (2)

; CF = 1, BL = 00111000
 RCR BL, 1 ; Result: BL = 10011100, CF =0
 ; OF = 1 because MSB is changed to 1.

REP/REPE/REPZ/
 REPNE/REPNZ - (Prefix) Repeat String instruction until specified
 condition exist

RET Instruction – Return execution from procedure to calling
 program.

ROL Instruction - Rotate all bits of operand left, MSB to LSB
 ROL destination, count.

ROL Instruction - ROL instruction rotates the bits in the operand specified by
op1 towards left by the count specified in op2. ROL moves each bit in the operand to
next higher bit position. The higher order bit is moved to lower order position. Last bit
rotated is copied into carry flag.
 ROL op1, op2

Example: (1)
 ROL AX, 1 ; Word in AX is moved to left by 1 bit
 ; and MSB bit is to LSB, and CF
 ; CF =0, BH =10101110
 ROL BH, 1 ; Result: CF, Of =1, BH = 01011101

Example: (2)
 ; BX = 01011100 11010011
 ; CL = 8 bits to rotate
 ROL BH, CL ; Rotate BX 8 bits towards left
 ; CF =0, BX =11010011 01011100

ROR Instruction - Rotate all bits of operand right, LSB to MSB –
 ROR destination, count

SAHF Instruction – Copy AH register to low byte of flag register

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/20

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

ROR Instruction - ROR instruction rotates the bits in the operand op1 to
wards right by count specified in op2. The last bit rotated is copied into CF.
 ROR op1, op2

Example:
 (1)

 ROR BL, 1 ; Rotate all bits in BL towards right by 1
 ; bit position, LSB bit is moved to MSB

; and CF has last rotated bit.
 (2)
 ; CF =0, BX = 00111011 01110101
 ROR BX, 1 ; Rotate all bits of BX of 1 bit position
 ; towards right and CF =1,
 BX = 10011101 10111010

Example (3)
 ; CF = 0, AL = 10110011,
 MOVE CL, 04H ; Load CL
 ROR AL, CL ; Rotate all bits of AL towards right
 ; by 4 bits, CF = 0, AL = 00111011

SAHF Instruction:
SAHF copies the value of bits 7, 6, 4, 2, 0 of the AH register into the SF, ZF, AF,

PF, and CF respectively. This instruction was provided to make easier conversion of
assembly language program written for 8080 and 8085 to 8086.

SAL/SHL Instruction - Shift operand bits left, put zero in LSB(s)
 SAL/AHL destination, count

SAR Instruction - Shift operand bits right, new MAB = old MSB
 SAR destination, count.

SBB Instruction - Subtract with borrow SBB destination, source
SAL / SHL Instruction - SAL instruction shifts the bits in the operand

specified by op1 to its left by the count specified in op2. As a bit is shifted out of LSB
position a 0 is kept in LSB position. CF will contain MSB bit.
 SAL op1, op2

Example:
 ; CF = 0, BX = 11100101 11010011
 SAL BX, 1 ; Shift BX register contents by 1 bit
 ; position towards left
 ; CF = 1, BX = 11001011 1010011

SAR Instruction - SAR instruction shifts the bits in the operand specified by
op1 towards right by count specified in op2.As bit is shifted out a copy of old MSB is
taken in MSB
 MSB position and LSB is shifted to CF.

SAR op1, op2

Example: (1)
; AL = 00011101 = +29 decimal, CF = 0

 SAR AL, 1 ; Shift signed byte in AL towards right
 ; (divide by 2)

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/21

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 ; AL = 00001110 = + 14 decimal, CF = 1

(2)
 ; BH = 11110011 = - 13 decimal, CF = 1
 SAR BH, 1 ; Shifted signed byte in BH to right
 ; BH = 11111001 = - 7 decimal, CF = 1

SBB Instruction - SUBB instruction subtracts op2 from op1, then subtracts 1
from op1 is CF flag is set and result is stored in op1 and it is used to set the flag.

Example:
 SUB CX, BX ; CX – BX. Result in CX
 SUBB CH, AL ; Subtract contents of AL and
 ; contents CF from contents of CH.
 ; Result in CH
 SUBB AX, 3427H ; Subtract immediate number
 ; from AX

Example:
•Subtracting unsigned number
 ; CL = 10011100 = 156 decimal
 ; BH = 00110111 = 55 decimal
 SUB CL, BH ; CL = 01100101 = 101 decimal
 ; CF, AF, SF, ZF = 0, OF, PF = 1
•Subtracting signed number
 ; CL = 00101110 = + 46 decimal
 ; BH = 01001010= + 74 decimal
 SUB CL, BH ; CL = 11100100 = - 28 decimal
 ; CF = 1, AF, ZF =0,
 ; SF = 1 result negative

STD Instruction - Set the direction flag to 1
STI Instruction - Set interrupt flag (IF)
STOS/STOSB/

 STOSW Instruction - Store byte or word in string.
SCAS/SCASB/ - Scan string byte or a

 SCASW Instruction string word.
SHR Instruction - Shift operand bits right, put

 zero in MSB
STC Instruction - Set the carry flag to 1
SHR Instruction - SHR instruction shifts the bits in op1 to right by the

number of times specified by op2.
Example:

(1)

 SHR BP, 1 ; Shift word in BP by 1 bit position to right
 ; and 0 is kept to MSB
 (2)
 MOV CL, 03H ; Load desired number of shifts into CL

SHR BYTE PYR[BX] ; Shift bytes in DS at offset BX and

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/22

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

; rotate 3 bits to right and keep 3 0’s in MSB

 (3)
; SI = 10010011 10101101, CF = 0

 SHR SI, 1 ; Result: SI = 01001001 11010110
 ; CF = 1, OF = 1, SF = 0, ZF = 0

TEST Instruction – AND operand to update flags
WAIT Instruction - Wait for test signal or interrupt signal
XCHG Instruction - Exchange XCHG destination, source
XLAT/

 XLATB Instruction - Translate a byte in AL
XOR Instruction - Exclusive OR corresponding bits of two operands –

 XOR destination, source
TEST Instruction - This instruction ANDs the contents of a source byte or

word with the contents of specified destination word. Flags are updated but neither
operand is changed. TEST instruction is often used to set flags before a condition jump
instruction

Examples:
 TEST AL, BH ; AND BH with AL. no result is
 ; stored. Update PF, SF, ZF
 TEST CX, 0001H ; AND CX with immediate
 ; number
 ; no result is stored, Update PF,
 ; SF

Example:
 ; AL = 01010001

 TEST Al, 80H ; AND immediate 80H with AL to
 ; test f MSB of AL is 1 or 0
 ; ZF = 1 if MSB of AL = 0
 ; AL = 01010001 (unchanged)
 ; PF = 0, SF = 0
 ; ZF = 1 because ANDing produced is 00

WAIT Instruction - When this WAIT instruction executes, the 8086
enters an idle condition. This will stay in this state until a signal is asserted on TEST
input pin or a valid interrupt signal is received on the INTR or NMI pin.
 FSTSW STATUS ; copy 8087 status word to memory
 FWAIT ; wait for 8087 to finish before-
 ; doing next 8086 instruction
 MOV AX, STATUS ; copy status word to AX to
 ; check bits

In this code we are adding up of FWAIT instruction so that it will stop the execution of
the command until the above instruction is finishes it’s work.so that you are not loosing
data and after that you will allow to continue the execution of instructions.

XCHG Instruction - The Exchange instruction exchanges the contents of
the register with the contents of another register (or) the contents of the register with the
contents of the memory location. Direct memory to memory exchange are not supported.

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/23

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 XCHG op1, op2
 The both operands must be the same size and one of the operand must always be a
register.
Example:
 XCHG AX, DX ; Exchange word in AX with word in DX
 XCHG BL, CH ; Exchange byte in BL with byte in CH

XCHG AL, Money [BX] ; Exchange byte in AL with byte
 ; in memory at EA.

XOR Instruction - XOR performs a bit wise logical XOR of the operands
specified by op1 and op2. The result of the operand is stored in op1 and is used to set the
flag.
 XOR op1, op2
 Example: (Numerical)
 ; BX = 00111101 01101001
 ; CX = 00000000 11111111
 XOR BX, CX ; Exclusive OR CX with BX
 ; Result BX = 00111101 10010110
Module 2 learning unit 6:
Assembler Directives ASSUME

DB - Defined Byte.
DD - Defined Double Word
DQ - Defined Quad Word
DT - Define Ten Bytes
DW - Define Word
ASSUME Directive:

The ASSUME directive is used to tell the assembler that the name of the logical
segment should be used for a specified segment. The 8086 works directly with only 4
physical segments: a Code segment, a data segment, a stack segment, and an extra
segment.

Example:
ASUME CS:CODE ; This tells the assembler that the logical segment

named CODE contains the instruction statements for the program and should be treated
as a code segment.

ASUME DS:DATA ; This tells the assembler that for any instruction
which refers to a data in the data segment, data will found in the logical segment DATA.

DB: DB directive is used to declare a byte-type variable or to store a byte in memory
location.

Example:
1. PRICE DB 49h, 98h, 29h ; Declare an array of 3 bytes,

; named as PRICE and initialize.
2. NAME DB ‘ABCDEF’ ; Declare an array of 6 bytes and

; initialize with ASCII code for letters
3. TEMP DB 100 DUP(?) ; Set 100 bytes of storage in memory and
give it the name as TEMP, but leave the 100 bytes uninitialized. Program instructions
will load values into these locations.

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/24

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

DW: The DW directive is used to define a variable of type word or to reserve storage
location of type word in memory.

Example:
MULTIPLIER DW 437Ah ; this declares a variable of type word and named it
as MULTIPLIER. This variable is initialized with the value 437Ah when it is loaded into
memory to run.
EXP1 DW 1234h, 3456h, 5678h ; this declares an array of 3 words and initialized
with specified values.
STOR1 DW 100 DUP(0); Reserve an array of 100 words of memory and
initialize all words with 0000.Array is named as STOR1.

END: END directive is placed after the last statement of a program to tell the assembler
that this is the end of the program module. The assembler will ignore any statement after
an END directive. Carriage return is required after the END directive.

ENDP: ENDP directive is used along with the name of the procedure to indicate the
end of a procedure to the assembler

Example:
 SQUARE_NUM PROCE ; It start the procedure
 ; Some steps to find the square root of a number

 SQUARE_NUM ENDP ; Hear it is the End for the procedure

END - End Program
ENDP - End Procedure
ENDS - End Segment
EQU - Equate
EVEN - Align on Even Memory Address
EXTRN
ENDS - This ENDS directive is used with name of the segment to indicate

the end of that logic segment.
Example:

 CODE SEGMENT ; Hear it Start the logic
 ; segment containing code

; Some instructions statements to perform ;
the logical operation

 CODE ENDS ; End of segment named as
 ; CODE

EQU: This EQU directive is used to give a name to some value or to a symbol. Each
time the assembler finds the name in the program, it will replace the name with the value
or symbol you given to that name.

Example:
FACTOR EQU 03H ; you has to write this statement at the starting of your
program and later in the program you can use this as follows
 ADD AL, FACTOR ; When it codes this instruction the
assembler will code it as ADDAL, 03H

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/25

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 ; The advantage of using EQU in this manner is, if FACTOR is used many no of
times in a program and you want to change the value, all you had to do is change the
EQU statement at beginning, it will changes the rest of all.

EVEN: This EVEN directive instructs the assembler to increment the location of the
counter to the next even address if it is not already in the even address. If the word is at
even address 8086 can read a memory in 1 bus cycle.

If the word starts at an odd address, the 8086 will take 2 bus cycles to get the data.
A series of words can be read much more quickly if they are at even address. When
EVEN is used the location counter will simply incremented to next address and NOP
instruction is inserted in that incremented location.

Example:
 DATA1 SEGMENT
 ; Location counter will point to 0009 after assembler reads

 ; next statement
 SALES DB 9 DUP(?) ; declare an array of 9 bytes
 EVEN ; increment location counter to 000AH
 RECORD DW 100 DUP(0) ; Array of 100 words will start from an even
address for quicker read
 DATA1 ENDS

GROUP - Group Related Segments
LABLE
NAME
OFFSET
ORG - Originate
GROUP - The GROUP directive is used to group the logical

segments named after the directive into one logical group segment.
INCLUDE - This INCLUDE directive is used to insert a block of source

code from the named file into the current source module.
PROC - Procedure
PTR - Pointer

PUBLC
SEGMENT
SHORT
TYPE
PROC: The PROC directive is used to identify the start of a procedure. The term near

or far is used to specify the type of the procedure.
Example:

 SMART PROC FAR ; This identifies that the start of a
procedure named as SMART and instructs the assembler that the procedure is far.
 SMART ENDP
 This PROC is used with ENDP to indicate the break of the procedure.

PTR: This PTR operator is used to assign a specific type of a variable or to a label.
Example:

 INC [BX] ; this instruction will not know whether to increment the
byte pointed to by BX or a word pointed to by BX.

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/26

Microprocessors and Microcontrollers/Assembly language of 8086 Lecture Notes

 INC BYTE PTR [BX] ; increment the byte
 ; pointed to by BX
 This PTR operator can also be used to override the declared type of
variable. If we want to access the a byte in an array WORDS DW 437Ah, 0B97h,
 MOV AL, BYTE PTR WORDS

PUBLIC - The PUBLIC directive is used to instruct the assembler that a
specified name or label will be accessed from other modules.

Example:
 PUBLIC DIVISOR, DIVIDEND; these two variables are public so
these are available to all modules.
 If an instruction in a module refers to a variable in another
assembly module, we can access that module by declaring as EXTRN directive.

TYPE - TYPE operator instructs the assembler to determine the type of a
variable and determines the number of bytes specified to that variable.

Example:
 Byte type variable – assembler will give a value 1
 Word type variable – assembler will give a value 2
 Double word type variable – assembler will give a value 4
 ADD BX, TYPE WORD_ ARRAY; hear we want to increment BX to point
to next word in an array of words.
DOS Function Calls AH 00H : Terminate a Program

AH 01H : Read the Keyboard
AH 02H : Write to a Standard Output Device
AH 08H : Read a Standard Input without Echo
AH 09H : Display a Character String
AH 0AH : Buffered keyboard Input
INT 21H : Call DOS Function.

M. Krishna Kumar/IISc. Bangalore M2/V1/June 04/27

