

Storage Systems

NPTEL Course
Jan 2012

(Lecture 01)

K. Gopinath
Indian Institute of Science

Introduction
 Why Storage Systems?

 Earlier: (processing + storage) and networking
 Now: processing, storage and networking
 Fast networks enable separation from “processing”

 Devices, Protocols, Layers/Systems
 Old and New Devices: Tape, Drum, Disk, Solid State
 Protocols: NFS, Cloud storage API
 Layers/Systems: Google FS, Mail storage

 Issues
 Older: concurrency with CPU, handling device diversity
 Newer: scale, distribution, error mgmt, security, RT, QoS,

manageability

Why is storage different?
 Consider long term storage (multiple decades):

Stored data can be accessed decades later!

− Formats, devices, etc can change
− Data not interpretable unless auxiliary

information also stored (Recursion problem!)
 Consider security: Why storage security different

from, say, network security?
 Network security is across “space”

− Network transfers happen within a short time
(unless space probe netw packets to Pluto!)

 Storage security is across both “space and time”
− If using keys, keys may have to survive years!

Naming and Storing
 Two important functions:

 Give a name to an object
− Can involve some processing (eg. add name to an index)
− Or, name itself may be computed based on contents

 Store an object
− May involve other reads or stores!
− May involve significant computation

 Compression, encryption, coding, or deduplication: remove redundancy
 May need to keep aux. information about object

− Metadata vs data; recursion? (metadata about metadata...)
− Metadata loss vs data loss

 Access (r/w): device specific aspects determine speed
 Reads sequential, non-sequential or random
 Writes in-place or out-of-place

Large persistent data structures
 For processing, parts need to be brought into mem.

 Two copies: “in memory” and “on-disk”
 Atomicity and Consistency issues

 Algorithmic aspects need to be carefully taken care of
 Number of objects can be in billions
 Size of object can be in gigabytes
 As time progresses, newer algs needed as scale changes

− Mail directories can have 1000's of msgs, each a file!
− Creating a file requires locking directory
− Concurrent creates to same directory may become lock-bound

 Critical with web-level storage systems
 Many newer models (eg. key-value stores) since c. 2000

Ext2 FS
(from Wikipedia)

 Google FS
(from Wikipedia)

Deep Storage Stack
 Various types of abstractions in stack

 Device
 Block
 File
 Application level (buffering in libc, for eg.)

 Finer sublayers in each layer
 SCSI has upper (device-specific), mid (protocol specific)

and lower (physical communication layer)
 For scalability, network stack part of storage stack
 A good part of stack in kernel

 Increasingly, storage stack migrating out of kernel with
separation of processing and storage (eg. GFS)

Storage Characteristics
 Concurrency arises naturally

 Wide disparity in speeds of memory and storage
 Have to mask slowness of storage
 Make processing and storage go at their own rates and

use interrupts (or sometimes polling) to signal
completion of slow storage operations

 Historic reason why operating systems developed
 Storage has to be typically persistent over time

 Amount increases typically with time
 But not all imp over time; keep imp part in fast storage?

 “Caching” and “tiering” arise naturally
 Have to choose 2 of 3: speed, capacity or cost

Storage Performance
 Storage often slowest component

 Cache!
 Within single device, efficiency by:

 merging requests
 scheduling requests in an order that is best wrt device

(out-of-order execution commonplace)
− Higher level software has to work around this aspect
− If a particular order required, left to “user”
− Semantically not much guaranteed

 Asynchronous processing often used: aio
 Parallelism across multiple devices/threads:

 Multiple Heads (Disks)
 Multiple chips (SSDs)

Optimization Framework
 Due to slowness of devices, optimization of

accesses important
 eg. what to cache, what to prefetch?
 But usage patterns typically not known a priori
 Big difference in performance whether sequential

access or random
 System slow if too many on demand migrations from

slow to fast tier of storage (latency delays)
 Often, opts. critical and override “semantics”

 Out-of-order processing typical
 Complex higher-level software

 Learning on the job important
 Simple and robust methods useful

Storage Protocols
 Interrupt driven rather than wait/poll

 On completion, interrupt CPU or HBA
 To avoid interrupt overhead, HBA or similar agents

− Helps Segmentation and Reassembly (SAR)

 Split-phase transactions common
 for eg: on completion of (a long) seek, slave takes bus

 Protocol endpoints preferably “virtualizable”
 SCSI devices can be on an electrical bus, network or

Internet if physical layer handled correctly
− Protocols survive much longer

 Devices can have arbitrary structure as long as they speak
SCSI protocol

− Even big servers!

Summary

 Storage systems design has many ramifications
for the rest of the system
 Provide abstractions based on application

needs and devices
 Design needs to be sensitive to cost, devices,

manageability
 Introduce newer abstractions with time

− eg. key value stores
 Storage systems need to scale to support large

scale computing systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

