Storage Systems

NPTEL Course
Jan 2012

(Lecture 31)

K. Gopinath
Indian Institute of Science



Multicast Oscillatory Behaviour

Nodes experience disturbances eg. Java gc pauses, Linux sched
delays, flushing data to disk

Prevents nodes from forwarding packets eg. when appl thread does
not respond or when packets do not reach node because of a link
problem.

For a while, root continues sending, so incoming packets from the
upstream link fill node’s buffers.

Flow control causes node’s parent node to stop sending, which in
turn causes its buffers to fill up.

If node’s disturbance persists, then eventually all buffers on path
from root to the node become full, and root’s sending throughput
drops to zero

In large trees (10K-60K nodes in cloud), when each node is
disturbed for one sec/hour on average, throughput degradation (up
to 90%) occurs even if message loss is negligible.



FLP/CAP Related Problems

* Distributed Consensus: FLP Impossibility result
* Distributed Locking/Synchronization
* Distr Commit in clustered/distr fs and db
- Slightly similar: Waitfree synchronization

* Let us consider the state of art in current large scale storage
systems:

* Distr locking, synch, commit problems exist

* How are they being handled? What guarantees are being
given?



Storage APIs

POSIX: Read (fd, buffer, count)

* Partial writes to a file OK (appends, overwrites, etc)

* mmap avibl

NFS: Read (fd, offset, buffer, count)

* Partial writes and mmap avlbl

Amazon S3: “storage” service

* Key Value store; no features like partial write or mmap!

ZooKeeper: hierarchical “file”-like service

* In memory tree-based info for distributed coordination

* Replicated

* Provides primitives to construct more complex services
- Synchronization, group membership



S3 Interface: Key Value Store

* Amazon S3 stores data in named buckets

* Each bucket is a flat namespace, containing keys
associated with objects (but not another bucket)

* Max obj size 5GB. Partial writes to objects not allowed
(must be uploaded full), but partial reads OK

* Storage API
* create bucket
* put bucket, key, object
* get bucket, key
* delete bucket, key
* delete bucket
* list keys in bucket
* list all buckets



Z0ooKeeper

Tree-based info (“filesystem”)

Fast and simple

each node stores one or more pieces of info (“file”)
very simple programming interface:

create: creates a node at a location in the tree
delete: deletes a node

exists: tests if a node exists at a location

get/set data: reads/writes the data from a node
get children: retrieves a list of children of a node
Sync: walits for data to be propagated



Eventual Consistency

* S3 model: When no updates occur for a long period of
time, eventually all updates will propagate through the
system and all the replicas will be consistent

* Often called BASE: Basically Available, Soft-state and
Eventually Consistent!

* Contrast with ACID
* Zookeeper consistency model:

* The clients view of the system is guaranteed to be up-
to-date within a certain time bound



ZooKeeper Consistency model

* guarantees:

* Seguential Consistency - Updates from a client will be
applied in the order that they were sent.

* Atomicity - Updates succeed or fail. No partial results.

* Single System Image - A client will see the same view of
the service regardless of the server that it connects to.

* Reliability - Once an update has been applied, it will persist
from then until a client overwrites the update.

* Timeliness - The clients' view of the system is guaranteed
to be up-to-date within a certain time bound.



ACID vs. BASE

* ACID
* Strong consistency, Isolation, Focus on “commit”
* Availability?
* Conservative (pessimistic)
* Nested transactions
* Difficult System evolution
* BASE
* Weak consistency: stale data OK
* Availability first, Best effort, Approx answers OK
* Aggressive (optimistic)
* Simpler and Faster
* Easier System evolution



Commit Protocols

Abstract problem related to consistency. commit or
consensus protocols

Atomic Commitment (AC) and Consensus: both require fault
tolerant agreement among processes

AC:
AC1: No two processes reach different decisions.
AC2: Commit Iis decided only if all votes are Yes.

AC3: If there are no failures and all votes are Yes, then all
processes decide to Commit.

AC4. If all existing failures are repaired and no new failures
occur for a sufficiently long period of time, then all processes
will reach a decision.

No Blocking: All correct processes reach a decision:
Unrealizable! (General's paradox)



Consensus

Agreement (A) All non-faulty processes reach the same
decision

Validity (V) If all non-faulty processes' votes are Yes, they will
all decide to Commit; if all non-faulty processes' votes are No,
they will all decide to Abort

Weak Validity (WV) If there are no failures, V holds

Very Weak Validity (VWV) Both Commit and Abort are
possible decision values: i.e. there is an execution in which
correct processes decide to Commit and an execution in which
correct processes decide to Abort

Satisfaction of A and V: consensus problem.
Satisfaction of A and WV: weak consensus
Satisfaction of A and VWV: very weak consensus



Relation Betw AC and Consensus

* Differences betw AC and diff versions of consensus concern
* the decisions reached by faulty processes; and

* the strength of the conditions required

AC attainable only under the assumption that process

failures are benign

Can prove
* AC 2,3,4 imply WV but not the converse

* With “no-catastrophe” axiom (NC): all failures repaired and no
new failures for a sufficient period of time, then AC1, AC4 and
NC imply A

AC conditions stronger than WV, assuming NC



	Storage Systems
	Multicast Oscillatory Behaviour
	FLP/CAP Related Problems
	Storage APIs 
	S3 Interface: Key Value Store
	ZooKeeper
	Eventual Consistency
	ZooKeeper Consistency model
	ACID vs. BASE
	 
	Consensus
	Relation Betw AC and Consensus  

