Storage Systems

NPTEL Course
Jan 2012

(Lecture 16)

K. Gopinath
Indian Institute of Science

A Common System Interface: Posix 1

- access
- chdir

- chmod
- chown

- close

- closedir
- creat

- dup

- dup2

- execl

- execle
- execlp
- execv

- execve
- execvp
- _exit

- fentl

- fdopen
- fork

Tests for file accessibility

Changes current working directory
Changes file mode

Changes owner and/or group of a file
Closes a file

Ends directory read operation
Creates a new file or rewrites existing one
Duplicates an open file descriptor
Duplicates an open file descriptor
Executes a file

Executes a file

Executes a file

Executes a file

Executes a file

Executes a file

Terminates a process

Manipulates an open file descriptor
Opens a stream on a file descriptor
Creates a process

- fpathconf Gets config variable for an open file

- fstat
- getcwd

Gets file status
Gets current working directory

link Creates a link to a file

Iseek Repositions read/write file offset
mkdir Makes a directory

mkfifo Makes a FIFO special file

open Opens a file

opendir Opens a directory

pathconf Gets config variables for a path
pipe Creates an interprocess channel
read Reads from a file

readdir Reads a directory

rename Renames a file

rewinddir Resets the readdir() pointer
rmdir ~ Removes a directory

stat Gets information about a file
umask Sets the file creation mask
unlink Removes a directory entry

utime Sets file access & modification times

write Writes to a file

POSIX.1b

aio_cancel Tries to cancel an asynchronous op

alo_error Retrieves error status for an
asynchronous op

aio_read Asynchronously reads from a file

aio_return Retrieves return status for an
asynchronous op

aio_suspend Waits for an asynchronous op to
complete

aio_write Asynchronously writes to a file

fdatasync Synchronizes at least the data part
of a file with the underlying media

fsync Synchronizes a file with underlying
media

lio_listio Performs a list of I/O operations,
synchronously or asynchronously

mlock Locks a range of memory

mlockall Locks the entire memory
space down

mmap Maps a shared memory object
(or possibly another file) into process's addr
space

mprotect Changes memory protection
on a mapped area

msync Makes a mapping consistent
with the underlying object

munlock Unlocks a range of memory

munlockall Unlocks the entire address
space

munmap Undo mapping established by
mmap

Device Driver

* With each physical device, device driver code manages
device hardware

brings device into and out of service,
sets hardware parameters in the device,
transmits data from the kernel to the device,

receives data from the device and passes it back to
the kernel, and

handles device errors

* Diffs betw application programs versus drivers:

- no main for drivers: driver routines called in response to system
calls or other requirements. Switch tables contain starting
addresses for principal routines included in all drivers.

- parallel execution: a driver may receive a request to write data to a
disk while waiting for a previous request to complet

* no new version of driver (and its data structures) for each
process => must anticipate & handle contention problems
resulting from overlapping I/O regs processing needed to
handle hardware interrupts

- Inefficient driver code can severely degrade overall perf, and driver
errors can corrupt or bring down system.

Device specificity

mem-mapped I/O or I/O space
- i/o space = all dev regs + frame buffers for mem mapped devices

- each reg has a well-defined addr that is assigned at boot time
using config files used to build system

- SYysS may assign a range of addrs to each controller and it may in
turn assign it to various devices under it

programmed I/O (PIO: modems, char terminals, line printers) or DMA
(disks/graphics terminals) or DVMA (interacts thru MMU to xfer data
to device without going thru mem)

Device interrupts

kernel code at ipl=0
If arriving interrupt's ipl <= current ipl of system, blocked
for each device, a fixed ipl

- all devices on a contoller typ have same ipl
some kernel routines incr ipl to block certain interrupts

- manipulation of disk buffer g => blocks disk interrupts
set ipl to device's interrupt level

- while saving current value

- Use previously saved value when exiting handler

In some OS, blockable kernel threads instead of ipl

* typ all interrupts invoke a common routine in kernel with some information to identify interrupt
- saves context, raises ipl to that of interrupt, calls handler; on return, restores context, ret
 identification of interrupt: vectoring? or polling?
- completely vectored: each device provides interrupt vector # for index
- only ipl may be available: search linked list of handlers with same ipl
- vectored may also support linked list of handlers:
* can add dyn loadable dev drivers on a running system
« "override" drivers in front of list: trap/handle certain interrupts, rest to default driver
* handler: most important part of system (runs in priority > kernel code)
- has to be quick and not sleep; also do enough work so that device not idle
- initiate next I/O req pending before exit

Device Driver

Monolithic kernel vs microkernel
- Interfaces different
* Possibly a loadable module in monolithic
* Dev driver an appl in case of microkernel
Device driver requires kernel memory and other resources
- Also, may be physical memory (for DMA)
- Or, mapping of memory from/to device
Kernel needs to issue commands to device
DDI/DDK (device driver interface/kernel)
- Isolate device drivers from differing versions of kernel
- Isolate kernel from hardware details

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
#include <linux/string.h>
#include <asm/uaccess.h>
#include <linux/errno.h>
#include "intevts.h"

struct event_t *evtbuf,*nextevt,*lastevt;

int recording=0;
spinlock_t evtbuf_Ik;

extern void (*penter_irq)(int irq,int cpu);
extern void (*pleave_irqg)(int irg,int cpu);

ssize_tints_read(struct file *, char *, size _t, loff_t *);
ssize_tints_write(struct file *, const char *, size_t, loff t

*),

int ints_open(struct inode *, struct file *);
int ints_release(struct inode *, struct file *);

static struct file_operations ints_fops = {

read: ints_read,
write: ints_write,
open: ints_open,
release: ints_release,

void enter_irq(int irg,int cpu) {
int flags;
spin_lock_irgsave(&evtbuf_lk,flags);
if(recording && nextevt!=lastevt) {
rdtscll(nextevt->time);
nextevt->event=
MKEVENT (irq,E_ENTER);
nextevt->cpu=cpu;
nextevt++;
}
spin_unlock_irgrestore(&evtbuf_lk,flags);
}
void leave_irq(int irg,int cpu) {
int flags;
spin_lock_irgsave(&evtbuf_lk,flags);
if(recording && nextevt!=lastevt) {
rdtscll(nextevt->time);
nextevt->event=
MKEVENT(irq,E_LEAVE);
nextevt->cpu=cpu;
nextevt++;

}

spin_unlock_irgrestore(&evtbuf_lk,flags);

	Storage Systems
	A Common System Interface: Posix 1
	POSIX.1b
	Device Driver
	
	Device specificity
	Device interrupts
	Slide 8
	Device Driver
	#include <linux/module.h> #include <linux/fs.h> #include <linux/vmalloc.h> #include <linux/string.h> #include <asm/uaccess.h> #include <linux/errno.h> #include "intevts.h" struct event_t *evtbuf,*nextevt,*lastevt; int recording=0; spinlock_t evtbuf_lk; extern void (*penter_irq)(int irq,int cpu); extern void (*pleave_irq)(int irq,int cpu); ssize_t ints_read(struct file *, char *, size_t, loff_t *); ssize_t ints_write(struct file *, const char *, size_t, loff_t *); int ints_open(struct inode *, struct file *); int ints_release(struct inode *, struct file *); static struct file_operations ints_fops = { read: ints_read, write: ints_write, open: ints_open, release: ints_release, };

