
  

Storage Systems

NPTEL Course

Jan 2012
(Lecture 35)

K. Gopinath

Indian Institute of Science



  

Some Definitions
 static/dynamic membership in a group

 static: typically mapping betw hw and processes that are 
restarted on failure

 dynamic: new processes started, join system; leave 
system on termination, failure or disconnection

 dynamically uniform: if any process performs some action, all 
processes that remain operational also perform it => 
externally visible actions
 different from commit: in commit, if any process (incl a 

process that will fail) commits, all (statically defined) 
processes also commit: recovery on failed process

 in dynamically uniform: if a process leaves (fails), never 
rejoins system



  

 

            DYN uniform

crash

crash

Inspite of crash at sender S, if msg 
delivered at A, it WILL be delivered 
at B, C, D

Eg: issuing money from an ATM
Commit, Paxos! 

A

B

C

D

S

In non-dyn uniform, if 
S and A crash, it is 
OK if none of the 
survivors get the msg



  

More Definitions...
 non-dynamically uniform: states and actions of processes 

that subsequently fail discarded; operational part of the 
system defines system

 failure-atomic multicast: 2 types
 if m sent using a dynamic uniform protocol, when p 

delivers m, it also knows that any future execution of 
the system in which a set of processes remains 
operational will also guarantee the delivery of m within 
its remaining destinations among that set of processes

 if p receives a non-uniform multicast m, p knows that if 
both the sender of m and p crash or are excluded from 
the system membership, m may not reach its other 
destinations



  

More Definitions...
 reliable bcast/mcast: validity, agreement, integrity amongst 

correct processes
 if a correct process casts msg m, all correct processes 

eventually deliver m
 if a correct process delivers m, all correct processes 

eventually deliver m
 for any m, every correct process delivers m atmost once & 

only if m cast
 uniformity: differs in agreement & integrity wrt correct/faulty 

processes:
 if a process delivers m, all correct processes eventually 

deliver m
 for any m, every process delivers m atmost once & only if 

m cast



  

View Synchrony Model (Birman)
 introduce synchronization mechanism for failure-atomic 

protocols wrt group membership changes
 each process at each time instant has a unique view of 

membership of group 
 processes that proceed together thru 2 consecutive views 

deliver the same set of msgs betw these views
 each msg assoc with a view & all send/rcv for a msg 

occur at processors with that view; send/delivery events 
considered as a single instantaneous event  

 virtual synchrony (VS): use view synchrony to support a 
execution model for efficient fault-tolerant computing
 defined interms of an unrealizable “close synchrony” 

model



  

Close/Virtual Synchrony

 Close synchronous execution model (infeasible!)
 Multicast delivered to all group members as a single, reliable 

instantaneous event
 reliable comm (not TCP streams that break unreliably)
 group addr expansion: membership of group fixed at the delivery of a 

mcast
 delivery ordering of concurrent msgs: diff mcasts distinct & ordered 

same; of related msgs: causal order possible
 state transfer: at well defined points (eg: a new member join)
 failure atomicity: mcast a single logical event; failure reporting thru 

group membership changes that are ordered wrt multicast => atomic 
mcast

 Virtual synchrony: permits asynch executions for which there exists some 
closely synch execution indistinguishable from the asynch one.     => 
Virtually synchronous process groups



  

Differences with other models
 transactional serializability: 

 both VS & transactional order-based execution 
models

 transactional: focus on isolation of concurrent txns 
from one another, persistent data & rollback

 VS: direct cooperation betw group members, failure 
handling, dynamic reconfig to make progress when 
partial failures occur

 commit: a form of reliable multicast but also serializability 
& durability

 multicast delivery: weaker guarantees  



  

Group Membership Service (GMS)

 Behavior depends upon future events
 suppose a process p suspects that process q is faulty
 if p itself remains in the system, q will eventually be 

excluded from it
 But cases in which p might itself be excluded 

 both p and q might be excluded
 system as a whole prevented from making progress if less 

than majority that participated in previous system view 
remain operational

 unfortunately, not clear which case applies until later in the 
execution when system's future becomes definite

 Good spec: if p suspects failure of q then q eventually 
excluded from system, unless p itself is 



  

Group Membership Protocol for GMS 
Servers

 on partition: progress only in primary component
 in non-primary: only safe actions
 on an eject of p from primary: split brain problem if p 

does not know that it has been ejected
 can use a real clock (synch to epsilon): p should detect 

within delta
 views should be causally ordered
 merging

 primary component membership should overlap with that of 
previous primary

 2PC if GMS coord live; otherwise 3PC



  

2PC/3PC Details 2PC:
 1st phase: list of add/delete events sent to all (incl coord); 

ack response
 2nd phase: coord waits for majority acks

− if majority, commit upd (incl failures during 1st 
phase);  all upd new view

− if majority do not respond, wait till comm restored or 
run a special protocol

− must prevent a new primary component in which 
coord not part (impossible!)

 3PC: new coord if coord fails
 informs atleast majority about coord failure
 collect acks and current membership info from all
 proposes new membership (new add/delete + detected 

in 1st phase + from old coord). Next as in 2PC



  

VS Reqs
 system membership takes the form of system views 

 initial system view at system start
 subsequent views differ by the addition or deletion of processes 

 only processes that request to be added to system added
 only processes suspected of failure or that request to leave system 

deleted
 maj of processes in view i must acquiesce in composition of view i+1
 starting from an initial system view, subsequences of a single sequence of 

system views reported to system members; each system member 
observes such a subsequence starting with the view in which it was first 
added to the system, and continuing until it fails, leaves the system, or is 
excluded from the system

 if process p suspects process q of being faulty, then if the core GMS 
service is able to report new views, either q will be dropped from the 
system, or p will be dropped, or both 

 In a system with synchronized clocks and bounded message latencies, 
any process dropped from the system view will know within bounded time



  

Impossibility of Synch 2 Clocks!
 Consider 2 nodes P, Q with 2 clocks: 

 Clock_P, say, ideal: Time = t 
 Clock_Q: Time = a*t+b (a skew and b offset)

 Delays (asymmetric!) 
 P2Q: d1; Q2P: d2

 Need to determine a, b, d1, d2 thru any set of netw pkt 
exchanges
 Impossible! (Graham/Kumar'04)
 From linear algebra...

 However, can determine a, d1+d2 (roundtrip delay) 
 Offset b cannot be 
 Also sender can predict receiver time when pkt received 



  

API for Clients of GMS

 join(pid, callback) returns (time, GMS list)
 callback called when membership changed
 idempotent: if join fails, can issue it again to some 

other GMS server
 leave(pid) returns void

 idempotent; fails only if GMS server fails
 monitor(pid, callback) returns callbackid

 GMS calls callback(pid) if pid fails
 idempotent; fails only if GMS server fails



  

Ordering semantics

 none
 FIFO: if a process casts m before m', no correct process 

delivers m' before m
 causal: if cast of m precedes m', no correct process delivers 

m' before m
 e precedes f (Lamport) iff 

− a process executes both e and f in that order, or
− e is the cast of some msg m and f is the delivery of m 

at some process, or 
− there is an event h such that e precedes h and h 

precedes f
 total: if at a correct process p, m delivered  before m', then 

m will be delivered before m' at all destinations they have in 
common


	Storage Systems
	Some Definitions
	 
	More Definitions...
	Slide 5
	View Synchrony Model (Birman)
	Close/Virtual Synchrony
	Differences with other models
	Group Membership Service (GMS)
	Group Membership Protocol for GMS Servers
	2PC/3PC Details
	VS Reqs
	Impossibility of Synch 2 Clocks!
	API for Clients of GMS
	Ordering semantics

