Storage Systems

NPTEL Course
Jan 2012

(Lecture 34)

K. Gopinath
Indian Institute of Science

Concurrency Control Models

Distr storage systems: consistency thru txns
- But trasactions need ordering of writes
FS, DB, Volume Manager (VM) have diff needs

FS/DB need control on ordering of writes for serializabllity:
but total ordering (eg. in a SAN) an overkill

A FS may need stricter guarantees for consistency of
metadata (=> ordering) but may not for data

Similarly, a parallel FS does not need total ordering for non-
overlapping upds on a file thru multiple 1/O daemons

Aborts are infrequent in FS as many FS can work quite well
with redo-only style transactions

DB often have long-lived transactions and redo-undo style
transactions are necessary

Faillures?

* However, designing clustered FS, clustered Volume
Managers, etc in the presence of failures very hard

- Need a way of using total ordering for "control" messages
(or a subset of msgs) while not using such ordering for
"data" (or majority of) messages

* Timestamp ordering approaches need synchronized clock;
otherwise non-causal orderings may result

- With high speed SANs (2Gbps+), ms accuracy not good

- other models needed if accuracy/resolution of
synchronized clocks not high

Message Synch

* Fly-by-wire control system: correct inspite of process/comm
Byz failures

* redundant lock step (synch) op
* atomic broadcast of sensor readings to all nodes
* Internet news: causal order useful
- reply later than orig msg!
- cricket scores!
* What about dyn data structures? consistency and reliability:
* deliver exactly same info to multiple locs
* virtual synchrony model or GCS

Shared disk filesystems

* Shared storage via a SAN?
* need a filesystem on top of raw block storage

* A shared disk filesystem allows multiple hosts to
concurrently access a shared disk

* Hosts access data on disk directly via the SAN

* Filesystem metadata shared and concurrently updated
from multiple hosts

Filesystem ensures proper synchronization

- for data access + ensure coherency of caches in
nodes

* There is no single point of failure or bottleneck
- unlike NFS
But need a Distr Lock Manager (DLM)

DLM complex!

* Availability of system now depends upon FT of DLM

* Failure of any node in cluster should not cause lock state to become
Inconsistent or lost.

* Need to handle concurrent events - local, remote lock requests, failures,
join of nodes

* Stream protocols, like TCP, provide only a point to point bit pipe

- A “broken” TCP stream noticed by the other peer based on most
recent activity, and timeouts may be long (minutes)

- Lack of consensus amongst set of peers wrt a single node
* Each peer may judge a node as dead at different times
* Differing perceptions can comprise consistency

* Using unreliable datagrams means no ordering among messages
and with respect to failures

- Basic message retransmission and flow control issues
complicate the lock protocol code

* Distr Consensus alg needed for agreement on membership&c

* Split Brain
* Consider a system with 2 nodes A and B connected thru
multiple diff connections
- One thru netw (system netw) N1
- One thru SAN (storage netw) N2

* |f alive node A is considered dead thru N1 by B but N2
connection to SAN with A is still good, B in dilemma

- Cannot know status of A's connection with SAN

- If assume that A is really dead, inconsistent SAN upd
* Mexican Shootout

* To be really sure, B has to “kill” A if it cannot talk to A thru
N1

* But this is symmetric. A can also decide the same and Kill
B! System unavailable!

Ordering betw msgs & reconfigurations

« No guarantees about ordering of data msgs and reconfigurations
* In a concurrent system, this can lead to loss of integrity
» A’s record locks might be forcibly released in a reconfiguration
* When update is received later, an unlocked record will be updated!!!

A B C
X B g >
B C

Note that node A could have recovered fast and joined back
In the system, before the earlier message was delivered to B

Ordering between msgs & reconfigurations

* Instead of sender failing, receiver could fail and recover,
and receive message in new incarnation.

* A might have requested for an object named X in the

previous incarnation. In the new incarnation X could be
something else!!!

A ——> B C
<A X c >
<A B c >

Lack of message ordering

* Inan old FS with a lock manager built without message
ordering

A Revoke received before Grant at A

Lock Service

Could have been avoided by use of causal message ordering
since a causal relationship exists between grant and revoke

What Is required?

Reasoning the behavior of concurrent systems difficult

Failures add further complications, as node failures and
message ordering may not be preserved

Some eatrlier “serverless” FS built without even FIFO
ordering: easy to get into deadlocks

* Should provide atleast basic FIFO msg ordering to
simplify system design

Need “timely” agreement among processes about

membership in system

Need ordering among msgs with varying levels of strictness -
FIFO, CAUSAL, TOTAL.

Need a strong messaging+membership system (the group
communication system, GCS) which DLM can use

* If lock protocol runs inside kernel, so should GCS.

Ordering between msgs & reconfigurations

* What is needed is that all msgs sent in a view should be

delivered in that view itself — not some before failure and
some after failure

* Thus message delivery should be atomic w.r.t failures
* "virtual synchrony" model

* When a failure happens all messages sent in current
membership must be flushed out of system before new
membership (view) installed

GCS model

Integrates messaging and membership
Membership detected by heartbeats
Each msg associated with view in which it is sent

A message is delivered in that view only - view
delivery will be delayed if need be

Retransmission, flow control all handled by GCS -
Interface Is asynch

The membership list is ordered and delivered to
the appls in the same order for all members

* Msgs can be ordered "Fifo", "Causal", "Total"

* Node gets msgs in real time order but appls in
order reqgd/specified

GCS model

When an app joins a group, it Is sent a hew view msg
GCS then controls appl with data and view msgs

On a failure/join detection, a group unstable msg sent,
to let the app know group not stable

Appl should stop further messages and when done
should tell GCS

GCS flushes all messages "floating around"
After all messages flushed, the new view delivered

* Note that if an appl keeps sending msgs, new view
may never get delivered

Summary

* Introduced message ordering problem in a
distr system in the presence of failures

* Helpful if appl can depend on a higher
evel model to simplify state of system in
oresence of failures

	Storage Systems
	 Concurrency Control Models
	Failures?
	Message Synch
	Shared disk filesystems
	 DLM complex!
	
	Ordering betw msgs & reconfigurations
	Ordering between msgs & reconfigurations
	Lack of message ordering
	What is required?
	Slide 12
	GCS model
	Slide 14
	Summary

