

Storage Systems

NPTEL Course
Jan 2012

(Lecture 19)

K. Gopinath
Indian Institute of Science

“old” block layer
I/O path and associated routines

 ll_rw_block: routine for reading or writing buffers corresponding to block devices

 request structure: list of buffers adjacent on disk

 make_request: attempts clustering with existing request structures or creates
one

− makes I/O requests corresponding to the buffers

 add_request applies elevator alg using insertion sort

− if device Q empty calls request_fn of driver

− Otherwise, end_request will invoke it from interrupt context

 request_fn: strategy routine of driver

 queue: function to return device queue

Device plugging

− Clustering of requests

I/O Handling in Linux
 Linux uses request structures to pass the I/O requests to the devices

− Each block device maintains a list of request structures

 When a buffer is to be read or written, kernel calls ll_rw_block() routine and passes it
an array of pointers to buffer heads

 ll_rw_block calls make_request() routine for each buffer

 make_request() first tries to cluster the buffer with the existing buffers in any of the
request structures present in the device queue

− A request structure consists of a list of buffers which are adjacent on the disk

− If clustering is possible, no new request structure is created

− Otherwise, a new request taken from global pool of structures and initialized with
buffer and passed to add_request()

 add_request applies elevator alg using insertion sort based on minor number of device
and block number of buffer.

 If device idle, kernel calls strategy routine request_fn() of driver

 otherwise, responsibility of driver to reinvoke it from interrupt context

− request_fn() should return if there are no requests in the device queue

− request_fn() cannot block as it needs to be called from interrupt context

Plugging

 To allow accumulation of requests in device queue, a plug used.

 When request comes in and the device queue is empty

− A plug is put at the head of the device queue

− An unplug function registered in the disk task queue

 Requests keep accumulating for some time and then

 A thread executes the unplug routine

− Removes the plug

− Calls request_fn() to service the requests

ll_rw_block (deprecated!)
void ll_rw_block (int rw, int nr, struct buffer_head * bhs[]);

 rw: whether to READ or WRITE or SWRITE or maybe READA (readahead)

− SWRITE is like WRITE: current data in buffers sent to disk

 nr: number of struct buffer_heads in the array

 bhs[]: array of pointers to struct buffer_head

Drops any buffer

 cannot get a lock on (with the BH_Lock state bit) unless SWRITE

 appears to be clean when doing a write request

 appears to be up-to-date when doing read request

 marks as clean buffers that are processed for writing

− buffer cache won't assume that they are actually clean until the buffer gets unlocked

 sets b_end_io to a simple completion handler that marks the buffer up-to-date (if approriate)

 unlocks the buffer and wakes any waiters.

All buffers must be

 for the same device

 a multiple of the current approved size for the device

Consider more complex block devices
 Redundant Array of Independent Disks (RAID)

− Mirroring (RAID1)

− Block interleaved parity (RAID5)

− Declustered RAID1

 Consider a pseudo device driver layered over a regular one

− RAID 1 driver for a “virtual” device, say, /dev/raid1

 Issues read/write requests to disks

− Waits for both the requests to finish (“synch”), or
− Waits for first response synch and completes the 2nd asynch

 Allows configuration

− Can “drop mirror” to allow “point-in-time” backup
− Std Disk driver actually handles R/W to each disk (say, /dev/disk1 and

/dev/disk2)

− Called a “volume manager” in industry

How layering can be problematic
 Blocking in Interrupt Context

− strategy routine called from interrupt handler but cannot block

− (upper) strategy calls (lower) ll_rw_block in layered dd

− can block as the global array of request structures can become exhausted

− One solution: return imm and Q task in schedule Q for later execution

 need to change ll_rw_block

− Another solution: consume all requests to device Q in one single invocation of
strategy routine

 kernel calls request_fn from process context only if device Q empty
 problem: one process can get delayed due to others but only if Q full

 Fixed Size Buffer Problem

− RAID5: need to distinguish between full and partial stripes for efficiency

− Linux fixed buffer size: logical buffer already split into multiple buffers

− Have to rediscover logical buffer

− Similar problem with reporting errors: cannot report errors at stripe level; only at fixed
buffer level

“New” block layer
 Avoids “segmentation and reassembly” problem

 Generic block layer uses per-Q parameters rather than fixed values for all

 I/O scheduler algorithm itself can be replaced/set as appropriate

− 2.4 allows alternate schedulers (anticipatory, null, CFQ)

− 2.6 allows improved modularization of i/o scheduler with more pluggable
callbacks

 I/O barriers

 Pass info from higher layers (fs/db) eg. readahead request

Current block layer designs designed for throughput, not latency

 May need careful rethinking with newer flash/PCM type of devices

− eg. avoid plugging/queuing to reduce latency

Conclusions

 Designing “lower level” layers for use by
multiple upper level consumers complex
− Need lots of experience!
− Concurrency or unusual hardware capabilities may

present difficulties

	Storage Systems
	“old” block layer
	I/O Handling in Linux
	Plugging
	ll_rw_block (deprecated!)
	Consider more complex block devices
	How layering can be problematic
	“New” block layer
	Conclusions

