

Storage Systems

NPTEL Course

Jan 2012
(Lecture 26)

K. Gopinath

Indian Institute of Science

Types of Disk Redundancy
 Maximum Distance Separable (MDS) vs non-MDS
 MDS: RAID1, RAID4, RAID5, RAID6 popular

− RAID1: mirroring
− RAID5: parity rotated but not in RAID4
− RAID m+n where RAID m used as leaves and RAID n on top

 RAID10: create multiple RAID1 (mirroring) volumes and then
catenate them in RAID 0

− RAID6: need two syndromes for tolerating 2 failures
 1st one the regular RAID5: xor of D

0
,...D

i
,...,D

n-1

 2nd one: xor of g0D
0
,...,giD

i
,...,gn-1D

n-1
, g a generator in a GF

 If one disk fails, RAID5 syndrome sufficient
 If 2 data disks fail, say ith and jth: have to solve D

i
+D

j
=A and

giD
i
 + gjD

j
=B

RAID5 “write-hole”
 Software RAID5 perf poor

− if data upd in a RAID stripe, must also upd parity
 If data part upd but crash/power outage before parity upd, xor

invariant of RAID stripes lost
− a full-stripe write can issue all writes asynch, but a partial-stripe

write must do synch reads before it can start the writes
 Also, a partial-stripe write modifies live data

− defeats transactional design
 software-only workarounds: logging but slow!
 HW workaround:

− NVRAM for both probs but costly...

RAID-Z
 Dynamic striping across all devices to maximize

throughput as additional devices added to zpool
 On read of a RAID-Z block, ZFS compares it against its

checksum. If no match, ZFS reads parity and does
combinatorial reconstruction to figure out which disk
returned bad data

 Write to a new location and then atomically overwrite
the pointer to the old data
− Uses COW: no overwriting data

 Variable stripe size so that every write a non-RMW
− eg. mirroring for small writes instead of parity

protected

  On RAID-Z reconstruction, traverse filesystem metadata to
determine the RAID-Z geometry

 Tradeoff: expensive when pool full
 Not possible in designs that separate FS and VM
 Bonus: traversing metadata => ZFS can validate every

block against its 256-bit checksum (std RAID can only
XOR without any check)

 ZFS RAID differs from std RAID solutions
− Reconstructs only live data and metadata when replacing a

disk
 not the entirety of disk including blank and garbage blocks

− replacing a partially full disk in a ZFS pool takes
proportionately less time compared to std RAID

 No special hardware (eg. no NVRAM for correctness, no write
buffering for good performance)

NetApp RAID4

 If files are scattered on disk and fs does not understand
layout, every write may require costly seeks for parity
writes
− Rotating parity in RAID5 may help as it has multiple

disk arms for rotated parity
 Similar to ZFS, WAFL (Write Anywhere File Layout)

understands RAID4 layout
− Can write data and metadata close together as it

does not do in-place upd
− Parity disk may need to do no or small seeks only

Types of Disk Redundancy
 Maximum Distance Separable (MDS) vs non-MDS
 MDS: RAID1, RAID4, RAID5, RAID6 popular

− RAID1: mirroring
− RAID5: parity rotated but not in RAID4
− RAID m+n where RAID m used as leaves and RAID n on top

 RAID10: create multiple RAID1 (mirroring) volumes and then
catenate them in RAID 0

− RAID6: need two syndromes for tolerating 2 failures
 1st one the regular RAID5: xor of D

0
,...D

i
,...,D

n-1

 2nd one: xor of g0D
0
,...,giD

i
,...,gn-1D

n-1
, g a generator in a GF

 If one disk fails, RAID5 syndrome sufficient
 If 2 data disks fail, say ith and jth: have to solve D

i
+D

j
=A and

giD
i
 + gjD

j
=B

Non-MDS based Redundancy
 Non-MDS codes have varying capability to recover from

multiple errors but simpler as no solutions involving GF
required

− consider a linear (9,6) array with 9 data disks and 6
parity disks.

− the best possible XOR-coding has a Erasures Vector
(EV) of [0,0,0,30,390,2230]

− can tolerate up to 3 disk failures without data loss
(the first 3 entries); however, there is data loss in
 30 configurations with 4 disk failures,
390 configurations with 5 disk failures and
2230 configurations with 6 disk failures.

Flash and Storage Systems
 Flash: based on semiconductor tech

− 19nm, 8GB flash chip with 2 bits per cell; lower power?
− Erase, read and write sizes

 COW at device level
− Wear endurance: newer reliability models?

 Dynamic/static wear levellling, garbage collection
 Write amplification

− raw and SSD

 Enterprise Flash becoming common
− IOP/disk is approx 50/sec
− IOP on flash:

 2-8k IOPs per SSD currently (8k random R/W)
 One order higher with PCIe Flash

− eg. ratings of 90,000 IOPS / 38,000 IOPS on random 4K R/W

FS on flash?
 TRIM command for SSDs

− When block dealloc, flash layer needs to be told
 FS on raw flash?
 Manage wear, parallelism (Flash Translation Layer)

− Write buffer to absorb random writes
 Linux: mtd device: 512B block device but RMW!

 mtdblock driver buffers writes and writes to flash when full
− NFTL: Linked list of replacement blocks on rewrites

 GC “folds” longest chains
− DFTL: uses SRAM to store recent maps

 Natural fit with LFS?
− YAFFS2 on mtdblock device: a LFS
− 3 levels of GC: background, passive and aggressive

Parallelism
 SSD: 1+ channels.

− Channel: 1+ flash packages.
− Flash package: 1+ flash chips
− Flash chip: 1+ dies
− 1 die: 1+ flash planes
− Raw flash can expose most of the parallelism (64x?)

 Std Linux I/O Q'ing not suitable
− Need to develop new models
− Diff in R/W sizes, Interrupt overhead: polling?
− Scheduling R/W/Erase, GC, prefetch

 Higher IOPs: newer bottlenecks in system?

Summary
 FS design complex

− Multiple types of clients
− Have to bridge mem and disk speeds

 High levels of concurrency needed
 Newer types of tech (flash, SCM)

− SCM: as memory? New security issues?
− Serious layering issues

 Any error in fs code can result in loss of data
− Have to contend with hw errors also!
− Integration of volume manager with fs
− HW RAID vs SW RAID
− Or, drop RAID support in kernel code/HW and do it across

independent systems using standard networking code at user
level (as in GFS)

	Storage Systems
	Types of Disk Redundancy
	RAID5 “write-hole”
	RAID-Z
	
	NetApp RAID4
	Slide 7
	Non-MDS based Redundancy
	Flash and Storage Systems
	FS on flash?
	Parallelism
	Summary

