

Storage Systems

NPTEL Course

Jan 2012
(Lecture 26)

K. Gopinath

Indian Institute of Science

Types of Disk Redundancy
 Maximum Distance Separable (MDS) vs non-MDS
 MDS: RAID1, RAID4, RAID5, RAID6 popular

− RAID1: mirroring
− RAID5: parity rotated but not in RAID4
− RAID m+n where RAID m used as leaves and RAID n on top

 RAID10: create multiple RAID1 (mirroring) volumes and then
catenate them in RAID 0

− RAID6: need two syndromes for tolerating 2 failures
 1st one the regular RAID5: xor of D

0
,...D

i
,...,D

n-1

 2nd one: xor of g0D
0
,...,giD

i
,...,gn-1D

n-1
, g a generator in a GF

 If one disk fails, RAID5 syndrome sufficient
 If 2 data disks fail, say ith and jth: have to solve D

i
+D

j
=A and

giD
i
 + gjD

j
=B

RAID5 “write-hole”
 Software RAID5 perf poor

− if data upd in a RAID stripe, must also upd parity
 If data part upd but crash/power outage before parity upd, xor

invariant of RAID stripes lost
− a full-stripe write can issue all writes asynch, but a partial-stripe

write must do synch reads before it can start the writes
 Also, a partial-stripe write modifies live data

− defeats transactional design
 software-only workarounds: logging but slow!
 HW workaround:

− NVRAM for both probs but costly...

RAID-Z
 Dynamic striping across all devices to maximize

throughput as additional devices added to zpool
 On read of a RAID-Z block, ZFS compares it against its

checksum. If no match, ZFS reads parity and does
combinatorial reconstruction to figure out which disk
returned bad data

 Write to a new location and then atomically overwrite
the pointer to the old data
− Uses COW: no overwriting data

 Variable stripe size so that every write a non-RMW
− eg. mirroring for small writes instead of parity

protected

 On RAID-Z reconstruction, traverse filesystem metadata to
determine the RAID-Z geometry

 Tradeoff: expensive when pool full
 Not possible in designs that separate FS and VM
 Bonus: traversing metadata => ZFS can validate every

block against its 256-bit checksum (std RAID can only
XOR without any check)

 ZFS RAID differs from std RAID solutions
− Reconstructs only live data and metadata when replacing a

disk
 not the entirety of disk including blank and garbage blocks

− replacing a partially full disk in a ZFS pool takes
proportionately less time compared to std RAID

 No special hardware (eg. no NVRAM for correctness, no write
buffering for good performance)

NetApp RAID4

 If files are scattered on disk and fs does not understand
layout, every write may require costly seeks for parity
writes
− Rotating parity in RAID5 may help as it has multiple

disk arms for rotated parity
 Similar to ZFS, WAFL (Write Anywhere File Layout)

understands RAID4 layout
− Can write data and metadata close together as it

does not do in-place upd
− Parity disk may need to do no or small seeks only

Types of Disk Redundancy
 Maximum Distance Separable (MDS) vs non-MDS
 MDS: RAID1, RAID4, RAID5, RAID6 popular

− RAID1: mirroring
− RAID5: parity rotated but not in RAID4
− RAID m+n where RAID m used as leaves and RAID n on top

 RAID10: create multiple RAID1 (mirroring) volumes and then
catenate them in RAID 0

− RAID6: need two syndromes for tolerating 2 failures
 1st one the regular RAID5: xor of D

0
,...D

i
,...,D

n-1

 2nd one: xor of g0D
0
,...,giD

i
,...,gn-1D

n-1
, g a generator in a GF

 If one disk fails, RAID5 syndrome sufficient
 If 2 data disks fail, say ith and jth: have to solve D

i
+D

j
=A and

giD
i
 + gjD

j
=B

Non-MDS based Redundancy
 Non-MDS codes have varying capability to recover from

multiple errors but simpler as no solutions involving GF
required

− consider a linear (9,6) array with 9 data disks and 6
parity disks.

− the best possible XOR-coding has a Erasures Vector
(EV) of [0,0,0,30,390,2230]

− can tolerate up to 3 disk failures without data loss
(the first 3 entries); however, there is data loss in
 30 configurations with 4 disk failures,
390 configurations with 5 disk failures and
2230 configurations with 6 disk failures.

Flash and Storage Systems
 Flash: based on semiconductor tech

− 19nm, 8GB flash chip with 2 bits per cell; lower power?
− Erase, read and write sizes

 COW at device level
− Wear endurance: newer reliability models?

 Dynamic/static wear levellling, garbage collection
 Write amplification

− raw and SSD

 Enterprise Flash becoming common
− IOP/disk is approx 50/sec
− IOP on flash:

 2-8k IOPs per SSD currently (8k random R/W)
 One order higher with PCIe Flash

− eg. ratings of 90,000 IOPS / 38,000 IOPS on random 4K R/W

FS on flash?
 TRIM command for SSDs

− When block dealloc, flash layer needs to be told
 FS on raw flash?
 Manage wear, parallelism (Flash Translation Layer)

− Write buffer to absorb random writes
 Linux: mtd device: 512B block device but RMW!

 mtdblock driver buffers writes and writes to flash when full
− NFTL: Linked list of replacement blocks on rewrites

 GC “folds” longest chains
− DFTL: uses SRAM to store recent maps

 Natural fit with LFS?
− YAFFS2 on mtdblock device: a LFS
− 3 levels of GC: background, passive and aggressive

Parallelism
 SSD: 1+ channels.

− Channel: 1+ flash packages.
− Flash package: 1+ flash chips
− Flash chip: 1+ dies
− 1 die: 1+ flash planes
− Raw flash can expose most of the parallelism (64x?)

 Std Linux I/O Q'ing not suitable
− Need to develop new models
− Diff in R/W sizes, Interrupt overhead: polling?
− Scheduling R/W/Erase, GC, prefetch

 Higher IOPs: newer bottlenecks in system?

Summary
 FS design complex

− Multiple types of clients
− Have to bridge mem and disk speeds

 High levels of concurrency needed
 Newer types of tech (flash, SCM)

− SCM: as memory? New security issues?
− Serious layering issues

 Any error in fs code can result in loss of data
− Have to contend with hw errors also!
− Integration of volume manager with fs
− HW RAID vs SW RAID
− Or, drop RAID support in kernel code/HW and do it across

independent systems using standard networking code at user
level (as in GFS)

	Storage Systems
	Types of Disk Redundancy
	RAID5 “write-hole”
	RAID-Z
	
	NetApp RAID4
	Slide 7
	Non-MDS based Redundancy
	Flash and Storage Systems
	FS on flash?
	Parallelism
	Summary

