

Storage Systems

NPTEL Course

Jan 2012
(Lecture 43)

K. Gopinath

Indian Institute of Science

BigTable Impl
 3 main components: a library that is linked into every client,

one master server, and many tablet servers
 tablet servers dynamically added (or removed) from a

cluster to accommodate changes in workloads.
 master responsible for

 assigning tablets to tablet servers
 detecting addition and expiration of tablet servers
 balancing tablet-server load
 garbage collection of files in GFS.
 also handles schema changes such as table and column

family creations
 persistent state of a tablet stored in GFS thru memtable

Interactions betw GFS and BigTable
 Persistent state of a tablet stored in GFS
 Incoming writes committed to a commit log that stores redo records

 recently committed ones sorted and buffered in memory as
memtables

 older updates stored in a seq of SSTables (sorted string tables)
 Incoming reads checked in memtables and SSTables

 sorted tables: efficient op
 To recover a tablet:

 a tablet server reads its metadata: the list of SSTables that
comprise a tablet and a set of a redo points (pointers into any
commit logs that may contain data for the tablet)

 server reads indices of SSTables into memory and reconstructs
memtable by applying all committed updates since the redo
points

Hadoop Distributed File System

 Rack-aware filesystem
 To help run work on the node where the data is, and,

failing that, on the same rack/switch, to reduce
backbone traffic.

 HDFS stores large files (an ideal file size is a multiple of
64 MB) across multiple machines.

 Reliability by replicating data across multiple hosts (no
RAID storage on hosts)

 Above HDFS runs MapReduce Engine
 Client applications submit MapReduce jobs to

JobTracker

Yahoo! PNUTS
 focuses on data serving for web applications

 workloads mostly of queries that read and write single
records or small groups of records

 not for complex queries, e.g., offline analysis of web
crawls

 data storage organized as hashed or ordered tables
 designed for low latency for large numbers of concurrent

requests including updates and queries
 all high latency operations asynchronous
 support record-level mastering (local ops afap)

 per-record consistency guarantees: all replicas of a given
record apply all updates to the record in the same order

Timeline consistency

 Object timelines
 Reads are served using a local copy; may be stale
 But application can get current version or any vers

> N
 While copies may lag master record, every copy goes

through same sequence of changes
 Test-and-set writes facilitate per-record transactions

PNUTS design

 uses a guaranteed message-delivery service rather than
a persistent log

 trigger-like notifications
 imp for some apps that must invalidate cached copies

after some time (eg. ad serving with a time contract)
 users subscribe to stream of updates on a table

− asynch publish-subscribe message system
 can be optimized for geographically distant

replicas and replicas do not need to know locs
of other replicas

 contrast to gossip protocols

Windows Azure
 Designed as a scalable cloud storage system

 cloud storage in the form of blobs (user files), tables
(structured storage) and queues (msg delivery)

 Blobs for incoming and outgoing data, Queues for overall
workflow for processing the Blobs, intermediate service
state and final results in Tables or Blobs

 Publically searchable content (via Bing) within 15 secs of a
Facebook/Twitter user’s posting or status update

 “Strong consistency”: same as others (within a “stamp”)
 Intra-stamp synch repl
 Inter-stamp asynch repl

 Global and Scalable Namespace/Storage

Another Model for Storage:
Consistent Hashing

 Hash both objects and devices using same hash function
 Map each obj to a point on the edge of a circle

 Equivalently, to a specific angle
 Map each device (eg. storage bucket) also pseudo-randomly

mapped on to a series of points around circle
 An obj stored by selecting the closest mapped device on the

circle
 Each device contains the resources mapped to an angle

between it and the next smallest angle

If a device added or removed, only nearby objs remapped

Used by Amazon and Facebook

Distr Hash Table (DHT)
 Uses some variant of consistent hashing to map keys to

nodes
 A node with ID i

x
 owns all keys k

m
 for which i

x
 the closest ID,

measured according to δ(k
m
,i

x
)

 To store a file with filename fn and data in DHT
 Calculate, say 160-bit hash key, k = SHA-1(fn)
 A message put(k,data) sent to any node in DHT
 msg forwarded from node to node thru overlay network

(connecting nodes) until it reaches single node
responsible for key k as specified by the keyspace
partitioning

 To retrieve file fn, get(SHA-1(fn))

Cassandra
 Distributed multi dimensional map indexed by a key

 row key a string with no size restrictions (typ 16-36B)
 value is a highly structured object

 Similar to Bigtable: every op under a single row key atomic per
replica no matter how many columns are being read or written into
 Columns grouped together into sets called column families

 Data partitioned across cluster using consistent hashing but uses
an order preserving hash function to do so

 Cassandra API: three simple methods:
 insert(table,key,rowMutation)
 get(table,key,columnName)
 delete(table,key,columnName)

Server-side Consistency Models

 N = number of nodes that store replicas of data
 W = number of replicas that need to ack receipt of update

before update completes
 R = number of replicas that are contacted when a data

object is accessed through a read op
 W+R > N: write set & read set always overlap and one

can guarantee strong consistency
 W+R <= N: Weak/eventual consistency
 R=1, W=N: optimize for read

W=1, R=N for very fast write

Client-side Consistency Models
 Strong: After an update completes, any subsequent access will

return the updated val
 Weak: May return stale value. Special case:
 Eventual: storage system guarantees that if no new updates made to

the object, eventually all accesses will return last updated value eg.
DNS
 Variations:

− Causal consistency (CC)
− Read-your-writes consistency (RyWC)
− Session consistency (SnC)
− Monotonic read consistency (MRC)
− Monotonic write consistency (MWC)

 If client connects to a server only, RyWC/MRC easy

Haystack: Facebook’s photo storage

 Std solutions (eg. NFS): excessive number of disk
operations because of metadata lookups
 to read a single photo: 1+ disk ops to translate

filename to an inode #, 1 to read inode from disk, and
one to read file itself

 reduce per photo metadata so that all metadata lookups
in main memory
 rwx perms not needed; 128-256B inode size too big
 now disk ops only for reading actual data: increases

overall throughput
 high throughput and low latency: at most one disk op

per read
 Why does caching not work?

Haystack Design

 Content Distr Networks (CDN) effective for serving “hot
photos”
 recently uploaded & popular

 But social networking sites also see a large # of requests
for less popular (often older) content: long tail

 Requests from long tail account for a significant amount
of Facebook traffic
 almost all access the backing photo storage hosts as

these requests typically miss in the CDN
 Haystack: each usable TB costs approx 28% less and

processes 4x more reads per sec than an equiv TB on a
NAS appliance

Summary
 Scalability inducing many cross-layer designs

 Have to pay attention to overheads and remove them
 Handling failures imp, so repl (or erasure coding)

critical in design
− Distribution of data a necessity
− Coord of updates a necessity

	Storage Systems
	BigTable Impl
	Interactions betw GFS and BigTable
	Hadoop Distributed File System
	Yahoo! PNUTS
	Timeline consistency
	PNUTS design
	Windows Azure
	Another Model for Storage: Consistent Hashing
	Distr Hash Table (DHT)
	Cassandra
	Server-side Consistency Models
	Client-side Consistency Models
	Haystack: Facebook’s photo storage
	Haystack Design
	Summary

