

Storage Systems

NPTEL Course

Jan 2012
(Lecture 38)

K. Gopinath

Indian Institute of Science

Summary so far
 Device Level

 Disk Scheduling
 Protocol Level

 SCSI, iSCSI (block level)
 NFS (file level)

 Distr System Level
 Consistency (commit/consensus protocols)
 Ordering (virtual synchrony, and at file system level)

Also discussed
 Storage Characteristics

 Choose 2 out of 3 (speed, capacity, cost)
 Caching

 Naming vs storage
 Metadata vs data
 Recursion! (metadata about metadata...)

 Data loss
 Metadata loss vs data loss

 Interpret bit patterns
 Long term storage

Scalability
 Networked vs Distributed storage
 Consistency

 FS, Vol Mgr, DB notions
 Transactions

 ACID vs BASIC
 Commit Protocols

 2-phase commit
 3-phase commit
 Paxos

 CAP theorem
 Eventual consistency

Need to address

 Distributed Locking in the presence of failures
 Scalability
 Reliability
 Security
 QoS
 Cross layer optimizations
 Archival Storage
 Flash Memory in storage designs and newer

Storage Class Memories (SCM)

Lock protocol

 Requirements
 No SPOF, lock state should not be lost
 The failure of a node should release

locks held by it
 Should minimize network hops
 No wait for all
 No total ordering of messages
 Should distribute lock state

Lock protocol

 A lock requestor does a single multicast for the lock,
and expects the lock grant

 When locks are not owned at all, an Initial Lock Server
(ILS) can decide this and grant the lock

 The ILS needs to store only lock ids, which is much
lesser than complete lock state
 No need for wait for all

 Locks once granted are cached at the holder, corresp
data also cached and written back
 Enforces cache coherency
 Unused locks put back to ILS, via an abdicate

protocol

C's Request Lost

Lock protocol

 Lock holders queue lock requests if they have
locally locked the lock

 Requests are granted in FIFO order to prevent
starvation

 When a node is in transit, what happens ?
 The lock could be unowned at prev owner
 The lock could be unowned at next owner

also!
 Since lock transit can occur only due to

requestors, if we queue at requestor problem
solved?

Lock protocol

 The lock requests queued at the requestors may not
all be valid..

 With the previous example, one of the nodes (B or
C's) lock request will be obsolete

 We flush obsolete requests by having a logical time
on each node.
 Every request that is sent is stamped with the

current time
 Locks carry a timestamp also which says when

this lock was last held by a particular node

Lock protocol

 We increment the logical time on the node
and stamp this on the lock each time we
grant a lock

 If the timestamp on the request is < than
the time on the lock, the request is obsolete

 Lock requests with >= timestamp are valid
 New node's timestamp on the locks are set

to 0 at all nodes

Need for causal msg delivery

Lock protocol
 On a failure the ILS state is rebuilt by a

union of states from all nodes
 On a failure, the gcs flushes all messages

which includes the lock grants in
particular

 This means when nodes get a new view
message, there are no locks on the wire

 This avoids need for a distributed
consistent snapshot. All nodes just have
to send their states

Reader Writer Locks

 Uses the same underlying scheme as the non
reader design

 Need a policy for readers and writers
 Readers read till a writer comes in
 A writer granted next
 Then all waiting readers so far and

 To perform the lock protocol activities, a
primary reader is elected among the readers.

 This is elected by a writer or by the ILS

Reader Writer Locks

 The code is substantially more complicated
 The need to handle multiple readers, waiting for

readers to drain out
 Recovery is more complicated

 Reader failure has to be detected by writers or by
the ILS

 If a primary dies, all non-primaries will have to
perform duties of primary till ILS elects a primary.

Types of “Distr” FS
 Clustered FS (Posix)

 CVxFS, GFS2 (RedHat)
 Clustered FS (non-Posix)

 Ceph, GlusterFS
 Parallel FS

 PFS, GPFS, NFSv4, Lustre
 GFS, HDFS
 Key Value Stores

 Cassandra
 Other: ZFS

 LFS

NoSQL
 Cloud computing has shown that current RDBMs cannot

scale and do not have the reqd perf
 I have not able to find an example of a large-scale Web

application that has been able to meet its needs with a
single coherent RDBM system (John Ousterhout)

 Column stores
 “NoSQL” systems: Avoid ACID

 Amazon, Facebook, Google, Yahoo, and Ebay
 Bigtable: a sparse, distr multi-dimensional sorted map
 Apache Cassandra — Facebook's dist storage system

based on Bigtable data model on Amazon's Dynamo-like
structure.

 Hadoop

Transactional Workarounds for CAP
 “BASE”: No ACID, use a single version of DB, reconcile later
 Defer xact commit until partitions fixed & distr xact can run
 Eventual consistency (e.g., Amazon Dynamo)

 Eventually, all copies of an object converge
 Restrict transactions (e.g., Sharded MySQL)

 1-node xacts: Objects in xact are on the same node
 1-object xacts: xact can only read/write 1 object

 Timeline consistency: Object timelines (PNUTS/Yahoo)
 Reads are served using a local copy; may be stale
 But application can get current version or any vers>N
 While copies may lag master record, every copy goes

through same sequence of changes
 Test-and-set writes facilitate per-record transactions

	Storage Systems
	Summary so far
	Also discussed
	Scalability
	Need to address
	Lock protocol
	Slide 7
	C's Request Lost
	Slide 9
	Slide 10
	Slide 11
	Need for causal msg delivery
	Slide 13
	Reader Writer Locks
	Slide 15
	Types of “Distr” FS
	NoSQL
	Transactional Workarounds for CAP

