

Storage Systems

NPTEL Course
Jan 2012

(Lecture 05)

K. Gopinath
Indian Institute of Science

Basic Storage API
 GetNew(oid)

 POSIX: fd=creat(const char *path, mode_t mode)
 Store(oid, data)

 POSIX: ssize_t write(int fd, const void *buf, size_t count)
 Read(oid, buffer)

 POSIX: ssize_t read(int fd, void *buf, size_t count)
 Delete(oid)

 POSIX: int unlink(const char *pathname)
 GetInfo(oid)

 POSIX: int stat(const char *path, struct stat *buf)

oid: blocknum, filename, filehandle, content hash, key

Also, appl buffered versions.

Semantics of POSIX files vs NFS
 A fd once obtained can be held as long as the

process exists (POSIX)
 A NFS handle once obtained can be held as

long as the client exists
 But may not be able to access the file if the NFS

server dies
 Server stateless but client stateful

 More interesting: open but deleted file
 NFS can only approximate POSIX semantics

 Consistency guarantees weak in NFS2
 Clients cache metadata for 30 secs

Impact of Networking
 Semantics of failure becomes imp

 NFS uses RPC. What has to be done wrt non-
idempotent operations?

 Consistency issues become important
 NFS semantics different from POSIX

 To support high speed transfers, new kernel infrastructure
 Parallel to IPC: sockets/TLI
 For even higher speeds, user-level networking (RDMA)

 Storage spun off in large systems
 Storage Area Networks (block level protocols)
 NFS (file level protocols)
 Distributed File Systems/Storage Systems

API changes
 POSIX: Read (fd, buffer, count)

 Partial writes to a file OK (appends, overwrites, etc)
 Mmap

 NFS: Read (fd, offset, buffer, count)
 Partial writes and mmap avlbl but no open!
 Weak consistency model with multiple writers (NFS2)

− NFS3, NFS4 improve the consistency model
 Amazon S3: “storage” service

 Key Value store: no features like partial write or mmap
 Weak consistency (“BASE”) model: when no updates

occur for a “sufficiently long” period of time, eventually
all updates will propagate through the system and all
the replicas will be consistent.

S3 Interface: Key Value Store
 S3 stores data in named buckets

 Each bucket is a flat namespace, containing keys
associated with objects (but not another bucket)

 Max obj size 5GB. Partial writes to objects not allowed
(must be uploaded full), but partial reads OK

 create bucket
 put bucket, key, object
 get bucket, key
 delete bucket, key
 delete bucket
 list keys in bucket
 list all buckets

Layering in Storage Systems
 Varied uses of storage. Eg.

 Swap
 Document store
 Archiving
 Temporary info transfer (eg. Memory stick)

 Many designs. Best to understand each as a layered
system with optional layers
 Swap: no user visible component (block storage fine)
 Document: metadata about document imp (provenance)
 Archiving: reliability paramount and eliminating

redundancy imp
 Simplified layering model: devices, protocols,

systems

Storage Systems Highly Layered
 Multiple layers. Example:

 Application uses fopen, fread, fwrite, etc.
 Libc calls open, read, write system calls
 Kernel calls vop_open, vop_read, vop_write, ...
 FS implements ufs_open, ufs_read, etc. using virtual

memory subsystem
 Virtual Memory subsystem uses vop_getpage and

vop_putpage provided by FS
 vop_getpage/vop_putpage call pseudo device routines
 Volume Manager or NFS client code
 Device Driver (SCSI) or Network driver
 HBA or NIC
 Disk or Remote Disk

Layering
 Each layer often specializes in one dimension

but has to handle others also
 FS handles naming as reqd by appl
 Volume Manager handles aggregation of physical

media along with error mgmt
 Each layer also needs to do in its own way

 Discovery
 Naming
 Error mgmt
 Security
 Performance (eg. Caching, Flow Control)
 Consistency mgmt (transactions)

Let us start with the physical layer

 Disks: electromechanical devices
 Dominant since 1956
 Mostly replaced tape
 May get replaced by storage class memory (SCM)

 High density with good BW but high seek and
rotational delays

 Acceptable reliability but for large storage
systems a big issue
 Heat, power, vibration, ...

 Most software (fs, db, etc) till today optimized
for disks

Disk Drive Interfaces
 Early disks: host just sees r/w amplifier (analog)

 only soft sectoring
 ESDI disks: Only data separator

 generates a clock and data signal from pulses in medium
 hard sectoring; protocol with cmds; defect lists in drive

 SCSI disks: Also formatter, data buffer, controller
 Most mature for large systems

 IDE/ATA disks: Also Host adapter in drive
 disadv: only works with IBM PC

 SATA, SAS: serial ATA, serial SCSI

Disk Scheduling
 Disks poor at random R/W, better at sequential
 Seeking activity important factor in performance

 Minimize disk seek time (moving from track to
track)

 Minimize rotational latency (waiting for disk to
rotate the desired sector under read/write head)

 Example: Openoffice startup long!
 Excessive seeks as loader fixes relocations
 Shared objs (many!) mapped and fixing

relocations causes page faults: many seeks

Some Disk Scheduling Algs.
 FCFS
 Shortest Seek Time First (SSTF)
 Elevator or SCAN: Disk arm starts at one end of

disk and moves towards other end, servicing
requests as it goes
 Reverses direction at end of disk

 C-SCAN: same as SCAN, except head returns to
cylinder 0 at end of the disk

 C-LOOK: same as C-SCAN, except head only
travels as far as the last request in each direction

Linux Disk Scheduling
 (Linus) Elevator (default till '03)
 Deadline

 Imposes a deadline on all I/O operations to
prevent resource starvation.

 Anticipatory (default '04 - '06; now removed)
 pauses for a short time (a few ms) after a read

operation in anticipation of other close-by read
reqs

 Completely Fair Queuing (CFQ) (default from '06)
 allocates timeslices for each of the per-process

queues (synch/asynch) for access to the disk
 Null

Test 1. Writes-Starving-Reads

 In background, perform a streaming write, such as:

while true

do

 dd if=/dev/zero of=file bs=1M

done

 Meanwhile, time how long a simple read of a 200MB file takes:

time cat 200mb-file > /dev/null

(from a Linux kernel mailing list discussion)

Test 2. Effects of High Read Latency

 Start a streaming read in the background:

while true

do

 cat big-file > /dev/null

done
 Meanwhile, measure how long it takes for a read of every file in

the kernel source tree to complete:

time find . -type f -exec cat '{}' ';' > /dev/null

(from a Linux kernel mailing list discussion)

Performance Results

I/O Scheduler and Kernel Test 1 Test 2

Linus Elevator on 2.4 45.0 secs 30 mins, 28 secs

Deadline I/O Scheduler on 2.6 40.0 secs 3 mins, 30 secs

Anticipatory I/O Scheduler on 2.6 4.6 secs 15 secs

(from a Linux kernel mailing list discussion)

Summary

 We looked at the basic API for storage
 We discussed layering
 We started looking at the physical layer (disk)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

