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USB Mass Storage Device

 A USB has 

− a microcontroller that handles USB protocol

− a media controller that handles device specific part (eg. storage)

 In a USB mass-storage device, hardware or firmware must 

− Detect and respond to generic USB requests and other events on bus 
Examples: requests to identify attached devices, manage traffic and power the 
bus.

− Detect and respond to USB mass-storage requests for information such as 
status or actions from device. 

 These commands use the previous requests for transport.

− Detect and respond to SCSI commands received in USB transfers such as 
read and write blocks of data in the storage media, request status information, 
and control device operation.

− Optionally implement a filesystem if host commands are not required.



  

USB layering (from USB spec)



  

USB Layers

 The lowest layer concerns itself with aspects relating to serial 
transmission. 

 The next upper layer handles USB protocol specific aspects; this is 
common to all USB devices. 

 The next higher layer is function specific; for mass storage, this 
involves SCSI commands. 

 Devices like camera have another layer; this is the filesystem layer 
as they should be able to store pictures taken without any outside 
help. 

 Legacy devices are emulated

An explicit layering model helps in understanding the design.



  

USB Block Device 

 USB mass storage specification provides a block interface 

− only the system that mounted it has access to the storage. 
 Possible to provide multiple systems access to different files at the same 

time

− requires a protocol such as MTP that operates at the level of a file 
rather than a block. 

− needed in a device, such as a camera with USB storage, when 
connected to a host.

 Note that only generic access such as read and write block

− even if we have a USB SATA disk, usually no support for SATA 
features such as native command queuing (NCQ) which allows 
multiple disk operations to be sent.
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Insertion of a USB stick
 Hardware senses and interrupts the CPU. 

 An agent (kernel thread, etc) identified in the interrupt routine to handle 
this insertion. Interrupt routine notes details of hardware that interrupted 
(such as USB port, controller, speed, PCI address). 

 The kernel thread gets scheduled sometime later and notes the PCI 
information (that it is a USB mass storage device, USB wifi device, etc). 

 The kernel thread upcalls an user program: in a GNU/Linux system, 
typically the program /sbin/hotplug, with “usb” as parameter. 

− a user mode policy agent 

−  typically getting system resources needed, configure the device, 
helping to load driver or other modules, etc. by using configuration 
files.

 Once the device and its driver have been initialised, the filesystem(s) 
residing on it may be mounted and displayed to the user.



  

More Details

 Even if no driver for a USB device on, say, a Linux system, a valid USB 
device detected by hardware and later known to kernel  

− As design (and detection) as per USB protocol specs

 Hardware detection by the USB host controller: typically a native bus 
device, like a PCI device. 

 Host controller driver gets low-level physical layer information and 
converts it into higher-level USB protocol-specific information. 

 information about USB device then populated into the generic USB core 
layer (the usbcore driver) in the kernel, thus enabling the detection of a 
USB device at the kernel level, even without having its specific driver.

 Then, various drivers, interfaces, and applications (depends on the 
specific Linux distribution), give a userspace view of the detected devices.



  

  

  Many configurations for a USB device 

− Default also

− For every configuration, the device may have 1+ interfaces. 
 An interface corresponds to a function provided by the device. 

− MFD (multi-function device) eg. USB printer: printing, scanning 
and faxing: 3 interfaces

 unlike other device drivers, a USB device driver typically 
associated/written per interface, rather than device as a whole

− one USB device may have multiple device drivers

− different device interfaces may have the same driver 



  

USB Core APIs
 <linux/usb.h>

− int usb_register(struct usb_driver *driver);

 Gives info about name of driver, what probe/disconnect func to use etc.

− void usb_deregister(struct usb_driver *);

− FS register with VFS layer but USB devices to USB core

 USB core then uses the foll.

− int (*probe)(struct usb_interface *interface, const struct usb_device_id *id);

− void (*disconnect)(struct usb_interface *interface);

 endpoint-specific data transfer functions 

− usb_control_msg()

− usb_interrupt_msg()

− usb_rcvbulkpipe(), usb_sndbulkpipe()

− Uses URBs (USB request block) for asynch I/O

− Have to send SCSI cmds with USB mass storage devices



  

Outline of a Write to USB device

 When driver has data to send to the USB device (driver's write 
function), allocates 

− urb

− DMA buffer
 Copies user data into DMA buffer

 urb initialized before sending to USB core

 After urb successfully transmitted to the USB device (or 
something happens in transmission), the urb callback called 
by the USB core



  

Summary

 Many subsystems work together
 Similar (high-level) structure in large as well as 

small storage systems
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