Storage Systems

NPTEL Course
Jan 2012

(Lecture 38)

K. Gopinath
Indian Institute of Science

Summary so far

* Device Level
* Disk Scheduling
* Protocol Level
* SCSI, ISCSI (block level)
* NFS (file level)
* Distr System Level
* Consistency (commit/consensus protocols)
* Ordering (virtual synchrony, and at file system level)

Also discussed

Storage Characteristics

* Choose 2 out of 3 (speed, capacity, cost)
* Caching

Naming vs storage

* Metadata vs data

* Recursion! (metadata about metadata...)
Data loss

* Metadata loss vs data loss

Interpret bit patterns

* Long term storage

Scalability

Networked vs Distributed storage
Consistency

* FS, Vol Mgr, DB notions
Transactions

* ACID vs BASIC
Commit Protocols

* 2-phase commit

* 3-phase commit

* Paxos

CAP theorem

* Eventual consistency

Need to address

Distributed Locking in the presence of failures
Scalability

Reliability

Security

QoS

Cross layer optimizations

Archival Storage

Flash Memory in storage designs and newer
Storage Class Memories (SCM)

Lock protocol

* Requirements

No SPOF, lock state should not be lost

The failure of a node should release
locks held by it

Should minimize network hops
No wait for all

No total ordering of messages
Should distribute lock state

Lock protocol

A lock requestor does a single multicast for the lock,
and expects the lock grant

When locks are not owned at all, an Initial Lock Server
(ILS) can decide this and grant the lock

The ILS needs to store only lock ids, which is much
lesser than complete lock state

* No need for wait for all

Locks once granted are cached at the holder, corresp
data also cached and written back

* Enforces cache coherency

* Unused locks put back to ILS, via an abdicate
protocol

C's Request Lost

A B C
| ' I

B’s LOCKREQ

/ C'sLOCKRES
LOCKGRANTED ><X

y \ Y

Lock protocol

Lock holders queue lock requests if they have
locally locked the lock

Requests are granted in FIFO order to prevent
starvation

When a node is in transit, what happens ?
* The lock could be unowned at prev owner

* The lock could be unowned at next owner
also!

* Since lock transit can occur only due to
requestors, if we gqueue at requestor problem
solved?

Lock protocol

* The lock requests queued at the requestors may not
all be valid..

* With the previous example, one of the nodes (B or
C's) lock request will be obsolete

* We flush obsolete requests by having a logical time
on each node.

* Every request that is sent is stamped with the
current time

* Locks carry a timestamp also which says when
this lock was last held by a particular node

Lock protocol

We increment the logical time on the node
and stamp this on the lock each time we
grant a lock

If the timestamp on the request Is < than
the time on the lock, the request is obsolete

Lock requests with >= timestamp are valid

New node's timestamp on the locks are set
to 0 at all nodes

Need for causal msg delivery

A B C
I ' I

C’s LOCKREQ

C’s Request
ignored |

B’s LOCKREQ |
LOCKGRANTED ><
C’s Request -

ignored

Lock protocol

On a failure the ILS state is rebuilt by a
union of states from all nodes

On a failure, the gcs flushes all messages
which includes the lock grants In
particular

This means when nodes get a new view
message, there are no locks on the wire

This avoids need for a distributed
consistent snapshot. All nodes just have
to send their states

Reader Writer Locks

Uses the same underlying scheme as the non
reader design

Need a policy for readers and writers

* Readers read till a writer comes in

* A writer granted next

* Then all waliting readers so far and

To perform the lock protocol activities, a
primary reader is elected among the readers.

This Is elected by a writer or by the ILS

Reader Writer Locks

* The code Is substantially more complicated
* The need to handle multiple readers, waiting for
readers to drain out
* Recovery is more complicated

* Reader failure has to be detected by writers or by
the ILS

* If a primary dies, all non-primaries will have to
perform duties of primary till ILS elects a primary.

Types of “Distr’ FS

Clustered FS (Posix)

* CVXFS, GFS2 (RedHat)
Clustered FS (non-Posix)

* Ceph, GlusterFS
Parallel FS

* PFS, GPFS, NFSv4, Lustre
GFS, HDFS

Key Value Stores

* Cassandra

Other: ZFS

* LFS

NoSQL

Cloud computing has shown that current RDBMs cannot
scale and do not have the reqd perf

* | have not able to find an example of a large-scale Web
application that has been able to meet its needs with a
single coherent RDBM system (John Ousterhout)

Column stores

*“NoSQL” systems: Avoid ACID

* Amazon, Facebook, Google, Yahoo, and Ebay

* Bigtable: a sparse, distr multi-dimensional sorted map

* Apache Cassandra — Facebook's dist storage system
based on Bigtable data model on Amazon's Dynamo-like
structure.

* Hadoop

Transactional Workarounds for CAP

“BASE”. No ACID, use a single version of DB, reconcile later
Defer xact commit until partitions fixed & distr xact can run
Eventual consistency (e.g., Amazon Dynamo)

* Eventually, all copies of an object converge

Restrict transactions (e.g., Sharded MySQL)

* 1-node xacts: Objects in xact are on the same node

* 1-object xacts: xact can only read/write 1 object

Timeline consistency: Object timelines (PNUTS/Yahoo)

* Reads are served using a local copy; may be stale

* But application can get current version or any vers>N

* While copies may lag master record, every copy goes
through same sequence of changes

* Test-and-set writes facilitate per-record transactions

	Storage Systems
	Summary so far
	Also discussed
	Scalability
	Need to address
	Lock protocol
	Slide 7
	C's Request Lost
	Slide 9
	Slide 10
	Slide 11
	Need for causal msg delivery
	Slide 13
	Reader Writer Locks
	Slide 15
	Types of “Distr” FS
	NoSQL
	Transactional Workarounds for CAP

