

Storage Systems

NPTEL Course

Jan 2012
(Lecture 37)

K. Gopinath

Indian Institute of Science

Orderings!

 Disk ordering (such as elevator alg)
 SCSI ordering (such as “ordered tag”)
 Msg Ordering (such as “virtual synchrony”)
 FS ordering (such as “synch, asynch, delayed

write”, ordered write, soft updates, logging/
journalling, transactions)

 Appl ordering (such as “fsync, forder”,
transactions)

Ordering Models for Storage
 Consider Echo distr FS model (ACM TOCS May'94 Mann et. al.)

 replication (servers+disks), caching (==single-copy equiv),
global naming (single-system view), distr security

 Coherent write-back caches for both files+dirs thru ordered
write-behind

− write-behind: written back after a fixed time
− write-back: written back after an unbounded time

 Large caches that are transparent except on faults/crashes
 Avoid NFS drawbacks such as

 incoherent caches (some NFS do close-on-sync but not dirs)
 unlinking open file problem
 applns can write even if no space avlbl on server

Echo
 Ordered & stable writes needed if writes can be discarded at any

time
 write requested by one client and observed by another: write

should be stable
 writes on same obj should be stable in logical order

− overwrites (length preserving) by one client can be reordered
as an "opt"

− overwrite failure-atomic if only one block modified
 fsync on dir and files should make them stable
 forder: constrains ordering of write

− forder(f1, f2,...): any pending ops on f1, f2,... logically
performed before any ops ordered after forder

 an “update” to each of its arguments: like “touch” in
makefiles

− returns immediately unlike fsync

Echo Model
 Define 2 relations: -> (data dep) and => (partial order for

stable writes)
 => a subset of ->
 both -> & => transitive

 o1->o2 if o1 is a write, o1 & o2 have an operand in common,
o1 performed logically before o2, o1 not discarded when o2
performed

 o1=>o2 if o1->o2 and o1 & o2 writes but not overwrites
 if o1=>o2 and o1 discarded implies o2 discarded
 if o1->o2 and o1 & o2 on diff clients, o1 stable when o2

performed
 if o1=>o2 and o2 stable implies o1 stable
 if fsync(f) successful, f is stable

 append(f, data3)

 overwrite(f, data4) overwrite(f, data5)

 forder(f)

 overwrite(f, data6)

overwrite(f, data1)

overwrite(f, data2)

All ops ordered by =>

Write-ahead logging

append(logfile, intentions)

 forder(logfile, f1, f2, f3)

 update(f1, ...)

 update(f2, ...)

 update(f3, ...)

forder ensures that
none of the updates
will reach disk before
the log record does.

Soft updates in BSD fs tracks
cached buffers through the
-> relation but it does not have
the => relation explicitly

Effected thru flush
deamon

rename

rename(/d/f1, /d/g1) rename(/e/f1, /e/g1)

 rename(/d/f2, /d/g2)

 rename(/d/f3, /e/f3)
int rename(const char *old, const char *new);
DESCRIPTION
 The rename() system call causes the link named old to be renamed as new.
 If new exists, it is first removed. Both old and new must be of the same
 type (that is, both must be either directories or non-directories) and
 must reside on the same file system.

 The rename() system call guarantees that an instance of new will always
 exist, even if the system should crash in the middle of the operation.

rename(/a/f, /b/f) with
preexisting /b/f :
modifies a, b, /a/f, /b/f
(4 ops)

Write a file and replace with another atomically

create(/d/f)

 append(/d/f, data1)

 create(/d/fnew)

 append(/d/fnew, data2)

 rename(/d/fnew, /d/f)

Even if some write-behind
is lost, new file replaces old
one only if its intended
contents have reached disk

With some Unix (data not synch but
metadata synch), on a crash:
/d/fnew will be renamed before data
reaches disk

/d/f may point to garbage

Replace a dir with a new version

 mkdir(/d.new)

 creat(/d.new/f1)

 append(/d.new/f1, data1)

 creat(/d.new/f2)

 append(/d.new/f2, data2)

 forder(/d.new, /d.new/f1,/d.new/f2)

 rename(/d, /d.old)

 rename(/d.new, /d)

 remove d.old and its contents

On a crash, possible that d has garbage files as
data1, data2 not on disk. Need forder

Failure Semantics

 An appln proc P depends on a write w if P issued w or if P issued
r/w op o & w->o
 If w discarded, then P has inconsistent view of FS

 If P depends on a discarded w,
 std recovery mode: error on any further op on vol

− Better, send asynch signal to all processes P affected
 self-recovery mode: all open files on vol marked (incl P's cwd),

any op on these error; file accesses thru absolute pathnames
work still but not relative: useless in practice

− Actually need failure handle (h) for each open along with fd
− If w or o issued with h, w->o, then w->h
− If w discarded, any op later issued with h in error

 null-recovery mode: all open files of P on vol marked (but not
P's cwd), any op on these error

Lack of orderings in dfs
 Berkeley xfs '95: deadlock. Causal models
 Also, need forder type of ordering

Client A

3. write

1.read

Client C

2. FWD read

5.revoke
4.revoke

Client B

7. FWD read 6.read

Manager

QQ

Q

Q

Client A

Manager

Client B Client C

Episode dfs redo-undo logging
 write-ahead logging: in each node, old and new value logging for every

metadata upd
 before bcache writes out any dirty data, it is also logged
 at some time, metadata upd make it to disk.

− txn aborts: undo upd to metadata
− txn commits: redo upd
− fsck still needed to handle hard I/O errors

 2-phase locking?: locks acq without release until commit
 Needed in redo-undo logging (no R of uncommitted data)

− also, difficult with layered systems: lower layer locks have to be
exported up

 cascading aborts?: B has changes of txn1+ txn2 but A none!

 txn1: s1 la1 lb1 ub1 e1 A

 txn2: s2 lb2 ub2 e2 B

crash

 Episode does not use 2-phase locking

 do not have to keep locks till end of txn; can drop as soon as
done

 have to prevent uncommitted data from being read by others
 computes equivalence class (EC) of all active txns that modify

same obj
 all txns of this class commit or none
 need to minimize size and duration of EC
 delay use of "hot" data until close to txn commit

 adv over redo-logging: R of uncommitted data possible
 no undo capability in redo-only: upd to home disk locs cannot

occur until txn commits
− concurrency reduced: constrains buf cache on when to

write

Summary

 Considered orderings in a dfs
 Broadly at device (disk/SCSI), msg (VS), appl

(actually, dfs + appl)
 Providing a proper ordering framework thru

these layers not attempted so far
 May be with storage class memories?

	Storage Systems
	Orderings!
	Ordering Models for Storage
	Echo
	Echo Model
	
	Write-ahead logging
	rename
	Write a file and replace with another atomically
	Replace a dir with a new version
	Failure Semantics
	Lack of orderings in dfs
	Episode dfs redo-undo logging
	
	Summary

