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FC vs 10GEth

 Port cost of FC historically higher than Ethernet
 Many expect 10GEth to become dominant

 Much lower costs
 Encapsulate FC frames in ethernet pkts

 FCoE
 FC based software does not change much
 Increasing usage

 Or, drop FC completely and move to TCP as 
transport for SCSI



  

 iSCSI (Internet SCSI)
 SCSI cmds encapsulated within a TCP connection
 Uses existing netw infrastructure for accessing storage

 Only one network for storage and data
 Rides on rapid growth of ethernet 1GEth/10GEth

− Lower cost per port compared to FC

 Supports authentication protocols and IPSEC
 Responses may encounter differing delays
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 iSCSI Configurations
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 iSCSI 

 Maps the SCSI block oriented storage data over TCP/IP
 Establishes an iSCSI session between SCSI Initiator and 

Target
 session: group of TCP connections linking an initiator 

with a target identified by ConnectionID
 Supports ordered command delivery within a session

 iSCSI throughput governed by TCP Congestion Control Alg
 End2End flow control

 An iSCSI parameter MaxBurstLength also determines 
maximum amount of data that can be sent out in one burst



  

 iSCSI Phases

 Login Phase
 Establish iSCSI session
 Security Negotiation
 Parameter Negotiation

 Full Feature Phase
 Transfer of command and data
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iSCSI Flow Control 
 Depends on TCP

 TCP uses sliding window for flow control
 TCP also uses congestion avoidance alg

 Over High Speed Networks, TCP Reno underutilizes 
Network Bandwidth

 To overcome this drawback, variants of TCP Congestion 
Control Algorithm such as Scalable TCP, HTCP, BIC, 
CUBIC TCP developed

 Multiple TCP connections increase throughput
 However, concurrent connections compete for 

bandwidth resulting in unfair sharing 
− On loss, all flows may reduce transmission

 Congestion information needs to be shared among 
concurrent connections such as “Fair TCP”



  

Traffic Shaping or Rate Limiting Critical for 
iSCSI Throughput

Uncontrolled Congestion

Managed Congestion for Internet

Storage Traffic 
Mgmt (shaped)

100%

Offered Load



  

TCP Background
 Peer to peer protocol

 Intelligent end devices and “dumb” network
 Has to estimate bandwidth avlbl

 No setup before transmission
 Control-theoretic model

− Acks “clock” the protocol
− Exponential increase till a threshold
− Additive increase till loss, then multiplicative decrease

 Losses indicate lack of capacity in network
− Necessary for discovering capacity 

 For each connection, TCP maintains a congestion 
window, that limits total number of unack'ed packets that 
may be in transit end-to-end.



  

TCP Optimizations
“Self-clocking” protocols such as TCP need to keep pipeline full 
 Many concurrent sessions
 Sending large data units (large TCP window size)

As number of sessions increases, buffer shifted from WAN to 
TCP sender's transmit buffers

WAN “BUFFER”
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WAN Buffer Size = RTT * bandwidth

TCP Throughput proportional to MSS/(RTT*sqrt(p))
where p: random pkt loss prob; MSS: max seg size



Achieving High TCP Performance 

Large window sizes

Jumbo Frames
 Matches Ethernet frame size with TCP seg size

SACK: Selective Acknowledgements
 Useful when medium is dropping many packets

Traffic shaping or rate limiting:
 Critical to avoid packet drops

− Takes a long time to recover in high RTT env
 TCP retransmit mechanisms should not be relied upon for 

PERSISTENT packet drops

TCP Window Scaling and Seq wrapping: RFC 1323



TCP Reno

 Thruput determined by 
 min of
 Congestion window
 Receiver window
 Sender window

 Assume last 2 large

Over high bandwidth 
Links, changes in 
cwnd  results in under 
utilization of link 
bandwidth.



TCP Reno

 Uses Additive Increase Multiplicative Decrease 
(AIMD) Congestion Control Approach 
 ACK : newcwnd= oldcwnd + α/ oldcwnd

 LOSS: newcwnd=   β *oldcwnd

 For Reno, α = 1, β = 0.5

 With a 1 Gbps link, 1500 bytes packet size, 100 ms 
RTT, Reno takes 14 minutes to achieve full 
utilization following a loss event



Scalable TCP

 Modification of TCP Reno Congestion 
Control Algorithm, uses MIMD Approach
 ACK : newcwnd= oldcwnd + α

 LOSS: newcwnd=   β *oldcwnd

 Here, α = 0.01,  β = 0.875

Reference : Tom Kelly, Scalable TCP : Improving Perf. In highspeed Wide Area Networks 



HTCP
 Modification of TCP Reno
 Employs different alg to incr congestion window

 Multiplicative Decrease Factor β adaptive
 Also, Additive Increment α:

 α   = αL             if  Δ  ≤   ΔL      

 α   = αH(Δ)        if  Δ  >   ΔL      where

αL   is additive increment in low speed mode

αH  is additive increment in high speed mode

Δ   is the time elapsed since last congestion event

ΔL  is the Threshold

Reference : D Leith, HTCP: TCP for High speed and Long distance networks



Binary Increase Congestion (BIC) TCP
Modification of TCP Reno (in Linux kernel 2.6.8 -.18) 
 Consists of two parts

 Binary Search Increase
 Additive Increase

 Given the minimum and maximum window sizes, set the target 
window to midway between the two

 If no losses are detected, the  current window size becomes the 
new Minimum and a new target is calculated

 If losses occur, then current window size is the new Maximum and 
reduced window size is the new minimum

More aggressive initially, gets less aggressive as the window size 
approaches the target.

Reference : I Rhee, Binary Increase Congestion Control for fast long distance networks



 Additive Increase

 If difference between current window and target large, 
then direct increase to target may stress network

 Define a threshold, SMax. If difference is greater than SMax 

increase by SMax until difference reduces to less than SMax.



TCP CUBIC

 a less aggressive and more systematic derivative of BIC
 window size a cubic function of time since last loss event
 performs well in wired networks with large bandwidth-delay 

product.
 in Linux kernel since  2.6.19



RDMA

 RDMA over TCP: zero copy
 Standardised as iWARP (Internet Wide Area RDMA 

Protocol
 TCP Offload Engines (ToE): zero copy arch mostly 

proprietary 
 iSCSI Extension for RDMA (iSER)

 Eliminates TCP processing overhead from RDMA-
capable NICs

 SCSI over RDMA (SRP)



Infiniband

 Proposed as system to system interconnect
 Widely used in HPC due to high speed

 40Gbps common
 Has multiple lanes in each connection with QoS

 Also, failover
 Used as storage interconnect

 Can use RDMA over Infiniband
 No std API in specification: 

 only a set of "verbs": functions that must exist.



  

Summary

 iSCSI becoming popular but 10GEth has yet 
not become widespread
 FCoE evolutionary path

 RDMA stds critical
 Infiniband strong in HPC environments and 

being used for storage also
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