Storage Systems

NPTEL Course
Jan 2012

(Lecture 05)

K. Gopinath
Indian Institute of Science

. GetNew(oid) Basic Storage API

* POSIX: fd=creat(const char *path, mode _t mode)
* Store(oid, data)
* POSIX: ssize t write(int fd, const void *buf, size_t count)
* Read(oid, buffer)
* POSIX: ssize_tread(int fd, void *buf, size t count)
* Delete(oid)
* POSIX: int unlink(const char *pathname)
* Getinfo(oid)
* POSIX: int stat(const char *path, struct stat *buf)
oid: blocknum, filename, filehandle, content hash, key

Also, appl buffered versions.

Semantics of POSIX files vs NFS

* A fd once obtained can be held as long as the
process exists (POSIX)

* A NFS handle once obtained can be held as
long as the client exists

* But may not be able to access the file if the NFS
server dies

* Server stateless but client stateful
* More Iinteresting. open but deleted file

* NFS can only approximate POSIX semantics
* Consistency guarantees weak in NFS2

* Clients cache metadata for 30 secs

Impact of Networking

Semantics of failure becomes imp

* NFS uses RPC. What has to be done wrt non-
idempotent operations?

Consistency issues become important

* NFS semantics different from POSIX
To support high speed transfers, new kernel infrastructure

* Parallel to IPC: sockets/TLlI

* For even higher speeds, user-level networking (RDMA)
Storage spun off in large systems

* Storage Area Networks (block level protocols)

* NFS (file level protocols)
* Distributed File Systems/Storage Systems

APl changes

* POSIX: Read (fd, buffer, count)
* Partial writes to a file OK (appends, overwrites, etc)
* Mmap

* NFS: Read (fd, offset, buffer, count)
* Partial writes and mmap avlbl but no open!

* Weak consistency model with multiple writers (NFS2)
- NFS3, NFS4 improve the consistency model

* Amazon S3: “storage” service

* Key Value store: no features like partial write or mmap

* Weak consistency (“BASE”) model: when no updates
occur for a “sufficiently long” period of time, eventually
all updates will propagate through the system and all
the replicas will be consistent.

S3 Interface: Key Value Store
S3 stores data In named buckets

* Each bucket is a flat namespace, containing keys
associated with objects (but not another bucket)

* Max obj size 5GB. Partial writes to objects not allowed
(must be uploaded full), but partial reads OK

create bucket
put bucket, key, object

get bucket, key
delete bucket, key

delete bucket
Ist keys In bucket

Ist all buckets

Layering In Storage Systems
* Varied uses of storage. Eg.
* Swap
* Document store
* Archiving
* Temporary info transfer (eg. Memory stick)

* Many designs. Best to understand each as a layered
system with optional layers

* Swap: no user visible component (block storage fine)
* Document: metadata about document imp (provenance)

* Archiving: reliability paramount and eliminating
redundancy imp

* Simplified layering model: devices, protocols,
systems

Storage Systems Highly Layered
* Multiple layers. Example:
* Application uses fopen, fread, fwrite, etc.
* Libc calls open, read, write system calls
* Kernel calls vop _open, vop read, vop_write, ...

* FS implements ufs_open, ufs_read, etc. using virtual
memory subsystem

* Virtual Memory subsystem uses vop_getpage and
vop_putpage provided by FS

* vop_getpage/vop putpage call pseudo device routines

* Volume Manager or NFS client code
* Device Driver (SCSI) or Network driver
* HBA or NIC

* Disk or Remote Disk

Layering

* Each layer often specializes in one dimension
but has to handle others also

FS handles naming as reqd by appl

* Volume Manager handles aggregation of physical

media along with error mgmt

* Each layer also needs to do In its own way

Discovery

Naming

Error mgmt

Security

Performance (eg. Caching, Flow Control)
Consistency mgmt (transactions)

Let us start with the physical layer

* Disks: electromechanical devices

* Dominant since 1956
* Mostly replaced tape
* May get replaced by storage class memory (SCM)

* High density with good BW but high seek and
rotational delays

* Acceptable reliablility but for large storage
systems a big issue

* Heat, power, vibration, ...

* Most software (fs, db, etc) till today optimized
for disks

Disk Drive Interfaces

Early disks: host just sees r/w amplifier (analog)
* only soft sectoring
ESDI disks: Only data separator

* generates a clock and data signal from pulses in medium
* hard sectoring; protocol with cmds; defect lists in drive

SCSI disks: Also formatter, data buffer, controller
* Most mature for large systems

IDE/ATA disks: Also Host adapter in drive

* disadv: only works with IBM PC

SATA, SAS: serial ATA, serial SCSI

Disk Scheduling

* Disks poor at random R/W, better at sequential
* Seeking activity important factor in performance

* Minimize disk seek time (moving from track to
track)

* Minimize rotational latency (waiting for disk to
rotate the desired sector under read/write head)

* Example: Openoffice startup long!

* Excessive seeks as loader fixes relocations

* Shared objs (many!) mapped and fixing
relocations causes page faults: many seeks

Some Disk Scheduling Algs.

FCFS
Shortest Seek Time First (SSTF)

Elevator or SCAN: Disk arm starts at one end of
disk and moves towards other end, servicing
requests as it goes

* Reverses direction at end of disk

C-SCAN: same as SCAN, except head returns to
cylinder O at end of the disk

C-LOOK: same as C-SCAN, except head only
travels as far as the last request in each direction

Linux Disk Scheduling

* (Linus) Elevator (default till '03)
* Deadline

* Imposes a deadline on all I/O operations to
prevent resource starvation.

* Anticipatory (default '04 - '06; now removed)

* pauses for a short time (a few ms) after a read
operation in anticipation of other close-by read
regs

* Completely Fair Queuing (CFQ) (default from '06)

* allocates timeslices for each of the per-process
gueues (synch/asynch) for access to the disk

* Null

Test 1. Writes-Starving-Reads

. In background, perform a streaming write, such as:
while true
do

dd if=/dev/zero of=file bs=1M

done

. Meanwhile, time how long a simple read of a 200MB file takes:
time cat 200mb-file > /dev/null

(from a Linux kernel mailing list discussion)

Test 2. Effects of High Read Latency

Start a streaming read in the background:
while true
do

cat big-file > /dev/null
done

* Meanwhile, measure how long it takes for a read of every file in
the kernel source tree to complete:

time find . -type f -exec cat '{}' ';' > /dev/null

(from a Linux kernel mailing list discussion)

Performance Results

I/0 Scheduler and Kernel Test 1
Linus Elevator on 2.4 45.0 secs

Deadline I/0 Scheduler on 2.6 40.0 secs

Anticipatory I/O Scheduler on 2.6 4.6 secs

(from a Linux kernel mailing list discussion)

Test 2
30 mins, 28 secs
3 mins, 30 secs

15 secs

Summary

* We looked at the basic API for storage
* We discussed layering

* We started looking at the physical layer (disk)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

