

Storage Systems

NPTEL Course

Jan 2012
(Lecture 30)

K. Gopinath

Indian Institute of Science

 Design Issues in Large Storage Systems

 Large Storage Systems need to be distributed and replicated
 For throughput
 For resilience to failures
 For disaster recovery

 May also need to solve “(w)holistic” problems such as RT/QoS
and security

Usually, need to solve many coordination problems
 Many other imp aspects but difficult problem already!
 Difficulty arises from asynchronous nature and failures

characteristic of real systems
− Faced by Amazon, eBay, Skype, Gmail, Facebook...
− (Synchronous systems typically small scale)

NFS: dir lockup

• Consider a “slow op” on a (locked) file due
to NFS congestion

 LOOKUP on that file results in a lock on its
dir that cannot be released until “slow op”
finishes =>

 cascade of locks upto root that hangs the
system till “slow op” finishes

 lockd: similar problem but worse as lockd a
user process

Recent (Sep 23, '10) 2.5 hr Facebook Outage

 Caused by an automated system to check for invalid configuration
values in cache and replace them with updated values from the
persistent store
 works well for a transient problem with cache, but it doesn’t work

when the persistent store is invalid
 Somebody made an “invalid change” to persistent config values
 Each alert client attempted fix of invalid cache value=> has to query

cluster db that cannot scale (=>1000's queries per sec)
 Also deleted cache key

− Now queries do not succeed in the cache during and just
after the fix!

− Each new request has to go to non-scalable db again!
− Positive feedback cycle with more requests to db

 Had to stop all reqs to cluster db to recover; site down

Why are failures difficult in asynch env?

 (simpler) The 2 generals coord problem: need to coord to defeat
enemy in between (who can seize, dupl, corrupt any msg sent)
 No protocol exists!

 The FLP (Fischer, Lynch, Patterson) result: impossibility of
distributed consensus with 1 faulty processor (JACM'85)

 Fekete, Lynch, Mansour, Spinelli: impossibility of reliable
communication in the face of crashes (JACM'93)

 No reliable data link layer can exist in CAML model (JACM'00)
 crashes, asynchronous, memoryless, lossy model

 System can be driven by a sequence of crashes to any global state
where each node is in a state reached in some (possibly diff) run,
and each link has an arbitrary mixture of packets sent in (possibly
diff) runs (Jayaram/Varghese JACM'00)

Brewer's CAP Theorem

 Three important properties
 Consistency
 Availability
 tolerance to Partitions due to breakdowns in

communications in the system

 cannot all be guaranteed at the same time
according to a theorem in distributed systems
theory (proved by Gilbert & Lynch '02)

Space of CAP
 C and Av only (no tolerance to partitions)

 Single-site fs/db, Cluster fs/db, LDAP
 2-phase commit, cache validation protocols

 Av and P only (no consistency)
 Coda, DNS, web caching
 leases, need for conflict resolution, optimistic

− Good example: cricinfo scores!
 C and P only (no availability)

 Distributed fs/db, Distributed locking
 Majority protocols: minority partitions unavailable
 Pessimistic locking

FS vs DB perspectives
 FS: a persistence and naming service for all appls

 No information from appls on what info is critical
 System can differentiate betw data and metadata only
 Can guarantee

− Consistency of metadata (needed for FS's sanity!)
 If metadata corrupted, will fix it in some (!) way so that

system can function again!
− Optionally data consistency (using synchronous operations)

 VERY SLOW!!! and hence not the default!
 DB: an appl from the OS/FS perspective. Uses “ACID” semantics:

 Atomicity, Consistency of data: DB's responsibility
 Isolation from other transactions also
 Durability: storage system's responsibility

Remarks
 OS/Networking good at availability, but not good at

consistency
 NFS a good example here

 Can have consistency & availability within a cluster, but
hard

 dfs/db better at consistency than availability
 Wide-area DBs or Disconnected clients neither

 Durability is HARD: a large storage system itself
composed of many parts
 Recursive problem: how does it keep its own

metadata or data “consistent” or “atomic” wrt changes
and what persistent store can it depend on for its
operations?

However!
 Consider the TCP protocol

 TCP, the basis of Internet, finalized in RFC 793 in Sep 1981. Only
clarifications to this design since then.

 “Just Works” inspite of theoretical result of impossibility of implementing
reliable comm in the face of crashes

 Careful engineering to avoid problems due to “reincarnation” of a
connection

 A TCP cnxn identified by (IP addr, port num) of src and dst
(finite size)

 If this repeated in a new cnxn, (incorrect) packet insertion
possible!

− but still mandates (but not followed) “cannot reboot a system faster
than 2 minutes or remember last seq# before crash” !!! (see Sec 3.3,
RFC793)

 So an impossibility result does not have to make us drop our plans
 Just make sure the engineering is very good!

Ways to Get Around CAP
 Avoid failures? Impossible but can we reduce freq of failures by

redundancy (say, 99.9999% uptime)?
 Design and impl not easy + very costly

 Make sure partitions are repaired within latency requirements for a
request: Too costly/Difficult?

 Assume “Timed Asynchronous Systems” (TAS): unstable periods
followed by sufficiently long stable periods
 “Failure aware” design
 '96 FAA project based on this model but was a colossal failure as

solution based on TAS subtle and needs care in impl.
 “Do not do anything when partitions present”

 Fundamentally impossible to detect failure (aka partitions)
reliably: FLP result

 Availability is not possible

Birman: Attack Root Causes?
 As data center networks scale out, sw stack increasingly oriented

towards one-to-many (multicast: MC) communication patterns: eg.
Facebook/Twitter
 Publish-subscribe and other enterprise service bus layers use

multicast to push data to many receivers simultaneously
 allows clustered appl servers to replicate state updates and

heartbeats betw server instances and maintain coherent caches
by invalidating or updating cached info on many nodes

 For scalability, IP multicast critical but deprecated (Amazon) as it
lacks reliable packet dissemination, security, flow control and
scalability in number of groups
 IP MC addresses scarce and sensitive resources
 If hw limits of MC addr exceeded, kernel burdened & perf

decreases

Multicast Oscillatory Behaviour
 Nodes experience disturbances eg. Java gc pauses, Linux sched

delays, flushing data to disk
 Prevents nodes from forwarding packets eg. when appl thread does

not respond or when packets do not reach node because of a link
problem.

 For a while, root continues sending, so incoming packets from the
upstream link fill node’s buffers.

 Flow control causes node’s parent node to stop sending, which in turn
causes its buffers to fill up.

 If node’s disturbance persists, then eventually all buffers on path from
root to the node become full, and root’s sending throughput drops to
zero

 In large trees (10K-60K nodes in cloud), when each node is disturbed
for one sec/hour on average, throughput degradation (up to 90%)
occurs even if message loss is negligible.

	Storage Systems
	 Design Issues in Large Storage Systems
	NFS: dir lockup
	Recent (Sep 23, '10) 2.5 hr Facebook Outage
	Why are failures difficult in asynch env?
	Brewer's CAP Theorem
	Space of CAP
	FS vs DB perspectives
	Remarks
	However!
	Ways to Get Around CAP
	Birman: Attack Root Causes?
	Multicast Oscillatory Behaviour

