

Storage Systems

NPTEL Course

Jan 2012
(Lecture 36)

K. Gopinath

Indian Institute of Science

Ordering semantics

 none
 FIFO: if a process casts m before m', no correct process

delivers m' before m
 causal: if cast of m precedes m', no correct process delivers

m' before m
 e precedes f (Lamport) iff

− a process executes both e and f in that order, or
− e is the cast of some msg m and f is the delivery of m

at some process, or
− there is an event h such that e precedes h and h

precedes f
 total: if at a correct process p, m delivered before m', then

m will be delivered before m' at all destinations they have in
common

 Logical Clocks

 Associate a counter with each process and msg in system
 LT

p
: logical time for process p (p’s counter)

 LT
m
: logical time of message m (“logical timestamp of m”)

 Maintaining counters for a new event:
 if LT

p
<LT

m
, process p sets LT

p
 = LT

m
+1

 if LT
p
≥LT

m
, process p sets LT

p
 = LT

p
+1

 for other events, process p sets LT
p
 = LT

p
+1

 For a more accurate clock with static number of processes,
vector clock

Vector Clocks
 A vector clock is a vector of counters, one per process in set
 Vector time for an event e: for each process in vector, how many

events occurred at that process causally prior to when e occurred
 if VT of msg m is [4,5,6], 4 events happened causally prior to

sending of m at process p, 5 at q and 6 at r
 VT

p
 and VT

m
: vector times associated with process p and msg m

Given a vector time VT, VT[p]: entry in vector corresp to process p
 a count of the number of events that have occurred at p

Updating vector clock:
 Prior to performing any event, process p sets VT

p
[p] = VT

p
[p]+1

 Upon delivering a msg m, process p sets VT
p
 = max(VT

p
, VT

m
)

Causally/Totally Ordered

 m0 and m1 causally ordered but m2 none such

SS

C

D

A

B

C

m0

m1

m2

 Total order: since m2 delivered before m0 at B,
 if m0 also delivered to C, then
 it should be later than that of m2

Weak/strong: whether dyn uniform?

Orthogonal Choices

 atomicity (does not specify delivery order but same
everywhere)

 delivery order (FIFO, causal, total)
 uniform
 timed (to be delivered within a bounded time)

 Probs with Causal Model

 replicated db with 2 copies of bank acct x on 2 sites
 user deposits 20: mcast "add 20 to x"
 bank adds interest: mcast "add 10% to x"
 both not causally related
 may do it in diff orders!

 P publishes X_0, X_1,...
 Q subscribes to P and computes f(X_0), f(X_1),...
 causal order: guarantees that f(X_0) received after X_0
 But may still make mistakes:

− X_0, X_1, v=f(X_0),... & thinking v is f(X_1)
 need addl tags

Ordering Models for Storage
 Consider Echo distr FS model (ACM TOCS May'94 Mann et. al.)

 replication (servers+disks), caching (==single-copy equiv),
global naming (single-system view), distr security

 Coherent write-back caches for both files+dirs thru ordered
write-behind

− write-behind: written back after a fixed time
− write-back: written back after an unbounded time

 Large caches that are transparent except on faults/crashes
 Avoid NFS drawbacks such as

 incoherent caches (some NFS do close-on-sync but not dirs)
 unlinking open file problem
 applns can write even if no space avlbl on server

Echo

 FS data changed only by a write that is logically done at a
distinct point in time
 A fault causes some writes to be discarded =>undone

at a distinct point in time
 On network partition, a client blocks or is returned error

on timeout (NFS hard/soft)
 readops (stat, open, rd, ls, lookuppn, ...)
 writeops(wr, create, mkdir, rename, fsync, ...)

Echo
 Ordered & stable writes needed if writes can be discarded at any

time
 write requested by one client and observed by another: write

should be stable
 writes on same obj should be stable in logical order

− overwrites (length preserving) by one client can be reordered
as an "opt"

− overwrite failure-atomic if only one block modified
 fsync on dir and files should make them stable
 forder: constrains ordering of write

− forder(f1, f2,...): any pending ops on f1, f2,... logically
performed before any ops ordered after forder

 an “update” to each of its arguments: like “touch” in
makefiles

− returns immediately unlike fsync

Echo Model
 Define 2 relations: -> (data dep) and => (partial order for

stable writes)
 => a subset of ->
 both -> & => transitive

 o1->o2 if o1 is a write, o1 & o2 have an operand in common,
o1 performed logically before o2, o1 not discarded when o2
performed

 o1=>o2 if o1->o2 and o1 & o2 writes but not overwrites
 if o1=>o2 and o1 discarded implies o2 discarded
 if o1->o2 and o1 & o2 on diff clients, o1 stable when o2

performed
 if o1=>o2 and o2 stable implies o1 stable
 if fsync(f) successful, f is stable

	Storage Systems
	Ordering semantics
	 Logical Clocks
	Vector Clocks
	Causally/Totally Ordered
	Orthogonal Choices
	 Probs with Causal Model
	Ordering Models for Storage
	Echo
	Echo
	Echo Model

