

Storage Systems

NPTEL Course

Jan 2012
(Lecture 38)

K. Gopinath

Indian Institute of Science

Summary so far
 Device Level

 Disk Scheduling
 Protocol Level

 SCSI, iSCSI (block level)
 NFS (file level)

 Distr System Level
 Consistency (commit/consensus protocols)
 Ordering (virtual synchrony, and at file system level)

Also discussed
 Storage Characteristics

 Choose 2 out of 3 (speed, capacity, cost)
 Caching

 Naming vs storage
 Metadata vs data
 Recursion! (metadata about metadata...)

 Data loss
 Metadata loss vs data loss

 Interpret bit patterns
 Long term storage

Scalability
 Networked vs Distributed storage
 Consistency

 FS, Vol Mgr, DB notions
 Transactions

 ACID vs BASIC
 Commit Protocols

 2-phase commit
 3-phase commit
 Paxos

 CAP theorem
 Eventual consistency

Need to address

 Distributed Locking in the presence of failures
 Scalability
 Reliability
 Security
 QoS
 Cross layer optimizations
 Archival Storage
 Flash Memory in storage designs and newer

Storage Class Memories (SCM)

Lock protocol

 Requirements
 No SPOF, lock state should not be lost
 The failure of a node should release

locks held by it
 Should minimize network hops
 No wait for all
 No total ordering of messages
 Should distribute lock state

Lock protocol

 A lock requestor does a single multicast for the lock,
and expects the lock grant

 When locks are not owned at all, an Initial Lock Server
(ILS) can decide this and grant the lock

 The ILS needs to store only lock ids, which is much
lesser than complete lock state
 No need for wait for all

 Locks once granted are cached at the holder, corresp
data also cached and written back
 Enforces cache coherency
 Unused locks put back to ILS, via an abdicate

protocol

C's Request Lost

Lock protocol

 Lock holders queue lock requests if they have
locally locked the lock

 Requests are granted in FIFO order to prevent
starvation

 When a node is in transit, what happens ?
 The lock could be unowned at prev owner
 The lock could be unowned at next owner

also!
 Since lock transit can occur only due to

requestors, if we queue at requestor problem
solved?

Lock protocol

 The lock requests queued at the requestors may not
all be valid..

 With the previous example, one of the nodes (B or
C's) lock request will be obsolete

 We flush obsolete requests by having a logical time
on each node.
 Every request that is sent is stamped with the

current time
 Locks carry a timestamp also which says when

this lock was last held by a particular node

Lock protocol

 We increment the logical time on the node
and stamp this on the lock each time we
grant a lock

 If the timestamp on the request is < than
the time on the lock, the request is obsolete

 Lock requests with >= timestamp are valid
 New node's timestamp on the locks are set

to 0 at all nodes

Need for causal msg delivery

Lock protocol
 On a failure the ILS state is rebuilt by a

union of states from all nodes
 On a failure, the gcs flushes all messages

which includes the lock grants in
particular

 This means when nodes get a new view
message, there are no locks on the wire

 This avoids need for a distributed
consistent snapshot. All nodes just have
to send their states

Reader Writer Locks

 Uses the same underlying scheme as the non
reader design

 Need a policy for readers and writers
 Readers read till a writer comes in
 A writer granted next
 Then all waiting readers so far and

 To perform the lock protocol activities, a
primary reader is elected among the readers.

 This is elected by a writer or by the ILS

Reader Writer Locks

 The code is substantially more complicated
 The need to handle multiple readers, waiting for

readers to drain out
 Recovery is more complicated

 Reader failure has to be detected by writers or by
the ILS

 If a primary dies, all non-primaries will have to
perform duties of primary till ILS elects a primary.

Types of “Distr” FS
 Clustered FS (Posix)

 CVxFS, GFS2 (RedHat)
 Clustered FS (non-Posix)

 Ceph, GlusterFS
 Parallel FS

 PFS, GPFS, NFSv4, Lustre
 GFS, HDFS
 Key Value Stores

 Cassandra
 Other: ZFS

 LFS

NoSQL
 Cloud computing has shown that current RDBMs cannot

scale and do not have the reqd perf
 I have not able to find an example of a large-scale Web

application that has been able to meet its needs with a
single coherent RDBM system (John Ousterhout)

 Column stores
 “NoSQL” systems: Avoid ACID

 Amazon, Facebook, Google, Yahoo, and Ebay
 Bigtable: a sparse, distr multi-dimensional sorted map
 Apache Cassandra — Facebook's dist storage system

based on Bigtable data model on Amazon's Dynamo-like
structure.

 Hadoop

Transactional Workarounds for CAP
 “BASE”: No ACID, use a single version of DB, reconcile later
 Defer xact commit until partitions fixed & distr xact can run
 Eventual consistency (e.g., Amazon Dynamo)

 Eventually, all copies of an object converge
 Restrict transactions (e.g., Sharded MySQL)

 1-node xacts: Objects in xact are on the same node
 1-object xacts: xact can only read/write 1 object

 Timeline consistency: Object timelines (PNUTS/Yahoo)
 Reads are served using a local copy; may be stale
 But application can get current version or any vers>N
 While copies may lag master record, every copy goes

through same sequence of changes
 Test-and-set writes facilitate per-record transactions

	Storage Systems
	Summary so far
	Also discussed
	Scalability
	Need to address
	Lock protocol
	Slide 7
	C's Request Lost
	Slide 9
	Slide 10
	Slide 11
	Need for causal msg delivery
	Slide 13
	Reader Writer Locks
	Slide 15
	Types of “Distr” FS
	NoSQL
	Transactional Workarounds for CAP

