

Storage Systems

NPTEL Course

Jan 2012
(Lecture 31)

K. Gopinath

Indian Institute of Science

Multicast Oscillatory Behaviour
 Nodes experience disturbances eg. Java gc pauses, Linux sched

delays, flushing data to disk
 Prevents nodes from forwarding packets eg. when appl thread does

not respond or when packets do not reach node because of a link
problem.

 For a while, root continues sending, so incoming packets from the
upstream link fill node’s buffers.

 Flow control causes node’s parent node to stop sending, which in
turn causes its buffers to fill up.

 If node’s disturbance persists, then eventually all buffers on path
from root to the node become full, and root’s sending throughput
drops to zero

 In large trees (10K-60K nodes in cloud), when each node is
disturbed for one sec/hour on average, throughput degradation (up
to 90%) occurs even if message loss is negligible.

FLP/CAP Related Problems

 Distributed Consensus: FLP Impossibility result
 Distributed Locking/Synchronization
 Distr Commit in clustered/distr fs and db

− Slightly similar: Waitfree synchronization
 Let us consider the state of art in current large scale storage

systems:
 Distr locking, synch, commit problems exist
 How are they being handled? What guarantees are being

given?

Storage APIs
 POSIX: Read (fd, buffer, count)

 Partial writes to a file OK (appends, overwrites, etc)
 mmap avlbl

 NFS: Read (fd, offset, buffer, count)
 Partial writes and mmap avlbl

 Amazon S3: “storage” service
 Key Value store; no features like partial write or mmap!

 ZooKeeper: hierarchical “file”-like service
 In memory tree-based info for distributed coordination
 Replicated
 Provides primitives to construct more complex services

− Synchronization, group membership

S3 Interface: Key Value Store
 Amazon S3 stores data in named buckets

 Each bucket is a flat namespace, containing keys
associated with objects (but not another bucket)

 Max obj size 5GB. Partial writes to objects not allowed
(must be uploaded full), but partial reads OK

 Storage API
 create bucket
 put bucket, key, object
 get bucket, key
 delete bucket, key
 delete bucket
 list keys in bucket
 list all buckets

ZooKeeper
 Tree-based info (“filesystem”)
 Fast and simple
 each node stores one or more pieces of info (“file”)
 very simple programming interface:

− create: creates a node at a location in the tree
− delete: deletes a node
− exists: tests if a node exists at a location
− get/set data: reads/writes the data from a node
− get children: retrieves a list of children of a node
− Sync: waits for data to be propagated

Eventual Consistency
 S3 model: When no updates occur for a long period of

time, eventually all updates will propagate through the
system and all the replicas will be consistent
 Often called BASE: Basically Available, Soft-state and

Eventually Consistent!
 Contrast with ACID

 Zookeeper consistency model:
 The clients view of the system is guaranteed to be up-

to-date within a certain time bound

ZooKeeper Consistency model

 guarantees:
 Sequential Consistency - Updates from a client will be

applied in the order that they were sent.
 Atomicity - Updates succeed or fail. No partial results.
 Single System Image - A client will see the same view of

the service regardless of the server that it connects to.
 Reliability - Once an update has been applied, it will persist

from then until a client overwrites the update.
 Timeliness - The clients' view of the system is guaranteed

to be up-to-date within a certain time bound.

ACID vs. BASE
 ACID

 Strong consistency, Isolation, Focus on “commit”
 Availability?
 Conservative (pessimistic)
 Nested transactions
 Difficult System evolution

 BASE
 Weak consistency: stale data OK
 Availability first, Best effort, Approx answers OK
 Aggressive (optimistic)
 Simpler and Faster
 Easier System evolution

 • Abstract problem related to consistency: commit or
consensus protocols

 Atomic Commitment (AC) and Consensus: both require fault
tolerant agreement among processes
AC:

 AC1: No two processes reach different decisions.
 AC2: Commit is decided only if all votes are Yes.
 AC3: If there are no failures and all votes are Yes, then all

processes decide to Commit.
 AC4: If all existing failures are repaired and no new failures

occur for a sufficiently long period of time, then all processes
will reach a decision.

 No Blocking: All correct processes reach a decision:
Unrealizable! (General's paradox)

Commit Protocols

Consensus

 Agreement (A) All non-faulty processes reach the same
decision

 Validity (V) If all non-faulty processes' votes are Yes, they will
all decide to Commit; if all non-faulty processes' votes are No,
they will all decide to Abort

 Weak Validity (WV) If there are no failures, V holds
 Very Weak Validity (VWV) Both Commit and Abort are

possible decision values: i.e. there is an execution in which
correct processes decide to Commit and an execution in which
correct processes decide to Abort

 Satisfaction of A and V: consensus problem.
 Satisfaction of A and WV: weak consensus
 Satisfaction of A and VWV: very weak consensus

Relation Betw AC and Consensus
• Differences betw AC and diff versions of consensus concern
 the decisions reached by faulty processes; and
 the strength of the conditions required
AC attainable only under the assumption that process
failures are benign

Can prove
 AC 2,3,4 imply WV but not the converse
 With “no-catastrophe” axiom (NC): all failures repaired and no

new failures for a sufficient period of time, then AC1, AC4 and
NC imply A

AC conditions stronger than WV, assuming NC

	Storage Systems
	Multicast Oscillatory Behaviour
	FLP/CAP Related Problems
	Storage APIs
	S3 Interface: Key Value Store
	ZooKeeper
	Eventual Consistency
	ZooKeeper Consistency model
	ACID vs. BASE
	
	Consensus
	Relation Betw AC and Consensus

