

Storage Systems

NPTEL Course
Jan 2012

(Lecture 08)

K. Gopinath
Indian Institute of Science

FC vs 10GEth

 Port cost of FC historically higher than Ethernet
 Many expect 10GEth to become dominant

 Much lower costs
 Encapsulate FC frames in ethernet pkts

 FCoE
 FC based software does not change much
 Increasing usage

 Or, drop FC completely and move to TCP as
transport for SCSI

 iSCSI (Internet SCSI)
 SCSI cmds encapsulated within a TCP connection
 Uses existing netw infrastructure for accessing storage

 Only one network for storage and data
 Rides on rapid growth of ethernet 1GEth/10GEth

− Lower cost per port compared to FC

 Supports authentication protocols and IPSEC
 Responses may encounter differing delays

Initiator

SCSI

iSCSI

TCP

IP

Link

Target

SCSI

iSCSI

TCP

IP

Link

TCP Connections

Physical Interconnect

 iSCSI Configurations

SCSI

iSCSI

TCP/IP

Ethernet

Physical

SCSI

iSCSI

Ethernet

Physical

TCP/IP

SCSI

Ethernet

Physical

TCP/IP

iSCSI

Host

 Adapter

 Software iSCSI
 Software iSCSI with TOE (TCP Offload Engines)
 Hardware iSCSI

 iSCSI

 Maps the SCSI block oriented storage data over TCP/IP
 Establishes an iSCSI session between SCSI Initiator and

Target
 session: group of TCP connections linking an initiator

with a target identified by ConnectionID
 Supports ordered command delivery within a session

 iSCSI throughput governed by TCP Congestion Control Alg
 End2End flow control

 An iSCSI parameter MaxBurstLength also determines
maximum amount of data that can be sent out in one burst

 iSCSI Phases

 Login Phase
 Establish iSCSI session
 Security Negotiation
 Parameter Negotiation

 Full Feature Phase
 Transfer of command and data

iSCSI WRITE CMD

R2T

iSCSI Data Out
PDU

.

.

.

iSCSI Response

Initiator Target

iSCSI Flow Control
 Depends on TCP

 TCP uses sliding window for flow control
 TCP also uses congestion avoidance alg

 Over High Speed Networks, TCP Reno underutilizes
Network Bandwidth

 To overcome this drawback, variants of TCP Congestion
Control Algorithm such as Scalable TCP, HTCP, BIC,
CUBIC TCP developed

 Multiple TCP connections increase throughput
 However, concurrent connections compete for

bandwidth resulting in unfair sharing
− On loss, all flows may reduce transmission

 Congestion information needs to be shared among
concurrent connections such as “Fair TCP”

Traffic Shaping or Rate Limiting Critical for
iSCSI Throughput

Uncontrolled Congestion

Managed Congestion for Internet

Storage Traffic
Mgmt (shaped)

100%

Offered Load

TCP Background
 Peer to peer protocol

 Intelligent end devices and “dumb” network
 Has to estimate bandwidth avlbl

 No setup before transmission
 Control-theoretic model

− Acks “clock” the protocol
− Exponential increase till a threshold
− Additive increase till loss, then multiplicative decrease

 Losses indicate lack of capacity in network
− Necessary for discovering capacity

 For each connection, TCP maintains a congestion
window, that limits total number of unack'ed packets that
may be in transit end-to-end.

TCP Optimizations
“Self-clocking” protocols such as TCP need to keep pipeline full
 Many concurrent sessions
 Sending large data units (large TCP window size)

As number of sessions increases, buffer shifted from WAN to
TCP sender's transmit buffers

WAN “BUFFER”

20 19

 Ack
1

9

Ack
8

 Round Trip Time

WAN Buffer Size = RTT * bandwidth

TCP Throughput proportional to MSS/(RTT*sqrt(p))
where p: random pkt loss prob; MSS: max seg size

Achieving High TCP Performance

Large window sizes

Jumbo Frames
 Matches Ethernet frame size with TCP seg size

SACK: Selective Acknowledgements
 Useful when medium is dropping many packets

Traffic shaping or rate limiting:
 Critical to avoid packet drops

− Takes a long time to recover in high RTT env
 TCP retransmit mechanisms should not be relied upon for

PERSISTENT packet drops

TCP Window Scaling and Seq wrapping: RFC 1323

TCP Reno

 Thruput determined by
 min of
 Congestion window
 Receiver window
 Sender window

 Assume last 2 large

Over high bandwidth
Links, changes in
cwnd results in under
utilization of link
bandwidth.

TCP Reno

 Uses Additive Increase Multiplicative Decrease
(AIMD) Congestion Control Approach
 ACK : newcwnd= oldcwnd + α/ oldcwnd

 LOSS: newcwnd= β *oldcwnd

 For Reno, α = 1, β = 0.5

 With a 1 Gbps link, 1500 bytes packet size, 100 ms
RTT, Reno takes 14 minutes to achieve full
utilization following a loss event

Scalable TCP

 Modification of TCP Reno Congestion
Control Algorithm, uses MIMD Approach
 ACK : newcwnd= oldcwnd + α

 LOSS: newcwnd= β *oldcwnd

 Here, α = 0.01, β = 0.875

Reference : Tom Kelly, Scalable TCP : Improving Perf. In highspeed Wide Area Networks

HTCP
 Modification of TCP Reno
 Employs different alg to incr congestion window

 Multiplicative Decrease Factor β adaptive
 Also, Additive Increment α:

 α = αL if Δ ≤ ΔL

 α = αH(Δ) if Δ > ΔL where

αL is additive increment in low speed mode

αH is additive increment in high speed mode

Δ is the time elapsed since last congestion event

ΔL is the Threshold

Reference : D Leith, HTCP: TCP for High speed and Long distance networks

Binary Increase Congestion (BIC) TCP
Modification of TCP Reno (in Linux kernel 2.6.8 -.18)
 Consists of two parts

 Binary Search Increase
 Additive Increase

 Given the minimum and maximum window sizes, set the target
window to midway between the two

 If no losses are detected, the current window size becomes the
new Minimum and a new target is calculated

 If losses occur, then current window size is the new Maximum and
reduced window size is the new minimum

More aggressive initially, gets less aggressive as the window size
approaches the target.

Reference : I Rhee, Binary Increase Congestion Control for fast long distance networks

 Additive Increase

 If difference between current window and target large,
then direct increase to target may stress network

 Define a threshold, SMax. If difference is greater than SMax

increase by SMax until difference reduces to less than SMax.

TCP CUBIC

 a less aggressive and more systematic derivative of BIC
 window size a cubic function of time since last loss event
 performs well in wired networks with large bandwidth-delay

product.
 in Linux kernel since 2.6.19

RDMA

 RDMA over TCP: zero copy
 Standardised as iWARP (Internet Wide Area RDMA

Protocol
 TCP Offload Engines (ToE): zero copy arch mostly

proprietary
 iSCSI Extension for RDMA (iSER)

 Eliminates TCP processing overhead from RDMA-
capable NICs

 SCSI over RDMA (SRP)

Infiniband

 Proposed as system to system interconnect
 Widely used in HPC due to high speed

 40Gbps common
 Has multiple lanes in each connection with QoS

 Also, failover
 Used as storage interconnect

 Can use RDMA over Infiniband
 No std API in specification:

 only a set of "verbs": functions that must exist.

Summary

 iSCSI becoming popular but 10GEth has yet
not become widespread
 FCoE evolutionary path

 RDMA stds critical
 Infiniband strong in HPC environments and

being used for storage also

	Storage Systems
	FC vs 10GEth
	 iSCSI (Internet SCSI)
	 iSCSI Configurations
	 iSCSI
	 iSCSI Phases
	iSCSI Flow Control
	Slide 8
	TCP Background
	Slide 10
	Achieving High TCP Performance
	TCP Reno
	Slide 13
	Scalable TCP
	HTCP
	Binary Increase Congestion (BIC) TCP
	 Additive Increase
	TCP CUBIC
	RDMA
	Infiniband
	Summary

