

Storage Systems

NPTEL Course

Jan 2012
(Lecture 41)

K. Gopinath

Indian Institute of Science

Lease Mgmt

 designed to minimize mgmt overhead at master
 a lease initially times out at 60 secs.

 primary can request and typ receive extensions indef
 msgs piggybacked on heartbeats

 master may need to revoke a lease before expiry
 eg. disable mutations on a file that is being renamed

 even if master loses comm with a primary, safe to grant a
new lease to another replica after old lease expires.

Record Appends
 client pushes data to all replicas of last chunk of file
 client sends request to primary
 primary checks if append exceeds max size (64 MB)

 if so, pad chunk to max size
 tell secondaries to do same, and reply to client to retry

on next chunk
 if record fits within max size (common case), primary

appends data to its replica, tells secondaries to write data at
its own offset, reports success to client

Record Appends (contd)
 if record append fails at any replica, client retries op

 replicas of same chunk may contain different data possibly
including duplicates of the same record in whole or in part.

 GFS does not guarantee that all replicas are bytewise identical
 only guarantees that data written at least once as an atomic unit

− for op to report success, data must have been written at
same offset on all replicas of some chunk

− all replicas at least as long as the end of record and any
future record will be assigned a higher offset or a different
chunk even if a different replica later becomes primary

 regions in which successful record append ops have written their
data defined (hence consistent), whereas intervening regions
inconsistent (hence undefined)

Snapshots
 make a copy of a file or a dir tree “instantly”

 minimize interruptions of ongoing mutations
 std COW: when master receives a snapshot request,

revokes any outstanding leases on chunks in files to be
snapshot
 any later write to these chunks: first find lease holder

from master
 master can now create a new copy of chunk

 master logs op to disk; applies this log record to its in-
memory state by duplicating metadata of source file or dir
tree
 newly created snapshot files point to same chunks as

source files

Snapshots (contd)
 new client write to a chunk C (after snapshot)

 sends request to master to find current lease holder
 master notices ref count of C>1

− defers replying to client req and instead picks a
new chunk handle C'

− asks each chunkserver with curr replica of C to
create a new chunk called C’

 data copied locally, not over netw (disks 3x 100
Mb Eth)

− request handling now same: master grants one
replica a lease on C’ and replies to client, client
writes chunk normally

Master Operation
 executes all namespace ops
 manages chunk replicas:

 makes placement decisions, creates new chunks and
hence replicas

 coordinates various system-wide activities to keep
chunks fully replicated

 balance load across all chunkservers
 reclaim unused storage

 Many ops take long time: eg. snapshot op has to revoke
chunkserver leases on all chunks covered by it
 Allow multiple ops active and use locks over regions

of namespace to ensure proper serialization

GFS dir ops
 GFS does not have a per-directory data structure that lists all the

files in that directory
 instead: lookup table mapping full pathnames to metadata
 With prefix compression, efficient in memory

 No hard or symbolic links
 Each node in namespace tree (absolute file/dir name) has an

associated read-write lock
 Each master op acquires a set of locks before it runs

 op on /d1/d2/.../dn/leaf: acquire read-locks on dir names /d1,
/d1/d2, ..., /d1/d2/.../dn, and

 either a read lock or a write lock on full pn /d1/d2/.../dn/leaf
 allows concurrent mutations in same dir.

− multiple file creations concurrent in same dir: each acquires a
read lock on the directory name and a write lock on the file
name

GFS dir ops (contd)
• Eg: prevent a file /home/user/foo from being created while

/home/user is being snapshotted to /save/user
• snapshot creat snapshot
• /home R R /save R
• user W R user W
• foo W
• Since /home/user is locked R or W, only one of them can proceed

• Related HSM Problem: file being migrated in by perpetrator (locks

inode a)
 victim: looks up file

 parent of dir locked while look up goes on
 but file locked by perpetrator, so hangs during migration in

 next victim: looks up parent of dir!

GFS Locks

 read-write lock objects allocated lazily
 to handle large namespace with many nodes
 deleted once not in use
 locks taken in a consistent total order to prevent

deadlock
− ordered first by level in the namespace tree
− next, lexicographically within the same level

Replica Placement

 hundreds of chunkservers and clients spread across many
machine racks crossing many netw switches
 also, bw into or out of a rack may be less than aggregate

bw of all machines within rack
 need to maximize

 data reliability and availability
− spread chunk replicas across racks
− data survives even if an entire rack damaged or offline

 network bandwidth utilization
− read traffic for a chunk: aggregate bw of multiple racks
− write traffic: data to multiple racks, a tradeoff

Chunk Creation, Re-replication, Rebalancing

 master creates a chunk: choose loc for initial empty replicas
 place new replicas on chunkservers with below-average

disk space utilization
 limit number of “recent” creations on each chunkserver

− creation cheap but heavy write traffic soon
− append-once-read-many workload typ becomes read-

only once they have been completely written
− spread replicas of a chunk across racks

 master re-replicates a chunk: # avlbl replicas below reqd
 some policies: boost priority of any chunk blocking client

progress, or lost too many replicas, limit # of active repls in
cluster and in each chunkserver; chunkserver limits repl
bandwidth by throttling read reqs to source chunkserver

 master rebalances replicas

Garbage collection
 files deleted gc'ed later on regular fs scans

 till gc, avlbl under a hidden name
 eager deletion problematic (eg. loss of delete msgs)

− write errors create garbage chunks unknown to master
 similar regular scan of chunk namespace:

 master identifies orphaned chunks (not reachable from any
file) and erases its metadata

 distributed garbage collection a hard problem but
 file-to-chunk mappings only by master
 any chunk replica is a Linux file in designated dir on each

chunkserver
− any such replica not known to master is garbage

Stale Replica Detection
 replica may become stale if chunkserver fails and misses

mutations
 master maintains a chunk version number to distinguish

between up-to-date and stale replicas.
 when master grants a new lease on a chunk, incr chunk

version # and informs up-to-date replicas
 master and these replicas all log new version #

− before any client notified and write to chunk.
 if a replica is not avlbl, its chunk version number not incr

 master detects stale replica when chunkserver restarts and
reports its set of chunks and associated version#

 if master sees a version # greater than its #, master assumes
that it failed when granting lease and so takes higher version
to be up-to-date.

  High Availability
 Fast recovery:

− do not distinguish betw normal and abnormal termination
− servers routinely shut down just by killing process
− clients and other servers that time out on their requests: reconnect to

restarted server, and retry
 Chunk replication
 Master Replication:

− Master's op log and checkpoints replicated on multiple machines
− A mutation to state committed only after its log record flushed to disk

locally and on all master replicas.
 But one master process remains in charge of all mutations as well as

background activities such as garbage collection that change system
internally

− When master fails, restart almost instant.
 if its machine or disk fails, monitoring infrastructure outside GFS

starts a new master process elsewhere with replicated operation log
− Shadows “read only” servers; try to track master by applying log ops

Fault Tolerance and Diagnosis

(contd)
 Data Integrity

 32bit checksums in memory and logged persistently,
separate from user data

 impractical to detect corruption by comparing replicas
across chunkservers

− divergent replicas legal (esp with atomic record
append

− each chunkserver must independently verify
integrity of its own copy by maintaining checksums

 during idle periods, chunkservers scan and verify
contents of inactive chunks

 Diagnostic tools
 detailed diagnostic (asynch) logging

Summary
 First really large FS

 Reliable
 Scalable
 Available

 No POSIX...

	Storage Systems
	Lease Mgmt
	Record Appends
	Record Appends (contd)
	Snapshots
	Snapshots (contd)
	Master Operation
	GFS dir ops
	GFS dir ops (contd)
	GFS Locks
	Replica Placement
	Chunk Creation, Re-replication, Rebalancing
	Garbage collection
	Stale Replica Detection
	
	(contd)
	Summary

