

Storage Systems

NPTEL Course

Jan 2012
(Lecture 15)

K. Gopinath

Indian Institute of Science

Indus Script

• Yet un-deciphered: meaning across time not yet accomplished
• Compare with hieroglyphics (Egyptian Rosetta stone): three scripts

side by side

• What is the problem? Not enough contextual info:
● can see the script (human "readable")
● no mapping between symbols and phonemes
● need interpretation of sequences of symbols
● a problem in archaeology, history, society,...
●

Vedas
• Transmitted across atleast 3500-5000 years without differing versions

– Including exact pronunciation!
– “UNESCO proclaimed the tradition of Vedic chant a Masterpiece of the Oral

and Intangible Heritage of Humanity on November 7, 2003”
• What "technology" used? Redundancy!
• Various "pathas" of Samhita text: can recover from a corrupted text due to

added redundancy: RAID-like! (Redundant Array of Indep Disks)

 Pada-patha: each word in its separate form
 Krama-patha: connects a word in pairs
 ABCD becomes AB BC CD DE... (“2-mirroring”): 2 copies

 Jata-patha: ABBAAB (“3-mirroring”): 3 copies of A, B, ...

a Ghana-patha (ABBA ABCCBA ABC BCCB BCDDCB BCD...)(“10x”)
– Metrical (similar to checksums!) & Musical

 "Information dispersal"
– Human Reproduction! (Oral transmission)

 Use efficient “virtualizers”!

1,2,2,1,1,2,3,3,2,1,1,2,3.

From sanskrit.safire.com
1,2,3

From
sanskrit.safire.com/KYV2265.html

What is needed?
from Avoiding Technological Quicksand: Finding a Viable Technical

Foundation for Digital Preservation by Jeff Rothenberg January 1998

What is needed? (contd)
from Avoiding Technological Quicksand: Finding a Viable

Technical Foundation for Digital Preservation by Jeff Rothenberg

January 1998

Film Archival
 Data preservation requires active energy to move it from one

format to the next new generation format
− needs to be done every few years
− cost is so high that many movies shot digitally stored in

analog form as a fallback in case the migration
unsuccessful

 Storing a digital master record of a movie costs about $12,514
a year, versus $1,059 to archive a conventional film master in
a salt/limestone mine
− US Academy of Motion Picture Arts & Sciences after a

yearlong study of digital archiving in the movie business
(2007)

DNA storage (2013)
 Longevity of Data problem:

− Hardware changes all the time!

− But not DNA structure!

− Very compact too
 2013: Use ternary encoding (A, T, C with G for breaking long seqs of A/T/C as

they get missequenced often)

− For addl redundancy: 100-bases-long DNA inserts staggered by 25 bases so
that consecutive fragments have a 75-base overlap

− storage density about 2.2 Petabytes per gram
 enough DNA to recover the data about ten additional times

Towards practical, high-capacity, low-maintenance information storage in synthesized
DNA (Nick Goldman et al Nature'13)

Insurable Storage

 Digital Documents as insurable property
− Provide economic incentives for storage

service producers and consumers to jointly
create a marketplace for a diversity of
differentially-priced services

 Insurable Storage Services

Types of Storage
 “Mobile” Storage

− Memory Stick, Camera, Smart Phone, Laptop
 Personal Storage

− PC, “Home” RAID systems, “Home” NFS server
 Dept/Organizational Storage

− NFS/CIFS server
 Cloud Storage
 Highly Available Storage
 Parallel Storage
 Web-scale storage
 Secure Storage
 Attribute-based Storage (“QoS”)
 Long term storage

− DNA storage!?

Conclusion

 Wide variety of storage designs
− Each requires different combinations of sw/hw

 Many are still in research stage...

Interfaces to Storage
 Note that Unix tries to treat everything as a file!

− Hence some “file” ops might not have anything with storage ops
 Libc

− <stdio.h> in C/Unix but may be arbitrary (for eg, S3 or in parallel user FS)
− 3 types of buffering:

 unbuffered, block buffered, and line buffered (default block)
− FILE structure: a file descriptor, current stream position, eof/error indicators, a

pointer to the stream's buffer, if applicable
− May be able to redefine some functions or load a different shared obj
− User level fs vs kernel

 System call level: POSIX.1-2008 now
− Inode (metadata about file)
− Filesystems may be loadable at runtime (except that contains root image)

 Device Driver
− Typically loadable at runtime

 Device
 Implications for new models of security/perf...

− Encryption
− Mandatory access control/Info flow models
− Compression

libc
• File access
 fopen opens a file
 freopen opens a different file with an existing stream
 fflush synchronizes an output stream with the actual file
 fclose closes a file
 setvbuf sets the buffer and its size for a file stream

− setbuf sets the buffer for a file stream
 fwide switches a file stream between wide character I/O and narrow

Direct input/output
 fread reads from a file
 fwrite writes to a file

libc

• Unformatted input/output
 fgetc getc fgetwc getwc reads a byte/wchar_t from a file stream
 fgets fgetws reads a byte/wchar_t line from a file stream
 fputc putc fputwc putwc writes a byte/wchar_t to a file stream
 fputs fputws writes a byte/wchar_t string to a file stream
 getchar getwchar reads a byte/wchar_t from stdin
 gets reads a byte string from stdin (deprecated in C99, obsoleted in

C11)
 putchar putwchar writes a byte/wchar_t to stdout
 puts writes a byte string to stdout
 ungetc ungetwc puts a byte/wchar_t back into a file stream

libc
• Formatted input/output
 scanf fscanf sscanf wscanf fwscanf swscanf reads formatted

byte/wchar_t input from stdin, a file stream or a buffer
 vscanf vfscanf vsscanf vwscanf vfwscanf vswscanf reads formatted

input byte/wchar_t from stdin, a file stream or a buffer using variable
argument list

 printf fprintf sprintf snprintf wprintf fwprintf swprintf prints formatted
byte/wchar_t output to stdout, a file stream or a buffer

 vprintf vfprintf vsprintf vsnprintf vwprintf vfwprintf vswprintf prints
formatted byte/wchar_t output to stdout, a file stream, or a buffer
using variable argument list

 perror writes a description of the current error to stderr

libc
• File positioning
 ftell returns the current file

position indicator
 fgetpos gets the file position

indicator
 fseek moves file position indicator

to a specific location in a file
 fsetpos moves file position indicator

to a specific location in a file
 rewind moves the file position

indicator to the beginning in a file

Error handling

 clearerr clears errors

 feof checks for the end-of-file

 ferror checks for a file error

Operations on files

 remove erases a file

 rename renames a file

 tmpfile returns a pointer to a
temporary file

 tmpnam returns a unique filename

A Common System Interface: Posix 1
− access Tests for file accessibility
− chdir Changes current working directory
− chmod Changes file mode
− chown Changes owner and/or group of a

file
− close Closes a file
− closedir Ends directory read operation
− creat Creates a new file or rewrites

existing one
− dup Duplicates an open file descriptor
− dup2 Duplicates an open file descriptor
− execl Executes a file
− execle Executes a file
− execlp Executes a file
− execv Executes a file
− execve Executes a file
− execvp Executes a file
− _exit Terminates a process
− fcntl Manipulates an open file descriptor
− fdopen Opens a stream on a file descriptor
− fork Creates a process
− fpathconf Gets config variable for an open

file
− fstat Gets file status
− getcwd Gets current working directory

− link Creates a link to a file

− lseek Repositions read/write file offset

− mkdir Makes a directory

− mkfifo Makes a FIFO special file

− open Opens a file

− opendir Opens a directory

− pathconf Gets config variables for a path

− pipe Creates an interprocess channel

− read Reads from a file

− readdir Reads a directory

− rename Renames a file

− rewinddir Resets the readdir() pointer

− rmdir Removes a directory

− stat Gets information about a file

− umask Sets the file creation mask

− unlink Removes a directory entry

− utime Sets file access & modification times

− write Writes to a file

	Storage Systems
	Indus Script
	Vedas
	
	What is needed? from Avoiding Technological Quicksand: Finding a Viable Technical Foundation for Digital Preservation by Jeff Rothenberg January 1998
	What is needed? (contd) from Avoiding Technological Quicksand: Finding a Viable Technical Foundation for Digital Preservation by Jeff Rothenberg January 1998
	Film Archival
	DNA storage (2013)
	Insurable Storage
	Types of Storage
	Conclusion
	Interfaces to Storage
	libc
	Slide 14
	Slide 15
	Slide 16
	A Common System Interface: Posix 1

