

Storage Systems

NPTEL Course

Jan 2012
(Lecture 04)

K. Gopinath

Indian Institute of Science

Ext2 FS
(from Wikipedia)

 Google FS
(from Wikipedia)

Deep Storage Stack
 Various types of abstractions in stack

 Device
 Block
 File
 Application level (buffering in libc, for eg.)

 Finer sublayers in each layer
 SCSI has upper (device-specific), mid (protocol specific)

and lower (physical communication layer)
 For scalability, network stack part of storage stack
 A good part of stack in kernel

 Increasingly, storage stack migrating out of kernel with
separation of processing and storage (eg. GFS)

Storage Characteristics
 Concurrency arises naturally

 Wide disparity in speeds of memory and storage
 Have to mask slowness of storage
 Make processing and storage go at their own rates and

use interrupts (or sometimes polling) to signal completion
of slow storage operations

 Historic reason why operating systems developed
 Storage has to be typically persistent over time

 Amount increases typically with time
 But not all imp over time; keep imp part in fast storage?

 “Caching” and “tiering” arise naturally
 Have to choose 2 of 3: speed, capacity or cost

Storage Performance
 Storage often slowest component

 Cache!
 Within single device, efficiency by:

 merging requests
 scheduling requests in an order that is best wrt device

(out-of-order execution commonplace)
− Higher level software has to work around this aspect
− If a particular order required, left to “user”
− Semantically not much guaranteed

 Asynchronous processing often used: aio
 Parallelism across multiple devices/threads:

 Multiple Heads (Disks)
 Multiple chips (SSDs)

Optimization Framework
 Due to slowness of devices, optimization of accesses

important
 eg. what to cache, what to prefetch?
 But usage patterns typically not known a priori
 Big difference in performance whether sequential access

or random
 System slow if too many on demand migrations from

slow to fast tier of storage (latency delays)
 Often, opts. critical and override “semantics”

 Out-of-order processing typical
 Complex higher-level software

 Learning on the job important
 Simple and robust methods useful

Storage Protocols

 Interrupt driven rather than wait/poll
 On completion, interrupt CPU or HBA
 To avoid interrupt overhead, HBA or similar agents

− Helps Segmentation and Reassembly (SAR)
 Split-phase transactions common

 for eg: on completion of (a long) seek, slave takes bus
 Protocol endpoints preferably “virtualizable”

 SCSI devices can be on an electrical bus, network or Internet
if physical layer handled correctly

− Protocols survive much longer
 Devices can have arbitrary structure as long as they speak

SCSI protocol
− Even big servers!

Summary
 Storage systems design has many ramifications

for the rest of the system
 Provide abstractions based on application

needs and devices
 Design needs to be sensitive to cost, devices,

manageability
 Introduce newer abstractions with time

− eg. key value stores
 Storage systems need to scale to support large

scale computing systems

	Storage Systems
	Ext2 FS (from Wikipedia)
	 Google FS (from Wikipedia)
	Deep Storage Stack
	Storage Characteristics
	Storage Performance
	Optimization Framework
	Storage Protocols
	Summary

