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GFS Probs 
 Design: High sustained bw more imp than low latency

 batch-oriented appls such as web crawling/indexing
 Reality now: Gmail or YouTube (~RT)

− developer base moved from MapReduce to interactive apps (using 
BigTable)

 SPOF (master) not a disaster for batch-oriented appls, but 
unacceptable for latency-sensitive appls, such as video serving

− Early: No automatic failover scenario if master crashes
 Manual restart (upto 1hour)

− Now: automatic failover but takes 10 min (early) to 10 secs (now)
− Write to 3 chunkservers: if one “slow”, limits to 5-10MB/s 

 Pullchunk: allocates new chunk, etc. : takes 10 secs + (for 
64MB) to a minute

 Extensive Qing in the design (for bulk perf) but Qing delay kills



  

More Probs
 Limited number of files (all metadata in master in memory!)

 64MB to 1MB?
 OK upto multiple 10's of TB. 
 With 10-100's of PB? 10GB-100's GB of mem.

 Single master a scanning bottleneck (recovery, etc)
 Metadata serving bottleneck with many Map/Reduce clients

 Scaling from 1000's of ops to 10000's and beyond
 Batch op does not allow for large-scale incremental 

processing using distributed transactions and notifications
 Freshness of web results 



  

Consistency Probs
 Clients push write until it succeeds

 Client failures cause indefinite state
 RecordAppend interface for multiple writers to append to 

a log concurrently
 Primary selects offset to write
 Primary can change and new offset taken

 RecordAppend does not offer any replay protection
 Some piece of data multiple times in the file or data in 

a different order
− multiple times in one chunk replica, but not 

necessarily in all 
 Read of file: data in different ways at different times
 At record level: records in different orders depending 

on which chunks read



  

Other probs 

 snapshot a chunk: to replace a replica, or whenever 
some chunkserver goes down and need to replace some 
of its files
 Actually cloning
 Difficult...



  

Solutions
 one master per cell to one master per data center

 put multiple GFS masters on top of a pool of 
chunkservers

 appl responsible for partitioning data across diff cells
 combine some number of underlying objects into larger 

files
 with quotas on both file counts and storage space: typ 

exhausted file count quota first
 new design point: 100 million files per master with 

100's of masters



  

Appl Workarounds

 Gmail uses a multihomed model: if one instance of a 
Gmail account not avlbl, move to another data center

 BigTable transaction log a big bottleneck for getting a txn 
logged

− two logs open at any one time
− write to one and if that gets stuck, write to other
− merge logs but only on replay

 or, use BigTable for any app with lots of small data items



  

BigTable
 a structured storage system with many key-value pairs and a 

schema
 For web indexing, Google Earth, etc.

 sparse, distributed, persistent multi-dimensional sorted map
 map indexed by a row key (upto 64KB, typ 10-100B), 

column key, and a timestamp: each value in map an 
uninterpreted array of bytes

                (row:string, column:string, time:int64) → string
− Eg: URLs: row keys, metadata categories of web 

pages: column names,  contents of web pages: 
contents: column, timestamps when fetched

 data in lexicographic order by row key
 every read or write of data under a single row key is atomic 

(regardless of the number of different columns being read or 
written in the row)



  

BigTable Design
 Not a full relational data model

 provides clients with a simple data model that 
supports dynamic control over data layout and format

 allows clients to reason about the locality properties of 
the data represented in the underlying storage 

− Clients can control locality of their data through 
careful choices in their schemas

 Data indexed using row and column names that can be 
arbitrary strings

 Treats data as uninterpreted strings, although clients 
often serialize various forms of structured and semi-
structured data into these strings 

 Bigtable schema parameters let clients dynamically 
control whether to serve data out of memory or from disk



  

Design (contd)
 Row range for a table dynamically partitioned. 

 Each row range a tablet: unit of distribution and load 
balancing

 reads of short row ranges efficient: typically require 
comm with only a small number of machines

 Clients can select their row keys for good locality of data 
accesses
 For storing Web pages, pages in the same domain 

grouped together into contiguous rows by reversing 
the hostname components of the URLs



  

Column Families

 Column keys grouped into sets (column families):  
family:qualifier
 basic unit of access control 
 All data stored in a column family typ same type (eg. 

language) 
− compress data in the same column family together
− number of distinct column families small (100's) but a 

table may have an unbounded number of columns
− families rarely change during operation



  

BigTable, GFS and Chubby
 GFS provides only two basic data structures: logs and 

SSTables (Sorted String Tables)
− majority of data in protocol buffers (data description 

lang) in these two structures.
 SSTables are immutable, while BigTable provides 

mutable key value storage
 Stores incoming data into transaction log files. 
 “compacted” into a series of SSTables, which in turn 

get compacted together over time (~LFS)
− Sort and index

 Uses a highly-available and persistent distributed lock 
service called Chubby that uses Paxos
 5 active replicas, with one elected master to actively 

serve requests



  

API 

 Creating and deleting tables and column families
 Changing cluster, table, and column family metadata, 

such as access control rights
 Client applications can 

 write or delete values in Bigtable
 look up values from individual rows 
 iterate over a subset of the data in a table



  

Use cases
 Supports single-row transactions to perform atomic RMW 

sequences on data stored under a single row key
 No support for general transactions across row keys
 Bigtable allows cells to be used as integer counters

 Supports execution of client-supplied scripts in addr spaces 
of servers
 Allows data transformation, filtering based on arbitrary 

exprs, and summarization via operators but no write 
back into BigTable

 Both an input source and as an output target for 
MapReduce jobs



  

BigTable Impl
 3 main components: a library that is linked into every client, 

one master server, and many tablet servers
 tablet servers dynamically added (or removed) from a 

cluster to accommodate changes in workloads.
 master responsible for 

 assigning tablets to tablet servers
 detecting addition and expiration of tablet servers
 balancing tablet-server load
 garbage collection of files in GFS. 
 also handles schema changes such as table and column 

family creations
 persistent state of a tablet stored in GFS thru memtable
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