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Deep Storage Stack
 Various types of abstractions in stack

 Device 
 Block
 File
 Application level (buffering in libc, for eg.)

 Finer sublayers in each layer
 SCSI has upper (device-specific), mid (protocol specific) 

and lower (physical communication layer)
 For scalability, network stack part of storage stack
 A good part of stack in kernel

 Increasingly, storage stack migrating out of kernel with 
separation of processing and storage (eg. GFS)



  

Storage Characteristics
 Concurrency arises naturally

 Wide disparity in speeds of memory and storage
 Have to mask slowness of storage
 Make processing and storage go at their own rates and 

use interrupts (or sometimes polling) to signal completion 
of slow storage operations

 Historic reason why operating systems developed
 Storage has to be typically persistent over time

 Amount increases typically with time
 But not all imp over time; keep imp part in fast storage?

 “Caching” and “tiering” arise naturally
 Have to choose 2 of 3: speed, capacity or cost



  

Storage Performance
 Storage often slowest component

 Cache!
 Within single device, efficiency by: 

 merging requests
 scheduling requests in an order that is best wrt device 

(out-of-order execution commonplace)
− Higher level software has to work around this aspect
− If a particular order required, left to “user”
− Semantically not much guaranteed  

 Asynchronous processing often used: aio
 Parallelism across multiple devices/threads:

 Multiple Heads (Disks)
 Multiple chips (SSDs)



  

Optimization Framework 
 Due to slowness of devices, optimization of accesses 

important
 eg. what to cache, what to prefetch?
 But usage patterns typically not known a priori
 Big difference in performance whether sequential access 

or random
 System slow if too many on demand migrations from 

slow to fast tier of storage (latency delays)
 Often, opts. critical and override “semantics”

 Out-of-order processing typical
 Complex higher-level software

 Learning on the job important
 Simple and robust methods useful



  

Storage Protocols

 Interrupt driven rather than wait/poll
 On completion, interrupt CPU or HBA
 To avoid interrupt overhead, HBA or similar agents

− Helps Segmentation and Reassembly (SAR)
 Split-phase transactions common

 for eg: on completion of (a long) seek, slave takes bus
 Protocol endpoints preferably “virtualizable”

 SCSI devices can be on an electrical bus, network or Internet 
if physical layer handled correctly

− Protocols survive much longer
 Devices can have arbitrary structure as long as they speak 

SCSI protocol
− Even big servers!  



  

Summary
 Storage systems design has many ramifications 

for the rest of the system 
 Provide abstractions based on application 

needs and devices
 Design needs to be sensitive to cost, devices, 

manageability 
 Introduce newer abstractions with time

− eg. key value stores 
 Storage systems need to scale to support large 

scale computing systems
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