

Storage Systems

NPTEL Course

Jan 2012
(Lecture 42)

K. Gopinath

Indian Institute of Science

GFS Probs
 Design: High sustained bw more imp than low latency

 batch-oriented appls such as web crawling/indexing
 Reality now: Gmail or YouTube (~RT)

− developer base moved from MapReduce to interactive apps (using
BigTable)

 SPOF (master) not a disaster for batch-oriented appls, but
unacceptable for latency-sensitive appls, such as video serving

− Early: No automatic failover scenario if master crashes
 Manual restart (upto 1hour)

− Now: automatic failover but takes 10 min (early) to 10 secs (now)
− Write to 3 chunkservers: if one “slow”, limits to 5-10MB/s

 Pullchunk: allocates new chunk, etc. : takes 10 secs + (for
64MB) to a minute

 Extensive Qing in the design (for bulk perf) but Qing delay kills

More Probs
 Limited number of files (all metadata in master in memory!)

 64MB to 1MB?
 OK upto multiple 10's of TB.
 With 10-100's of PB? 10GB-100's GB of mem.

 Single master a scanning bottleneck (recovery, etc)
 Metadata serving bottleneck with many Map/Reduce clients

 Scaling from 1000's of ops to 10000's and beyond
 Batch op does not allow for large-scale incremental

processing using distributed transactions and notifications
 Freshness of web results

Consistency Probs
 Clients push write until it succeeds

 Client failures cause indefinite state
 RecordAppend interface for multiple writers to append to

a log concurrently
 Primary selects offset to write
 Primary can change and new offset taken

 RecordAppend does not offer any replay protection
 Some piece of data multiple times in the file or data in

a different order
− multiple times in one chunk replica, but not

necessarily in all
 Read of file: data in different ways at different times
 At record level: records in different orders depending

on which chunks read

Other probs

 snapshot a chunk: to replace a replica, or whenever
some chunkserver goes down and need to replace some
of its files
 Actually cloning
 Difficult...

Solutions
 one master per cell to one master per data center

 put multiple GFS masters on top of a pool of
chunkservers

 appl responsible for partitioning data across diff cells
 combine some number of underlying objects into larger

files
 with quotas on both file counts and storage space: typ

exhausted file count quota first
 new design point: 100 million files per master with

100's of masters

Appl Workarounds

 Gmail uses a multihomed model: if one instance of a
Gmail account not avlbl, move to another data center

 BigTable transaction log a big bottleneck for getting a txn
logged

− two logs open at any one time
− write to one and if that gets stuck, write to other
− merge logs but only on replay

 or, use BigTable for any app with lots of small data items

BigTable
 a structured storage system with many key-value pairs and a

schema
 For web indexing, Google Earth, etc.

 sparse, distributed, persistent multi-dimensional sorted map
 map indexed by a row key (upto 64KB, typ 10-100B),

column key, and a timestamp: each value in map an
uninterpreted array of bytes

 (row:string, column:string, time:int64) → string
− Eg: URLs: row keys, metadata categories of web

pages: column names, contents of web pages:
contents: column, timestamps when fetched

 data in lexicographic order by row key
 every read or write of data under a single row key is atomic

(regardless of the number of different columns being read or
written in the row)

BigTable Design
 Not a full relational data model

 provides clients with a simple data model that
supports dynamic control over data layout and format

 allows clients to reason about the locality properties of
the data represented in the underlying storage

− Clients can control locality of their data through
careful choices in their schemas

 Data indexed using row and column names that can be
arbitrary strings

 Treats data as uninterpreted strings, although clients
often serialize various forms of structured and semi-
structured data into these strings

 Bigtable schema parameters let clients dynamically
control whether to serve data out of memory or from disk

Design (contd)
 Row range for a table dynamically partitioned.

 Each row range a tablet: unit of distribution and load
balancing

 reads of short row ranges efficient: typically require
comm with only a small number of machines

 Clients can select their row keys for good locality of data
accesses
 For storing Web pages, pages in the same domain

grouped together into contiguous rows by reversing
the hostname components of the URLs

Column Families

 Column keys grouped into sets (column families):
family:qualifier
 basic unit of access control
 All data stored in a column family typ same type (eg.

language)
− compress data in the same column family together
− number of distinct column families small (100's) but a

table may have an unbounded number of columns
− families rarely change during operation

BigTable, GFS and Chubby
 GFS provides only two basic data structures: logs and

SSTables (Sorted String Tables)
− majority of data in protocol buffers (data description

lang) in these two structures.
 SSTables are immutable, while BigTable provides

mutable key value storage
 Stores incoming data into transaction log files.
 “compacted” into a series of SSTables, which in turn

get compacted together over time (~LFS)
− Sort and index

 Uses a highly-available and persistent distributed lock
service called Chubby that uses Paxos
 5 active replicas, with one elected master to actively

serve requests

API

 Creating and deleting tables and column families
 Changing cluster, table, and column family metadata,

such as access control rights
 Client applications can

 write or delete values in Bigtable
 look up values from individual rows
 iterate over a subset of the data in a table

Use cases
 Supports single-row transactions to perform atomic RMW

sequences on data stored under a single row key
 No support for general transactions across row keys
 Bigtable allows cells to be used as integer counters

 Supports execution of client-supplied scripts in addr spaces
of servers
 Allows data transformation, filtering based on arbitrary

exprs, and summarization via operators but no write
back into BigTable

 Both an input source and as an output target for
MapReduce jobs

BigTable Impl
 3 main components: a library that is linked into every client,

one master server, and many tablet servers
 tablet servers dynamically added (or removed) from a

cluster to accommodate changes in workloads.
 master responsible for

 assigning tablets to tablet servers
 detecting addition and expiration of tablet servers
 balancing tablet-server load
 garbage collection of files in GFS.
 also handles schema changes such as table and column

family creations
 persistent state of a tablet stored in GFS thru memtable

	Storage Systems
	GFS Probs
	More Probs
	Consistency Probs
	Other probs
	Solutions
	Appl Workarounds
	BigTable
	BigTable Design
	Design (contd)
	Column Families
	BigTable, GFS and Chubby
	API
	Use cases
	BigTable Impl

