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Google File System
 Non-Posix scalable distr file system for large distr data-

intensive applications
 performance, scalability, reliability and availability
 high aggregate perf to a large number of clients

− sustained bandwidth more important than low latency
 High fault tolerance to allow inexpensive commodity HW

 component failures norm rather than exception
 appl/OS bugs, human errors + failures of disks, memory, 

connectors, networking, and power supplies.
 constant monitoring, error detection, fault tolerance, and 

automatic recovery integral in the design



  

GFS Consistency Mgmt
 Relaxed model
 File namespace ops (e.g., file creation) atomic

 exclusively by master
 namespace locking guarantees atomicity and correctness 
 master’s op log defines a global total order of these ops

 Mutations: op that changes contents or metadata of a chunk 
− writes or record appends

 write: data written at an appl-specified file offset. 
 record append: data appended atomically at least once even in spite of 

concurrent mutations, but at an offset of GFS’s choosing
− offset returned to client and marks beginning of a defined region that 

contains record. 
− GFS may insert padding or record duplicates in between



  

GFS Mutations
 state of a file region after a data mutation depends on the type of mutation

 success/fail? concurrent? 
 a file region consistent if all clients will always see same data, regardless of 

which replicas they read from
 a region defined after a file data mutation if it is consistent and clients will see 

what the mutation writes in its entirety
 when a mutation succeeds without interference from concurrent writers, 

region defined and consistent
− all clients will always see what the mutation has written

 concurrent successful mutations leave region undefined but consistent
 all clients see the same data, but it may not reflect what any one 

mutation has written. 
 typically, fragments from multiple mutations. 

 a failed mutation makes region inconsistent/ undefined 
 different clients may see different data at different times

 applications can distinguish defined regions from undefined



  

GFS File Consistency Model
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Mutations
 After a sequence of successful mutations, mutated file region guaranteed to be defined and 

contain data written by last mutation 
 apply mutations to a chunk in same order on all its replicas 
 use chunk version numbers to detect any replica that has become stale because it has 

missed mutations while its chunkserver was down 
− Stale replicas never involved in a mutation or given to clients that ask master for 

chunk locs 
− Garbage collected asap

 As a client caches chunk locs, may read from a stale replica
 window limited by cache entry’s timeout and next open of file, which purges from the 

cache all chunk info for that file
 most files append-only: a stale replica usually returns a premature end of chunk rather 

than outdated data. 
− when a reader retries and contacts the master, it will imm get current chunk locs

 component failures can corrupt or destroy data. 
 identify failed chunkservers by heartbeats; detect data corruption by checksumming

− data restored from valid replicas asap (typically within minutes)
− chunk lost irreversibly only if all its replicas are lost

 data unavailable, not corrupted: appls receive clear errors, not corrupt data



  

Appl Design with GFS
 rely on appends rather than overwrites, checkpointing, and writing self-validating, self-

identifying records.
 typical use: a writer generates a file from beginning to end and atomically renames file to 

a permanent name after writing all data
− appending more efficient and resilient to appl failures than random writes
− or, many writers concurrently append to a file for merged results or as a producer-

consumer queue. 
 record append’s “append-at-least-once” preserves each writer’s output
 readers identify/discard extra padding & record frags using checksums.
 occasional duplicates and non-idempotent ops: readers ignore using unique ids 

in records, needed to name corresp appl entities such as web docs
 or, periodically checkpoints how much has been successfully written

− checkpointing allows writers to restart incrementally and keeps readers from 
processing successfully written file data that is still incomplete from appl’s pov 

 checkpoints can include appl level checksums
 readers verify and process only file region up to last checkpoint, which is known to be in 

the defined state
 semantics of record I/O (except duplicate removal) in library code linked to appls 
 simpler approach: avoids consistency and concurrency issues

 no DLM needed with record append



  

Leases and Mutation Order
 each mutation performed at all chunk’s replicas

 large writes/straddling chunks broken up by client code
 use leases to maintain a consistent mutation order across replicas. 
 master grants a chunk lease to one replica (primary) and chunk locs

 cached by client
 client pushes data to all replicas (cached), acked by all

 decouple data flow (pipelined) from control flow to improve perf by scheduling 
expensive data flow based on network topology regardless of which chunkserver is 
primary

 primary picks a serial order for all mutations to chunk
 all replicas follow this order when applying mutations

 error: write may have succeeded at primary and some subset of secondary replicas
 modified region left in an inconsistent state
 client code handles such errors by retrying failed mutation: try resending data  

− no success: retry write from beginning
 file region may end up containing frags from different clients, but replicas identical 

 file region consistent but undefined state
 global mutation order defined by

 lease grant order chosen by master
 (within a lease) serial numbers assigned by primary



  

Write Control and Data Flow
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Lease Mgmt

 designed to minimize mgmt overhead at master
 a lease initially times out at 60 secs. 

 primary can request and typ receive extensions indef
 msgs piggybacked on heartbeats 

 master may need to revoke a lease before expiry
 eg. disable mutations on a file that is being renamed 

 even if master loses comm with a primary, safe to grant a 
new lease to another replica after old lease expires.
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