

Storage Systems

NPTEL Course

Jan 2012
(Lecture 32)

K. Gopinath

Indian Institute of Science

Consistency Mgmt
 In single-site storage systems

− Even a single site has many components
 upd due to link: ln /a/b/c /x/y

− 1: incr link count of c
− 2: add entry c in dir y

 what is the best way to do this in presence of crashes
and panics? 1,2 or 2,1?

− Ordered write, Logging/Journalling,
Transactions

− System level or appl level view wrt consistency
− Is there control over system after some failure?

 Yes: on a power failure or crash (panic)
− FS recovery on reboot

 No: have to prevent inconsistency
− Transactions, commit protocols

 In multi-site storage systems

2-phase commit
Transaction T initiated at site S_i and txn coord there C_i.
When subT completed at all sites (all sites inform C_i), start 2PC protocol

 Phase 1: C_i logs prepare(T); sends prepare(T) to all C_k
 C_k: on receiving prepare msg, either
 does not commit: logs no(T) and sends abort(T) to C_i
 commits: logs ready(T) with all changes to log onto stable storage

and sends ready(T) to C_i
 Phase 2: C_i receives response to prepare msg from all C_k or timeout:
 ready(T) from all: log commit(T); send same to all C_k (logged)
 else: log abort(T); send same to all C_k (logged)
 each C_k sends ack(T)

C_i receives acks from all: logs complete(T)
ready(T) from a site: will follow coord's order to commit or abort

Failures
 Detected by coord or sites reliably. At coord:
 a site S_k fails before ready(T): abort(T) assumed

 after : continue 2PC
 recovery at S_k : commit(T) present in log: redo(T)
 abort(T) : undo(T)
 ready(T) : consult C_i to find out T's status
 if C_i up, easy; redo/undo as nec
 if C_i down: check with other C_k
 repeat until someone up or C_i

 nothing! : undo(T)

 a coord C_i fails : check if any C_k has commit(T) : T committed
 abort(T) : T aborted
 if some C_k does not have ready(T) : T aborted
 all C_k have ready(T): block until C_i recovers

 network partition: map to site/coord “failure”
− if coord and some sites in one partition:

assume other sites down?
− other sites: assume coord failed?

 For recovery, instead of ready(T), log ready(T, set of
locks held)

− helps new txns to get going if they do not use
locks held by in-doubt T's

 Optimization for RO txns:
− a C_k responds with RO(T) rather than

ready(T); C_i need not send commit(T)

3-phase commit
To avoid blocking in limited cases:
 eg. no netw partition; atmost K sites can fail & atleast K+1 sites up
Provide preliminary info about fate of T thru a precommit phase
Assume failures detected by coord or sites reliably
 Phase1: same as 2PC
 Phase2: C_i receives responses to prepare msg from all C_k or timeout:

 any site abort(T) or no response from a site until timeout: abort(T) to all
 ready(T) from every site: precommit(T) to log & to each site to its log
 ack sent to coord from each site whether abort or precommit (logged)

 Phase3: only executed if precommit in Phase2
 coord waits till atleast K acks: logs commit(T) & sends it to each to its log

ready(T): site's promise to follow coord's decision
precommit(T): coord's promise to commit

 Failure detected at coord:
a site S_k fails before ready(T):

abort(T) assumed
after: continue 3PC

 recovery at S_k:
commit(T) present in log: redo(T)
abort(T): undo(T)
ready(T) but no abort/precommit:

consult C_i to find T's status
if C_i up, easy: abort(T): undo(T)

precommit(T): send ack & resume
protocol

commit(T): redo(T)
if C_i down: execute coord failure protocol

precommit(T) but no abort/commit:
consult C_i to find T's status (same as before)

coord failure protocol
 triggered when a site does not get response from coord
 elect a new leader (C_new)
 C_new requests status of T (committed, aborted, ready,

precommitted or (nothing in log) not ready) from each
site (incl C_new!)

− 1+ committed: commit
− 1+ abort: abort

 if 0 abort but 1+ precommit: C_new resumes protocol by
sending new precommit(T)

− safe to commit but cannot do it unilaterally as
blocking if C_new fails (as in 2PC)

 else abort

One scenario: no active site has precommit =>
abort T good. 3 cases:
 C_i aborts before failure
 C_i has not reached decison
 C_i cannot commit before failure.

Assume commit:
- >K precommit from sites with acks (set S); C_i has

failed;
- 1+ site in S active as only max K failures and has

sent precommit;
- => precommit sent to C_new. -><-
- hence, if no precommit acks to C_new: abort is safe

No netw partition: otherwise multiple coord!

	Storage Systems
	Consistency Mgmt
	2-phase commit
	Failures
	
	3-phase commit
	Slide 7
	coord failure protocol
	Slide 9

