

Storage Systems

NPTEL Course

Jan 2012
(Lecture 39)

K. Gopinath

Indian Institute of Science

Google File System

 Non-Posix scalable distr file system for large distr data-
intensive applications
 performance, scalability, reliability and availability
 high aggregate perf to a large number of clients

− sustained bandwidth more important than low latency
 High fault tolerance to allow inexpensive commodity HW

 component failures norm rather than exception
 appl/OS bugs, human errors + failures of disks, memory,

connectors, networking, and power supplies.
 constant monitoring, error detection, fault tolerance, and

automatic recovery integral in the design

GFS Design
 optimized for Google's appl workloads + curr tech

 modest number of large files (64MB): good for scans,
streams, archives, shared Qs

 append new data common, not overwriting existing data or
random writes:

− perf opts and atomicity guarantees for appends
 atomic append so that multiple clients can append

concurrently to a file without extra synchronization
− no client caching of data blocks

 relaxed consistency model
 cross layer design of appls + file system API

GFS Design
(from wikipedia)

GFS Design
 Std ops: create, delete, open, close, read, write
 Also snapshot (copy of a file or a dir tree at low cost) and

record append (atomic with multiple clients)
 Single master, multiple chunkservers/clients

 user-level server processes on Linux
 Files divided into fixed-size chunks, each identified by an

immutable and globally unique 64 bit chunk handle assigned
by master at chunk create

 Chunkservers store chunks on local disks as Linux files
 read or write chunk data specified by a chunk handle and

byte range
 For reliability, each chunk replicated on multiple chunkservers.

 3 replicas default, but can have different replication levels
for different regions of file namespace

GFS

Appl

GFS Client

GFS Master

File Namespace

File2Chunks Table

2. chunk handle, chunk
locs

1. file name, chunk
index

GFS Chunkserver

Linux

3.chunk handle, byte range

4.Chunk data

Instructions to
chunkserver

Chunkserver
state

Large Chunk Size
 reduces clients’ need to interact with master

 reads and writes on same chunk require only one initial request
to master for chunk loc info: appls mostly read and write large
files sequentially

 for small random reads, the client can cache all chunk loc info
for a multi-TB working set.

 with a large chunk, a client is more likely to perform many ops
on a given chunk

− reduce netw overhead by keeping a persistent TCP cnxn to
chunkserver for an extended time.

 reduces size of metadata on master: all metadata in memory!
 but hotspot if a file a popular single chunk executable

 popular executables need higher replication factor
 also, stagger application start times
 (future?) allow clients to read data from other clients

GFS Design
 GFS client code linked into each appl: implements FS API

 communicates with master and chunkservers to read/write data
on behalf of appl

 clients interact with master for metadata ops (cached for a
small time), but all data-bearing comm directly to chunkservers

 No caching of file data by client or chunkserver but clients cache
metadata
 chunkservers need not cache file data: chunks may already be

cached as local files in Linux’s buffer cache
 Each chunk replica stored as a Linux file on a chunkserver and

extended as needed
 lazy space allocation avoids space wasting due to internal

fragmentation

GFS Metadata Mgmt

 Master maintains all FS metadata: file/chunk
namespaces, access control info, mapping from files to
chunks, current locations of chunk's replicas
 also controls system-wide activities such as chunk

lease mgmt, GC of orphaned chunks, and chunk
migration between chunkservers

 periodically communicates with each chunkserver
using heartbeats

 single master makes design simple: better chunk
placement /replication using global knowledge

GFS Master
 Master does not store chunk loc info persistently.

 asks each chunkserver about its chunks at master startup and
whenever a chunkserver joins the cluster

 up-to-date thereafter as it controls all chunk placement and
monitors chunkserver status with regular heartbeat messages.

 earlier design problematic: difficult to maintain consistency betw
master and chunkservers

− chunkservers join and leave the cluster, change names, fail,
restart

− chunkserver has the final word over what chunks it does or
does not have on its own disks as:

− errors on a chunkserver may cause chunks to vanish (e.g., a
disk may go bad and be disabled) or an operator may rename
a chunkserver

Memory-based metadata in Master

 all metadata kept in master’s memory
− easy and efficient for master to periodically scan

through its entire state in the background: for chunk
garbage collection, re-replication on chunkserver
failures, chunk migration to balance load and disk
space

− practical: < 64 bytes of metadata for each 64 MB
chunk (64MB for 64TB!)

− most chunks full: large files many chunks, only last
may be partially filled

− file namespace data typ < 64 bytes per file: file
names stored compactly with prefix compression

Logs
 Namespaces and file-to-chunk mapping kept persistent by logging

mutations to an operation log stored on the master’s local disk and
replicated on remote machines.
 a log allows reliable upd of master state without inconsistencies if

master crashes
 serves as a logical time line that defines order of concurrent ops

− files and chunks, as well as their versions, uniquely and
eternally identified by logical times of their create

 changes not visible to clients until metadata changes persistent
− else can lose whole fs or recent client ops even if chunks

survive
− respond to a client op only after flushing log record to disk both

locally and remotely.
− master batches several log records before flushing to reduce

impact of flushing and replication on system throughput

Recovery
 master recovers fs state by replaying the op log

− to minimize startup time, keep log small by checkpointing master state
whenever the log grows beyond a certain size

 recover by loading latest checkpoint from local disk and replaying
only limited number of later log records

 checkpoint a compact B-tree like form directly mappable to memory
− namespace lookup requires no extra parsing
− speeds up recovery and improves availability

 building a checkpoint takes time:
− master switches to a new log file and creates new checkpoint in

a separate thread
− no delay for incoming mutations
− new checkpoint includes all mutations before switch
− a minute or so for a cluster with a few million files.
− When completed, written to disk both locally and remotely.

 recovery needs only the latest complete checkpoint and subsequent
log files

− failure during checkpointing does not affect correctness:
recovery code detects and skips incomplete checkpoints

	Storage Systems
	Google File System
	GFS Design
	GFS Design (from wikipedia)
	Slide 5
	GFS
	Large Chunk Size
	Slide 8
	GFS Metadata Mgmt
	GFS Master
	Memory-based metadata in Master
	Logs
	Recovery

