

Storage Systems

NPTEL Course
Jan 2013

(Lecture 11)

K. Gopinath
Indian Institute of Science

USB Mass Storage Device

 A USB has

− a microcontroller that handles USB protocol

− a media controller that handles device specific part (eg. storage)

 In a USB mass-storage device, hardware or firmware must

− Detect and respond to generic USB requests and other events on bus
Examples: requests to identify attached devices, manage traffic and power the
bus.

− Detect and respond to USB mass-storage requests for information such as
status or actions from device.

 These commands use the previous requests for transport.

− Detect and respond to SCSI commands received in USB transfers such as
read and write blocks of data in the storage media, request status information,
and control device operation.

− Optionally implement a filesystem if host commands are not required.

USB layering (from USB spec)

USB Layers

 The lowest layer concerns itself with aspects relating to serial
transmission.

 The next upper layer handles USB protocol specific aspects; this is
common to all USB devices.

 The next higher layer is function specific; for mass storage, this
involves SCSI commands.

 Devices like camera have another layer; this is the filesystem layer
as they should be able to store pictures taken without any outside
help.

 Legacy devices are emulated

An explicit layering model helps in understanding the design.

USB Block Device

 USB mass storage specification provides a block interface

− only the system that mounted it has access to the storage.
 Possible to provide multiple systems access to different files at the same

time

− requires a protocol such as MTP that operates at the level of a file
rather than a block.

− needed in a device, such as a camera with USB storage, when
connected to a host.

 Note that only generic access such as read and write block

− even if we have a USB SATA disk, usually no support for SATA
features such as native command queuing (NCQ) which allows
multiple disk operations to be sent.

FS
Layer

Block
Layer

Net
Layer

Char
Layer

TTY
Layer ...

 USB Device Drivers

USB Core

USB Host Controller Drivers

User Applications

User Mode
Drivers User Space

Kernel Space

Hardware Space USB Host Controller
 USB Device

usbfs

Linux USB Framework

Insertion of a USB stick
 Hardware senses and interrupts the CPU.

 An agent (kernel thread, etc) identified in the interrupt routine to handle
this insertion. Interrupt routine notes details of hardware that interrupted
(such as USB port, controller, speed, PCI address).

 The kernel thread gets scheduled sometime later and notes the PCI
information (that it is a USB mass storage device, USB wifi device, etc).

 The kernel thread upcalls an user program: in a GNU/Linux system,
typically the program /sbin/hotplug, with “usb” as parameter.

− a user mode policy agent

− typically getting system resources needed, configure the device,
helping to load driver or other modules, etc. by using configuration
files.

 Once the device and its driver have been initialised, the filesystem(s)
residing on it may be mounted and displayed to the user.

More Details

 Even if no driver for a USB device on, say, a Linux system, a valid USB
device detected by hardware and later known to kernel

− As design (and detection) as per USB protocol specs

 Hardware detection by the USB host controller: typically a native bus
device, like a PCI device.

 Host controller driver gets low-level physical layer information and
converts it into higher-level USB protocol-specific information.

 information about USB device then populated into the generic USB core
layer (the usbcore driver) in the kernel, thus enabling the detection of a
USB device at the kernel level, even without having its specific driver.

 Then, various drivers, interfaces, and applications (depends on the
specific Linux distribution), give a userspace view of the detected devices.

 Many configurations for a USB device

− Default also

− For every configuration, the device may have 1+ interfaces.
 An interface corresponds to a function provided by the device.

− MFD (multi-function device) eg. USB printer: printing, scanning
and faxing: 3 interfaces

 unlike other device drivers, a USB device driver typically
associated/written per interface, rather than device as a whole

− one USB device may have multiple device drivers

− different device interfaces may have the same driver

USB Core APIs
 <linux/usb.h>

− int usb_register(struct usb_driver *driver);

 Gives info about name of driver, what probe/disconnect func to use etc.

− void usb_deregister(struct usb_driver *);

− FS register with VFS layer but USB devices to USB core

 USB core then uses the foll.

− int (*probe)(struct usb_interface *interface, const struct usb_device_id *id);

− void (*disconnect)(struct usb_interface *interface);

 endpoint-specific data transfer functions

− usb_control_msg()

− usb_interrupt_msg()

− usb_rcvbulkpipe(), usb_sndbulkpipe()

− Uses URBs (USB request block) for asynch I/O

− Have to send SCSI cmds with USB mass storage devices

Outline of a Write to USB device

 When driver has data to send to the USB device (driver's write
function), allocates

− urb

− DMA buffer
 Copies user data into DMA buffer

 urb initialized before sending to USB core

 After urb successfully transmitted to the USB device (or
something happens in transmission), the urb callback called
by the USB core

Summary

 Many subsystems work together
 Similar (high-level) structure in large as well as

small storage systems

	Storage Systems
	USB Mass Storage Device
	USB layering (from USB spec)
	USB Layers
	USB Block Device
	Slide 6
	Insertion of a USB stick
	More Details
	
	USB Core APIs
	Outline of a Write to USB device
	Summary

