

Storage Systems

NPTEL Course

Jan 2012
(Lecture 24)

K. Gopinath

Indian Institute of Science

FS semantics

 Mostly POSIX notions
 But not really fixed

− Many impl flexibilities/dependencies allowed
− Atomicity of a copy of a 1TB file difficult!
− try “cp a, b&; cp b, a”

 Often need to support common idioms, even if not in
POSIX
− Shell scripts' expectations

Right specification difficult to
define: mmap

 mmap depends on VM: granularity at page level
only

 what is the semantics of read/write past eof in the
middle of a page?

 what happens with extending writes in presence of
concurrent r/w?

 when can an user see the writes (during or after
write?)

 File Corruption Prob

 Files rapidly accessed on a WinNT file server,
intermittent data corruption! Sep96

 esp news server data files & on MP systems
 appln performing a write-extend of a file
 cache manager read ahead thread on current

last page (part of larger read); write blocked
 mem manager wakes up write & zeroes last

page beyond curr file size & writes new data
into page; read also zeroes later!

Record and file locking: cp a, b&; cp b, a

 one rwlock: deadlock! but with rwlock + glock: OK
− cp a, b: maps a & then write into b from mapping of a

 mmap not atomic but r/w “atomic”: need rwlock (shared/excl)
 mmap'ed pages may fault: need to call VOP_GETPAGE

− Holes in file: allocates atomic; need a lock (glock)
− Interlocking betw truncate ops and getpage ops: truncate

has to prevent getpage from bringing in pages; use glock
 mmaping: rwlock a; map; rwunlock a;
 reading: rwlock b; uiomove (getpage a); ...

− cp b, a:
 rwlock b; map; rwunlock b;
 rwlock a; uiomove (getpage b); ...

 If both glock and rwlock the same lock? deadlock!

Locking issues
 a thread locks a resource and calls a lower-level routine on that

resource; lower-level routine may also be called by others without
locking resource

 deadlock possible if lower-level routine does not know if resource
locked

− unless params passed informing low-level routine about locked
resources but this is non-modular!

 recursive locks can avoid deadlocks: need owner ID
− functions deal with their own locking reqs: clean, modular i/f; do

not need to worry about what locks callers own
− Ex: ufs_write handles both writes to files/dirs

 files: unlocked vnode passed from file tbl entry to ufs_write
 dirs: vnode passed locked f DNLC/pathname traversal func

ZFS
 Integrated file system + logical volume manager

− zfs and zpool: ZPL (ZFS POSIX Layer), DMU (Data
Management Unit), and SPA (Storage Pool Allocator)

− design for fast, reliable storage using cheap,
commodity disks

− copy-on-write transactional object model
 blocks containing active data never overwritten in

place
 instead, a new block allocated + written, then any

metadata blocks referencing it are similarly read,
reallocated, and written.

 To reduce overhead, multiple updates grouped into
transaction groups, and an intent log used when
synch write semantics required

 Key features

− data integrity verification against data corruption
 Each block of data/metadata checksummed and

checksum value saved in the pointer to that block (not
in the actual block itself)

− Merkle tree maintained (all thru file system's data
hierarchy to root node)

 support for high storage capacities (128-bit FS)
 zpool made of virtual devices (vdevs) that are

constructed from block devices
− RAID-Z to avoid “write-hole”. Also RAID-Z2/3
− ARC2 (read caching) and ZIL (ZFS intent log for write

caching)
− snapshots and copy-on-write clones
− native NFSv4 ACLs, deduplication, encryption,

compression

Design
 User level:

− FS consumer: uses Posix ZFS fs
− device consumer: uses devices avlbl thru /dev
− GUI (JNI), Mgmt Apps (both access ker thru libzfs)

− eg. zpool(1M), zfs(1M)
 libzfs: unified, object-based mechanism for

accessing and manipulating storage pools and
filesystems

 Kernel Level:
− Interface Layer
− Transactional Object layer
− Storage Pool Layer

Filesystem
Consumers

Device
Consumer

GUI Management
 Apps

ZPL (Posix) ZVOL /dev/zfs

JNI

libzfs

ZIL ZAP Traversal

 DMU (data mgmt unit) DSL (dataset/snapshot)

ARC

ZIO pipeline

VDEV Configuration

LDI (device)

USER

KERNEL

Interface
Layer

Transactional
Object
Layer

Pooled
Storage

Layer

From hub.opensolaris.org/bin/view/Community+Group+zfs/source

	Storage Systems
	FS semantics
	Right specification difficult to define: mmap
	 File Corruption Prob
	Record and file locking: cp a, b&; cp b, a
	Locking issues
	ZFS
	
	Design
	Slide 10

