
  

Storage Systems

NPTEL Course

Jan 2012
(Lecture 34)

K. Gopinath

Indian Institute of Science



  

 Concurrency Control Models

 Distr storage systems: consistency thru txns
− But trasactions need ordering of writes

 FS, DB, Volume Manager (VM) have diff needs
 FS/DB need control on ordering of writes for serializability: 

but total ordering (eg. in a SAN) an overkill
 A FS may need stricter guarantees for consistency of 

metadata (=> ordering) but may not for data
 Similarly, a  parallel FS does not need total ordering for non-

overlapping upds on a file thru multiple I/O daemons
 Aborts are infrequent in FS as many FS can work quite well 

with redo-only style transactions
 DB often have long-lived transactions and redo-undo style 

transactions are necessary



  

Failures?

 However, designing clustered FS, clustered Volume 
Managers, etc  in the presence of failures very hard 

− Need a way of using total ordering for "control" messages 
(or  a subset of msgs) while not using such ordering for 
"data" (or majority of) messages 

 Timestamp ordering approaches need synchronized clock; 
otherwise non-causal orderings may result 

− With high speed SANs (2Gbps+), ms accuracy not good 
− other models needed if accuracy/resolution of 

synchronized clocks not high



  

Message Synch

 Fly-by-wire control system: correct inspite of process/comm 
Byz failures
 redundant lock step (synch) op
 atomic broadcast of sensor readings to all nodes
 Internet news: causal order useful 

− reply later than orig msg!
− cricket scores!

 What about dyn data structures? consistency and reliability:
 deliver exactly same info to multiple locs
 virtual synchrony model or GCS



  

Shared disk filesystems
 Shared storage via a SAN?

 need a filesystem on top of raw block storage
 A shared disk filesystem allows multiple hosts to 

concurrently access a shared disk
 Hosts access data on disk directly via the SAN
 Filesystem metadata shared and concurrently    updated 

from multiple hosts
 Filesystem ensures proper synchronization

− for data access + ensure coherency of caches in 
nodes

 There is no single point of failure or bottleneck 
− unlike NFS

 But need a Distr Lock Manager (DLM)



  

 DLM complex!
 Availability of system now depends upon FT of DLM

 Failure of any node in cluster should not cause lock state to become 
inconsistent or lost.

 Need to handle concurrent events - local, remote lock requests, failures, 
join of nodes
 Stream protocols, like TCP, provide only a point to point bit pipe

− A “broken” TCP stream noticed by the other peer based on most 
recent activity, and timeouts may be long (minutes)

− Lack of consensus amongst set of peers wrt a single node
 Each peer may judge a node as dead at different times
 Differing perceptions can comprise consistency

 Using unreliable datagrams means no ordering among messages 
and with respect to failures

− Basic message retransmission and flow control issues 
complicate the lock protocol code

 Distr Consensus alg needed for agreement on membership&c



  

  
 Split Brain

 Consider a system with 2 nodes A and B connected thru 
multiple diff connections

− One thru netw (system netw) N1
− One thru SAN (storage netw) N2 

 If a live node A is considered dead thru N1 by B but N2 
connection to SAN with A is still good, B in dilemma

− Cannot know status of A's connection with SAN
− If assume that A is really dead, inconsistent SAN upd

 Mexican Shootout
 To be really sure, B has to “kill” A if it cannot talk to A thru 

N1
 But this is symmetric. A can also decide the same and kill 

B! System unavailable!



  

Ordering betw msgs & reconfigurations

 No guarantees about ordering of data msgs and reconfigurations
 In a concurrent system, this can lead to loss of integrity

 A’s record locks might be forcibly released in a reconfiguration
 When update is received later, an unlocked record will be updated!!!

A B C

A B C

B C

 Note that node A could have recovered fast and joined back 
in the system, before the earlier message was delivered to B



  

Ordering between msgs & reconfigurations

 Instead of sender failing, receiver could fail and recover, 
and receive message in new incarnation.

 A might have requested for an object named X in the 
previous incarnation. In the new incarnation X could be 
something else!!!

A B C

A B C

A B C

A B C



  

Lack of message ordering
• In an old FS with a lock manager built without message 

ordering

A

Lock Service

B

Request
Grant

Request Owner
List

Revoke

Revoke received before Grant at A

 Could have been avoided by use of causal message ordering 
since a causal relationship exists between grant and revoke



  

What is required?
 Reasoning the behavior of concurrent systems difficult
 Failures add further complications, as node failures and 

message ordering may not be preserved
 Some  earlier “serverless” FS built without even FIFO 

ordering: easy to get into deadlocks
 Should provide atleast basic FIFO msg ordering to 

simplify system design
 Need “timely” agreement among processes about 

membership in system
 Need ordering among msgs with varying levels of strictness - 

FIFO, CAUSAL, TOTAL.
 Need a strong messaging+membership system (the group 

communication system, GCS) which DLM can use
 If lock protocol runs inside kernel, so should GCS.



  

Ordering between msgs & reconfigurations

 What is needed is that all msgs sent in a view should be 
delivered in that view itself – not some before failure and 
some after failure
 Thus message delivery should be atomic w.r.t failures
 "virtual synchrony" model

 When a failure happens all messages sent in  current 
membership must be flushed out of system before new 
membership (view) installed



  

GCS model
 Integrates messaging and membership
 Membership detected by heartbeats
 Each msg associated with view in which it is sent
 A message is delivered in that view only - view 

delivery will be delayed if need be
 Retransmission, flow control all handled by GCS - 

interface is asynch
 The membership list is ordered and delivered to 

the appls in the same order for all members
 Msgs can be ordered "Fifo", "Causal", "Total"
 Node gets msgs in real time order but appls in 

order reqd/specified



  

GCS model

 When an app joins a group, it is sent a new view msg
 GCS then controls appl with data and view msgs 
 On a failure/join detection, a group unstable msg sent, 

to let the app know group not stable
 Appl should stop further messages and when done 

should tell GCS
 GCS flushes all messages "floating around"
 After all messages flushed, the new view delivered

 Note that if an appl keeps sending msgs, new view 
may never get delivered



  

Summary

 Introduced message ordering problem in a 
distr system in the presence of failures

 Helpful if appl can depend on a higher 
level model to simplify state of system in 
presence of failures


	Storage Systems
	 Concurrency Control Models
	Failures?
	Message Synch
	Shared disk filesystems
	 DLM complex!
	  
	Ordering betw msgs & reconfigurations
	Ordering between msgs & reconfigurations
	Lack of message ordering
	What is required?
	Slide 12
	GCS model
	Slide 14
	Summary

