

Storage Systems

NPTEL Course

Jan 2012
(Lecture 43)

K. Gopinath

Indian Institute of Science

BigTable Impl
 3 main components: a library that is linked into every client,

one master server, and many tablet servers
 tablet servers dynamically added (or removed) from a

cluster to accommodate changes in workloads.
 master responsible for

 assigning tablets to tablet servers
 detecting addition and expiration of tablet servers
 balancing tablet-server load
 garbage collection of files in GFS.
 also handles schema changes such as table and column

family creations
 persistent state of a tablet stored in GFS thru memtable

Interactions betw GFS and BigTable
 Persistent state of a tablet stored in GFS
 Incoming writes committed to a commit log that stores redo records

 recently committed ones sorted and buffered in memory as
memtables

 older updates stored in a seq of SSTables (sorted string tables)
 Incoming reads checked in memtables and SSTables

 sorted tables: efficient op
 To recover a tablet:

 a tablet server reads its metadata: the list of SSTables that
comprise a tablet and a set of a redo points (pointers into any
commit logs that may contain data for the tablet)

 server reads indices of SSTables into memory and reconstructs
memtable by applying all committed updates since the redo
points

Hadoop Distributed File System

 Rack-aware filesystem
 To help run work on the node where the data is, and,

failing that, on the same rack/switch, to reduce
backbone traffic.

 HDFS stores large files (an ideal file size is a multiple of
64 MB) across multiple machines.

 Reliability by replicating data across multiple hosts (no
RAID storage on hosts)

 Above HDFS runs MapReduce Engine
 Client applications submit MapReduce jobs to

JobTracker

Yahoo! PNUTS
 focuses on data serving for web applications

 workloads mostly of queries that read and write single
records or small groups of records

 not for complex queries, e.g., offline analysis of web
crawls

 data storage organized as hashed or ordered tables
 designed for low latency for large numbers of concurrent

requests including updates and queries
 all high latency operations asynchronous
 support record-level mastering (local ops afap)

 per-record consistency guarantees: all replicas of a given
record apply all updates to the record in the same order

Timeline consistency

 Object timelines
 Reads are served using a local copy; may be stale
 But application can get current version or any vers

> N
 While copies may lag master record, every copy goes

through same sequence of changes
 Test-and-set writes facilitate per-record transactions

PNUTS design

 uses a guaranteed message-delivery service rather than
a persistent log

 trigger-like notifications
 imp for some apps that must invalidate cached copies

after some time (eg. ad serving with a time contract)
 users subscribe to stream of updates on a table

− asynch publish-subscribe message system
 can be optimized for geographically distant

replicas and replicas do not need to know locs
of other replicas

 contrast to gossip protocols

Windows Azure
 Designed as a scalable cloud storage system

 cloud storage in the form of blobs (user files), tables
(structured storage) and queues (msg delivery)

 Blobs for incoming and outgoing data, Queues for overall
workflow for processing the Blobs, intermediate service
state and final results in Tables or Blobs

 Publically searchable content (via Bing) within 15 secs of a
Facebook/Twitter user’s posting or status update

 “Strong consistency”: same as others (within a “stamp”)
 Intra-stamp synch repl
 Inter-stamp asynch repl

 Global and Scalable Namespace/Storage

Another Model for Storage:
Consistent Hashing

 Hash both objects and devices using same hash function
 Map each obj to a point on the edge of a circle

 Equivalently, to a specific angle
 Map each device (eg. storage bucket) also pseudo-randomly

mapped on to a series of points around circle
 An obj stored by selecting the closest mapped device on the

circle
 Each device contains the resources mapped to an angle

between it and the next smallest angle

If a device added or removed, only nearby objs remapped

Used by Amazon and Facebook

Distr Hash Table (DHT)
 Uses some variant of consistent hashing to map keys to

nodes
 A node with ID i

x
 owns all keys k

m
 for which i

x
 the closest ID,

measured according to δ(k
m
,i

x
)

 To store a file with filename fn and data in DHT
 Calculate, say 160-bit hash key, k = SHA-1(fn)
 A message put(k,data) sent to any node in DHT
 msg forwarded from node to node thru overlay network

(connecting nodes) until it reaches single node
responsible for key k as specified by the keyspace
partitioning

 To retrieve file fn, get(SHA-1(fn))

Cassandra
 Distributed multi dimensional map indexed by a key

 row key a string with no size restrictions (typ 16-36B)
 value is a highly structured object

 Similar to Bigtable: every op under a single row key atomic per
replica no matter how many columns are being read or written into
 Columns grouped together into sets called column families

 Data partitioned across cluster using consistent hashing but uses
an order preserving hash function to do so

 Cassandra API: three simple methods:
 insert(table,key,rowMutation)
 get(table,key,columnName)
 delete(table,key,columnName)

Server-side Consistency Models

 N = number of nodes that store replicas of data
 W = number of replicas that need to ack receipt of update

before update completes
 R = number of replicas that are contacted when a data

object is accessed through a read op
 W+R > N: write set & read set always overlap and one

can guarantee strong consistency
 W+R <= N: Weak/eventual consistency
 R=1, W=N: optimize for read

W=1, R=N for very fast write

Client-side Consistency Models
 Strong: After an update completes, any subsequent access will

return the updated val
 Weak: May return stale value. Special case:
 Eventual: storage system guarantees that if no new updates made to

the object, eventually all accesses will return last updated value eg.
DNS
 Variations:

− Causal consistency (CC)
− Read-your-writes consistency (RyWC)
− Session consistency (SnC)
− Monotonic read consistency (MRC)
− Monotonic write consistency (MWC)

 If client connects to a server only, RyWC/MRC easy

Haystack: Facebook’s photo storage

 Std solutions (eg. NFS): excessive number of disk
operations because of metadata lookups
 to read a single photo: 1+ disk ops to translate

filename to an inode #, 1 to read inode from disk, and
one to read file itself

 reduce per photo metadata so that all metadata lookups
in main memory
 rwx perms not needed; 128-256B inode size too big
 now disk ops only for reading actual data: increases

overall throughput
 high throughput and low latency: at most one disk op

per read
 Why does caching not work?

Haystack Design

 Content Distr Networks (CDN) effective for serving “hot
photos”
 recently uploaded & popular

 But social networking sites also see a large # of requests
for less popular (often older) content: long tail

 Requests from long tail account for a significant amount
of Facebook traffic
 almost all access the backing photo storage hosts as

these requests typically miss in the CDN
 Haystack: each usable TB costs approx 28% less and

processes 4x more reads per sec than an equiv TB on a
NAS appliance

Summary
 Scalability inducing many cross-layer designs

 Have to pay attention to overheads and remove them
 Handling failures imp, so repl (or erasure coding)

critical in design
− Distribution of data a necessity
− Coord of updates a necessity

	Storage Systems
	BigTable Impl
	Interactions betw GFS and BigTable
	Hadoop Distributed File System
	Yahoo! PNUTS
	Timeline consistency
	PNUTS design
	Windows Azure
	Another Model for Storage: Consistent Hashing
	Distr Hash Table (DHT)
	Cassandra
	Server-side Consistency Models
	Client-side Consistency Models
	Haystack: Facebook’s photo storage
	Haystack Design
	Summary

