

Storage Systems

NPTEL Course

Jan 2012
(Lecture 20)

K. Gopinath

Indian Institute of Science

Other Block Devices
 Network Block Devices

− Instead of bus/SAN protocols, use IP networks
− Higher rates of failure (non-availability or data loss)

 Can use redundancy in software
− Slower but more flexible (eg. use heterogenous

devices)
− Allows for much higher scaling

 Bus/SAN networks cannot span continents
− Parallelism an imp issue

Interaction of device and storage
design

 Consider FAT filesystem
− Linked list of clusters

 2 file allocation tables (FATs)
− Floppy devices very unreliable

 FAT systems on flash
− Due to no update in place, every upd to a logical cluster in FAT will be written

to a different physical cluster
− May not need FAT2 at all!
− Can we use an extra FAT to make it transactional?

 Transaction-Safe FAT File System (TFAT) (esp on flash)
− driver layer modification to the original FAT file system
− two file allocation tables (FAT0 and FAT1) but not identical
− changes first made to FAT1
− when transaction complete, FAT0 updated from FAT1, updating stable view of

FS
− However, not widely used! Only in mobile but not in desktop systems

F2FS: Flash friendly Filesystem
 Not for raw flash: assumes a FTL

− jffs2, logfs for raw flash
 Based on a log structure file system

− Segment (or region): 512 blocks of 4KB (2MB)
 Many segments (2^k) make one section

− copy-on-write: data always written to previously unused space
 read from the most recently written region
 mapping for reads changes for every update

− free space managed in large regions that are written sequentially
− cleaning: when number of free regions becomes low

 live data coalesced from several regions into fewer regions and releasing
rest

 overhead is one of the significant costs of log structuring
 As NAND-based devices have different characteristics (due to internal geometry

or FTL)
− many parameters for configuring on-disk layout
− for selecting allocation and cleaning algorithms

FTL and LFS
 FTL typically uses a log-structured design to provide wear-leveling and write-

gathering
− two log structures active on the device
− f2fs uses FTL: f2fs makes no effort to distribute writes evenly to provide wear-

leveling, as provided by FTL
− f2fs provides large-scale write gathering: when many blocks need to be written

at the same time, they are collected into large sequential writes that FTL can
handle easily

− But instead of a single large write, f2fs actually creates up to six in parallel.
 Each set of blocks grouped with similar life expectancies
 Makes garbage collection process required by the LFS less expensive

 However, f2fs doesn't always gather writes into large regions
− Some metadata, and occasionally even some regular data, is written via random

single-block writes: FTL takes over here
− Simplifies design

Reducing Cleaning Overhead
 f2fs has six sections "open" for writing at any time

− different types of data written to each section
− different sections allows for file content (data) to be kept separate from indexing

information (nodes),
− Also to divide data into "hot", "warm", and "cold" sections (thru heuristics)

 Directory data treated as hot and kept separate from file data
− have different life expectancies

 Section full of Cold Data likely to not require any cleaning
 Hot Nodes expected to be updated soon

− if we wait a small amount of time, a section full of hot nodes will have very few live
blocks: cheap to clean

 Problem: whenever a block written, its phys address changed, so its parent in the indexing
tree must change and be relocated, and so on up to root of tree

− Uses a special table for indirecting to actual blocks
− Tree stores offset into table only; metadata changes do not need mod of tree

 They indirect at the same offset in the table
− Table needs updating

 Table uses a special 2-location journaling to reduce overhead

Increasing Parallelism
 Many sections (1+) make a zone

− Zones to try to keep the six open sections in different parts of the device
− Assumption: flash devices often made from a number of fairly separate

sub-devices each of which can process IO requests in parallel
− If zones mapped to sub-devices, then the six open sections can all handle

writes in parallel and make best use of device BW/minimize latency
 Zones the "main" area of the filesystem
 "meta" area contains a variety of different metadata

− eg. segment summary blocks upd in place
− This (small) area not managed by f2fs's lfs and left to FTL

Inode structure

 Uses standard Unix-like Inode
− Indirects, also Double and Triple
− Does not use B-Trees or extents
− Inode size 4KB (larger than ext3) due to COW granularity

 Index tree for a given file has a fixed and known size
 when blocks relocated during cleaning, impossible for changes in

available extents to cause indexing tree to get bigger
 A problem as cleaning done to free space

Conclusions

 Nature of physical device has significant
impact on design!

	Storage Systems
	Other Block Devices
	Interaction of device and storage design
	F2FS: Flash friendly Filesystem
	FTL and LFS
	Reducing Cleaning Overhead
	Increasing Parallelism
	Inode structure
	Conclusions

