

Storage Systems

NPTEL Course
Jan 2012

(Lecture 05)

K. Gopinath
Indian Institute of Science

Basic Storage API
 GetNew(oid)

 POSIX: fd=creat(const char *path, mode_t mode)
 Store(oid, data)

 POSIX: ssize_t write(int fd, const void *buf, size_t count)
 Read(oid, buffer)

 POSIX: ssize_t read(int fd, void *buf, size_t count)
 Delete(oid)

 POSIX: int unlink(const char *pathname)
 GetInfo(oid)

 POSIX: int stat(const char *path, struct stat *buf)

oid: blocknum, filename, filehandle, content hash, key

Also, appl buffered versions.

Semantics of POSIX files vs NFS
 A fd once obtained can be held as long as the

process exists (POSIX)
 A NFS handle once obtained can be held as

long as the client exists
 But may not be able to access the file if the NFS

server dies
 Server stateless but client stateful

 More interesting: open but deleted file
 NFS can only approximate POSIX semantics

 Consistency guarantees weak in NFS2
 Clients cache metadata for 30 secs

Impact of Networking
 Semantics of failure becomes imp

 NFS uses RPC. What has to be done wrt non-
idempotent operations?

 Consistency issues become important
 NFS semantics different from POSIX

 To support high speed transfers, new kernel infrastructure
 Parallel to IPC: sockets/TLI
 For even higher speeds, user-level networking (RDMA)

 Storage spun off in large systems
 Storage Area Networks (block level protocols)
 NFS (file level protocols)
 Distributed File Systems/Storage Systems

API changes
 POSIX: Read (fd, buffer, count)

 Partial writes to a file OK (appends, overwrites, etc)
 Mmap

 NFS: Read (fd, offset, buffer, count)
 Partial writes and mmap avlbl but no open!
 Weak consistency model with multiple writers (NFS2)

− NFS3, NFS4 improve the consistency model
 Amazon S3: “storage” service

 Key Value store: no features like partial write or mmap
 Weak consistency (“BASE”) model: when no updates

occur for a “sufficiently long” period of time, eventually
all updates will propagate through the system and all
the replicas will be consistent.

S3 Interface: Key Value Store
 S3 stores data in named buckets

 Each bucket is a flat namespace, containing keys
associated with objects (but not another bucket)

 Max obj size 5GB. Partial writes to objects not allowed
(must be uploaded full), but partial reads OK

 create bucket
 put bucket, key, object
 get bucket, key
 delete bucket, key
 delete bucket
 list keys in bucket
 list all buckets

Layering in Storage Systems
 Varied uses of storage. Eg.

 Swap
 Document store
 Archiving
 Temporary info transfer (eg. Memory stick)

 Many designs. Best to understand each as a layered
system with optional layers
 Swap: no user visible component (block storage fine)
 Document: metadata about document imp (provenance)
 Archiving: reliability paramount and eliminating

redundancy imp
 Simplified layering model: devices, protocols,

systems

Storage Systems Highly Layered
 Multiple layers. Example:

 Application uses fopen, fread, fwrite, etc.
 Libc calls open, read, write system calls
 Kernel calls vop_open, vop_read, vop_write, ...
 FS implements ufs_open, ufs_read, etc. using virtual

memory subsystem
 Virtual Memory subsystem uses vop_getpage and

vop_putpage provided by FS
 vop_getpage/vop_putpage call pseudo device routines
 Volume Manager or NFS client code
 Device Driver (SCSI) or Network driver
 HBA or NIC
 Disk or Remote Disk

Layering
 Each layer often specializes in one dimension

but has to handle others also
 FS handles naming as reqd by appl
 Volume Manager handles aggregation of physical

media along with error mgmt
 Each layer also needs to do in its own way

 Discovery
 Naming
 Error mgmt
 Security
 Performance (eg. Caching, Flow Control)
 Consistency mgmt (transactions)

Let us start with the physical layer

 Disks: electromechanical devices
 Dominant since 1956
 Mostly replaced tape
 May get replaced by storage class memory (SCM)

 High density with good BW but high seek and
rotational delays

 Acceptable reliability but for large storage
systems a big issue
 Heat, power, vibration, ...

 Most software (fs, db, etc) till today optimized
for disks

Disk Drive Interfaces
 Early disks: host just sees r/w amplifier (analog)

 only soft sectoring
 ESDI disks: Only data separator

 generates a clock and data signal from pulses in medium
 hard sectoring; protocol with cmds; defect lists in drive

 SCSI disks: Also formatter, data buffer, controller
 Most mature for large systems

 IDE/ATA disks: Also Host adapter in drive
 disadv: only works with IBM PC

 SATA, SAS: serial ATA, serial SCSI

Disk Scheduling
 Disks poor at random R/W, better at sequential
 Seeking activity important factor in performance

 Minimize disk seek time (moving from track to
track)

 Minimize rotational latency (waiting for disk to
rotate the desired sector under read/write head)

 Example: Openoffice startup long!
 Excessive seeks as loader fixes relocations
 Shared objs (many!) mapped and fixing

relocations causes page faults: many seeks

Some Disk Scheduling Algs.
 FCFS
 Shortest Seek Time First (SSTF)
 Elevator or SCAN: Disk arm starts at one end of

disk and moves towards other end, servicing
requests as it goes
 Reverses direction at end of disk

 C-SCAN: same as SCAN, except head returns to
cylinder 0 at end of the disk

 C-LOOK: same as C-SCAN, except head only
travels as far as the last request in each direction

Linux Disk Scheduling
 (Linus) Elevator (default till '03)
 Deadline

 Imposes a deadline on all I/O operations to
prevent resource starvation.

 Anticipatory (default '04 - '06; now removed)
 pauses for a short time (a few ms) after a read

operation in anticipation of other close-by read
reqs

 Completely Fair Queuing (CFQ) (default from '06)
 allocates timeslices for each of the per-process

queues (synch/asynch) for access to the disk
 Null

Test 1. Writes-Starving-Reads

 In background, perform a streaming write, such as:

while true

do

 dd if=/dev/zero of=file bs=1M

done

 Meanwhile, time how long a simple read of a 200MB file takes:

time cat 200mb-file > /dev/null

(from a Linux kernel mailing list discussion)

Test 2. Effects of High Read Latency

 Start a streaming read in the background:

while true

do

 cat big-file > /dev/null

done
 Meanwhile, measure how long it takes for a read of every file in

the kernel source tree to complete:

time find . -type f -exec cat '{}' ';' > /dev/null

(from a Linux kernel mailing list discussion)

Performance Results

I/O Scheduler and Kernel Test 1 Test 2

Linus Elevator on 2.4 45.0 secs 30 mins, 28 secs

Deadline I/O Scheduler on 2.6 40.0 secs 3 mins, 30 secs

Anticipatory I/O Scheduler on 2.6 4.6 secs 15 secs

(from a Linux kernel mailing list discussion)

Summary

 We looked at the basic API for storage
 We discussed layering
 We started looking at the physical layer (disk)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

