
  

Storage Systems

NPTEL Course

Jan 2012
(Lecture 25)

K. Gopinath

Indian Institute of Science



  

Design
 User level: 

− FS consumer: uses Posix ZFS fs 
− device consumer: uses devices avlbl thru /dev 
− GUI (JNI), Mgmt Apps (both access ker thru libzfs)

− eg. zpool(1M), zfs(1M)
 libzfs: unified, object-based mechanism for 

accessing and manipulating storage pools and 
filesystems

 Kernel Level:
− Interface Layer
− Transactional Object layer
− Storage Pool Layer



  

Filesystem
Consumers

Device 
Consumer

GUI Management
 Apps

ZPL (Posix) ZVOL /dev/zfs

JNI

libzfs

ZIL ZAP Traversal

        DMU (data mgmt unit) DSL (dataset/snapshot)

ARC

ZIO pipeline

VDEV Configuration

LDI (device)

USER

KERNEL

Interface
Layer

Transactional
Object
Layer

Pooled
Storage

Layer

From hub.opensolaris.org/bin/view/Community+Group+zfs/source



  

 
 ZVOL (ZFS Emulated Volume): presents raw devices 

backed by space from a storage pool
 DMU (Data Management Unit): 

− presents a transactional object model using flat 
address space presented by the SPA. 

− Consumers interact with DMU via collections of 
objects (objsets), objects and transactions

 Object: an arbitrary piece of storage from SPA
 Transaction: a set of ops that must be committed 

to disk as a group
 DSL (Dataset and Snapshot Layer): 

− groups DMU objsets into a hierarchical namespace, 
with inherited properties, as well as quota and 
reservation enforcement 

− manages snapshots and clones of objsets



  

   ZAP (ZFS Attribute Processor): uses scalable hash algorithms to 
create arbitrary (name, object) associations within an objset. 

− used to implement directories within the ZPL 
− used in DSL to store pool-wide properties
− runs on top of DMU

 ZIL (ZFS Intent Log): For O_DSYNC, uses efficient per-dataset 
transaction log that can be replayed in event of a crash

 Traversal:
− a safe, efficient, restartable method of walking all data within 

a live pool
− basis of resilvering and scrubbing
− walks all metadata looking for blocks modified within a certain 

period of time
− due to COW, can quickly exclude large subtrees that have not 

been touched during an outage period



  

  SPA: glues ZIO and vdev layers into a consistent pool object
 ARC: Adaptive Replacement Cache
 ZIO (ZFS I/O Pipeline): all data must pass thru this  multi-stage 

pipeline when going to or from the disk
− translates DVAs (Device Virtual Addresses) into logical 

locations on a vdev
− checksum and compression if necessary
− splits large block into “gang of blocks”

 VDEV: Virtual devices form a tree, with a single root vdev and 
multiple interior (mirror and RAID-Z) and leaf (disk and file) 
vdevs

 LDI (Layered Driver Interface): interact with physical devices 
and files  (VFS interfaces)



  

 
I/O types  ZIO state        Compression    Checksum    Gang Blocks      DVA management Vdev I/O

RWFCI   open

RWFCI   wait for

                   children ready

-W-                          write compress

-W-                                                         checksum gen

-WFC-                                                                           gang pipeline

-WFC-                                                        get gang header

-W-                                                        rewrite gang header

--F--                                                        free gang members

-C-                                                        claim gang members

-W-                                                                                           DVA allocate

--F--                                                                                           DVA free

-C-                                                                                                                DVA claim

-W-                                          gang checksum gen

RWFCI        ready

RW--I                                                                                                                         I/O start

RW--I                                                                                                          I/O done

RW--I                                                                                                          I/O assess

RWFCI    wait for children done

R--                                                           checksum verify

R--                                                                          read gang members

R--                          read decompress

RWFCI    done                            
                                            

                                               (R)ead, (W)rite, (F)ree, (C)laim, and (I)octl       (from ZFS doc: Sun/Oracle)



  

Types of Disk Redundancy
 Maximum Distance Separable (MDS) vs non-MDS
 MDS: RAID1, RAID4, RAID5, RAID6 popular

− RAID1: mirroring
− RAID5: parity rotated but not in RAID4
− RAID m+n where RAID m used as leaves and RAID n on top 

 RAID10: create multiple RAID1 (mirroring) volumes and then 
catenate them in RAID 0

− RAID6: need two syndromes for tolerating 2 failures
 1st one the regular RAID5: xor of D

0
,...D

i
,...,D

n-1

 2nd one: xor of g0D
0
,...,giD

i
,...,gn-1D

n-1 
, g a generator in a GF

 If one disk fails, RAID5 syndrome sufficient
 If 2 data disks fail, say ith and jth: have to solve D

i
+D

j
=A and 

giD
i
 + gjD

j
=B



  

RAID5 “write-hole”

 Software RAID5 perf poor
− if data upd in a RAID stripe, must also upd parity

 If data part upd but crash/power outage before parity upd, xor 
invariant of RAID stripes lost

− a full-stripe write can issue all writes asynch, but a partial-stripe 
write must do synch reads before it can start the writes 

 Also, a partial-stripe write modifies live data 
− defeats transactional design 

 software-only workarounds: logging but slow!
 HW workaround: 

− NVRAM for both probs but costly...


	Storage Systems
	Design
	Slide 3
	 
	  
	Slide 6
	Slide 7
	Types of Disk Redundancy
	RAID5 “write-hole”

