

Storage Systems

NPTEL Course

Jan 2012
(Lecture 20)

K. Gopinath

Indian Institute of Science

Other Block Devices
 Network Block Devices

− Instead of bus/SAN protocols, use IP networks
− Higher rates of failure (non-availability or data loss)

 Can use redundancy in software
− Slower but more flexible (eg. use heterogenous

devices)
− Allows for much higher scaling

 Bus/SAN networks cannot span continents
− Parallelism an imp issue

Interaction of device and storage
design

 Consider FAT filesystem
− Linked list of clusters

 2 file allocation tables (FATs)
− Floppy devices very unreliable

 FAT systems on flash
− Due to no update in place, every upd to a logical cluster in FAT will be written

to a different physical cluster
− May not need FAT2 at all!
− Can we use an extra FAT to make it transactional?

 Transaction-Safe FAT File System (TFAT) (esp on flash)
− driver layer modification to the original FAT file system
− two file allocation tables (FAT0 and FAT1) but not identical
− changes first made to FAT1
− when transaction complete, FAT0 updated from FAT1, updating stable view of

FS
− However, not widely used! Only in mobile but not in desktop systems

F2FS: Flash friendly Filesystem
 Not for raw flash: assumes a FTL

− jffs2, logfs for raw flash
 Based on a log structure file system

− Segment (or region): 512 blocks of 4KB (2MB)
 Many segments (2^k) make one section

− copy-on-write: data always written to previously unused space
 read from the most recently written region
 mapping for reads changes for every update

− free space managed in large regions that are written sequentially
− cleaning: when number of free regions becomes low

 live data coalesced from several regions into fewer regions and releasing
rest

 overhead is one of the significant costs of log structuring
 As NAND-based devices have different characteristics (due to internal geometry

or FTL)
− many parameters for configuring on-disk layout
− for selecting allocation and cleaning algorithms

FTL and LFS
 FTL typically uses a log-structured design to provide wear-leveling and write-

gathering
− two log structures active on the device
− f2fs uses FTL: f2fs makes no effort to distribute writes evenly to provide wear-

leveling, as provided by FTL
− f2fs provides large-scale write gathering: when many blocks need to be written

at the same time, they are collected into large sequential writes that FTL can
handle easily

− But instead of a single large write, f2fs actually creates up to six in parallel.
 Each set of blocks grouped with similar life expectancies
 Makes garbage collection process required by the LFS less expensive

 However, f2fs doesn't always gather writes into large regions
− Some metadata, and occasionally even some regular data, is written via random

single-block writes: FTL takes over here
− Simplifies design

Reducing Cleaning Overhead
 f2fs has six sections "open" for writing at any time

− different types of data written to each section
− different sections allows for file content (data) to be kept separate from indexing

information (nodes),
− Also to divide data into "hot", "warm", and "cold" sections (thru heuristics)

 Directory data treated as hot and kept separate from file data
− have different life expectancies

 Section full of Cold Data likely to not require any cleaning
 Hot Nodes expected to be updated soon

− if we wait a small amount of time, a section full of hot nodes will have very few live
blocks: cheap to clean

 Problem: whenever a block written, its phys address changed, so its parent in the indexing
tree must change and be relocated, and so on up to root of tree

− Uses a special table for indirecting to actual blocks
− Tree stores offset into table only; metadata changes do not need mod of tree

 They indirect at the same offset in the table
− Table needs updating

 Table uses a special 2-location journaling to reduce overhead

Increasing Parallelism
 Many sections (1+) make a zone

− Zones to try to keep the six open sections in different parts of the device
− Assumption: flash devices often made from a number of fairly separate

sub-devices each of which can process IO requests in parallel
− If zones mapped to sub-devices, then the six open sections can all handle

writes in parallel and make best use of device BW/minimize latency
 Zones the "main" area of the filesystem
 "meta" area contains a variety of different metadata

− eg. segment summary blocks upd in place
− This (small) area not managed by f2fs's lfs and left to FTL

Inode structure

 Uses standard Unix-like Inode
− Indirects, also Double and Triple
− Does not use B-Trees or extents
− Inode size 4KB (larger than ext3) due to COW granularity

 Index tree for a given file has a fixed and known size
 when blocks relocated during cleaning, impossible for changes in

available extents to cause indexing tree to get bigger
 A problem as cleaning done to free space

Conclusions

 Nature of physical device has significant
impact on design!

	Storage Systems
	Other Block Devices
	Interaction of device and storage design
	F2FS: Flash friendly Filesystem
	FTL and LFS
	Reducing Cleaning Overhead
	Increasing Parallelism
	Inode structure
	Conclusions

