

Storage Systems

NPTEL Course

Jan 2012
(Lecture 34)

K. Gopinath

Indian Institute of Science

 Concurrency Control Models

 Distr storage systems: consistency thru txns
− But trasactions need ordering of writes

 FS, DB, Volume Manager (VM) have diff needs
 FS/DB need control on ordering of writes for serializability:

but total ordering (eg. in a SAN) an overkill
 A FS may need stricter guarantees for consistency of

metadata (=> ordering) but may not for data
 Similarly, a parallel FS does not need total ordering for non-

overlapping upds on a file thru multiple I/O daemons
 Aborts are infrequent in FS as many FS can work quite well

with redo-only style transactions
 DB often have long-lived transactions and redo-undo style

transactions are necessary

Failures?

 However, designing clustered FS, clustered Volume
Managers, etc in the presence of failures very hard

− Need a way of using total ordering for "control" messages
(or a subset of msgs) while not using such ordering for
"data" (or majority of) messages

 Timestamp ordering approaches need synchronized clock;
otherwise non-causal orderings may result

− With high speed SANs (2Gbps+), ms accuracy not good
− other models needed if accuracy/resolution of

synchronized clocks not high

Message Synch

 Fly-by-wire control system: correct inspite of process/comm
Byz failures
 redundant lock step (synch) op
 atomic broadcast of sensor readings to all nodes
 Internet news: causal order useful

− reply later than orig msg!
− cricket scores!

 What about dyn data structures? consistency and reliability:
 deliver exactly same info to multiple locs
 virtual synchrony model or GCS

Shared disk filesystems
 Shared storage via a SAN?

 need a filesystem on top of raw block storage
 A shared disk filesystem allows multiple hosts to

concurrently access a shared disk
 Hosts access data on disk directly via the SAN
 Filesystem metadata shared and concurrently updated

from multiple hosts
 Filesystem ensures proper synchronization

− for data access + ensure coherency of caches in
nodes

 There is no single point of failure or bottleneck
− unlike NFS

 But need a Distr Lock Manager (DLM)

 DLM complex!
 Availability of system now depends upon FT of DLM

 Failure of any node in cluster should not cause lock state to become
inconsistent or lost.

 Need to handle concurrent events - local, remote lock requests, failures,
join of nodes
 Stream protocols, like TCP, provide only a point to point bit pipe

− A “broken” TCP stream noticed by the other peer based on most
recent activity, and timeouts may be long (minutes)

− Lack of consensus amongst set of peers wrt a single node
 Each peer may judge a node as dead at different times
 Differing perceptions can comprise consistency

 Using unreliable datagrams means no ordering among messages
and with respect to failures

− Basic message retransmission and flow control issues
complicate the lock protocol code

 Distr Consensus alg needed for agreement on membership&c

 Split Brain

 Consider a system with 2 nodes A and B connected thru
multiple diff connections

− One thru netw (system netw) N1
− One thru SAN (storage netw) N2

 If a live node A is considered dead thru N1 by B but N2
connection to SAN with A is still good, B in dilemma

− Cannot know status of A's connection with SAN
− If assume that A is really dead, inconsistent SAN upd

 Mexican Shootout
 To be really sure, B has to “kill” A if it cannot talk to A thru

N1
 But this is symmetric. A can also decide the same and kill

B! System unavailable!

Ordering betw msgs & reconfigurations

 No guarantees about ordering of data msgs and reconfigurations
 In a concurrent system, this can lead to loss of integrity

 A’s record locks might be forcibly released in a reconfiguration
 When update is received later, an unlocked record will be updated!!!

A B C

A B C

B C

 Note that node A could have recovered fast and joined back
in the system, before the earlier message was delivered to B

Ordering between msgs & reconfigurations

 Instead of sender failing, receiver could fail and recover,
and receive message in new incarnation.

 A might have requested for an object named X in the
previous incarnation. In the new incarnation X could be
something else!!!

A B C

A B C

A B C

A B C

Lack of message ordering
• In an old FS with a lock manager built without message

ordering

A

Lock Service

B

Request
Grant

Request Owner
List

Revoke

Revoke received before Grant at A

 Could have been avoided by use of causal message ordering
since a causal relationship exists between grant and revoke

What is required?
 Reasoning the behavior of concurrent systems difficult
 Failures add further complications, as node failures and

message ordering may not be preserved
 Some earlier “serverless” FS built without even FIFO

ordering: easy to get into deadlocks
 Should provide atleast basic FIFO msg ordering to

simplify system design
 Need “timely” agreement among processes about

membership in system
 Need ordering among msgs with varying levels of strictness -

FIFO, CAUSAL, TOTAL.
 Need a strong messaging+membership system (the group

communication system, GCS) which DLM can use
 If lock protocol runs inside kernel, so should GCS.

Ordering between msgs & reconfigurations

 What is needed is that all msgs sent in a view should be
delivered in that view itself – not some before failure and
some after failure
 Thus message delivery should be atomic w.r.t failures
 "virtual synchrony" model

 When a failure happens all messages sent in current
membership must be flushed out of system before new
membership (view) installed

GCS model
 Integrates messaging and membership
 Membership detected by heartbeats
 Each msg associated with view in which it is sent
 A message is delivered in that view only - view

delivery will be delayed if need be
 Retransmission, flow control all handled by GCS -

interface is asynch
 The membership list is ordered and delivered to

the appls in the same order for all members
 Msgs can be ordered "Fifo", "Causal", "Total"
 Node gets msgs in real time order but appls in

order reqd/specified

GCS model

 When an app joins a group, it is sent a new view msg
 GCS then controls appl with data and view msgs
 On a failure/join detection, a group unstable msg sent,

to let the app know group not stable
 Appl should stop further messages and when done

should tell GCS
 GCS flushes all messages "floating around"
 After all messages flushed, the new view delivered

 Note that if an appl keeps sending msgs, new view
may never get delivered

Summary

 Introduced message ordering problem in a
distr system in the presence of failures

 Helpful if appl can depend on a higher
level model to simplify state of system in
presence of failures

	Storage Systems
	 Concurrency Control Models
	Failures?
	Message Synch
	Shared disk filesystems
	 DLM complex!
	
	Ordering betw msgs & reconfigurations
	Ordering between msgs & reconfigurations
	Lack of message ordering
	What is required?
	Slide 12
	GCS model
	Slide 14
	Summary

