

Storage Systems

NPTEL Course

Jan 2012
(Lecture 21)

K. Gopinath

Indian Institute of Science

FS Design
 Naming and Persistence
 Kernel level design common

− Usually highly concurrent
− Locking issues critical

 eg. special handling for stat, mount/unmount
 User level (microkernel-based, some parallel fs, or

higher level abstraction such as GFS)
− Ops need not be designed to be concurrent in kernel

 Kernel level Design
− Serves kernel components (eg. VM)
− Serves appls (POSIX interface)

 Client of Device Drivers

FS
 Cannot operate on disk storage directly
 Metadata structures have “on-disk” and “in-memory”

formats
− Also have endian ness!
− Disk formats usually more optimized

 no locking info
− Serialized before flushing time

 Clustering critical:
− Eg: multiple inodes in one block (=> “false sharing”)
− For block based disks
− Also for current block based flash/SCM devices

 Caching critical; also prefetching
 Ordering flushes critical

Data Structures
 inode:

− owner, access perms
− file type (REG, DIR, FIFO, CHR, BLK, ...), file size
− access times, #links, disk addrs for blocks in file

 incore inode: addl fields:
− locked?, process-waiting?
− dirty?, mount point?; reference count (# of opens),
− ptrs to other incore inodes (free and hash q)

 superblock:
− size of FS/inode list, dirty?
− #free blocks/inodes, list/bitmap of free blocks/inodes, index

of next free block/inode, locks for lists/bitmap

VFS
 To enable kernel to be independent of different types of

filesystems, abstract interface VFS betw ker and fs
− Also allows network file systems like NFS
− Also pseudo filesystems like /proc, /tmpfs, ...

 Abstract class impl thru function pointers in C
− Function pointers loaded at mount time

 However, kernel VFS infrastructure may not be same
across OSes

 FUSE: help develop FS in userspace using VFS
− FUSE kernel module intercepts call in VFS routine and

upcalls to user code

Redundancy
 Critical structures replicated

− Superblocks
− Large scale systems: inodes also...

 May depend on volume managers
− RAID

 To avoid corruption (eg. from hw faults)
− Extensive self-consistency checks in code (just like in an OS)
− eg: is buffer alloc safe? Invariant: alloc during syscall & free at end

 Disk drive hw problem: cannot interrupt CPU: buf lost!
− Best Effort Service

 Soft errors (retry), hard errors
 If error detected in spite of checks, try to move fs to some

reasonable consistent state
 Usually no non-starvation guarantees

 End-to-end checksums (across disks, HBAs, netw links) needed

	Storage Systems
	FS Design
	FS
	Data Structures
	VFS
	Redundancy

