

Storage Systems

NPTEL Course

Jan 2012
(Lecture 16)

K. Gopinath

Indian Institute of Science

A Common System Interface: Posix 1
− access Tests for file accessibility
− chdir Changes current working directory
− chmod Changes file mode
− chown Changes owner and/or group of a file
− close Closes a file
− closedir Ends directory read operation
− creat Creates a new file or rewrites existing one
− dup Duplicates an open file descriptor
− dup2 Duplicates an open file descriptor
− execl Executes a file
− execle Executes a file
− execlp Executes a file
− execv Executes a file
− execve Executes a file
− execvp Executes a file
− _exit Terminates a process
− fcntl Manipulates an open file descriptor
− fdopen Opens a stream on a file descriptor
− fork Creates a process
− fpathconf Gets config variable for an open file
− fstat Gets file status
− getcwd Gets current working directory

− link Creates a link to a file

− lseek Repositions read/write file offset

− mkdir Makes a directory

− mkfifo Makes a FIFO special file

− open Opens a file

− opendir Opens a directory

− pathconf Gets config variables for a path

− pipe Creates an interprocess channel

− read Reads from a file

− readdir Reads a directory

− rename Renames a file

− rewinddir Resets the readdir() pointer

− rmdir Removes a directory

− stat Gets information about a file

− umask Sets the file creation mask

− unlink Removes a directory entry

− utime Sets file access & modification times

− write Writes to a file

POSIX.1b

 mlock Locks a range of memory
 mlockall Locks the entire memory

space down
 mmap Maps a shared memory object

(or possibly another file) into process's addr
space

 mprotect Changes memory protection
on a mapped area

 msync Makes a mapping consistent
with the underlying object

 munlock Unlocks a range of memory
 munlockall Unlocks the entire address

space
 munmap Undo mapping established by

mmap

 aio_cancel Tries to cancel an asynchronous op

 aio_error Retrieves error status for an
asynchronous op

 aio_read Asynchronously reads from a file

 aio_return Retrieves return status for an
asynchronous op

 aio_suspend Waits for an asynchronous op to
complete

 aio_write Asynchronously writes to a file

 fdatasync Synchronizes at least the data part
of a file with the underlying media

 fsync Synchronizes a file with underlying
media

 lio_listio Performs a list of I/O operations,
synchronously or asynchronously

Device Driver
 With each physical device, device driver code manages

device hardware
− brings device into and out of service,
− sets hardware parameters in the device,
− transmits data from the kernel to the device,
− receives data from the device and passes it back to

the kernel, and
− handles device errors

 Diffs betw application programs versus drivers:

− no main for drivers: driver routines called in response to system
calls or other requirements. Switch tables contain starting
addresses for principal routines included in all drivers.

− parallel execution: a driver may receive a request to write data to a
disk while waiting for a previous request to complet

 no new version of driver (and its data structures) for each
process => must anticipate & handle contention problems
resulting from overlapping I/O reqs processing needed to
handle hardware interrupts

− inefficient driver code can severely degrade overall perf, and driver
errors can corrupt or bring down system.

Device specificity

 mem-mapped I/O or I/O space
− i/o space = all dev regs + frame buffers for mem mapped devices
− each reg has a well-defined addr that is assigned at boot time

using config files used to build system
− sys may assign a range of addrs to each controller and it may in

turn assign it to various devices under it
 programmed I/O (PIO: modems, char terminals, line printers) or DMA

(disks/graphics terminals) or DVMA (interacts thru MMU to xfer data
to device without going thru mem)

Device interrupts

 kernel code at ipl=0
 if arriving interrupt's ipl <= current ipl of system, blocked
 for each device, a fixed ipl

− all devices on a contoller typ have same ipl
 some kernel routines incr ipl to block certain interrupts

− manipulation of disk buffer q => blocks disk interrupts
 set ipl to device's interrupt level

− while saving current value
− Use previously saved value when exiting handler

 In some OS, blockable kernel threads instead of ipl

 typ all interrupts invoke a common routine in kernel with some information to identify interrupt

− saves context, raises ipl to that of interrupt, calls handler; on return, restores context, ret
 identification of interrupt: vectoring? or polling?

− completely vectored: each device provides interrupt vector # for index

− only ipl may be available: search linked list of handlers with same ipl

− vectored may also support linked list of handlers:
 can add dyn loadable dev drivers on a running system
 "override" drivers in front of list: trap/handle certain interrupts, rest to default driver

 handler: most important part of system (runs in priority > kernel code)

− has to be quick and not sleep; also do enough work so that device not idle

− initiate next I/O req pending before exit

Device Driver
 Monolithic kernel vs microkernel

− Interfaces different
 Possibly a loadable module in monolithic
 Dev driver an appl in case of microkernel

 Device driver requires kernel memory and other resources
− Also, may be physical memory (for DMA)
− Or, mapping of memory from/to device

 Kernel needs to issue commands to device
 DDI/DDK (device driver interface/kernel)

− Isolate device drivers from differing versions of kernel
− Isolate kernel from hardware details

• #include <linux/module.h>

• #include <linux/fs.h>

• #include <linux/vmalloc.h>

• #include <linux/string.h>

• #include <asm/uaccess.h>

• #include <linux/errno.h>

• #include "intevts.h"

• struct event_t *evtbuf,*nextevt,*lastevt;

• int recording=0;

• spinlock_t evtbuf_lk;

• extern void (*penter_irq)(int irq,int cpu);

• extern void (*pleave_irq)(int irq,int cpu);

• ssize_t ints_read(struct file *, char *, size_t, loff_t *);

• ssize_t ints_write(struct file *, const char *, size_t, loff_t
*);

• int ints_open(struct inode *, struct file *);

• int ints_release(struct inode *, struct file *);

• static struct file_operations ints_fops = {

• read: ints_read,

• write: ints_write,

• open: ints_open,

• release: ints_release,

• };

void enter_irq(int irq,int cpu) {

 int flags;

 spin_lock_irqsave(&evtbuf_lk,flags);

 if(recording && nextevt!=lastevt) {

 rdtscll(nextevt->time);

 nextevt->event=

 MKEVENT(irq,E_ENTER);

 nextevt->cpu=cpu;

 nextevt++;

 }

 spin_unlock_irqrestore(&evtbuf_lk,flags);

}

void leave_irq(int irq,int cpu) {

 int flags;

 spin_lock_irqsave(&evtbuf_lk,flags);

 if(recording && nextevt!=lastevt) {

 rdtscll(nextevt->time);

 nextevt->event=

 MKEVENT(irq,E_LEAVE);

 nextevt->cpu=cpu;

 nextevt++;

 }

 spin_unlock_irqrestore(&evtbuf_lk,flags);

}

	Storage Systems
	A Common System Interface: Posix 1
	POSIX.1b
	Device Driver
	
	Device specificity
	Device interrupts
	Slide 8
	Device Driver
	#include <linux/module.h> #include <linux/fs.h> #include <linux/vmalloc.h> #include <linux/string.h> #include <asm/uaccess.h> #include <linux/errno.h> #include "intevts.h" struct event_t *evtbuf,*nextevt,*lastevt; int recording=0; spinlock_t evtbuf_lk; extern void (*penter_irq)(int irq,int cpu); extern void (*pleave_irq)(int irq,int cpu); ssize_t ints_read(struct file *, char *, size_t, loff_t *); ssize_t ints_write(struct file *, const char *, size_t, loff_t *); int ints_open(struct inode *, struct file *); int ints_release(struct inode *, struct file *); static struct file_operations ints_fops = { read: ints_read, write: ints_write, open: ints_open, release: ints_release, };

