

Storage Systems

NPTEL Course
Jan 2012

(Lecture 01)

K. Gopinath
Indian Institute of Science

Introduction
 Why Storage Systems?

 Earlier: (processing + storage) and networking
 Now: processing, storage and networking
 Fast networks enable separation from “processing”

 Devices, Protocols, Layers/Systems
 Old and New Devices: Tape, Drum, Disk, Solid State
 Protocols: NFS, Cloud storage API
 Layers/Systems: Google FS, Mail storage

 Issues
 Older: concurrency with CPU, handling device diversity
 Newer: scale, distribution, error mgmt, security, RT, QoS,

manageability

Why is storage different?
 Consider long term storage (multiple decades):

Stored data can be accessed decades later!

− Formats, devices, etc can change
− Data not interpretable unless auxiliary

information also stored (Recursion problem!)
 Consider security: Why storage security different

from, say, network security?
 Network security is across “space”

− Network transfers happen within a short time
(unless space probe netw packets to Pluto!)

 Storage security is across both “space and time”
− If using keys, keys may have to survive years!

Naming and Storing
 Two important functions:

 Give a name to an object
− Can involve some processing (eg. add name to an index)
− Or, name itself may be computed based on contents

 Store an object
− May involve other reads or stores!
− May involve significant computation

 Compression, encryption, coding, or deduplication: remove redundancy
 May need to keep aux. information about object

− Metadata vs data; recursion? (metadata about metadata...)
− Metadata loss vs data loss

 Access (r/w): device specific aspects determine speed
 Reads sequential, non-sequential or random
 Writes in-place or out-of-place

Large persistent data structures
 For processing, parts need to be brought into mem.

 Two copies: “in memory” and “on-disk”
 Atomicity and Consistency issues

 Algorithmic aspects need to be carefully taken care of
 Number of objects can be in billions
 Size of object can be in gigabytes
 As time progresses, newer algs needed as scale changes

− Mail directories can have 1000's of msgs, each a file!
− Creating a file requires locking directory
− Concurrent creates to same directory may become lock-bound

 Critical with web-level storage systems
 Many newer models (eg. key-value stores) since c. 2000

Ext2 FS
(from Wikipedia)

 Google FS
(from Wikipedia)

Deep Storage Stack
 Various types of abstractions in stack

 Device
 Block
 File
 Application level (buffering in libc, for eg.)

 Finer sublayers in each layer
 SCSI has upper (device-specific), mid (protocol specific)

and lower (physical communication layer)
 For scalability, network stack part of storage stack
 A good part of stack in kernel

 Increasingly, storage stack migrating out of kernel with
separation of processing and storage (eg. GFS)

Storage Characteristics
 Concurrency arises naturally

 Wide disparity in speeds of memory and storage
 Have to mask slowness of storage
 Make processing and storage go at their own rates and

use interrupts (or sometimes polling) to signal
completion of slow storage operations

 Historic reason why operating systems developed
 Storage has to be typically persistent over time

 Amount increases typically with time
 But not all imp over time; keep imp part in fast storage?

 “Caching” and “tiering” arise naturally
 Have to choose 2 of 3: speed, capacity or cost

Storage Performance
 Storage often slowest component

 Cache!
 Within single device, efficiency by:

 merging requests
 scheduling requests in an order that is best wrt device

(out-of-order execution commonplace)
− Higher level software has to work around this aspect
− If a particular order required, left to “user”
− Semantically not much guaranteed

 Asynchronous processing often used: aio
 Parallelism across multiple devices/threads:

 Multiple Heads (Disks)
 Multiple chips (SSDs)

Optimization Framework
 Due to slowness of devices, optimization of

accesses important
 eg. what to cache, what to prefetch?
 But usage patterns typically not known a priori
 Big difference in performance whether sequential

access or random
 System slow if too many on demand migrations from

slow to fast tier of storage (latency delays)
 Often, opts. critical and override “semantics”

 Out-of-order processing typical
 Complex higher-level software

 Learning on the job important
 Simple and robust methods useful

Storage Protocols
 Interrupt driven rather than wait/poll

 On completion, interrupt CPU or HBA
 To avoid interrupt overhead, HBA or similar agents

− Helps Segmentation and Reassembly (SAR)

 Split-phase transactions common
 for eg: on completion of (a long) seek, slave takes bus

 Protocol endpoints preferably “virtualizable”
 SCSI devices can be on an electrical bus, network or

Internet if physical layer handled correctly
− Protocols survive much longer

 Devices can have arbitrary structure as long as they speak
SCSI protocol

− Even big servers!

Summary

 Storage systems design has many ramifications
for the rest of the system
 Provide abstractions based on application

needs and devices
 Design needs to be sensitive to cost, devices,

manageability
 Introduce newer abstractions with time

− eg. key value stores
 Storage systems need to scale to support large

scale computing systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

