

Storage Systems

NPTEL Course

Jan 2012
(Lecture 31)

K. Gopinath

Indian Institute of Science

Multicast Oscillatory Behaviour
 Nodes experience disturbances eg. Java gc pauses, Linux sched

delays, flushing data to disk
 Prevents nodes from forwarding packets eg. when appl thread does

not respond or when packets do not reach node because of a link
problem.

 For a while, root continues sending, so incoming packets from the
upstream link fill node’s buffers.

 Flow control causes node’s parent node to stop sending, which in
turn causes its buffers to fill up.

 If node’s disturbance persists, then eventually all buffers on path
from root to the node become full, and root’s sending throughput
drops to zero

 In large trees (10K-60K nodes in cloud), when each node is
disturbed for one sec/hour on average, throughput degradation (up
to 90%) occurs even if message loss is negligible.

FLP/CAP Related Problems

 Distributed Consensus: FLP Impossibility result
 Distributed Locking/Synchronization
 Distr Commit in clustered/distr fs and db

− Slightly similar: Waitfree synchronization
 Let us consider the state of art in current large scale storage

systems:
 Distr locking, synch, commit problems exist
 How are they being handled? What guarantees are being

given?

Storage APIs
 POSIX: Read (fd, buffer, count)

 Partial writes to a file OK (appends, overwrites, etc)
 mmap avlbl

 NFS: Read (fd, offset, buffer, count)
 Partial writes and mmap avlbl

 Amazon S3: “storage” service
 Key Value store; no features like partial write or mmap!

 ZooKeeper: hierarchical “file”-like service
 In memory tree-based info for distributed coordination
 Replicated
 Provides primitives to construct more complex services

− Synchronization, group membership

S3 Interface: Key Value Store
 Amazon S3 stores data in named buckets

 Each bucket is a flat namespace, containing keys
associated with objects (but not another bucket)

 Max obj size 5GB. Partial writes to objects not allowed
(must be uploaded full), but partial reads OK

 Storage API
 create bucket
 put bucket, key, object
 get bucket, key
 delete bucket, key
 delete bucket
 list keys in bucket
 list all buckets

ZooKeeper
 Tree-based info (“filesystem”)
 Fast and simple
 each node stores one or more pieces of info (“file”)
 very simple programming interface:

− create: creates a node at a location in the tree
− delete: deletes a node
− exists: tests if a node exists at a location
− get/set data: reads/writes the data from a node
− get children: retrieves a list of children of a node
− Sync: waits for data to be propagated

Eventual Consistency
 S3 model: When no updates occur for a long period of

time, eventually all updates will propagate through the
system and all the replicas will be consistent
 Often called BASE: Basically Available, Soft-state and

Eventually Consistent!
 Contrast with ACID

 Zookeeper consistency model:
 The clients view of the system is guaranteed to be up-

to-date within a certain time bound

ZooKeeper Consistency model

 guarantees:
 Sequential Consistency - Updates from a client will be

applied in the order that they were sent.
 Atomicity - Updates succeed or fail. No partial results.
 Single System Image - A client will see the same view of

the service regardless of the server that it connects to.
 Reliability - Once an update has been applied, it will persist

from then until a client overwrites the update.
 Timeliness - The clients' view of the system is guaranteed

to be up-to-date within a certain time bound.

ACID vs. BASE
 ACID

 Strong consistency, Isolation, Focus on “commit”
 Availability?
 Conservative (pessimistic)
 Nested transactions
 Difficult System evolution

 BASE
 Weak consistency: stale data OK
 Availability first, Best effort, Approx answers OK
 Aggressive (optimistic)
 Simpler and Faster
 Easier System evolution

 • Abstract problem related to consistency: commit or
consensus protocols

 Atomic Commitment (AC) and Consensus: both require fault
tolerant agreement among processes
AC:

 AC1: No two processes reach different decisions.
 AC2: Commit is decided only if all votes are Yes.
 AC3: If there are no failures and all votes are Yes, then all

processes decide to Commit.
 AC4: If all existing failures are repaired and no new failures

occur for a sufficiently long period of time, then all processes
will reach a decision.

 No Blocking: All correct processes reach a decision:
Unrealizable! (General's paradox)

Commit Protocols

Consensus

 Agreement (A) All non-faulty processes reach the same
decision

 Validity (V) If all non-faulty processes' votes are Yes, they will
all decide to Commit; if all non-faulty processes' votes are No,
they will all decide to Abort

 Weak Validity (WV) If there are no failures, V holds
 Very Weak Validity (VWV) Both Commit and Abort are

possible decision values: i.e. there is an execution in which
correct processes decide to Commit and an execution in which
correct processes decide to Abort

 Satisfaction of A and V: consensus problem.
 Satisfaction of A and WV: weak consensus
 Satisfaction of A and VWV: very weak consensus

Relation Betw AC and Consensus
• Differences betw AC and diff versions of consensus concern
 the decisions reached by faulty processes; and
 the strength of the conditions required
AC attainable only under the assumption that process
failures are benign

Can prove
 AC 2,3,4 imply WV but not the converse
 With “no-catastrophe” axiom (NC): all failures repaired and no

new failures for a sufficient period of time, then AC1, AC4 and
NC imply A

AC conditions stronger than WV, assuming NC

	Storage Systems
	Multicast Oscillatory Behaviour
	FLP/CAP Related Problems
	Storage APIs
	S3 Interface: Key Value Store
	ZooKeeper
	Eventual Consistency
	ZooKeeper Consistency model
	ACID vs. BASE
	
	Consensus
	Relation Betw AC and Consensus

