

Storage Systems

NPTEL Course

Jan 2012
(Lecture 23)

K. Gopinath

Indian Institute of Science

Abstractions Used
Buffer related
 getblk: given a filesystem number and disk block number,

get its locked buffer
 brelse: given a locked buffer, wakeup waiting procs and

unlock it
 bread: read a given disk block into a buffer
 breada: bread + asynch. read ahead
 bwrite: write a given buffer to a disk block
 alloc: allocate a free disk block and return buffer using

getblk
 free: free a disk block

Inode related

 iget: get a locked inode (doing bread if necessary)
given inode number

 iput: release an inode; if ref count 0, writes dirty inode
 bmap: given inode and byte offset, returns disk block

num and offset
 namei: given a path, get the locked inode
 ialloc: assign a new disk inode for a newly created file
 ifree: free an inode (link count 0)

Link (src, target)

 isrc = namei(src) (get inode for src)
 if too many links on file or linking dir without su, iput(isrc)

(releases inode), ret err
 incr link count on inode, upd disk inode & unlock
 get parent inode (ptargetdir) of dir to contain new

filename (uses namei)
 if new file exists, or src/target on diff fs, undo upd of

inode and ret err
 create new dir entry in ptargetdir: new file name + isrc
 iput (ptargetdir) (release parent dir inode)
 iput(isrc) (release src file)

Write
 DAC/MAC?
 Locks? Range locks?
 Trigger? Freeze/thaw info?
 bmap
 Append/overwrite?

− Alloc blocks?
− NFS write?
− Segmap? (kernel map of file?)

 Manage log space: Mem? Disk?
 Logging and flushing
 Manage visibility of curr write to other syscalls
 Manage VM allocs and buffers

General Issues
 Single threaded kernels: interleaved execution of getblk with

interrupt handler or with brelse
− May need to block interrupts in general

 Multi-threaded kernels: in addition, with other concurrent fs ops
 Avoid deadlocks at all costs

− use lock ordering where possible!
 Eg: in rename, have to lock source and target dir entries
 (eg. zfs) lock dir with smallest object id first, or if it's a tie,

the lexically first
− where not possible to order, drop locks as necessary
− marshall resources and be conservative to avoid deadlocks

 To freeze and thaw fs, need infrastructure
 With errors/triggers, have to store continuation and restore it

	Storage Systems
	Abstractions Used
	Inode related
	Link (src, target)
	Write
	General Issues

