

Storage Systems

NPTEL Course

Jan 2012
(Lecture 35)

K. Gopinath

Indian Institute of Science

Some Definitions
 static/dynamic membership in a group

 static: typically mapping betw hw and processes that are
restarted on failure

 dynamic: new processes started, join system; leave
system on termination, failure or disconnection

 dynamically uniform: if any process performs some action, all
processes that remain operational also perform it =>
externally visible actions
 different from commit: in commit, if any process (incl a

process that will fail) commits, all (statically defined)
processes also commit: recovery on failed process

 in dynamically uniform: if a process leaves (fails), never
rejoins system

 DYN uniform

crash

crash

Inspite of crash at sender S, if msg
delivered at A, it WILL be delivered
at B, C, D

Eg: issuing money from an ATM
Commit, Paxos!

A

B

C

D

S

In non-dyn uniform, if
S and A crash, it is
OK if none of the
survivors get the msg

More Definitions...
 non-dynamically uniform: states and actions of processes

that subsequently fail discarded; operational part of the
system defines system

 failure-atomic multicast: 2 types
 if m sent using a dynamic uniform protocol, when p

delivers m, it also knows that any future execution of
the system in which a set of processes remains
operational will also guarantee the delivery of m within
its remaining destinations among that set of processes

 if p receives a non-uniform multicast m, p knows that if
both the sender of m and p crash or are excluded from
the system membership, m may not reach its other
destinations

More Definitions...
 reliable bcast/mcast: validity, agreement, integrity amongst

correct processes
 if a correct process casts msg m, all correct processes

eventually deliver m
 if a correct process delivers m, all correct processes

eventually deliver m
 for any m, every correct process delivers m atmost once &

only if m cast
 uniformity: differs in agreement & integrity wrt correct/faulty

processes:
 if a process delivers m, all correct processes eventually

deliver m
 for any m, every process delivers m atmost once & only if

m cast

View Synchrony Model (Birman)
 introduce synchronization mechanism for failure-atomic

protocols wrt group membership changes
 each process at each time instant has a unique view of

membership of group
 processes that proceed together thru 2 consecutive views

deliver the same set of msgs betw these views
 each msg assoc with a view & all send/rcv for a msg

occur at processors with that view; send/delivery events
considered as a single instantaneous event

 virtual synchrony (VS): use view synchrony to support a
execution model for efficient fault-tolerant computing
 defined interms of an unrealizable “close synchrony”

model

Close/Virtual Synchrony

 Close synchronous execution model (infeasible!)
 Multicast delivered to all group members as a single, reliable

instantaneous event
 reliable comm (not TCP streams that break unreliably)
 group addr expansion: membership of group fixed at the delivery of a

mcast
 delivery ordering of concurrent msgs: diff mcasts distinct & ordered

same; of related msgs: causal order possible
 state transfer: at well defined points (eg: a new member join)
 failure atomicity: mcast a single logical event; failure reporting thru

group membership changes that are ordered wrt multicast => atomic
mcast

 Virtual synchrony: permits asynch executions for which there exists some
closely synch execution indistinguishable from the asynch one. =>
Virtually synchronous process groups

Differences with other models
 transactional serializability:

 both VS & transactional order-based execution
models

 transactional: focus on isolation of concurrent txns
from one another, persistent data & rollback

 VS: direct cooperation betw group members, failure
handling, dynamic reconfig to make progress when
partial failures occur

 commit: a form of reliable multicast but also serializability
& durability

 multicast delivery: weaker guarantees

Group Membership Service (GMS)

 Behavior depends upon future events
 suppose a process p suspects that process q is faulty
 if p itself remains in the system, q will eventually be

excluded from it
 But cases in which p might itself be excluded

 both p and q might be excluded
 system as a whole prevented from making progress if less

than majority that participated in previous system view
remain operational

 unfortunately, not clear which case applies until later in the
execution when system's future becomes definite

 Good spec: if p suspects failure of q then q eventually
excluded from system, unless p itself is

Group Membership Protocol for GMS
Servers

 on partition: progress only in primary component
 in non-primary: only safe actions
 on an eject of p from primary: split brain problem if p

does not know that it has been ejected
 can use a real clock (synch to epsilon): p should detect

within delta
 views should be causally ordered
 merging

 primary component membership should overlap with that of
previous primary

 2PC if GMS coord live; otherwise 3PC

2PC/3PC Details 2PC:
 1st phase: list of add/delete events sent to all (incl coord);

ack response
 2nd phase: coord waits for majority acks

− if majority, commit upd (incl failures during 1st
phase); all upd new view

− if majority do not respond, wait till comm restored or
run a special protocol

− must prevent a new primary component in which
coord not part (impossible!)

 3PC: new coord if coord fails
 informs atleast majority about coord failure
 collect acks and current membership info from all
 proposes new membership (new add/delete + detected

in 1st phase + from old coord). Next as in 2PC

VS Reqs
 system membership takes the form of system views

 initial system view at system start
 subsequent views differ by the addition or deletion of processes

 only processes that request to be added to system added
 only processes suspected of failure or that request to leave system

deleted
 maj of processes in view i must acquiesce in composition of view i+1
 starting from an initial system view, subsequences of a single sequence of

system views reported to system members; each system member
observes such a subsequence starting with the view in which it was first
added to the system, and continuing until it fails, leaves the system, or is
excluded from the system

 if process p suspects process q of being faulty, then if the core GMS
service is able to report new views, either q will be dropped from the
system, or p will be dropped, or both

 In a system with synchronized clocks and bounded message latencies,
any process dropped from the system view will know within bounded time

Impossibility of Synch 2 Clocks!
 Consider 2 nodes P, Q with 2 clocks:

 Clock_P, say, ideal: Time = t
 Clock_Q: Time = a*t+b (a skew and b offset)

 Delays (asymmetric!)
 P2Q: d1; Q2P: d2

 Need to determine a, b, d1, d2 thru any set of netw pkt
exchanges
 Impossible! (Graham/Kumar'04)
 From linear algebra...

 However, can determine a, d1+d2 (roundtrip delay)
 Offset b cannot be
 Also sender can predict receiver time when pkt received

API for Clients of GMS

 join(pid, callback) returns (time, GMS list)
 callback called when membership changed
 idempotent: if join fails, can issue it again to some

other GMS server
 leave(pid) returns void

 idempotent; fails only if GMS server fails
 monitor(pid, callback) returns callbackid

 GMS calls callback(pid) if pid fails
 idempotent; fails only if GMS server fails

Ordering semantics

 none
 FIFO: if a process casts m before m', no correct process

delivers m' before m
 causal: if cast of m precedes m', no correct process delivers

m' before m
 e precedes f (Lamport) iff

− a process executes both e and f in that order, or
− e is the cast of some msg m and f is the delivery of m

at some process, or
− there is an event h such that e precedes h and h

precedes f
 total: if at a correct process p, m delivered before m', then

m will be delivered before m' at all destinations they have in
common

	Storage Systems
	Some Definitions
	
	More Definitions...
	Slide 5
	View Synchrony Model (Birman)
	Close/Virtual Synchrony
	Differences with other models
	Group Membership Service (GMS)
	Group Membership Protocol for GMS Servers
	2PC/3PC Details
	VS Reqs
	Impossibility of Synch 2 Clocks!
	API for Clients of GMS
	Ordering semantics

