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Indus Script

• Yet un-deciphered: meaning across time not yet accomplished
• Compare with hieroglyphics (Egyptian Rosetta stone): three scripts 

side by side

• What is the problem? Not enough contextual info:
●         can see the script (human "readable")
●         no mapping between symbols and phonemes
●         need interpretation of sequences of symbols
●         a problem in archaeology, history, society,...
●         



Vedas
• Transmitted across atleast 3500-5000 years without differing versions

– Including exact pronunciation!
– “UNESCO proclaimed the tradition of Vedic chant a Masterpiece of the Oral 

and Intangible Heritage of Humanity on November 7, 2003”
• What "technology" used? Redundancy! 
• Various "pathas" of Samhita text: can recover from a corrupted text due to 

added redundancy: RAID-like! (Redundant Array of Indep Disks)

                Pada-patha: each word in its separate form                                           
       Krama-patha: connects a word in pairs                                                         
 ABCD becomes AB BC CD DE... (“2-mirroring”): 2 copies

                Jata-patha: ABBAAB (“3-mirroring”): 3 copies of A, B, ...

a                 Ghana-patha (ABBA ABCCBA ABC  BCCB BCDDCB BCD...)(“10x”) 
– Metrical (similar to checksums!) & Musical                 

       "Information dispersal" 
– Human Reproduction! (Oral transmission)

   Use efficient “virtualizers”!



  

  
1,2,2,1,1,2,3,3,2,1,1,2,3. 

From sanskrit.safire.com 
1,2,3

From 
sanskrit.safire.com/KYV2265.html



What is needed?
from  Avoiding Technological Quicksand: Finding a Viable Technical 

Foundation for Digital Preservation by Jeff Rothenberg January 1998



What is needed? (contd)
from  Avoiding Technological Quicksand: Finding a Viable 

Technical Foundation for Digital Preservation by Jeff Rothenberg 

January 1998



  

Film Archival
 Data preservation requires active energy to move it from one 

format to the next new generation format 
− needs to be done every few years
− cost is so high that many movies shot digitally stored in 

analog form as a fallback in case the migration  
unsuccessful

 Storing a digital master record of a movie costs about $12,514 
a year, versus $1,059 to archive a conventional film master in 
a salt/limestone mine 
− US Academy of Motion Picture Arts & Sciences after a 

yearlong study of digital archiving in the movie business 
(2007)



  

DNA storage (2013)
 Longevity of Data problem:

− Hardware changes all the time!

− But not DNA structure!

− Very compact too
 2013: Use ternary encoding (A, T, C with G for breaking long seqs of A/T/C as 

they get missequenced often)

− For addl redundancy: 100-bases-long DNA inserts staggered by 25 bases so 
that consecutive fragments have a 75-base overlap

− storage density about 2.2 Petabytes per gram
 enough DNA to recover the data about ten additional times

Towards practical, high-capacity, low-maintenance information storage in synthesized 
DNA (Nick Goldman et al Nature'13)



  

Insurable Storage 

 Digital Documents as insurable property
− Provide economic incentives for storage 

service producers and consumers to jointly 
create a marketplace for a diversity of 
differentially-priced services

 Insurable Storage Services



  

Types of Storage
 “Mobile” Storage

− Memory Stick, Camera, Smart Phone, Laptop 
 Personal Storage

− PC, “Home” RAID systems, “Home” NFS server 
 Dept/Organizational Storage

− NFS/CIFS server
 Cloud Storage
 Highly Available Storage
 Parallel Storage
 Web-scale storage
 Secure Storage
 Attribute-based Storage (“QoS”)
 Long term storage

− DNA storage!?



  

Conclusion

 Wide variety of storage designs
− Each requires different combinations of sw/hw

 Many are still in research stage...



  

Interfaces to Storage
 Note that Unix tries to treat everything as a file!

− Hence some “file” ops might not have anything with storage ops
 Libc

− <stdio.h> in C/Unix but may be arbitrary (for eg, S3 or in parallel user FS)
− 3 types of buffering: 

 unbuffered, block buffered, and line buffered (default block)
− FILE structure: a file descriptor, current stream position, eof/error indicators, a 

pointer to the stream's buffer, if applicable
− May be able to redefine some functions or load a different shared obj
− User level fs vs kernel

 System call level: POSIX.1-2008 now
− Inode (metadata about file)
− Filesystems may be loadable at runtime (except that contains root image)

 Device Driver
− Typically loadable at runtime

 Device
 Implications for new models of security/perf...

− Encryption
− Mandatory access control/Info flow models
− Compression



  

libc
• File access 
 fopen opens a file
 freopen opens a different file with an existing stream
 fflush synchronizes an output stream with the actual file
 fclose closes a file
 setvbuf sets the buffer and its size for a file stream

− setbuf sets the buffer for a file stream
 fwide  switches a file stream between wide character I/O and narrow 

Direct input/output 
 fread reads from a file
 fwrite writes to a file



  

libc

• Unformatted input/output 
 fgetc getc fgetwc getwc reads a byte/wchar_t from a file stream
 fgets fgetws reads a byte/wchar_t line from a file stream
 fputc putc fputwc putwc writes a byte/wchar_t to a file stream
 fputs fputws writes a byte/wchar_t string to a file stream
 getchar getwchar reads a byte/wchar_t from stdin
 gets reads a byte string from stdin (deprecated in C99, obsoleted in 

C11)
 putchar putwchar writes a byte/wchar_t to stdout
 puts writes a byte string to stdout
 ungetc ungetwc puts a byte/wchar_t back into a file stream



  

libc
• Formatted input/output 
 scanf fscanf sscanf wscanf fwscanf swscanf reads formatted 

byte/wchar_t input from stdin, a file stream or a buffer
 vscanf vfscanf vsscanf vwscanf vfwscanf vswscanf reads formatted 

input byte/wchar_t from stdin, a file stream or a buffer using variable 
argument list

 printf fprintf sprintf snprintf wprintf fwprintf swprintf prints formatted 
byte/wchar_t output to stdout, a file stream or a buffer

 vprintf vfprintf vsprintf vsnprintf vwprintf vfwprintf vswprintf prints 
formatted byte/wchar_t output to stdout, a file stream, or a buffer 
using variable argument list

 perror writes a description of the current error to stderr



  

libc
• File positioning 
 ftell returns the current file 

position indicator
 fgetpos gets the file position 

indicator
 fseek moves file position indicator 

to a specific location in a file
 fsetpos moves file position indicator 

to a specific location in a file
 rewind moves the file position 

indicator to the beginning in a file

Error handling 

 clearerr clears errors

 feof checks for the end-of-file

 ferror checks for a file error

Operations on files 

 remove erases a file

 rename renames a file

 tmpfile returns a pointer to a 
temporary file

 tmpnam returns a unique filename



  

A Common System Interface: Posix 1
− access Tests for file accessibility
− chdir Changes current working directory
− chmod Changes file mode
− chown Changes owner and/or group of a 

file
− close Closes a file
− closedir Ends directory read operation
− creat  Creates a new file or rewrites 

existing one
− dup  Duplicates an open file descriptor
− dup2  Duplicates an open file descriptor
− execl Executes a file
− execle Executes a file
− execlp Executes a file
− execv Executes a file
− execve Executes a file
− execvp Executes a file
− _exit Terminates a process
− fcntl Manipulates an open file descriptor
− fdopen Opens a stream on a file descriptor
− fork Creates a process
− fpathconf  Gets config variable for an open 

file
− fstat Gets file status
− getcwd Gets current working directory

− link Creates a link to a file

− lseek Repositions read/write file offset

− mkdir Makes a directory

− mkfifo Makes a FIFO special file

− open Opens a file

− opendir Opens a directory

− pathconf  Gets config variables for a path

− pipe Creates an interprocess channel

− read Reads from a file

− readdir Reads a directory

− rename Renames a file

− rewinddir Resets the readdir() pointer

− rmdir Removes a directory

− stat Gets information about a file

− umask Sets the file creation mask

− unlink Removes a directory entry

− utime  Sets file access & modification times

− write Writes to a file
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