

Storage Systems

NPTEL Course

Jan 2012
(Lecture 04)

K. Gopinath

Indian Institute of Science

Ext2 FS
(from Wikipedia)

 Google FS
(from Wikipedia)

Deep Storage Stack
 Various types of abstractions in stack

 Device
 Block
 File
 Application level (buffering in libc, for eg.)

 Finer sublayers in each layer
 SCSI has upper (device-specific), mid (protocol specific)

and lower (physical communication layer)
 For scalability, network stack part of storage stack
 A good part of stack in kernel

 Increasingly, storage stack migrating out of kernel with
separation of processing and storage (eg. GFS)

Storage Characteristics
 Concurrency arises naturally

 Wide disparity in speeds of memory and storage
 Have to mask slowness of storage
 Make processing and storage go at their own rates and

use interrupts (or sometimes polling) to signal completion
of slow storage operations

 Historic reason why operating systems developed
 Storage has to be typically persistent over time

 Amount increases typically with time
 But not all imp over time; keep imp part in fast storage?

 “Caching” and “tiering” arise naturally
 Have to choose 2 of 3: speed, capacity or cost

Storage Performance
 Storage often slowest component

 Cache!
 Within single device, efficiency by:

 merging requests
 scheduling requests in an order that is best wrt device

(out-of-order execution commonplace)
− Higher level software has to work around this aspect
− If a particular order required, left to “user”
− Semantically not much guaranteed

 Asynchronous processing often used: aio
 Parallelism across multiple devices/threads:

 Multiple Heads (Disks)
 Multiple chips (SSDs)

Optimization Framework
 Due to slowness of devices, optimization of accesses

important
 eg. what to cache, what to prefetch?
 But usage patterns typically not known a priori
 Big difference in performance whether sequential access

or random
 System slow if too many on demand migrations from

slow to fast tier of storage (latency delays)
 Often, opts. critical and override “semantics”

 Out-of-order processing typical
 Complex higher-level software

 Learning on the job important
 Simple and robust methods useful

Storage Protocols

 Interrupt driven rather than wait/poll
 On completion, interrupt CPU or HBA
 To avoid interrupt overhead, HBA or similar agents

− Helps Segmentation and Reassembly (SAR)
 Split-phase transactions common

 for eg: on completion of (a long) seek, slave takes bus
 Protocol endpoints preferably “virtualizable”

 SCSI devices can be on an electrical bus, network or Internet
if physical layer handled correctly

− Protocols survive much longer
 Devices can have arbitrary structure as long as they speak

SCSI protocol
− Even big servers!

Summary
 Storage systems design has many ramifications

for the rest of the system
 Provide abstractions based on application

needs and devices
 Design needs to be sensitive to cost, devices,

manageability
 Introduce newer abstractions with time

− eg. key value stores
 Storage systems need to scale to support large

scale computing systems

	Storage Systems
	Ext2 FS (from Wikipedia)
	 Google FS (from Wikipedia)
	Deep Storage Stack
	Storage Characteristics
	Storage Performance
	Optimization Framework
	Storage Protocols
	Summary

