

Storage Systems

NPTEL Course

Jan 2012
(Lecture 24)

K. Gopinath

Indian Institute of Science

FS semantics

 Mostly POSIX notions
 But not really fixed

− Many impl flexibilities/dependencies allowed
− Atomicity of a copy of a 1TB file difficult!
− try “cp a, b&; cp b, a”

 Often need to support common idioms, even if not in
POSIX
− Shell scripts' expectations

Right specification difficult to
define: mmap

 mmap depends on VM: granularity at page level
only

 what is the semantics of read/write past eof in the
middle of a page?

 what happens with extending writes in presence of
concurrent r/w?

 when can an user see the writes (during or after
write?)

 File Corruption Prob

 Files rapidly accessed on a WinNT file server,
intermittent data corruption! Sep96

 esp news server data files & on MP systems
 appln performing a write-extend of a file
 cache manager read ahead thread on current

last page (part of larger read); write blocked
 mem manager wakes up write & zeroes last

page beyond curr file size & writes new data
into page; read also zeroes later!

Record and file locking: cp a, b&; cp b, a

 one rwlock: deadlock! but with rwlock + glock: OK
− cp a, b: maps a & then write into b from mapping of a

 mmap not atomic but r/w “atomic”: need rwlock (shared/excl)
 mmap'ed pages may fault: need to call VOP_GETPAGE

− Holes in file: allocates atomic; need a lock (glock)
− Interlocking betw truncate ops and getpage ops: truncate

has to prevent getpage from bringing in pages; use glock
 mmaping: rwlock a; map; rwunlock a;
 reading: rwlock b; uiomove (getpage a); ...

− cp b, a:
 rwlock b; map; rwunlock b;
 rwlock a; uiomove (getpage b); ...

 If both glock and rwlock the same lock? deadlock!

Locking issues
 a thread locks a resource and calls a lower-level routine on that

resource; lower-level routine may also be called by others without
locking resource

 deadlock possible if lower-level routine does not know if resource
locked

− unless params passed informing low-level routine about locked
resources but this is non-modular!

 recursive locks can avoid deadlocks: need owner ID
− functions deal with their own locking reqs: clean, modular i/f; do

not need to worry about what locks callers own
− Ex: ufs_write handles both writes to files/dirs

 files: unlocked vnode passed from file tbl entry to ufs_write
 dirs: vnode passed locked f DNLC/pathname traversal func

ZFS
 Integrated file system + logical volume manager

− zfs and zpool: ZPL (ZFS POSIX Layer), DMU (Data
Management Unit), and SPA (Storage Pool Allocator)

− design for fast, reliable storage using cheap,
commodity disks

− copy-on-write transactional object model
 blocks containing active data never overwritten in

place
 instead, a new block allocated + written, then any

metadata blocks referencing it are similarly read,
reallocated, and written.

 To reduce overhead, multiple updates grouped into
transaction groups, and an intent log used when
synch write semantics required

 Key features

− data integrity verification against data corruption
 Each block of data/metadata checksummed and

checksum value saved in the pointer to that block (not
in the actual block itself)

− Merkle tree maintained (all thru file system's data
hierarchy to root node)

 support for high storage capacities (128-bit FS)
 zpool made of virtual devices (vdevs) that are

constructed from block devices
− RAID-Z to avoid “write-hole”. Also RAID-Z2/3
− ARC2 (read caching) and ZIL (ZFS intent log for write

caching)
− snapshots and copy-on-write clones
− native NFSv4 ACLs, deduplication, encryption,

compression

Design
 User level:

− FS consumer: uses Posix ZFS fs
− device consumer: uses devices avlbl thru /dev
− GUI (JNI), Mgmt Apps (both access ker thru libzfs)

− eg. zpool(1M), zfs(1M)
 libzfs: unified, object-based mechanism for

accessing and manipulating storage pools and
filesystems

 Kernel Level:
− Interface Layer
− Transactional Object layer
− Storage Pool Layer

Filesystem
Consumers

Device
Consumer

GUI Management
 Apps

ZPL (Posix) ZVOL /dev/zfs

JNI

libzfs

ZIL ZAP Traversal

 DMU (data mgmt unit) DSL (dataset/snapshot)

ARC

ZIO pipeline

VDEV Configuration

LDI (device)

USER

KERNEL

Interface
Layer

Transactional
Object
Layer

Pooled
Storage

Layer

From hub.opensolaris.org/bin/view/Community+Group+zfs/source

	Storage Systems
	FS semantics
	Right specification difficult to define: mmap
	 File Corruption Prob
	Record and file locking: cp a, b&; cp b, a
	Locking issues
	ZFS
	
	Design
	Slide 10

