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  Design Issues in Large Storage Systems

 Large Storage Systems need to be distributed and replicated
 For throughput
 For resilience to failures
 For disaster recovery 

 May also need to solve “(w)holistic” problems such as RT/QoS 
and security

Usually, need to solve many coordination problems
 Many other imp aspects but difficult problem already!
 Difficulty arises from asynchronous nature and failures 

characteristic of real systems
− Faced by Amazon, eBay, Skype, Gmail, Facebook...
− (Synchronous systems typically small scale)



  

NFS: dir lockup 

• Consider a “slow op” on a (locked) file due 
to NFS congestion

 LOOKUP on that file results in a lock on its 
dir that cannot be released until “slow op” 
finishes => 

 cascade of locks upto root that hangs the 
system till “slow op” finishes

 lockd: similar problem but worse as lockd a 
user process



  

Recent (Sep 23, '10) 2.5 hr Facebook Outage

 Caused by an automated system to check for invalid configuration 
values in cache and replace them with updated values from the 
persistent store
 works well for a transient problem with cache, but it doesn’t work 

when the persistent store is invalid
 Somebody made an “invalid change” to persistent config values
 Each alert client attempted fix of invalid cache value=> has to query 

cluster db that cannot scale (=>1000's queries per sec)
 Also deleted cache key

− Now queries do not succeed in the cache during and just 
after the fix!

− Each new request has to go to non-scalable db again!
− Positive feedback cycle with more requests to db

 Had to stop all reqs to cluster db to recover; site down



  

Why are failures difficult in asynch env?

 (simpler) The 2 generals coord problem: need to coord to defeat 
enemy in between (who can seize, dupl, corrupt any msg sent)
 No protocol exists!

 The FLP (Fischer, Lynch, Patterson) result: impossibility of 
distributed consensus with 1 faulty processor (JACM'85)

 Fekete, Lynch, Mansour, Spinelli: impossibility of reliable 
communication in the face of crashes (JACM'93)

 No reliable data link layer can exist in CAML model (JACM'00)
 crashes, asynchronous, memoryless, lossy model

  System can be driven by a sequence of crashes to any global state 
where each node is in a state reached in some (possibly diff) run, 
and each link has an arbitrary mixture of packets sent  in (possibly 
diff) runs (Jayaram/Varghese JACM'00)



  

Brewer's CAP Theorem

 Three important properties  
 Consistency
 Availability 
 tolerance to Partitions due to breakdowns in 

communications in the system

  cannot all be guaranteed at the same time 
according to a theorem in distributed systems 
theory (proved by Gilbert & Lynch '02)



  

Space of CAP
 C and Av only (no tolerance to partitions)

 Single-site fs/db, Cluster fs/db, LDAP
 2-phase commit, cache validation protocols

 Av and P only (no consistency)
 Coda, DNS, web caching
 leases, need for conflict resolution, optimistic

− Good example: cricinfo scores!
 C and P only (no availability)

 Distributed fs/db, Distributed locking
 Majority protocols: minority partitions unavailable
 Pessimistic locking



  

FS vs DB perspectives
 FS: a persistence and naming service for all appls

 No information from appls on what info is critical
 System can differentiate betw data and metadata only
 Can guarantee

− Consistency of metadata (needed for FS's sanity!)
 If metadata corrupted, will fix it in some (!) way so that 

system can function again!
− Optionally data consistency (using synchronous operations)

 VERY SLOW!!! and hence not the default!
 DB: an appl from the OS/FS perspective. Uses “ACID” semantics:

 Atomicity, Consistency of data: DB's responsibility
 Isolation from other transactions also
 Durability: storage system's responsibility



  

Remarks
 OS/Networking good at availability, but not good at 

consistency
 NFS a good example here

 Can have consistency & availability within a cluster, but 
hard

 dfs/db better at consistency than availability
 Wide-area DBs or Disconnected clients neither

 Durability is HARD: a large storage system itself 
composed of many parts
 Recursive problem: how does it keep its own 

metadata or data “consistent” or “atomic” wrt changes 
and what persistent store can it depend on for its 
operations? 



  

However!
 Consider the TCP protocol

 TCP, the basis of Internet, finalized in RFC 793 in Sep 1981. Only 
clarifications to this design since then.

 “Just Works” inspite of theoretical result of impossibility of implementing 
reliable comm in the face of crashes

 Careful engineering to avoid problems due to “reincarnation” of a 
connection

 A TCP cnxn identified by (IP addr, port num) of src and dst 
(finite size)

 If this repeated in a new cnxn, (incorrect) packet insertion 
possible!

− but still mandates (but not followed) “cannot reboot a system faster 
than 2 minutes or remember last seq# before crash” !!! (see Sec 3.3, 
RFC793)

 So an impossibility result does not have to make us drop our plans
 Just make sure the engineering is very good!



  

Ways to Get Around CAP
 Avoid failures? Impossible but can we reduce freq of failures by 

redundancy (say, 99.9999% uptime)?
 Design and impl not easy + very costly

 Make sure partitions are repaired within latency requirements for a 
request: Too costly/Difficult?

 Assume “Timed Asynchronous Systems” (TAS): unstable periods 
followed by sufficiently long stable periods
 “Failure aware” design
 '96 FAA project based on this model but was a colossal failure as 

solution based on TAS subtle and needs care in impl.
 “Do not do anything when partitions present”

 Fundamentally impossible to detect failure (aka partitions) 
reliably: FLP result

 Availability is not possible



  

Birman: Attack Root Causes?
 As data center networks scale out, sw stack increasingly oriented 

towards one-to-many (multicast: MC) communication patterns: eg. 
Facebook/Twitter
 Publish-subscribe and other enterprise service bus layers use 

multicast to push data to many receivers simultaneously
 allows clustered appl servers to replicate state updates and 

heartbeats betw server instances and maintain coherent caches 
by invalidating or updating cached info on many nodes

 For scalability, IP multicast critical but deprecated (Amazon) as it 
lacks reliable packet dissemination, security, flow  control and 
scalability in number of groups
 IP MC addresses scarce and sensitive resources
 If hw limits of MC addr exceeded, kernel burdened & perf 

decreases



  

Multicast Oscillatory Behaviour
 Nodes experience disturbances eg. Java gc pauses, Linux sched 

delays, flushing data to disk
 Prevents nodes from forwarding packets eg. when appl thread does 

not respond or when packets do not reach node because of a link 
problem.

 For a while, root continues sending, so incoming packets from the 
upstream link fill node’s buffers.

 Flow control causes node’s parent node to stop sending, which in turn 
causes its buffers to fill up. 

 If node’s disturbance persists, then eventually all buffers on path from 
root to the node become full, and root’s sending throughput drops to 
zero

 In large trees (10K-60K nodes in cloud), when each node is disturbed 
for one sec/hour on average, throughput degradation (up to 90%) 
occurs even if message loss is negligible.
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