Storage Systems

NPTEL Course
Jan 2012

(Lecture 35)

K. Gopinath
Indian Institute of Science



Some Definitions

* static/dynamic membership in a group

* static: typically mapping betw hw and processes that are
restarted on failure

* dynamic: new processes started, join system; leave
system on termination, failure or disconnection

* dynamically uniform: if any process performs some action, all
processes that remain operational also perform it =>
externally visible actions

* different from commit: in commit, if any process (incl a
process that will fail) commits, all (statically defined)
processes also commit: recovery on failed process

* In dynamically uniform: if a process leaves (fails), never
rejoins system



DYN uniform
D

-
»

A J
7

S

Inspite of crash at sender S, if msg
delivered at A, it WILL be delivered

atB, C, D

» crash

» crash

Eg: issuing money from an ATM
Commit, Paxos!

In non-dyn uniform, if
S and A crash, itis
OK If none of the
survivors get the msg



More Definitions...

* non-dynamically uniform: states and actions of processes
that subsequently fail discarded; operational part of the
system defines system

* fallure-atomic multicast: 2 types

* If m sent using a dynamic uniform protocol, when p
delivers m, it also knows that any future execution of
the system in which a set of processes remains
operational will also guarantee the delivery of m within
Its remaining destinations among that set of processes

* If p receives a non-uniform multicast m, p knows that if
both the sender of m and p crash or are excluded from
the system membership, m may not reach its other
destinations



More Definitions...

* reliable bcast/mcast: validity, agreement, integrity amongst
correct processes

* If a correct process casts msg m, all correct processes
eventually deliver m

* If a correct process delivers m, all correct processes
eventually deliver m

* for any m, every correct process delivers m atmost once &
only if m cast

* uniformity: differs in agreement & integrity wrt correct/faulty
processes:

* If a process delivers m, all correct processes eventually
deliver m

* for any m, every process delivers m atmost once & only if
m cast



View Synchrony Model (Birman)

* Introduce synchronization mechanism for failure-atomic
protocols wrt group membership changes

* each process at each time instant has a unique view of
membership of group

* processes that proceed together thru 2 consecutive views
deliver the same set of msgs betw these views

* each msg assoc with a view & all send/rcv for a msg
occur at processors with that view; send/delivery events
considered as a single instantaneous event

* virtual synchrony (VS): use view synchrony to support a
execution model for efficient fault-tolerant computing

* defined interms of an unrealizable “close synchrony”
model



Close/Virtual Synchrony

* Close synchronous execution model (infeasible!)

* Multicast delivered to all group members as a single, reliable
instantaneous event

* reliable comm (not TCP streams that break unreliably)

* group addr expansion: membership of group fixed at the delivery of a
mcast

* delivery ordering of concurrent msgs: diff mcasts distinct & ordered
same; of related msgs: causal order possible

* state transfer: at well defined points (eg: a new member join)

* failure atomicity: mcast a single logical event; failure reporting thru
group membership changes that are ordered wrt multicast => atomic

mcast
* Virtual synchrony: permits asynch executions for which there exists some
closely synch execution indistinguishable from the asynch one. =>

Virtually synchronous process groups



Differences with other models

* transactional serializability:
* both VS & transactional order-based execution
models
* transactional: focus on isolation of concurrent txns
from one another, persistent data & rollback

* VS: direct cooperation betw group members, failure
handling, dynamic reconfig to make progress when
partial failures occur

* commit: a form of reliable multicast but also serializability
& durability

* multicast delivery: weaker guarantees



Group Membership Service (GMS)

* Behavior depends upon future events
* SuUppose a process p suspects that process q is faulty

* If p itself remains in the system, g will eventually be
excluded from it

* But cases in which p might itself be excluded
* both p and g might be excluded

* system as a whole prevented from making progress if less
than majority that participated in previous system view
remain operational

* unfortunately, not clear which case applies until later in the
execution when system's future becomes definite

* Good spec: if p suspects failure of g then q eventually
excluded from system, unless p itself is



Group Membership Protocol for GMS
Servers

* on partition: progress only in primary component
* In non-primary: only safe actions

* on an eject of p from primary: split brain problem if p
does not know that it has been ejected

* can use a real clock (synch to epsilon): p should detect
within delta

* views should be causally ordered
* merging
* primary component membership should overlap with that of
previous primary
* 2PC if GMS coord live; otherwise 3PC



. 2PC: 2PC/3PC Detalls

* 1% phase: list of add/delete events sent to all (incl coord);
ack response

* 2" phase: coord waits for majority acks

- If majority, commit upd (incl failures during 1st
phase); all upd new view

- If majority do not respond, walit till comm restored or
run a special protocol

- must prevent a new primary component in which
coord not part (impossible!)

* 3PC: new coord If coord falls
* Informs atleast majority about coord failure
* collect acks and current membership info from all

* proposes new membership (new add/delete + detected
In 1¥ phase + from old coord). Next as in 2PC



VS Regs

system membership takes the form of system views

* initial system view at system start

* subsequent views differ by the addition or deletion of processes
only processes that request to be added to system added

only processes suspected of failure or that request to leave system
deleted

maj of processes in view i must acquiesce in composition of view /+1

starting from an initial system view, subsequences of a single sequence of
system views reported to system members; each system member
observes such a subsequence starting with the view in which it was first
added to the system, and continuing until it fails, leaves the system, or is
excluded from the system

If process p suspects process g of being faulty, then if the core GMS
service is able to report new views, either g will be dropped from the
system, or p will be dropped, or both

In a system with synchronized clocks and bounded message latencies,
any process dropped from the system view will know within bounded time



Impossibility of Synch 2 Clocks!

Consider 2 nodes P, Q with 2 clocks:

* Clock P, say, ideal: Time =t

* Clock _Q: Time = a*t+b (a skew and b offset)
Delays (asymmetric!)

* P2Q:d1; Q2P: d2

Need to determine a, b, d1, d2 thru any set of netw pkt
exchanges

* Impossible! (Graham/Kumar'04)

* From linear algebra...
However, can determine a, d1+d2 (roundtrip delay)

* Offset b cannot be

* Also sender can predict receiver time when pkt received



API for Clients of GMS

* join(pid, callback) returns (time, GMS list)
* callback called when membership changed

* Idempotent: if join fails, can issue it again to some
other GMS server

* leave(pid) returns void

* idempotent; fails only if GMS server fails
* monitor(pid, callback) returns callbackid

* GMS calls callback(pid) if pid fails

* idempotent; fails only if GMS server fails



Ordering semantics

* none

* FIFO: if a process casts m before m’, no correct process
delivers m' before m

* causal: if cast of m precedes m’, no correct process delivers
m' before m

* e precedes f (Lamport) iff
- a process executes both e and fin that order, or

- e Is the cast of some msg m and f is the delivery of m
at some process, or

- there is an event h such that e precedes h and h
precedes f

* total: If at a correct process p, m delivered before m’, then
m will be delivered before m' at all destinations they have in
common



	Storage Systems
	Some Definitions
	 
	More Definitions...
	Slide 5
	View Synchrony Model (Birman)
	Close/Virtual Synchrony
	Differences with other models
	Group Membership Service (GMS)
	Group Membership Protocol for GMS Servers
	2PC/3PC Details
	VS Reqs
	Impossibility of Synch 2 Clocks!
	API for Clients of GMS
	Ordering semantics

