Storage Systems

NPTEL Course
Jan 2012

(Lecture 43)

K. Gopinath
Indian Institute of Science



BigTable Impl

3 main components: a library that is linked into every client,
one master server, and many tablet servers

tablet servers dynamically added (or removed) from a
cluster to accommodate changes in workloads.

master responsible for

assigning tablets to tablet servers

detecting addition and expiration of tablet servers
balancing tablet-server load

garbage collection of files in GFS.

also handles schema changes such as table and column
family creations

persistent state of a tablet stored in GFS thru memtable



Interactions betw GFS and BigTable

Persistent state of a tablet stored in GFS
Incoming writes committed to a commit log that stores redo records

* recently committed ones sorted and buffered in memory as
memtables

* older updates stored in a seq of SSTables (sorted string tables)
Incoming reads checked in memtables and SSTables

* sorted tables: efficient op
To recover a tablet:

* atablet server reads its metadata: the list of SSTables that
comprise a tablet and a set of a redo points (pointers into any
commit logs that may contain data for the tablet)

* server reads indices of SSTables into memory and reconstructs
memtable by applying all committed updates since the redo
points



Hadoop Distributed File System

Rack-aware filesystem

* To help run work on the node where the data is, and,
failing that, on the same rack/switch, to reduce
backbone traffic.

HDFS stores large files (an ideal file size is a multiple of
64 MB) across multiple machines.

Reliability by replicating data across multiple hosts (no
RAID storage on hosts)

Above HDFS runs MapReduce Engine

* Client applications submit MapReduce jobs to
JobTracker



Yahoo! PNUTS

focuses on data serving for web applications

* workloads mostly of queries that read and write single
records or small groups of records

* not for complex gqueries, e.g., offline analysis of web
crawls

data storage organized as hashed or ordered tables

designed for low latency for large numbers of concurrent
requests including updates and gueries

* all high latency operations asynchronous
* support record-level mastering (local ops afap)

per-record consistency guarantees: all replicas of a given
record apply all updates to the record in the same order



Timeline consistency

* Object timelines

Reads are served using a local copy; may be stale

But application can get current version or any vers
> N

While copies may lag master record, every copy goes
through same sequence of changes

Test-and-set writes facilitate per-record transactions



PNUTS design

* uses a guaranteed message-delivery service rather than
a persistent log

* trigger-like notifications

* Imp for some apps that must invalidate cached copies
after some time (eg. ad serving with a time contract)

* users subscribe to stream of updates on a table
- asynch publish-subscribe message system

* can be optimized for geographically distant
replicas and replicas do not need to know locs
of other replicas

* contrast to gossip protocols



Windows Azure

Designed as a scalable cloud storage system

* cloud storage in the form of blobs (user files), tables
(structured storage) and queues (msg delivery)

Blobs for incoming and outgoing data, Queues for overall
workflow for processing the Blobs, intermediate service
state and final results in Tables or Blobs

Publically searchable content (via Bing) within 15 secs of a
Facebook/Twitter user’s posting or status update

“Strong consistency”. same as others (within a “stamp”)
* Intra-stamp synch repl

* Inter-stamp asynch repl

Global and Scalable Namespace/Storage



Another Model for Storage:
Consistent Hashing

Hash both objects and devices using same hash function
Map each obj to a point on the edge of a circle
* Equivalently, to a specific angle

Map each device (eg. storage bucket) also pseudo-randomly
mapped on to a series of points around circle

An obj stored by selecting the closest mapped device on the
circle

Each device contains the resources mapped to an angle
between it and the next smallest angle

If a device added or removed, only nearby objs remapped
Used by Amazon and Facebook



Distr Hash Table (DHT)

Uses some variant of consistent hashing to map keys to
nodes

A node with ID 1 owns all keys k_for which i the closest ID,
measured according to o(k ,i)

To store a file with filename fn and data in DHT
* Calculate, say 160-bit hash key, k = SHA-1(fn)
* A message put(k,data) sent to any node in DHT

* msg forwarded from node to node thru overlay network
(connecting nodes) until it reaches single node
responsible for key k as specified by the keyspace
partitioning

To retrieve file fn, get(SHA-1(fn))



Cassandra

Distributed multi dimensional map indexed by a key
* row key a string with no size restrictions (typ 16-36B)
* value is a highly structured object

Similar to Bigtable: every op under a single row key atomic per
replica no matter how many columns are being read or written into

* Columns grouped together into sets called column families

Data partitioned across cluster using consistent hashing but uses
an order preserving hash function to do so

Cassandra API: three simple methods:
* Insert(table,key,rowMutation)

* get(table,key,columnName)

* delete(table,key,columnName)



Server-side Consistency Models

* N = number of nodes that store replicas of data

* W = number of replicas that need to ack receipt of update
before update completes

* R = number of replicas that are contacted when a data
object is accessed through a read op

* W+R > N: write set & read set always overlap and one
can guarantee strong consistency

* W+R <= N: Weak/eventual consistency
* R=1, W=N: optimize for read
W=1, R=N for very fast write



Client-side Consistency Models

* Strong: After an update completes, any subsequent access will
return the updated val

* Weak: May return stale value. Special case:

* Eventual: storage system guarantees that if no new updates made to
the object, eventually all accesses will return last updated value eqg.
DNS

* Variations:
- Causal consistency (CC)
- Read-your-writes consistency (RyWC)
- Session consistency (SnC)
- Monotonic read consistency (MRC)
- Monotonic write consistency (MWC)
* |f client connects to a server only, RyYWC/MRC easy



Haystack: Facebook’s photo storage

* Std solutions (eg. NFS): excessive number of disk
operations because of metadata lookups

* toread a single photo: 1+ disk ops to translate
fllename to an inode #, 1 to read inode from disk, and
one to read file itself

* reduce per photo metadata so that all metadata lookups
IN main memory

* rwx perms not needed; 128-256B inode size too big

* now disk ops only for reading actual data: increases
overall throughput

* high throughput and low latency: at most one disk op
per read

* Why does caching not work?



Haystack Design

Content Distr Networks (CDN) effective for serving “hot
photos”

* recently uploaded & popular

But social networking sites also see a large # of requests
for less popular (often older) content: long tail

Requests from long tail account for a significant amount
of Facebook traffic

* almost all access the backing photo storage hosts as
these requests typically miss in the CDN

Haystack: each usable TB costs approx 28% less and
processes 4x more reads per sec than an equiv TB on a
NAS appliance



Summary

* Scalability inducing many cross-layer designs
* Have to pay attention to overheads and remove them

* Handling failures imp, so repl (or erasure coding)
critical in design

- Distribution of data a necessity
- Coord of updates a necessity



	Storage Systems
	BigTable Impl
	Interactions betw GFS and BigTable
	Hadoop Distributed File System
	Yahoo! PNUTS
	Timeline consistency
	PNUTS design
	Windows Azure
	Another Model for Storage: Consistent Hashing
	Distr Hash Table (DHT)
	Cassandra
	Server-side Consistency Models
	Client-side Consistency Models
	Haystack: Facebook’s photo storage
	Haystack Design
	Summary

