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Unconstrained Optimization

Let f : R → R

Unconstrained problem

min
x∈R

f (x)

What are necessary and sufficient conditions for a local
minimum?

Necessary conditions: Conditions satisfied by every local
minimum
Sufficient conditions: Conditions which guarantee a local
minimum

Easy to characterize a local minimum if f is sufficiently smooth
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Stationary Points

Let f : R → R, f ∈ C1.
Consider the problem, minx∈R f (x).

Definition
x∗ is called a stationary point if f ′(x∗) = 0.
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Necessity of an Algorithm

Consider the problem

min
x∈R

(x− 2)2

We first find the stationary points (which satisfy f ′(x) = 0).

f ′(x) = 0 ⇒ 2(x− 2) = 0 ⇒ x∗ = 2.

f ′′(2) = 2 > 0 ⇒ x∗ is a strict local minimum.

Stationary points are found by solving a nonlinear equation,

g(x) ≡ f ′(x) = 0.

Finding the real roots of g(x) may not be always easy.
Consider the problem to minimize f (x) = x2 + ex.
g(x) = 2x + ex

Need an algorithm to find x which satisfies g(x) = 0.

Shirish Shevade Numerical Optimization



One Dimensional Optimization

Derivative-free methods (Search methods)

Derivative-based methods (Approximation methods)

Inexact methods
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Unimodal Functions

Let φ : R → R
Consider the problem,

min
x∈R

φ(x)

Let x∗ be the minimum point of φ(x) and x∗ ∈ [a, b]

Definition
The function φ is said to be unimodal on [a, b] if for a ≤ x1 < x2 ≤ b,

x2 < x∗ ⇒ φ(x1) > φ(x2),

x1 > x∗ ⇒ φ(x2) > φ(x1).
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Unimodal Functions
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Derivative-free Methods

Let f : R → R

Unconstrained problem

min
x∈R

f (x)

Dichotomous search

Fibonacci search

Golden-section search

Require,

Interval of uncertainty, [a, b], which contains the minimum of f

f to be unimodal in [a, b].

Shirish Shevade Numerical Optimization



Function values at three points not enough to reduce the interval of
uncertainty
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Function values at four points enough to reduce the interval of
uncertainty
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Dichotomous Search

Place λ and µ symmetrically, each at a distance ε from the
mid-point of [a, b]
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Dichotomous Search: Algorithm

1 Input: Initial interval of uncertainty, [a, b],
2 Initialization:

k = 0, ak = a, bk = b, ε (> 0), l (final length of uncertainty interval)
3 while (bk − ak) > l
4 λk = ak+bk

2 − ε, µk = ak+bk

2 + ε

5 if f (λk) ≥ f (µk)

6 ak+1 = λk, bk+1 = bk

7 else
8 bk+1 = µk, ak+1 = ak

9 endif
10 k := k + 1
11 endwhile
12 Output: x∗ = ak+bk

2
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Dichotomous Search: An Example

Consider, minx (1/4)x4 − (5/3)x3 − 6x2 + 19x− 7

k ak bk bk − ak

0 -4 0 4
1 -4 -1.98 2.02
2 -3.0001 -1.98 1.0201
3 -3.0001 -2.4849 .5152
...

...
...

...
10 -2.5669 -2.5626 .0043
...

...
...

...
20 -2.5652 -2.5652 4.65e-6
...

...
...

...
23 -2.5652 -2.5652 5.99e-7

x∗ = −2.5652, f (x∗) = −56.2626
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Fibonacci Search
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Fibonacci Search

Need one function evaluation at every iteration k = 2, 3, . . .
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Fibonacci Search
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Fibonacci Search
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Fibonacci Search

Note: I_1 = I_2 + I_3
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Fibonacci Search

We have I1 = I2 + I3.
Generalizing further, we get

I1 = I2 + I3

I2 = I3 + I4
...

In = In+1 + In+2

Assumption: The interval for iteration n + 2 vanishes (In+2 = 0).
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Fibonacci Search

In+1 = In − In+2 = 1In

In = In+1 + In+2 = 1In

In−1 = In + In+1 = 2In

In−2 = In−1 + In = 3In

In−3 = In−2 + In−1 = 5In

In−4 = In−3 + In−2 = 8In
...

...
I1 = I2 + I3 = ?In

Fibonacci Sequence : {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .}

Fk = Fk−1 + Fk−2, k = 2, 3, . . .

F0 = 1, F1 = 1.
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Fibonacci Search

In+1 = In − In+2 = 1In ≡ F0In

In = In+1 + In+2 = 1In ≡ F1In

In−1 = In + In+1 = 2In ≡ F2In

In−2 = In−1 + In = 3In ≡ F3In

In−3 = In−2 + In−1 = 5In ≡ F4In

In−4 = In−3 + In−2 = 8In ≡ F5In
...

...
Ik = Ik+1 + Ik+2 = Fn−k+1In

...
...

I1 = I2 + I3 = FnIn

Note: After n iterations,

In =
I1

Fn
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Fibonacci Search

After n iterations,

In =
I1

Fn

For example, after 10 iterations, In = I1
89

n should be known beforehand
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Fibonacci Search

Note: Easy to find µk+1 if Ik+2 is known.
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Fibonacci Search

Recall,
Ik = Fn−k+1In.

Therefore,
Ik+2 = Fn−k−1In

and
Ik+1 = Fn−kIn.

This gives,

Ik+2 =
Fn−k−1

Fn−k
Ik+1.
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Fibonacci Search
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The Fibonacci Search

Consider, minx (1/4)x4 − (5/3)x3 − 6x2 + 19x− 7

Initial interval of uncertainty : [−4, 0]

Required length of interval of uncertainty: 0.2

Set n such that Fn > 4
0.2 = 20, n = 7

k ak bk bk − ak

0 -4 0 4
1 -4 -1.52 2.48
2 -3.05 -1.52 1.53
3 -3.05 -2.11 0.94
4 -2.70 -2.11 0.59
5 -2.70 -2.34 0.36
6 -2.70 -2.47 0.23
7 -2.61 -2.47 0.14
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Golden Section Search

Fibonacci Search requires the number of iterations as input

Golden section search : Ratio of two adjacent intervals is
constant

Ik

Ik+1
=

Ik+1

Ik+2
=

Ik+2

Ik+3
= . . . = r

Therefore,
Ik

Ik+2
= r2

and
Ik

Ik+3
= r3.
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Golden Section Search

Suppose, Ik = Ik+1 + Ik+2. That is,

Ik

Ik+2
=

Ik+1

Ik+2
+ 1

This gives

r2 = r + 1 ⇒ r =
1 +

√
5

2
= 1.618034 (negative r is irrelevant)

Golden Ratio = 1.618034
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Golden Section Search

Every iteration is independent of n

Ik

Ik+1
=

Ik+1

Ik+2
=

Ik+2

Ik+3
= . . . = r

Lengths of generated intervals,

{I1, I1/r, I1/r2, . . .}

After n function evaluations, IGS
n = I1/rn−1
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Golden Section Search

For Golden Section search, IGS
n = I1/rn−1

For Fibonacci search, IF
n = I1/Fn

When n is large,

Fn ≡
rn+1
√

5

Therefore, IF
n ≡

√
5

rn+1 I1

IG
n

IF
n

=
r2
√

5
≈ 1.17

If the number of iterations is same, IGS
n is larger than IF

n by about
17%
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Derivative-based Methods

Let f : R → R

Unconstrained problem

min
x∈R

f (x)

Bisection method
Assumes f ∈ C1.
Interval of uncertainty, [a, b], which contains the minimum of f
needs to be provided.
Assumes that f is unimodal in [a, b].

Newton method
Assumes f ∈ C2.
Based on using the quadratic approximation of f at every iteration

Shirish Shevade Numerical Optimization



Bisection Method

Assumption:
f ∈ C1

f is unimodal in the initial interval of uncertainty, [a, b].

Idea: Compute f ′(c) where c is the midpoint of [a, b]

1 If f ′(c) = 0, then c is a minimum point.
2 f ′(c) > 0 ⇒ [a, c] is the new interval of uncertainty
3 f ′(c) < 0 ⇒ [c, b] is the new interval of uncertainty
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Bisection Method: Algorithm

1 Initialization: Initial interval of uncertainty [a1, b1], k = 1. Let l
be the allowable final level of uncertainty, choose smallest
possible n > 0 such that (1

2)n ≤ l
b1−a1 .

2 while k ≤ n
3 ck = ak+bk

2
4 If f ′(ck) = 0, stop with ck as an optimal solution.
5 If f ′(ck) > 0

ak+1 = ak and bk+1 = ck

else
ak+1 = ck and bk+1 = bk

endif
6 k:=k+1
7 endwhile
8 If k = n + 1, the solution is at the midpoint of [an, bn].
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Bisection Method

Bisection method

requires initial interval of uncertainty

converges to a minimum point within any degree of desired
accuracy
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Newton Method

An iterative technique to find a root of a function
Problem: Find an approximate root of the function,

f (x) = x2 − 2.

An iteration of Newton’s method on f (x) = x2 − 2.
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Newton Method

Consider the problem to minimize f (x), x ∈ R
Assumption: f ∈ C2.
Idea:

At any iteration k, construct a quadratic model q(x) which agrees
with f at xk up to second derivative,

q(x) = f (xk) + f ′(xk)(x− xk) +
1
2

f ′′(xk)(x− xk)2

Estimate xk+1 by minimizing q(x).
q′(xk+1) = 0 ⇒ f ′(xk) + f ′′(xk)(xk+1 − xk) = 0
xk+1 = xk − f ′(xk)

f ′′(xk)

Repeat this process at xk+1.
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Newton Method: Algorithm

Consider the problem to minimize f (x), f ∈ C2

Need to find the roots of g(x)(= f ′(x)).

1 Initialization: Choose initial point x0, ε and set k := 0
2 while |g(xk)| > ε

3 xk+1 = xk − g(xk)
g′(xk)

4 k := k + 1
5 endwhile
6 Output: xk

Remarks
Starting with an arbitrary initial point, Newton method does not
converge to a stationary point
If the starting point is sufficiently close to a stationary point, then
Newton method converges.
Useful when g′(xk) > 0
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Newton Method Iterations

Consider the problem,

min
x∈R

(1/4)x4 − (5/3)x3 − 6x2 + 19x− 7

f (x) = (1/4)x4 − (5/3)x3 − 6x2 + 19x− 7
g(x) = x3 − 5x2 − 12x + 19

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−20

−15

−10

−5

0

5

10

15

20

25

30

x

g
(x

)

x1 

x2 

Shirish Shevade Numerical Optimization



Newton Method Iterations

Consider the problem,

min
x∈R

(1/4)x4 − (5/3)x3 − 6x2 + 19x− 7

f (x) = (1/4)x4 − (5/3)x3 − 6x2 + 19x− 7
g(x) = x3 − 5x2 − 12x + 19
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Newton Method Iterations

Consider the problem,

min
x∈R

log(ex + e−x)

f (x) = log(ex + e−x)

g(x) = ex−e−x

ex+e−x

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

g
(x

)

x0

   

x1 

x2 

 

Shirish Shevade Numerical Optimization



Newton Method Iterations

Consider the problem,

min
x∈R

log(ex + e−x)

f (x) = log(ex + e−x)

g(x) = ex−e−x

ex+e−x
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Newton method does not converge with this initialization of x1
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