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Line and line segment

Let x1, x2 ∈ Rn, x1 6= x2.

Line passing through x1 and x2:

{y ∈ Rn : y = λx1 + (1− λ)x2, λ ∈ R}

Line Segment, LS[x1, x2]:

{y ∈ Rn : y = λx1 + (1− λ)x2, λ ∈ [0, 1]}

Shirish Shevade Numerical Optimization



Affine sets

Definition
A set X ⊆ Rn is affine if for any x1, x2 ∈ X, and λ ∈ R,

λx1 + (1− λ)x2 ∈ X.

If X ⊆ Rn is an affine set, x1, x2, . . . , xk ∈ X and
∑

i λi = 1,
then the point λ1x1 + λ2x2 + . . . + λkxk ∈ X.

Examples

Solution set of linear equations: {x ∈ Rn : Ax = b} where
A ∈ Rm×n, b ∈ Rm.
A subspace or a translated subspace
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Result
If X is an affine set and x0 ∈ X, then {x− x0 : x ∈ X} forms a
subspace.

Proof.
Let Y = {x− x0 : x ∈ X}. To show that Y is a subspace, we
need to show, αy1 + βy2 ∈ Y for any y1, y2 ∈ Y and α, β ∈ R.
Let y1, y2 ∈ Y and α, β ∈ R.
Therefore, y1 + x0 ∈ X and y2 + x0 ∈ X.
αy1 + βy2 = α(y1 + x0) + β(y2 + x0)− (α + β)x0.
αy1 + βy2 + x0 = α(y1 + x0) + β(y2 + x0) + (1− α− β)x0.
Since X is an affine set, αy1 + βy2 + x0 ∈ X.
Thus, αy1 + βy2 ∈ Y ⇒ Y is a subspace.
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Definition
Let X = {x1, x2, . . . , xk}. A point x is said to be an affine
combination of points in X if

x =
k∑

i=1

λixi,
k∑

i=1

λi = 1.

Definition
Let X ⊆ Rn. The set of all affine combinations of points in X is
called the affine hull of X.

aff(X) = {
k∑

i=1

λixi : x1, . . . , xk ∈ X,
∑

i

λi = 1}
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Convex Sets

Definition
A set C ⊆ Rn is convex if for any x1, x2 ∈ C and any scalar λ
with 0 ≤ λ ≤ 1, we have

λx1 + (1− λ)x2 ∈ C.

Examples
Some simple convex sets
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Some examples of nonconvex sets
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Convex sets

Examples:

The empty set φ, any singleton set {x0} and Rn are convex
subsets of Rn.
A closed ball in Rn, B[x0, r] and an open ball in Rn,
B(x0, r), are convex sets.
Any affine set is a convex set.
A line segment is a convex set, but not an affine set.
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Possible to construct new convex sets using given convex
sets

Definition
Let P ⊂ Rn, Q ⊂ Rn, α ∈ R.

The scalar multiple αP of the set P is defined as

αP = {x : x = αp, p ∈ P}

The sum of two sets P and Q is the set,

P + Q = {x : x = p + q, p ∈ P, q ∈ Q}.
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Theorem
If {Ci}, i ∈ A, is any collection of convex sets, then ∩i∈ACi is a
convex set.

Proof.
Let C = ∩i∈ACi.
Case 1. If C is empty or singleton, then clearly C is a convex set.
Case 2. To show that, for any x1, x2 ∈ C and λ ∈ [0, 1],

λx1 + (1− λ)x2 ∈ C.

Let x1, x2 ∈ C. Clearly, x1, x2 ∈ Ci for every i ∈ A.
Since every Ci is convex,

λx1 + (1− λ)x2 ∈ Ci, ∀i ∈ A, λ ∈ [0, 1]
⇒ λx1 + (1− λ)x2 ∈ ∩i∈ACi, ∀ λ ∈ [0, 1]
⇒ λx1 + (1− λ)x2 ∈ C, ∀ λ ∈ [0, 1].
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Theorem
If C1 and C2 are convex sets, then C1 + C2 is a convex set.

Proof.
Let x1, y1 ∈ C1 and x2, y2 ∈ C2.
So, x1 + x2, y1 + y2 ∈ C1 + C2. We need to show,
λ(x1 + x2) + (1− λ)(y1 + y2) ∈ C1 + C2 ∀λ ∈ [0, 1].
Since C1 and C2 are convex,
z1 = λx1 + (1− λ)y1 ∈ C1 ∀ λ ∈ [0, 1], and
z2 = λx2 + (1− λ)y2 ∈ C2 ∀ λ ∈ [0, 1].
Thus, z1 + z2 ∈ C1 + C2 . . . . . . (1)
Now, x1 + x2 ∈ C1 + C2 and y1 + y2 ∈ C1 + C2.
Therefore, from (1),
z1 + z2 = λ(x1 + x2) + (1− λ)(y1 + y2) ∈ C1 + C2 ∀λ ∈ [0, 1].
Thus, C1 + C2 is a convex set.
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Theorem
If C is a convex set and α ∈ R, then αC is a convex set.

Proof.
Let x1, x2 ∈ C.
Since C is convex, λx1 + (1− λ)x2 ∈ C ∀ λ ∈ [0, 1].
Also, αx1, αx2 ∈ αC.
Therefore, λ(αx1) + (1− λ)(αx2) = α(λx1 + (1− λ)x2) ∈ αC
for any λ ∈ [0, 1].
Therefore, αC is a convex set.
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Hyperplane

Definition
Let b ∈ R and a ∈ Rn, a 6= 0. Then, the set

H = {x : aTx = b}

is said to be a hyperplane in Rn.

a denotes the normal to the hyperplane H.
If ‖a‖ = 1, then |b| is the distance of H from the origin.
In R2, hyperplane is a line
In R3, hyperplane is a plane

Shirish Shevade Numerical Optimization



Shirish Shevade Numerical Optimization



Shirish Shevade Numerical Optimization



Shirish Shevade Numerical Optimization



Half-spaces

The sets H+ = {x : aTx ≥ b} and H− = {x : aTx ≤ b} are
called closed positive and negative half-spaces generated
by H.
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Some more examples of convex sets

H = {x : aTx = b} is a convex set
Let a1, a2, . . . , am ∈ Rn and b1, b2, . . . , bm ∈ R

Define, A =


aT

1
aT

2
...
aT

m

 and b =


b1

b2
...
bm


Then, {x : Ax = b} is a convex set.
H+ = {x : aTx ≥ b} and H− = {x : aTx ≤ b} are convex
sets.
{x : Ax ≤ b} and {x : Ax ≥ b} are convex sets.
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Convex Hull

Definition
The convex hull of a set S is the intersection of all the convex
sets which contain S and is denoted by conv(S).

Note: Convex Hull of a set S is the convex set.

The smallest convex set that contains S is called the convex
hull of the set S.

Examples:

conv({x, y}) = LS[x, y] where x and y are two points
Let S = {(x, 0) : x ∈ R} ∪ {(0, y) : y ∈ R}. Then
conv(S) = R2.
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S = {(x1, x2) : x2 = x2
1}

conv(S) = {(x1, x2) : x2 ≥ x2
1}
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Theorem CS1
Let S ⊂ Rn be a nonempty, closed convex set and y /∈ S. Then
there exists a unique point x0 ∈ S with minimum distance from
y. Further, x0 is the minimizing point iff (y− x0)

T(x− x0) ≤ 0
for all x ∈ S.
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Proof Sketch
Given S ⊂ Rn, a closed convex set and y /∈ S.

First show that there exists a minimizing point x0 in S that
is closest to y.
Let δ = infx∈S ‖x− y‖.
Note that S is not bounded.
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Proof Sketch (continued)
Consider the set S ∩ B[y, 2δ].
By Weierstrass’ Theorem, there exists a minimizing point
x0 in S that is closest to y.

x0 = arg minx∈S∩B[y,2δ]‖x− y‖
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Proof Sketch (continued)
Show uniqueness using triangle inequality
Assume that there exists x̂ ∈ S such that

‖y− x0‖ = ‖y− x̂‖ = δ.

Since S is convex, 1
2(x0 + x̂) ∈ S.

Using triangle inequality,

2‖y− (x0 + x̂)

2
‖ ≤ ‖y− x0‖+ ‖y− x̂‖ = 2δ

We have a contradiction if strict inequality holds.
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Proof Sketch (continued)
To show that x0 is the unique minimizing point iff
(y− x0)

T(x− x0) ≤ 0 for all x ∈ S.
Let x ∈ S. Assume (y− x0)

T(x− x0) ≤ 0.

‖y− x‖2 = ‖y− x0 + x0 − x‖2

= ‖y− x0‖2 + ‖x0 − x‖2 + 2(y− x0)
T(x0 − x)

Using the assumption, (y− x0)
T(x0 − x) ≥ 0, we get

‖y− x‖2 ≥ ‖y− x0‖2

This implies that x0 is the minimizing point.
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Proof Sketch (continued)
Assume that x0 is the minimizing point, that is,

‖y− x0‖2 ≤ ‖y− z‖2 ∀ z ∈ S.

Consider any x ∈ S. Since S is convex,

λx + (1− λ)x0 ∈ S ∀λ ∈ [0, 1].

Therefore, ‖y− x0‖2 ≤ ‖y− x0 − λ(x− x0)‖2

That is,
‖y−x0‖2 ≤ ‖y−x0‖2 +λ2‖x−x0)‖2−2λ(y−x0)

T(x−x0)
2(y− x0)

T(x− x0) ≤ λ‖x− x0)‖2

Letting λ → 0+, the result follows. �
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Theorem CS1
Let S ⊂ Rn be a nonempty, closed convex set and y /∈ S. Then
there exists a unique point x0 ∈ S with minimum distance from
y. Further, x0 is the minimizing point iff (y− x0)

T(x− x0) ≤ 0
for all x ∈ S.
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Separating hyperplanes

Definition
Let S1 and S2 be nonempty subsets in Rn and
H = {x : aTx = b} be a hyperplane.

1 The hyperplane H is said to separate S1 and S2, if
aTx ≥ b ∀ x ∈ S1 and aTx ≤ b ∀ x ∈ S2.

2 If aTx > b ∀ x ∈ S1 and aTx < b ∀ x ∈ S2, then the
hyperplane H is said to strictly separate S1 and S2.

3 The hyperplane H is said to strongly separate S1 and S2 if
aTx ≥ b + ε ∀ x ∈ S1 and aTx ≤ b ∀ x ∈ S2 where ε is a
positive scalar.
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H: Separating hyperplane

The hyperplane H = {x : aTx = b} is said to separate S1 and
S2, if aTx ≥ b ∀ x ∈ S1 and aTx ≤ b ∀ x ∈ S2.
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H: Strictly separating hyperplane

If aTx > b ∀ x ∈ S1 and aTx < b ∀ x ∈ S2, then the hyperplane
H = {x : aTx = b} is said to strictly separate S1 and S2.
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H: Strongly separating hyperplane

The hyperplane H = {x : aTx = b} is said to strongly separate
S1 and S2 if aTx ≥ b + ε ∀ x ∈ S1 and aTx ≤ b ∀ x ∈ S2 where ε
is a positive scalar.
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Separation of a closed convex set and a point

Result
Let S be a nonempty closed convex set in Rn and y /∈ S. Then
there exists a nonzero vector a and a scalar b such that aTy > b
and aTx ≤ b ∀ x ∈ S.

Proof.
By Theorem CS1, there exists a unique minimizing point
x0 ∈ S such that (x− x0)

T(y− x0) ≤ 0 for each x ∈ S.
Letting a = (y− x0) and b = aTx0, we get aTx ≤ b for each
x ∈ S and aTy− b = (y− x0)

T(y− x0) > 0 (since y 6= x0).
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Cone

Definition
A set K ⊆ Rn is called a cone if for every x ∈ K and λ ≥ 0, we
have λx ∈ K.

K is a convex cone if it is convex and a cone.
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Some examples of cones
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Farkas’ Lemma

Farkas’ Lemma
Let A ∈ Rm×n and c ∈ Rn. Then, exactly one of the following
two systems has a solution:
(I) Ax ≤ 0, cTx > 0 for some x ∈ Rn

(II) ATy = c, y ≥ 0 for some y ∈ Rm.
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Let a1, a2, . . . , am ∈ Rn.

Define, A =


aT

1
aT

2
...
aT

m

.

For example,
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Farkas’ Lemma (Geometrical Interpretation)

Exactly one of the following two systems has a solution:
(I) Ax ≤ 0, cTx > 0 for some x ∈ Rn

(II) ATy = c, y ≥ 0 for some y ∈ Rm
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Farkas’ Lemma
Let A ∈ Rm×n and c ∈ Rn. Then, exactly one of the following
two systems has a solution:
(I) Ax ≤ 0, cTx > 0 for some x ∈ Rn

(II) ATy = c, y ≥ 0 for some y ∈ Rm

Proof of Farkas’ Lemma
(a) Suppose, system (II) has a solution.

Therefore, ∃y ≥ 0 such that c = ATy.
Consider x ∈ Rn such that Ax ≤ 0.
So, cTx = yTAx ≤ 0.
That is, System I has no solution.
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Farkas’ Lemma
Let A ∈ Rm×n and c ∈ Rn. Then, exactly one of the following
two systems has a solution:
(I) Ax ≤ 0, cTx > 0 for some x ∈ Rn

(II) ATy = c, y ≥ 0 for some y ∈ Rm

Proof of Farkas’ Lemma (continued)
(b) Suppose, system (II) has no solution.

Let S = {x : x = ATy, y ≥ 0}, a closed convex set and c /∈ S.
Therefore, ∃p ∈ Rn and α ∈ R such that

pTx ≤ α ∀ x ∈ S and cTp > α.
This means, α ≥ 0 (Since 0 ∈ S) ⇒ cTp > 0.
Also, α ≥ pTATy = yTAp ∀ y ≥ 0.
Since y ≥ 0, Ap ≤ 0 (as y can be made arbitrarily large).
Thus, ∃p ∈ Rn such that Ap ≤ 0, cTp > 0 ⇒ System (I) has a
solution.
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Farkas’ Lemma
Let A ∈ Rm×n and c ∈ Rn. Then, exactly one of the following
two systems has a solution:
(I) Ax ≤ 0, cTx > 0 for some x ∈ Rn

(II) ATy = c, y ≥ 0 for some y ∈ Rm.

Corollary

Let A ∈ Rm×n. Then exactly one of the following systems has a
solution:
(I) Ax < 0 for some x ∈ Rn

(II) ATy = 0, y ≥ 0 for some nonzero y ∈ Rm.
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Corollary

Let A ∈ Rm×n. Then exactly one of the following systems has a
solution:
(I) Ax < 0 for some x ∈ Rn

(II) ATy = 0, y ≥ 0 for some nonzero y ∈ Rm.

Proof.
We can write system I as

Ax + ze ≤ 0 for some x ∈ Rn, z > 0

where e is a m-dimensional vector containing all 1’s.
That is,

(A e)
(

x
z

)
≤ 0, (0, . . . , 0, 1)

(
x
z

)
> 0

for some (x z)T ∈ Rn+1.
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Proof. (continued)
Recall Farkas’ Lemma.
Therefore, System II is(

AT

eT

)
y = (0, . . . , 0, 1)T , y ≥ 0 for some y ∈ Rm.

That is ATy = 0, eTy = 1 and y ≥ 0 for some y ∈ Rm.
Using Farkas’ Lemma, the result follows.
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Supporting Hyperplanes of sets at boundary points

Definition
Let S ⊂ Rn, S 6= φ. Let x0 be a boundary point of S. A
hyperplane H = {x : aT(x− x0) = 0} is called a supporting
hyperplane of S at x0, if either
S ⊆ H+ (that is, aT(x− x0) ≥ 0 ∀ x ∈ S), or
S ⊆ H− (that is, aT(x− x0) ≤ 0 ∀ x ∈ S).
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Theorem
Let S be a nonempty convex set in Rn and x0 be a boundary
point of S. Then, there exists a hyperplane that supports S at x0.
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Theorem
Let S1 and S2 be two nonempty disjoint convex sets in Rn. Then,
there exists a hyperplane that separates S1 and S2.

Proof.
Consider the set S = S1 − S2 = {x1 − x2 : x1 ∈ S1, x2 ∈ S2}.
Note that S is a convex set and 0 /∈ S.
Thus, we have a convex set and a point not in that set.
So, there exists a vector a such that aTx ≤ 0 ∀ x ∈ S.
In other words, aTx1 ≤ aTx2 ∀ x1 ∈ S1, x2 ∈ S2.
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