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Some Books...

Discrete and Combinatorial Mathematics: An Applied
Introduction. (R. P. Grimaldi, B. V. Ramana)

Extremal Combinatorics: with applications in computer
science. (S. Jukna)

A Walk Through Combinatorics, An Introduction to
Enumeration and Graph Theory. (Miklós Bóna)

Introduction to Enumerative Combinatorics (Miklós Bóna)

A Course in Combinatorics (J. H. van Lint)

Introductory Combinatorics (R. A. Brualdi)
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Pigeonhole Principle

Combinatorics- Lecture: 1

If a set consisting of more than n objects is partitioned to n classes
then some class receives more than 1 object.
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Simplest Examples

1 2 of 13 students should have birth days during the same
month.

2 12 pairs of socks of different colors in a bag. At most
howmany have to be taken out so that we are sure to get a
pair of the same color ?

3 50,000 words of 4 or fewer letters. Can they all be distinct ?

4 13 persons. Their first names are Seeta, Geeta and Radha.
Second names are Ramana, Raju, Rao, Naidu. Can they all
have different (full) names ?
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Some questions involving numbers

There N numbers. If we devide these numbers by N − 1 then at
least 2 of the numbers should give same remainder.
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101 integers selected from [200]. Then we have selected 2 numbers
a and b such that a devides b.
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Any subset of size 6 from the set {1, 2, . . . , 9} must contain 2
elements whose sum is 10.



Combinatorics- Lecture: 1

Let S be a set of six positive integers whose maximum is at most
14. Then the sums of the elements in all the non-empty subsets of
S cannot be all distinct.
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Let m be an odd positive integer. Then there exists a positive
integer n such that m devides 2n − 1.
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There is an element in the sequence 7, 77, 777, 7777, . . . , that is
devisible by 2003.

Combinatorics- Lecture: 1

Ramu goes on a 4-week vacation. He takes with him 40 chocolates
in a box. He eats at least 1 each day, starting from day 1. Prove
that there exists a span of consecutive days during which he eats
exactly 15 chocolates.
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(Erdös-Szekeres) In a sequence of n2 + 1 distinct real numbers,
there is either an increasing subsequence of length n + 1 or a
decreasing subsequence of length n + 1.
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(Erdös-Szekeres) In a sequence of rs + 1 distinct real numbers,
there is either an increasing subsequence of length r + 1 or a
decreasing subsequence of length s + 1.
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Some questions involving graphs
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Pigeonhole Principle- part 2
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Let S be a set of six positive integers whose maximum is at most
14. Then the sums of the elements in all the non-empty subsets of
S cannot be all distinct.
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Let m be an odd positive integer. Then there exists a positive
integer n such that m devides 2n − 1.
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There is an element in the sequence 7, 77, 777, 7777, . . . , that is
devisible by 2003.
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Ramu goes on a 4-week vacation. He takes with him 40 chocolates
in a box. He eats at least 1 each day, starting from day 1. Prove
that there exists a span of consecutive days during which he eats
exactly 15 chocolates.
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Some questions involving graphs

In any graph there exists at least 2 vertices of the same degree.
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The Generalized Pigeonhole Principle

If a set consisting of more than nk objects is partitioned to n
classes then some class receives more than k object.
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In any graph G with n vertices, n ≤ α(G ).χ(G ).
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Let G be an n vertex graph. If every vertex has a degree of at least
n−1

2
, then G is connected.
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(Mantel’s Theorem:) If a graph G on 2n vertices contains n2 + 1
edges, then G contains a triangle.
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(Erdös-Szekeres) In a sequence of n2 + 1 distinct real numbers,
there is either an increasing subsequence of length n + 1 or a
decreasing subsequence of length n + 1.
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(Erdös-Szekeres) In a sequence of rs + 1 distinct real numbers,
there is either an increasing subsequence of length r + 1 or a
decreasing subsequence of length s + 1.
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(Dilworth 1950) In any partial order on a set P of n ≥ sr + 1
elements, there exists a chain of length s + 1 or an antichain of
length r + 1.
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Pigeonhole Principle- part 3
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Some questions involving graphs

In any graph there exist at least 2 vertices of the same degree.

For any graph G with n vertices, n ≤ α(G ).χ(G ).
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Let G be an n vertex graph. If every vertex has a degree of at least
n−1

2
, then G is connected.
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(Mantel’s Theorem:) If a graph G on 2n vertices contains n2 + 1
edges, then G contains a triangle.
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Some Problems from Geometry

If 5 points are selected from the interior of an equilateral triangle,
then 2 among them are such that the distance between them is
less than 1

2
.
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10 points are given within a square of unit size.

1 Then there are two of them that are closer to each other than
0.48.

2 There are 3 among them that can be covered by a disk of
radius 0.5
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(Erdös-Szekeres) In a sequence of n2 + 1 distinct real numbers,
there is either an increasing subsequence of length n + 1 or a
decreasing subsequence of length n + 1.
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(Erdös-Szekeres) In a sequence of rs + 1 distinct real numbers,
there is either an increasing subsequence of length r + 1 or a
decreasing subsequence of length s + 1.
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(Dilworth 1950) In any partial order on a set P of n ≥ sr + 1
elements, there exists a chain of length s + 1 or an antichain of
length r + 1.
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Pigeonhole Principle- part 4
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(Erdös-Szekeres) In a sequence of n2 + 1 distinct real numbers,
there is either an increasing subsequence of length n + 1 or a
decreasing subsequence of length n + 1.
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(Erdös-Szekeres) In a sequence of rs + 1 distinct real numbers,
there is either an increasing subsequence of length r + 1 or a
decreasing subsequence of length s + 1.
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(Dilworth 1950) In any partial order on a set P of n ≥ sr + 1
elements, there exists a chain of length s + 1 or an antichain of
length r + 1.
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Elementary Concepts

Combinatorics- Lecture: 4

(Addition Principle) If A and B are two disjoint finite sets, then
|A ∪ B | = |A| + |B |.
(Generalized Addition Principle) Let A1,A2, . . . ,An be finite
sets that are pairwise disjoint. Then,

|A1 ∪ A2 ∪ . . . ∪ An| = |A1| + |A2| + · · · + |An|

.
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Subtraction Principle: Let A be a finite set and B ⊆ A. Then
|A − B | = |A|− |B |.

Combinatorics- Lecture: 4

Find the number of positive integers ≤ 1000 that have at least 2
different digits.
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Product Principle: Let X and Y be two finite sets. Then the
number of pairs (x , y) satisfying x ∈ X and y ∈ Y is |X |× |Y |.

Combinatorics- Lecture: 4

Generalized Product Principle: Let X1,X2, . . . ,Xk be finite sets.
Then the number of k-tuples (x1, x2, . . . , xk) satisfying xi ∈ Xi is
|X1|× |X2|× · · ·× |Xk |.
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For any positive integer k, the number of k-digit positive integers
is 9.10k−1.
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Howmany 4 digit positive integers both start and end in even
numbers?
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Suppose that a password contains only digits from 0 to 9. Also
number of digits should be at least 4, and atmost 7. Howmany
passwords can be formed ?
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Suppose that a password contains 5 digits, does not start with 0
and contains the digit 8. Then howmany possibilities are there ?
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For any positive integer n, the number of ways to arrange all
elements of the set [n] in a line is n!.

Combinatorics- Lecture: 4

A permutation of a finite set S is a list of the elements of S

containing each element of S exactly once.
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Let n and k be positive integers, where n ≥ k. Then the number
of ways to make a k-element list from [n] without repeating any
elements is (n)k = n(n − 1) · · · (n − k + 1).

Combinatorics- Lecture: 4

Let S and T be finite sets, and let d be a fixed positive integer.
We say that the function f : T → S is d-to-one if for each element
s ∈ S , there exists exactly d elements t ∈ T such that f (t) = s.
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Division Principle: Let S and T be finite sets so that a d-to-one
function f : T → S exists. Then |S | = |T |

d
.
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The number of different seating arrangements for n people around
a circular table is (n − 1)!.
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Let n be a positive integer, and let k ≤ n be a non-negative
integer. Then the number of all k-element subsets of [n] is
n(n−1)···(n−k+1)

k!
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(Binomial Theorem): If n is a positive integer then

(x + y)n =
n

∑

k=0

(

n

k

)

xky (n−k)
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Bijective Proofs

Howmany subsets are there for an n element set ?

Combinatorics- Lecture: 4

For any positive integer n the number of divisors n that are larger
than

√
n is equal to the number of devisor of n that are smaller

than
√

n.
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Working with North-Eastern paths

1 Number of paths from (0, 0) to (k, n − k), take n = 10, k = 4:
Then to (6, 4).

2 Number of paths from (0, 0) to (6, 4) if we want to visit (4, 2)
on the way.

3 Number of paths from (0, 0) to (6, 4), such that we either
visit (3, 2) or (2, 3).

Combinatorics- Lecture: 4

The number of north eastern Lattice paths from (0, 0) to (n, n)
that never go above the diagonal x = y (the main diagonal) is
equal to the number of ways to fill a 2 × n grid with the elements
of [2n] using each element once so that each row and column is
increasing (to the right and down).
(Such a 2 × n rectangle containing the elements of [2n] so that
each element is used once and each row and column is increasing
(to the right and down) is called a Standard Young Tableau.
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Elementary Concepts
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(Addition Principle) If A and B are two disjoint finite sets, then
|A ∪ B | = |A| + |B |.
(Generalized Addition Principle) Let A1,A2, . . . ,An be finite
sets that are pairwise disjoint. Then,

|A1 ∪ A2 ∪ . . . ∪ An| = |A1| + |A2| + · · · + |An|

.

Combinatorics- Lecture: 5

Subtraction Principle: Let A be a finite set and B ⊆ A. Then
|A − B | = |A|− |B |.
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Find the number of positive integers ≤ 1000 that have at least 2
different digits.
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Product Principle: Let X and Y be two finite sets. Then the
number of pairs (x , y) satisfying x ∈ X and y ∈ Y is |X |× |Y |.
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Generalized Product Principle: Let X1,X2, . . . ,Xk be finite sets.
Then the number of k-tuples (x1, x2, . . . , xk) satisfying xi ∈ Xi is
|X1|× |X2|× · · ·× |Xk |.

Combinatorics- Lecture: 5

For any positive integer k, the number of k-digit positive integers
is 9.10k−1.
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Howmany 4 digit positive integers both start and end in even
numbers?
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Suppose that a password contains only digits from 0 to 9. Also
number of digits should be at least 4, and atmost 7. Howmany
passwords can be formed ?
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Suppose that a password contains 5 digits, does not start with 0
and contains the digit 8. Then howmany possibilities are there ?

Combinatorics- Lecture: 5

For any positive integer n, the number of ways to arrange all
elements of the set [n] in a line is n!.
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A permutation of a finite set S is a list of the elements of S

containing each element of S exactly once.

Combinatorics- Lecture: 5

Let n and k be positive integers, where n ≥ k. Then the number
of ways to make a k-element list from [n] without repeating any
elements is (n)k = n(n − 1) · · · (n − k + 1).
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Let S and T be finite sets, and let d be a fixed positive integer.
We say that the function f : T → S is d-to-one if for each element
s ∈ S , there exists exactly d elements t ∈ T such that f (t) = s.
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Division Principle: Let S and T be finite sets so that a d-to-one
function f : T → S exists. Then |S | = |T |

d
.
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The number of different seating arrangements for n people around
a circular table is (n − 1)!.

Combinatorics- Lecture: 5

Let n be a positive integer, and let k ≤ n be a non-negative
integer. Then the number of all k-element subsets of [n] is
n(n−1)···(n−k+1)

k!
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(Binomial Theorem): If n is a positive integer then

(x + y)n =
n

∑

k=0

(

n

k

)

xky (n−k)
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Bijective Proofs

Howmany subsets are there for an n element set ?
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For any positive integer n the number of divisors n that are larger
than

√
n is equal to the number of devisor of n that are smaller

than
√

n.
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Working with North-Eastern paths

1 Number of paths from (0, 0) to (k, n − k), take n = 10, k = 4:
Then to (6, 4).

2 Number of paths from (0, 0) to (6, 4) if we want to visit (4, 2)
on the way.

3 Number of paths from (0, 0) to (6, 4), such that we either
visit (3, 2) or (2, 3).
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The number of north eastern Lattice paths from (0, 0) to (n, n)
that never go above the diagonal x = y (the main diagonal) is
equal to the number of ways to fill a 2 × n grid with the elements
of [2n] using each element once so that each row and column is
increasing (to the right and down).
(Such a 2 × n rectangle containing the elements of [2n] so that
each element is used once and each row and column is increasing
(to the right and down) is called a Standard Young Tableau.
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Elementary Concepts: Part (2)

Combinatorics- Lecture: 6

Let n be a positive integer, and let k ≤ n be a non-negative
integer. Then the number of all k-element subsets of [n] is
n(n−1)···(n−k+1)

k!



Combinatorics- Lecture: 6

(Binomial Theorem): If n is a positive integer then

(x + y)n =
n

∑

k=0

(

n

k

)

xky (n−k)
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Bijective Proofs

Howmany subsets are there for an n element set ?
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For any positive integer n the number of divisors of n that are
larger than

√
n is equal to the number of devisor of n that are

smaller than
√

n.
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Working with North-Eastern paths

1 Number of paths from (0, 0) to (k, n − k), take n = 10, k = 4:
Then to (6, 4).

2 Number of paths from (0, 0) to (6, 4) if we want to visit (4, 2)
on the way.

3 Number of paths from (0, 0) to (6, 4), such that we either
visit (3, 2) or (2, 3).
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The number of north eastern Lattice paths from (0, 0) to (n, n)
that never go above the diagonal x = y (the main diagonal) is
equal to the number of ways to fill a 2 × n grid with the elements
of [2n] using each element once so that each row and column is
increasing (to the right and down).
(Such a 2 × n rectangle containing the elements of [2n] so that
each element is used once and each row and column is increasing
(to the right and down) is called a Standard Young Tableau.
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Properties of Binomial Coefficients
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Let n and k be non-negative integers so that k ≤ n. Then
(

n

k

)

=
(

n

n−k

)

.
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2n =
n

∑

k=0

(

n

k

)
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(

n

k

)

+
(

n

k+1

)

=
(

n+1
k+1

)

Combinatorics- Lecture: 6

The Pascal Triangle
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For all integers n,

(

2n

n

)

=
n

∑

k=0

(

n

k

)2
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Let n be a positive integer. Then,

n
∑

k=1

k

(

n

k

)2

= n

(

2n − 1

n − 1

)



Combinatorics- Lecture: 7

COMBINATORICS- Lecture: 7

by Prof. L. Sunil Chandran, CSA, IISc, Bangalore.

Combinatorics- Lecture: 7

Bijective Proofs
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For any positive integer n the number of divisors of n that are
larger than

√
n is equal to the number of devisor of n that are

smaller than
√

n.
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Working with North-Eastern paths

1 Number of paths from (0, 0) to (k, n − k), take n = 10, k = 4:
Then to (6, 4).

2 Number of paths from (0, 0) to (6, 4) if we want to visit (4, 2)
on the way.

3 Number of paths from (0, 0) to (6, 4), such that we either
visit (3, 2) or (2, 3).
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The number of north eastern Lattice paths from (0, 0) to (n, n)
that never go above the diagonal x = y (the main diagonal) is
equal to the number of ways to fill a 2 × n grid with the elements
of [2n] using each element once so that each row and column is
increasing (to the right and down).
(Such a 2 × n rectangle containing the elements of [2n] so that
each element is used once and each row and column is increasing
(to the right and down) is called a Standard Young Tableau.
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Properties of Binomial Coefficients
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Let n and k be non-negative integers so that k ≤ n. Then
(

n

k

)

=
(

n

n−k

)

.
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2n =
n

∑

k=0

(

n

k

)
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(

n

k

)

+
(

n

k+1

)

=
(

n+1
k+1

)

Combinatorics- Lecture: 7

The Pascal Triangle
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For all integers n,

(

2n

n

)

=
n

∑

k=0

(

n

k

)2
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Let n be a positive integer. Then,

n
∑

k=1

k

(

n

k

)2

= n

(

2n − 1

n − 1

)
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Permutations with Repition

Combinatorics- Lecture: 7

Assume we want to arrange n objects in a line, the n objects are of
k different types, and objects of the same type are
indistinguishable. Let ai be the number of objects of type i . Then
the number of different arrangements is:

n!

a1!a2! . . . ak !
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A quality controller has to visit one factory a day. In the next 8
days, she will visit each of 4 factories, A, B, C, and D, twice. The
controller is free to choose the order in which she visits these
factories, but the two visits to factory A cannot be on consecutive
days. In howmay diffent orders can the controller proceed ?
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Example of a Bijective Proof

The number of north eastern Lattice paths from (0, 0) to (n, n)
that never go above the diagonal x = y (the main diagonal) is
equal to the number of ways to fill a 2 × n grid with the elements
of [2n] using each element once so that each row and column is
increasing (to the right and down).
(Such a 2 × n rectangle containing the elements of [2n] so that
each element is used once and each row and column is increasing
(to the right and down) is called a Standard Young Tableau.
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Properties of Binomial Coefficients
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Let n and k be non-negative integers so that k ≤ n. Then
(

n

k

)

=
(

n

n−k

)

.
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2n =
n

∑

k=0

(

n

k

)
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(

n

k

)

+
(

n

k+1

)

=
(

n+1
k+1

)

Combinatorics- Lecture: 8

The Pascal Triangle
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For all integers n,

(

2n

n

)

=
n

∑

k=0

(

n

k

)2
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Let n be a positive integer. Then,

n
∑

k=1

k

(

n

k

)2

= n

(

2n − 1

n − 1

)



Combinatorics- Lecture: 8

Permutations with Repition

(Permutations of Multisets)

Combinatorics- Lecture: 8

Let S be a multiset with objects of k different types with finite
repetition numbers a1, . . . , ak respectively. Let |S | = n =

∑

k

i=1 ai .
Then number of permutations of S equals

n!

a1!a2! . . . ak !
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Assume we want to arrange n objects in a line, the n objects are of
k different types, and objects of the same type are
indistinguishable. Let ai be the number of objects of type i . Then
the number of different arrangements is:

n!

a1!a2! . . . ak !

Combinatorics- Lecture: 8

If S is a multiset with objects of k different types, where each has
an infinite repition number. Then the number of r permutations of
S is:
(Example: What is the number of ternary numerals with at most 4
digits? Set S her is {∞.0,∞.1,∞.2}. )
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A quality controller has to visit one factory a day. In the next 8
days, she will visit each of 4 factories, A, B, C, and D, twice. The
controller is free to choose the order in which she visits these
factories, but the two visits to factory A cannot be on consecutive
days. In howmay diffent orders can the controller proceed ?

Combinatorics- Lecture: 8

The number of permutations of the letters in the word
MISSISSIPPI:
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For all integers n,

(

2n

n

)

=
n

∑

k=0

(

n

k

)2
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Let n be a positive integer. Then,

n
∑

k=1

k

(

n

k

)2

= n

(

2n − 1

n − 1

)
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Permutations with Repition

(Permutations of Multisets)
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If S is a multiset with objects of k different types, where each has
an infinite repition number. Then the number of r permutations of
S is:
(Example: What is the number of ternary numerals with at most 4
digits? Set S her is {∞.0,∞.1,∞.2}. )
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Let S be a multiset with objects of k different types with finite
repetition numbers a1, . . . , ak respectively. Let |S | = n =

∑

k

i=1
ai .

Then number of permutations of S equals

n!

a1!a2! . . . ak !
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Assume we want to arrange n objects in a line, the n objects are of
k different types, and objects of the same type are
indistinguishable. Let ai be the number of objects of type i . Then
the number of different arrangements is:

n!

a1!a2! . . . ak !

Combinatorics- Lecture: 9

A quality controller has to visit one factory a day. In the next 8
days, she will visit each of 4 factories, A, B, C, and D, twice. The
controller is free to choose the order in which she visits these
factories, but the two visits to factory A cannot be on consecutive
days. In howmay diffent orders can the controller proceed ?
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The number of permutations of the letters in the word
MISSISSIPPI:
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Another view:
Let n be a positive integer and let n1, n2, . . . , nk be positive
integers with n = n1 + n2 + . . . + nk . The number of ways to
partition a set of n objects into k labelled boxes B1,B2, . . . ,Bk in
which Bi contains ni objects equals:

n!

n1!n2! . . . nk !



Combinatorics- Lecture: 9

If the boxes are not labelled and n1 = n2 = · · · = nk , then the
number of partitions equals

n!

k!n1!n2! . . . nk !

Combinatorics- Lecture: 9

1 Howmany possibilities are there for 8 non-attacking rooks on
an 8 × 8 chess board ?

2 If all the rooks are colored differently ?

3 If there are 1 red rook, 2 blue rooks and 4 yellow rooks ?



Combinatorics- Lecture: 9

There are n rooks to be placed in a non-attacking configuration on
an n × n chess board. n =

∑

k

i=1
ni and there are ni rooks of color

Ci . The number of possible configurations are

(n!)2

n1!n2! . . . nk !

Combinatorics- Lecture: 9

Binomial Coefficient vs Multinomial coeffient



Combinatorics- Lecture: 9

For positive integers n, t, the coefficient of xn1

1 xn2

2 xn3

3 . . . xnt

t in the
expansion of (x1 + x2 + . . . + xt)n is

n!

n1!n2! . . . nt !

Combinatorics- Lecture: 9

What is the coefficient of x2y2z3 in the expansion of (x + y + z)7 ?
What is the coefficient of a2b3c2d5 in the expansion of
(a + 2b − 3c + 2d + 5)16 ?



Combinatorics- Lecture: 10
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Combinatorics- Lecture: 10

For all integers n,

(

2n

n

)

=
n

∑

k=0

(

n

k

)2



Combinatorics- Lecture: 10

Let n be a positive integer. Then,

n
∑

k=1

k

(

n

k

)2

= n

(

2n − 1

n − 1

)

Combinatorics- Lecture: 10

Permutations with Repition

(Permutations of Multisets)



Combinatorics- Lecture: 10

If S is a multiset with objects of k different types, where each has
an infinite repition number. Then the number of r permutations of
S is:
(Example: What is the number of ternary numerals with at most 4
digits? Set S her is {∞.0,∞.1,∞.2}. )

Combinatorics- Lecture: 10

Let S be a multiset with objects of k different types with finite
repetition numbers a1, . . . , ak respectively. Let |S | = n =

∑

k

i=1
ai .

Then number of permutations of S equals

n!

a1!a2! . . . ak !



Combinatorics- Lecture: 10

Assume we want to arrange n objects in a line, the n objects are of
k different types, and objects of the same type are
indistinguishable. Let ai be the number of objects of type i . Then
the number of different arrangements is:

n!

a1!a2! . . . ak !

Combinatorics- Lecture: 10

A quality controller has to visit one factory a day. In the next 8
days, she will visit each of 4 factories, A, B, C, and D, twice. The
controller is free to choose the order in which she visits these
factories, but the two visits to factory A cannot be on consecutive
days. In howmay diffent orders can the controller proceed ?



Combinatorics- Lecture: 10

The number of permutations of the letters in the word
MISSISSIPPI:

Combinatorics- Lecture: 10

Another view:
Let n be a positive integer and let n1, n2, . . . , nk be positive
integers with n = n1 + n2 + . . . + nk . The number of ways to
partition a set of n objects into k labelled boxes B1,B2, . . . ,Bk in
which Bi contains ni objects equals:

n!

n1!n2! . . . nk !



Combinatorics- Lecture: 10

If the boxes are not labelled and n1 = n2 = · · · = nk , then the
number of partitions equals

n!

k!n1!n2! . . . nk !

Combinatorics- Lecture: 10

1 Howmany possibilities are there for 8 non-attacking rooks on
an 8 × 8 chess board ?

2 If all the rooks are colored differently ?

3 If there are 1 red rook, 2 blue rooks and 4 yellow rooks ?



Combinatorics- Lecture: 10

There are n rooks to be placed in a non-attacking configuration on
an n × n chess board. n =

∑

k

i=1
ni and there are ni rooks of color

Ci . The number of possible configurations are

(n!)2

n1!n2! . . . nk !

Combinatorics- Lecture: 10

Binomial Coefficient vs Multinomial coeffient



Combinatorics- Lecture: 10

For positive integers n, t, the coefficient of xn1

1 xn2

2 xn3

3 . . . xnt

t in the
expansion of (x1 + x2 + . . . + xt)n is

n!

n1!n2! . . . nt !

Combinatorics- Lecture: 10

What is the coefficient of x2y2z3 in the expansion of (x + y + z)7 ?
What is the coefficient of a2b3c2d5 in the expansion of
(a + 2b − 3c + 2d + 5)16 ?



Combinatorics- Lecture: 11
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Combinatorics- Lecture: 11

Binomial Coefficient vs Multinomial coeffient



Combinatorics- Lecture: 11

For positive integers n, t, the coefficient of xn1
1 xn2

2 xn3
3 . . . xnt

t in the
expansion of (x1 + x2 + . . . + xt)n is

n!

n1!n2! . . . nt !

Combinatorics- Lecture: 11

What is the coefficient of x2y2z3 in the expansion of (x + y + z)7 ?
What is the coefficient of a2b3c2d5 in the expansion of
(a + 2b − 3c + 2d + 5)16 ?



Combinatorics- Lecture: 11

Combinations with Repititions

Combinatorics- Lecture: 11

7 boys go to a shop to buy pens. In the shop there are 4 kinds of
pens: red, blue, green and black. If each boy buys one pen, how
many different purchases are possible from the shop owner’s view
point ?



Combinatorics- Lecture: 11

Number of n objects taken r at a time, with repitition, is
(

n+r−1
r

)

.

Combinatorics- Lecture: 11

A sweet shop offers 20 different kinds of sweets. Assuming that
there are at least a dozen of each kind when we enter the shop, in
howmany ways we can select a dozen sweets ?



Combinatorics- Lecture: 11

10 RS should be distributed among 4 boys: A, B,C and D. In
howmany ways we can do it ?
(a) Now, if each boy has to get at least one Rupee ?
(b) If A has to get at least 5 Rupees and each has to get at least 1
Rupee ?

Combinatorics- Lecture: 11

In howmany ways can we distribute r identical balls among n

distinct (or labelled) boxes ?



Combinatorics- Lecture: 11

In howmany ways we can distribute 7 bananas and 6 oranges
among 4 children so that each child receives at least one banana ?

Combinatorics- Lecture: 11

A message is made up of 12 different symbols and is to be
transmitted through a communication channel. In addition to the
12 symbols, the transmitter will also send a total of 45 blank
spaces between the symbols, with at least 3 symbols between each
pair of consecutive symbols. In howmany ways can the transmitter
send such a message ?



Combinatorics- Lecture: 11

Determine all integer solutions to the equation

x1 + x2 + . . . + x4 = 7

where xi ≥ 0, for all 1 ≤ i ≤ 4.

Combinatorics- Lecture: 11

The following are equivalent:
(1) The number of integer solutions of the equation
x1 + x2 + . . . + xn = r , where xi ≥ 0, 1 ≤ i ≤ n.
(2) The number of selections with repitition, of size r from a
collection of size n.
(3) The number of ways r identical objects can be distributed
among n distinct containers.



Combinatorics- Lecture: 11

Howmany non-negative integer solutions are there to the inequality

x1 + x2 + · · · + x6 < 10

(The technique: Introduce a 7th variable, x7).

Combinatorics- Lecture: 11

Howmany terms are there in the expansion of (w + x + y + z)10 ?



Combinatorics- Lecture: 11

Different ways in which a positive integer n can be written as a sum
of positive integers where the order of the summand is considered
relevant. (There representations are called compositions).

Combinatorics- Lecture: 11

The number of composition of 2n where each summand is even.



Combinatorics- Lecture: 11

for i = 1 to 20 do,
for j = 1 to i do,
for k = 1 to j do,
print (something)
Howmany times will the print statement gets executed ?

Combinatorics- Lecture: 11

A combinatorial proof to show
∑

n

i=1 = n(n+1)
2 .



Combinatorics- Lecture: 11

The counter in a bar has to be 15 bar stools. In howmany ways
can the stool be occupied if there has to 5 empty stools, 10
occupied stools and total 7 runs.
Example: OO E OOOO EEE OOO E O

Combinatorics- Lecture: 12
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Combinatorics- Lecture: 12

Binomial Coefficient vs Multinomial coeffient

Combinatorics- Lecture: 12

For positive integers n, t, the coefficient of xn1
1 xn2

2 xn3
3 . . . xnt

t in the
expansion of (x1 + x2 + . . . + xt)n is

n!

n1!n2! . . . nt !



Combinatorics- Lecture: 12

What is the coefficient of x2y2z3 in the expansion of (x + y + z)7 ?
What is the coefficient of a2b3c2d5 in the expansion of
(a + 2b − 3c + 2d + 5)16 ?

Combinatorics- Lecture: 12

Combinations with Repititions



Combinatorics- Lecture: 12

7 boys go to a shop to buy pens. In the shop there are 4 kinds of
pens: red, blue, green and black. If each boy buys one pen, how
many different purchases are possible from the shop owner’s view
point ?

Combinatorics- Lecture: 12

Number of n objects taken r at a time, with repitition, is
(

n+r−1
r

)

.



Combinatorics- Lecture: 12

A sweet shop offers 20 different kinds of sweets. Assuming that
there are at least a dozen of each kind when we enter the shop, in
howmany ways we can select a dozen sweets ?

Combinatorics- Lecture: 12

10 RS should be distributed among 4 boys: A, B,C and D. In
howmany ways we can do it ?
(a) Now, if each boy has to get at least one Rupee ?
(b) If A has to get at least 5 Rupees and each has to get at least 1
Rupee ?



Combinatorics- Lecture: 12

In howmany ways can we distribute r identical balls among n

distinct (or labelled) boxes ?

Combinatorics- Lecture: 12

In howmany ways we can distribute 7 bananas and 6 oranges
among 4 children so that each child receives at least one banana ?



Combinatorics- Lecture: 12

A message is made up of 12 different symbols and is to be
transmitted through a communication channel. In addition to the
12 symbols, the transmitter will also send a total of 45 blank
spaces between the symbols, with at least 3 symbols between each
pair of consecutive symbols. In howmany ways can the transmitter
send such a message ?

Combinatorics- Lecture: 12

Determine all integer solutions to the equation

x1 + x2 + . . . + x4 = 7

where xi ≥ 0, for all 1 ≤ i ≤ 4.



Combinatorics- Lecture: 12

The following are equivalent:
(1) The number of integer solutions of the equation
x1 + x2 + . . . + xn = r , where xi ≥ 0, 1 ≤ i ≤ n.
(2) The number of selections with repitition, of size r from a
collection of size n.
(3) The number of ways r identical objects can be distributed
among n distinct containers.

Combinatorics- Lecture: 12

Howmany non-negative integer solutions are there to the inequality

x1 + x2 + · · · + x6 < 10

(The technique: Introduce a 7th variable, x7).



Combinatorics- Lecture: 12

Howmany terms are there in the expansion of (w + x + y + z)10 ?

Combinatorics- Lecture: 12

Different ways in which a positive integer n can be written as a sum
of positive integers where the order of the summand is considered
relevant. (There representations are called compositions).



Combinatorics- Lecture: 12

The number of composition of 2n where each summand is even.

Combinatorics- Lecture: 12

for i = 1 to 20 do,
for j = 1 to i do,
for k = 1 to j do,
print (something)
Howmany times will the print statement gets executed ?



Combinatorics- Lecture: 12

A combinatorial proof to show
∑

n

i=1 = n(n+1)
2 .

Combinatorics- Lecture: 12

The counter in a bar has to be 15 bar stools. In howmany ways
can the stool be occupied if there has to 5 empty stools, 10
occupied stools and total 7 runs.
Example: OO E OOOO EEE OOO E O



Combinatorics- Lecture: 13
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Combinatorics- Lecture: 13

for i = 1 to 20 do,
for j = 1 to i do,
for k = 1 to j do,
print (something)
Howmany times will the print statement gets executed ?



Combinatorics- Lecture: 13

A combinatorial proof to show
∑n

i=1 = n(n+1)
2 .

Combinatorics- Lecture: 13

The counter in a bar has to be 15 bar stools. In howmany ways
can the stool be occupied if there has to 5 empty stools, 10
occupied stools and total 7 runs.
Example: OO E OOOO EEE OOO E O



Combinatorics- Lecture: 13

How big is
(

n
r

)

?

Combinatorics- Lecture: 13

(n

k

)k
≤

(

n

k

)

≤
(en

k

)k



Combinatorics- Lecture: 13

Sterling’s formula for factorial:

n! ≈
(n

e

)n √
2πn

Combinatorics- Lecture: 13

(From William Feller, Vol 1: An Introduction to Probability Theory
and its applications)

1! ≈ 0.9221(percentageerr : 8)

2! ≈ 1.919(percentageerr : 4)

5!(= 120) ≈ 118.019(percentageerr : 2)

10!(= 3, 628, 800) ≈ 3, 598, 600(percenterr : 0.8)

For 100! percentage error is 0.08



Combinatorics- Lecture: 13

Sterling formular for factorial:

n! =
(n

e

)n √
2πneαn

where 1
12n+1 < αn < 1

12n .

Combinatorics- Lecture: 13

More general treatment of
(

n
r

)



Combinatorics- Lecture: 13

Falling factorial and rising factorial.

Combinatorics- Lecture: 13

(

r

k

)

=
r(r − 1) · · · (r − k + 1)

k(k − 1) · · · 1
for integer k ≥ 0

(

r

k

)

= 0, for integer k < 0



Combinatorics- Lecture: 13

Some of the earlier identities we studied may not be valid in
general:
Example: The symmetry identitity.

Combinatorics- Lecture: 13

The absorption identity:

(

r

k

)

=
r

k

(

r − 1

k − 1

)

, for integer k ̸= 0



Combinatorics- Lecture: 13

(r − k)

(

r

k

)

= r

(

r − 1

k

)

, for integer k

Combinatorics- Lecture: 13

Addition formula:

(

r

k

)

=

(

r − 1

k

)

+

(

r − 1

k − 1

)

for integer k.



Combinatorics- Lecture: 13

Binomial Theorem:

(x + y)r =
∑

k

(

r

k

)

xky r−k

for integer r ≥ 0 or when | xy | < 1.

Combinatorics- Lecture: 13

When r is not a non-negative integer, we often use the binomial
theorem in the special case y = 1.

(1 + z)r =
∑

k

(

r

k

)

zk

where |z | < 1.
(The general formula follows from this if we set z = x/y and
mutiply both sides by y r )



Combinatorics- Lecture: 13

Extending the Pascal’s triangle for negative n.

Combinatorics- Lecture: 13

(Negating the upper index)

(

r

k

)

= (−1)k
(

k − r − 1

k

)



Combinatorics- Lecture: 13

More Techniques
Double Counting

Combinatorics- Lecture: 13

At a party, the number of guests who shake hands an odd number
of times is even.



Combinatorics- Lecture: 13

In every graph the sum of degrees of its vertices is two times the
number of its edges, and hence is even.

Combinatorics- Lecture: 13

Let F be a family of subsets of a set X . Then,
∑

x∈X d(x) =
∑

A∈F |A|.



Combinatorics- Lecture: 13

Turan’s number T (n, k, l), (l ≤ k ≤ n) is the smallest number of l

element subsets of an n-element set X such that every k element
subset of X contains at least one of these sets.
For all positive integers, l ≤ k ≤ n, T (n, k, l) ≥

(

n
l

)

/
(

k
l

)

Combinatorics- Lecture: 13

Hall’s Theorem for k-regular bipartite graphs.



Combinatorics- Lecture: 13

Inclusion Exclusion Principle

Combinatorics- Lecture: 14
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Combinatorics- Lecture: 14

Sterling’s formula for factorial:

n! ≈
(n

e

)n √
2πn

(From William Feller, Vol 1: An Introduction to Probability Theory
and its applications)

Combinatorics- Lecture: 14

Sterling formular for factorial:

n! =
(n

e

)n √
2πneαn

where 1
12n+1

< αn < 1
12n .



Combinatorics- Lecture: 14

More general treatment of
(

n
r

)

Combinatorics- Lecture: 14

Falling factorial and rising factorial.



Combinatorics- Lecture: 14

(

r

k

)

=
r(r − 1) · · · (r − k + 1)

k(k − 1) · · · 1
for integer k ≥ 0

(

r

k

)

= 0, for integer k < 0

Combinatorics- Lecture: 14

Some of the earlier identities we studied may not be valid in
general:
Example: The symmetry identitity.



Combinatorics- Lecture: 14

The absorption identity:

(

r

k

)

=
r

k

(

r − 1

k − 1

)

, for integer k ̸= 0

Combinatorics- Lecture: 14

(r − k)

(

r

k

)

= r

(

r − 1

k

)

, for integer k



Combinatorics- Lecture: 14

Addition formula:

(

r

k

)

=

(

r − 1

k

)

+

(

r − 1

k − 1

)

for integer k.

Combinatorics- Lecture: 14

Binomial Theorem:

(x + y)r =
∑

k

(

r

k

)

xky r−k

for integer r ≥ 0 or when | xy | < 1.



Combinatorics- Lecture: 14

When r is not a non-negative integer, we often use the binomial
theorem in the special case y = 1.

(1 + z)r =
∑

k

(

r

k

)

zk

where |z | < 1.
(The general formula follows from this if we set z = x/y and
mutiply both sides by y r )

Combinatorics- Lecture: 14

Extending the Pascal’s triangle for negative n.



Combinatorics- Lecture: 14

(Negating the upper index)

(

r

k

)

= (−1)k
(

k − r − 1

k

)

Combinatorics- Lecture: 14

More Techniques
Double Counting



Combinatorics- Lecture: 14

At a party, the number of guests who shake hands an odd number
of times is even.

Combinatorics- Lecture: 14

In every graph the sum of degrees of its vertices is two times the
number of its edges, and hence is even.



Combinatorics- Lecture: 14

Let F be a family of subsets of a set X . Then,
∑

x∈X d(x) =
∑

A∈F |A|.

Combinatorics- Lecture: 14

Turan’s number T (n, k, l), (l ≤ k ≤ n) is the smallest number of l

element subsets of an n-element set X such that every k element
subset of X contains at least one of these sets.
For all positive integers, l ≤ k ≤ n, T (n, k, l) ≥

(

n
l

)

/
(

k
l

)



Combinatorics- Lecture: 14

Hall’s Theorem for k-regular bipartite graphs.

Combinatorics- Lecture: 14

Inclusion Exclusion Principle



Combinatorics- Lecture: 15
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Combinatorics- Lecture: 15

Sterling’s formula for factorial:

n! ≈
(n

e

)n √
2πn

(From William Feller, Vol 1: An Introduction to Probability Theory
and its applications)



Combinatorics- Lecture: 15

Sterling formular for factorial:

n! =
(n

e

)n √
2πneαn

where 1
12n+1

< αn < 1
12n .

Combinatorics- Lecture: 15

More general treatment of
(

n
r

)



Combinatorics- Lecture: 15

Falling factorial and rising factorial.

Combinatorics- Lecture: 15

(

r

k

)

=
r(r − 1) · · · (r − k + 1)

k(k − 1) · · · 1
for integer k ≥ 0

(

r

k

)

= 0, for integer k < 0



Combinatorics- Lecture: 15

Some of the earlier identities we studied may not be valid in
general:
Example: The symmetry identitity.

Combinatorics- Lecture: 15

The absorption identity:

(

r

k

)

=
r

k

(

r − 1

k − 1

)

, for integer k ̸= 0



Combinatorics- Lecture: 15

(r − k)

(

r

k

)

= r

(

r − 1

k

)

, for integer k

Combinatorics- Lecture: 15

Addition formula:

(

r

k

)

=

(

r − 1

k

)

+

(

r − 1

k − 1

)

for integer k.



Combinatorics- Lecture: 15

Binomial Theorem:

(x + y)r =
∑

k

(

r

k

)

xky r−k

for integer r ≥ 0 or when | xy | < 1.

Combinatorics- Lecture: 15

When r is not a non-negative integer, we often use the binomial
theorem in the special case y = 1.

(1 + z)r =
∑

k

(

r

k

)

zk

where |z | < 1.
(The general formula follows from this if we set z = x/y and
mutiply both sides by y r )



Combinatorics- Lecture: 15

Extending the Pascal’s triangle for negative n.

Combinatorics- Lecture: 15

(Negating the upper index)

(

r

k

)

= (−1)k
(

k − r − 1

k

)



Combinatorics- Lecture: 15

More Techniques
Double Counting

Combinatorics- Lecture: 15

At a party, the number of guests who shake hands an odd number
of times is even.



Combinatorics- Lecture: 15

In every graph the sum of degrees of its vertices is two times the
number of its edges, and hence is even.

Combinatorics- Lecture: 15

Let F be a family of subsets of a set X . Then,
∑

x∈X d(x) =
∑

A∈F |A|.



Combinatorics- Lecture: 15

Turan’s number T (n, k, l), (l ≤ k ≤ n) is the smallest number of l

element subsets of an n-element set X such that every k element
subset of X contains at least one of these sets.
For all positive integers, l ≤ k ≤ n, T (n, k, l) ≥

(

n
l

)

/
(

k
l

)

Combinatorics- Lecture: 15

Hall’s Theorem for k-regular bipartite graphs.



Combinatorics- Lecture: 15

Inclusion Exclusion Principle

Combinatorics- Lecture: 16
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Combinatorics- Lecture: 16

(Negating the upper index)

(

r

k

)

= (−1)k
(

k − r − 1

k

)

Combinatorics- Lecture: 16

More Techniques
Double Counting



Combinatorics- Lecture: 16

At a party, the number of guests who shake hands an odd number
of times is even.

Combinatorics- Lecture: 16

In every graph the sum of degrees of its vertices is two times the
number of its edges, and hence is even.



Combinatorics- Lecture: 16

Let F be a family of subsets of a set X . Then,
∑

x∈X d(x) =
∑

A∈F |A|.

Combinatorics- Lecture: 16

Turan’s number T (n, k, l), (l ≤ k ≤ n) is the smallest number of l

element subsets of an n-element set X such that every k element
subset of X contains at least one of these sets.
For all positive integers, l ≤ k ≤ n, T (n, k, l) ≥

(

n
l

)

/
(

k
l

)



Combinatorics- Lecture: 16

Hall’s Theorem for k-regular bipartite graphs.

Combinatorics- Lecture: 16

Inclusion Exclusion Principle



Combinatorics- Lecture: 16

The case of 2 sets: |A ∩ B| ?
(1) Proof using Venn diagram
(2) Another proof.

Combinatorics- Lecture: 16

The case of 3 sets: |A ∩ B ∩ C | ?



Combinatorics- Lecture: 16

General case: Let A1,A2, . . . ,Ak ⊆ U. Then
|A1 ∩ A2 ∩ · · · ∩ Ak | = |U|−

∑

|Ai | +
∑

|Ai ∩ Aj |−
∑

|Ai ∩ Aj ∩
Ak | · · · + (−1)k |A1 ∩ A2 ∩ · · · ∩ Ak |, where the first sum is over all
1-combinations of [k], and the second sum is over all
2-combinations of [k], and so on.

Combinatorics- Lecture: 16

|A1 ∪ A2 ∪ · · · ∪ Ak | =
∑

|Ai |−
∑

|Ai∩Aj |+
∑

|Ai∩Aj∩Ak | · · ·+(−1)k+1|A1∩A2∩· · ·∩Ak |,



Combinatorics- Lecture: 16

Find the number of integers between 1 and 1000, inclusive that are
not divisible by 5, 6 and 8.

Combinatorics- Lecture: 16

Howmany permutations of the letters M,A,T,H,I,S,F,U,N are there
such that none of the words MATH, IS and FUN occur as
consecutive letters ?



Combinatorics- Lecture: 16

Let αi be the cardinality of the intersection of any collection of i

sets from A1,A2, · · · ,Ak . Let |U| = α0. Then
|A1∪A2∪ · · ·∪Ak| = α0−

(

k
1

)

α1+ · · ·+(−1)i
(

k
i

)

αi + · · ·+(−1)kαk .

Combinatorics- Lecture: 16

How many integers between 0 and 99, 999 (inclusive) have among
their digits each of 2, 5 and 8.



Combinatorics- Lecture: 16

Determine the number of 10-combinations of the multiset
T = {3.a, 4.b, 5.c}.

Combinatorics- Lecture: 16

The number of r -combinations of the multi-set
{n1.a1, n2.a − 2, . . . , nk .ak} equals the number of integral solutions
of the equation x1 + x2 + · · · + xk = r , that satisfy 0 ≤ xi ≤ ni for
i = 1, 2, . . . , k.



Combinatorics- Lecture: 16

What is the number of integral solutions of the equation
x1 + x2 + x3 + x4 = 18 that satisfy
1 ≤ x1 ≤ 5;−2 ≤ x2 ≤ 4; 0 ≤ x3 ≤ 5; 3 ≤ x4 ≤ 9.

Combinatorics- Lecture: 17

COMBINATORICS- Lecture: 17
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Combinatorics- Lecture: 17

(Negating the upper index)

(

r

k

)

= (−1)k
(

k − r − 1

k

)

Combinatorics- Lecture: 17

More Techniques
Double Counting



Combinatorics- Lecture: 17

At a party, the number of guests who shake hands an odd number
of times is even.

Combinatorics- Lecture: 17

In every graph the sum of degrees of its vertices is two times the
number of its edges, and hence is even.



Combinatorics- Lecture: 17

Let F be a family of subsets of a set X . Then,
∑

x∈X d(x) =
∑

A∈F |A|.

Combinatorics- Lecture: 17

Turan’s number T (n, k, l), (l ≤ k ≤ n) is the smallest number of l

element subsets of an n-element set X such that every k element
subset of X contains at least one of these sets.
For all positive integers, l ≤ k ≤ n, T (n, k, l) ≥

(

n
l

)

/
(

k
l

)



Combinatorics- Lecture: 17

Hall’s Theorem for k-regular bipartite graphs.

Combinatorics- Lecture: 17

Inclusion Exclusion Principle



Combinatorics- Lecture: 17

The case of 2 sets: |A ∩ B| ?
(1) Proof using Venn diagram
(2) Another proof.

Combinatorics- Lecture: 17

The case of 3 sets: |A ∩ B ∩ C | ?



Combinatorics- Lecture: 17

General case: Let A1,A2, . . . ,Ak ⊆ U. Then
|A1 ∩ A2 ∩ · · · ∩ Ak | = |U|−

∑

|Ai | +
∑

|Ai ∩ Aj |−
∑

|Ai ∩ Aj ∩
Ak | · · · + (−1)k |A1 ∩ A2 ∩ · · · ∩ Ak |, where the first sum is over all
1-combinations of [k], and the second sum is over all
2-combinations of [k], and so on.

Combinatorics- Lecture: 17

|A1 ∪ A2 ∪ · · · ∪ Ak | =
∑

|Ai |−
∑

|Ai∩Aj |+
∑

|Ai∩Aj∩Ak | · · ·+(−1)k+1|A1∩A2∩· · ·∩Ak |,



Combinatorics- Lecture: 17

Find the number of integers between 1 and 1000, inclusive that are
not divisible by 5, 6 and 8.

Combinatorics- Lecture: 17

Howmany permutations of the letters M,A,T,H,I,S,F,U,N are there
such that none of the words MATH, IS and FUN occur as
consecutive letters ?



Combinatorics- Lecture: 17

Let αi be the cardinality of the intersection of any collection of i

sets from A1,A2, · · · ,Ak . Let |U| = α0. Then
|A1∪A2∪ · · ·∪Ak| = α0−

(

k
1

)

α1+ · · ·+(−1)i
(

k
i

)

αi + · · ·+(−1)kαk .

Combinatorics- Lecture: 17

How many integers between 0 and 99, 999 (inclusive) have among
their digits each of 2, 5 and 8.



Combinatorics- Lecture: 17

Determine the number of 10-combinations of the multiset
T = {3.a, 4.b, 5.c}.

Combinatorics- Lecture: 17

The number of r -combinations of the multi-set
{n1.a1, n2.a − 2, . . . , nk .ak} equals the number of integral solutions
of the equation x1 + x2 + · · · + xk = r , that satisfy 0 ≤ xi ≤ ni for
i = 1, 2, . . . , k.



Combinatorics- Lecture: 17

What is the number of integral solutions of the equation
x1 + x2 + x3 + x4 = 18 that satisfy
1 ≤ x1 ≤ 5;−2 ≤ x2 ≤ 4; 0 ≤ x3 ≤ 5; 3 ≤ x4 ≤ 9.

Combinatorics- Lecture: 18

COMBINATORICS- Lecture: 18
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Combinatorics- Lecture: 18

Double Counting technique

Hall’s Theorem for k-regular bipartite graphs.

Combinatorics- Lecture: 18

Inclusion Exclusion Principle



Combinatorics- Lecture: 18

The case of 2 sets: |A ∩ B| ?
(1) Proof using Venn diagram
(2) Another proof.

Combinatorics- Lecture: 18

The case of 3 sets: |A ∩ B ∩ C | ?



Combinatorics- Lecture: 18

General case: Let A1,A2, . . . ,Ak ⊆ U. Then
|A1 ∩ A2 ∩ · · · ∩ Ak | = |U|−

∑

|Ai | +
∑

|Ai ∩ Aj |−
∑

|Ai ∩ Aj ∩
Ak | · · · + (−1)k |A1 ∩ A2 ∩ · · · ∩ Ak |, where the first sum is over all
1-combinations of [k], and the second sum is over all
2-combinations of [k], and so on.

Combinatorics- Lecture: 18

|A1 ∪ A2 ∪ · · · ∪ Ak | =
∑

|Ai |−
∑

|Ai∩Aj |+
∑

|Ai∩Aj∩Ak | · · ·+(−1)k+1|A1∩A2∩· · ·∩Ak |,



Combinatorics- Lecture: 18

Find the number of integers between 1 and 1000, inclusive that are
not divisible by 5, 6 and 8.

Combinatorics- Lecture: 18

Howmany permutations of the letters M,A,T,H,I,S,F,U,N are there
such that none of the words MATH, IS and FUN occur as
consecutive letters ?



Combinatorics- Lecture: 18

Let αi be the cardinality of the intersection of any collection of i

sets from A1,A2, · · · ,Ak . Let |U| = α0. Then
|A1∪A2∪ · · ·∪Ak| = α0−

(

k
1

)

α1+ · · ·+(−1)i
(

k
i

)

αi + · · ·+(−1)kαk .

Combinatorics- Lecture: 18

How many integers between 0 and 99, 999 (inclusive) have among
their digits each of 2, 5 and 8.



Combinatorics- Lecture: 18

Determine the number of 10-combinations of the multiset
T = {3.a, 4.b, 5.c}.

Combinatorics- Lecture: 18

The number of r -combinations of the multi-set
{n1.a1, n2.a − 2, . . . , nk .ak} equals the number of integral solutions
of the equation x1 + x2 + · · · + xk = r , that satisfy 0 ≤ xi ≤ ni for
i = 1, 2, . . . , k.



Combinatorics- Lecture: 18

What is the number of integral solutions of the equation
x1 + x2 + x3 + x4 = 18 that satisfy
1 ≤ x1 ≤ 5;−2 ≤ x2 ≤ 4; 0 ≤ x3 ≤ 5; 3 ≤ x4 ≤ 9.

Combinatorics- Lecture: 18

The number of onto functions from an m-element set to an n

element set (m ≥ n):
nm −

(

n
1

)

(n − 1)m +
(

n
2

)

(n − 2)m − · · · + (−1)n(n − n)m =
∑n

i=0(−1)i
(

n
i

)

(n − i)m =
∑n

i=0(−1)i
(

n
n−i

)

(n − i)m

Case when n = m and m < n.



Combinatorics- Lecture: 18

Euler’s φ function: φ(n).
If n = pe1

1 pe2

2 . . . pet
t , then

φ(n) = n
∏t

i=1(1 − 1/pi )

Combinatorics- Lecture: 18

6 married couples are to be seated at a circular table. In howmany
ways can they arrange themselves to that no wife sits next to her
husband ?



Combinatorics- Lecture: 19
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Combinatorics- Lecture: 19

Double Counting technique

Hall’s Theorem for k-regular bipartite graphs.



Combinatorics- Lecture: 19

Inclusion Exclusion Principle

Combinatorics- Lecture: 19

The case of 2 sets: |A ∩ B| ?
(1) Proof using Venn diagram
(2) Another proof.



Combinatorics- Lecture: 19

The case of 3 sets: |A ∩ B ∩ C | ?

Combinatorics- Lecture: 19

General case: Let A1,A2, . . . ,Ak ⊆ U. Then
|A1 ∩ A2 ∩ · · · ∩ Ak | = |U|−

∑

|Ai | +
∑

|Ai ∩ Aj |−
∑

|Ai ∩ Aj ∩
Ak | · · · + (−1)k |A1 ∩ A2 ∩ · · · ∩ Ak |, where the first sum is over all
1-combinations of [k], and the second sum is over all
2-combinations of [k], and so on.



Combinatorics- Lecture: 19

|A1 ∪ A2 ∪ · · · ∪ Ak | =
∑

|Ai |−
∑

|Ai∩Aj |+
∑

|Ai∩Aj∩Ak | · · ·+(−1)k+1|A1∩A2∩· · ·∩Ak |,

Combinatorics- Lecture: 19

Find the number of integers between 1 and 1000, inclusive that are
not divisible by 5, 6 and 8.



Combinatorics- Lecture: 19

Howmany permutations of the letters M,A,T,H,I,S,F,U,N are there
such that none of the words MATH, IS and FUN occur as
consecutive letters ?

Combinatorics- Lecture: 19

Let αi be the cardinality of the intersection of any collection of i

sets from A1,A2, · · · ,Ak . Let |U| = α0. Then
|A1∪A2∪ · · ·∪Ak| = α0−

(

k
1

)

α1+ · · ·+(−1)i
(

k
i

)

αi + · · ·+(−1)kαk .



Combinatorics- Lecture: 19

How many integers between 0 and 99, 999 (inclusive) have among
their digits each of 2, 5 and 8.

Combinatorics- Lecture: 19

Determine the number of 10-combinations of the multiset
T = {3.a, 4.b, 5.c}.



Combinatorics- Lecture: 19

The number of r -combinations of the multi-set
{n1.a1, n2.a − 2, . . . , nk .ak} equals the number of integral solutions
of the equation x1 + x2 + · · · + xk = r , that satisfy 0 ≤ xi ≤ ni for
i = 1, 2, . . . , k.

Combinatorics- Lecture: 19

What is the number of integral solutions of the equation
x1 + x2 + x3 + x4 = 18 that satisfy
1 ≤ x1 ≤ 5;−2 ≤ x2 ≤ 4; 0 ≤ x3 ≤ 5; 3 ≤ x4 ≤ 9.



Combinatorics- Lecture: 19

The number of onto functions from an m-element set to an n

element set (m ≥ n):
nm −

(

n
1

)

(n − 1)m +
(

n
2

)

(n − 2)m − · · · + (−1)n(n − n)m =
∑n

i=0(−1)i
(

n
i

)

(n − i)m =
∑n

i=0(−1)i
(

n
n−i

)

(n − i)m

Case when n = m and m < n.

Combinatorics- Lecture: 19

Euler’s φ function: φ(n).
If n = pe1

1 pe2

2 . . . pet
t , then

φ(n) = n
∏t

i=1(1 − 1/pi )



Combinatorics- Lecture: 19

6 married couples are to be seated at a circular table. In howmany
ways can they arrange themselves to that no wife sits next to her
husband ?

Combinatorics- Lecture: 20
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Combinatorics- Lecture: 20

Let αi be the cardinality of the intersection of any collection of i

sets from A1,A2, · · · ,Ak . Let |U| = α0. Then
|A1∪A2∪ · · ·∪Ak| = α0−

(

k

1

)

α1+ · · ·+(−1)i
(

k

i

)

αi + · · ·+(−1)kαk .

Combinatorics- Lecture: 20

How many integers between 0 and 99, 999 (inclusive) have among
their digits each of 2, 5 and 8.



Combinatorics- Lecture: 20

Determine the number of 10-combinations of the multiset
T = {3.a, 4.b, 5.c}.

Combinatorics- Lecture: 20

The number of r -combinations of the multi-set
{n1.a1, n2.a − 2, . . . , nk .ak} equals the number of integral solutions
of the equation x1 + x2 + · · · + xk = r , that satisfy 0 ≤ xi ≤ ni for
i = 1, 2, . . . , k.



Combinatorics- Lecture: 20

What is the number of integral solutions of the equation
x1 + x2 + x3 + x4 = 18 that satisfy
1 ≤ x1 ≤ 5;−2 ≤ x2 ≤ 4; 0 ≤ x3 ≤ 5; 3 ≤ x4 ≤ 9.

Combinatorics- Lecture: 20

The number of onto functions from an m-element set to an n

element set (m ≥ n):
nm −

(

n

1

)

(n − 1)m +
(

n

2

)

(n − 2)m − · · · + (−1)n(n − n)m =
∑

n

i=0
(−1)i

(

n

i

)

(n − i)m =
∑

n

i=0
(−1)i

(

n

n−i

)

(n − i)m

Case when n = m and m < n.



Combinatorics- Lecture: 20

Euler’s φ function: φ(n).
If n = pe1

1
pe2

2
. . . pet

t , then
φ(n) = n

∏

t

i=1
(1 − 1/pi )

Combinatorics- Lecture: 20

6 married couples are to be seated at a circular table. In howmany
ways can they arrange themselves to that no wife sits next to her
husband ?



Combinatorics- Lecture: 20

In a certain area of the country side are 5 villages. An engineer is
to devise a system of 2 way roads so that after the system is
completed no village will be isolated. In how many ways can he do
this ?

Combinatorics- Lecture: 20

Derangements:
Dn = n![1 − 1/1! + 1/2! − 1/3! + · · · + (−1)n1/n!], for n > 1.
(ex = 1 + x + x2/2! + x3/3! + · · · ). So, Dn ≈ n!/e,for large
enough n.



Combinatorics- Lecture: 21
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Combinatorics- Lecture: 21

Let αi be the cardinality of the intersection of any collection of i

sets from A1,A2, · · · ,Ak . Let |U| = α0. Then
|A1∪A2∪ · · ·∪Ak| = α0−

(

k

1

)

α1+ · · ·+(−1)i
(

k

i

)

αi + · · ·+(−1)kαk .



Combinatorics- Lecture: 21

How many integers between 0 and 99, 999 (inclusive) have among
their digits each of 2, 5 and 8.

Combinatorics- Lecture: 21

Determine the number of 10-combinations of the multiset
T = {3.a, 4.b, 5.c}.



Combinatorics- Lecture: 21

The number of r -combinations of the multi-set
{n1.a1, n2.a − 2, . . . , nk .ak} equals the number of integral solutions
of the equation x1 + x2 + · · · + xk = r , that satisfy 0 ≤ xi ≤ ni for
i = 1, 2, . . . , k.

Combinatorics- Lecture: 21

What is the number of integral solutions of the equation
x1 + x2 + x3 + x4 = 18 that satisfy
1 ≤ x1 ≤ 5;−2 ≤ x2 ≤ 4; 0 ≤ x3 ≤ 5; 3 ≤ x4 ≤ 9.



Combinatorics- Lecture: 21

The number of onto functions from an m-element set to an n

element set (m ≥ n):
nm −

(

n

1

)

(n − 1)m +
(

n

2

)

(n − 2)m − · · · + (−1)n(n − n)m =
∑

n

i=0
(−1)i

(

n

i

)

(n − i)m =
∑

n

i=0
(−1)i

(

n

n−i

)

(n − i)m

Case when n = m and m < n.

Combinatorics- Lecture: 21

Euler’s φ function: φ(n).
If n = pe1

1
pe2

2
. . . pet

t , then
φ(n) = n

∏

t

i=1
(1 − 1/pi )



Combinatorics- Lecture: 21

6 married couples are to be seated at a circular table. In howmany
ways can they arrange themselves to that no wife sits next to her
husband ?

Combinatorics- Lecture: 21

In a certain area of the country side are 5 villages. An engineer is
to devise a system of 2 way roads so that after the system is
completed no village will be isolated. In how many ways can he do
this ?



Combinatorics- Lecture: 21

Derangements:
Dn = n![1 − 1/1! + 1/2! − 1/3! + · · · + (−1)n1/n!], for n > 1.
(ex = 1 + x + x2/2! + x3/3! + · · · ). So, Dn ≈ n!/e,for large
enough n.

Combinatorics- Lecture: 22
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Combinatorics- Lecture: 22

Euler’s φ function: φ(n).
If n = pe1

1 pe2

2 . . . pet

t , then
φ(n) = n

∏

t

i=1(1 − 1/pi )

Combinatorics- Lecture: 22

6 married couples are to be seated at a circular table. In howmany
ways can they arrange themselves to that no wife sits next to her
husband ?



Combinatorics- Lecture: 22

In a certain area of the country side are 5 villages. An engineer is
to devise a system of 2 way roads so that after the system is
completed no village will be isolated. In how many ways can he do
this ?

Combinatorics- Lecture: 22

Derangements:
Dn = n![1 − 1/1! + 1/2! − 1/3! + · · · + (−1)n1/n!], for n > 1.
(ex = 1 + x + x2/2! + x3/3! + · · · ). So, Dn ≈ n!/e,for large
enough n.



Combinatorics- Lecture: 22

Recurrence Relations

Combinatorics- Lecture: 22

Fibonacci Numbers: Fn = Fn−1 + Fn−2, for n ≥ 2, f1 = 1, f0 = 0.
The problem of Leonardo of Pisa.



Combinatorics- Lecture: 22

The partial sum, Sn = F1 + F2 + · · · + Fn = Fn+2 − 1.

Combinatorics- Lecture: 22

Fn is even if and only if n is a multiple of 3.



Combinatorics- Lecture: 22

The fibonacci numbers satisfy the formula:

Fn =
1
√

5

1 +
√

5

2

n

−
1
√

5

1 −
√

5

2

n

for n ≥ 0.

Combinatorics- Lecture: 22

Changing the initial conditions to f0 = a and f1 = b.



Combinatorics- Lecture: 22

Determine the number of ways to perfectly cover a 2 by n board
with dominoes.

Combinatorics- Lecture: 22

Determine the number of ways to perfectly cover a 1 by n board
with monominoes and dominoes.



Combinatorics- Lecture: 22

Fn =
(

n−1
0

)

+
(

n−2
1

)

+ · · · +
(

n−k

k−1

)

, where k =
⌊

n+1
2

⌋

.

In other words, the sequence gn =
∑

n−1
k=0

(

n−1−k

k

)

is the same as
Fn.

Combinatorics- Lecture: 22
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Combinatorics- Lecture: 22

Euler’s φ function: φ(n).
If n = pe1

1 pe2

2 . . . pet

t , then
φ(n) = n

∏

t

i=1(1 − 1/pi )

Combinatorics- Lecture: 22

6 married couples are to be seated at a circular table. In howmany
ways can they arrange themselves to that no wife sits next to her
husband ?



Combinatorics- Lecture: 22

In a certain area of the country side are 5 villages. An engineer is
to devise a system of 2 way roads so that after the system is
completed no village will be isolated. In how many ways can he do
this ?

Combinatorics- Lecture: 22

Derangements:
Dn = n![1 − 1/1! + 1/2! − 1/3! + · · · + (−1)n1/n!], for n > 1.
(ex = 1 + x + x2/2! + x3/3! + · · · ). So, Dn ≈ n!/e,for large
enough n.



Combinatorics- Lecture: 22

Recurrence Relations

Combinatorics- Lecture: 22

Fibonacci Numbers: Fn = Fn−1 + Fn−2, for n ≥ 2, f1 = 1, f0 = 0.
The problem of Leonardo of Pisa.



Combinatorics- Lecture: 22

The partial sum, Sn = F1 + F2 + · · · + Fn = Fn+2 − 1.

Combinatorics- Lecture: 22

Fn is even if and only if n is a multiple of 3.



Combinatorics- Lecture: 22

The fibonacci numbers satisfy the formula:

Fn =
1
√

5

1 +
√

5

2

n

−
1
√

5

1 −
√

5

2

n

for n ≥ 0.

Combinatorics- Lecture: 22

Changing the initial conditions to f0 = a and f1 = b.



Combinatorics- Lecture: 22

Determine the number of ways to perfectly cover a 2 by n board
with dominoes.

Combinatorics- Lecture: 22

Determine the number of ways to perfectly cover a 1 by n board
with monominoes and dominoes.



Combinatorics- Lecture: 22

Fn =
(

n−1
0

)

+
(

n−2
1

)

+ · · · +
(

n−k

k−1

)

, where k =
⌊

n+1
2

⌋

.

In other words, the sequence gn =
∑

n−1
k=0

(

n−1−k

k

)

is the same as
Fn.

Combinatorics- Lecture: 24
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Combinatorics- Lecture: 24

Determine the number of ways to perfectly cover a 2 by n board
with dominoes.

Combinatorics- Lecture: 24

Determine the number of ways to perfectly cover a 1 by n board
with monominoes and dominoes.



Combinatorics- Lecture: 24

For Let S0 = ∅ and for n > 0, Sn = [n]. Let an denote the number
of subsets that contain no consecutive integers. Find and solve a
recurrence relation for an.

Combinatorics- Lecture: 24

Fn =
(

n−1
0

)

+
(

n−2
1

)

+ · · · +
(

n−k

k−1

)

, where k =
⌊

n+1
2

⌋

.

In other words, the sequence gn =
∑

n−1
k=0

(

n−1−k

k

)

is the same as
Fn.



Combinatorics- Lecture: 24

Linear Homogeneous Recurrence Relations

Combinatorics- Lecture: 24

The sequence h0, h1, . . . , hn, . . . , is said to satisfy a linear
recurrence relation of order k provided that there exists quantitites
a1, a2, . . . , ak with ak ̸= 0 and a quantity bn such that
hn = a1hn−1 + a2hn−2 + · · · + akhn−k + bn, for n ≥ k.
(Here ai and bn may depend on n.)
When bn = 0, it is called homogeneous.
When each ai is constant, then it is said to have constant
coefficients.



Combinatorics- Lecture: 24

Let q be a non-zero number. Then hn = qn is a solution of the
linear homogeneous recurrence relation
hn − a1hn−1 − a2hn−2 − · · ·− akhn−k =,
ak ̸= 0, n ≥ k, with constant coefficients if and only if q is a root
of the polynomial equation
xk − a1x

k−1 − a2x
k−2 − · · · − ak = 0

If the polynomial equation has k distict roots q1, q2, · · · , qk the
hn = c1q

n
1 + c2q

n
2 + · · · + ckqn

k
is the general solution in the

following sense: No matter what initial values for h0, h1, · · · , hk−1

are given, there are constants c1, c2, . . . , ck so that the above is
the unique sequence that satisfies both the recurrence relation and
the initial conditions.

Combinatorics- Lecture: 25

COMBINATORICS- Lecture: 25
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Combinatorics- Lecture: 25

Linear Homogeneous Recurrence Relations

Combinatorics- Lecture: 25

The sequence h0, h1, . . . , hn, . . . , is said to satisfy a linear
recurrence relation of order k provided that there exists quantitites
a1, a2, . . . , ak with ak ̸= 0 and a quantity bn such that
hn = a1hn−1 + a2hn−2 + · · · + akhn−k + bn, for n ≥ k.
(Here ai and bn may depend on n.)
When bn = 0, it is called homogeneous.
When each ai is constant, then it is said to have constant
coefficients.



Combinatorics- Lecture: 25

Let q be a non-zero number. Then hn = qn is a solution of the
linear homogeneous recurrence relation
hn − a1hn−1 − a2hn−2 − · · ·− akhn−k =,
ak ̸= 0, n ≥ k, with constant coefficients if and only if q is a root
of the polynomial equation
xk − a1x

k−1 − a2x
k−2 − · · · − ak = 0

If the polynomial equation has k distict roots q1, q2, · · · , qk the
hn = c1q

n
1 + c2q

n
2 + · · · + ckqn

k
is the general solution in the

following sense: No matter what initial values for h0, h1, · · · , hk−1

are given, there are constants c1, c2, . . . , ck so that the above is
the unique sequence that satisfies both the recurrence relation and
the initial conditions.

Combinatorics- Lecture: 25

Solve the recurrence relation:

hn = 2hn−1 + hn−2 − 2hn−3

for n ≥ 3, and h0 = 1, h1 = 2, h2 = 0.



Combinatorics- Lecture: 25

Words of length n, using only the three letters a, b, c are to formed,
subject to the condition that no word in which two a’s appear
consecutively is allowed. Howmany such words can be formed?

Combinatorics- Lecture: 25

If the roots q1, q2, . . . , qk of the characteristic equation are not
distinct, then

hn = c1q
n
1 + . . . + ckqn

k

is not a general solution of the equation.
Example: hn = 4hn−1 − 4hn−2 (n ≥ 2)



Combinatorics- Lecture: 25

If a (possibly complex) number q is a root of multiplicity s of the
characteristic equation of a linear homogeneous recurrence relation
with constant coefficients, then it can be shown that each of
hn = qn

, hn = nqn
, hn = n2qn

, . . . , hn = ns−1qn is a solution and
hence

hn = c1q
n + c2nqn + c3n

2qn + · · · + csn
s−1qn

for each choice of constants c1, c2, . . . , cs .

Combinatorics- Lecture: 25

Let q1, q2, . . . , qt be the distinct roots of the following
characteristic equation of the linear homogeneous recurrence
relation with constant coefficients:

hn = a1hn−1 + a2hn−2 + · · · + akhn−k

where ak ̸= 0, n ≥ k. Then if qi is an si -fold root of the
characteristic equation of the above recurrence relation, the part of
the general solution of this recurrence relation corresponding to qi

is:

H
(i)
n = c1q

n
i + c2nqn

i + c3n
2qn

i + · · · + csn
s−1qn

i

and the general solution of the recurrence relation is:

hn = H
(1)
n + · · · + H

(t)
n



Combinatorics- Lecture: 25

Solve: hn = −hn−1 + 3hn−2 + 5hn−3 + 2hn−4, n ≥ 4 subject to:
h0 = 1, h1 = 0, h2 = 1, h3 = 2.

Combinatorics- Lecture: 25

Non-Homogeneous Recurrence Relations



Combinatorics- Lecture: 25

Towers of Hanoi Puzzle:

Combinatorics- Lecture: 25

Solve hn = 3hn−1 − 4n, (n ≥ 1), h0 = 2.



Combinatorics- Lecture: 25

Step (1) Find the general solution of the corresponding
homogeneous relation.
Step (2) Find a particular solution of the non-homogeneous
relation.
Step (3) Combine the general solution and the particular solution,
and determine values of the constants arising in the general
solution so that the combined solution satisfies the initial
conditions.

Combinatorics- Lecture: 25

If bn is a polynomial of degree k in n, then look for a particular
solution hn that is also a polynomial of degree k in n. Try,

1 hn = r (a constant) if bn = d (a constant)

2 hn = rn + s if bn = dn + e

3 hn = rn2 + sn + t if bn = fn2 + dn + e

If bn is an exponential, then look for a particular solution that is
also an exponential: Try hn = pdn, if bn = dn.



Combinatorics- Lecture: 25

Solve: hn = 2hn−1 + 3n
, (n ≥ 1), h0 = 2

Combinatorics- Lecture: 25

hn = hn−1 + n3
, (n ≥ 1), h0 = 0



Combinatorics- Lecture: 25

hn = 3hn−1 + 3n
, (n ≥ 1), h0 = 2.

Combinatorics- Lecture: 26
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Linear Homogeneous Recurrence Relations

Combinatorics- Lecture: 26

The sequence h0, h1, . . . , hn, . . . , is said to satisfy a linear
recurrence relation of order k provided that there exists quantitites
a1, a2, . . . , ak with ak ̸= 0 and a quantity bn such that
hn = a1hn−1 + a2hn−2 + · · · + akhn−k + bn, for n ≥ k.
(Here ai and bn may depend on n.)
When bn = 0, it is called homogeneous.
When each ai is constant, then it is said to have constant
coefficients.



Combinatorics- Lecture: 26

Let q be a non-zero number. Then hn = qn is a solution of the
linear homogeneous recurrence relation
hn − a1hn−1 − a2hn−2 − · · ·− akhn−k =,
ak ̸= 0, n ≥ k, with constant coefficients if and only if q is a root
of the polynomial equation
xk − a1x

k−1 − a2x
k−2 − · · · − ak = 0

If the polynomial equation has k distict roots q1, q2, · · · , qk the
hn = c1q

n
1 + c2q

n
2 + · · · + ckqn

k
is the general solution in the

following sense: No matter what initial values for h0, h1, · · · , hk−1

are given, there are constants c1, c2, . . . , ck so that the above is
the unique sequence that satisfies both the recurrence relation and
the initial conditions.

Combinatorics- Lecture: 26

Solve the recurrence relation:

hn = 2hn−1 + hn−2 − 2hn−3

for n ≥ 3, and h0 = 1, h1 = 2, h2 = 0.



Combinatorics- Lecture: 26

Words of length n, using only the three letters a, b, c are to formed,
subject to the condition that no word in which two a’s appear
consecutively is allowed. Howmany such words can be formed?

Combinatorics- Lecture: 26

If the roots q1, q2, . . . , qk of the characteristic equation are not
distinct, then

hn = c1q
n
1 + . . . + ckqn

k

is not a general solution of the equation.
Example: hn = 4hn−1 − 4hn−2 (n ≥ 2)



Combinatorics- Lecture: 26

If a (possibly complex) number q is a root of multiplicity s of the
characteristic equation of a linear homogeneous recurrence relation
with constant coefficients, then it can be shown that each of
hn = qn

, hn = nqn
, hn = n2qn

, . . . , hn = ns−1qn is a solution and
hence

hn = c1q
n + c2nqn + c3n

2qn + · · · + csn
s−1qn

for each choice of constants c1, c2, . . . , cs .

Combinatorics- Lecture: 26

Let q1, q2, . . . , qt be the distinct roots of the following
characteristic equation of the linear homogeneous recurrence
relation with constant coefficients:

hn = a1hn−1 + a2hn−2 + · · · + akhn−k

where ak ̸= 0, n ≥ k. Then if qi is an si -fold root of the
characteristic equation of the above recurrence relation, the part of
the general solution of this recurrence relation corresponding to qi

is:

H
(i)
n = c1q

n
i + c2nqn

i + c3n
2qn

i + · · · + csn
s−1qn

i

and the general solution of the recurrence relation is:

hn = H
(1)
n + · · · + H

(t)
n



Combinatorics- Lecture: 26

Solve: hn = −hn−1 + 3hn−2 + 5hn−3 + 2hn−4, n ≥ 4 subject to:
h0 = 1, h1 = 0, h2 = 1, h3 = 2.

Combinatorics- Lecture: 26

Non-Homogeneous Recurrence Relations



Combinatorics- Lecture: 26

Towers of Hanoi Puzzle:

Combinatorics- Lecture: 26

Solve hn = 3hn−1 − 4n, (n ≥ 1), h0 = 2.



Combinatorics- Lecture: 26

Step (1) Find the general solution of the corresponding
homogeneous relation.
Step (2) Find a particular solution of the non-homogeneous
relation.
Step (3) Combine the general solution and the particular solution,
and determine values of the constants arising in the general
solution so that the combined solution satisfies the initial
conditions.

Combinatorics- Lecture: 26

If bn is a polynomial of degree k in n, then look for a particular
solution hn that is also a polynomial of degree k in n. Try,

1 hn = r (a constant) if bn = d (a constant)

2 hn = rn + s if bn = dn + e

3 hn = rn2 + sn + t if bn = fn2 + dn + e

If bn is an exponential, then look for a particular solution that is
also an exponential: Try hn = pdn, if bn = dn.



Combinatorics- Lecture: 26

Solve: hn = 2hn−1 + 3n
, (n ≥ 1), h0 = 2

Combinatorics- Lecture: 26

hn = hn−1 + n3
, (n ≥ 1), h0 = 0



Combinatorics- Lecture: 26

hn = 3hn−1 + 3n
, (n ≥ 1), h0 = 2.

Combinatorics- Lecture: 27
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Combinatorics- Lecture: 27

Non-Homogeneous Recurrence Relations

Combinatorics- Lecture: 27

Towers of Hanoi Puzzle: hn = 2hn−1 + 1



Combinatorics- Lecture: 27

Step (1) Find the general solution of the corresponding
homogeneous relation.
Step (2) Find a particular solution of the non-homogeneous
relation.
Step (3) Combine the general solution and the particular solution,
and determine values of the constants arising in the general
solution so that the combined solution satisfies the initial
conditions.

Combinatorics- Lecture: 27

If bn is a polynomial of degree k in n, then look for a particular
solution hn that is also a polynomial of degree k in n. Try,

1 hn = r (a constant) if bn = d (a constant)

2 hn = rn + s if bn = dn + e

3 hn = rn2 + sn + t if bn = fn2 + dn + e

If bn is an exponential, then look for a particular solution that is
also an exponential: Try hn = pdn, if bn = dn.



Combinatorics- Lecture: 27

Solve hn = 3hn−1 − 4n, (n ≥ 1), h0 = 2.

Combinatorics- Lecture: 27

Solve: hn = 2hn−1 + 3n, (n ≥ 1), h0 = 2



Combinatorics- Lecture: 27

hn = 3hn−1 + 3n, (n ≥ 1), h0 = 2.

Combinatorics- Lecture: 27

Generating Functions



Combinatorics- Lecture: 27

Let h0, h1, h2, . . . , hn, . . . , be an infinite sequence of numbers. Its
generating function is defined to be the infinite series

g(x) = h0 + h1x + h2x
2 + · · · + hnx

n + · · ·

Combinatorics- Lecture: 27

Let m be a positive integer: The generating function for the
binomial coefficients:

(

m

0

)

,
(

m

1

)

, . . . ,
(

m

m

)

, is (1 + x)m



Combinatorics- Lecture: 27

The generating function of the infinite sequence 1, 1, 1, 1, . . . , is
1

1−x

Combinatorics- Lecture: 27

1−xn+1

1−x
= 1 + x + · · · + xn



Combinatorics- Lecture: 27

x

(1−x)2 = 0 + x + 2x2 + 3x3 + · · ·

Combinatorics- Lecture: 27

1
1−2x = 1 + 2x + 22x2 + 23x3 + · · ·



Combinatorics- Lecture: 27

Let α be a real number. The generating function for the infinite
sequence of binomial coefficients

(

α

0

)

,

(

α

1

)

, . . . ,

(

α

n

)

, . . . ,

is (1 + x)α

Combinatorics- Lecture: 27

Some basic facts to remember:
(1 − rx)−n =

∑∞
k=0

(−n

k

)

(−rx)k

(for |x | < 1
|r |)

(1 − rx)−n =
∑∞

k=0

(

n+k−1
k

)

rkxk

(for |x | < 1
|r | )



Combinatorics- Lecture: 27

Let k be an integer, and let the sequence h0, h1, . . . , hn, . . . , be
defined by letting hn equal the number of non-negative integral
solutions of e1 + e2 + · · · + ek = n.
The generating function for this sequence is 1

(1−x)k

Combinatorics- Lecture: 27

In the above sequence let hn be the number of integer solutions of
e1 + e2 + e3 = n, where 0 ≤ e1 ≤ 5, 0 ≤ e2 ≤ 2, 0 ≤ e3 ≤ 4. Then
what is the generating function for this sequence ?



Combinatorics- Lecture: 27

Determine the generating function for the number of
n-combinations of apples, bananas, oranges and pears where in
each n-combination, the number of apples is even, the number of
bananas is odd, the number of oranges is between 0 and 4, and
there is at least one pear.

Combinatorics- Lecture: 27

Find the number hn of bags of fruit that can be made out of
apples, bananas, oranges and pears where in each bag the number
of apples is even, the number of bananas is a multiple of 5, the
number of oranges is at most 4, and the number of pears is 0 or 1.



Combinatorics- Lecture: 27

Determine the generating function for the number hn of solutions
of the equation e1 + e2 + · · · + ek = n, in non-negative odd
integers e1, e2, . . . , ek .

Combinatorics- Lecture: 27

Let hn denote the number of non-negative integral solutions of the
equation 3e1 + 4e2 + 2e3 + 5e4 = n. Find the generating function
for this sequence.
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Combinatorics- Lecture: 28

1
1−2x = 1 + 2x + 22x2 + 23x3 + · · ·



Combinatorics- Lecture: 28

Let α be a real number. The generating function for the infinite
sequence of binomial coefficients

(

α

0

)

,

(

α

1

)

, . . . ,

(

α

n

)

, . . . ,

is (1 + x)α

Combinatorics- Lecture: 28

Determine the sequence generated by (1 − 4x)
−1
2



Combinatorics- Lecture: 28

Some basic facts to remember:
(1 − rx)−k =

∑∞
n=0

(−k
n

)

(−rx)n

(for |x | < 1
|r |)

(1 − rx)−k =
∑∞

n=0

(

n+k−1
n

)

rnxn

(for |x | < 1
|r | )

Combinatorics- Lecture: 28

Let k be an integer, and let the sequence h0, h1, . . . , hn, . . . , be
defined by letting hn equal the number of non-negative integral
solutions of e1 + e2 + · · · + ek = n.
The generating function for this sequence is 1

(1−x)k



Combinatorics- Lecture: 28

In the above sequence let hn be the number of integer solutions of
e1 + e2 + e3 = n, where 0 ≤ e1 ≤ 5, 0 ≤ e2 ≤ 2, 0 ≤ e3 ≤ 4. Then
what is the generating function for this sequence ?

Combinatorics- Lecture: 28

Determine the generating function for the number of
n-combinations of apples, bananas, oranges and pears where in
each n-combination, the number of apples is even, the number of
bananas is odd, the number of oranges is between 0 and 4, and
there is at least one pear.



Combinatorics- Lecture: 28

Find the number hn of bags of fruit that can be made out of
apples, bananas, oranges and pears where in each bag the number
of apples is even, the number of bananas is a multiple of 5, the
number of oranges is at most 4, and the number of pears is 0 or 1.

Combinatorics- Lecture: 28

Determine the generating function for the number hn of solutions
of the equation e1 + e2 + · · · + ek = n, in non-negative odd
integers e1, e2, . . . , ek .



Combinatorics- Lecture: 28

If f (x) =
∑∞

i=0 aix
i and g(x) =

∑∞
i=0 bix

i and h(x) = f (x)g(x),
then h(x) =

∑∞
i=0 cix

i , where for all k ≥ 0,
ci = a0bk + a1bk−1 + · · · + akb0.

Combinatorics- Lecture: 28

Count the compositions of a positive integer n, using the technique
of generating functions.



Combinatorics- Lecture: 28

Let hn denote the number of non-negative integral solutions of the
equation 3e1 + 4e2 + 2e3 + 5e4 = n. Find the generating function
for this sequence.

Combinatorics- Lecture: 28

Solving Recurrence Relations using Generating

Functions



Combinatorics- Lecture: 28

Solve the recurrence relation hn = 5hn−1 − 6hn−2, (n ≥ 2), subject
to the initial values h0 = 1 and h1 = −2.

Combinatorics- Lecture: 28

Generalising the method to solve any linear homogenious
recurrence relation of order k, with constant coefficients:
The associated generating function will be of the form p(x)

q(x) where

p(x) is a polynomial of degree < k and q(x) is a polynomial of
degree k, having constant term equal to 1.
If the sequence is h0, h1, h2, . . . , satisfying

hn + a1hn−1 + a2hn−2 + · · · + akhn−k = 0

then

q(x) = 1 + a1x + a2x
2 + · · · + akxk

p(x) = h0 + (h1 + a1h0)x + (h2 + a1h1 + a2h0)2 + · · · + (hk−1 +
a1hk−2 + · · · + ak−1h0)xk−1



Combinatorics- Lecture: 28

Example: hn + hn−1 − 16hn−2 + 20hn−3 = 0, for n ≥ 3, where
h0 = 0, h1 = 1, h2 = −1. Find a general form for hn.

Combinatorics- Lecture: 28

There is a relation between the characteristic equation
0 = r(x) = xk + a1x

k−1 + · · · + ak and q(x).

q(x) = xk r(1/x)



Combinatorics- Lecture: 28

Given polynomials p(x) (of degree < k) and q(x) (of degree k and
having a nonzero constant term), there is a sequence h0, h1, . . . ,
satisfying a linear homogeneous recurrence relation with constant
coefficients of order k whose generating function is given by p(x)

q(x)

Combinatorics- Lecture: 28

The Exponential Generating Function



Combinatorics- Lecture: 28

For a sequence a0, a1, a2, . . . , of real numbers,

f (x) = a0 + a1x + a2x
2/2! + a3x

3/3! + · · ·

is called the exponential generating function for the given sequence.

Combinatorics- Lecture: 28

ex = 1 + x + x2/2! + · · ·

So, ex is the exponential generating function for the sequence
1, 1, 1, . . . ,



Combinatorics- Lecture: 28

(1 + x)n is the exponential generating function for the sequence
P(n, r), r = 0, 1, . . ..

Combinatorics- Lecture: 28

In how many ways can four of the letters in ENGINE be arranged ?



Combinatorics- Lecture: 28

A ship carries 48 flags, 12 each of the colors red, white, blue and
black. Twelve of these flags are placed on a vertical pole in order
to communicate a signal to other ships.
(a) How many of these signals use an even number of blue flags
and an odd number of black flags ?
(b) How many of these signals have at least 3 white flags or no
white flags at all ?

Combinatorics- Lecture: 28

A company hires 11 new employees, each of whom is to be assigned
to one of 4 subdivisions. Each subdivision will get at least 1 new
employee. In howmany ways can these assignments be made ?



Combinatorics- Lecture: 29
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1
1−2x = 1 + 2x + 22x2 + 23x3 + · · ·



Combinatorics- Lecture: 29

Let α be a real number. The generating function for the infinite
sequence of binomial coefficients

(

α

0

)

,

(

α

1

)

, . . . ,

(

α

n

)

, . . . ,

is (1 + x)α

Combinatorics- Lecture: 29

Determine the sequence generated by (1 − 4x)
−1
2



Combinatorics- Lecture: 29

Some basic facts to remember:
(1 − rx)−k =

∑∞
n=0

(−k
n

)

(−rx)n

(for |x | < 1
|r |)

(1 − rx)−k =
∑∞

n=0

(

n+k−1
n

)

rnxn

(for |x | < 1
|r | )

Combinatorics- Lecture: 29

Let k be an integer, and let the sequence h0, h1, . . . , hn, . . . , be
defined by letting hn equal the number of non-negative integral
solutions of e1 + e2 + · · · + ek = n.
The generating function for this sequence is 1

(1−x)k



Combinatorics- Lecture: 29

In the above sequence let hn be the number of integer solutions of
e1 + e2 + e3 = n, where 0 ≤ e1 ≤ 5, 0 ≤ e2 ≤ 2, 0 ≤ e3 ≤ 4. Then
what is the generating function for this sequence ?

Combinatorics- Lecture: 29

Determine the generating function for the number of
n-combinations of apples, bananas, oranges and pears where in
each n-combination, the number of apples is even, the number of
bananas is odd, the number of oranges is between 0 and 4, and
there is at least one pear.



Combinatorics- Lecture: 29

Find the number hn of bags of fruit that can be made out of
apples, bananas, oranges and pears where in each bag the number
of apples is even, the number of bananas is a multiple of 5, the
number of oranges is at most 4, and the number of pears is 0 or 1.

Combinatorics- Lecture: 29

Determine the generating function for the number hn of solutions
of the equation e1 + e2 + · · · + ek = n, in non-negative odd
integers e1, e2, . . . , ek .



Combinatorics- Lecture: 29

If f (x) =
∑∞

i=0 aix
i and g(x) =

∑∞
i=0 bix

i and h(x) = f (x)g(x),
then h(x) =

∑∞
i=0 cix

i , where for all k ≥ 0,
ci = a0bk + a1bk−1 + · · · + akb0.

Combinatorics- Lecture: 29

Count the compositions of a positive integer n, using the technique
of generating functions.



Combinatorics- Lecture: 29

Let hn denote the number of non-negative integral solutions of the
equation 3e1 + 4e2 + 2e3 + 5e4 = n. Find the generating function
for this sequence.

Combinatorics- Lecture: 29

Solving Recurrence Relations using Generating

Functions



Combinatorics- Lecture: 29

Solve the recurrence relation hn = 5hn−1 − 6hn−2, (n ≥ 2), subject
to the initial values h0 = 1 and h1 = −2.

Combinatorics- Lecture: 29

Generalising the method to solve any linear homogenious
recurrence relation of order k, with constant coefficients:
The associated generating function will be of the form p(x)

q(x) where

p(x) is a polynomial of degree < k and q(x) is a polynomial of
degree k, having constant term equal to 1.
If the sequence is h0, h1, h2, . . . , satisfying

hn + a1hn−1 + a2hn−2 + · · · + akhn−k = 0

then

q(x) = 1 + a1x + a2x
2 + · · · + akxk

p(x) = h0 + (h1 + a1h0)x + (h2 + a1h1 + a2h0)2 + · · · + (hk−1 +
a1hk−2 + · · · + ak−1h0)xk−1



Combinatorics- Lecture: 29

Example: hn + hn−1 − 16hn−2 + 20hn−3 = 0, for n ≥ 3, where
h0 = 0, h1 = 1, h2 = −1. Find a general form for hn.

Combinatorics- Lecture: 29

There is a relation between the characteristic equation
0 = r(x) = xk + a1x

k−1 + · · · + ak and q(x).

q(x) = xk r(1/x)



Combinatorics- Lecture: 29

Given polynomials p(x) (of degree < k) and q(x) (of degree k and
having a nonzero constant term), there is a sequence h0, h1, . . . ,
satisfying a linear homogeneous recurrence relation with constant
coefficients of order k whose generating function is given by p(x)

q(x)

Combinatorics- Lecture: 29

The Exponential Generating Function



Combinatorics- Lecture: 29

For a sequence a0, a1, a2, . . . , of real numbers,

f (x) = a0 + a1x + a2x
2/2! + a3x

3/3! + · · ·

is called the exponential generating function for the given sequence.

Combinatorics- Lecture: 29

ex = 1 + x + x2/2! + · · ·

So, ex is the exponential generating function for the sequence
1, 1, 1, . . . ,



Combinatorics- Lecture: 29

(1 + x)n is the exponential generating function for the sequence
P(n, r), r = 0, 1, . . ..

Combinatorics- Lecture: 29

In how many ways can four of the letters in ENGINE be arranged ?



Combinatorics- Lecture: 29

A ship carries 48 flags, 12 each of the colors red, white, blue and
black. Twelve of these flags are placed on a vertical pole in order
to communicate a signal to other ships.
(a) How many of these signals use an even number of blue flags
and an odd number of black flags ?
(b) How many of these signals have at least 3 white flags or no
white flags at all ?

Combinatorics- Lecture: 29

A company hires 11 new employees, each of whom is to be assigned
to one of 4 subdivisions. Each subdivision will get at least 1 new
employee. In howmany ways can these assignments be made ?



Combinatorics- Lecture: 30

COMBINATORICS- Lecture: 30
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Combinatorics- Lecture: 30

Solving Recurrence Relations using Generating

Functions



Combinatorics- Lecture: 30

Solve the recurrence relation hn = 5hn−1 − 6hn−2, (n ≥ 2), subject
to the initial values h0 = 1 and h1 = −2.

Combinatorics- Lecture: 30

Generalising the method to solve any linear homogenious
recurrence relation of order k, with constant coefficients:
The associated generating function will be of the form p(x)

q(x) where

p(x) is a polynomial of degree < k and q(x) is a polynomial of
degree k, having constant term equal to 1.
If the sequence is h0, h1, h2, . . . , satisfying

hn + a1hn−1 + a2hn−2 + · · · + akhn−k = 0

then

q(x) = 1 + a1x + a2x
2 + · · · + akxk

p(x) = h0 + (h1 + a1h0)x + (h2 + a1h1 + a2h0)x2 + · · · + (hk−1 +
a1hk−2 + · · · + ak−1h0)xk−1



Combinatorics- Lecture: 30

Example: hn + hn−1 − 16hn−2 + 20hn−3 = 0, for n ≥ 3, where
h0 = 0, h1 = 1, h2 = −1. Find a general form for hn.

Combinatorics- Lecture: 30

There is a relation between the characteristic equation
0 = r(x) = xk + a1x

k−1 + · · · + ak and q(x).

q(x) = xk r(1/x)



Combinatorics- Lecture: 30

Given polynomials p(x) (of degree < k) and q(x) (of degree k and
having a nonzero constant term), there is a sequence h0, h1, . . . ,
satisfying a linear homogeneous recurrence relation with constant
coefficients of order k whose generating function is given by p(x)

q(x)

Combinatorics- Lecture: 30

Let n ∈ N. For r ≥ 0, let a(n, r) = the number of ways we can
select, with repititions allowed, r objects from a set of n distinct
objects. Then
a(n, r) = a(n − 1, r) + a(n, r − 1)
(a(n, 0) = 1 for n ≥ 0 and a(0, r) = 0 for r > 0)
Here we define the generating function fn(x) =

∑

∞

r=0 a(n, r)x r

In particular f0(x) = 1.



Combinatorics- Lecture: 30

Finding the generating function for
(

n
r

)

starting with the recurrence

relation
(

n
r

)

=
(

n−1
r−1

)

+
(

n−1
r

)

, for r ≥ 1.

(We have
(

n
0

)

= 1 for n ≥ 0 and
(0
r

)

= 0 for r > 0.)

Combinatorics- Lecture: 30

Let a0 = 1, b0 = 0.
an+1 = 2an + bn

bn+1 = an + bn



Combinatorics- Lecture: 30

The Exponential Generating Function

Combinatorics- Lecture: 30

For a sequence a0, a1, a2, . . . , of real numbers,

f (x) = a0 + a1x + a2x
2/2! + a3x

3/3! + · · ·

is called the exponential generating function for the given sequence.



Combinatorics- Lecture: 30

ex = 1 + x + x2/2! + · · ·

So, ex is the exponential generating function for the sequence
1, 1, 1, . . . ,

Combinatorics- Lecture: 30

(1 + x)n is the exponential generating function for the sequence
P(n, r), r = 0, 1, . . ..



Combinatorics- Lecture: 30

In how many ways can four of the letters in ENGINE be arranged ?

Combinatorics- Lecture: 30

A ship carries 48 flags, 12 each of the colors red, white, blue and
black. Twelve of these flags are placed on a vertical pole in order
to communicate a signal to other ships.
(a) How many of these signals use an even number of blue flags
and an odd number of black flags ?
(b) How many of these signals have at least 3 white flags or no
white flags at all ?



Combinatorics- Lecture: 30

A company hires 11 new employees, each of whom is to be assigned
to one of 4 subdivisions. Each subdivision will get at least 1 new
employee. In howmany ways can these assignments be made ?

Combinatorics- Lecture: 30

Partition Numbers



Combinatorics- Lecture: 30

Partition of a positive integer n is a representation of n as an
unordered sum of one or more positive integers, called parts.

1 → 1 (1)

2 → 2; 1 + 1 (2)

3 → 3; 2 + 1; 1 + 1 + 1 (3)

4 → 4; 3 + 1; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1 (4)

5 → 5; 4 + 1; 3 + 2; 3 + 1 + 1; 2 + 2 + 1; 2 + 1 + 1 + 1; 1 + 1 + 1 + 1 +(5)

(6)

Combinatorics- Lecture: 30

Let pn denote the number of different partitions of the positive
integer n. For convinience let p0 = 1.
pn equals the number of solutions in non-negative integers
an, . . . , a2, a1, of the equation nan + · · · + 2a2 + a1 = n.



Combinatorics- Lecture: 30

Ferrer’s Diagram.

Combinatorics- Lecture: 30

The number of partitions of an integer into m summands is equal
to the number of partitions of n into summands where m is the
largest summand.



Combinatorics- Lecture: 30

The generating function for the sequence p(0), p(1), p(2), . . .:

π∞

i=1
1

(1 − x i )

Combinatorics- Lecture: 30

Find the generating function for pd(n) the number of partitions of
a positive integer n into distinct summands. (Take pd(0) = 1).



Combinatorics- Lecture: 30

Find the generating function for po(n), the number of partitions of
integer n into ‘odd’ summands, for n ≥ 1. (Take po(0) = 1.)

Combinatorics- Lecture: 30

pd(n) = po(n), for all n ≥ 0



Combinatorics- Lecture: 31

COMBINATORICS- Lecture: 31
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Combinatorics- Lecture: 31

Given polynomials p(x) (of degree < k) and q(x) (of degree k and
having a nonzero constant term), there is a sequence h0, h1, . . . ,
satisfying a linear homogeneous recurrence relation with constant
coefficients of order k whose generating function is given by p(x)

q(x)



Combinatorics- Lecture: 31

Let n ∈ N. For r ≥ 0, let a(n, r) = the number of ways we can
select, with repititions allowed, r objects from a set of n distinct
objects. Then
a(n, r) = a(n − 1, r) + a(n, r − 1)
(a(n, 0) = 1 for n ≥ 0 and a(0, r) = 0 for r > 0)
Here we define the generating function fn(x) =

∑

∞

r=0 a(n, r)x r

In particular f0(x) = 1.

Combinatorics- Lecture: 31

Finding the generating function for
(

n
r

)

starting with the recurrence

relation
(

n
r

)

=
(

n−1
r−1

)

+
(

n−1
r

)

, for r ≥ 1.

(We have
(

n
0

)

= 1 for n ≥ 0 and
(0
r

)

= 0 for r > 0.)



Combinatorics- Lecture: 31

Let a0 = 1, b0 = 0.
an+1 = 2an + bn

bn+1 = an + bn

Combinatorics- Lecture: 31

The Exponential Generating Function



Combinatorics- Lecture: 31

For a sequence a0, a1, a2, . . . , of real numbers,

f (x) = a0 + a1x + a2x
2/2! + a3x

3/3! + · · ·

is called the exponential generating function for the given sequence.

Combinatorics- Lecture: 31

ex = 1 + x + x2/2! + · · ·

So, ex is the exponential generating function for the sequence
1, 1, 1, . . . ,



Combinatorics- Lecture: 31

(1 + x)n is the exponential generating function for the sequence
P(n, r), r = 0, 1, . . ..

Combinatorics- Lecture: 31

In how many ways can four of the letters in ENGINE be arranged ?



Combinatorics- Lecture: 31

A ship carries 48 flags, 12 each of the colors red, white, blue and
black. Twelve of these flags are placed on a vertical pole in order
to communicate a signal to other ships.
(a) How many of these signals use an even number of blue flags
and an odd number of black flags ?
(b) How many of these signals have at least 3 white flags or no
white flags at all ?

Combinatorics- Lecture: 31

A company hires 11 new employees, each of whom is to be assigned
to one of 4 subdivisions. Each subdivision will get at least 1 new
employee. In howmany ways can these assignments be made ?



Combinatorics- Lecture: 31

Partition Numbers

Combinatorics- Lecture: 31

Partition of a positive integer n is a representation of n as an
unordered sum of one or more positive integers, called parts.

1 → 1 (1)

2 → 2; 1 + 1 (2)

3 → 3; 2 + 1; 1 + 1 + 1 (3)

4 → 4; 3 + 1; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1 (4)

5 → 5; 4 + 1; 3 + 2; 3 + 1 + 1; 2 + 2 + 1; 2 + 1 + 1 + 1; 1 + 1 + 1 + 1 +(5)

(6)



Combinatorics- Lecture: 31

Let pn denote the number of different partitions of the positive
integer n. For convinience let p0 = 1.
pn equals the number of solutions in non-negative integers
an, . . . , a2, a1, of the equation nan + · · · + 2a2 + a1 = n.

Combinatorics- Lecture: 31

The generating function for the sequence p(0), p(1), p(2), . . .:

π∞

i=1
1

(1 − x i )



Combinatorics- Lecture: 31

Find the generating function for pd(n) the number of partitions of
a positive integer n into distinct summands. (Take pd(0) = 1).

Combinatorics- Lecture: 31

Find the generating function for po(n), the number of partitions of
integer n into ‘odd’ summands, for n ≥ 1. (Take po(0) = 1.)



Combinatorics- Lecture: 31

pd(n) = po(n), for all n ≥ 0

Combinatorics- Lecture: 31

Ferrer’s Diagram.



Combinatorics- Lecture: 31

The number of partitions of an integer into m summands is equal
to the number of partitions of n into summands where m is the
largest summand.

Combinatorics- Lecture: 32
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Combinatorics- Lecture: 32

Let a0 = 1, b0 = 0.
an+1 = 2an + bn

bn+1 = an + bn

Combinatorics- Lecture: 32

The Exponential Generating Function



Combinatorics- Lecture: 32

For a sequence a0, a1, a2, . . . , of real numbers,

f (x) = a0 + a1x + a2x
2/2! + a3x

3/3! + · · ·

is called the exponential generating function for the given sequence.

Combinatorics- Lecture: 32

ex = 1 + x + x2/2! + · · ·

So, ex is the exponential generating function for the sequence
1, 1, 1, . . . ,



Combinatorics- Lecture: 32

(1 + x)n is the exponential generating function for the sequence
P(n, r), r = 0, 1, . . ..

Combinatorics- Lecture: 32

In how many ways can four of the letters in ENGINE be arranged ?



Combinatorics- Lecture: 32

A ship carries 48 flags, 12 each of the colors red, white, blue and
black. Twelve of these flags are placed on a vertical pole in order
to communicate a signal to other ships.
(a) How many of these signals use an even number of blue flags
and an odd number of black flags ?
(b) How many of these signals have at least 3 white flags or no
white flags at all ?

Combinatorics- Lecture: 32

A company hires 11 new employees, each of whom is to be assigned
to one of 4 subdivisions. Each subdivision will get at least 1 new
employee. In howmany ways can these assignments be made ?



Combinatorics- Lecture: 32

Partition Numbers

Combinatorics- Lecture: 32

Partition of a positive integer n is a representation of n as an
unordered sum of one or more positive integers, called parts.

1 → 1 (1)

2 → 2; 1 + 1 (2)

3 → 3; 2 + 1; 1 + 1 + 1 (3)

4 → 4; 3 + 1; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1 (4)

5 → 5; 4 + 1; 3 + 2; 3 + 1 + 1; 2 + 2 + 1; 2 + 1 + 1 + 1; 1 + 1 + 1 + 1 +(5)

(6)



Combinatorics- Lecture: 32

Let pn denote the number of different partitions of the positive
integer n. For convinience let p0 = 1.
pn equals the number of solutions in non-negative integers
an, . . . , a2, a1, of the equation nan + · · · + 2a2 + a1 = n.

Combinatorics- Lecture: 32

The generating function for the sequence p(0), p(1), p(2), . . .:

π∞

i=1

1

(1 − x i )



Combinatorics- Lecture: 32

Find the generating function for pd(n) the number of partitions of
a positive integer n into distinct summands. (Take pd(0) = 1).

Combinatorics- Lecture: 32

Find the generating function for po(n), the number of partitions of
integer n into ‘odd’ summands, for n ≥ 1. (Take po(0) = 1.)



Combinatorics- Lecture: 32

pd(n) = po(n), for all n ≥ 0

Combinatorics- Lecture: 32

Ferrer’s Diagram.



Combinatorics- Lecture: 32

The number of partitions of an integer into m summands is equal
to the number of partitions of n into summands where m is the
largest summand.

Combinatorics- Lecture: 33
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Combinatorics- Lecture: 33

A company hires 11 new employees, each of whom is to be assigned
to one of 4 subdivisions. Each subdivision will get at least 1 new
employee. In howmany ways can these assignments be made ?

Combinatorics- Lecture: 33

Partition Numbers



Combinatorics- Lecture: 33

Partition of a positive integer n is a representation of n as an
unordered sum of one or more positive integers, called parts.

1 → 1 (1)

2 → 2; 1 + 1 (2)

3 → 3; 2 + 1; 1 + 1 + 1 (3)

4 → 4; 3 + 1; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1 (4)

5 → 5; 4 + 1; 3 + 2; 3 + 1 + 1; 2 + 2 + 1; 2 + 1 + 1 + 1; 1 + 1 + 1 + 1 +(5)

(6)

Combinatorics- Lecture: 33

Let p(n) denote the number of different partitions of the positive
integer n. For convinience let p(0) = 1.
p(n) equals the number of solutions in non-negative integers
an, . . . , a2, a1, of the equation nan + · · · + 2a2 + a1 = n.



Combinatorics- Lecture: 33

The generating function for the sequence p(0), p(1), p(2), . . .:

P(x) =
∞
∏

i=1

1

(1 − x i )

Combinatorics- Lecture: 33

Let pk(n) denote the number of partitions of n into exactly k

parts: i.e., the number of solutions of
x1 + x2 + · · · + xk = n, where x1 ≥ x2 ≥ · · · ≥ xk ≥ 1.



Combinatorics- Lecture: 33

pk(n) =
∑

k

s=1 ps(n − k)

Combinatorics- Lecture: 33

pk(n) = pk−1(n − 1) + pk(n − k)
(Note: We have pk(n) = 0 for n < k and pk(k) = 1. Also,
p1(n) = 1. What is p2(n) ?



Combinatorics- Lecture: 33

1
k!

(

n−1
k−1

)

≤ pk(n) ≤ 1
k!

(

n+ k(k−1)
2 −1

k−1

)

Combinatorics- Lecture: 33

If k is fixed, then pk(n) ≈ nk−1

k!(k−1)! , as (n → ∞).



Combinatorics- Lecture: 33

Find the generating function for pD(n), the number of partitions of
a positive integer n into distinct summands. (Take pD(0) = 1).

Combinatorics- Lecture: 33

Find the generating function for po(n), the number of partitions of
integer n into ‘odd’ summands, for n ≥ 1. (Take po(0) = 1.)



Combinatorics- Lecture: 33

pd(n) = po(n), for all n ≥ 0

Combinatorics- Lecture: 33

Ferrer’s Diagram.



Combinatorics- Lecture: 33

The number of partitions of an integer into m summands is equal
to the number of partitions of n into summands where m is the
largest summand.

Combinatorics- Lecture: 33

The number of partitions of n + k into k parts equals the number
of partitions of n into at most k parts.



Combinatorics- Lecture: 33

Number of partitions of n into an even number of unequal parts =
Number of partitions of n into an odd number of unequal parts,
unless n ∈ {ω(m),ω(−m) : integer m ≥ 1}, where ω(m) = 3m2

−m

2

and ω(−m) = 3m2+m

2
(Proof using Ferrer’s diagram by Franklin (1881) ).

Combinatorics- Lecture: 33

Consequence: (Euler’s Identity):

∞
∏

k=1

(1 − xk) = 1 +
∞
∑

m=1

(−1)m(xω(m) + x−ω(m))



Combinatorics- Lecture: 33

Consequence:

p(n) =
∞
∑

m=1

(−1)m+1[p(n − ω(m)) + p(n − ω(−m))]

Combinatorics- Lecture: 35
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Combinatorics- Lecture: 35

Number of partitions of n into an even number of unequal parts =
Number of partitions of n into an odd number of unequal parts,
unless n ∈ {ω(m),ω(−m) : integer m ≥ 1}, where ω(m) = 3m2−m

2

and ω(−m) = 3m2+m

2
(Proof using Ferrer’s diagram by Franklin (1881) ).

Combinatorics- Lecture: 35

Consequence: (Euler’s Identity):

∞
∏

k=1

(1 − xk) = 1 +
∞
∑

m=1

(−1)m(xω(m) + x−ω(m))



Combinatorics- Lecture: 35

Consequence:

p(n) =
∞
∑

m=1

(−1)m+1[p(n − ω(m)) + p(n − ω(−m))]

Combinatorics- Lecture: 35

Catalan Numbers

Counting the number of tree diagrams for rooted ordered binary
trees with n vertices. Let this number be bn

(Example: Three are 5 possible diagrams for n = 3 vertices, i.e.
b3 = 5). (Also, b0 = 1, b1 = 1, b2 = 2).



Combinatorics- Lecture: 35

The recurrence relation for the above problem:
bn+1 = b0bn + b1bn−1 + · · · + bnb0

The generating function for this sequence:

f (x) = 1−
√

1−4x
2x

The nth Catalan number: 1
n+1

(2n
n

)

Combinatorics- Lecture: 36
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Combinatorics- Lecture: 36

Number of partitions of n into an even number of unequal parts =
Number of partitions of n into an odd number of unequal parts,
unless n ∈ {ω(m),ω(−m) : integer m ≥ 1}, where ω(m) = 3m2−m

2

and ω(−m) = 3m2+m
2

(Proof using Ferrer’s diagram by Franklin (1881) ).

Combinatorics- Lecture: 36

Consequence: (Euler’s Identity):

∞
∏

k=1

(1 − xk) = 1 +
∞
∑

m=1

(−1)m(xω(m) + x−ω(m))



Combinatorics- Lecture: 36

Consequence:

p(n) =
∞
∑

m=1

(−1)m+1[p(n − ω(m)) + p(n − ω(−m))]

Combinatorics- Lecture: 36

Catalan Numbers

Counting the number of tree diagrams for rooted ordered binary
trees with n vertices. Let this number be bn

(Example: There are 5 possible diagrams for n = 3 vertices, i.e.
b3 = 5). (Also, b0 = 1, b1 = 1, b2 = 2).



Combinatorics- Lecture: 36

The recurrence relation for the above problem:
bn+1 = b0bn + b1bn−1 + · · · + bnb0

The generating function for this sequence:

f (x) = 1−
√

1−4x
2x

The nth Catalan number Cn = 1
n+1

(2n
n

)

Combinatorics- Lecture: 36

C0 = 1,C1 = 1,C2 = 2,C3 = 5,C4 = 14 etc.



Combinatorics- Lecture: 36

The number of sequences a1, a2, . . . , a2n of 2n terms that can be
formed using n, +1’s and n, −1’s whose partial sums satisfy
a1 + a2 + · · · + ak ≥ 0, for k = 1, 2, . . . , 2n equals the nth Catalan
number Cn = 1

n+1

(2n
n

)

, (n ≥ 0).
(A combinatorial proof).

Combinatorics- Lecture: 36

There are 2n people in line to get into a theatre. The ticket charge
is 50 RS. Of the 2n people n of them have a 50 RS note and n

have a 100 RS note. If the ticket counter starts with no cash, then
in how many ways can the people line up so that whenever a
person with 100 RS buys a ticket, the ticket counter has a 50 RS
note to make change ?



Combinatorics- Lecture: 36

A big city lawer works n blocks north and n blocks east of her
place of residence. Every day she walks 2n blocks to work. How
many routes are possible if she never crosses, but may touch, the
diagonal line from home to office.

Combinatorics- Lecture: 36

n numbers are listed in the order a1, a2, . . . , an. Howmany
multiplication schemes are possible to get the product of these n

numbers, if you have to keep this order in mind when multiplying.



Combinatorics- Lecture: 36

The number of ways to divide a convex polygonal region with
n + 1 sides into triangular regions by inserting diagonals that do
not intersect in the interior.

Combinatorics- Lecture: 36

Difference Sequences...



Combinatorics- Lecture: 36

Let the general term of a sequence be a polynomial of degree p in
n, i.e.,
hn = apn

p + ap−1n
p−1 + · · · + a1n + a0, (n ≥ 0)

Then ∆p+1hn = 0, for all n ≥ 0.

Combinatorics- Lecture: 36

Let gn and fn be general terms of two sequences. Let c , d be
constants:
Then ∆p(cgn + dfn) = c∆pgn + d∆pfn, p ≥ 0.



Combinatorics- Lecture: 36

The difference table is completely determined by its entries along
the left edge, i.e. the 0th diagonal: h0 = ∆0h0,∆1h0,∆2h0, . . ..

Combinatorics- Lecture: 36

Suppose the 0th diagonal of the difference table reads as follows:
0, 0, 0, . . . , 0, 1, . . . , 0, 0, . . . where the single 1 appears at the pth
position. Then the general term of the corresponding sequence is
given by hn =

(

n
p

)

.



Combinatorics- Lecture: 36

If the 0the diagonal of the difference table is given by
c0, c1, c2, . . . , cp, 0, 0, . . ., where cp ̸= 0. Then the general term of
the corresponding sequence is a polynomial in n of degree p

satisfying:
hn = c0

(

n
0

)

+ c1
(

n
1

)

+ · · · + cp

(

n
p

)

Combinatorics- Lecture: 37
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Combinatorics- Lecture: 37

Number of partitions of n into an even number of unequal parts =
Number of partitions of n into an odd number of unequal parts,
unless n ∈ {ω(m),ω(−m) : integer m ≥ 1}, where ω(m) = 3m2−m

2

and ω(−m) = 3m2+m
2

(Proof using Ferrer’s diagram by Franklin (1881) ).

Combinatorics- Lecture: 37

Consequence: (Euler’s Identity):

∞
∏

k=1

(1 − xk) = 1 +
∞
∑

m=1

(−1)m(xω(m) + x−ω(m))



Combinatorics- Lecture: 37

Consequence:

p(n) =
∞
∑

m=1

(−1)m+1[p(n − ω(m)) + p(n − ω(−m))]

Combinatorics- Lecture: 37

Catalan Numbers

Counting the number of tree diagrams for rooted ordered binary
trees with n vertices. Let this number be bn

(Example: There are 5 possible diagrams for n = 3 vertices, i.e.
b3 = 5). (Also, b0 = 1, b1 = 1, b2 = 2).



Combinatorics- Lecture: 37

The recurrence relation for the above problem:
bn+1 = b0bn + b1bn−1 + · · · + bnb0

The generating function for this sequence:

f (x) = 1−
√

1−4x
2x

The nth Catalan number Cn = 1
n+1

(2n
n

)

Combinatorics- Lecture: 37

C0 = 1,C1 = 1,C2 = 2,C3 = 5,C4 = 14 etc.



Combinatorics- Lecture: 37

The number of sequences a1, a2, . . . , a2n of 2n terms that can be
formed using n, +1’s and n, −1’s whose partial sums satisfy
a1 + a2 + · · · + ak ≥ 0, for k = 1, 2, . . . , 2n equals the nth Catalan
number Cn = 1

n+1

(2n
n

)

, (n ≥ 0).
(A combinatorial proof).

Combinatorics- Lecture: 37

There are 2n people in line to get into a theatre. The ticket charge
is 50 RS. Of the 2n people n of them have a 50 RS note and n

have a 100 RS note. If the ticket counter starts with no cash, then
in how many ways can the people line up so that whenever a
person with 100 RS buys a ticket, the ticket counter has a 50 RS
note to make change ?



Combinatorics- Lecture: 37

A big city lawer works n blocks north and n blocks east of her
place of residence. Every day she walks 2n blocks to work. How
many routes are possible if she never crosses, but may touch, the
diagonal line from home to office.

Combinatorics- Lecture: 37

n numbers are listed in the order a1, a2, . . . , an. Howmany
multiplication schemes are possible to get the product of these n

numbers, if you have to keep this order in mind when multiplying.



Combinatorics- Lecture: 37

The number of ways to divide a convex polygonal region with
n + 1 sides into triangular regions by inserting diagonals that do
not intersect in the interior.

Combinatorics- Lecture: 37

Difference Sequences...



Combinatorics- Lecture: 37

Let the general term of a sequence be a polynomial of degree p in
n, i.e.,
hn = apn

p + ap−1n
p−1 + · · · + a1n + a0, (n ≥ 0)

Then ∆p+1hn = 0, for all n ≥ 0.

Combinatorics- Lecture: 37

Let gn and fn be general terms of two sequences. Let c , d be
constants:
Then ∆p(cgn + dfn) = c∆pgn + d∆pfn, p ≥ 0.



Combinatorics- Lecture: 37

The difference table is completely determined by its entries along
the left edge, i.e. the 0th diagonal: h0 = ∆0h0,∆1h0,∆2h0, . . ..

Combinatorics- Lecture: 37

Suppose the 0th diagonal of the difference table reads as follows:
0, 0, 0, . . . , 0, 1, . . . , 0, 0, . . . where the single 1 appears at the pth
position. Then the general term of the corresponding sequence is
given by hn =

(

n
p

)

.



Combinatorics- Lecture: 37

If the 0the diagonal of the difference table is given by
c0, c1, c2, . . . , cp, 0, 0, . . ., where cp ̸= 0. Then the general term of
the corresponding sequence is a polynomial in n of degree p

satisfying:
hn = c0

(

n
0

)

+ c1
(

n
1

)

+ · · · + cp

(

n
p

)

Combinatorics- Lecture: 38
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Combinatorics- Lecture: 38

n + 1 numbers are listed in the order a1, a2, . . . , an, an+1.
Howmany multiplication schemes are possible to get the product of
these n + 1 numbers, if you have to keep this order in mind when
multiplying.

Combinatorics- Lecture: 38

The number of ways to divide a convex polygonal region with
n + 2 sides into triangular regions by inserting diagonals that do
not intersect in the interior.



Combinatorics- Lecture: 38

Sterling Numbers of the second kind

S(p, k) counts the number of partitions of a set of p elements into
k indistinguishable boxes in which no box is empty.

Combinatorics- Lecture: 38

Note the connection between S(p, k) and the number of onto
functions from a set of p elements to a set of k elements. For
0 ≤ k ≤ p,

S(p, k) =
1

k!

k
∑

t=0

(−1)t
(

k

t

)

(k − t)p



Combinatorics- Lecture: 38

S(p, p) = 1 (p ≥ 0)
S(p, 0) = 0 (p ≥ 1)
S(p, 1) = 1, (p ≥ 1)
S(p, 2) = 2p−1 − 1, (p ≥ 2)
S(p, p − 1) =

(

p
2

)

, (p ≥ 1)

Combinatorics- Lecture: 38

If 1 ≤ k ≤ p − 1, then
S(p, k) = kS(p − 1, k) + S(p − 1, k − 1)



Combinatorics- Lecture: 38

Difference Sequences...

Combinatorics- Lecture: 38

Let the general term of a sequence be a polynomial of degree p in
n, i.e.,
hn = apn

p + ap−1n
p−1 + · · · + a1n + a0, (n ≥ 0)

Then ∆p+1hn = 0, for all n ≥ 0.



Combinatorics- Lecture: 38

Let gn and fn be general terms of two sequences. Let c , d be
constants:
Then ∆p(cgn + dfn) = c∆pgn + d∆pfn, p ≥ 0.

Combinatorics- Lecture: 38

The difference table is completely determined by its entries along
the left edge, i.e. the 0th diagonal: h0 = ∆0h0,∆1h0,∆2h0, . . ..



Combinatorics- Lecture: 38

Suppose the 0th diagonal of the difference table reads as follows:
0, 0, 0, . . . , 0, 1, . . . , 0, 0, . . . where the single 1 appears at the pth
position. Then the general term of the corresponding sequence is
given by hn =

(

n
p

)

.

Combinatorics- Lecture: 38

If the 0the diagonal of the difference table is given by
c0, c1, c2, . . . , cp, 0, 0, . . ., where cp ̸= 0. Then the general term of
the corresponding sequence is a polynomial in n of degree p

satisfying:
hn = c0

(

n
0

)

+ c1

(

n
1

)

+ · · · + cp

(

n
p

)



Combinatorics- Lecture: 38

Let hn = n3 + 3n2 − 2n + 1, n ≥ 0.
Find c0, c1, c2, c3, so that hn =

∑3
i=0 ci .

(

n
i

)

Combinatorics- Lecture: 38

Assume that the sequence h0, h1, h2, . . . , hn, . . . has a difference
table whose 0th diagonal equals c0, c1, c2, . . . , cp, 0, 0, . . .. Then
∑n

k=0 hk =
∑p

i=0 ci .
(

n+1
i+1

)



Combinatorics- Lecture: 38

Example: Find an expression for
∑n

i=1 i4

Combinatorics- Lecture: 38

Sterling Number of the Second Kind:

np = S(p, 0)n0 + S(p, 1)n1 + · · · + S(p, p)np

The coefficients S(p, i) are the Sterling Numbers of the second
kind: They satisfy the same recurrence relation and the intial
conditions.



Combinatorics- Lecture: 38

The Bell numbers.

Combinatorics- Lecture: 38

Sterling Numbers of the first kind.

The Sterling numbers of the first kind s(p, k) counts the number of
arrangements of p objects into k non-empty circular permutations.



Combinatorics- Lecture: 38

If 1 ≤ k ≤ p − 1, then
s(p, k) = (p − 1)s(p − 1, k) + s(p − 1, k − 1).

Combinatorics- Lecture: 39
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Combinatorics- Lecture: 39

Let the general term of a sequence be a polynomial of degree p in
n, i.e.,
hn = apn

p + ap−1n
p−1 + · · · + a1n + a0, (n ≥ 0)

Then ∆p+1hn = 0, for all n ≥ 0.

Combinatorics- Lecture: 39

Let gn and fn be general terms of two sequences. Let c , d be
constants:
Then ∆p(cgn + dfn) = c∆pgn + d∆pfn, p ≥ 0.



Combinatorics- Lecture: 39

The difference table is completely determined by its entries along
the left edge, i.e. the 0th diagonal: h0 = ∆0h0,∆1h0,∆2h0, . . ..

Combinatorics- Lecture: 39

Suppose the 0th diagonal of the difference table reads as follows:
0, 0, 0, . . . , 0, 1, . . . , 0, 0, . . . where the single 1 appears at the pth
position. Then the general term of the corresponding sequence is
given by hn =

(

n
p

)

.



Combinatorics- Lecture: 39

If the 0the diagonal of the difference table is given by
c0, c1, c2, . . . , cp, 0, 0, . . ., where cp ̸= 0. Then the general term of
the corresponding sequence is a polynomial in n of degree p

satisfying:
hn = c0

(

n
0

)

+ c1

(

n
1

)

+ · · · + cp

(

n
p

)

Combinatorics- Lecture: 39

Let hn = n3 + 3n2 − 2n + 1, n ≥ 0.
Find c0, c1, c2, c3, so that hn =

∑3
i=0 ci .

(

n
i

)



Combinatorics- Lecture: 39

Assume that the sequence h0, h1, h2, . . . , hn, . . . has a difference
table whose 0th diagonal equals c0, c1, c2, . . . , cp, 0, 0, . . .. Then
∑n

k=0 hk =
∑p

i=0 ci .
(

n+1
i+1

)

Combinatorics- Lecture: 39

Example: Find an expression for
∑n

i=1 i4



Combinatorics- Lecture: 39

Sterling Number of the Second Kind:

np = S(p, 0)n0 + S(p, 1)n1 + · · · + S(p, p)np

The coefficients S(p, i) are the Sterling Numbers of the second
kind: They satisfy the same recurrence relation and the intial
conditions.

Combinatorics- Lecture: 39

Note the connection between S(p, k) and the number of onto
functions from a set of p elements to a set of k elements. For
0 ≤ k ≤ p,

S(p, k) =
1

k!

k
∑

t=0

(−1)t
(

k

t

)

(k − t)p



Combinatorics- Lecture: 39

The Bell numbers.
B(p) = S(p, 0) + S(p, 1) + · · · + S(p, p)

Combinatorics- Lecture: 39

Sterling Numbers of the first kind.

The Sterling numbers of the first kind s(p, k) counts the number of
arrangements of p objects into k non-empty circular permutations.



Combinatorics- Lecture: 39

Example: s(4, 2) = 11.

Combinatorics- Lecture: 39

s(n, k) ≥ S(n, k) for n, k ≥ 0.



Combinatorics- Lecture: 39

s(n, 1) = (n − 1)! for n > 0

Combinatorics- Lecture: 39

∑b
k=0 s(n, k) = n!, for n ≥ 0.



Combinatorics- Lecture: 39

s(n, n) = S(n, n) = 1, s(n, n − 1) = S(n, n − 1) =
(

n
2

)

Combinatorics- Lecture: 39

If 1 ≤ k ≤ p − 1, then
s(p, k) = (p − 1)s(p − 1, k) + s(p − 1, k − 1).



Combinatorics- Lecture: 40
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Combinatorics- Lecture: 40

Sterling Number of the Second Kind:

np = S(p, 0)n0 + S(p, 1)n1 + · · · + S(p, p)np

The coefficients S(p, i) are the Sterling Numbers of the second
kind: They satisfy the same recurrence relation and the intial
conditions.



Combinatorics- Lecture: 40

Note the connection between S(p, k) and the number of onto
functions from a set of p elements to a set of k elements. For
0 ≤ k ≤ p,

S(p, k) =
1

k!

k
∑

t=0

(−1)t
(

k

t

)

(k − t)p

Combinatorics- Lecture: 40

The Bell numbers.
B(p) = S(p, 0) + S(p, 1) + · · · + S(p, p)



Combinatorics- Lecture: 40

Sterling Numbers of the first kind.

The Sterling numbers of the first kind s(p, k) counts the number of
arrangements of p objects into k non-empty circular permutations.

Combinatorics- Lecture: 40

Example: s(4, 2) = 11.



Combinatorics- Lecture: 40

s(n, k) ≥ S(n, k) for n, k ≥ 0.

Combinatorics- Lecture: 40

s(n, 1) = (n − 1)! for n > 0



Combinatorics- Lecture: 40

s(n, n) = S(n, n) = 1, s(n, n − 1) = S(n, n − 1) =
(

n
2

)

Combinatorics- Lecture: 40

∑b
k=0

s(n, k) = n!, for n ≥ 0.



Combinatorics- Lecture: 40

If 1 ≤ k ≤ p − 1, then
s(p, k) = (p − 1)s(p − 1, k) + s(p − 1, k − 1).

Combinatorics- Lecture: 40

np = s(p, p)np − s(p, p − 1)np−1 + s(p, p − 2)np−2 − · · · +
(−1)p−k s(p, k)nk + · · · + (−1)ps(p, 0)n0


