
1

Prof P Sreenivasa Kumar
Department of CS&E, IITM

1

Relational Data Model

§  Proposed by Edgar F Codd (1923-2003) in the early
 seventies [Turing Award – 1981]

§  Most of the modern DBMS use the relational data model.
§  Simple and elegant model with a mathematical basis.
§  Led to the development of a theory of data dependencies
 and database design.
§  Relational algebra operations –

 crucial role in query optimization and execution.
§  Laid the foundation for the development of

§  Tuple relational calculus and then
§  Database standard SQL

Introduction

Prof P Sreenivasa Kumar
Department of CS&E, IITM

2

Relation Scheme

§  Consists of relation name, and a set of attributes or field
 names or column names. Each attribute has an associated
 domain.
§  Example:
 student (studentName : string,

 rollNumber : string,

 phoneNumber : integer,

 yearOfAdmission : integer,

 branchOfStudy : string)

§  Domain – set of atomic (or indivisible) values – data type

Relation
name

Attribute
 names

domains

Prof P Sreenivasa Kumar
Department of CS&E, IITM

3

Relation Instance

§  A finite set of tuples constitute a relation instance.
§  A tuple of the relation with scheme R = (A1, A2, … , Am)
 is an ordered sequence of values
 (v1,v2, ... ,vm) such that vi ∈ domain (Ai), 1≤ i ≤ m

No duplicate tuples (or rows) in a relation instance.
 We shall later see that in SQL, duplicate rows would be allowed in tables.

studentName rollNumber
yearOf
Admission

branch
Of Study

phoneNumber

Ravi Teja CS05B015 2005 CS 9840110489

student

Rajesh CS04B125 2004 CS 9840110490

…

2

Prof P Sreenivasa Kumar
Department of CS&E, IITM

4

Another Relation Example

enrollment (studentName, rollNo, courseNo, sectionNo)

studentName rollNumber courseNo sectionNo

enrollment

Rajesh
Rajesh
Suresh

CS04B125
CS04B125
CS04B130

2
1
2 …

CS3200
CS3700
CS3200

Prof P Sreenivasa Kumar
Department of CS&E, IITM

5

Keys for a Relation (1/2)

•  Key: A set of attributes K, whose values uniquely identify a
 tuple in any instance. And none of the proper subsets
 of K has this property

 Example: {rollNumber} is a key for student relation.
 {rollNumber, name} – values can uniquely identify a tuple

•  but the set is not minimal
•  not a Key

•  A key can not be determined from any particular instance data

§  it is an intrinsic property of a scheme
§  it can only be determined from the meaning of attributes

Prof P Sreenivasa Kumar
Department of CS&E, IITM

6

Keys for a Relation (2/2)

§  A relation can have more than one key.
§  Each of the keys is called a candidate key

 Example: book (isbnNo, authorName, title, publisher, year)
 (Assumption : books have only one author)
 Keys: {isbnNo}, {authorName, title}

§  A relation has at least one key
- the set of all attributes, in case no proper subset is a key.

§  Superkey: A set of attributes that contains a key as a subset.
§  A key can also be defined as a minimal superkey

§  Primary Key: One of the candidate keys chosen for indexing
 purposes (More details later…)

3

Prof P Sreenivasa Kumar
Department of CS&E, IITM

7

Relational Database Scheme and Instance

Relational database scheme: D consist of a finite no. of
 relation schemes and a set I of integrity constraints.
Integrity constraints: Necessary conditions to be satisfied by
 the data values in the relational instances so that the set
 of data values constitute a meaningful database

•  domain constraints
•  key constraints
•  referential integrity constraints

Database instance: Collection of relational instances satisfying
 the integrity constraints.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

8

Domain and Key Constraints

•  Domain Constraints: Attributes have associated domains
 Domain – set of atomic data values of a specific type.
 Constraint – stipulates that the actual values of an
 attribute in any tuple must belong to the declared domain.

•  Key Constraint: Relation scheme – associated keys
 Constraint – if K is supposed to be a key for scheme R,
 any relation instance r on R should not have two tuples
 that have identical values for attributes in K.
 Also, none of the key attributes can have null value.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

9

Foreign Keys

•  Tuples in one relation, say r1(R1), often need to refer to tuples
 in another relation, say r2(R2)

•  to capture relationships between entities
•  Primary Key of R2 : K = {B1, B2, …, Bj}
•  A set of attributes F = {A1, A2, …, Aj} of R1 such that

 dom(Ai) = dom(Bi), 1≤ i ≤ j and
 whose values are used to refer to tuples in r2

 is called a foreign key in R1 referring to R2.

•  R1, R2 can be the same scheme also.
•  There can be more than one foreign key in a relation scheme

4

Prof P Sreenivasa Kumar
Department of CS&E, IITM

10

Foreign Key – Examples (1/2)

Foreign key attribute deptNo of course relation refers to
Primary key attribute deptID of department relation

Course Department

courseId name credits deptNo

CS635 ALGORITHMS 3 1

CS636 A.I 4 1

ES456 D.S.P 3 2

ME650 AERO
DYNAMICS

3 3

deptId name hod phone

1 COMPUTER
SCIENCE

CS01 22576235

2 ELECTRICAL
ENGG

ES01 22576234

3 MECHANICAL
ENGG

ME01 22576233

Prof P Sreenivasa Kumar
Department of CS&E, IITM

11

Foreign Key – Examples(2/2)

It is possible for a foreign key in a relation
 to refer to the primary key of the relation itself

An Example:

univEmployee (empNo, name, sex, salary, dept, reportsTo)

reportsTo is a foreign key referring to empNo of the same relation

 Every employee in the university reports to some other
 employee for administrative purposes
 - except the vice-chancellor, of course!

Prof P Sreenivasa Kumar
Department of CS&E, IITM

12

Referential Integrity Constraint (RIC)

•  Let F be a foreign key in scheme R1 referring to scheme R2

 and let K be the primary key of R2.

•  RIC: any relational instances r1on R1 and r2 on R2 must be s.t
 for any tuple t in r1, either its F-attribute values are all null
 or they are identical to the K-attribute values of some
 tuple in r2.

•  RIC ensures that references to tuples in r2 are for currently
 existing tuples.

•  That is, there are no dangling references.

5

Prof P Sreenivasa Kumar
Department of CS&E, IITM

13

Referential Integrity Constraint (RIC) - Example

courseId name credits deptNo

CS635 ALGORITHMS 3 1

CS636 A.I 4 1

ES456 D.S.P 3 2

ME650 AERO
DYNAMICS

3 3

CE751 MASS
TRANSFER

3 4

deptId name hod phone

1 COMPUTER
SCIENCE

CS01 22576235

2 ELECTRICAL
ENGG.

ES01 22576234

3 MECHANICAL
ENGG.

ME01 22576233

COURSE DEPARTMENT

The new course refers to a non-existent department and thus
 violates the RIC

Prof P Sreenivasa Kumar
Department of CS&E, IITM

14

Example Relational Scheme
student (rollNo, name, degree, year, sex, deptNo, advisor)
 degree is the program (B Tech, M Tech, M S, Ph D etc)

 for which the student has joined.
 year is the year of admission and
 advisor is the EmpId of a faculty member identified as
 the student’s advisor.

department (deptId, name, hod, phone)
 phone is that of the department’s office.

professor (empId, name, sex, startYear, deptNo, phone)
 startYear is the year when the faculty member has

 joined the department deptNo.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

15

Example Relational Scheme
course (courseId, cname, credits, deptNo)
 deptNo indicates the department that offers the course.

enrollment (rollNo, courseId, sem, year, grade)
 sem can be either “odd” or “even” indicating the two

 semesters of an academic year.
 The value of grade will be null for the current semester
 and non-null for past semesters.

teaching (empId, courseId, sem, year, classRoom)

preRequisite (preReqCourse, courseID)
 Here, if (c1, c2) is a tuple, it indicates that c1 should be

 successfully completed before enrolling for c2.

6

Prof P Sreenivasa Kumar
Department of CS&E, IITM

16

Example Relational Scheme
student (rollNo, name, degree, year, sex, deptNo, advisor)

department (deptId, name, hod, phone)

professor (empId, name, sex, startYear, deptNo, phone)

course (courseId, cname, credits, deptNo)

enrollment (rollNo, courseId, sem, year, grade)

teaching (empId, courseId, sem, year, classRoom)

preRequisite (preReqCourse, courseId)

queries-1

queries-2

queries-3

XProd

TCQuery

Prof P Sreenivasa Kumar
Department of CS&E, IITM

17

Example Relational Scheme with RICs shown

student (rollNo, name, degree, year, sex, deptNo, advisor)

department (deptId, name, hod, phone)

professor (empId, name, sex, startYear, deptNo, phone)

course (courseId, cname, credits, deptNo)

enrollment (rollNo, courseId, sem, year, grade)

teaching (empId, courseId, sem, year, classRoom)

preRequisite (preReqCourse, courseId)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

18

Relational Algebra

§  A set of operators (unary and binary) that take relation
 instances as arguments and return new relations.
§  Gives a procedural method of specifying a retrieval query.
§  Forms the core component of a relational query engine.
§  SQL queries are internally translated into RA expressions.
§  Provides a framework for query optimization.

 RA operations: select (σ), project (π), cross product (×),
 union (⋃), intersection (∩), difference (−), join (⋈)

7

Prof P Sreenivasa Kumar
Department of CS&E, IITM

19

The select Operator

§  Unary operator.
§  can be used to select those tuples of a relation that

 satisfy a given condition.
§  Notation: σθ (r)

σ : select operator (read as sigma)
 θ : selection condition
 r : relation name

§  Result: a relation with the same schema as r
 consisting of the tuples in r that satisfy condition θ

§  Select operation is commutative:
 σc1 (σc2 (r)) = σc2 (σc1 (r))

Prof P Sreenivasa Kumar
Department of CS&E, IITM

20

Selection Condition

•  Select condition:
 Basic condition or Composite condition

•  Basic condition:
 Either Ai <compOp> Aj or Ai <compOp> c

•  Composite condition:
 Basic conditions combined with logical operators
 AND, OR and NOT appropriately.

•  Notation:
 <compOp> : one of < , ≤ , > , ≥ , = , ≠

 Ai, Aj : attributes in the scheme R of r
 c : constant of appropriate data type

Prof P Sreenivasa Kumar
Department of CS&E, IITM

21

Examples of select expressions

1.  Obtain information about a professor with name
 “Giridhar”

σname = “Giridhar” (professor)

2.  Obtain information about professors who joined the
 university between 1980 and 1985, both inclusive

σstartYear ≥ 1980 ^ startYear ≤ 1985 (professor)

8

Prof P Sreenivasa Kumar
Department of CS&E, IITM

22

The project Operator

§  Unary operator.

§  Can be used to keep only the required attributes of a
 relation instance and throw away others.

§  Notation: π A1, A2, … , Ak (r) where A1, A2, … , Ak is a list L of
 desired attributes in the scheme of r.

§  Result = { (v1, v2, … , vk) | vi ∈ dom(Ai) , 1≤ i ≤ k and
 there is some tuple t in r s.t
 t.A1 = v1, t.A2 = v2, … , t.Ak = vk}

§  If r1 = πL(r2) then scheme of r1 is L

Prof P Sreenivasa Kumar
Department of CS&E, IITM

23

Examples of project expressions

rollNo name degree year sex deptNo advisor
CS04S001 Mahesh M.S 2004 M 1 CS01

CS03S001 Rajesh M.S 2003 M 1 CS02

CS04M002 Piyush M.E 2004 M 1 CS01

ES04M001 Deepak M.E 2004 M 2 ES01

ME04M001 Lalitha M.E 2004 F 3 ME01

ME03M002 Mahesh M.S 2003 M 3 ME01

student

rollNo name
CS04S001 Mahesh

CS03S001 Rajesh

CS04M002 Piyush

ES04M001 Deepak

ME04M001 Lalitha

ME03M002 Mahesh

πname (σdegree = “M.S” (student))

name
Mahesh

Rajesh

Note: Mahesh is displayed only once because
project operation results in a set.

π rollNo, name (student)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

24

Size of project expression result

§  If r1 = πL(r2) then scheme of r1 is L

§  What about the number of tuples in r1?

§  Two cases arise:

§  Projection List L contains some key of r2

§  Then |r1| = |r2|

§  Projection List L does not contain any key of r2

§  Then |r1| ≤ |r2|

9

Prof P Sreenivasa Kumar
Department of CS&E, IITM

25

Set Operators on Relations

•  As relations are sets of tuples, set operations are applicable
 to them; but not in all cases.

•  Union Compatibility : Consider two schemes R1, R2 where
 R1 = (A1, A2, …, Ak) ; R2 = (B1, B2, …, Bm)

•  R1 and R2 are called union-compatible if
•  k = m and
•  dom(Ai) = dom(Bi) for 1 ≤ i ≤ k

•  Set operations – union, intersection, difference
•  Applicable to two relations if their schemes are

 union-compatible
•  If r3 = r1 ⋃ r2 , scheme of r3 is R1 (as a convention)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

26

Set Operations

 r1 - relation with scheme R1
 r2 - relation with scheme R2 - union compatible with R1

 r1 ∪ r2 = {t | t ∈ r1 or t ∈ r2}
 r1 ∩ r2 = {t | t ∈ r1 and t ∈ r2}
 r1 − r2 = {t | t ∈ r1 and t ∉ r2}

By convention, in all the cases, the scheme of the result
is that of the first operand i.e r1.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

27

.

Cross product Operation

 a11 a12 ... a1m b11 b12 ... b1n
 a11 a12

.

.

 ... a1m b21 b22
.
.

 ... b2n

 a11 a12 ... a1m bt1 bt2 ... btn
 a21 a22 ... a2m b11 b12 ... b1n
 a21 a22

.

.

 ... a2m b21 b22
.
.

 ... b2n

 a21 a22 ... a2m bt1 bt2 ... btn

 A1 A2 ...Am B1 B2 ... Bn
r1 A1 A2 ... Am

11 12 1

21 22 2

...
...

m

m

a a a
a a a

1 2 ...s s sma a a

r2 B1 B2 ... Bn
11 12 1

21 22 2

...
...

n

n

b b b
b b b

1 2 ...t t tnb b b

r1 : s tuples r2 : t tuples

r1 × r2

r1 × r2 : s × t tuples

.

.

.

.

.

.

.

10

Prof P Sreenivasa Kumar
Department of CS&E, IITM

28

Example Query using cross product

Obtain the list of professors (Id and Name) along with the
name of their respective departments
- Info is present in two relations – professor, department

•  profDetail (eId, pname, deptno) ← π empId, name, deptNo (professor)

•  deptDetail (dId, dname) ← π deptId, name (department)

•  profDept ← profDetail × deptDetail

•  desiredProfDept ← σ deptno = dId (profDept)

•  result ← π eld, pname, dname (desiredProfDept)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

29

Query using cross product – use of renaming

Query: Obtain the list of professors (Id and Name) along with
the name of their respective departments

•  profDetail (eId, pname, deptno) ← π empId, name, deptNo (professor)

 - this is a temporary relation to hold the intermediate result
 - “empId, name, deptNo” are being renamed as “eId, pname, deptno”
 - creating such relations helps us understand/formulate the query
 - we use “←” to indicate assignment operation.

•  deptDetail (dId, dname) ← π deptId, name (department)
 - another temporary relation

•  Renaming is necessary to ensure that the cross product has

distinct attribute names.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

30

Use of renaming operator ρ
Query: Obtain the list of professors (Id and Name) along with
the name of their respective departments

•  One can use the rename operator ρ and write the whole query
 as one big expression (as an alternative to using temporary
 relations)

 πeld, pname, dname
   (σdeptno = dId (ρeId, pname, deptno(π empId, name, deptNo(professor))

 × ρdId, dname(π deptId, name (department))
)
)
•  It is easier to understand and formulate the query with

meaningfully named temporary relations as shown earlier.
•  Students are encouraged to use temporary relations.

11

Prof P Sreenivasa Kumar
Department of CS&E, IITM

31

Join Operation
•  Cross product : produces all combinations of tuples

•  often only certain combinations are meaningful
•  cross product is usually followed by selection

•  Join : combines tuples from two relations provided they
 satisfy a specified condition (join condition)

•  equivalent to performing cross product followed by
 selection

•  a very useful operation

•  Depending on the type of condition we have
•  theta join
•  equi join

Prof P Sreenivasa Kumar
Department of CS&E, IITM

32

Theta join
•  Let r1 - relation with scheme R1 = (A1, A2, …, Am)

 r2 - relation with scheme R2 = (B1, B2, …, Bn)
 where w.l.o.g we assume R1 ∩ R2 = φ

•  Notation for join expression : r = r1 ⋈θ r2
•  θ - the join condition - is of the form : C1 ^ C2 ^ … ^ Cs

 Ci is of the form : Aj <CompOp> Bk
 where <CompOp> is one of { = , ≠, < , ≤ , > , ≥ }

•  Scheme of the result relation r is:
 (A1, A2, …, Am, B1, B2, …, Bn)

r = {(a1, a2, …, am, b1, b2, …, bn) | (a1, a2, …, am) ∈ r1,
 (b1, b2, …, bn) ∈ r2

 and (a1, a2,…, am , b1, b2,…, bn) satisfies θ}

Prof P Sreenivasa Kumar
Department of CS&E, IITM

33

empId name sex startYear deptNo phone
CS01 GIRIDHAR M 1984 1 22576345

CS02 KESHAV
MURTHY

M 1989 1 22576346

ES01 RAJIV GUPTHA M 1980 2 22576244

ME01 TAHIR NAYYAR M 1999 3 22576243

Professor

Department
deptId name hod phone

1 Computer Science CS01 22576235

2 Electrical Engg. ES01 22576234

3 Mechanical Engg. ME01 22576233

courseId cname credits deptNo
CS635 Algorithms 3 1

CS636 A.I 4 1

ES456 D.S.P 3 2

ME650 Aero
Dynamics

3 3

Courses

For each department, find
its name and the name,
sex and phone number

of the head of the department

12

Prof P Sreenivasa Kumar
Department of CS&E, IITM

34

Example
For each department, find its name and the name, sex and phone number of
the head of the department.

prof (empId, p-name, sex, deptNo, prof-phone)

 ← π empId, name, sex, deptNo, phone (professor)
result ← πdeptId, name, hod, p-name, sex, prof-phone (department ⋈(hod = empId) prof)

deptId name hod p-name sex prof-phone

1 Computer
Science

CS01 Giridher M 22576235

2 Electrical
Engg.

EE01 Rajiv
Guptha

M 22576234

3 Mechanical
Engg.

ME01 Tahir
Nayyar

M 22576233

Prof P Sreenivasa Kumar
Department of CS&E, IITM

35

Equi-join and Natural join

•  Equi-join : Equality is the only comparison operator used in the
 join condition

•  Natural join : R1, R2 - have common attributes, say X1, X2, X3
•  Join condition:

 (R1.X1 = R2.X1) ^ (R1.X2 = R2.X2) ^ (R1.X3 = R2.X3)
•  Values of common attributes should be equal

•  Schema for the result Q = R1 ⋃ (R2 - {X1, X2, X3 })
•  Only one copy of the common attributes is kept

•  Notation for natural join : r = r1* r2

Prof P Sreenivasa Kumar
Department of CS&E, IITM

36

Example – Equi-join

Find courses offered by each department

deptId name courseId cname credits

1 Computer
Science

CS635 Algorithms 3

1 Computer
Science

CS636 A.I 4

2 Electrical
Engg.

ES456 D.S.P 3

3 Mechanical
Engg.

ME650 Aero
Dynamics

3

π deptId, name, courseId, cname, credits (Department ⋈(deptId = deptNo) Courses)

13

Prof P Sreenivasa Kumar
Department of CS&E, IITM

37

empId courseId sem year classRoom
CS01 CS635 1 2005 BSB361

CS02 CS636 1 2005 BSB632

ES01 ES456 2 2004 ESB650

ME01 ME650 1 2004 MSB331

Teaching

To find the courses handled by each professor
Professor * Teaching

result
empId name sex startYear deptNo phone courseId sem year classRoom

CS01 Giridhar M 1984 1 22576345 CS635 1 2005 BSB361

CS02 Keshav
Murthy

M 1989 1 22576346 CS636 1 2005 BSB632

ES01 Rajiv
Guptha

M 1989 2 22576244 ES456 2 2004 ESB650

ME01 Tahir
Nayyar

M 1999 3 22576243 ME650 1 2004 MSB331

Prof P Sreenivasa Kumar
Department of CS&E, IITM

38

Division operator

§  The necessary condition to determine r s on
 instances r(R) and s(S) is S ⊂ R
§  The relation r s is a relation on schema R – S.
 A tuple t is in r s if and only if
 1) t is in π R-S(r)
 2) For every tuple ts in s, there is tr in r satisfying both
 a) tr[S] = ts
 b) tr[R – S] = t
 // tr[S] – the sub-tuple of tr consisting of values of attributes in S
•  Another Definition r = r1 r2
 Division operator produces a relation R(X) that includes all
 tuples t[X] that appear in r1 in combination with
 every tuple from r2 where R1= Z and R2 = Y and Z = X ⋃ Y

÷
÷

÷

÷

Prof P Sreenivasa Kumar
Department of CS&E, IITM

39

R = (A, B, C, D), S = (A, B), X = (C, D)
x = r s ÷

1 1

2 2

A B
a b
a b

1 1 1 1

2 2 1 1

1 1 2 2

1 1 3 3

2 2 3 3

A B C D
a b c d
a b c d
a b c d
a b c d
a b c d

s
r

x

(c2, d2) is not present in the result of division as it does not appear
in combination with all the tuples of s in r

c1 d1
c3 d3

C D

14

Prof P Sreenivasa Kumar
Department of CS&E, IITM

40

Find those students who have enrolled for all courses offered
 in the dept of Computer Science.

Step1: Get the course enrollment information for all students
 studEnroll ← π rollNo, name, courseId (student * enrollment)

Step2: Get the course Ids of all courses offered by CS dept
 csCourse ← πcourseId(σdname = “Computer Science”

(courses ⋈ deptId = deptNodept))

Result : studEnroll csCourse

Query using division operation

÷
Schema

Prof P Sreenivasa Kumar
Department of CS&E, IITM

41

Suppose result of step 1
(we skip roll number for simplicity)

name courseId
Mahesh CS635

Mahesh CS636

Rajesh CS635

Piyush CS636

Piyush CS635

Deepak ES456

Lalitha ME650

Mahesh ME650

courseId
CS635

CS636

result of step 2

studEnroll csCourse
result

studEnroll

csCourse

name
Mahesh

Piyush

÷

Let’s assume for a
moment that student
names are unique!

Prof P Sreenivasa Kumar
Department of CS&E, IITM

42

Complete Set of Operators

•  Are all Relational Algebra operators essential ?
 Some operators can be realized through other operators

•  What is the minimal set of operators ?

•  The operators {σ , π , × , ⋃, − } constitute a complete set
 of operators

•  Necessary and sufficient set of operators.
•  Intersection – union and difference
•  Join – cross product followed by selection
•  Division – project, cross product and difference

15

Prof P Sreenivasa Kumar
Department of CS&E, IITM

43

Example Queries
Retrieve the list of female PhD students

 σ degree = ‘phD’ ^ sex = ‘F’ (student)

Obtain the name and rollNo of all female BTech students

π rollNo, name (σ degree = ‘BTech’ ^ sex = ‘F’ (student))

Obtain the rollNo of students who never obtained an ‘E’ grade

π rollNo (σ grade ≠ ‘E’ (enrollment))

 is incorrect!!
 (what if some student gets E in one course and A in another?)
π rollNo (student) – π rollNo (σ grade = ‘E’ (enrollment))

Schema

Prof P Sreenivasa Kumar
Department of CS&E, IITM

44

Obtain the department Ids for departments with no lady
professor

 π deptId (dept) – π deptId (σ sex = ‘F’ (professor))

Obtain the rollNo of male students who have obtained
at least one S grade

 π rollNo (σ sex = ‘M’(student)) ∩ π rollNo (σ grade = ‘S’ (enrollment))

More Example Queries

Prof P Sreenivasa Kumar
Department of CS&E, IITM

45

Obtain the names, roll numbers of students who have got S grade in
the CS3700 course offered in 2017 odd semester along with his/her
advisor name.

reqStudsRollNo ←
πrollNo(σcourseId =‘CS3700’& year =‘2017’& sem =‘odd’& grade =‘S’(enrollment))

reqStuds-Name-AdvId (rollNo, sName, advId) ←

 π rollNo, name, advisor(reqStudsRollNo * student)

result(rollNo, studentName, advisorName) ←
 π rollNo, sName, name(reqStuds-Name-AdvId ⋈advId=empId professor)

Another Example Query Schema

16

Prof P Sreenivasa Kumar
Department of CS&E, IITM

46

Obtain the courses that are either direct or indirect prerequisites of
the course CS767.

•  Indirect prerequisite – (prerequisite of)+ a prerequisite course
•  Prerequisites at all levels are to be reported

levelOnePrereq(cId1) ← πpreReqCourse(σcourseId =‘CS767’(preRequisite))

levelTwoPrereq(cId2) ←

 πpreReqCourse (preRequisite ⋈ courseId = cId1 levelOnePrereq))

Similarly, level k prerequisites can be obtained.

But, prerequisites at all levels can not be obtained as there is

 no looping mechanism.

Transitive Closure Queries Schema

Prof P Sreenivasa Kumar
Department of CS&E, IITM

47

§  Theta join, equi-join, natural join are all called inner joins . The
 result of these operations contain only the matching tuples

§  The set of operations called outer joins are used when all
 tuples in relation r or relation s or both in r and s have
 to be in result.

 There are 3 kinds of outer joins:
 Left outer join

 Right outer join

 Full outer join

Outer Join Operation (1/2)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

48

Left outer join: r s
 It keeps all tuples in the first, or left relation r in the result. For

 some tuple t in r, if no matching tuple is found in s then
 S-attributes of t are made null in the result.

Right outer join: r s
 Same as above but tuples in the second relation are all kept in
 the result. If necessary, R-attributes are made null.

Full outer join: r s
 All the tuples in both the relations r and s are in the result.

Outer Join Operation (2/2)

17

Prof P Sreenivasa Kumar
Department of CS&E, IITM

49

Instance Data for Examples

rollNo name degree year sex deptNo advisor
CS04S001 Mahesh M.S 2004 M 1 CS01

CS05S001 Amrish M.S 2003 M 1 null

CS04M002 Piyush M.E 2004 M 1 CS01

ES04M001 Deepak M.E 2004 M 2 null

ME04M001 Lalitha M.E 2004 F 3 ME01

ME03M002 Mahesh M.S 2003 M 3 ME01

Student

empId name sex startYear deptNo phone
CS01 GIRIDHAR M 1984 1 22576345

CS02 KESHAV
MURTHY

M 1989 1 22576346

ES01 RAJIV GUPTHA M 1980 2 22576244

ME01 TAHIR NAYYAR M 1999 3 22576243

Professor

Prof P Sreenivasa Kumar
Department of CS&E, IITM

50

Left outer join

temp ← (student advisor = empId professor)

ρ rollNo, name, advisor (π rollNo, student.name, professor.name (temp))

rollNo name advisor
CS04S001 Mahesh Giridhar

CS05S001 Amrish Null

CS04M002 Piyush Giridhar

ES04M001 Deepak Null

ME04M001 Lalitha Tahir Nayyer

ME03M002 Mahesh Tahir Nayyer

Result

Prof P Sreenivasa Kumar
Department of CS&E, IITM

51

Right outer join

temp ← (student advisor = empId professor)

ρ rollNo, name, advisor (π rollNo, student.name, professor.name (temp))

rollNo name advisor
CS04S001 Mahesh Giridhar

CS04M002 Piyush Giridhar

null null Keshav Murthy

null null Rajiv Guptha

ME04M001 Lalitha Tahir Nayyer

ME03M002 Mahesh Tahir Nayyer

Result

18

Prof P Sreenivasa Kumar
Department of CS&E, IITM

52

Full outer join

temp ← (student advisor = empId professor)

ρrollNo, name, advisor (π rollNo, student.name, professor.name (temp))

rollNo name advisor
CS04S001 Mahesh Giridhar

CS04M002 Piyush Giridhar

CS05S001 Amrish Null

null null Keshav Murthy

ES04M001 Deepak Null

null null Rajiv Guptha

ME04M001 Lalitha Tahir Nayyer

ME03M002 Mahesh Tahir Nayyer

Result

Prof P Sreenivasa Kumar
Department of CS&E, IITM

53

E/R Diagrams to Relational Schema

§  E/R model and the relational model give different representations
 of a real world enterprise

§  An E/R diagram can be converted to a collection of relations

§  For each entity set and relationship set in E/R diagram we will
 have a corresponding relational table with the same name as
 entity set / relationship set

§  Each table will have multiple columns whose names are obtained
 from the attributes of entity types/relationship types

Prof P Sreenivasa Kumar
Department of CS&E, IITM

54

Relational representation of strong entity sets
§  Create a table Ti for each strong entity set Ei.

§  Include simple attributes and simple components
 of composite attributes of entity set Ei as attributes of Ti.

§ Multi-valued attributes of entities are dealt with separately.

§  The primary key of Ei will also be the primary key of Ti.

§  The primary key can be referred to by other tables via
 foreign keys in them to capture relationships as we see later

19

Prof P Sreenivasa Kumar
Department of CS&E, IITM

55

Relational representation of weak entity sets

§  Let E' be a weak entity owned by a strong/weak entity E

§  E' is converted to a table, say R', where…

§  Attributes of R' will be

§  Attributes of the weak entity set E' and
 Primary key attributes of the identifying strong entity E
 (Or, partial key of E + primary key of the owner of E,
 if E is itself a weak entity)
•  These attributes will also be a foreign key in R' referring
 to the table corresponding to E

§  Key of R' : partial key of E' + Key of E

§  Multi-valued attributes of E' are dealt separately as described later

Prof P Sreenivasa Kumar
Department of CS&E, IITM

56

Example

Course Section has
Section

Name
CourseID

Credits
SectionNo Year

RoomNo

Professor

Corresponding tables are

courseId name credits sectionNo courseId year roomNo professor

course section

Primary key of section = {courseId, sectionNo}

Prof P Sreenivasa Kumar
Department of CS&E, IITM

57

Relational representation of multi-valued attributes

§  One separate table for each multi-valued attribute

§  One column for this attribute and

§  Column(s) for the primary key attribute(s)

 of the table that corresponds to the entity / relationship set
 for which this is an attribute.

Student

RollNo
Name

EmailId
rollNo name emailId rollNo

e.g.,
student mailIds

20

Prof P Sreenivasa Kumar
Department of CS&E, IITM

58

Handling Binary 1:1 Relationship

§  Let S and T be entity sets in relationship R and
 S' and T' be the tables corresponding to these entity sets

§  Choose an entity set which has total participation in R,

 if there is one (say, S)

§  Include the primary key of T' as a foreign key in S' referring

 to relation T'

§  Include all simple attributes (and simple components of

 composite attributes) of R as attributes of S'

§  We can do the other way round too
 – lot of null values

Prof P Sreenivasa Kumar
Department of CS&E, IITM

59

Example

Student Hostel
Room

resides
In

RollNo
Name

homeAddress
HostelName

RoomNo

Note: Assuming every student resides in hostel.
S - Student R - residesIn T - Hostel Room

RollNo Name homeAddress RoomId

Student
RoomNo HostelName address

Hostel

Foreign key name need
not be same as primary key
of the other relation

1 1

address

Both entity sets participate fully:
We can merge relations of both

 into one “merged” relation.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

60

Handling 1: N Relationship

§  Let S be the participating entity on the N-side and T the other
 entity. Let S' and T' be the corresponding tables.

§  Include primary key of T' as foreign key in S'

§  Include any simple attribute (and simple components of
 composite attributes) of 1:N relation type as attributes of S'

21

Prof P Sreenivasa Kumar
Department of CS&E, IITM

61

Example

Professor Student guides

Phone
Name

ProfID
Name

RollNo

1 N

RollNo Name guide ProfId Name phone

Student Professor

Prof P Sreenivasa Kumar
Department of CS&E, IITM

62

Handling M:N relationship

§  Make a separate table T for this relationship R between entity
 sets E1 and E2.

 Let R1 and R2 be the tables corresponding to E1 and E2.

§  Include primary key attributes of R1 and R2 as foreign keys
 in T. Their combination is the primary key in T.

E1 E2 R M N

R1 R2

PK1 FK1 FK2 PK2

T

Prof P Sreenivasa Kumar
Department of CS&E, IITM

63

Example

Student Course enrolls

Name
RollNo

Name
CourseID

M N

name rollNo rollNo courseId

student enrollment course

Primary key of enrollment table is {RollNo, CourseID}

name courseID

22

Prof P Sreenivasa Kumar
Department of CS&E, IITM

64

Handling Recursive relationships

§  Make a table T for the participating entity set E
 (this might already be existing)

and one table for recursive relationship R.

Example

Course

CourseID
Credits

Timing

is
PreReq

Of

M N

Course

preReqCourse CourseID

CourseID Credits Timing

PreRequisites

