20/10/20




20/10/20




20/10/20




20/10/20




20/10/20




Transaction Operation - Abort

‘When a transaction issues Abort
- indicates that there is some internal error and
- transaction wants to terminate in the middle
— For instance, a division by zero is being attempted by the txn
— Or the debit account is going negative if we do money transfer etc

System obligation/ responsibility

- ensure that the partial work done by the transaction has no
effect on the database on the disk

‘What exactly happens during Abort

— depends on the specific error-recovery method and the
specific concurrency control method adopted by the system

20/10/20

Prof P Sreenivasa Kumar, 16
Department of CS&E, IITM.

DB Model for Transaction Processing

e Database

- Consists of several items — blocks / tuples
— Granularity of item — affects the algorithms/protocols
— Usually taken as a block/page

* Transactions operate by exchanging data with
DB only

- They do not exchange messages between them
» Focus on read/write/commit/abort operations
- Ignore in-memory operations

 Transactions are not nested

Prof P Sreenivasa Kumar, 17
Department of CS&E, IITM.

Transaction Operations

R(X) —read op of Txn i, reads db item X

— disk block having X - copied to buffer page - if reqd
- required value is assigned to program variable X
W(X) — write op of Txn i, writes db item X

- disk block having X - copied to buffer page - if reqd
- update buffer value using program variable X

- transfer block to disk — immediately or later

C, — commit of Txn i

A, —abort of Txn i

Prof P Sreenivasa Kumar, 18
Department of CS&E, IITM.




20/10/20




T1

RX)

W)

W)

20/10/20




Conflicting Pairs of Operations

* In a schedule, a pair of operations are said to be
in conflict if
- The operations belong to two different txns
- Both the operations deal with the same DB item
- One of the two ops is a Write operation

20/10/20

T1 T2 T3

1) R(X) of T1 conflicts with W(X) of T3 [ R
R(Y)

2) R(X) of T3 conflicts with W(X) of T1 3/
» RX)

3) W(X) of T1 conflicts with W(X) of T3 wodg

b W(X)

W(Y)

Prof P Sreenivasa Kumar, 25
Department of CS&E, IITM.

Conflict Equivalence

A schedule S, is said to conflict-equivalent to S, if

The relative order of any conflicting pair of operations is
the same in both S, and S,

R,(Y) Ry(X) W (X) W,(Y) (in the table)
is conflict equivalent to T | T2 T3
Ry(Y) Ry(X) Wy(Y) W,(X) ey
(Y)
N\ _breo
But is not conflict-equivalent to wood
Ry(Y) W,(X) Ry(X) Wy(Y) Lw)
(violet pair is out of order) W(Y)
Prof P Sreenivasa Kumar, 26

Department of CS&E, IITM.

Conflict Serializable Schedules

» A schedule is called conflict serializable if it is
conflict equivalent to some serial schedule

* Or, if we can move non-conflicting ops such that
— The relative order of ops of a Txn is intact and

— Schedule becomes a serial RIS

— Schedule in picture R(X),
— is not conflict-serializable NR(Y)
—T1 < T3 disturbs the 2" pair and — > RX)
— T3 < TI disturbs the 15 and 3™ pairs NN
W)
Prof P Sreenivasa Kumar, 27

Department of CS&E, IITM.




Conflict Serializable Schedules

Suppose we make a slight change to our example:

81 T1 T2 T3 s2 T1 T2 T3
R(X) ROON
) “R(Y)
NIETS) WEOR—\
W' RRX)
KIS Bwx)
W(Y) w(Y)

S2 is conflict-equivalent to serial schedules
T1,T3,T2 ; T1,T2,T3 and T2,T1,T3
Non-conflicting pairs of ops -- moved to get these serial schedules

20/10/20

Prof P Sreenivasa Kumar, 28
Department of CS&E, IITM.

Precedence Graph of a Schedule

 Precedence graph or serialization graph
» Nodes represent transactions
* A directed arc exists from T; to T; if
— An operation of T; precedes an operation of T;
and conflicts with it

A schedule S is conflict-serializable if and only if

the precedence graph of S is acyclic

- Topological sorts of the graph give equivalent serial
schedules

Prof P Sreenivasa Kumar, 29
Department of CS&E, IITM.

Precedence Graph - Examples

Precedence graph (or serialization graph) examples

s1| 1 T2 T3 s2 | T1 T2 T3
R(X) R(X)N|
) “R(Y)
NIEES WOOR—\
WO R
Ko Bweo
W(Y) W)
Tl \ T2 T1 \ T2
Not conﬂicl—\ B ® Conflict-
serializable serializable
Prof P Sreenivasa Kumar, 30

Department of CS&E, IITM.

10



20/10/20

11



Locking and Serializability

T1 T2 T3
LEORX),UX)

LY)R(Y),UY)

LX).RX),UX)

LX), WX),UX)

LX),WX),UX)

LY),W(Y),UY)

» Locking alone
- Does not guarantee serializability
— Above schedule continues to be non-serializable

20/10/20

Prof P Sreenivasa Kumar, 34
Department of CS&E, IITM.

Two Phase Locking (2PL)

¢ 2PL Protocol

— All lock requests of a transaction precede the first
unlock request

- Or a transaction has a locking phase followed by an
unlocking phase

« If all transactions follow 2PL protocol
- The resulting schedules will be conflict-serializable

A very important and valuable result!

Prof P Sreenivasa Kumar, 35
Department of CS&E, IITM.

Why 2PL works?

* S : A schedule of 7 transactions that follow 2PL
* Let T;be the transaction

— that issues the first unlock request among all txns
» We will argue that

- All ops of T; can be brought to the beginning of S
without passing over any conflicting ops

« We get S;: (ops of T,); (ops of other n-1 txns)
- S, is conflict-equivalent to S
* Thus we can show that S is conflict-serializable

Prof P Sreenivasa Kumar, 36
Department of CS&E, IITM.

12



Why 2PL works?

Suppose some op of T;, say W,(X), is conflicting
with some preceding op, say W(X), of T; in S

- WiX), ..., Wi(X),... or we have,

WX, e U, ey LX), -y WX
As T, is the first txn to issue an unlock, say, U,(Y),
- Ui(Y) precedes U(X) in S
So, S could be

WX, e UY), ooy UX), ey LD, ey WX,
Then, T, is not following 2PL — a contradiction

20/10/20

Prof P Sreenivasa Kumar, 37
Department of CS&E, IITM.

Why 2PL works?

The argument is same for any conflicting pairs of
operations involving an operation of T,

Thus, for all ops of T, there are no conflicting ops
that precede it.

So, beginning with the first op of T;,

- We can swap ops of T; with the previous ops and bring
them all the way to the front of schedule S

This can be repeated among the remaining n-1 txs
S is conflict-equivalent to a serial schedule

Prof P Sreenivasa Kumar, 38
Department of CS&E, IITM.

Possibility of Deadlocks

» Use of basic 2PL

- Deadlocks may occur; Deadlock detection and
resolution is adopted

* To detect
— A graph called wait-for graph is maintained
- Each running Txn — a node
- If T, is waiting to lock an item held by T;
— Directed edge from T; to T;
* To resolve

—select Txn in cycles & abort/resubmit them

Prof P Sreenivasa Kumar, 39
Department of CS&E, IITM.

13



System Failures and Recovery

* Failures
- Transaction errors — abrupt ending w/o completing
- CC module may decide to abort a Txn
- Disk crashes/power failures

* Log — the principal tool for error recovery

- Sequential file
— log entries reach the log on disk in same order as they
are written (an important assumption)

- Undo Logs / Redo Logs / Undo-Redo logs
- Each with a corresponding recovery method

20/10/20

Prof P Sreenivasa Kumar, 40
Department of CS&E, IITM.

Architecture of an RDBMS system

GUI/parameter
values

Application Appln ﬁ
programs ——, Pgm

\ Compiled
Appln pgms| Trans
\ Manage:

RDBMS
Ad-hoc v B -
jes  —| QoY L Qucry uffer
(iears: Tlme Manage
(Analyst) compllc Optlmlzer ome

DDL DDL and
Commands other

Control command
Commands processor
(DBA)

Rccovcry
Manager

Disk
Storage

Prof P Sreenivasa Kumar 41
Department of CSKE, IITM

Buffer Manager

» DB item — a disk block
* Disk blocks — brought into Memory Buffers
- Modified by running transactions
- Written to disk when transaction completes
» We will use more detailed Txn operations
— Input(A):  get disk block with A into buffer
- Read(A, t): t:=A; do Input(A) if reqd; tis local var
- Write(A, t): A:=t; do Input(A) if reqd
— Output(A): send block with A from buffer to disk

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

14



20/10/20

15



20/10/20

Undo Logging Example
Txn T is doing money transfer of Rs 100/- from account A to account B
Consistency Requirement: A+B is same before and after the Txn
Step Action m Mem-A | Mem-B | Disk-A Disk-B Log
1 <start T>
Read(A,m) | 500 500 500 1500
B m:=m-100 | 400 500 500 1500
4 |Write(Am) | 400 400 500 1500 | <T,A,500>
5 Read(B,m) [ 1500 400 1500 500 1500
6 |m:=m+100 [ 1600 400 1500 500 1500
7 |write(8,m) [ 1600 400 1600 500 1500 |<T,B,1500>
8 Flush Log
9 |Output(A) [ 1600 400 1600 400 1500
10  |Output(B) | 1600 400 1600 400 1600
11 <commit, T>|
12 |Flush Log
Prof P Sreenivasa Kumar, 46
Department of CS&E, IITM.

Recovery Using Undo Log

Examine Log and Partition Txns into:
Committed Set : Txns for which <Commit T> exists
Incomplete Set : Txns for which <Abort T> exists or
<Commit T> does not exist
Examine Log in the reverse direction
For every update record <T,X,V>
T is Committed: Do nothing; All is well due to U, !
T is Incomplete: Restore value of X on disk as V
- T might have changed some items on disk
- But log entries with old values are on disk due to U,

Do <Abort T> log entry for each incomplete T & Flush Log

Prof P Sreenivasa Kumar, 47
Department of CS&E, IITM.

Undo Logging: Crash Recovery
Crash occurs sometime before the first Flush Log:
DB on disk — unchanged; T - recognized as incomplete;
Log entries of T - unsure if they are on disk; if present - used for “undo”;
no harm! <Abort T> entered; T — resubmitted;
Step Action m Mem-A | Mem-B | Disk-A Disk-B Log
1 <start T>
Read(A,m) | 500 500 500 1500
B m:=m-100 400 500 500 1500
4 |Write(Am) | 400 400 500 1500 | <T,A,500>
5 |Read(B,m) [ 1500 [ 400 1500 500 1500
6 |m=m+100 [ 1600 [ 400 1500 500 1500
7 |write(B,m) | 1600 [ 400 1600 500 1500  [<T,B,1500>
8 Flush Log
9 |Output(A) [ 1600 [ 400 1600 400 1500
10 |Output(B) 1600 400 1600 400 1600
11 <commit, T>|
12 |Flush Log
Prof P Sreenivasa Kumar, 48
Department of CS&E, IITM.

16



Undo Logging: Crash Recovery

Crash occurs sometime after the first Flush-Log but before Step 11:
DB on disk - might have changed; T - recognized as incomplete;
Log entries of T - on disk; used for undoing T;

<Abort T> entered; T resubmitted;

20/10/20

Step Action m Mem-A Mem-B | Disk-A Disk-B Log
1 <start T>
Read(A,m) | 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) | 400 400 500 1500 <T,A,500>
5 Read(B,m) | 1500 400 1500 500 1500
6 m:=m+100 | 1600 400 1500 500 1500
7 [Write(B,m) | 1600 400 1600 500 1500  |<T,B,1500>
8 Flush Log
9 |Output(A) | 1600 400 1600 400 1500
10  |Output(B) 1600 400 1600 400 1600
11 <commit, T>|
12 |Flush Log
Prof P Sreenivasa Kumar, 49

Department of CS&E, IITM.

Undo Logging: Crash Recovery

Crash occurs after Step 11, before Step 12: DB on disk - changed;
<Commit T> - on disk: T - recognized as completed; No action reqd;
<Commit T> - not on disk: T - recognized as incomplete; Log entries of
T used for undoing T; <abort T> entered; T resubmitted;

Step Action m Mem-A Mem-B | Disk-A Disk-B Log
1 <start T>
Read(A,m) | 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) | 400 400 500 1500 <T,A,500>
5 Read(B,m) | 1500 400 1500 500 1500
6 m:=m+100 | 1600 400 1500 500 1500
7 [Write(B,m) | 1600 400 1600 500 1500  |<T,B,1500>
8 Flush Log
9 |Output(A) | 1600 400 1600 400 1500
10  |Output(B) 1600 400 1600 400 1600
11 <commit, T>|
12 |Flush Log
Prof P Sreenivasa Kumar, 50

Department of CS&E, IITM.

Undo Logging: Crash Recovery
Crash occurs after Step 12:
DB on disk - changed;
<Commit T> - on disk: T - recognized as completed; No action reqd;

Step Action m Mem-A Mem-B | Disk-A Disk-B Log
1 <start T>
Read(A,m) | 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) | 400 400 500 1500 <T,A,500>
5 Read(B,m) | 1500 400 1500 500 1500
6 m:=m+100 | 1600 400 1500 500 1500
7 [Write(B,m) | 1600 400 1600 500 1500  |<T,B,1500>
8 Flush Log
9 |Output(A) | 1600 400 1600 400 1500
10  |Output(B) 1600 400 1600 400 1600
11 <commit, T>|
12 |Flush Log
Prof P Sreenivasa Kumar, 51

Department of CS&E, IITM.

17



Redo Logging

Undo Logging:
Cancels the effect of incomplete Txns and
Ignores the committed Txns

All DB items to be sent to disk before Txn can commit

Results in lot of I/O; called FORCE-writing;

Redo Logging:
Ignores incomplete Txns and

Repeats the work of Committed Txns
Update log entry <T, X, V>: V is the new value

20/10/20

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

52

Redo Logging
Redo Logging Rule:

Before modifying any database element X on disk,
it is necessary that all log records pertaining to

this modification of X, including both the update
record <T, X, V> and the <COMMIT T> record,
must appear on disk.

Also called the write-ahead logging (WAL) rule

Items flow like this: Update Log records,
the commit entry
and then the changed DB items.

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

53

Redo Logging Example

Txn T is doing money transfer of Rs 100/- from account A to account B

Consistency Requirement: A+B is same before and after the Txn

Step Action m Mem-A | Mem-B [ Disk-A Disk-B Log
1 <start T>
2 Read(A,m) 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) [ 400 400 500 1500 <T,A,400>
5 Read(B,m) | 1500 400 1500 500 1500
6 m:=m+100 | 1600 400 1500 500 1500
7 Write(B,m) | 1600 400 1600 500 1500 | <T,B,1600>
8 <commit, T>
9 Flush Log
10  |Output(A) 1600 400 1600 400 1500
11 |Output(B) 1600 400 1600 400 1600

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

54

18



Recovery Using Redo Log

Examine Log and Partition Txns into:
Committed Set : Txns for which <Commit T> exists
Incomplete Set : Txns for which <Abort T> exists or
<Commit T> does not exist
Examine Log in the forward direction
For every update record <T,X,V>
T is Incomplete: Do nothing; DB on disk has no effects!
T is Committed: Unsure if all the effects of T are on disk
- But log entries with new values are on disk (WAL)
- Redo the change as per the log entry

Do <Abort T> log entry for each incomplete T & Flush Log

20/10/20

Prof P Sreenivasa Kumar, 55
Department of CS&E, IITM.

Redo Logging: Crash Recovery

Crash Occurs Before Step 8: <Commit T> not made by T;
T is recognized as incomplete; No action reqd; DB on disk - not
changed (WAL); enter <Abort T>; resubmit T

Step Action m Mem-A | Mem-B | Disk-A Disk-B Log
1 <start T>
2 Read(A,m) 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) | 400 400 500 1500 <T,A,400>
5 |Read(B,m) | 1500 | 400 1500 500 1500
6 m:=m+100 | 1600 400 1500 500 1500
7 Write(B,m) | 1600 400 1600 500 1500 | <T,B,1600>
8 <commit, T>:
9 Flush Log
10  |Output(A) 1600 400 1600 400 1500
11  |Output(B) 1600 400 1600 400 1600
Prof P Sreenivasa Kumar, 56

Department of CS&E, IITM.

Redo Logging: Crash Recovery

Crash Occurs after Step 8:

<Commit T> - on disk; T is redone with the help of Log entries;
<Commit T> not on disk: T is treated as incomplete; No action reqd;
DB on disk - not changed (WAL); enter <abort T>; resubmit T

Step Action m Mem-A | Mem-B [ Disk-A Disk-B Log
1 <start T>
2 Read(A,m) 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) | 400 400 500 1500 <T,A,400>
5 Read(B,m) | 1500 400 1500 500 1500
6 m:=m+100 | 1600 400 1500 500 1500
7 Write(B,m) | 1600 400 1600 500 1500 | <T,B,1600>
8 <commit, T>
9 Flush Log
10  |Output(A) 1600 400 1600 400 1500
11 |Output(B) 1600 400 1600 400 1600
Prof P Sreenivasa Kumar, 57

Department of CS&E, IITM.

19



Redo Logging: Crash Recovery

Crash Occurs after Step 9:
<Commit T> - surely on disk; T is redone with the help of Log entries;
Whether or not T succeeded in writing them!

20/10/20

Step Action m Mem-A Mem-B | Disk-A Disk-B Log
1 <start T>
2 |Read(Am) | 500 500 500 1500
Bl m:=m-100 400 500 500 1500
4 Write(A,m) | 400 400 500 1500 <T,A,400>
5 Read(B,m) | 1500 400 1500 500 1500
6 m:=m+100 | 1600 400 1500 500 1500
7 Write(B,m) | 1600 400 1600 500 1500 | <T,B,1600>
8 <commit, T>:
9 Flush Log
10  |Output(A) 1600 400 1600 400 1500
11 |Output(B) 1600 400 1600 400 1600
Prof P Sreenivasa Kumar, 58

Department of CS&E, IITM.

Undo-Redo Logging

Undo Logging:

Cancels the effect of incomplete Txns

All DB items to be sent to disk before Txn can commit

Results in a lot of I/O -- I/O can not be “bunched”
Redo Logging:

Ignores incomplete Txns and

Repeats the work of Committed Txns

Buffer might contain the blocks of several committed

Txns — Buffer utilization might come down!

Undo-Redo Logging:

Better flexibility; uses more detailed logging

Prof P Sreenivasa Kumar, 59
Department of CS&E, IITM.

Undo-Redo Logging

Undo-Redo Logging Update Entry:
<T, X, U, V>:
Txn T has changed the db item X and
its old value is U and new value is V

UR Logging Rule:

Before modifying any database element X on disk, because
of changes made by some transaction T, it is necessary that
the update record <T, X, U, V> appears on disk.

<Commit T> and disk changes — in any order!

Prof P Sreenivasa Kumar, 60
Department of CS&E, IITM.

20



Undo-Redo Logging Example

Txn T is doing money transfer of Rs 100/- from account A to account B
Consistency Requirement: A+B is same before and after the Txn

20/10/20

Step Action m | Mem-A | Mem-B | Disk-A | Disk-B Log
1 <start T>
2 Read(A,m) 500 500 500 1500
3 |m:=m-100 | 400 500 500 1500
4 Write(A,m) | 400 400 500 1500 <T,A,500,400>
5] Read(B,m) | 1500 400 1500 500 1500
6 |m:=m+100 | 1600 | 400 1500 500 1500
7 Write(B,m) | 1600 400 1600 500 1500 |<T,B,1500,1600>
8 Flush Log
g Output(A) 1600 400 1600 400 1500
10 <commit, T>
11  |Output(B) | 1600 | 400 1600 400 1600
Prof P Sreenivasa Kumar, 61

Department of CS&E, IITM.

Recovery Using Undo-Redo Logs

Examine Log and Partition Txns into:
Committed Set : Txns for which <Commit T> exists
Incomplete Set : Txns for which <Abort T> exists or
<Commit T> does not exist

Recovery Method:
Redo all committed Txns — order — earliest first
Undo all incomplete Txns — order — latest first
Necessary to do both!

Prof P Sreenivasa Kumar, 62
Department of CS&E, IITM.

Undo-Redo Log: Crash Recovery

Crash before <Commit T> is on disk: Txn T — incomplete — undone.
Crash after <Commit T> is on disk: Txn T — completed — redone.

Step Action m | Mem-A | Mem-B | Disk-A | Disk-B Log
1 <start T>
2 Read(A,m) 500 500 500 1500
3 |m:=m-100 | 400 500 500 1500
4 Write(A,m) | 400 400 500 1500 <T,A,500,400>
5] Read(B,m) | 1500 400 1500 500 1500
6 |m:=m+100 | 1600 | 400 1500 500 1500
7 Write(B,m) | 1600 400 1600 500 1500 |<T,B,1500,1600>
8 Flush Log
g Output(A) 1600 400 1600 400 1500
10 <commit, T>
11  |Output(B) | 1600 | 400 1600 400 1600
Prof P Sreenivasa Kumar, 63

Department of CS&E, IITM.

21



Issue of Dirty Data and Commits

e Consider Txns T and S:

- T has modified a db item X and it is doing some
more work

— Meanwhile, S has read X, completed its work

— Suppose S is allowed to Commit

- Now, T has an internal error and decides to Abort

- S has read ‘dirty’ data

- But S can’t be undone as it was allowed to commit
» DB got into a trouble!

20/10/20

Prof P Sreenivasa Kumar, 64
Department of CS&E, IITM.

Recoverable Schedules

» A schedule S is called recoverable if
no Txn T in S commits until all the Txns, that
have written an item T reads, have committed

— T needs to wait till each of the Txn from which it
has read completes.

- If all commit, then T can go ahead and commit
— If at least one such Txn aborts, T also has to abort
- Cascading Aborts/Rollbacks may occur

» Recoverability is an essential requirement!!

Prof P Sreenivasa Kumar, 65
Department of CS&E, IITM.

Recoverability vs Serializability

Orthogonal concepts

Both are important for a Transaction System!
It is possible that a recoverable schedule is not
conflict-serializable

- Recoverability defn has no restrictions on locking
It is also possible that a serializable schedule is
not recoverable

- Serializability definition has no restriction on
committing

Prof P Sreenivasa Kumar, 66
Department of CS&E, IITM.

22



Cascadeless Schedules

* A recoverable schedule
- may result in cascading rollbacks or aborts
* A schedule is called cascadeless or
ACR (avoiding cascading rollbacks) if
- in the schedule, Txns read only values written by
committed Txns
* Every ACR schedule is recoverable

— Such a Txn surely commits only after all the Txns it
has read from commit; in fact it does not read values
written by uncommitted Txns.

20/10/20

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

67

Strict Schedules

¢ A schedule is called strict if in the schedule

— a Txn neither reads nor writes an item X until the last
Txn that writes X has terminated

* Strict 2PL:
- A Txn must not release any write locks until the Txn

has either committed or aborted and the commit or
abort log record has been written to disk

- Results in strict schedules

— Strict schedules are cascadeless and serializable

Prof P Sreenivasa Kumar,

s 68
Department of CS&E, IITM.

Transactions in SQL

 Important parameters of Transactions in SQL:
- Can be set for each transaction
— Access-Mode:
— Read-Only; Read-Write (default)
— Isolation Level: Default is serializable
— Other lower isolation levels are also available
— Meant for running transactions that collect statistics

— For isolation level “uncommitted” — Read-Only Txns only

« Each transaction ends with Commit or Rollback

Prof P Sreenivasa Kumar,

s 69
Department of CS&E, IITM.

23



Transaction isolation levels

Dirty | Unrepeatable

20/10/20

Read May Be May Be May Be
Uncommitted
Read No May Be May Be
Committed
Repeatable No No May Be
Read
Serializable ~ No No No

Prof P Sreenivasa Kumar, 70

Department of CS&E, IITM.

Phantom Records

* Phantom records problem:

- Txn T1 has selected a set of tuples based on a certain
condition C, say “student.Dept = 5”

- And is working with them, say get max(marks)

- Txn T2 updated the DB with a new tuple that satisfies
C after T1 started
- Can cause T1 to be incorrect
— Such rows are called phantom rows
— Come into picture out of the blue...
- “index locking” needs to be adopted

Prof P Sreenivasa Kumar, hal
Department of CS&E, IITM.

24



