Database Systems

Algorithms for Relational Algebra Operators
and Query Evaluation

Dr P Sreenivasa Kumar
Professor
CS&E Department
11T Madras

Prof P Sreenivasa Kumar 1

Department of CS&E, ITM

20/10/20

Relational Query Evaluation

= Relational Algebra Operators
= Select, Project, Join
= Union, Intersect, Difference
= Grouping and aggregation
= Sorting
= How to implement these?
= How do indexes help?
= Any other information is helpful?

Prof P Sreenivasa Kumar
Department of CS&E, ITM

Selection With Equality Conditions

= Single selection condition X = ¢,
= Index on X ? Yes: use the index; No: file scan
= Several conjunctive conditions
= X, =c,and X, =c,and ... and X, = ¢,
= Index on any X; ?
= Yes: Get the records and check other conditions
= No: File scan
= Several disjunctive conditions
= Index on any single X; - not helpful
= Difficult compared to conjunctive case

Prof P Sreenivasa Kumar
Department of CS&E, ITM

Predicate Selectivity
= Selectivity s of a condition C -- 0<s<1
= (No. of records satisfying C) / (Total no. of records)
= C,: student.dept = “CSE” -- 450 / 8000 = 0.056
= C,: student.sex = “female” -- 1200 / 8000 = 0.15
= C;: student.rollNo = “CS10B032” -- 1/8000 = 0.000125
= highly selective predicate - very low selectivity value
= Conjunction of conditions
= Choose the one that is most selective
= Get the records and check other conditions

= Selectivity values (estimates): collect offline

20/10/20

Prof P Sreenivasa Kumar 4
Department of CS&E, ITM

Selectivity Estimation
= Maintained in the DB catalog
= Used by the query optimizer
= Equality conditions involving a key attribute
= Selectivity = 1/ (Total no. of records)
= Equality conditions involving a non-key attribute
= Selectivity = 1/ (Distinct values of the attribute)
= Sometimes histograms are also maintained
= Distinct value or value range -- # of records

Prof P Sreenivasa Kumar 5
Department of CS&E, ITM

Project Operation

= For every record in the operand
= Access it, take the required attributes values
= Construct the result record

= Duplicate Elimination
= Costly
= Sort or hash based methods are used

= File scan becomes essential

= Apply project after selection, if possible
= To reduce the input to project

Prof P Sreenivasa Kumar 6
Department of CS&E, ITM

External Sorting

= Sorting a file
= An often required operation
= Duplicate elimination, Grouping of records, Join etc
= Merge-sort Principle is used
= O(nlogn) worst-case complexity for n items
= Two phases

= Sort phase — repeat: read part of data, sort and write
= Create many sorted files — called runs

= Merge phase — repeat: merge some sorted files and write
= Till only one sorted file is left

20/10/20

Prof P Sreenivasa Kumar 7
Department of CS&E, ITM

Algorithm — Sort Phase

= File: n blocks and Buffer memory: m blocks
= Sort Phase
= Repeat the following | n/m | times
{read the next m blocks; sort in-memory;
write to disk as a single file, called a run}

= Number of runs r = [n/m |

= Complexity: n block reads and n block writes
= 21 block accesses

Prof P Sreenivasa Kumar 8
Department of CS&E, ITM

Algorithm — Merge Phase

= File: n blocks, Memory Buffers: m (>3) blocks, Runs: »
= Degree of mergingd: 2< d <(m—1)
= Merge Phase: repeat the following [log, 7 | times
= Reducej runs to | j/d | runs (Initially, j=7r)
= By repeatedly merging d runs at a time to get one run
= Use d buffers, one for each of the next d runs; use one for the result
= Get one block at a time from each run
= Merge and write the result to disk — one block at a time
= Complexity: 2n [log, r |
= Each sub-phase : Entire file gets read and written

= Overall: (2n + 2n | log, |) block accesses

Prof P Sreenivasa Kumar 9
Department of CS&E, ITM

Algorithm — Merge Phase

Reducing j runs to | j/d | runs

1L 2 3 ..d dfl. 2d .. 3d...j
\ | | | | |-

[”j/d 7| runs

— < Merging d runs
= 8" W
[— <
i i - Memory
buffer

[— < [] Runfile

20/10/20

Prof P Sreenivasa Kumar 10
Department of CS&E, ITM

Join Processing

= Join — A very important operation
= 2-way join
= Two files of records, join condition — given
= Multi-way join
= Choice of algorithm depends on ...
= Sizes of files
= Primary organization of the files
= Availability of indices
= Selectivity of the join condition etc

Prof P Sreenivasa Kumar 11
Department of CS&E, ITM

Nested LOOp Join (or block nested loop join)

PN for each record x in R do
[]
Brute fOI'CC Joi for each record y in S do
™ TWO data ﬁles check if x, y join .. .

= R:b, blocks, S :b, blocks, Buffer : m blocks
= Buffer Usage: One block for the result of join

= One for inner file (say, S); (m —2) for outer file (R)
= For each set of (m — 2) blocks of R read-in, do

= For each block of S do

Read it in, compute join, write to result block
Write the result block to disk whenever it fills up

Prof P Sreenivasa Kumar
Department of CS&E, ITM

Nested Loop Join - Performance

= Two data files
= R:b, blocks, S :b, blocks, Buffer : m blocks
= QOuter file : b, blocks accesses
= # times inner file blocks accessed: [b,/(m —2) |
= Overall: b, +[b/(m—2) | b,
= Or, symmetrically: b, + [b,/(m —2) | b,

= when we have S in the outer loop and R inside

= Which file in the outer loop?
= The one with fewer blocks! result necdsiiolbeladded

20/10/20

Prof P Sreenivasa Kumar 13
Department of CS&E, ITM

Nested Loop Join - Example

= Two data files
R : b, =5600 blocks, S:b,=120 blocks, Buffer : 52 blocks

= [f R is used in the outer loop

"b, +[b/(m—-2)7b,

= 5600 + [~ 5600 / 507| * 120 = 19040 disk ops
= [f S is used in the outer loop

= 120+ 120/ 50 | * 5600 = 16920 disk ops
= Assuming 10 msec per disk op

) Time for writing the
= Jtis 190 secs versus 169 secs result needs to be added

Prof P Sreenivasa Kumar 14
Department of CS&E, ITM

Single LOOp Join (or index loop join)

= Two data files
= R : b, blocks, S :b, blocks resultneeds (0 be added
= Need to compute equi-join with R.A = S.B
= We have index on one of them, say S on B
= For each record x of R read in, do
= Use the index on B for S
= Get all the matching records (having B = x.A)
= Time taken: b, + |distinct(R.A)|* hy(S)
= hy(S) — # of block accesses of the index on B for S

Prof P Sreenivasa Kumar 15
Department of CS&E, ITM

Join Selection Factor

= Fraction of records in a file that join with records
of the other for the given condition
= Consider: professor =, ;- department
= Only 5% of professor rows join with department rows
= 100% of department rows join with professor rows
= Impacts performance of single loop join
= [f indexes are available on both files

= Loop over records of the file with high join selection
factor

20/10/20

Prof P Sreenivasa Kumar 16
Department of CS&E, ITM

Join Selection Factor - Example

= mpacts single loop join performance
= [f indexes are available on both files
= Consider: professor >, ., department

= Loop over professor records and probe department
using index on hod (option 1) OR

= Loop over department records and probe professor
using index on empld (option 2)

= Option 1: 95% probes don’t give a match

= Option 2: All probes give a match

= Option 2 is the right choice

Prof P Sreenivasa Kumar
Department of CS&E, ITM

Hash Join

= Consider a 2-way equi-join R >y ,_¢ 5 S
= Assume that S fits into memory
= Use a hash function £
= Hash the records of S into M buckets using B-values
= Called the partitioning of S
= To compute join result
= Hash records of R, one by one, using A values

= Use the same M buckets and the same hash function /
= Matching pair of records will hash to same bucket

Prof P Sreenivasa Kumar 18
Department of CS&E, ITM

Partition Hash Join

= Consider a 2-way equi-join R> , g5 S
= Neither R nor S fits into the memory
= Partition Phase: use a hash function 4
= Hash the records of R into m buckets using A-values
= WegetR,,R,,...,R - write them to files
= Hash the records of S into m buckets using B-values
= WegetS,,S,,....S, -writethem to files
= Goals: ensure that distribution is uniform and
= At least one of R; or S; fit into the memory

= To compute join result: join R; with S; only!

20/10/20

Prof P Sreenivasa Kumar 19
Department of CS&E, ITM

Partition Hash Join — Probe Phase

= Probe Phase: Join R; with S, for all i
= If one of R; or S; fit into the memory

= Use the idea of hash join again!

= Hash the smaller of the two into main memory using a
different hash function, say 4,

= Read the other file, probe and produce result records
= Overall cost: (3(|R|+|S|) + |result|) block accesses
= Else use nested loops join
= Overall cost: 2(|R|+|S|) + cost of nested loop joins

Prof P Sreenivasa Kumar 20
Department of CS&E, ITM

Sort-merge join

= Consider a 2-way equi-join R>; ,_g 5 S
= [fR is sorted on A, S is sorted on B
= Merge R and S to get join results
= Called merge join - - very efficient - - linear
= [f one of them is sorted on join attribute
= Sorting the other and merging may be cost-effective
= Of course, we can
= Sort R on A, sort S on B and use merge
= Cost might be high

Prof P Sreenivasa Kumar 21
Department of CS&E, ITM

Set Operations

= Hash based join method
= Can be adapted to compute Union, Intersect and
Difference
= Sort-Merge method
= Can be adapted to compute Union, Intersect and
Difference

= Please study the details!

Prof P Sreenivasa Kumar
Department of CS&E, ITM

20/10/20

Query Optimization
= An SQL query - converted to a RA expression tree

= Initial RA expression is re-written
= Using heuristic and algebraic transformation rules
that preserve the meaning of the expression
= Called algebraic optimization
= Final RA expression tree is generated
= Cost-based query optimization
= Cost estimates of methods for RA ops are computed
= Execution plan with least estimated cost is chosen

Prof P Sreenivasa Kumar
Department of CS&E, ITM

Heuristic Optimization

= An SQL query - converted to a RA expression tree
= This RA expression tree is to be re-written

= Main heuristic rule
= Apply select and project before other operations
= Reduces the size of intermediate results
= Reduces the number of fields in the intermediate results
= Make use of relational algebraic laws
= Select, project, join, union, intersect - commutative

= Join, union, intersect - associative

= There are many more....(Read about them)

Prof P Sreenivasa Kumar 24
Department of CS&E, ITM

Cost-based Optimization

= After initial RA expression tree is re-written using
heuristics and algebraic laws....
= Each RA operator
= Can be evaluated using many methods
= For a method, its cost function gives estimated cost
= By taking file sizes, access path costs etc into account
= Choice made at a node may effect choices at others
= Evaluate different plans based on estimated costs
= Choose the plan with least estimated cost

20/10/20

Prof P Sreenivasa Kumar 25
Department of CS&E, ITM

Query Optimization — Example

= Obtain the name and phone details of professors
who taught the courses taken by student with roll
number “Cs08B027” in the even semester of 2010
= select p.empld, p.name, p.phone
from professor p, teaching t, enrollment e
where e.rollNo = “CS08B027”
and e.courseld = t.courseld
and e.sem = “even” and e.year = 2010
and t.sem = “even” and t.year = 2010

and p.empld = t.empld

Prof P Sreenivasa Kumar 26
Department of CS&E, ITM

Query Optimization — Example

= Obtain the name and phone details of professors
who taught the courses taken by student with roll
number “Cs08B027” in the even semester of 2010
® Initial RA Bxpr: IT | id. p name, pphone (O (P X X €))
where
p: professor, t: teaching, e: enrollment
0 = (e.rollNo = “CS08B027” and e.courseld = t.courseld
and e.sem = “even” and e.year = 2010
and t.sem = “even” and t.year = 2010

and p.empld = t.empld)

Prof P Sreenivasa Kumar 27
Department of CS&E, ITM

Query Optimization — Example

= II p.empld, p.name, p.phone(Og (p xtxe))
=10 p.empld, p.name, p,phone(Op3 (P X Op (t) X Gel(e)))

p: professor, t: teaching, e: enrollment
01 = (e.rollNo = “CS08B027” and
and e.sem = “even” and e.year = 2010)
02 = (t.sem =“even” and t.year = 2010)
03 = (p.empld = t.empld and e.courseld = t.courseld)

20/10/20

Prof P Sreenivasa Kumar 28
Department of CS&E, ITM

Query Optimization — Example

= II p.empld, p.name, p.phone(Op (p xtxe))
=10 p.empld, p.name, p,phone(Op3 (P X Og (t) X Gel(e)))
=II p.empld, p.name, p,phone(Op3 (P X Gpy (062 (t) X Gel(e))))

p: professor, t: teaching, e: enrollment
01 = (e.rollNo = “CS08B027” and

e.sem = “even” and e.year = 2010)
02 = (t.sem =“even” and t.year = 2010)
03 = (p.empld = t.empld)
04 = (e.courseld = t.courseld)

Prof P Sreenivasa Kumar 29
Department of CS&E, ITM

Query Optimization — Example

= II p.empld, p.name, p.phone(Op (p xtxe))
=10 p.empld, p.name, p.phone (093 (p X Oy (t) X G(')l(e)))
=II p.empld, p.name, p,phone(Op3 (P X Gpy (062 (t) X Gel(e))))

=11 p.empld, p.name, p,phone(p MGS (GGZ(t) N94 Gel(e)))

01 = (e.rollNo = “CS08B027” and

e.sem = “even” and e.year = 2010)
02 = (t.sem =“even” and t.year = 2010)
03 = (p.empld = t.empld)
04 = (e.courseld = t.courseld)

Prof P Sreenivasa Kumar 30
Department of CS&E, ITM

10

Query Optimization — Example

* I} cmpd, p.name, p.phone (G0 (P X t X ©))
=TT, cmpld, pname, pphone (Go3 (P X Ops () X 6¢;(€)))
=11, cmpid, pname, pphone (O3 (P X Ggq (Gpy (1) X G4(€))))
=11, cmpid, pname, p.phone (P 03 (G2(t) =4 G41(€)))

= (H empld,name,phone (p) N93 Hempld (Hcourseld, empld Oy (t)
o4 Hcourseld Op1 (e)))

01 = (e.rollNo = “CS08B027” and e.sem = “even” and e.year = 2010)
02 = (t.sem="even” and t.year=2010)

03 = (p.empld = empld) 04 = (t.courseld = e.courseld)

20/10/20

Prof P Sreenivasa Kumar 31
Department of CS&E, ITM

Cost-based Optimization

* I} cmpld, p.name, p.phone (G0 (P X t X ©))
=11, cmpld, pname, pphone (Go3 (P X Ops (1) X 6¢;(€)))
=11, cmpid, pname, pphone (O3 (P X Ggq (Gpy (1) X G4(€))))
=11, cmpid, pname, p.phone (P 03 (Gg2 (1) %g4 Gy (€)))

= (H empld,nams,phone(p) ~o3 Hempld (Hcourseld, empld) (t)
o4 Hcourseld Op1 (e)))

Evaluate costs of using different methods for
the two selections, two joins
and choose the plan with least estimated cost

Prof P Sreenivasa Kumar 32
Department of CS&E, ITM

Query Plan Execution

Intermediate Tables:
Store as files on disk (materialization), if necessary
Use pipelining, as much as possible

Query Types and Optimization
Compiled Queries
Optimization can be done offline
cost of optimization — does not matter
Ad-hoc Queries — Optimization should finish fast

Prof P Sreenivasa Kumar 33
Department of CS&E, ITM

11

