
1

Prof P Sreenivasa Kumar
Department of CS&E, IITM

1

File Organization and Indexing

The data of a RDB is ultimately stored in disk files
 Disks – non-volatile, inexpensive storage for data

 – random-access adressable device

Disk space management:
 Should Operating System services be used ?
 Should RDBMS manage the disk space by itself ?

 2nd option is preferred as RDBMS requires complete
 control over when a block or page in main memory buffer
 is written to the disk.

 This is important for recovering data when system
 crash occurs

Prof P Sreenivasa Kumar
Department of CS&E, IITM

2

Structure of Disks
Disk
§  several platters stacked on
 a rotating spindle
§  one read / write head per surface
 for fast access
§  platter has several tracks

•  ~10,000 per inch
§  each track - several sectors
§  each sector/track - blocks
§  unit of data transfer - block
§  cylinder i - track i on all platters
§  sectoring is optional
§  block – ½ KB to 8KB

§  fixed; set at initialization time

Platters

Read/write head

}

track

sector

Speed:
7000 to

10000 rpm

Prof P Sreenivasa Kumar
Department of CS&E, IITM

3

Data Transfer from Disk

Address of a block: Surface No, Cylinder No, Block No

Data transfer:
 Move the r/w head to the appropriate track

•  time needed - seek time – ~ 12 to 14 ms
Wait for the appropriate block to come under r/w head

•  time needed - rotational delay - ~3 to 4ms (avg)

Access time: Seek time + rotational delay
Blocks on the same cylinder - roughly close to each other
 - access time-wise
- cylinder i, cylinder (i + 1), cylinder (i + 2) etc.

2

Prof P Sreenivasa Kumar
Department of CS&E, IITM

4

Data Records and Files

Fixed length record type: each field is of fixed length
•  in a file of these type of records, the record number can be

 used to locate a specific record
•  the number of records, the length of each field are available
 in file header

Variable length record type:
•  arise due to missing fields, repeating fields, variable length
 fields
•  special separator symbols are used to indicate the field

 boundaries and record boundaries
•  the number of records, the separator symbols used are

 recorded in the file header

Prof P Sreenivasa Kumar
Department of CS&E, IITM

5

Packing Records into Blocks

Record length much less than block size
•  The usual case
•  Blocking factor b = B/r B - block size (bytes)

 r - record length (bytes)
 - maximum no. of records that can be stored in a block

Record length greater than block size

•  spanned organization is used

Record
1 1 2 2 3 3

File blocks:
 sequence of blocks containing all the records of the file

Prof P Sreenivasa Kumar
Department of CS&E, IITM

6

Mapping File Blocks onto the Disk Blocks

Contiguous allocation
•  Consecutive file blocks are stored in consecutive disk blocks
•  Pros: File scanning can be done fast using double buffering
 Cons: Expanding the file by including a new block in the middle
 of the sequence - difficult

Linked allocation
•  each file block is assigned to some disk block
•  each disk block has a pointer to next block of the sequence
•  file expansion is easy; but scanning is slow

Mixed allocation

3

Prof P Sreenivasa Kumar
Department of CS&E, IITM

7

Operations on Files
Insertion of a new record: may involve searching for appropriate
location for the new record

Deletion of a record: locating a record –may involve search;
delete the record –may involve movement of other records

Update a record field/fields: equivalent to delete and insert

Search for a record: given value of a key field / non-key field

Range search: given range values for a key / non-key field

 How successfully we can carry out these operations
 depends on the organization of the file and the availability
 of indexes

Prof P Sreenivasa Kumar
Department of CS&E, IITM

8

Primary File Organization
The logical policy / method used for placing records into file blocks

Example: Student file - organized to have students records sorted
 in increasing order of the “rollNo” values

Goal: To ensure that operations performed frequently on the file
 execute fast

•  conflicting demands may be there
•  example: on student file, access based on rollNo and also

 access based on name may both be frequent
•  we choose to make rollNo access fast
•  For making name access fast, additional access structures

 are needed.
 - more details later

Prof P Sreenivasa Kumar
Department of CS&E, IITM

9

Different File Organization Methods

We will discuss Heap files, Sorted files and Hashed files

Heap file:
 Records are appended to the file as they are inserted
 Simplest organization
 Insertion - Read the last file block, append the record and

 write back the block - easy
 Locating a record given values for any attribute

•  requires scanning the entire file – very costly

Heap files are often used only along with other access structures.

4

Prof P Sreenivasa Kumar
Department of CS&E, IITM

10

Sorted files / Sequential files (1/2)

Ordering field: The field whose values are used for sorting the
 records in the data file
Ordering key field: An ordering field that is also a key

Sorted file / Sequential file:
 Data file whose records are arranged such that the values of the
 ordering field are in ascending order

Locating a record given the value X of the ordering field:
 Binary search can be performed

 Address of the nth file block can be obtained from
 the file header

 O(log N) disk accesses to get the required block- efficient
Range search is also efficient

Prof P Sreenivasa Kumar
Department of CS&E, IITM

11

Sorted files / Sequential files (2/2)

Inserting a new record:
§  Ordering gets affected

•  costly as all blocks following the block in which insertion is
 performed may have to be modified

§  Hence not done directly in the file

•  all inserted records are kept in an auxiliary file
•  periodically file is reorganized - auxiliary file and main file

 are merged
•  locating record

•  carried out first on auxiliary file and then the main file.

 Deleting a record

•  deletion markers are used.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

12

Hashed Files

Very useful file organization, if quick access to the data record is
 needed given the value of a single attribute.

Hashing field: The attribute on which quick access is needed and
 on which hashing is performed

Data file: organized as a buckets with numbers 0,1, …, (M − 1)
 (bucket - a block or a few consecutive blocks)

Hash function h: maps the values from the domain of the hashing
 attribute to bucket numbers

5

Prof P Sreenivasa Kumar
Department of CS&E, IITM

13

Inserting Records into a Hashed File

Insertion: for the given record R,
 apply h on the value of hashing
 attribute to get the bucket number r.

 If there is space in bucket r,
 place R there else place R in the
 overflow chain of bucket r.

 The overflow chains of all the
 buckets are maintained in the
 overflow buckets.

0

1

2

M-1

Main buckets

Overflow
buckets

Overflow
chain

Prof P Sreenivasa Kumar
Department of CS&E, IITM

14

Deleting Records from a Hashed File

Deletion: Locate the record R to be
 deleted by applying h.

 Remove R from its bucket/overflow
 chain. If possible, bring a record from
 the overflow chain into the bucket

0

1

2

M-1

Main buckets

Overflow
buckets

Overflow
chain

Search: Given the hash filed value
k, compute r = h(k). Get the bucket
r and search for the record. If not
found, search the overflow chain
of bucket r.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

15

Performance of Static Hashing

Static hashing:
§  The hashing method discussed so far
§  The number of main buckets is fixed

Locating a record given the value of the hashing attribute
 most often – one block access

Capacity of the hash file C = r * M records
 (r - no. of records per bucket, M - no. of main buckets)

Disadvantage with static hashing:
 If actual records in the file is much less than C

•  wastage of disk space
 If actual records in the file is much more than C

•  long overflow chains – degraded performance

6

Prof P Sreenivasa Kumar
Department of CS&E, IITM

16

Hashing for Dynamic File Organization
Dynamic files
§  files where record insertions and deletion take place frequently
§  the file keeps growing and also shrinking

Hashing for dynamic file organization
§  Bucket numbers are integers
§  The binary representation of bucket numbers

§  Exploited cleverly to devise dynamic hashing schemes
§  Two schemes

•  Extendible hashing
•  Linear hashing

Prof P Sreenivasa Kumar
Department of CS&E, IITM

17

The k-bit sequence corresponding to a record R:

Apply hashing function to the value of the hashing field of R
to get the bucket number r

Convert r into its binary representation to get the bit sequence
Take the trailing k bits

For instance, say record R hashes to bucket # 46
 46 = (101110)2
So, the 3-bit sequence corresponding to the bucket is “110”

Extendible Hashing (1/2)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

18

All records with 3-bit

Sequence ‘111’

Extendible Hashing (2/2)

The # of
trailing

bits used in
the directory

Global depth d=3

000
001
010
011
100
101
110
111

Directory

2

3

3

2

3

3

Local depth

All records with 2-bit
Sequence ‘01’

The number of bits in the
common suffix of bit
sequences corresponding to
the records in the bucket

Locating a record
 Match the d-bit sequence with an entry in the directory and go to
 the corresponding bucket to find the record

7

Prof P Sreenivasa Kumar
Department of CS&E, IITM

19

Insertion in Extendible Hashing Scheme (1/2)

2 - bit sequence for the record to be inserted: 00

full

00
01
10
11

1

2

2

b0

b1

b2

d=2

 b0 Full: Bucket b0 is split
 All records whose 2-bit sequence is ‘10’ are

 sent to a new bucket b3. Others are retained in b0
 Directory is modified.
b0 Not full: New record is placed in b0. No changes in the directory.

00
01
10
11

d=2

all local
depth = 2

b0

b3

b2

b1

Prof P Sreenivasa Kumar
Department of CS&E, IITM

20

Insertion in Extendible Hashing Scheme (2/2)
2 - bit sequence for the record to be inserted: 10

00
01
10
11

d=2

full

b0

b1

b2

b3

all local
depth = 2

000
001
010
011
100
101
110
111

d=3

2

2

3

3

2

b0

b1

b3

b2

b4

b3 not full: new record placed in b3. No changes.
b3 full : b3 is split, directory is doubled, all records with 3-bit
 sequence 110 sent to b4. Others in b3.
In general, if the local depth of the bucket to be split is equal to the
 global depth, directory is doubled

Prof P Sreenivasa Kumar
Department of CS&E, IITM

21

Deletion in Extendible Hashing Scheme

00
01
10
11

d=2

b0

b1

b2

b3

all local
depth = 2

000
001
010
011
100
101
110
111

d=3

2

2

3

3

2

b0

b1

b3

b2

b4

Matching pair of data buckets:
 k-bit sequences have a common k-1 bit suffix, e.g, b3 & b4

Due to deletions, if a pair of matching data buckets
 -- become less than half full – try to merge them into one bucket

If the local depth of all buckets is one less than the global depth
 -- reduce the directory to half its size

8

Prof P Sreenivasa Kumar
Department of CS&E, IITM

22

Extendible Hashing Example
Bucket capacity – 2 Initial buckets = 1
Insert 45,22

0
0

45
22

22
12

45

1

1

22
12

45

1

1

11

1

1
0

1

1
0

Global
depth

Local depth

Insert 12

Insert 11

Bucket overflows
 local depth = global depth
 ⇒ Directory doubles and split image
 is created

45 101101
22 10110
12 1100
11 1011

Prof P Sreenivasa Kumar
Department of CS&E, IITM

23

Insert 15

2
00
01
10
11

45

12
2

2

2
00
01
10
11

45

2

22
12

1

2

11
15

10
22

15
11

2

2

Insert 10

Overflow occurs.
Global depth = local depth
Directory doubles and split occurs

Overflows occurs.
Since local depth < global depth
Split image is created
Directory is not doubled

45 101101
22 10110
12 1100
11 1011
15 1111

10 1010

Prof P Sreenivasa Kumar
Department of CS&E, IITM

24

Linear Hashing

Does not require a separate directory structure

Uses a family of hash functions h0, h1, h2,….

•  the range of hi is double the range of hi-1

•  hi(x) = x mod 2iM

 M - the initial no. of buckets
 (Assume that the hashing field is an integer)

Initial hash functions
 h0(x) = x mod M
 h1(x) = x mod 2M

9

Prof P Sreenivasa Kumar
Department of CS&E, IITM

25

Insertion (1/3)

Initially the structure has M main buckets
 (0 ,…, M-1) and a few overflow buckets

To insert a record with hash field value x,
 place the record in bucket ho(x)

When the first overflow in any bucket occurs:
 Say, overflow occurred in bucket s
 Insert the record in the overflow chain of bucket s
 Create a new bucket M
 Split the bucket 0 by using h1
 Some records stay in bucket 0 and
 some go to bucket M.

.

.

0

1

2

M-1

M

Overflow
buckets

Split image
of bucket 0

Prof P Sreenivasa Kumar
Department of CS&E, IITM

26

Insertion (2/3)
On first overflow,
 irrespective of where it occurs, bucket 0 is split
On subsequent overflows
 buckets 1, 2, 3, … are split in that order
 (This why the scheme is called linear hashing)
N: the next bucket to be split
After M overflows,
 all the original M buckets are split.
 We switch to hash functions h1, h2
 and set N = 0.

ho h1 hi
h1 h2 hi+1

… …

.

.

.

0

1

2

M-1

Split
 images

M

M+1

.

.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

27

Nature of Hash Functions
 hi(x) = x mod 2iM. Let M' = 2iM

§  Note that if hi(x) = k then x = M'r + k, k < M'

 and hi+1(x) = (M'r + k) mod 2M'

 = k or M' + k

 M'– the current number of original buckets.

Since,
r – even – (M'2s + k) mod 2M' = k
r – odd – (M'(2s + 1) + k) mod 2M' = M' + k

10

Prof P Sreenivasa Kumar
Department of CS&E, IITM

28

Insertion (3/3)

Say the hash functions in use are hi, hi+1

To insert record with hash field value x,

 Compute hi(x)

 if hi(x) < N, the original bucket is already split

 place the record in bucket hi+1(x)

 else place the record in bucket hi(x)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

29

Linear Hashing Example

Initial Buckets = 1 Bucket capacity = 2 records

N
0

Hash functions
h0 = x mod 1
h1 = x mod 2

Split pointer

Insert 12, 11

N
0 12

11

N
0 12

14

1 11

h0 = x mod 2
h1 = x mod 4

Insert 14

B0 overflows
Bucket pointed by

N is split
Hash functions are

changed

Prof P Sreenivasa Kumar
Department of CS&E, IITM

30

Insert 13
N

0 12
14

1 11

N

0 12

1 11

h0 = x mod 2
h1 = x mod 4

13
9

14 2

Insert 9

B1 overflows
B0 is split using h1

and split image
is created

N

0 12

1 11
13

9

14 2

Insert 10

h1 is
applied here

10

Insert 18

overflow at B2
split B1

h0 = x mod 4
h1 = x mod 8

0

1

2

3

12

9
13

14
10

11

18

N

13

11

Prof P Sreenivasa Kumar
Department of CS&E, IITM

31

Index Structures

Index: A disk data structure
 – enables efficient retrieval of a record

 given the value (s) of certain attributes
 – indexing attributes

Primary Index:
 Index built on ordering key field of a file

Clustering Index:
 Index built on ordering non-key field of a file

Secondary Index:
 Index built on any non-ordering field of a file

Prof P Sreenivasa Kumar
Department of CS&E, IITM

32

Primary Index

Can be built on ordered / sorted files
Index attribute – ordering key field (OKF)

Index Entry:

Index file: ordered file (sorted on OKF)
 Size (#entries): No. of blocks in the data file
Index file blocking factor BFi = B/(V +P)
 (B-block size, V-OKF size, P-block pointer size)
 - generally more than data file blocking factor
No of Index file blocks bi = b/BFi
 (b - no. of data file blocks)

value of OKF for
the first record of
a block Bj

disk address
of Bj

101
121
129

240

.

.

.

.

101
104

121
123

129
130

240
244

.

.

.

.

0

1

2

b

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ordering key
 (RollNo)

Data
 file

Prof P Sreenivasa Kumar
Department of CS&E, IITM

33

Record Access Using Primary Index
Given Ordering key field (OKF) value: x
Carry out binary search on the index file
 m – value of OKF for the first record in the middle block k of
 the index file
 x < m: do binary search on blocks 0, …, (k −1) of index file
 x ≥ m: if there are index entries (vj, Pj), (vj+1, Pj+1) in block k

 such that vj ≤ x < v(j+1),
 use the block pointer Pj, get the data file block and

 search for the data record with OKF value x in that block
 else

 do binary search on blocks k +1, …, bi of index file

Maximum block accesses required: ⌈log2 bi⌉

12

Prof P Sreenivasa Kumar
Department of CS&E, IITM

34

An Example

Data file:
 No. of blocks b = 9500
 Block size B = 4KB
 OKF length V = 15 bytes
 Block pointer length p = 6 bytes
Index file
 No. of records ri = 9500
 Size of entry V + P = 21 bytes
 Blocking factor BFi = 4096/21 = 195
 No. of blocks bi = ri/BFi = 49
Max No. of block accesses for getting record
 using the primary index 1 + log2 bi = 7
Max No. of block accesses for getting record
 without using primary index log2

b = 14

Prof P Sreenivasa Kumar
Department of CS&E, IITM

35

Making the Index Multi-level

49 entries

9500
 entries

Second level
index
1 block

First level
index
49 blocks

data file
9500 blocks

Index file – itself an ordered file
 – another level of index can be built
Multilevel Index –
 Successive levels of indices are built till the last level has one block

 height – no. of levels
 block accesses: height + 1
 (no binary search required)

For the example data file:
 No of block accesses required with
 multi-level primary index: 3
 without any index: 14

.

.

.

.

.

.

.

.

.

.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

36

Range Search, Insertion and Deletion

Range search on the ordering key field:
 Get records with OKF value between x1 and x2 (inclusive)
 Use the index to locate the record with OKF value x1 and read
 succeeding records till OKF value exceeds x2.
 Very efficient

Insertion: Data file – keep 25% of space in each block free

 -- to take care of future insertions
 index doesn't get changed
 -- or use overflow chains for blocks that overflow

Deletion: Handle using deletion markers so that index doesn’t get
 affected
Basically, avoid changes to index

13

Prof P Sreenivasa Kumar
Department of CS&E, IITM

37

Clustering Index

Built on ordered files where ordering field is not a key
Index attribute: ordering field (OF)

Index entry:

Index file: Ordered file (sorted on OF)
 size – no. of distinct values of OF

Distinct value Vi
of the OF

address of the first
block that has a record with OF value Vi

Prof P Sreenivasa Kumar
Department of CS&E, IITM

38

Secondary Index

Built on any non-ordering field (NOF) of a data file.
Case I: NOF is also a key (Secondary key)

Case II: NOF is not a key: two options
(1)

(2)

Remarks:
Option (1): index entry – variable length record
Option (2): index entry – fixed length – One more level of indirection

value of the NOF Vi pointer to the record with Vi as the NOF value

value of the NOF Vi

value of the NOF Vi

pointer(s) to the record(s) with Vi as the NOF value

pointer to a block that has pointer(s) to the record(s)
with Vi as the NOF value

Prof P Sreenivasa Kumar
Department of CS&E, IITM

39

Secondary Index (key)

Can be built on ordered and also other type of files
Index attribute: non-ordering key field
Index entry:

Index file: ordered file (sorted on NOF values)
 No. of entries – same as the no. of records in the data file

Index file blocking factor Bfi = B/(V+Pr)
 (B: block size, V: length of the NOF,
 Pr: length of a record pointer)

Index file blocks = ⎡r/Bfi⎤
(r – no. of records in the data file)

value of the NOF Vi pointer to the record with Vi as the NOF value

14

Prof P Sreenivasa Kumar
Department of CS&E, IITM

40

An Example

Data file:
 No. of records r = 90,000 Block size B = 4KB
 Record length R = 100 bytes BF = 4096/100 = 40,
 b = 90000/40 = 2250
 NOF length V = 15 bytes length of a record pointer Pr = 7 bytes
Index file :
 No. of records ri = 90,000 record length = V + Pr = 22 bytes
 BFi = 4096/22 = 186 No. of blocks bi = 90000/186 = 484

Max no. of block accesses to get a record
 using the secondary index 1 + log2

bi = 10
Avg no. of block accesses to get a record
 without using the secondary index b/2 = 1125
A very significant improvement

Prof P Sreenivasa Kumar
Department of CS&E, IITM

41

Multi-level Secondary Indexes

Secondary indexes can also be converted to multi-level indexes

First level index

 – as many entries as there are records in the data file

First level index is an ordered file

 so, in the second level index, the number of entries will be
 equal to the number of blocks in the first level index
 rather than the number of records

 Similarly in other higher levels

Prof P Sreenivasa Kumar
Department of CS&E, IITM

42

Making the Secondary Index Multi-level

484 entries

90000
 entries

Second level
index
3 blocks

First level
index
484 blocks

data file
90000
records

Multilevel Index –
 Successive levels of indices are built
 till the last level has one block
 height – no. of levels
 block accesses: height + 1

For the example data file:
No of block accesses required:
 multi-level index: 4
 single level index: 10

.

.

.

.

3 entries

1 block

2250
blocks

15

Prof P Sreenivasa Kumar
Department of CS&E, IITM

43

Index Sequential Access Method (ISAM) Files

ISAM files –
 Ordered files with a multilevel primary/clustering index

Insertions:
 Handled using overflow chains at data file blocks

Deletions:
 Handled using deletion markers

Most suitable for files that are relatively static

If the files are dynamic, we need to go for dynamic multi-level
index structures based on B+- trees

Prof P Sreenivasa Kumar
Department of CS&E, IITM

44

B+- trees

§  Balanced search trees (self-balancing)
•  Internal nodes have variable number of children
•  All leaves are at the same level
•  Nodes – internal or leaf – are disk blocks

§ Leaf node entries point to the actual data records
•  All leaf nodes are linked up as a list

§  Internal node entries carry only index information
§  In B-trees, internal nodes carry data record pointers also
§  The fan-out in B-trees is less

§  Make sure that blocks are always at least half filled

§  Support both random and sequential access of records

Bayer & McCreight
Acta Informatica 1972

Prof P Sreenivasa Kumar
Department of CS&E, IITM

45

Order

Order (m) of an Internal Node
•  Order of an internal node is the maximum number of tree

 pointers held in it.
•  Maximum of (m - 1) keys can be present in an internal node

Order (mleaf) of a Leaf Node

•  Order of a leaf node is the maximum number of record
 pointers held in it. It is equal to the number of keys in a
 leaf node.

16

Prof P Sreenivasa Kumar
Department of CS&E, IITM

46

Internal Node Structure

2
m
 ≤ j ≤ m

P1 K1 P2 Pi Pj K2 Ki Ki-1 Kj-1 … … …

x ≤ K1 Ki-1 < x ≤ Ki Kj-1 < x

2 5 12

x ≤ 2
2 < x ≤ 5 5 < x ≤ 12 x > 12

Example
-

Pi: Tree pointer
 (Block pointer)
Ki: Key value
m : Order(internal)

Sub-trees

Prof P Sreenivasa Kumar
Department of CS&E, IITM

47

Internal Nodes

An internal node of a B+- tree of order m:
§  It contains at least pointers, except when it is the root node
 (Root nodes – a min of 2 pointers is ok)

§  It contains at most m pointers.

§  If it has P1, P2, …, Pj pointers with
 K1 < K2 < K3 … < Kj-1 as keys, where ≤ j ≤ m, then

•  P1 points to the sub-tree with records having key value x ≤ K1

•  Pi (1 < i < j) points to the sub-tree with records having
 key value x such that Ki-1 < x ≤ Ki

•  Pj points to records with key value x > Kj-1

2
m

2
m

Prof P Sreenivasa Kumar
Department of CS&E, IITM

48

Leaf Node Structure

Structure of leaf node of B+- of order mleaf :
§  It contains one block pointer P to point to next leaf node
§  At least record pointers and key values

§  At most mleaf record pointers and key values
§  If a node has keys K1 < K2 < … < Kj with Pr1, Pr2… Prj as record
 pointers and P as block pointer, then

 Pri points to record with Ki as the search field value, 1 ≤ i ≤ j
 P points to next leaf block

K1 K2 Kj Pr1 Pr2 Prj P … …

leafm
2

leafm
2

… …

17

Prof P Sreenivasa Kumar
Department of CS&E, IITM

49

Order Calculation

Block size: B, Size of Index field: V
Size of block pointer: P, Size of record pointer: Pr

Order of Internal node (m):
 As there can be at most m block pointers and (m-1) keys
 (m*P) + ((m-1) * V) ≤ B
 m can be calculated by using the above inequality (choose max)

Order of leaf node:
 As there can be at most mleaf record pointers and keys
 with one block pointer in a leaf node,
 mleaf can be calculated by using the inequality: (choose max)
 (mleaf * (Pr + V)) + P ≤ B

Prof P Sreenivasa Kumar
Department of CS&E, IITM

50

Example Order Calculation

Given B = 512 bytes V = 8 bytes
 P = 6 bytes Pr = 7 bytes. Then

 Internal node order m = ?
 m * P + ((m-1) *V) ≤ B
 m * 6 + ((m-1) *8) ≤ 512
 14m ≤ 520
 m ≤ 37

 Leaf order mleaf = ?
 mleaf (Pr + V) + P ≤ 512
 mleaf (7 + 8) + 6 ≤ 512
 15mleaf ≤ 506
 mleaf ≤ 33

Prof P Sreenivasa Kumar
Department of CS&E, IITM

51

Example B+- tree
m = 3 mleaf = 2

3

2

7

4 9

1 2 3 4 6 7 8 9 12 15

- - -

- - ^

18

Prof P Sreenivasa Kumar
Department of CS&E, IITM

52

Insertion into B+- trees
Every (key, record pointer) pair is inserted in an appropriate leaf
 (Search for it)
§  If a leaf node overflows:

•  Node is split at j =

•  First j entries are kept in original node
•  Entities from j+1 are moved to new node
•  jth key value Kj is replicated in the parent of the leaf.

§  If an internal node overflows:
•  Node is split at j =

•  Values and pointers up to Pj are kept in the original node
•  jth key value Kj is moved to the parent of the internal node
•  Pj+1 and the rest of entries are moved to a new node.

leaf(m 1)
2
+

(m 1)
2
+

Prof P Sreenivasa Kumar
Department of CS&E, IITM

Example of Insertions

Insert 20, 11

11 20 11 14

14

20 ^

^

^

-

-

Insert 14

Overflow. leaf is split
at j = = 2

14 is copied to parent level

leaf(m 1)
2
+

Insert 25
14

14 11 20 25

14

14 11 20 25 30

^ - 25

^
Inserted at
leaf level

Insert 30

Overflow.
split at 25.
25 is copied
to upper level

1

2

3 4

m = 3 mleaf = 2

Prof P Sreenivasa Kumar
Department of CS&E, IITM

54

Insert 12
Overflow at leaf level.
 - Split at leaf level
 - Triggers overflow at internal node
 - Split occurs at internal node;

14

30

12 25

11 12 14 25 20

. 5 -

- -

- -

^ ^

Internal node split
at j =

Split at 14 and 14 is
moved up

2
m

19

Prof P Sreenivasa Kumar
Department of CS&E, IITM

55

Insert 22
14

12 22 25

11 12 14 20 22 25 30

-

-

-

^

^

Insert 23, 24
14 24

12 22 25

11 12 14 20 22 23 24 25 30

- ^

6

7

Prof P Sreenivasa Kumar
Department of CS&E, IITM

56

Deletion in B+- trees

§  Delete the entry from the leaf node

§  Delete the entry if it is present in Internal node and replace with
 the entry to its right / right sibling.

§  If underflow occurs after deletion

•  Distribute the entries from left sibling
 if not possible – Distribute the entries from right sibling
 if not possible – Merge the node with left and right sibling

Prof P Sreenivasa Kumar
Department of CS&E, IITM

57

Example
14 24

12 22 25

11 12 14 20 22 23 24 25 30

14 24

12 22 25

11 12 14 22 23 24 25 30

Delete 20
Removed entry
from leaf here

20

Prof P Sreenivasa Kumar
Department of CS&E, IITM

58

14 24

12 23 25

11 12 14 23 24 25 30

14

12 23

11 12 14 23 25 30

Delete 24

Delete 22

25

22 is removed
from leaf and
internal node
entries from right
sibling are
distributed to left

Prof P Sreenivasa Kumar
Department of CS&E, IITM

59

12

11 23

11 12 23 25 30

Delete 14

25

Delete 12

23 25

23 11 25 30

Level drop has occurred

Prof P Sreenivasa Kumar
Department of CS&E, IITM

60

Advantages of B+- trees:

1) Any record can be fetched in equal number of disk accesses.

2) Range queries can be performed easily as leaves are linked up

3) Height of the tree is less as only keys are used for indexing

4) Supports both random and sequential access.

Disadvantages of B+- trees:

 Insert and delete operations are complicated

 Root node becomes a hotspot

21

Prof P Sreenivasa Kumar
Department of CS&E, IITM

61

Parallel Access of Multiple Disks
Single Disk: high block access time: 6msec – 50msec
Why not use parallel access to improve performance?
RAID – Redundant Arrays of Independent Disks (current usage)
 Redundant Arrays of Inexpensive Disks (early usage)
RAID techniques aim to improve performance and reliability

Two ideas are employed
1)  Data Striping – distribute data on to multiple disks
 Parallel reading of disks – faster data access
2)  Add redundant data to help recover from disk crashes

 Take help of error-recovery codes
Details follow …

Prof P Sreenivasa Kumar
Department of CS&E, IITM

62

Data Striping
Data Striping – distribute data on multiple disks
 Bit-level striping: ith bit of each byte – stored on the ith disk
 Use 8 disks for 8 bits of a byte. // higher granularity is also possible
 One (parallel) block read – 8 blocks of the data file
 Transfer rate – eight times that of single disk
 Read/write of a block – involves use of all the disks

Block-level striping: ith block of data – ith disk
 Using n disks - 	

 Single block access: n simulataneous block reads can happen
 Multi-block access: n fold increase in transfer rate (parallel reads)

Downside: reliability of the set of disks comes down

Prof P Sreenivasa Kumar
Department of CS&E, IITM

63

Reliability of Multiple Disks

Reliability is modeled using Mean Time To Failure (MTTF)

An example scenario:
Mean Time To Failure (MTTF) of a disk: 2,40,000hrs
That is, probability of failure of a single disk in an hour: 1/2,40,000

Probability of Failure of a single disk in a 100-disk set: 1/2,400
MTTF of the 100-disk system is 2,400hrs = 100days ~ 3.3months!

This is unacceptable..

22

Prof P Sreenivasa Kumar
Department of CS&E, IITM

64

Mirroring disks to increase reliability

Mirroring – Each disk has a mirror disk – same data on both
If a disk fails – use the mirror of that disk till the original is replaced

One can improve reliability greatly:
•  A disk with MTTF = 2,40,000hrs – mirrored with same kind of disk
•  Probability of a disk failure in a particular hour: 2/2,40,000
•  Time to repair/copy a disk is, say, 24hrs
•  Probability of disk failure while copying/repair: 24/2,40,000
•  Probability of a data loss: (2/2,40,00) * (24/2,40,000) = 1/(12*108)
•  Or MTTF of the combination = 12*108 hrs

Performance: reading: same as a single disk or better
Writing: same as single disk, both disks are updated in parallel

Prof P Sreenivasa Kumar
Department of CS&E, IITM

65

Reliability and performance with parity disks

Mirroring – High reliability; uses 50% more disks!
Get good reliability & also performance with fewer additional disks?
Idea: Store additional information to recover data of the failed disk

Error-correcting codes – parity bit (1 if #of 1’s is odd, 0 otherwise)
 Data: 1 0 1 1 0 0 1 0 - Parity Bit: 0 (#of 1’s in Data & Parity is even)
 Data: 1 0 0 1 1 0 1 1 - Parity Bit: 1 (#of 1’s in Data & Parity is even)

Parity block: (Assuming block-level data striping with N disks)
The ith bit of the parity block j: parity of the ith bits of block j on all disks

Parity Disk – has parity blocks for all data blocks

If a disk k fails: Set the ith bit of block j using ith parity bit of block j
 Do this for all blocks to recover data of disk k!

N – data disks, one extra disk – good performance and reliability!

Prof P Sreenivasa Kumar
Department of CS&E, IITM

66

Distributed Parity

N data disks and 1 redundant (parity) disk
•  Very good performance and protection against single-disk crash
•  Updating any data block – requires updating the parity disk
•  Usage of parity disk – high and it ages faster!

Can we distribute the parity information?
Use each disk as a redundant (parity) disk for some part of the data!
Say, we have D0, D1, D2, …, D5 – 6 disks with, say, 60 cylinders each
Use each as the redundant disk for 1/6 of data:
Cyl# 0, 6, 12, … of D0 – parity blocks for other disk cyl# 0, 6, 12, ...
Cyl# 1, 7, 13, … of D1 – parity blocks for other disk cyl# 1, 7, 13, ...

 Etc…

This is called distributed parity – disk usage is uniform!

23

Prof P Sreenivasa Kumar
Department of CS&E, IITM

67

Standard RAID Levels

RAID-0 – Bit-level striping; No parity data; No mirroring
RAID-1 – Mirrored disks; No parity; No data striping
RAID-2 – Bit-level striping; Redundancy using Hamming codes
 Not in much use currently.
RAID-3 – Byte-level striping; dedicated parity disk
 Not in common use currently.
RAID-4 – Block-level striping; dedicated parity disk
RAID-5 – Block-level striping; distributed parity
RAID-6 – Block-level striping; double distributed parity;

 Up to 2 disk crashes can be tolerated

Prof P Sreenivasa Kumar
Department of CS&E, IITM

68

Storage Area Networks (SAN)

Specialized computing systems for providing large-scale storage
-- Dedicated hardware and software
-- Shared across several servers
-- Connected to servers through a dedicated high-speed network
 using special optical cables – Fiber channels
-- Block-level data storage
-- Internally use a large number of disks under a suitable RAID
-- Offer SCSI (Small Computer System Interface) interface to servers
-- Details are beyond the scope of this course

