
21/02/20

1

Prof P Sreenivasa Kumar
Department of CS&E, IITM

1

Database Design and Normal Forms

Database Design
§  coming up with a “good” schema is very important

How do we characterize the “goodness” of a schema ?
If two or more alternative schemas are available
 how do we compare them ?
What are the problems with “bad” schema designs ?

Normal Forms:
 Each normal form specifies certain conditions
 If the conditions are satisfied by the schema
 certain kind of problems are avoided

Details follow….

Prof P Sreenivasa Kumar
Department of CS&E, IITM

2

An Example

student relation with attributes: studName, rollNo, sex, studDept
department relation with attributes: deptName, officePhone, hod

 Several students belong to a department.
 studDept gives the name of the student’s department.

Correct schema:

What are the problems that arise ?

studName

studName

rollNo

rollNo

sex

sex

studDept deptName

deptName

officePhone

officePhone

HOD

HOD

Incorrect schema:

Student Department

Student-Dept

Prof P Sreenivasa Kumar
Department of CS&E, IITM

3

Problems with bad schema

Redundant storage of data:
 Office Phone & HOD info - stored redundantly

§  once with each student that belongs to the department
§  wastage of disk space

A program that updates Office Phone of a department

§  must change it at several places
•  more running time
•  error - prone

Transactions running on a database

§  must take as short time as possible to increase transaction
 throughput

21/02/20

2

Prof P Sreenivasa Kumar
Department of CS&E, IITM

4

Update Anomalies

Another kind of problems with bad schema
Insertion anomaly:
 No way of inserting info about a new department unless
 we also enter details of a (dummy) student in the department

Deletion anomaly:
 If all students of a certain department leave
 and we delete their tuples,
 information about the department itself is lost

Update Anomaly:
 Updating officePhone of a department

•  value in several tuples needs to be changed
•  if a tuple is missed - inconsistency in data

Prof P Sreenivasa Kumar
Department of CS&E, IITM

5

Normal Forms

First Normal Form (1NF) - included in the definition of a relation

Second Normal Form (2NF)
 defined in terms of
Third Normal Form (3NF) functional dependencies

Boyce-Codd Normal Form (BCNF)

Fourth Normal Form (4NF) - defined using multivalued
 dependencies

Fifth Normal Form (5NF) or Project Join Normal Form (PJNF)
 defined using join dependencies

Prof P Sreenivasa Kumar
Department of CS&E, IITM

6

Functional Dependencies

A functional dependency (FD) X → Y [where (X ⊆ R, Y ⊆ R)]
 (read as X determines Y)
is said to hold on a schema R if
 in any instance r on R,
 if two tuples t1, t2 (t1 ≠ t2, t1∈ r, t2∈ r)
 agree on X i.e. t1[X] = t2[X]
 then they also agree on Y i.e. t1[Y] = t2[Y]

t1[X] – the sub-tuple of t1 consisting of values of attributes in X

Note: If K ⊂ R is a key for R then for any A ∈ R,
 K → A
 holds because the above if …..then condition is
 vacuously true

21/02/20

3

Prof P Sreenivasa Kumar
Department of CS&E, IITM

7

Functional Dependencies – Examples

Consider the schema:
 Student(studName, rollNo, sex, dept, hostelName, roomNo)

Since rollNo is a key, rollNo → {studName, sex, dept,
 hostelName, roomNo}

Suppose that each student is given a hostel room exclusively, then
 hostelName, roomNo → rollNo

Suppose boys and girls are accommodated in separate hostels, then
 hostelName → sex
Does Sex → hostelName?

FDs are additional constraints that can be specified by designers

Prof P Sreenivasa Kumar
Department of CS&E, IITM

8

Trivial / Non-Trivial FDs and Notation
An FD X → Y where Y ⊆ X
 - called a trivial FD, as it always holds good

An FD X → Y where Y ⊈ X
 - non-trivial FD

An FD X → Y where X ∩ Y = Φ
 - completely non-trivial FD

Notational Convention:
(Low-end alphabets) A, B, C, D, … and their subscripted versions
 -- denote individual attributes
(High-end alphabets) Z, Y, X, W,… and their subscripted versions
 --- denote sets of attributes

Prof P Sreenivasa Kumar
Department of CS&E, IITM

9

FDs – Examples
Consider the scheme preRequisite(preReqCourse, courseId)

Does preReqCourse → courseId ?

No, as a course might be pre-requisite for many courses

Does courseId → preReqCourse ?

No, a course may have many pre-requisite courses

So, it is possible that no FDs hold on some schema

21/02/20

4

Prof P Sreenivasa Kumar
Department of CS&E, IITM

10

FDs – Examples
Consider the scheme:

Student-dept(rollNo, name, sex, deptName, officePhone, Hod)

The key is rollNo, so
rollNo → name, sex, deptName, officePhone, Hod

Any more FDs hold?
deptName → officePhone, Hod
Hod → deptName, officePhone
(Assuming that each professor heads at most one department)

officePhone → deptName, Hod

No other FDs hold

Prof P Sreenivasa Kumar
Department of CS&E, IITM

11

Deriving new FDs

Given that a set of FDs F holds on R
 we can infer that a certain new FD must also hold on R

For instance,
 given that X → Y, Y → Z hold on R
 we can infer that X → Z must also hold

How to systematically obtain all such new FDs ?

Unless all FDs are known, a relation schema is not fully specified

Prof P Sreenivasa Kumar
Department of CS&E, IITM

12

Entailment Relation

We say that a set of FDs F ⊨{ X → Y}
 (read as F entails X → Y or
 F logically implies X → Y
 if in every instance r of R on which FDs F hold,
 FD X → Y also holds.

Armstrong came up with several inference rules
 for deriving new FDs from a given set of FDs

We define F+ = {X → Y | F ⊨X → Y}
 F+: Closure of F

21/02/20

5

Prof P Sreenivasa Kumar
Department of CS&E, IITM

13

Armstrong’s Inference Rules (1/2) (aka Armstrong’s Axioms)
1.  Reflexive rule

 F ⊨ {X → Y | Y ⊆ X} for any X. Trivial FDs
2. Augmentation rule

 {X → Y} ⊨ {XZ → YZ}, Z ⊆ R. Here, XZ denotes X ⋃ Z
3. Transitive rule

 {X → Y, Y → Z} ⊨ {X → Z}
4. Decomposition or Projective rule

 {X → YZ} ⊨ {X → Y}
5. Union or Additive rule

 {X → Y, X → Z} ⊨ {X → YZ}
6. Pseudo transitive rule

 {X → Y, WY → Z} ⊨ {WX → Z}

Prof P Sreenivasa Kumar
Department of CS&E, IITM

14

Rules 4, 5, 6 are not really necessary.

For instance, Rule 5: {X → Y, X → Z} ⊨ {X → YZ} can be
 proved using 1, 2, 3 alone

1)  X → Y
2)  X → Z
3)  X → XY Augmentation rule on 1
4)  XY → ZY Augmentation rule on 2
5)  X → ZY Transitive rule on 3, 4.

Similarly, 4, 6 can be shown to be unnecessary.
But it is useful to have 4, 5, 6 as short-cut rules

given

Armstrong's Inference Rules (2/2)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

15

Sound and Complete Inference Rules

Armstrong showed that
 Rules (1), (2) and (3) are sound and complete.
 These are called Armstrong’s Axioms (AA)

FAA = { X → Y | X → Y can be derived from F using AA }

Soundness: (FAA ⊆ F+)
 Every new FD X → Y derived from a given set of FDs F
 using Armstrong's Axioms is such that F ⊨{X → Y}

Completeness: (F+ ⊆ FAA)
 Any FD X → Y logically implied by F (i.e. F ⊨ {X → Y})
 can be derived from F using Armstrong’s Axioms

21/02/20

6

Soundness and Completeness of AA

Prof P Sreenivasa Kumar
Department of CS&E, IITM

16

F+

F

Soundness

derive using AA

Can be derived using AA

Completeness

FAA ⊆ F+

F+ ⊆ FAA

Prof P Sreenivasa Kumar
Department of CS&E, IITM

17

Proving Soundness
Suppose X → Y is derived from F using AA in some n steps.
If each step is correct then overall deduction would be correct.
Single step: Apply Rule (1) or (2) or (3)
 Rule (1) – Reflexive Rule. Obviously results in correct FDs

 Rule (2) – {X → Y}⊨ {XZ → YZ}, Z ⊆ R
 Suppose t1, t2 ∈ r agree on XZ
 ⇒ t1, t2 agree on X
 ⇒ t1, t2 agree on Y (since X → Y holds on r)
 ⇒ t1, t2 agree as YZ
 Hence Rule (2) gives rise to correct FDs

 Rule (3) – {X → Y, Y → Z} ⊨ X → Z
 Suppose t1, t2 ∈ r agree on X
 ⇒ t1, t2 agree on Y (since X → Y holds)
 ⇒ t1, t2 agree on Z (since Y → Z holds)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

18

Proving Completeness of Armstrong’s Axioms (1/4)

Define X+
F (closure of X wrt F)

 = {A | X → A can be derived from F using AA}, A ∈ R
X+

F is the set of all attributes that occur on
 the rhs for an FD whose lhs is X, as per AA (wrt F)

Claim1:
 X → Y can be derived from F using AA iff Y ⊆ X+

(If) Let Y = {A1, A2,…, An}. Y ⊆ X+

 ⇒ X → Ai can be derived from F using AA (1 ≤ i ≤ n)
 By union rule, it follows that X → Y can be derived from F.

(Only If) X → Y can be derived from F using AA
 By projective rule X → Ai (1 ≤ i ≤ n)
 Thus by definition of X+, Ai ∈ X+

 ⇒ Y ⊆ X+

21/02/20

7

Prof P Sreenivasa Kumar
Department of CS&E, IITM

19

Completeness of Armstrong’s Axioms (2/4)
Completeness:

 (F ⊨ {X → Y}) ⇒ X → Y follows from F using AA
We will prove the contrapositive:
 X →Y can’t be derived from F using AA

 ⇒ F ⊭ {X → Y}
 ⇒ ∃ a relation instance r on R st all the FDs of
 F hold on r but X → Y doesn’t hold.

Consider the relation instance r with just two tuples:
 X+ attributes Other attributes

 r: 1 1 1 …1 1 1 1 …1
 1 1 1 …1 0 0 0 …0

Prof P Sreenivasa Kumar
Department of CS&E, IITM

20

Claim 2: All FDs of F are satisfied by r
 Suppose not. Let W → Z in F be an FD not satisfied by r
 Then W ⊆ X+ and Z ⊈ X+

 Let A ∈ Z – X+
 Now, X → W follows from F using AA as W ⊆ X+ (claim 1)
 X → Z follows from F using AA by transitive rule
 Z → A follows from F using AA by reflexive rule as A ∈ Z
 X → A follows from F using AA by transitive rule

 By definition of closures, A must belong to X+

 - a contradiction. r: 1 1 1 …1 1 1 1 …1
 Hence the claim. 1 1 1 …1 0 0 0 …0

 X+ R - X+

Completeness Proof (3/4)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

21

Completeness Proof (4/4)

Claim 3: X → Y is not satisfied by r
 Suppose not
 Because of the structure of r, Y ⊆ X+

 ⇒ X → Y can be derived from F using AA
 contradicting the assumption about X → Y
 Hence the claim

Thus, whenever X → Y doesn’t follow from F using AA,
 F doesn’t logically imply X → Y
Armstrong’s Axioms are complete.
 r: 1 1 1…1 1 1 1 …1
 1 1 1…1 0 0 0 …0

 X+ R – X+

21/02/20

8

Prof P Sreenivasa Kumar
Department of CS&E, IITM

22

Consequence of Completeness of AA

X+ = {A | X → A follows from F using AA}

 = {A | F ⊨ X → A}

Similarly

F+ = {X → Y | F ⊨ X → Y}
 = {X → Y | X → Y follows from F using AA}

Prof P Sreenivasa Kumar
Department of CS&E, IITM

23

Computing closures

The size of F+ can sometimes be exponential in the size of F.
 For instance, F = {A → B1, A → B2,….., A → Bn}
 F+ = {A → X} where X ⊆ {B1, B2,…,Bn}.
 Thus |F+| = 2n

Computing F+: computationally expensive

Fortunately, checking if X → Y ∈ F+

 can be done by checking if Y ⊆ X+
F

Computing attribute closure (X+

F) is computationally easier

Prof P Sreenivasa Kumar
Department of CS&E, IITM

24

Computing X+
F

We compute a sequence of sets X0, X1,… as follows:

 X0 = X; // X is the given set of attributes
 Xi+1 = Xi ∪ {A | there is a FD Y → Z in F
 such that Y ⊆ Xi and A ∈ Z}

To get new attributes into Xi+1, we use Transitive Rule and

 we can only use that!

Since X0 ⊆ X1 ⊆ X2 ⊆ ... ⊆ Xi ⊆ Xi+1 ⊆ ...⊆ R, and R is finite,
There is an integer i such that Xi = Xi+1 = Xi+2 =…

X+

F is equal to such Xi.

Computing X+
F can be done in polynomial time

21/02/20

9

Prof P Sreenivasa Kumar
Department of CS&E, IITM

25

Attribute Closures – An Example

Consider a scheme R and the FDs: (Data redundancy exists in R)

R = (rollNo, name, advisorId, advisorName, courseId, grade)

FDs = { rollNo → name; rollNo → advisorId;

 advisorId → advisorName;
 rollNo, courseId → grade }

{rollNo}+ = {rollNo, name, advisorId, advisorName}

{rollNo, courseId}+ = {rollNo, name, advisorId, advisorName,
 courseId, grade} = R

So {rollNo, courseId} is the key for R.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

26

Normal Forms – 2NF

Full functional dependency:
 An FD X → A for which there is no proper subset Y of X
 such that Y → A
 (A is said to be fully functionally dependent on X or)

2NF: A relation schema R is in 2NF if
 every non-prime attribute is fully functionally dependent

 on any key of R

 Prime attribute: A attribute that is part of some key
 Non-prime attribute: An attribute that is not part of any key

Prof P Sreenivasa Kumar
Department of CS&E, IITM

27

Example 1: 2NF

student(rollNo, name, dept, sex, hostelName, roomNo, admitYear)

Assumptions:

 Each student is allotted a single-occupancy room.
 A room is identified by values of attributes hostelName, roomNo.
 Boys and girls are accommodated in separate hostels.

Keys: rollNo, (hostelName, roomNo)
 Not in 2NF as hostelName → sex

Decompose:
 student(rollNo, name, dept, hostelName, roomNo, admitYear)
 hostelDetail(hostelName, sex)
 - These are both in 2NF

21/02/20

10

Prof P Sreenivasa Kumar
Department of CS&E, IITM

28

Example 2: 2NF

book(authorName, title, authorAffiliation, ISBN, publisher, pubYear)

Assumptions: A book has exactly one author.
Author can be uniquely identified by value of attribute authorName
AuthorAffiliation is the organization to which the author is currently

associated with.
 An author is associated with exactly one organization at any time.

Keys: (authorName, title), ISBN
 Not in 2NF as authorName → authorAffiliation
(authorAffiliation is not fully functionally dependent on the first key)

Decompose:

 book(authorName, title, ISBN, publisher, pubYear)
 authorInfo(authorName, authorAffiliation) -- both in 2NF

Prof P Sreenivasa Kumar
Department of CS&E, IITM

29

Transitive Dependencies

Transitive dependency:
 An FD X → Y in a relation schema R for which there is a set of
 attributes Z ⊆ R such that
 X → Z and Z → Y and Z is not a subset of any key of R

studentDept(rollNo, name, dept, hostelName, roomNo, headDept)
 Keys: rollNo, (hostelName, roomNo)
 rollNo → dept; dept → headDept hold
 So, rollNo → headDept is a transitive dependency

Head of the dept of dept D is stored redundantly in every tuple
 where D appears.

Relation is in 2NF but redundancy still exists.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

30

Normal Forms – 3NF

Relation schema R is in 3NF if it is in 2NF and no non-prime
 attribute of R is transitively dependent on any key of R

 studentDept(rollNo, name, dept, hostelname, roomNo, headDept)
 is not in 3NF

 Decompose: student(rollNo, name, dept, hostelName, roomNo)
 deptInfo(dept, headDept)

 both in 3NF

 Redundancy in data storage - removed

21/02/20

11

Prof P Sreenivasa Kumar
Department of CS&E, IITM

31

Another definition of 3NF

Relation schema R is in 3NF if for any nontrivial FD X → A
 either (i) X is a superkey or (ii) A is prime.

Suppose some R violates the above definition
 ⇒ There is an FD X → A for which both (i) and (ii) are false
 ⇒ X is not a superkey and A is non-prime attribute

Two cases arise:
 1) X is contained in a key – A is not fully functionally dependent
 on this key
 - violation of 2NF condition
 2) X is not contained in a key
 K → X, X → A is a case of transitive dependency
 (K – any key of R)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

32

Motivating example for BCNF

 gradeInfo (rollNo, studName, course, grade)

 Suppose the following FDs hold:
 1) rollNo, course → grade Keys:
 2) studName, course → grade (rollNo, course)
 3) rollNo → studName (studName, course)
 4) studName → rollNo
 (Assumption: No two students have the same name)

 For 1, 2 lhs is a key. For 3, 4 rhs is prime; so gradeInfo is in 3NF

 But studName is stored redundantly along with every course
 being done by the student.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

33

Boyce - Codd Normal Form (BCNF)
Relation schema R is in BCNF if for every nontrivial
 FD X → A, X is a superkey of R.

In gradeInfo, FDs 3, 4 are nontrivial but lhs is not a superkey
So, gradeInfo is not in BCNF

Decompose:
 gradeInfo (rollNo, course, grade)
 studInfo (rollNo, studName)

Redundancy allowed by 3NF is disallowed by BCNF

BCNF is stricter than 3NF
 3NF is stricter than 2NF

21/02/20

12

Prof P Sreenivasa Kumar
Department of CS&E, IITM

34

Decomposition of a relation schema

If R doesn’t satisfy a particular normal form,
 we decompose R into smaller schemas

What’s a decomposition?
 R = (A1, A2,…, An)
 D = (R1, R2,…, Rk) st Ri ⊆ R and R = R1 ∪ R2 ∪ … ∪ Rk
 (Ri’s need not be disjoint)
 Replacing R by R1, R2,…, Rk is the process of decomposing R

Ex: gradeInfo (rollNo, studName, course, grade)
 R1: gradeInfo (rollNo, course, grade)
 R2: studInfo (rollNo, studName)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

35

Desirable Properties of Decompositions
Not all decomposition of a relational scheme R are useful

We require two properties to be satisfied

 (i) Lossless join property
 - the information in an instance r of R must be preserved in

 the instances r1, r2,…,rk where ri = ΠRi
(r)

 (ii) Dependency preserving property
 - if a set F of dependencies hold on R it should be possible to
 enforce F on an instance r by enforcing appropriate

 dependencies on each ri

Prof P Sreenivasa Kumar
Department of CS&E, IITM

36

Lossless join property

F – set of FDs that hold on R
R – decomposed into R1, R2,…,Rk
Decomposition is lossless wrt F if
 for every relation instance r on R satisfying F,
 r = ΠR1

(r) * ΠR2
(r) * … * ΠRk

(r)

R = (A, B, C); R1 = (A, B); R2 = (B, C)

r: A B C r1: A B r2: B C r1* r2: A B C
 a1 b1 c1 a1 b1 b1 c1 a1 b1 c1
 a2 b2 c2 a2 b2 b2 c2 a1 b1 c3
 a3 b1 c3 a3 b1 b1 c3 a2 b2 c2
 a3 b1 c1
 a3 b1 c3

Spurious tuples

Original info
is distorted

Lossy join

Lossless joins
 are also called

 non-additive joins

21/02/20

13

Prof P Sreenivasa Kumar
Department of CS&E, IITM

37

Dependency Preserving Decompositions

Decomposition D = (R1, R2,…,Rk) of schema R preserves a set
 of dependencies F if

 (ΠR1

(F) ∪ ΠR2
(F) ∪… ∪ ΠRk

(F))+ = F+

Here, ΠRi
(F) = { (X → Y) ∈ F+ | X ⊆ Ri, Y ⊆ Ri}

 (called projection of F onto Ri)

Informally, any FD that logically follows from F must also
 logically follow from the union of projections of F onto Ri’s
Then, D is called dependency preserving.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

38

An example

Schema R = (A, B, C)
FDs F = {A → B, B → C, C → A}

Decomposition D = (R1 = {A, B}, R2 = {B, C})
ΠR1

(F) = {A → B, B → A}
ΠR2

(F) = {B → C, C → B}

(ΠR1

(F) ∪ ΠR2
(F))+ = {A → B, B → A,

 B → C, C → B,
 A → C, C → A} = F+

 Hence Dependency preserving

Prof P Sreenivasa Kumar
Department of CS&E, IITM

39

Testing for lossless decomposition property(1/6)
R – given schema with attributes A1,A2, …, An
F – given set of FDs
D – {R1,R2, …, Rm} given decomposition of R

Is D a lossless decomposition?

Create an m × n matrix S with columns labeled as A1,A2, …, An

 and rows labeled as R1,R2, …, Rm

Initialize the matrix as follows:

 set S(i,j) as symbol bij for all i,j.
 if Aj is in the scheme Ri, then set S(i,j) as symbol aj , for all i,j

21/02/20

14

Prof P Sreenivasa Kumar
Department of CS&E, IITM

40

Testing for lossless decomposition property(2/6)
After S is initialized, we carry out the following process on it:

repeat
 for each functional dependency U → V in F do
 for all rows in S which agree on U-attributes do

 make the symbols in each V- attribute column
 the same in all the rows as follows:
 if any of the rows has an “a” symbol for the column
 set the other rows to the same “a” symbol in the column
 else // if no “a” symbol exists in any of the rows
 choose one of the “b” symbols that appears
 in one of the rows for the V-attribute and

 set the other rows to that “b” symbol in the column
until no changes to S

At the end, if there exists a row with all “a” symbols then D is
 lossless otherwise D is a lossy decomposition

Prof P Sreenivasa Kumar
Department of CS&E, IITM

41

Testing for lossless decomposition property(3/6)
R = (rollNo, name, advisor, advisorName, course, grade)
FD’s = { rollNo → name; rollNo → advisor; advisor →advisorName

 rollNo, course → grade}
D : { R1 = (rollNo, name, advisor), R2 = (advisor, advisorName),
 R3 = (rollNo, course, grade) }
Matrix S : (Initial values)

rollNo name advisor advisor
Name

course grade

R1 a1 a2 a3 b14 b15 b16
R2 b21 b22 a3 a4 b25 b26
R3 a1 b32 b33 b34 a5 a6

Prof P Sreenivasa Kumar
Department of CS&E, IITM

42

Testing for lossless decomposition property(4/6)
R = (rollNo, name, advisor, advisorDept, course, grade)
FD’s = { rollNo → name; rollNo → advisor; advisor → advisorName

 rollNo, course → grade}
D : { R1 = (rollNo, name, advisor), R2 = (advisor, advisorName),
 R3 = (rollNo, course, grade) }

Matrix S : (After enforcing rollNo → name & rollNo → advisor)

rollNo name advisor advisor
Name

course grade

R1 a1 a2 a3 b14 b15 b16
R2 b21 b22 a3 a4 b25 b26
R3 a1 b32a2 b33a3 b34 a5 a6

21/02/20

15

Prof P Sreenivasa Kumar
Department of CS&E, IITM

43

Testing for lossless decomposition property(5/6)
R = (rollNo, name, advisor, advisorDept, course, grade)
FD’s = {rollNo → name; rollNo → advisor; advisor → advisorName

 rollNo, course → grade}
D : { R1 = (rollNo, name, advisor), R2 = (advisor, advisorName),
 R3 = (rollNo, course, grade) }

Matrix S : (After enforcing advisor → advisorName)

No more changes. Third row with all a symbols. So a lossless join.

rollNo name advisor advisor
Name

course grade

R1 a1 a2 a3 b14a4 b15 b16
R2 b21 b22 a3 a4 b25 b26
R3 a1 b32a2 b33a3 b34a4 a5 a6

Prof P Sreenivasa Kumar
Department of CS&E, IITM

44

Testing for lossless decomposition property(6/6)

R – given schema. F – given set of FDs

The decomposition of R into R1, R2 is lossless wrt F if and only if
 either R1 ∩ R2 → (R1 – R2) belongs to F+ or
 R1 ∩ R2 → (R2 – R1) belongs to F+

Example:
 gradeInfo (rollNo, studName, course, grade)
 with FDs = {rollNo, course → grade; studName, course → grade;
 rollNo → studName; studName → rollNo}
 decomposed into
 grades (rollNo, course, grade) and studInfo (rollNo, studName)
 is lossless because
 rollNo → studName

Prof P Sreenivasa Kumar
Department of CS&E, IITM

45

A property of lossless joins

 D1: (R1, R2,…, RK) lossless decomposition of R wrt F

 D2: (Ri1, Ri2,…, Rip) lossless decomposition of Ri wrt Fi = ΠRi

(F)

Then
 D = (R1, R2, … , Ri-1, Ri1, Ri2, …, Rip, Ri+1,…, Rk) is a
 lossless decomposition of R wrt F

This property is useful in the algorithm for BCNF decomposition

21/02/20

16

Prof P Sreenivasa Kumar
Department of CS&E, IITM

46

Algorithm for BCNF decomposition
R – given schema. F – given set of FDs

 D = {R} // initial decomposition
 while there is a relation schema Ri in D that is not in BCNF do
 { let X → A be the FD in Ri violating BCNF;
 Replace Ri by Ri1 = Ri – {A} and Ri2 = X ∪{A} in D;
 }

Decomposition of Ri is lossless as
 Ri1 ∩ Ri2 = X, Ri2 – Ri1 = A and X → A

Result: a lossless decomposition of R into BCNF relations

Prof P Sreenivasa Kumar
Department of CS&E, IITM

47

Dependencies may not be preserved (1/2)

Consider the schema: townInfo (stateName, townName, distName)
 with the FDs F: ST → D (town names are unique within a state)
 D → S (district names are unique across states)

Keys: ST, DT – all attributes are prime
 – relation is in 3NF
Relation is not in BCNF as D → S and D is not a key

Decomposition given by algorithm: R1: TD R2: DS
Not dependency preserving as ΠR1(F) = trivial dependencies
 ΠR2 (F) = {D → S}

 Union of these doesn’t imply ST → D
 ST → D can’t be enforced unless we perform a join.

S T D

Prof P Sreenivasa Kumar
Department of CS&E, IITM

48

 Dependencies may not be preserved (2/2)
Consider the schema: R (A, B, C)
 with the FDs F: AB → C and C → B
Keys: AB, AC – relation in 3NF (all attributes are prime)

 – Relation is not in BCNF as C → B and C is not a key

Decomposition given by algorithm: R1: CB R2: AC
 Not dependency preserving as ΠR1

(F) = trivial dependencies
 ΠR2

(F) = {C → B}
 Union of these does not entail AB → C

All possible decompositions: {AB, BC}, {BA, AC}, {AC, CB}
 Only the last one is lossless!

Lossless and dependency-preserving decomposition doesn't exist.

21/02/20

17

Prof P Sreenivasa Kumar
Department of CS&E, IITM

49

Equivalent Dependency Sets

F, G – two sets of FDs on schema R
F is said to cover G if G ⊆ F+ (equivalently G+ ⊆ F+)
F is equivalent to G if F+ = G+ (or, F covers G and G covers F)

Note: To check if F covers G,
 it’s enough to show that for each FD X → Y in G, Y ⊆ X+

F

Prof P Sreenivasa Kumar
Department of CS&E, IITM

50

Canonical covers or Minimal covers

It is of interest to reduce a set of FDs F into a ‘standard’ form
 F′ such that F′ is equivalent to F.

We define that a set of FDs F is in ‘minimal form’ if

(i)  the rhs of any FD of F is a single attribute
(ii)  there are no redundant FDs in F

 that is, there is no FD X → A in F
 s.t (F – {X → A}) is equivalent to F

 (iii) there are no redundant attributes on the lhs of any FD in F
 that is, there is no FD X → A in F s.t there is Z ⊂ X for which
 F – {X → A} ∪ {Z → A} is equivalent to F

Minimal Covers
 useful in obtaining a lossless, dependency-preserving
 decomposition of a scheme R into 3NF relation schemas

Prof P Sreenivasa Kumar
Department of CS&E, IITM

51

Algorithm for computing a minimal cover

 R – given Schema or set of attributes; F – given set of FDs on R

Step 1: G := F

Step 2: Replace every fd of the form X → A1A2A3…Ak in G
 by X → A1; X → A2; X → A3; … ; X → Ak

Step 3: For each fd X → A in G do
 for each B in X do
 if (G – {X → A} + {(X – B) → A})+ = F+ then
 replace X → A by (X – B) → A

Step 4: For each fd X → A in G do

 if (G – { X → A})+ = G+ then
 replace G by G – { X → A}

21/02/20

18

Prof P Sreenivasa Kumar
Department of CS&E, IITM

52

Computing Minimal Covers
Example from Elmasri and Navathe, Database Sytems (6th edition)

Determine the minimal cover for F = { B → A, D → A, AB → D }

All rhs sets are single attributes. So, Step 2 changes nothing.

If G = { B → A, D → A, B → D }, we find that G+ = F+

In G, since B → D, AB → AD and hence AB → D

So AB → D belongs to G+. Hence G covers F

In F, since B → A, B → AB.

Since B → AB, AB → D, we get B → D. So B → D is in F+.

Hence F covers G.

Finally, in G, we find that B → A can be obtained for the other two.

Hence, { D → A, B → D }is a minimal cover for F

Prof P Sreenivasa Kumar
Department of CS&E, IITM

53

3NF Decomposition Algorithm
R – given Schema; F – given set of fd’s on R in minimal form

Use BCNF algorithm to get a lossless decomposition D = (R1, R2,…,Rk)

 Note: each Ri is already in 3NF (it is in BCNF in fact!)

Algorithm: Let G be the set of fd’s not preserved in D

 For each fd Z → A that is in G
 Add relation scheme S = (B1,B2, …, Bs,A) to D. // Z = {B1,B2, …, Bs}

As Z → A is in F which is a minimal cover,

 there is no proper subset X of Z s.t X → A. So Z is a key for S!
Any other fd X → C on S is such that C is in {B1,B2, …, Bs}.

 Such fd’s do not violate 3NF because each Bj’s is prime a attribute!
 Thus any scheme S added to D as above is in 3NF.

D continues to be lossless even when we add new schemas to it!

Prof P Sreenivasa Kumar
Department of CS&E, IITM

54

Multi-valued Dependencies (MVDs) and 4NF
 studCoursesAndFriends(rollNo,courseNo,frndEmailAddr)
 A student enrolls for several courses and has several friends whose

 email addresses we want to record.
 If rows (CS05B007, CS370, shyam@gmail.com) and

 (CS05B007, CS376, radha@yahoo.com) appear then
 rows (CS05B007, CS376, shyam@gmail.com)
 (CS05B007, CS370, radha@yahoo.com) should also appear!
 For, otherwise, it implies that having “shyam” as a friend has something to do

with doing course CS370!

 Causes a huge amount of data redundancy!
 Since there are no non-trivial FD’s, the scheme is in BCNF

 We say that MVD rollNo →→ courseNo holds
 (read as rollNo multi-determines courseNo)

 By symmetry, rollNo →→ frndEmailAddr also holds

21/02/20

19

Prof P Sreenivasa Kumar
Department of CS&E, IITM

55

More about MVDs

 Consider studCourseGrade(rollNo,courseNo,grade)
 Note that rollNo →→ courseNo does not hold here even though

 courseNo is a multi-valued attribute of a student entity

 If (CS05B007, CS370, A)

 (CS05B007, CS376, B) appear in the data then
 (CS05B007, CS376, A)

 (CS05B007, CS370, B) will not appear !!
 Attribute ‘grade’ depends on (rollNo,courseNo)

 MVD’s arise when two or more unrelated multi-valued attributes
of an entity are sought to be represented together in a scheme.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

56

More about MVDs

 Consider

 studCourseAdvisor(rollNo,courseNo,advisor)

 Note that rollNo →→ courseNo holds here

 If (CS05B007, CS370, Dr Ravi)
 (CS05B007, CS376, Dr Ravi) appear in the data then

 swapping courseNo values gives rise to existing rows only.

 But, since rollNo → advisor and (rollNo, courseNo) is the key,
 this gets caught in checking for 2NF itself.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

57

MVD Definition

 Consider a scheme R(X, Y, Z),

 An MVD X →→Y holds on R if, for in any instance of R,

 the presence of two tuples

 (xxx, y1y1y1, z1z1z1) and

 (xxx, y2y2y2, z2z2z2)

 guarantees the presence of tuples

 (xxx, y1y1y1, z2z2z2) and

 (xxx, y2y2y2, z1z1z1)

 Note that every FD on R is also an MVD!

 - the notion of MVD’s generalizes the notion of FD’s

21/02/20

20

Prof P Sreenivasa Kumar
Department of CS&E, IITM

58

Alternative definition of MVDs

Consider R(X,Y,Z)

Suppose that X →→ Y and by symmetry X →→ Z

Then, decomposition D = (XY, XZ) of R should be lossless

That is, for any instance r on R, r = Π XY(r) * Π XZ(r)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

59

MVDs and 4NF

An MVD X →→ Y on scheme R is called trivial if either
Y ⊆ X or R = X ∪ Y. Otherwise, it is called non-trivial.

4NF: A relation R is in 4NF if it is in BCNF and for every
 nontrivial MVD X →→ A, X must be a superkey of R.

 studCourseEmail(rollNo,courseNo,frndEmailAddr)
 is not in 4NF as

 rollNo →→ courseNo and

 rollNo →→ frndEmailAddr

 are both nontrivial and rollNo is not a superkey for the
 relation

Prof P Sreenivasa Kumar
Department of CS&E, IITM

60

Join Dependencies and 5NF

A join dependency (JD) is generalization of an MVD

A JD JD(R1,R2,…,Rk) is said to hold on schema R if

 for every instance r = *(ΠR1(r), ΠR2(r), … ,ΠRk(r))

Here, R = R1 U R2 U … U Rk and Natural join * is a multi-way join.

A JD is difficult to detect in practice. It occurs in rare situations.

A relational scheme is said to be in 5NF wrt to a set of FDs, MVDs
and JDs if it is in 4NF and for every non-trivial JD(R1,R2,…,Rk),
each Ri is a superkey.

21/02/20

21

Prof P Sreenivasa Kumar
Department of CS&E, IITM

61

Join Dependencies – An Example

Consider the following relation:

 studProjSkill(rollNo, skill, project) and the three relations

 studSkill(rollNo, skill) // who has what skill

 studProj(rollNo, project) // who is interested in what project

 skillProj(project, skill) // which project requires what skills

Suppose there is a rule that:

 If a student r1 has skill s1, and r1 is interested in project p1and
project p1 requires skill s1 then (r1, s1, p1) must be in studProjSkill

In other words, studProjSkill = * (studSkill, studProj, skillProj)

Then, we say JD(studSkill, studProj, skillProj) holds

Prof P Sreenivasa Kumar
Department of CS&E, IITM

62

Example - Observations

rollNo skill
r1 s1
r1 s2

rollNo project
r1 p1
r1 p2

project skill
p1 s1
p2 s3

rollNo project skill

r1 p1 s1

Size <= rs Size <= rp Size <= sp

Size <= rps

There are no MVDs in 3-column table

#students = r, #projects = p, #skills =s
 rps >> rp + sp + rs

Huge amount of data redundancy exists

Prof P Sreenivasa Kumar
Department of CS&E, IITM

63

Relational DB Design - Approaches

Two Approaches: Bottom-up and Top-down

Bottom-up Approach (aka Synthesis Approach)

 - Keep all attributes in a universal relation

 - Determine all the FDs, MVDs, applicable

 - Use the algorithms discussed to decompose the universal relation

 - Obtain a design using the algorithms discussed

Drawbacks of the approach

- Difficult to obtain all the FDs in a large DB with 100s of attributes

-  Algorithms are non-deterministic

-  Not popular in practice

21/02/20

22

Prof P Sreenivasa Kumar
Department of CS&E, IITM

64

Relational DB Design - Approaches

Top-down Approach (aka Analysis Approach)

 - Represent Entities/Relationships as relations

 Group attributes that belong naturally together

 - Determine the FDs, MVDs, applicable among attributes

 - Analyze the relations individually and also collectively

 If necessary carry out decomposition to obtain desirable
 properties

-  More popular approach

-  Theoretical observations are applicable to both approaches

