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Database Design and Normal Forms 

Database Design 
§   coming up with a “good” schema is very important 
 

How do we characterize the “goodness” of a schema ? 
If two or more alternative schemas are available 
     how do we compare them ? 
What are the problems with “bad” schema designs ? 
 
Normal Forms: 
    Each normal form specifies certain conditions 
    If the conditions are satisfied by the schema 
         certain kind of problems are avoided 
 
Details follow…. 
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An Example 

student relation with attributes: studName, rollNo, sex, studDept  
department relation with attributes: deptName, officePhone, hod  

  
 Several students belong to a department.  
 studDept gives the name of the student’s department.  

  
Correct schema: 
 
 
 
 
 
 
What are the problems that arise ? 

studName 

studName 

rollNo 

rollNo 

sex 

sex 

studDept deptName 

deptName 

officePhone 

officePhone 

HOD 

HOD 

Incorrect schema: 

Student Department 

Student-Dept 
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Problems with bad schema 

Redundant storage of data: 
      Office Phone & HOD info - stored redundantly 

§   once with each student that belongs to the department 
§   wastage of disk space 

         
A program that updates Office Phone of a department 

§   must change it at several places 
•   more running time 
•   error - prone  

 
Transactions running on a database 

§   must take as short time as possible to increase transaction 
                                                                                       throughput 



21/02/20 

2 

Prof P Sreenivasa Kumar 
Department of CS&E, IITM 

4 

Update Anomalies 

Another kind of problems with bad schema 
Insertion anomaly: 
   No way of inserting info about a new department unless 
   we also enter details of a (dummy) student in the department 
 
Deletion anomaly: 
   If all students of a certain department leave 
   and we delete their tuples,  
   information about the department itself is lost 
 
Update Anomaly: 
   Updating officePhone of a department 

•   value in several tuples needs to be changed 
•   if a tuple is missed - inconsistency in data 
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Normal Forms 

First Normal Form (1NF)  - included in the definition of a relation 
 
Second Normal Form (2NF)           
                                                                   defined in terms of 
Third Normal Form (3NF)                        functional dependencies 
 
Boyce-Codd Normal Form (BCNF) 
 
Fourth Normal Form (4NF) -  defined using multivalued  
                                                                          dependencies 
 
Fifth Normal Form (5NF) or Project Join Normal Form (PJNF) 
                                                      defined using join dependencies 
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Functional Dependencies 

A functional dependency (FD)   X → Y [where (X ⊆ R, Y ⊆ R)] 
      (read as X determines Y)  
is said to hold on a schema R if 
      in any instance r on R, 
      if two tuples t1, t2 (t1 ≠ t2,  t1∈ r, t2∈ r) 
         agree on X i.e. t1[X] = t2[X] 
      then they also agree on Y i.e. t1[Y] = t2[Y] 
 
t1[X] – the sub-tuple of t1 consisting of values of attributes in X 
 
Note: If K ⊂ R is a key for R then for any A ∈ R, 
                     K → A 
          holds because the above if …..then condition is 
          vacuously true  
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Functional Dependencies – Examples  

Consider the schema: 
       Student(studName, rollNo, sex, dept, hostelName, roomNo) 
 
Since rollNo is a key, rollNo → {studName, sex, dept,  
                                                                        hostelName, roomNo} 
 
Suppose that each student is given a hostel room exclusively, then 
                           hostelName, roomNo → rollNo 
 
Suppose boys and girls are accommodated in separate hostels, then  
                                     hostelName → sex 
Does Sex → hostelName?  
 
FDs are additional constraints that can be specified by designers  
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Trivial / Non-Trivial FDs and Notation 
An FD X → Y   where Y ⊆ X 
    - called a trivial FD, as it always holds good 
 
An FD X → Y   where Y ⊈ X 
    - non-trivial FD 
 
An FD X → Y   where X ∩ Y = Φ 
    - completely non-trivial FD 
 
Notational Convention:  
(Low-end alphabets) A, B, C, D, … and their subscripted versions   
     -- denote individual attributes 
(High-end alphabets) Z, Y, X, W,… and their subscripted versions 
    --- denote sets of attributes 
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FDs – Examples 
Consider the scheme preRequisite(preReqCourse, courseId) 
 
Does preReqCourse  → courseId ?  
 
No, as a course might be pre-requisite for many courses 
 
Does courseId  → preReqCourse ?  
 
No, a course may have many pre-requisite courses 
 
So, it is possible that no FDs hold on some schema 



21/02/20 

4 

Prof P Sreenivasa Kumar 
Department of CS&E, IITM 

10 

FDs – Examples 
Consider the scheme:  
 
Student-dept(rollNo, name, sex, deptName, officePhone, Hod) 
 
The key is rollNo,  so 
rollNo →  name, sex, deptName, officePhone, Hod 
 
Any more FDs hold? 
deptName  → officePhone, Hod 
Hod → deptName, officePhone  
(Assuming that each professor heads at most one department)  
 
officePhone → deptName, Hod  
 
No other FDs hold 
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Deriving new FDs 

Given that a set of FDs F holds on R 
      we can infer that a certain new FD must also hold on R 
 
For instance, 
      given that X → Y, Y → Z  hold on R 
      we can infer that X → Z must also hold 
 
How to systematically obtain all such new FDs ? 
 
Unless all FDs are known, a relation schema is not fully specified 
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Entailment Relation  

We say that a set of FDs F ⊨{ X → Y} 
     (read as F entails X → Y or  
                  F logically implies X → Y 
                  if in every instance r of R on which FDs F hold, 
                                                                         FD X → Y also holds. 
 
Armstrong came up with several inference rules 
       for deriving new FDs from a given set of FDs 
  

We define F+ = {X → Y | F ⊨X → Y} 
       F+: Closure of F  
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Armstrong’s Inference Rules (1/2) (aka Armstrong’s Axioms) 
1.  Reflexive rule 

        F ⊨ {X → Y | Y ⊆ X} for any X. Trivial FDs 
2. Augmentation rule 

        {X → Y} ⊨ {XZ → YZ}, Z ⊆ R.   Here, XZ denotes X ⋃ Z 
3. Transitive rule 

        {X → Y, Y → Z} ⊨ {X → Z} 
4. Decomposition or Projective rule 

        {X → YZ} ⊨ {X → Y} 
5. Union or Additive rule 

        {X → Y, X → Z} ⊨ {X → YZ} 
6. Pseudo transitive rule 

        {X → Y, WY → Z} ⊨ {WX → Z}   
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Rules 4, 5, 6 are not really necessary. 

For instance, Rule 5: {X → Y, X → Z} ⊨ {X → YZ} can be 
     proved using 1, 2, 3 alone 

 
1)  X → Y 
2)  X → Z 
3)  X → XY Augmentation rule on 1 
4)  XY → ZY Augmentation rule on 2 
5)  X → ZY Transitive rule on 3, 4. 
 
Similarly, 4, 6 can be shown to be unnecessary. 
But it is useful to have 4, 5, 6 as short-cut rules 

given 

Armstrong's Inference Rules (2/2) 
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Sound and Complete Inference Rules 

Armstrong showed that 
       Rules (1), (2) and  (3) are sound and complete. 
       These are called Armstrong’s Axioms (AA) 
 
FAA  = { X → Y | X → Y can be derived from F using AA } 
 
Soundness: ( FAA ⊆ F+  ) 
       Every new FD X → Y derived from a given set of FDs F 
       using Armstrong's Axioms is such that F ⊨{X → Y} 
 
Completeness: ( F+ ⊆ FAA ) 
       Any FD X → Y logically implied by F (i.e. F ⊨ {X → Y}) 
       can be derived from F using Armstrong’s Axioms 



21/02/20 

6 

Soundness and Completeness of AA 

Prof P Sreenivasa Kumar 
Department of CS&E, IITM 

16 

F+ 

F 

Soundness 

derive using AA 

Can be derived using AA 

Completeness 

FAA ⊆ F+    

F+ ⊆ FAA 
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Proving Soundness 
Suppose X → Y is derived from F using AA in some n steps. 
If each step is correct then overall deduction would be correct. 
Single step: Apply Rule (1) or (2) or (3) 
    Rule (1) – Reflexive Rule. Obviously results in correct FDs 

    Rule (2) – {X → Y}⊨ {XZ → YZ}, Z ⊆ R 
         Suppose t1, t2 ∈ r agree on XZ 
           ⇒ t1, t2 agree on X 
           ⇒ t1, t2 agree on Y (since X → Y holds on r) 
           ⇒ t1, t2 agree as YZ 
    Hence Rule (2) gives rise to correct FDs 

    Rule (3) – {X → Y, Y → Z} ⊨ X → Z 
         Suppose t1, t2 ∈ r agree on X 
           ⇒ t1, t2 agree on Y (since X → Y holds) 
           ⇒ t1, t2 agree on Z (since Y → Z holds) 
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Proving Completeness of Armstrong’s Axioms (1/4) 

Define X+
F  (closure of X wrt F) 

    = {A | X → A can be derived from F using AA},  A ∈ R 
X+

F is the set of all attributes that occur on  
          the rhs for an FD whose lhs is X, as per AA (wrt F) 

Claim1: 
     X → Y can be derived from F using AA iff  Y ⊆ X+ 

(If) Let Y = {A1, A2,…, An}. Y ⊆ X+ 

        ⇒ X → Ai can be derived from F using AA (1 ≤ i ≤ n)  
       By union rule, it follows that X → Y can be derived from F. 
 
(Only If) X → Y can be derived from F using AA 
       By projective rule X → Ai (1 ≤ i ≤ n)  
       Thus by definition of X+, Ai ∈ X+ 

       ⇒ Y ⊆ X+ 
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Completeness of Armstrong’s Axioms (2/4) 
Completeness:  

      (F ⊨ {X → Y}) ⇒ X → Y follows from F using AA 
We will prove the contrapositive: 
       X →Y can’t be derived from F using AA 

                              ⇒ F ⊭ {X → Y} 
                              ⇒ ∃ a relation instance r on R st all the FDs of  
                                   F hold on r but X → Y doesn’t hold. 
 
Consider the relation instance r with just two tuples: 
          X+ attributes  Other attributes 
 
        r:    1  1  1 …1  1  1  1 …1      
              1  1  1 …1  0  0  0 …0  
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Claim 2: All FDs of F are satisfied by r 
 Suppose not. Let W → Z in F be an FD not satisfied by r 
   Then W ⊆ X+ and Z ⊈ X+ 

   Let A ∈ Z – X+  
 Now, X → W  follows from F using AA as W ⊆ X+ (claim 1) 
          X → Z  follows from F using AA by transitive rule 
          Z → A  follows from F using AA by reflexive rule as A ∈ Z 
          X → A  follows from F using AA by transitive rule 
 
 By definition of closures, A must belong to X+ 

   - a contradiction.                              r:   1  1  1 …1  1  1  1 …1 
 Hence the claim.                                      1  1  1 …1  0  0  0 …0 
 
                                                                      X+               R - X+ 

Completeness Proof (3/4) 
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Completeness Proof (4/4) 

Claim 3: X → Y is not satisfied by r 
  Suppose not 
  Because of the structure of r, Y ⊆ X+ 

   ⇒ X → Y can be derived from F using AA 
         contradicting the assumption about X → Y 
  Hence the claim 
 
Thus, whenever X → Y doesn’t follow from F using AA, 
         F doesn’t logically imply X → Y 
Armstrong’s Axioms are complete. 
                                                            r:    1  1  1…1  1  1  1 …1 
                                                                   1  1  1…1  0  0  0 …0 
 
                                                                        X+            R – X+ 
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Consequence of Completeness of AA 

X+ = {A | X → A  follows from F using AA} 

      = {A | F ⊨ X → A} 
 
Similarly 

F+ = {X → Y | F ⊨ X → Y} 
      = {X → Y | X → Y follows from F using AA}       
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Computing closures 

The size of F+ can sometimes be exponential in the size of F. 
  For instance, F = {A → B1, A → B2,….., A → Bn} 
          F+ = {A → X} where X ⊆ {B1, B2,…,Bn}. 
          Thus |F+| = 2n 

 
Computing F+: computationally expensive 
 
Fortunately, checking if X → Y ∈ F+ 

              can be done by checking if Y ⊆ X+
F 

 
Computing attribute closure (X+

F) is computationally easier 
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Computing X+
F 

We compute a sequence of sets X0, X1,… as follows: 
  
           X0     =  X;     // X is the given set of attributes 
           Xi+1 =  Xi ∪ {A | there is a FD Y → Z in F 
                                                           such that Y ⊆ Xi   and A ∈ Z} 
 
To get new attributes into Xi+1, we use Transitive Rule and  

 we can only use that!  
 
Since X0 ⊆ X1 ⊆ X2 ⊆ ... ⊆ Xi ⊆ Xi+1 ⊆ ...⊆ R,  and R is finite, 
There is an integer i such that Xi = Xi+1 = Xi+2 =… 
 
X+

F is equal to such Xi.  
 

Computing X+
F can be done in polynomial time 
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Attribute Closures – An Example 

Consider a scheme R and the FDs:  (Data redundancy exists in R) 
 
R = (rollNo, name, advisorId, advisorName, courseId, grade) 
 
FDs = {  rollNo → name;      rollNo →  advisorId;  

    advisorId → advisorName;  
    rollNo, courseId → grade  } 

 
{rollNo}+ = {rollNo, name, advisorId, advisorName} 
 
{rollNo, courseId}+  = {rollNo, name, advisorId, advisorName,  
                                       courseId, grade} = R 
 
So {rollNo, courseId} is the key for R. 
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Normal Forms – 2NF 

Full functional dependency: 
   An FD X → A for which there is no proper subset Y of X 
        such that Y → A 
       (A is said to be fully functionally dependent on X or ) 
 
2NF: A relation schema R is in 2NF if 
   every non-prime attribute is fully functionally dependent  

 on any key of R 
 
 
  Prime attribute: A attribute that is part of some key 
  Non-prime attribute: An attribute that is not part of any key 
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Example 1:  2NF 

student(rollNo, name, dept, sex, hostelName, roomNo, admitYear) 
   
Assumptions:  

 Each student is allotted a single-occupancy room. 
 A room is identified by values of attributes hostelName, roomNo. 
 Boys and girls are accommodated in separate hostels. 

                                                                                    
Keys: rollNo, (hostelName, roomNo) 
    Not in 2NF as hostelName → sex 
 
Decompose:   
    student(rollNo, name, dept, hostelName, roomNo, admitYear) 
    hostelDetail(hostelName, sex) 
         - These are both in 2NF 
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Example 2:  2NF 

book(authorName, title, authorAffiliation, ISBN, publisher, pubYear) 
 

Assumptions:   A book has exactly one author.    
Author can be uniquely identified by value of attribute authorName 
AuthorAffiliation is the organization to which the author is currently 

associated with.  
 An author is associated with exactly one organization at any time. 
 

Keys: (authorName, title), ISBN 
     Not in 2NF as authorName → authorAffiliation 
(authorAffiliation is not fully functionally dependent on the first key) 
 
Decompose: 

 book(authorName, title, ISBN, publisher, pubYear) 
 authorInfo(authorName, authorAffiliation)  -- both in 2NF 
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Transitive Dependencies  

Transitive dependency: 
   An FD X → Y in a relation schema R for which there is a set of 
      attributes Z ⊆ R such that 
           X → Z and Z → Y and Z is not a subset of any key of R 
 
studentDept(rollNo, name, dept, hostelName, roomNo, headDept) 
                   Keys: rollNo, (hostelName, roomNo) 
       rollNo → dept;    dept → headDept     hold 
  So, rollNo → headDept is a transitive dependency 
 
Head of the dept of dept D is stored redundantly in every tuple 
  where D appears. 
 
Relation is in 2NF but redundancy still exists. 
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Normal Forms – 3NF 

Relation schema R is in 3NF if it is in 2NF and no non-prime 
  attribute of R is transitively dependent on any key of R 
 
  studentDept(rollNo, name, dept, hostelname, roomNo, headDept) 
     is not in 3NF 
 
  Decompose:  student(rollNo, name, dept, hostelName, roomNo) 
                        deptInfo(dept, headDept) 
                                 
                         both in 3NF 
 
  Redundancy in data storage - removed 
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Another definition of 3NF 

Relation schema R is in 3NF if for any nontrivial FD X → A 
   either (i) X is a superkey or (ii) A is prime. 
 
Suppose some R violates the above definition 
 ⇒ There is an FD X → A for which both (i) and (ii) are false 
 ⇒ X is not a superkey and A is non-prime attribute 
 
Two cases arise: 
  1) X is contained in a key – A is not fully functionally dependent 
                                                                                 on this key 
           - violation of 2NF condition 
  2) X is not contained in a key 
           K → X, X → A is a case of transitive dependency  
                                     (K – any key of R) 
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Motivating example for BCNF 

 gradeInfo (rollNo, studName, course, grade) 
 
 Suppose the following FDs hold: 
   1) rollNo, course → grade                     Keys: 
   2) studName, course → grade                     (rollNo, course) 
   3) rollNo → studName                                (studName, course)   
   4) studName → rollNo 
 (Assumption: No two students have the same name) 
 
 For 1, 2 lhs is a key. For 3, 4 rhs is prime; so gradeInfo is in 3NF 
 
 But studName is stored redundantly along with every course  
   being done by the student.  
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Boyce - Codd Normal Form (BCNF) 
Relation schema R is in BCNF if for every nontrivial 
      FD X → A, X is a superkey of R. 
 
In gradeInfo, FDs 3, 4 are nontrivial but lhs is not a superkey 
So, gradeInfo is not in BCNF 
 
Decompose: 
   gradeInfo (rollNo, course, grade) 
   studInfo (rollNo, studName) 
 
Redundancy allowed by 3NF is disallowed by BCNF 
 
BCNF is stricter than 3NF 
   3NF is stricter than 2NF 
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Decomposition of a relation schema 

If R doesn’t satisfy a particular normal form, 
   we decompose R into smaller schemas 
 
What’s a decomposition? 
     R = (A1, A2,…, An) 
  D = (R1, R2,…, Rk)  st Ri ⊆ R and R = R1 ∪ R2 ∪ … ∪ Rk  
                                                          (Ri’s need not be disjoint) 
  Replacing R by R1, R2,…, Rk is the process of decomposing R 
 
Ex: gradeInfo (rollNo, studName, course, grade) 
        R1: gradeInfo (rollNo, course, grade) 
        R2: studInfo (rollNo, studName) 
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Desirable Properties of Decompositions 
Not all decomposition of a relational scheme R are useful 
 
We require two properties to be satisfied 
 
  (i) Lossless join property 
        -  the information in an instance r of R must be preserved in 

 the instances r1, r2,…,rk where ri = ΠRi 
(r) 

 
 (ii) Dependency preserving property 
        -  if a set F of dependencies hold on R it should be possible to 
           enforce F on an instance r by enforcing appropriate 

 dependencies on each ri  
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Lossless join property 

F – set of FDs that hold on R 
R – decomposed into R1, R2,…,Rk 
Decomposition is lossless wrt F if 
    for every relation instance r on R satisfying F, 
       r = ΠR1

(r) * ΠR2
(r) * … * ΠRk

(r) 
 
R = (A, B, C); R1 = (A, B); R2 = (B, C) 
 
r:  A   B   C      r1:  A   B        r2:   B   C       r1* r2:       A   B   C 
     a1  b1  c1            a1  b1               b1  c1                      a1  b1  c1 
     a2  b2  c2            a2  b2               b2  c2                      a1  b1  c3 
     a3  b1  c3            a3  b1               b1  c3                      a2  b2  c2 
                                                                                    a3  b1  c1 
                                                                                    a3  b1  c3      

Spurious tuples 

Original info  
is distorted  

Lossy join 

Lossless joins 
 are also called 

 non-additive joins 
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Dependency Preserving Decompositions 

Decomposition D = (R1, R2,…,Rk) of schema R preserves a set 
 of dependencies F if  
 
   (ΠR1

(F) ∪ ΠR2
(F) ∪… ∪ ΠRk

(F))+ =  F+ 
 

Here, ΠRi
(F) = { (X → Y) ∈ F+ | X ⊆ Ri, Y ⊆ Ri} 

   (called projection of F onto Ri) 
 
Informally, any FD that logically follows from F must also 
 logically follow from the union of projections of F onto Ri’s 
Then, D is called dependency preserving. 
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An example 

Schema R = (A, B, C) 
FDs F = {A → B, B → C, C → A} 
 
Decomposition D = (R1 = {A, B}, R2 = {B, C}) 
ΠR1

(F) = {A → B, B → A} 
ΠR2

(F) = {B → C, C → B} 
 
(ΠR1

(F) ∪ ΠR2
(F))+ = {A → B, B → A, 

                                          B → C, C → B, 
                                          A → C, C → A} = F+ 

                                              
 Hence Dependency preserving 
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Testing for lossless decomposition property(1/6) 
R – given schema with attributes A1,A2, …, An     
F – given set of FDs      
D – {R1,R2, …, Rm} given decomposition of R 
 
Is D a lossless decomposition? 
 
Create an m × n matrix S with columns labeled as A1,A2, …, An 

 and rows labeled as R1,R2, …, Rm 
 
Initialize the matrix as follows: 

 set S(i,j) as symbol bij  for all i,j. 
 if Aj is in the scheme Ri, then set S(i,j) as symbol aj , for all i,j  
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Testing for lossless decomposition property(2/6) 
After S is initialized, we carry out the following process on it:  
 

repeat 
     for each functional dependency U → V in F do 
         for all rows in S which agree on U-attributes do 

 make the symbols in each V- attribute column  
    the same in all the rows as follows: 
       if any of the rows has an “a” symbol for the column 
           set the other rows to the same “a” symbol in the column 
        else // if no “a” symbol exists in any of the rows 
           choose one of the “b” symbols that appears 
           in one of the rows for the V-attribute and  

                        set the other rows to that “b” symbol in the column 
until no changes to S 
 

At the end, if there exists a row with all “a” symbols then D is 
 lossless otherwise D is a lossy decomposition 
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Testing for lossless decomposition property(3/6) 
R = (rollNo, name, advisor, advisorName, course, grade) 
FD’s = { rollNo → name; rollNo → advisor; advisor →advisorName 

    rollNo, course → grade} 
D : { R1 = (rollNo, name, advisor), R2 = (advisor, advisorName),  
         R3 = (rollNo, course, grade) } 
Matrix S : (Initial values) 
 
 
 

rollNo name advisor advisor
Name 

course grade 

R1 a1 a2 a3 b14 b15 b16 
R2 b21 b22 a3 a4 b25 b26 
R3 a1 b32 b33 b34 a5 a6 
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Testing for lossless decomposition property(4/6) 
R = (rollNo, name, advisor, advisorDept, course, grade) 
FD’s = { rollNo → name; rollNo → advisor; advisor → advisorName 

     rollNo, course → grade} 
D : { R1 = (rollNo, name, advisor), R2 = (advisor, advisorName),  
         R3 = (rollNo, course, grade) } 
 
Matrix S : (After enforcing rollNo → name & rollNo → advisor) 
 
 
 

rollNo name advisor advisor
Name 

course grade 

R1 a1 a2 a3 b14 b15 b16 
R2 b21 b22 a3 a4 b25 b26 
R3 a1 b32a2 b33a3 b34 a5 a6 
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Testing for lossless decomposition property(5/6) 
R = (rollNo, name, advisor, advisorDept, course, grade) 
FD’s = {rollNo → name; rollNo → advisor; advisor → advisorName 

    rollNo, course → grade} 
D : { R1 = (rollNo, name, advisor), R2 = (advisor, advisorName),  
         R3 = (rollNo, course, grade) } 
 

Matrix S : (After enforcing  advisor → advisorName ) 
 
 

 
 
 
 
 
 
No more changes. Third row with all a symbols. So a lossless join. 
 

rollNo name advisor advisor
Name 

course grade 

R1 a1 a2 a3 b14a4 b15 b16 
R2 b21 b22 a3 a4 b25 b26 
R3 a1 b32a2 b33a3 b34a4 a5 a6 
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Testing for lossless decomposition property(6/6) 

R – given schema.       F – given set of FDs 
 
The decomposition of R into R1, R2 is lossless wrt F if and only if 
 either  R1 ∩ R2 → (R1 – R2) belongs to F+ or 
             R1 ∩ R2 → (R2 – R1) belongs to F+ 
 

Example: 
    gradeInfo (rollNo, studName, course, grade) 
    with FDs = {rollNo, course → grade; studName, course → grade; 
                              rollNo → studName; studName → rollNo} 
    decomposed into 
    grades (rollNo, course, grade) and studInfo (rollNo, studName) 
    is lossless because 
          rollNo → studName           
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A property of lossless joins 

 D1: (R1, R2,…, RK)  lossless decomposition of R wrt F 
 
 D2: (Ri1, Ri2,…, Rip) lossless decomposition of Ri wrt Fi = ΠRi

(F) 
 
Then 
 D = (R1, R2, … , Ri-1, Ri1, Ri2, …, Rip, Ri+1,…, Rk) is a  
                                               lossless decomposition of R wrt F 
 
This property is useful in the algorithm for BCNF decomposition 
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Algorithm for BCNF decomposition 
R – given schema.   F – given set of FDs 
 
    D = {R}   // initial decomposition 
    while there is a relation schema Ri in D that is not in BCNF do 
    { let X → A be the FD in Ri violating BCNF; 
       Replace Ri by Ri1 = Ri – {A} and Ri2 = X ∪{A} in D; 
     } 
 
Decomposition of Ri is lossless as 
                 Ri1 ∩ Ri2 = X, Ri2 – Ri1 = A and X → A 
 
Result: a lossless decomposition of R into BCNF relations 
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Dependencies may not be preserved (1/2) 

Consider the schema: townInfo (stateName, townName, distName) 
 with the FDs  F: ST → D (town names are unique within a state) 
                             D → S  (district names are unique across states) 
 
Keys: ST, DT  – all attributes are prime 
                        – relation is in 3NF 
Relation is not in BCNF as D → S and D is not a key 
 
Decomposition given by algorithm: R1: TD   R2: DS 
Not dependency preserving as ΠR1(F) = trivial dependencies 
      ΠR2 (F) = {D → S} 
 
  Union of these doesn’t imply ST → D 
  ST → D can’t be enforced unless we perform a join.    

S T D 
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  Dependencies may not be preserved (2/2) 
Consider the schema: R (A, B, C) 
  with the FDs  F: AB → C and C → B 
Keys: AB, AC  – relation in 3NF (all attributes are prime) 

 – Relation is not in BCNF as C → B and C is not a key 
 
Decomposition given by algorithm: R1: CB   R2: AC 
  Not dependency preserving as   ΠR1

(F) = trivial dependencies 
                                                     ΠR2

(F) = {C → B} 
  Union of these does not entail AB → C 
   
All possible decompositions: {AB, BC}, {BA, AC}, {AC, CB} 
   Only the last one is lossless!  
 
Lossless and dependency-preserving decomposition doesn't exist. 
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Equivalent Dependency Sets 

F, G – two sets of FDs on schema R 
F is said to cover G if  G ⊆ F+ (equivalently G+ ⊆ F+) 
F is equivalent to G if  F+ = G+ (or, F covers G and G covers F) 
 
Note: To check if F covers G, 
       it’s enough to show that for each FD X → Y in G, Y ⊆ X+

F 
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Canonical covers or Minimal covers 

It is of interest to reduce a set of FDs F into a ‘standard’ form 
  F′ such that F′ is equivalent to F. 
 
We define that a set of FDs F is in ‘minimal form’ if  

(i)  the rhs of any FD of  F is a single attribute  
(ii)   there are no redundant FDs in F 

              that is, there is no FD X → A in F  
        s.t (F – {X → A}) is equivalent to F 

 (iii) there are no redundant attributes on the lhs of any FD in F 
         that is, there is no FD X → A in F s.t there is Z ⊂ X for which  
                    F – {X → A} ∪ {Z → A} is equivalent to F 

Minimal Covers 
 useful in obtaining a lossless, dependency-preserving  
 decomposition of a scheme R into 3NF relation schemas 
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Algorithm for computing a minimal cover 

 R – given Schema or set of attributes;  F – given set of FDs on R 
 

Step 1:  G := F  
 

Step 2:  Replace every fd of the form X → A1A2A3…Ak in G 
   by X → A1; X → A2; X → A3; … ; X → Ak 

 

Step 3: For each fd X → A in G do 
     for each B in X do  
   if (G – {X → A} + {(X – B) → A})+  = F+ then 
      replace X → A by (X – B) → A 

 
Step 4: For each fd X → A in G do 

     if (G – { X → A})+ = G+ then 
   replace G by G – { X → A} 
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Computing Minimal Covers 
Example from Elmasri and Navathe, Database Sytems (6th edition) 

Determine the minimal cover for F = { B → A, D → A, AB → D } 

All rhs sets are single attributes. So, Step 2 changes nothing. 

If G = { B → A, D → A, B → D }, we find that G+  = F+ 

In G, since B → D, AB → AD and hence AB → D  

So AB → D belongs to G+.  Hence G covers F 

In F, since B → A, B → AB.  

Since B → AB, AB → D, we get B → D.   So B → D is in F+. 

Hence F covers G.  

Finally, in G, we find that B → A can be obtained for the other two. 

Hence, { D → A, B → D }is a minimal cover for F 
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3NF Decomposition Algorithm 
R – given Schema;  F – given set of fd’s on R in minimal form 
 
Use BCNF algorithm to get a lossless decomposition D = (R1, R2,…,Rk) 

  Note: each Ri is already in 3NF (it is in BCNF in fact!) 
 
Algorithm: Let G be the set of fd’s not preserved in D 

      For each fd Z → A that is in G 
      Add relation scheme S = (B1,B2, …, Bs,A) to D. //  Z = {B1,B2, …, Bs} 

 
As Z → A is in F which is a minimal cover, 

 there is no proper subset X of Z s.t X → A.  So Z is a key for S! 
Any other fd X → C on S is such that C is in {B1,B2, …, Bs}. 

 Such fd’s do not violate 3NF because each Bj’s is prime a attribute! 
 Thus any scheme S added to D as above is in 3NF.  
 
D continues to be lossless even when we add new schemas to it! 
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Multi-valued Dependencies (MVDs) and 4NF  
 studCoursesAndFriends(rollNo,courseNo,frndEmailAddr) 
  A student enrolls for several courses and has several  friends whose 

 email addresses we want to record.  
 If  rows  (CS05B007, CS370, shyam@gmail.com)  and  

          (CS05B007, CS376, radha@yahoo.com)  appear then  
     rows       (CS05B007, CS376, shyam@gmail.com) 
          (CS05B007, CS370, radha@yahoo.com)  should also appear!  
  For, otherwise, it implies that having “shyam” as a friend has something to do 

with doing course CS370! 
 

 Causes a huge amount of data redundancy!  
 Since there are no non-trivial  FD’s, the scheme is in BCNF 

 

    We say that MVD rollNo →→ courseNo holds  
     (read as rollNo multi-determines courseNo) 

      By symmetry,  rollNo →→ frndEmailAddr  also holds 
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More about MVDs 

 Consider studCourseGrade(rollNo,courseNo,grade) 
 Note that rollNo →→ courseNo does not hold here even though 

 courseNo is a multi-valued attribute of a student entity 
 

 If  (CS05B007, CS370, A) 

     (CS05B007, CS376, B) appear in the data then 
  (CS05B007, CS376, A) 

     (CS05B007, CS370, B) will not appear !!  
 Attribute ‘grade’ depends on (rollNo,courseNo)  

 
 MVD’s arise when two or more unrelated multi-valued attributes 
of an entity are sought to be represented together in a scheme. 
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More about MVDs 

 Consider  

  studCourseAdvisor(rollNo,courseNo,advisor) 

 Note that rollNo →→ courseNo holds here  

 If  (CS05B007, CS370, Dr Ravi) 
     (CS05B007, CS376, Dr Ravi)  appear in the data then  

 swapping courseNo values gives rise to existing rows only. 
 

 But, since rollNo → advisor and (rollNo, courseNo) is the key,
 this gets caught in checking for 2NF itself. 
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MVD Definition 

 Consider a scheme R(X, Y, Z),  

 An MVD X →→Y holds on R if, for in any instance of R,  

 the presence of two tuples  

  (xxx, y1y1y1, z1z1z1) and  

  (xxx, y2y2y2, z2z2z2)  

 guarantees the presence of tuples  

  (xxx, y1y1y1, z2z2z2) and   

  (xxx, y2y2y2, z1z1z1) 

 Note that every FD on R is also an MVD!  

  - the notion of MVD’s generalizes the notion of FD’s 
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Alternative definition of MVDs 

Consider R(X,Y,Z) 

Suppose that X →→ Y and by symmetry X →→ Z 

Then, decomposition D = (XY, XZ) of R should be lossless 

That is, for any instance r on R, r = Π XY(r) * Π XZ(r)  
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MVDs and 4NF 

An MVD X →→ Y on scheme R is called trivial if either                 
Y ⊆ X   or  R = X ∪ Y. Otherwise, it is called non-trivial. 

 
4NF: A relation R is in 4NF if it is in BCNF and for every 
         nontrivial MVD X →→ A, X must be a superkey of R. 

 studCourseEmail(rollNo,courseNo,frndEmailAddr)    
  is not in 4NF as  

 rollNo →→ courseNo and    

 rollNo →→ frndEmailAddr   

  are both nontrivial and rollNo is not a superkey for the 
 relation 
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Join Dependencies and 5NF 

A join dependency (JD) is generalization of an MVD 

A JD  JD(R1,R2,…,Rk) is said to hold on schema R if 

 for every instance r = *(ΠR1(r),  ΠR2(r), … ,ΠRk(r)) 

Here, R = R1 U  R2 U … U Rk  and  Natural join * is a multi-way join.  

A JD is difficult to detect in practice. It occurs in rare situations. 

 

A relational scheme is said to be in 5NF wrt to a set of FDs, MVDs 
and JDs if it is in 4NF and for every non-trivial JD(R1,R2,…,Rk), 
each Ri is a superkey. 
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Join Dependencies – An Example 

Consider the following relation: 

 studProjSkill(rollNo, skill, project) and the three relations 

 studSkill(rollNo, skill)        // who has what skill 

 studProj(rollNo, project)    // who is interested in what project 

 skillProj(project, skill)       // which project requires what skills 

Suppose there is a rule that: 

 If a student r1 has skill s1, and r1 is interested in project p1and 
project p1 requires skill s1 then (r1, s1, p1) must be in studProjSkill 

In other words,  studProjSkill = * (studSkill, studProj, skillProj) 

Then, we say JD(studSkill, studProj, skillProj) holds 
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Example - Observations 

 

 

 

 

 
 

rollNo skill 
r1 s1 
r1 s2 

rollNo project 
r1 p1 
r1 p2 

project skill 
p1 s1 
p2 s3 

rollNo project skill 

r1 p1 s1 

Size <= rs Size <= rp Size <= sp 

Size <= rps 

There are no MVDs in 3-column table 
 

#students = r, #projects = p, #skills =s 
     rps >> rp + sp + rs 

 
Huge amount of data redundancy exists 
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Relational DB Design - Approaches 

Two Approaches: Bottom-up and Top-down 

Bottom-up Approach ( aka Synthesis Approach) 

 -  Keep all attributes in a universal relation 

 -  Determine all the FDs, MVDs, applicable 

 -  Use the algorithms discussed to decompose the universal relation 

 -  Obtain a design using the algorithms discussed 

Drawbacks of the approach 

-  Difficult to obtain all the FDs in a large DB with 100s of attributes 

-  Algorithms are non-deterministic 

-  Not popular in practice 
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Relational DB Design - Approaches 

Top-down Approach ( aka Analysis Approach) 

 -  Represent Entities/Relationships as relations 

     Group attributes that belong naturally together 

 -  Determine the FDs, MVDs, applicable among attributes 

 -  Analyze the relations individually and also collectively 

     If necessary carry out decomposition to obtain desirable        
 properties  

-  More popular approach 

-  Theoretical observations are applicable to both approaches 

 

 

 

 
 


