
20/10/20

1

Prof P Sreenivasa Kumar
Department of CS&E, IITM

1

Database Systems

Algorithms for Relational Algebra Operators
and Query Evaluation

Dr P Sreenivasa Kumar
Professor

CS&E Department
 I I T Madras

Relational Query Evaluation
§  Relational Algebra Operators

§  Select, Project, Join
§ Union, Intersect, Difference

§  Grouping and aggregation
§  Sorting

§  How to implement these?
§  How do indexes help?
§  Any other information is helpful?

Prof P Sreenivasa Kumar
Department of CS&E, IITM

2

Selection With Equality Conditions
§  Single selection condition X = c1

§  Index on X ? Yes: use the index; No: file scan
§  Several conjunctive conditions

§ X1 = c1 and X2 = c2 and … and Xk = ck
§  Index on any Xi ?
§ Yes: Get the records and check other conditions
§ No: File scan

§  Several disjunctive conditions
§  Index on any single Xi - not helpful

§ Difficult compared to conjunctive case

Prof P Sreenivasa Kumar
Department of CS&E, IITM

3

20/10/20

2

Predicate Selectivity
§  Selectivity s of a condition C -- 0 ≤ s ≤ 1

§  (No. of records satisfying C) / (Total no. of records)
§ C1: student.dept = “CSE” -- 450 / 8000 = 0.056

§ C2: student.sex = “female” -- 1200 / 8000 = 0.15

§ C3: student.rollNo = “CS10B032” -- 1/8000 = 0.000125

§  highly selective predicate - very low selectivity value
§  Conjunction of conditions

§  Choose the one that is most selective
§ Get the records and check other conditions

§  Selectivity values (estimates): collect offline
Prof P Sreenivasa Kumar
Department of CS&E, IITM

4

Selectivity Estimation
§  Maintained in the DB catalog

§ Used by the query optimizer
§  Equality conditions involving a key attribute

§  Selectivity = 1/ (Total no. of records)

§  Equality conditions involving a non-key attribute
§  Selectivity = 1/ (Distinct values of the attribute)

§  Sometimes histograms are also maintained
§ Distinct value or value range -- # of records

Prof P Sreenivasa Kumar
Department of CS&E, IITM

5

Project Operation
§  For every record in the operand

§ Access it, take the required attributes values
§  Construct the result record

§  Duplicate Elimination
§  Costly
§  Sort or hash based methods are used

§  File scan becomes essential
§  Apply project after selection, if possible

§  To reduce the input to project

Prof P Sreenivasa Kumar
Department of CS&E, IITM

6

20/10/20

3

External Sorting
§  Sorting a file

§ An often required operation
§ Duplicate elimination, Grouping of records, Join etc

§  Merge-sort Principle is used
§ O(nlogn) worst-case complexity for n items
§  Two phases

§ Sort phase – repeat: read part of data, sort and write
§  Create many sorted files – called runs

§ Merge phase – repeat: merge some sorted files and write
§  Till only one sorted file is left

Prof P Sreenivasa Kumar
Department of CS&E, IITM

7

Algorithm – Sort Phase
§  File: n blocks and Buffer memory: m blocks
§  Sort Phase

§  Repeat the following |¯n/m¯| times
{read the next m blocks; sort in-memory;
 write to disk as a single file, called a run}

§  Number of runs r = |¯n/m¯|
§  Complexity: n block reads and n block writes

§  2n block accesses

Prof P Sreenivasa Kumar
Department of CS&E, IITM

8

Algorithm – Merge Phase
§  File: n blocks, Memory Buffers: m (≥ 3) blocks, Runs: r

§  Degree of merging d : 2 ≤ d ≤ (m – 1)

§  Merge Phase: repeat the following |¯ logd r¯| times
§  Reduce j runs to |¯j/d¯| runs (Initially, j = r)

§ By repeatedly merging d runs at a time to get one run
§  Use d buffers, one for each of the next d runs; use one for the result
§  Get one block at a time from each run
§  Merge and write the result to disk – one block at a time

§  Complexity: 2n |¯logd r¯|
§ Each sub-phase : Entire file gets read and written

§  Overall: (2n + 2n |¯logd r¯|) block accesses
Prof P Sreenivasa Kumar
Department of CS&E, IITM

9

20/10/20

4

Algorithm – Merge Phase
Reducing j runs to |¯ j/d ¯| runs
 1 2 3 … d d+1 … 2d … 3d …. j

Prof P Sreenivasa Kumar
Department of CS&E, IITM

10

…

…

…

…
 Memory

buffer

Run file

Merging d runs

… … …

 |¯ j/d ¯| runs

Join Processing
§  Join – A very important operation
§  2-way join

§  Two files of records, join condition – given
§  Multi-way join
§  Choice of algorithm depends on …

§  Sizes of files
§  Primary organization of the files
§ Availability of indices
§  Selectivity of the join condition etc

Prof P Sreenivasa Kumar
Department of CS&E, IITM

11

Nested Loop Join (or block nested loop join)
§  Brute force join
§  Two data files

§  R : b1 blocks, S : b2 blocks, Buffer : m blocks
§  Buffer Usage: One block for the result of join

§ One for inner file (say, S); (m – 2) for outer file (R)

§  For each set of (m – 2) blocks of R read-in, do
§  For each block of S do
 Read it in, compute join, write to result block

 Write the result block to disk whenever it fills up

Prof P Sreenivasa Kumar
Department of CS&E, IITM

12

for each record x in R do
 for each record y in S do

 check if x, y join .. .

20/10/20

5

Nested Loop Join - Performance
§  Two data files

§  R : b1 blocks, S : b2 blocks, Buffer : m blocks
§  Outer file : b1 blocks accesses
§  # times inner file blocks accessed: |¯ b1/(m – 2)¯|
§  Overall: b1 + |¯ b1/(m – 2)¯| b2
§  Or, symmetrically: b2 + |¯ b2/(m – 2)¯| b1

§ when we have S in the outer loop and R inside
§  Which file in the outer loop?

§  The one with fewer blocks!
Prof P Sreenivasa Kumar
Department of CS&E, IITM

13

Time for writing the
result needs to be added

Nested Loop Join - Example
§  Two data files

R : b1 = 5600 blocks, S : b2 = 120 blocks, Buffer : 52 blocks
§  If R is used in the outer loop

§  b1 + |¯ b1/(m – 2) ¯| b2
§  5600 + |¯ 5600 / 50¯| * 120 = 19040 disk ops

§  If S is used in the outer loop
§  120 + |¯ 120/ 50¯| * 5600 = 16920 disk ops

§  Assuming 10 msec per disk op
§  It is 190 secs versus 169 secs

 Prof P Sreenivasa Kumar
Department of CS&E, IITM

14

Time for writing the
result needs to be added

Single Loop Join (or index loop join)
§  Two data files

§  R : b1 blocks, S : b2 blocks
§ Need to compute equi-join with R.A = S.B

§ We have index on one of them, say S on B
§  For each record x of R read in, do

§ Use the index on B for S
§ Get all the matching records (having B = x.A)

§  Time taken: b1+ |distinct(R.A)|* hB(S)
§  hB(S) – # of block accesses of the index on B for S

Prof P Sreenivasa Kumar
Department of CS&E, IITM

15

Time for writing the
result needs to be added

20/10/20

6

Join Selection Factor
§  Fraction of records in a file that join with records

of the other for the given condition
§  Consider: professor ⋈empId = hod department

§ Only 5% of professor rows join with department rows
§  100% of department rows join with professor rows

§  Impacts performance of single loop join
§  If indexes are available on both files
§  Loop over records of the file with high join selection

factor

Prof P Sreenivasa Kumar
Department of CS&E, IITM

16

Join Selection Factor - Example
§  Impacts single loop join performance

§  If indexes are available on both files
§  Consider: professor ⋈empId = hod department

§  Loop over professor records and probe department
 using index on hod (option 1) OR

§  Loop over department records and probe professor
 using index on empId (option 2)

§ Option 1: 95% probes don’t give a match
§ Option 2: All probes give a match

§  Option 2 is the right choice
Prof P Sreenivasa Kumar
Department of CS&E, IITM

17

Hash Join
§  Consider a 2-way equi-join R ⋈R.A=S.B S

§ Assume that S fits into memory
§  Use a hash function h

§ Hash the records of S into M buckets using B-values
§ Called the partitioning of S

§  To compute join result
§ Hash records of R, one by one, using A values

§ Use the same M buckets and the same hash function h
§ Matching pair of records will hash to same bucket

Prof P Sreenivasa Kumar
Department of CS&E, IITM

18

20/10/20

7

Partition Hash Join
§  Consider a 2-way equi-join R⋈R.A=S.B S

§ Neither R nor S fits into the memory
§  Partition Phase: use a hash function h

§ Hash the records of R into m buckets using A-values
§ We get R1 , R2 , …, Rm - write them to files

§ Hash the records of S into m buckets using B-values
§ We get S1 , S2 , …, Sm - write them to files

§ Goals: ensure that distribution is uniform and
§ At least one of Ri or Si fit into the memory

§  To compute join result: join Ri with Si only!
Prof P Sreenivasa Kumar
Department of CS&E, IITM

19

Partition Hash Join – Probe Phase
§  Probe Phase: Join Ri with Si for all i
§  If one of Ri or Si fit into the memory

§ Use the idea of hash join again!
§ Hash the smaller of the two into main memory using a

different hash function, say h2
§ Read the other file, probe and produce result records

§ Overall cost: (3(|R|+|S|) + |result|) block accesses

§  Else use nested loops join
§ Overall cost: 2(|R|+|S|) + cost of nested loop joins

Prof P Sreenivasa Kumar
Department of CS&E, IITM

20

Sort-merge join
§  Consider a 2-way equi-join R⋈R.A=S.B S
§  If R is sorted on A, S is sorted on B

§ Merge R and S to get join results
§  Called merge join - - very efficient - - linear

§  If one of them is sorted on join attribute
§  Sorting the other and merging may be cost-effective

§  Of course, we can
§  Sort R on A, sort S on B and use merge
§  Cost might be high

Prof P Sreenivasa Kumar
Department of CS&E, IITM

21

20/10/20

8

Set Operations
§  Hash based join method

§  Can be adapted to compute Union, Intersect and
Difference

§  Sort-Merge method
§  Can be adapted to compute Union, Intersect and

Difference
§  Please study the details!

Prof P Sreenivasa Kumar
Department of CS&E, IITM

22

Query Optimization
§  An SQL query - converted to a RA expression tree
§  Initial RA expression is re-written

§ Using heuristic and algebraic transformation rules
that preserve the meaning of the expression
§ Called algebraic optimization

§  Final RA expression tree is generated

§  Cost-based query optimization
§  Cost estimates of methods for RA ops are computed
§  Execution plan with least estimated cost is chosen

Prof P Sreenivasa Kumar
Department of CS&E, IITM

23

Heuristic Optimization
§  An SQL query - converted to a RA expression tree
§  This RA expression tree is to be re-written
§  Main heuristic rule

§ Apply select and project before other operations
§ Reduces the size of intermediate results
§ Reduces the number of fields in the intermediate results

§  Make use of relational algebraic laws
§  Select, project, join, union, intersect - commutative
§  Join, union, intersect - associative
§  There are many more….(Read about them)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

24

20/10/20

9

Cost-based Optimization
§  After initial RA expression tree is re-written using

heuristics and algebraic laws….
§  Each RA operator

§  Can be evaluated using many methods
§  For a method, its cost function gives estimated cost

§ By taking file sizes, access path costs etc into account

§  Choice made at a node may effect choices at others
§  Evaluate different plans based on estimated costs

§  Choose the plan with least estimated cost

Prof P Sreenivasa Kumar
Department of CS&E, IITM

25

Query Optimization – Example
§  Obtain the name and phone details of professors

who taught the courses taken by student with roll
number “CS08B027” in the even semester of 2010

§  select p.empId, p.name, p.phone
 from professor p, teaching t, enrollment e
 where e.rollNo = “CS08B027”

 and e.courseId = t.courseId
 and e.sem = “even” and e.year = 2010
 and t.sem = “even” and t.year = 2010
 and p.empId = t.empId

Prof P Sreenivasa Kumar
Department of CS&E, IITM

26

Query Optimization – Example
§  Obtain the name and phone details of professors

who taught the courses taken by student with roll
number “CS08B027” in the even semester of 2010

§  Initial RA Expr: Π p.empId, p.name, p.phone (σθ (p × t × e))
 where
 p: professor, t: teaching, e: enrollment

 θ = (e.rollNo = “CS08B027” and e.courseId = t.courseId
 and e.sem = “even” and e.year = 2010
 and t.sem = “even” and t.year = 2010

 and p.empId = t.empId)
 Prof P Sreenivasa Kumar

Department of CS&E, IITM
27

20/10/20

10

Query Optimization – Example
§  Π p.empId, p.name, p.phone (σθ (p × t × e))

 ≡ Π p.empId, p.name, p.phone (σθ3 (p × σθ2 (t) × σθ1(e)))

 p: professor, t: teaching, e: enrollment

 θ1 = (e.rollNo = “CS08B027” and
 and e.sem = “even” and e.year = 2010)
 θ2 = (t.sem =“even” and t.year = 2010)

 θ3 = (p.empId = t.empId and e.courseId = t.courseId)

 Prof P Sreenivasa Kumar
Department of CS&E, IITM

28

Query Optimization – Example
§  Π p.empId, p.name, p.phone (σθ (p × t × e))

 ≡ Π p.empId, p.name, p.phone (σθ3 (p × σθ2 (t) × σθ1(e)))
 ≡ Π p.empId, p.name, p.phone (σθ3 (p × σθ4 (σθ2 (t) × σθ1(e))))

 p: professor, t: teaching, e: enrollment

 θ1 = (e.rollNo = “CS08B027” and
 e.sem = “even” and e.year = 2010)
 θ2 = (t.sem =“even” and t.year = 2010)

 θ3 = (p.empId = t.empId)
 θ4 = (e.courseId = t.courseId)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

29

Query Optimization – Example
§  Π p.empId, p.name, p.phone (σθ (p × t × e))

 ≡ Π p.empId, p.name, p.phone (σθ3 (p × σθ2 (t) × σθ1(e)))
 ≡ Π p.empId, p.name, p.phone (σθ3 (p × σθ4 (σθ2 (t) × σθ1(e))))
 ≡ Π p.empId, p.name, p.phone (p ⋈θ3 (σθ2(t) ⋈θ4 σθ1(e)))

 θ1 = (e.rollNo = “CS08B027” and
 e.sem = “even” and e.year = 2010)
 θ2 = (t.sem =“even” and t.year = 2010)

 θ3 = (p.empId = t.empId)
 θ4 = (e.courseId = t.courseId)
 Prof P Sreenivasa Kumar

Department of CS&E, IITM
30

20/10/20

11

Query Optimization – Example
§  Π p.empId, p.name, p.phone (σθ (p × t × e))

 ≡ Π p.empId, p.name, p.phone (σθ3 (p × σθ2 (t) × σθ1(e)))
 ≡ Π p.empId, p.name, p.phone (σθ3 (p × σθ4 (σθ2 (t) × σθ1(e))))
 ≡ Π p.empId, p.name, p.phone (p ⋈θ3 (σθ2(t) ⋈θ4 σθ1(e)))

 ≡ (Π empId,name,phone (p) ⋈θ3 ΠempId (ΠcourseId, empId σθ2 (t)
 ⋈θ4 ΠcourseId σθ1 (e)))

θ1 = (e.rollNo = “CS08B027” and e.sem = “even” and e.year = 2010)
θ2 = (t.sem=“even” and t.year= 2010)
θ3 = (p.empId = empId) θ4 = (t.courseId = e.courseId)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

31

Cost-based Optimization
§  Π p.empId, p.name, p.phone (σθ (p × t × e))

 ≡ Π p.empId, p.name, p.phone (σθ3 (p × σθ2 (t) × σθ1(e)))
 ≡ Π p.empId, p.name, p.phone (σθ3 (p × σθ4 (σθ2 (t) × σθ1(e))))
 ≡ Π p.empId, p.name, p.phone (p ⋈θ3 (σθ2 (t) ⋈θ4 σθ1 (e)))

 ≡ (Π empId,name,phone(p) ⋈θ3 ΠempId (ΠcourseId, empId σθ2 (t)
 ⋈θ4 ΠcourseId σθ1 (e)))

Evaluate costs of using different methods for

 the two selections, two joins
 and choose the plan with least estimated cost

Prof P Sreenivasa Kumar
Department of CS&E, IITM

32

Query Plan Execution
 Intermediate Tables:
 Store as files on disk (materialization), if necessary

 Use pipelining, as much as possible

 Query Types and Optimization
 Compiled Queries
 Optimization can be done offline
 cost of optimization – does not matter
 Ad-hoc Queries – Optimization should finish fast

Prof P Sreenivasa Kumar
Department of CS&E, IITM

33

