
21/02/20

1

Prof P Sreenivasa Kumar
Department of CS&E, IITM

1

The SQL Standard
•  SQL – Structured Query Language
 An international standard (ANSI, ISO) that specifies how

§  a relational schema is created
§  data is inserted / updated in the relations
§  data is queried
§  transactions are started and stopped
§  programs access data in the relations
§  and a host of other things are done

•  Every relational database management system (RDBMS) is
 required to support / implement the SQL standard.

•  RDBMS vendors may give additional features
•  Downside of using vendor-specific features - portability

Prof P Sreenivasa Kumar
Department of CS&E, IITM

2

History of SQL
 SEQUEL

§  developed by IBM in early 70’s
§  relational query language as part of System-R project at
 IBM San Jose Research Lab.
§  the earliest version of SQL

 SQL evolution

§  SQL- 86/89
§  SQL- 92 - SQL2
§  SQL- 99/03 - SQL3

 (includes object relational features)
And the evolution continues

Disclaimer: This module covers only important principles of SQL

Prof P Sreenivasa Kumar
Department of CS&E, IITM

3

Components of SQL Standard(1/2)

§  Data Definition Language (DDL)
 Specifies constructs for schema definition, relation definition,
 integrity constraints, views and schema modification.

§  Data Manipulation Language (DML)
 Specifies constructs for inserting, updating and querying the
 data in the relational instances (or tables).

§  Embedded SQL and Dynamic SQL
 Specifies how SQL commands can be embedded in a high-level
 host language such as C, C++ or Java for programmatic access
 to the data.

21/02/20

2

Prof P Sreenivasa Kumar
Department of CS&E, IITM

4

§  Transaction Control
 Specifies how transactions can be started / stopped, how a set
 of concurrently executing transactions can be managed.

§  Authorization
 Specifies how to restrict a user / set of users to access only
 certain parts of data, perform only certain types of queries etc.

Components of SQL Standard(2/2)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

5

Data Definition in SQL

Defining the schema of a relation

create table r (attributeDefinition-1, attributeDefinition-2,…,

 attributeDefinition-n, [integrityConstraints-1],

 [integrityConstraints-2],…,[integrityConstraints-m])

Attribute Definition –

 attribute-name domain-type [NOT NULL] [DEFAULT v]

E.g.:

 create table example1 (A char(6) not null default “000000”,

 B int, C char(1) default “F”);

name of the
relation

Prof P Sreenivasa Kumar
Department of CS&E, IITM

6

Domain Types in SQL-92 (1/2)

§  Numeric data types
•  integers of various sizes – INT, SMALLINT
•  real numbers of various precision – REAL, FLOAT,

 DOUBLE PRECISION
•  formatted numbers – DECIMAL (i, j) or NUMERIC (i, j)

 i – total number of digits (precision)
 j – number of digits after the decimal point (scale)
§  Character string data types

•  fixed length – CHAR(n) – n: no. of characters
•  varying length – VARCHAR(n) – n: max.no. of characters

§  Bit string data types
•  fixed length – BIT(n)
•  varying length – BIT VARYING(n)

21/02/20

3

Prof P Sreenivasa Kumar
Department of CS&E, IITM

7

§  Date data type

 DATE type has 10 position format – YYYY-MM-DD

§  Time data type

 TIME type has 8 position format – HH : MM : SS

§  Others

 There are several more data types whose details are
 available in SQL reference books

Domain Types in SQL-92 (2/2)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

8

Specifying Integrity Constraints in SQL

Also called Table Constraints
 Included in the definition of a table

Key constraints
 PRIMARY KEY (A1,A2,…,Ak)
 specifies that {A1,A2,…,Ak} is the primary key of the table

 UNIQUE (B1,B2,…,Bk)
 specifies that {B1,B2,…,Bk} is a candidate key for the table

 There can be more than one UNIQUE constraint but only one

 PRIMARY KEY constraint for a table.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

9

Specifying Referential Integrity Constraints

 FOREIGN KEY (A1) REFERENCES r2 (B1)

§  specifies that attribute A1 of the table being defined, say r1, is a
 foreign key referring to attribute B1 of table r2

§  recall that this means:
 each value of column A1 is either null or is one of the
 values appearing in column B1 of r2

21/02/20

4

Prof P Sreenivasa Kumar
Department of CS&E, IITM

10

Specifying What to Do if RIC Violation Occurs

RIC violation
§  can occur if a referenced tuple is deleted or modified
§  action can be specified for each case using qualifiers
 ON DELETE or ON UPDATE
Actions
§  three possibilities can be specified
 SET NULL, SET DEFAULT, CASCADE
§  these are actions to be taken on the referencing tuple
§  SET NULL – foreign key attribute value to be set null
§  SET DEFAULT – foreign key attribute value to be set to its
 default value
§  CASCADE – delete the referencing tuple if the referenced
 tuple is deleted or update the FK attribute if the
 referenced tuple is updated

Prof P Sreenivasa Kumar
Department of CS&E, IITM

11

Table Definition Example
create table students (
 rollNo char(8) not null,
 name varchar(15) not null,
 degree char(5),

 year smallint,
 sex char not null,

 deptNo smallint,
 advisor char(6),

 primary key(rollNo),
 foreign key(deptNo) references
 department(deptId)
 on delete set null on update cascade,
 foreign key(advisor) references
 professor(empId)
 on delete set null on update cascade
);

Prof P Sreenivasa Kumar
Department of CS&E, IITM

12

Modifying a Defined Schema
ALTER TABLE command can be used to modify a schema
Adding a new attribute
 ALTER table student ADD address varchar(30);
Deleting an attribute
§  need to specify what needs to be done about views or
 constraints that refer to the attribute being dropped
§  two possibilities
 CASCADE – delete the views/constraints also
 RESTRICT – do not delete the attributes if there are some
 views/constraints that refer to it.
§  ALTER TABLE student DROP degree RESTRICT
 Similarly, an entire table definition can be deleted

21/02/20

5

Prof P Sreenivasa Kumar
Department of CS&E, IITM

13

Data Manipulation in SQL
 Basic query syntax
 select A1,A2,…,Am a set of attributes
 from relations R1,…,Rp that are
 from R1,R2,…,Rp required in the output table.
 the set of tables that
 where θ contain the relevant
 tuples to answer the query.
 a boolean predicate that
 specifies when a combined
 tuple of R1,…,Rp contributes
 to the output.
Equivalent to: Assuming that each attribute
 name appears exactly once
 in the table. 1 2 nA ,A ,....A θ 1 2 pπ (σ (R ×R ×.....×R))

Prof P Sreenivasa Kumar
Department of CS&E, IITM

14

Meaning of the Basic Query Block

§  The cross product M of the tables in the from clause
 would be considered.
 Tuples in M that satisfy the condition θ are selected.
 For each such tuple, values for the attributes A1,A2,….,Am

 (mentioned in the select clause) are projected.

§  This is a conceptual description

- in practice more efficient methods are employed for
 evaluation.

§  The word select in SQL should not be confused with select
 operation of relational algebra.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

15

SQL Query Result
The result of any SQL query

§  a table with select clause attributes as column names.
§  duplicate rows may be present.

- differs from the definition of a relation.

§  duplicate rows can be eliminated by specifying DISTINCT
 keyword in the select clause, if necessary.
 SELECT DISTINCT name
 FROM student WHERE …

§  duplicate rows are essential while computing aggregate
 functions (average, sum etc).

§  removing duplicate rows involves additional effort and is
 done only when necessary.

21/02/20

6

Prof P Sreenivasa Kumar
Department of CS&E, IITM

16

Example Relational Scheme with RIC’s shown

student (rollNo, name, degree, year, sex, deptNo, advisor)

department (deptId, name, hod, phone)

professor (empId, name, sex, startYear, deptNo, phone)

course (courseId, cname, credits, deptNo)

enrollment (rollNo, courseId, sem, year, grade)

teaching (empId, courseId, sem, year, classRoom)

preRequisite (preReqCourse, courseID)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

17

Example Queries Involving a Single Table

Get the rollNo, name of all women students in the
dept no. 5.

 select rollNo, name
 from student
 where sex = ‘F’ and deptNo = 5;

Get the employee Id, name and phone number of
professors in the CS dept (deptNo = 3) who have
joined after 1999.

 select empId, name, phone
 from professor
 where deptNo = 3 and startYear > 1999;

Prof P Sreenivasa Kumar
Department of CS&E, IITM

18

Examples Involving Two or More Relations (1/2)

Get the rollNo, name of students in the CSE
dept (deptNo = 3)along with their advisor’s
name and phone number.

select rollNo, s.name, f.name as advisorName,
 phone as advisorPhone
from student as s, professor as f
where s.advisor = f.empId and
 s.deptNo = 3;

table aliases are
used to disambiguate
the common attributes

table aliases are required
if an attribute name
appears in more than
one table.
Also when same relation
appears twice in the from
clause.

attribute
renaming in
the output

21/02/20

7

Prof P Sreenivasa Kumar
Department of CS&E, IITM

19

Get the names, employee ID’s, phone numbers
of professors in CSE dept who joined
before 1995.

 select empId, f.name, f.phone
 from professor as f, department as d
 where f.deptNo = d.deptId and
 d.name = ‘CSE’ and
 f.startYear < 1995

Examples Involving Two or More Relations (2/2)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

20

Nested Queries or Subqueries
While dealing with certain complex queries

§  beneficial to specify part of the computation as a
 separate query & make use of its result to formulate
 the main query.
§  such queries – nested / subqueries.

Using subqueries
§  makes the main query easy to understand / formulate
§  sometimes makes it more efficient also

•  sub query result can be computed once and
 used many times.

•  not the case with all subqueries.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

21

Nested Query Example
Get the rollNo, name of students who have
a lady professor as their advisor.

select s.rollNo, s.name
from student s
where s.advisor IN
 (select empId
 from professor
 where sex = ‘F’);

NOT IN can be used in the above query to get details of students
who don’t have a lady professor as their advisor.

IN Operator: One of the
ways of making use of
the subquery result

Subquery computes
the empId’s of
lady professors

21/02/20

8

Prof P Sreenivasa Kumar
Department of CS&E, IITM

22

Set Comparison Operators
SQL supports several operators to deal with subquery results or
 in general with collection of tuples.

Combination of { =, <, ≤, ≥, >, < > } with keywords
 { ANY, ALL } can be used as set comparison operators.

Get the empId, name of the senior-most Professor(s):

 select p.empId, p.name
 from professors p
 where p.startYear <= ALL (select distinct startYear
 from professor);

Prof P Sreenivasa Kumar
Department of CS&E, IITM

23

Semantics of Set Comparison Operators

§  v op ANY S
 true if for some member x of S, v op x is true
 false if for no member x of S, v op x is true

§  v op ALL S
 true if for every member x of S, v op x is true
 false if for some member x of S, v op x is not true

§  IN is equivalent to = ANY

NOT IN is equivalent to
 < > ALL

§  v is normally a single attribute, but while using IN or
 NOT IN it can be a tuple of attributes

op is one of <, ≤, >, ≥, =, < >

S is a subquery

Prof P Sreenivasa Kumar
Department of CS&E, IITM

24

Correlated and Uncorrelated Nested Queries

If the nested query result is independent of the current tuple
 being examined in the outer query,
 nested query is called uncorrelated,
 otherwise, nested query is called correlated.

Uncorrelated nested query

§  nested query needs to be computed only once.

Correlated nested query

§  nested query needs to be re-computed for each row
 examined in the outer query.

21/02/20

9

Prof P Sreenivasa Kumar
Department of CS&E, IITM

25

Example of a Correlated Subquery

Get the roll number and name of students
whose gender is same as their advisor’s.

 select s.rollNo, s.name
 from student s
 where s.sex = ALL (select f.sex
 from professor f
 where f.empId = s.advisor);

Prof P Sreenivasa Kumar
Department of CS&E, IITM

26

The EXISTS Operator
Using EXISTS, we can check if a subquery result is non-empty

EXISTS(S) is true if S has at least one tuple / member
 is false if S contain no tuples

Get the employee Id and name of professors
who advise at least one women student.

select f.empId, f.name
from professors f
where EXISTS (select s.rollNo
 from student s
 where s.advisor = f.empId and
 s.sex = ‘F’);

SQL does not have an operator for universal quantification.

a correlated
subquery

Prof P Sreenivasa Kumar
Department of CS&E, IITM

27

Obtain the department Id and name of
departments that do not offer any 4 credit courses.

 select d.deptId, d.name
 from department d
 where NOT EXISTS (select courseId
 from course c
 where c.deptNo = d.deptId and
 c.credits = 4);

Queries with existentially quantified predicates can be easily
 specified using EXISTS operator.

Queries with universally quantified predicates can only be
 specified after translating them to use existential quantifiers.

The NOT EXISTS Operator

a correlated
subquery

21/02/20

10

Prof P Sreenivasa Kumar
Department of CS&E, IITM

28

Example Involving Universal Quantifier

Determine the students who are enrolled for every
course taught by Prof Ramanujam. Assume that Prof
Ramanujam teaches at least one course.

As SQL does not have universal quantifier, we will rewrite the query this way:

Determine the student(s) who are st there does not
exist a course taught by Prof Ramanujam which is not
enrolled by the student.

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

29

 Determine the students who are enrolled for every
course taught by Prof Ramanujam. Assume that Prof

 Ramanujam teaches at least one course.

1.  {s.rollNo | student (s) ^
2.  (∀c)(course (c) ^
3.  ((∃t),(∃p)(teaching(t) ^ professor(p) ^
4.  t.courseId = c.courseId ^
5.  p.name = “Ramanujam” ^

6.  p.empId = t.empId)) →
7.  (∃e) (enrollment(e) ^
8.  e.courseId = c.courseId ^
9.  e.rollNo = s.rollNo)
10. )
11.  }

Same query expressed in TRC

Prof P Sreenivasa Kumar
Department of CS&E, IITM

30

An Example Involving the Universal Quantifier

Determine the students who are enrolled for every
course taught by Prof Ramanujam. Assume that Prof
Ramanujam teaches at least one course.
 select s.rollNo, s.name
 from student s
 where NOT EXISTS (select t.*
 from teaching t, professor p
 where t.empId = p.empId and
 p.name = “Ramanujam” and
 NOT EXISTS

 (select e.*
 from enrollment e
 where e.courseId = t.courseId
 and e.rollNo = s.rollNo)

);

21/02/20

11

Prof P Sreenivasa Kumar
Department of CS&E, IITM

31

Another Example Involving the Universal Quantifier
Determine the students who have obtained either S or A
grade in all the pre-requisite courses of the course
CS7890. It is known that CS7890 has at least one pre-
requisite.

 select s.rollNo, s.name
from student s
where NOT EXISTS(select *
 from preRequisite p
 where p.courseId = “CS7890” and
 NOT EXISTS

 (select *
 from enrollment e
 where e.courseId = p.preReqcourse
 and e.rollNo = s.rollNo and
 e.grade = “S” or e.grade = “A”)

);

Prof P Sreenivasa Kumar
Department of CS&E, IITM

32

Missing where Clause

If the where clause in an SQL query is not specified, it is treated
 as - the where condition is true for all tuple combinations.

§  Essentially no filtering is done on the cross product of from
 clause tables.

Get the name and contact phone of all Departments.

 select name, phone
 from department

Prof P Sreenivasa Kumar
Department of CS&E, IITM

33

Union, Intersection and Difference Operations

§  In SQL, using operators UNION, INTERSECT and EXCEPT,
 one can perform set union, intersection and difference
 respectively.

§  Results of these operators are sets –

 i.e duplicates are automatically removed.

§  Operands need to be union compatible and also have same
 attribute names in the same order.

21/02/20

12

Prof P Sreenivasa Kumar
Department of CS&E, IITM

34

Example using UNION
Obtain the roll numbers of students who are currently

enrolled for either CS2300 or CS2320 courses.

 (SELECT rollNo

 FROM enrollment
 WHERE courseId = ‘CS2300’ and
 sem = ‘odd’ and year = ‘2019’) UNION
 (SELECT rollNo

 FROM enrollment
 WHERE courseId = ‘CS2320’ and
 sem = ‘odd’ and year = ‘2019’);

 Equivalent to:
 (SELECT rollNo

 FROM enrollment
 WHERE (courseId = ‘CS2300’ or courseID = ‘CS2320’)
 and sem = ‘odd’ and year = ‘2019’)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

35

Obtain the roll numbers of students who are currently
enrolled for both CS230 and CS232 Courses.

 (select rollNo
 from enrollment
 where courseId = ‘CS2300’ and
 sem = ‘odd’ and year = ‘2019’)

 INTERSECT

 (select rollNo
 from enrollment
 where courseId = ‘CS2320’ and
 sem = ‘odd’ and year = ‘2019’;

Example using INTERSECTION

Prof P Sreenivasa Kumar
Department of CS&E, IITM

36

Example using EXCEPT
Obtain the roll numbers of students who are

currently not enrolled for CS2300 course.

 (SELECT rollNo
 FROM enrollment

 WHERE sem = ‘odd’ and year = ‘2019’)

 EXCEPT

 (SELECT rollNo

 FROM enrollment

 WHERE courseId = ‘CS2300’ and

 sem = ‘odd’ and year = ‘2019’);

21/02/20

13

Prof P Sreenivasa Kumar
Department of CS&E, IITM

37

Aggregation of Data

Data analysis
§  to get info on summary and trends in certain attributes
§  need for computing aggregate values for data
§  total value, average value etc

Aggregate functions in SQL
§  five aggregate function are provided in SQL
§  AVG, SUM, COUNT, MAX, MIN
§  can be applied to any column of a table
§  can be used in the select clause of SQL queries

Prof P Sreenivasa Kumar
Department of CS&E, IITM

38

Aggregate functions
§  AVG ([DISTINCT]A):

 computes the average of (distinct) values in column A

§  SUM ([DISTINCT]A):

 computes the sum of (distinct) values in column A

§  COUNT ([DISTINCT]A):

 computes the number of (distinct) values in column A or no.
 of tuples in result

§  MAX (A): computes the maximum of values in column A

§  MIN (A): computes the minimum of values in column A

Optional
keyword

Prof P Sreenivasa Kumar
Department of CS&E, IITM

39

Examples involving aggregate functions (1/2)
Suppose data about GATE exam in a particular year is available as
a table with schema
 gateMarks(regNo,name,sex,branch,city,state,marks)

Obtain the total number of students who have taken
GATE in CS and their average marks
 Select count(regNo) as CsTotal, avg(marks) as CsAvg
 from gateMarks
 where branch = ‘CS’

 Get the maximum, minimum and average marks obtained
by Students from the city of Hyderabad
 Select max(marks), min(marks), avg(marks)
 from gateMarks
 where city = ‘Hyderabad’;

CStotal CSavg

Output

21/02/20

14

Prof P Sreenivasa Kumar
Department of CS&E, IITM

40

Examples involving aggregate functions (2/2)

Get the names of students who obtained the
maximum marks in the branch of EC
 Select name, max(marks)
 from gateMarks
 where branch = ‘EC’

Will not work

Only aggregate functions can be specified here. It does not
make sense to include normal attributes ! (unless they are
grouping attributes – to be seen later)

Select regNo, name, marks
from gateMarks
where branch = ‘EC’ and marks = ANY
 (select max(marks)
 from gateMarks
 where branch = ‘EC’);

Correct way of
specifying the query

Prof P Sreenivasa Kumar
Department of CS&E, IITM

41

Date Aggregation and Grouping

Grouping
§  Partition the set of tuples in a relation into groups based on

certain criteria and compute aggregate functions for each group
§  All tuples that agree on a set of attributes (i.e have the same

value for each of these attributes) are put into a group

§  The specified aggregate functions are computed for each group
§  Each group contributes one tuple to the output
§  All the grouping attributes must also appear in the select clause

§  the result tuple of the group is listed along with the values of the
grouping attributes of the group

Called the grouping
 attributes

Prof P Sreenivasa Kumar
Department of CS&E, IITM

42

Examples involving grouping(1/2)

Determine the maximum of the GATE CS marks obtained by
students in each city, for all Cities. Assume 4 cities
exist - Hyderabad, Chennai, Mysore and Bangalore.

 Select city, max(marks) as maxMarks
 from gateMarks
 where branch = ‘CS’
 group by city;

Grouping attributes
must appear in the

select clause Grouping
attribute

Result:

City maxMarks
Hyderabad 87
Chennai 88
Mysore 90
Bangalore 86

21/02/20

15

Prof P Sreenivasa Kumar
Department of CS&E, IITM

43

In the University database, for each department,
obtain the name, deptId and the total number of four
credit courses offered by the department

 Select deptId, name, count(*) as totalCourses
 from department, course
 where deptId = deptNo and credits = 4
 group by deptId, name;

Examples involving grouping(2/2)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

44

Having clause

After performing grouping, is it possible to report information
about only a subset of the groups ?
§  Yes, with the help of having clause which is always used in
 conjunction with Group By clause

Report the total enrollment in each course in the
even semester of 2014; include only the courses with
a minimum enrollment of 10.

 Select courseId, count(rollNo) as Enrollment
 from enrollment
 where sem = even and year = 2014
 group by courseId
 having count(rollNo) ≥ 10;

Prof P Sreenivasa Kumar
Department of CS&E, IITM

45

Where clause versus Having clause

•  Where clause
•  Performs tests on rows and eliminates rows not satisfying

 the specified condition
•  Performed before any grouping of rows is done

•  Having clause
•  Always performed after grouping
•  Performs tests on groups and eliminates groups not

 satisfying the specified condition
•  Tests can only involve grouping attributes and aggregate

 functions
 Select courseId, count(rollNo) as Enrollment
 from enrollment
 where sem = 2 and year = 2014
 group by courseId
 having count(rollNo) ≥ 10;

21/02/20

16

Prof P Sreenivasa Kumar
Department of CS&E, IITM

46

String Operators in SQL

§  Specify strings by enclosing them in single quotes
 e.g., ‘Chennai’

Common operations on strings –

•  Pattern matching – using ‘LIKE’ comparison operator
•  specify patterns using special characters –

•  Character ‘%’ (percent) matches any Substring
 e.g., ‘Ram%’ matches any string starting with “Ram”

•  Character ‘_’ (underscore) matches any single character
 e.g., (a) ‘_ _ _ nagar’ matches with any string ending
 with “nagar”, with any 3 characters before that.
 (b) ‘_ _ _ _’ matches any string with exactly four
 characters

Prof P Sreenivasa Kumar
Department of CS&E, IITM

47

Using the ‘LIKE’ operator

Obtain roll numbers and names of all students
whose names end with ‘Mohan’

 Select rollNo, name
 from student
 where name like ‘%Mohan’;

§  Patterns are case sensitive.
§  Special characters (percent, underscore) can be included in
 patterns using an escape character ‘\’ (backslash)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

48

Join Operation

In SQL, usually joining of tuples from different relations is
 implicitly specified in the ‘where’ clause

Get the names of professors working in CSE dept.

 Select f.name
 from professor as f, department as d
 where f.deptNo = d.deptId and
 d.name = ‘CSE’;

The above query specifies joining of professor and department
 relations on condition f.deptNo = d.deptId and selection on
 department relation using d.name = ‘CSE’

21/02/20

17

Prof P Sreenivasa Kumar
Department of CS&E, IITM

49

Explicit Specification of Joining in ‘From’ Clause
 select f.name
 from (professor as f join department as d on

 f.deptNo = d.deptId)
 where d.name = ‘CSE’;

Join types:
1.  inner join (default):
 from (r1 inner join r2 on <predicate>)
 use of just ‘join’ is equivalent to ‘inner join’
2.  left outer join:
 from (r1 left outer join r2 on <predicate>)
3.  right outer join:
 from (r1 right outer join r2 on <predicate>)
4.  full outer join:
 from (r1 full outer join r2 on <predicate>)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

50

Natural join

The adjective ‘natural’ can be used with any of the join types to
 specify natural join.

 FROM (r1 NATURAL <join type> r2 [USING <attr. list>])

•  natural join by default considers all common attributes
•  a subset of common attributes can be specified in an

 optional USING <attr. list> phrase

REMARKS
•  Specifying join operation explicitly goes against the spirit of

 declarative style of query specification
•  But the queries may be easier to understand
•  The feature is to be used judiciously

Prof P Sreenivasa Kumar
Department of CS&E, IITM

51

Views (or Virtual Tables)
§  Views provide virtual relations which may contain data spread
 across different tables. Used by applications.

•  simplified query formulations
•  data hiding
•  a view of frequently used data – efficient query answering

§  Once created, a view is always kept up-to-date by the RDBMS
§  View is not part of conceptual schema

•  created to give a user group, concerned with a certain aspect
 of the information system, their view of the system

§  View implementation
•  Views need not be stored as permanent tables
•  They can be created on-the-fly whenever needed or
•  They can also be materialized and kept up-to-date

§  Tables involved in the view definition – base tables

21/02/20

18

Prof P Sreenivasa Kumar
Department of CS&E, IITM

52

Creating Views

 CREATE VIEW v AS <query expr>
 creates a view ‘v’, with structure and data defined by the

 outcome of the query expression

Create a view which contains name, employee Id and
phone number of professors who joined CSE dept
in or after the year 2000.
 create view profAft2K as
 (Select f.name, empId, phone
 from professor as f, department as d
 where f.depNo = d.deptId and
 d.name = ‘CSE’ and
 f.startYear >= 2000);

If the details of a new CSE professor are entered into professor table,
 the above view gets updated automatically

name of the view

Prof P Sreenivasa Kumar
Department of CS&E, IITM

53

Queries on Views
Once created a view can be used in queries just like any other
table.

e.g. Obtain names of professors in CSE dept,
 who joined after 2000 and whose name
 starts with ‘Ram’

 select name
 from profAft2K
 where name like ‘Ram%’;

The definition of the view is stored in DBMS, and executed to
create the temporary table (view), when encountered in query

Prof P Sreenivasa Kumar
Department of CS&E, IITM

54

Operations on Views

§  Querying is allowed

§  Update operations are usually restricted
 because – to update a view, we may require

 to modify many base tables
 – there may not be a unique way of updating the
 base tables to reflect the update on view

 – views may contain some aggregate values
 – ambiguity where primary key of a base table is not
 included in view definition.

21/02/20

19

Prof P Sreenivasa Kumar
Department of CS&E, IITM

55

Restrictions on Updating Views
§  Updates on views defined on joining of more than one table
 are not allowed
§  For example, updates on the following view are not allowed
§  Note that we are not keeping information about when a student has
 completed the course in the view
create a view StudentGrades with rollNo, name, courseID
and grade

create view studentGrade(rollNo,name,courseId,grade) as
 (select s.rollNo, s.name, e.courseId, e.grade
 from student s, enrollment e
 where s.rollNo = e.rollNo);

§  Suppose we want to update grade in the view from “U” to “D” for
 one particular course for a student, there will be ambiguity in doing
 the update on base tables.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

56

§  Updates on views defined with ‘group by’ clause and aggregate
 functions is not permitted, as a tuple in view will not have a
 corresponding tuple in base relation.

§  For example, updates on the following view are not allowed

Create a view deptAvgCredits which contains the
average credits of courses offered by a dept.

 create view deptAvgCredits(deptNo,avgCredits)
 as select deptNo, avg(credits)
 from course
 group by deptNo;

Restrictions on Updating Views

Prof P Sreenivasa Kumar
Department of CS&E, IITM

57

§  Updates on views which do not include Primary Key of
 base table, are also not permitted

§  For example, updates on the following view are not allowed

Create a view StudentPhone with Student name and
phone number.

 create view StudentPhone (sname,sphone) as
 (select name, phone
 from student);

 View StudentPhone does not include Primary key of the
 base table.

Restrictions on Updating Views

21/02/20

20

Prof P Sreenivasa Kumar
Department of CS&E, IITM

58

Updates to views are allowed only if

§  defined on single base table

§  not defined using ‘group by’ clause and aggregate functions

§  view includes Primary Key of base table

Allowed Updates on Views

Prof P Sreenivasa Kumar
Department of CS&E, IITM

59

Inserting data into a table
§  Specify a tuple(or tuples) to be inserted
 INSERT INTO student VALUES
(‘CSO5D014’,‘Mohan’,‘PhD’,2005,‘M’,3,‘FCS008’),

(‘CSO5S031’,‘Madhav’,‘MS’,2005,‘M’,4,‘FCE009’);

§  Specify the result of query to be inserted
 INSERT INTO r1 SELECT … FROM … WHERE …

§  Specify that a sub-tuple be inserted

INSERT INTO student(rollNo, name, sex)
VALUES (CS05M022, ‘Rajasri’, ‘F’),
 (CS05B033, ‘Kalyan’, ‘M’);

§  the attributes that can be NULL or have
 declared default values can be left-out to be
 updated later

Prof P Sreenivasa Kumar
Department of CS&E, IITM

60

Deleting rows from a table

§  Deletion of tuples is possible ; deleting only part of a tuple is
 not possible

§  Deletion of tuples can be done only from one relation at a time
§  Deleting a tuple might trigger further deletions due to

 referentially triggered actions specified as part of RIC’s
§  Generic form: delete from r where <predicate>;

Delete tuples from professor relation with start year
as 1982.
 delete from professor
 where startYear = 1982;

§  If ‘where’ clause is not specified, then all the tuples of that
 relation are deleted (Be careful !)

21/02/20

21

Prof P Sreenivasa Kumar
Department of CS&E, IITM

61

A Remark on Deletion

§  The where predicate is evaluated for each of the tuples in the

 relation to mark them as qualified for deletion before any
 tuple is actually deleted from the relation

§  Note that the result may be different if tuples are deleted as and
 when we find that they satisfy the where condition!

§  An example:
Delete all tuples of students that scored the least marks in the

 CS branch:
DELETE
FROM gateMarks
WHERE branch = “CS” and

 marks = ANY (SELECT MIN(marks)
 FROM gateMarks
 WHERE branch = “CS”)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

62

Updating tuples in a relation

 update r
 set <<attr = newValue> list>
 where <predicates>;

Change phone number of all professors working in CSE
dept to “94445 22605”

 update professors
 set phone = ‘9444422605’
 where deptNo = (select deptId
 from department
 where name = ‘CSE’);

If ‘where’ clause is not specified, values for the specified
attributes in all tuples is changed.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

63

Miscellaneous features in SQL (1/3)

§  Ordering of result tuples can be done using ‘order by’ clause
 e.g., List the names of professors who joined
 after 1980, in alphabetic order.
 select name
 from professor
 where startYear > 1980
 order by name;

§  Use of ‘null’ to test for a null value, if the attribute can take null
 e.g., Obtain roll numbers of students who
 don’t have phone numbers
 select rollNo
 from student
 where phoneNumber is null;

21/02/20

22

Prof P Sreenivasa Kumar
Department of CS&E, IITM

64

Miscellaneous features in SQL (2/3)

§  Use of ‘between and’ to test the range of a value
 e.g., Obtain names of professors who have
 joined between 1980 and 1990

 select name
 from professor
 where startYear between 1980 and 1990;

§  Change the column name in result relation
 e.g.,
 select name as studentName, rollNo as studentNo
 from student;

Prof P Sreenivasa Kumar
Department of CS&E, IITM

65

Miscellaneous features in SQL (3/3)

§  Use of ‘distinct’ key word in ‘select’ clause to determine
 duplicate tuples in result.

 Obtain all distinct branches of study for students
 select distinct d.name

 from student as s, department as d
 where s.deptNo = d.deptId;

§  Use of asterisk (*) to retrieve all the attribute values of
 selected tuples.
 Obtain details of professors along with their

 department details.
 select *
 from professor as f, department as d

 where f.deptNo = d.deptId;

Prof P Sreenivasa Kumar
Department of CS&E, IITM

66

Database System Architectures

Centralized Architecture – used long ago, before PCs were born
 Complete DB functionality – storage, running application
 programs, transaction processing etc – is on one system - Server
 Access systems are just display devices - terminals

Client/Server Architecture – two tier systems
 Client – powerful enough to do local processing

 – runs graphical user interface and application programs
 – sends Database queries/updates to Server

 Server – provides rest of the DB System functionality

Three Tier System Architectures – also possible – details left out here

21/02/20

23

Prof P Sreenivasa Kumar
Department of CS&E, IITM

67

Application Development Process: 2-tier Systems

Host language (HL) – the high-level programming language in
 which the application is developed (e.g., C, C++, Java etc.)

Managing Database Access – several approaches are available

•  Embedded SQL approach – SQL commands are embedded
 in the HL programs

•  A static approach - SQL commands can’t be given at runtime
•  Dynamic SQL

•  Call Level Interface SQL/CLI – an API based approach
•  JDBC – Java DB connectivity – an API based approach
•  Use a Database programming language – Oracle’s PL/SQL

Embedded SQL, Dynamic SQL – we will study in some detail
Other approaches – to be studied by students

Prof P Sreenivasa Kumar
Department of CS&E, IITM

68

Impedance Mismatch

§  Impedance Mismatch:
 Problems due to difference in HL data model vs DB data model
 - Data types of HL vs those in DB
 - HL languages do not support set-of-records as supported by SQL
§  Handling Data types

§  For each SQL attribute data type – corresponding HL data type
§  Specified as language binding
§  To be done for each host language

§  Handling SQL query results
§  Results are either sets or multi-sets of tuples
§  A data structure to hold results and an iterator are needed

§  Does not arise in case of dedicated DB programming languages

Prof P Sreenivasa Kumar
Department of CS&E, IITM

69

Embedded SQL Approach
Host language (HL) – the high-level programming language in
 which the application is developed (e.g., C, C++, Java etc.)

Embedded SQL approach:

•  SQL statements are interspersed in HL program for application
development

•  Pre-compiler replaces these with suitable library calls
•  Library is supplied by the RDBMS vendor

•  SQL commands – identified by special reserved words –
 EXEC SQL

Data transfer –
 takes place through specially declared HL variables

21/02/20

24

Prof P Sreenivasa Kumar
Department of CS&E, IITM

70

Declaring Variables
Variables that need to be used in SQL statements are declared in a
special section. These are called shared variables.

EXEC SQL BEGIN DECLARE SECTION

 char rollNo[9]; //HL is C language
 char studName[20], degree[6];

 int year; char sex;
 int deptNo; char advisor[9];

EXEC SQL END DECLARE SECTION

Note that schema for student relation is
 student(rollNo, name, degree, year, sex, deptNo, advisor)

Use in SQL statements: variable name is prefixed with a colon(:)
 e.g., :ROLLNO in an SQL statement refers to rollNo variable
 In HL program, shared variables can be used directly w/o colon.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

71

Handling Error Conditions

The HL program needs to know if an SQL statement has
 executed successfully or otherwise

Special variable called SQLSTATE is used for this purpose
It is a string of 6 characters.

§  SQLSTATE is set to appropriate value by the RDBMS
 run-time system after executing each SQL statement
§  Non-zero values indicate errors in execution

•  Different values indicate different types of error situations
§  SQLSTATE variable must be declared in the HL program
§  HL program needs to check for error situations and handle them

appropriately.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

72

Database Connections in Embedded SQL Approach
DB connection
-  Needs to be established before accessing the DB in the app pgm
-  Specify the particular server and authenticate the application
-  Several connections - to access 2 or more DB servers
-  Only one connection can be active at any time

SQL Commands
 CONNECT TO <serverName> AS <connName>
 AUTHORIZATION <uName, passWd>

 To change to a different server
 SET CONNECTION <connName>

 DISCONNECT <connName>

21/02/20

25

Prof P Sreenivasa Kumar
Department of CS&E, IITM

73

Embedded SQL Statements – An example

Suppose we collect data through user interface into variables
 rollNo, studName, degree, year, sex, deptNo, advisor

A row into the student table can be inserted as follows:

 EXEC SQL INSERT INTO STUDENT
 VALUES (:rollNo,:studName,:degree,

 :year,:sex,:deptNo,:advisor);

Prof P Sreenivasa Kumar
Department of CS&E, IITM

74

Query result handling and Cursors

§  HL languages do not support set-of-records as supported by SQL
§  A cursor is a mechanism which allows us to retrieve one row
 at a time from the result of a query
§  We can declare a cursor on any SQL query
§  Once declared, we use open, fetch, move and close commands
 to work with cursors
§  We usually need a cursor when embedded statement is
 a SELECT query
§  INSERT, DELETE and UPDATE do not need a cursor.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

75

We do not need a cursor if the query results in a single row.

 e.g., EXEC SQL SELECT s.name, s.sex
 INTO :name, :sex
 FROM student s
 WHERE s.rollNo = :rollNo;

§  Result row values name and phone are assigned to HL variables
 :name and :phone, using INTO clause

§  Cursor is not required as the result always contains only
 one row (rollNo is a key for student relation)

Embedded SQL - Cursors (1/2)

21/02/20

26

Prof P Sreenivasa Kumar
Department of CS&E, IITM

76

§  If the result contains more than one row, cursor declaration
 is needed

 e.g., select s.name, s.degree
 from student s
 where s.sex = ‘F’;

§  Query results in a collection of rows
§  HL program has to deal with set of records.
§  The use of ‘INTO’ will not work here
§  We can solve this problem by using a cursor.

Embedded SQL - Cursors (2/2)

Prof P Sreenivasa Kumar
Department of CS&E, IITM

77

Declaring a cursor on a query

 declare studInfo cursor for
 select name, degree
 from student

 where sex = ‘F’;

§  Command OPEN studInfo; opens the cursor and makes it point
 to first record

§  To read current row of values into HL variables:
 FETCH studInfo INTO :name, :degree;
§  After executing FETCH statement cursor is pointed to next

 row by default
§  Cursor movement can be optionally controlled by the

 programmer
§  After reading all records we close the cursor using the

 CLOSE studInfo command.

Cursor name

Prof P Sreenivasa Kumar
Department of CS&E, IITM

78

Dynamic SQL

§  Useful for applications to generate and run SQL statements,
 based on user inputs
§  Queries may not be known in advance

 e.g., char sqlString[] = {“select * from student”};
 EXEC SQL PREPARE runQ FROM sqlString;
 EXEC SQL EXECUTE runQ;

§  sqlString is a C variable that holds user submitted query
§  Typically built by previous statements in the HL program
 using end-user inputs.

§  runQ is an SQL variable that holds the SQL statement.

21/02/20

27

Prof P Sreenivasa Kumar
Department of CS&E, IITM

79

Connecting to Database from HL – Other Approaches

ODBC (Open Database Connectivity), SQL/CLI and JDBC

§  accessing database and data is through an API
§  many DBMSs can be accessed
§  no restriction on number of active connections
§  appropriate drivers are required
§  steps in accessing data from a HL program

•  select the data source
•  load the appropriate driver dynamically
•  establish the connection
•  authenticate the client
•  work with database
•  close the connection.

Prof P Sreenivasa Kumar
Department of CS&E, IITM

80

A comparison of the Approaches
Embedded SQL Approach
+ queries are part of source code, syntax-check at compile time
+ application programs are easy to understand, readable
+ development is eaiser
 - Any changes to queries : recompilation required
 - Complex applications requiring runtime query creation are difficult

API based Approach
+ More flexibility in programming
+ Complex applications can be developed
- Application development is complex, error-prone

DB Language Approach
+ No impedance mismatch
- Programmers need to learn a new language; apps not portable

