
20/10/20

1

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

1

Introduction
Transaction Processing

–  A very important component of any online
 information system / portal

–  E-governance applications are in wide-spread use

Transaction

–  A logical unit of work to be carried out
–  on request by the end-user

– transfer of specified amount of money from one
account to another

– making a reservation for a journey
– issue a book of the library to a user ….

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

2

Assumptions
–  DB Server is a single processor system

–  2-Tier architecture is used: DB Server - Client System

–  Transactions considered in this module

–  Involve a single DB but not multiple DBs
– Not nested – a Txn does not initiate another Txn inside it
– Transactions do not exchange any messages

–  E-commerce Transactions
– Might involve multiple DBs – Merchant, Bank, etc
– Additional issues need to be considered

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

3

Transaction Processing
Input:

 A number of requests for services from the end-users
 submitted concurrently from several input points

Action:
 Carry out the requested services in a consistent manner

–  no seat on a journey is reserved for more than one
person

–  amount debited from the party A is credited to party B

Measure:
 Maintain a reasonably high throughput

–  number of transactions completed per sec

20/10/20

2

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

4

What is a Transaction?
From the end-user point of view

–  a logically sensible/complete piece of work

From the system point of view
–  a sequence of database operations

–  read data from tables on the disk,
 compute/make the updates,
 write back the data to the disk

Doing one transaction at a time, one-by-one:
–  no scope of errors, but slow

Doing multiple transactions at a time
–  Scope for error unless done carefully, good throughput

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

5

ACID Properties
 A - Atomicity
 C - Consistency
 I - Isolation
 D - Durability

Important properties to be satisfied by the overall

system

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

6

Atomicity
•  The work of a transaction should be done entirely as one

unit or not performed at all
–  Carrying out some portion of the work leads to inconsistent

state of the database
–  For example, Rs.1000/-, to be transferred from A to B
–  Debited from A but not credited to B!

–  system encountered on error and stopped in the middle!
– can not be allowed; leads to inconsistency

 If only a part of the work is done and error is encountered
–  ensure that effect of the partial work is not reflected in the

database

•  Responsibility of Recovery Module

20/10/20

3

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

7

Consistency
•  Correctness Assumption:

–  A transaction takes the system from one consistent state to
another consistent state, if executed in isolation

–  Responsibility of the application program developer
–  application programs or transaction programs should be carefully

developed and thoroughly tested

•  During the running of the transaction
–  It is possible that the DB is in an inconsistent state

 Ex: consider money transfer between two bank accounts

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

8

Isolation
•  Let T1,T2,…,Tn be transactions submitted around the

same time
•  Isolation: Though the operations of Ti are interleaved with

those of others, with respect to Ti,
–  any other Tj appears to have either completed before Ti or

started after Ti finished

•  The operations of Tj are completely isolated from
those of Ti and hence have no effect on Ti

•  Responsibility of Concurrency Control module

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

9

Durability
Upon successful completion of a transaction,

System must ensure that its effect is permanently recorded in
the database

Also effect of failed transactions is not recorded
Failures
–  Transaction program failures

–  internal errors – attempted division by zero etc.
–  transaction aborts

–  System crashes
– power failures etc.

Responsibility of Recovery Module

20/10/20

4

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

10

A Note on Transaction Sequencing
•  Suppose T1,T2,…,Tn are transactions submitted around

the same time
–  The transactions may not end in the same order

•  From the system point of view, guaranteeing atomicity
and isolation is important

•  The ending time of each transaction depends on
– data items being accessed
– computation time etc.
– system’s policy for guaranteeing atomicity/ isolation

•  From the submitter’s point of view
– when the transaction finishes matters!

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

11

Concurrency Control Subsystem
Interleaving the operations of transactions

–  essential to achieve good throughput

However, arbitrary interleaving of operations
–  leads to inconsistent database

Certain regulated interleaving so that
–  two transactions involving the use of same data item don’t

conflict with each other

Concurrency control subsystem ensures this

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

12

Recovery Manager Subsystem
System Crash

–  due to various reasons
–  some transactions might have run partially

Transaction Failure
–  transaction program error
–  transaction was aborted by Concurrency Control Module

due to violation of rules
Upon Recovery of system

–  effect of partially-run transactions should not be there
(atomicity)

–  effect of completed transactions must be recorded
(durability)

20/10/20

5

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

13

Recovery Manager and System Log
System Log:

–  Details of running transactions are recorded in the log
–  Important resource for recovering from crashes
–  Always maintained on reliable secondary storage

Log Entries
–  beginning of a transaction
–  update operation details

– old value, new value etc.
–  ending of transaction
–  more details later…

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

14

Transaction Operations
From the DB system point of view, only the read and write

operation of a transaction are important
–  Other operations happen in memory and don’t affect the

database on the disk

–  Notation:
– R(X) - transaction Reads item X
– W(X) - transaction Writes item X

–  Database items – denoted by X, Y, Z, …
– Would be specified rigorously later

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

15

Transaction Operation - Commit
•  A transaction issues a commit command when

–  it has successfully completed its sequence of operations
–  indicates that its effect can be permanently recorded in the db

•  Once the DBMS system allows a transaction to commit
–  System is obliged to ensure that the effect of the transaction is

permanently recorded in the database

•  What exactly happens during commit
–  depends on the specific error recovery method used and the

specific concurrency control method used
–  will become clear later on in the module

20/10/20

6

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

16

Transaction Operation - Abort
When a transaction issues Abort

–  indicates that there is some internal error and
–  transaction wants to terminate in the middle

–  For instance, a division by zero is being attempted by the txn
–  Or the debit account is going negative if we do money transfer etc

System obligation/ responsibility
–  ensure that the partial work done by the transaction has no

effect on the database on the disk

What exactly happens during Abort
–  depends on the specific error-recovery method and the

specific concurrency control method adopted by the system

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

17

DB Model for Transaction Processing
•  Database

–  Consists of several items – blocks / tuples
– Granularity of item – affects the algorithms/protocols

–  Usually taken as a block/page

•  Transactions operate by exchanging data with
DB only
–  They do not exchange messages between them

•  Focus on read/write/commit/abort operations
–  Ignore in-memory operations

•  Transactions are not nested

Transaction Operations
•  Ri(X) – read op of Txn i, reads db item X

–  disk block having X - copied to buffer page - if reqd
–  required value is assigned to program variable X

•  Wi(X) – write op of Txn i, writes db item X
–  disk block having X - copied to buffer page - if reqd
–  update buffer value using program variable X
–  transfer block to disk – immediately or later

•  Ci – commit of Txn i
•  Ai – abort of Txn i

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

18

20/10/20

7

Need for Concurrency Control
•  If operations of transactions are interleaved

arbitrarily
–  Several problems / anomalies arise
–  Can be classified as

– WR anomalies
– RW anomalies
– WW anomalies

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

19

WR Anomalies or Dirty Reads
•  Txn T1 is in progress; updating values in a

column
•  Txn T2 reads a value X updated by T1, uses it

to compute some other quantity, and finishes!
•  T1 for some reason changes X back to its

original value!
–  T2 has read dirty data or intermediate data

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

20

RW Anomalies or Unrepeatable Reads
•  T1 has read a value X and intends to read it

again before changing it
•  Between two reads of X by T1,

 T2 reads X, modifies it and finishes
•  T1 reads X the 2nd time and gets a different

value!
–  Unrepeatable read problem
–  X could be the number of seats available for

reservation

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

21

20/10/20

8

WW Anomalies or Lost Updates
•  T1 reads an item X, reduces it by 10% and

wants to write it
•  T2 reads the same X before it was updated by T1,

increments it by 20% and wants to write it
•  Say write of T1 happens and then that of T2

–  Final value of X is 1.2*X!
–  T1’s Update of X is lost – lost update problem

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

22

Transaction Schedules
•  Sequence of interleaved operations of a Txn set

–  Ops of a Txn T appear in the same order as in T
 R1(X) R2(Y) R3(X) W1(X) W3(X) W2(Y)

•  Serial : R1(X) W1(X) R2(Y) W2(Y) R3(X) W3(X)
–  No interleaving

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

23

T1 T2 T3
R(X)

R(Y)
R(X)

W(X)
W(X)

W(Y)

Time

Serializability
•  Serial schedules

–  No interleaving of operations of different txns
–  Do not cause any concurrency problems
–  But performance (throughput) is low

•  Serializable Schedules
–  Interleaving of operations happens
–  But, in some sense equivalent to serial schedules

– The effect of the interleaving is same as that of some
serial schedule

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

24

20/10/20

9

Conflicting Pairs of Operations
•  In a schedule, a pair of operations are said to be

in conflict if
–  The operations belong to two different txns
–  Both the operations deal with the same DB item
–  One of the two ops is a Write operation

1) R(X) of T1 conflicts with W(X) of T3
2) R(X) of T3 conflicts with W(X) of T1
3) W(X) of T1 conflicts with W(X) of T3

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

25

T1 T2 T3
R(X)

R(Y)
R(X)

W(X)
W(X)

W(Y)

Conflict Equivalence
A schedule S1 is said to conflict-equivalent to S2 if

 The relative order of any conflicting pair of operations is
the same in both S1 and S2

R1(X) R2(Y) R3(X) W1(X) W3(X) W2(Y) (in the table)

 is conflict equivalent to
R1(X) R2(Y) R3(X) W2(Y) W1(X) W3(X)

But is not conflict-equivalent to
R1(X) R2(Y) W1(X) R3(X) W3(X) W2(Y)
(violet pair is out of order)
 Prof P Sreenivasa Kumar,

Department of CS&E, IITM.
26

T1 T2 T3
R(X)

R(Y)
R(X)

W(X)
W(X)

W(Y)

Conflict Serializable Schedules
•  A schedule is called conflict serializable if it is

conflict equivalent to some serial schedule
•  Or, if we can move non-conflicting ops such that

–  The relative order of ops of a Txn is intact and
–  Schedule becomes a serial
–  Schedule in picture

–  is not conflict-serializable
– T1 < T3 disturbs the 2nd pair and
– T3 < T1 disturbs the 1st and 3rd pairs

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

27

T1 T2 T3
R(X)

R(Y)
R(X)

W(X)
W(X)

W(Y)

1

2

3

20/10/20

10

Conflict Serializable Schedules
 Suppose we make a slight change to our example:

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

28

T1 T2 T3
R(X)

R(Y)
R(X)

W(X)
W(X)

W(Y)

T1 T2 T3
R(X)

R(Y)
W(X)

R(X)
W(X)

W(Y)

S1 S2

S2 is conflict-equivalent to serial schedules
 T1,T3,T2 ; T1,T2,T3 and T2,T1,T3

Non-conflicting pairs of ops -- moved to get these serial schedules

Precedence Graph of a Schedule
•  Precedence graph or serialization graph
•  Nodes represent transactions
•  A directed arc exists from Ti to Tj if

–  An operation of Ti precedes an operation of Tj
 and conflicts with it

•  A schedule S is conflict-serializable if and only if
the precedence graph of S is acyclic
–  Topological sorts of the graph give equivalent serial

schedules

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

29

Precedence Graph - Examples
Precedence graph (or serialization graph) examples

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

30

T1 T2 T3
R(X)

R(Y)
R(X)

W(X)
W(X)

W(Y)

T1 T2 T3
R(X)

R(Y)
W(X)

R(X)
W(X)

W(Y)

S1 S2

T1 T2

T3

T1 T2

T3 Conflict-
serializable

Not conflict-
serializable

20/10/20

11

Conflict Serializability and Serializability
•  Conflict serializability is a sufficient condition for

serializability but is not necessary!

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

31

Serial
Conflict-
Serializable

View
Serializable Serializable

View Serilizability
•  A schedule S1 is view-equivalent to S2 if any

–  Ti read the initial value of a db item X in S1,
 it does so in S2 also.

–  Ti read a db item X written by Tj in S1,
 it does so in S2 also.

 and,
–  For each db item X, the txn that wrote the final value

of X is same in S1 and in S2.
•  A schedule is view-serializable

 if it is view-equivalent to some serial schedule
Prof P Sreenivasa Kumar,

Department of CS&E, IITM.
32

Concurrency Control Using Locks
•  Assumptions

–  A transaction requests for a lock on a db item X
before doing either read or write on X

–  A transaction unlocks X after it is done with X
•  Locks - binary locks are assumed

–  Ensure mutual exclusion
–  At any time, at most one transaction holds a lock on a

db item
– Locking scheduler – ensures above and
– Keeps track of who holds lock on what item

 Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

33

20/10/20

12

Locking and Serializability

•  Locking alone
–  Does not guarantee serializability
–  Above schedule continues to be non-serializable

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

34

T1 T2 T3
L(X),R(X),U(X)

L(Y),R(Y),U(Y)
L(X),R(X),U(X)

L(X),W(X),U(X)
L(X),W(X),U(X)

L(Y),W(Y),U(Y)

Two Phase Locking (2PL)
•  2PL Protocol

–  All lock requests of a transaction precede the first
unlock request

–  Or a transaction has a locking phase followed by an
unlocking phase

•  If all transactions follow 2PL protocol
–  The resulting schedules will be conflict-serializable

•  A very important and valuable result!

Prof P Sreenivasa Kumar,

Department of CS&E, IITM.
35

Why 2PL works?
•  S : A schedule of n transactions that follow 2PL
•  Let Ti be the transaction

–  that issues the first unlock request among all txns
•  We will argue that

–  All ops of Ti can be brought to the beginning of S
without passing over any conflicting ops

•  We get S1: (ops of Ti); (ops of other n-1 txns)
–  S1 is conflict-equivalent to S

•  Thus we can show that S is conflict-serializable
Prof P Sreenivasa Kumar,

Department of CS&E, IITM.
36

20/10/20

13

Why 2PL works?
•  Suppose some op of Ti, say Wi(X), is conflicting

with some preceding op, say Wj(X), of Tj in S
 …Wj(X), …, Wi(X),… or we have,
 …Wj(X), …, Uj(X), …, Li(X), …, Wi(X),…

•  As Ti is the first txn to issue an unlock, say, Ui(Y),
–  Ui(Y) precedes Uj(X) in S

•  So, S could be
…Wj(X), …, Ui(Y), …, Uj(X), …, Li(X), …, Wi(X),…

•  Then, Ti is not following 2PL – a contradiction
Prof P Sreenivasa Kumar,

Department of CS&E, IITM.
37

Why 2PL works?
•  The argument is same for any conflicting pairs of

operations involving an operation of Ti

•  Thus, for all ops of Ti, there are no conflicting ops
that precede it.

•  So, beginning with the first op of Ti,
–  We can swap ops of Ti with the previous ops and bring

them all the way to the front of schedule S
•  This can be repeated among the remaining n-1 txs
•  S is conflict-equivalent to a serial schedule

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

38

Possibility of Deadlocks
•  Use of basic 2PL

–  Deadlocks may occur; Deadlock detection and
resolution is adopted

•  To detect
–  A graph called wait-for graph is maintained
–  Each running Txn – a node
–  If Ti is waiting to lock an item held by Tj

– Directed edge from Ti to Tj

•  To resolve
 – select Txn in cycles & abort/resubmit them

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

39

20/10/20

14

System Failures and Recovery
•  Failures

–  Transaction errors – abrupt ending w/o completing
–  CC module may decide to abort a Txn
–  Disk crashes/power failures

•  Log – the principal tool for error recovery
–  Sequential file

–  log entries reach the log on disk in same order as they
are written (an important assumption)

–  Undo Logs / Redo Logs / Undo-Redo logs
–  Each with a corresponding recovery method
 Prof P Sreenivasa Kumar,

Department of CS&E, IITM.
40

Prof P Sreenivasa Kumar
Department of CS&E, IITM

41

Architecture of an RDBMS system

Compiled
 Appln pgms Appln

Pgm
compiler

Query
 compiler

DDL and
other

command
processor

Query
optimizer

RDBMS
Run
Time
System

Trans
Manager

Buffer
Manager

Recovery
Manager

Meta
data

data

Log

Disk
Storage

DDL
Commands
Control
Commands
(DBA)

Ad-hoc
queries
(Analyst)

GUI/parameter
values

Application
programs

Buffer Manager
•  DB item – a disk block
•  Disk blocks – brought into Memory Buffers

–  Modified by running transactions
–  Written to disk when transaction completes

•  We will use more detailed Txn operations
–  Input(A): get disk block with A into buffer
–  Read(A, t): t := A; do Input(A) if reqd; t is local var
–  Write(A, t): A:= t; do Input(A) if reqd
–  Output(A): send block with A from buffer to disk
 Prof P Sreenivasa Kumar,

Department of CS&E, IITM.

20/10/20

15

Log Record Entries
•  <Start T> -- Txn T has begun
•  <End T> -- Txn T has ended
•  <Commit T>

–  T has successfully completed its work
–  Changes made by T must appear in the on-disk DB

•  <Abort T>
–  T has not successfully completed its work
–  Changes done by T shouldn’t be there in the on-disk DB

•  Update records – specific to the logging method
•  Flush Log – Force-write log entries to the disk

Prof P Sreenivasa Kumar,

Department of CS&E, IITM.
43

Undo Logging
Update Type Log Record
 <T, X, V> : Txn T has changed the item X and
 its old value is V

Undo Logging Rules:
 U1: If a transaction T modifies db item X, then the log record

 <T, X, V> must be written to disk before the new value of X
 is written to disk.

 U2 : If a transaction T commits, then its COMMIT log record must
 be written to disk only after all db items changed by T have
 been written to disk, but as soon thereafter as possible.

 Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

44

Undo Logging
When a Txn T Commits,
DB items flow to disk as below:

 for each modified DB item X
 { send update entry <T,X,V> to disk
 write item X to disk }
 write <Commit T> to disk

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

45

20/10/20

16

Undo Logging Example

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

46

Step Action m Mem,A Mem,B Disk,A Disk,B Log
1 <start7T>
2 Read(A,m) 500 500 500 1500
3 m:=m,100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,500>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1500>
8 Flush7Log
9 Output(A) 1600 400 1600 400 1500
10 Output(B) 1600 400 1600 400 1600
11 <commit,T>
12 Flush7Log

Txn T is doing money transfer of Rs 100/- from account A to account B
Consistency Requirement: A+B is same before and after the Txn

Recovery Using Undo Log
Examine Log and Partition Txns into:
 Committed Set : Txns for which <Commit T> exists
 Incomplete Set : Txns for which <Abort T> exists or

 <Commit T> does not exist
Examine Log in the reverse direction
 For every update record <T,X,V>
 T is Committed: Do nothing; All is well due to U2 !
 T is Incomplete: Restore value of X on disk as V

 - T might have changed some items on disk
 - But log entries with old values are on disk due to U1

 Do <Abort T> log entry for each incomplete T & Flush Log
Prof P Sreenivasa Kumar,

Department of CS&E, IITM.
47

Undo Logging: Crash Recovery

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

48

Step Action m Mem-A Mem-B Disk-A Disk-B Log
1 <start	T>
2 Read(A,m) 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,500>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1500>
8 Flush	Log
9 Output(A) 1600 400 1600 400 1500
10 Output(B) 1600 400 1600 400 1600
11 <commit,T>
12 Flush	Log

Crash occurs sometime before the first Flush Log:
DB on disk – unchanged; T - recognized as incomplete;
Log entries of T - unsure if they are on disk; if present - used for “undo”;
no harm! <Abort T> entered; T – resubmitted;

20/10/20

17

Undo Logging: Crash Recovery

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

49

Step Action m Mem-A Mem-B Disk-A Disk-B Log
1 <start	T>
2 Read(A,m) 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,500>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1500>
8 Flush	Log
9 Output(A) 1600 400 1600 400 1500
10 Output(B) 1600 400 1600 400 1600
11 <commit,T>
12 Flush	Log

Crash occurs sometime after the first Flush-Log but before Step 11:
DB on disk - might have changed; T - recognized as incomplete;
Log entries of T - on disk; used for undoing T;
<Abort T> entered; T resubmitted;

Undo Logging: Crash Recovery

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

50

Step Action m Mem-A Mem-B Disk-A Disk-B Log
1 <start	T>
2 Read(A,m) 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,500>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1500>
8 Flush	Log
9 Output(A) 1600 400 1600 400 1500
10 Output(B) 1600 400 1600 400 1600
11 <commit,T>
12 Flush	Log

Crash occurs after Step 11, before Step 12: DB on disk - changed;
<Commit T> - on disk: T - recognized as completed; No action reqd;
<Commit T> - not on disk: T - recognized as incomplete; Log entries of
T used for undoing T; <abort T> entered; T resubmitted;

Undo Logging: Crash Recovery

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

51

Step Action m Mem-A Mem-B Disk-A Disk-B Log
1 <start	T>
2 Read(A,m) 500 500 500 1500
3 m:=m-100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,500>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1500>
8 Flush	Log
9 Output(A) 1600 400 1600 400 1500
10 Output(B) 1600 400 1600 400 1600
11 <commit,T>
12 Flush	Log

Crash occurs after Step 12:
DB on disk - changed;
<Commit T> - on disk: T - recognized as completed; No action reqd;

20/10/20

18

Redo Logging

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

52

Undo Logging:
 Cancels the effect of incomplete Txns and
 Ignores the committed Txns
 All DB items to be sent to disk before Txn can commit
 Results in lot of I/O; called FORCE-writing;

Redo Logging:
 Ignores incomplete Txns and
 Repeats the work of Committed Txns
 Update log entry <T, X, V> : V is the new value

Redo Logging

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

53

Redo Logging Rule:

 Before modifying any database element X on disk,
 it is necessary that all log records pertaining to
 this modification of X, including both the update
 record <T, X, V> and the <COMMIT T> record,
 must appear on disk.

Also called the write-ahead logging (WAL) rule

Items flow like this: Update Log records,
 the commit entry
 and then the changed DB items.

Redo Logging Example

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

54

Step Action m Mem,A Mem,B Disk,A Disk,B Log
1 <start7T>
2 Read(A,m) 500 500 500 1500
3 m:=m,100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,400>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1600>
8 <commit,T>
9 Flush7Log
10 Output(A) 1600 400 1600 400 1500
11 Output(B) 1600 400 1600 400 1600

Txn T is doing money transfer of Rs 100/- from account A to account B
Consistency Requirement: A+B is same before and after the Txn

20/10/20

19

Recovery Using Redo Log
Examine Log and Partition Txns into:
 Committed Set : Txns for which <Commit T> exists
 Incomplete Set : Txns for which <Abort T> exists or

 <Commit T> does not exist
Examine Log in the forward direction
 For every update record <T,X,V>
 T is Incomplete: Do nothing; DB on disk has no effects!
 T is Committed: Unsure if all the effects of T are on disk
 - But log entries with new values are on disk (WAL)
 - Redo the change as per the log entry
 Do <Abort T> log entry for each incomplete T & Flush Log

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

55

Redo Logging: Crash Recovery

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

56

Step Action m Mem,A Mem,B Disk,A Disk,B Log
1 <start7T>
2 Read(A,m) 500 500 500 1500
3 m:=m,100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,400>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1600>
8 <commit,T>
9 Flush7Log
10 Output(A) 1600 400 1600 400 1500
11 Output(B) 1600 400 1600 400 1600

Crash Occurs Before Step 8: <Commit T> not made by T;
T is recognized as incomplete; No action reqd; DB on disk - not
changed (WAL); enter <Abort T>; resubmit T

Redo Logging: Crash Recovery

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

57

Step Action m Mem,A Mem,B Disk,A Disk,B Log
1 <start7T>
2 Read(A,m) 500 500 500 1500
3 m:=m,100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,400>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1600>
8 <commit,T>
9 Flush7Log
10 Output(A) 1600 400 1600 400 1500
11 Output(B) 1600 400 1600 400 1600

Crash Occurs after Step 8:
<Commit T> - on disk; T is redone with the help of Log entries;
<Commit T> not on disk: T is treated as incomplete; No action reqd;
DB on disk - not changed (WAL); enter <abort T>; resubmit T

20/10/20

20

Redo Logging: Crash Recovery

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

58

Step Action m Mem,A Mem,B Disk,A Disk,B Log
1 <start7T>
2 Read(A,m) 500 500 500 1500
3 m:=m,100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,400>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1600>
8 <commit,T>
9 Flush7Log
10 Output(A) 1600 400 1600 400 1500
11 Output(B) 1600 400 1600 400 1600

Crash Occurs after Step 9:
<Commit T> - surely on disk; T is redone with the help of Log entries;
Whether or not T succeeded in writing them!

Undo-Redo Logging

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

59

Undo Logging:
 Cancels the effect of incomplete Txns
 All DB items to be sent to disk before Txn can commit
 Results in a lot of I/O -- I/O can not be “bunched”
Redo Logging:
 Ignores incomplete Txns and
 Repeats the work of Committed Txns
 Buffer might contain the blocks of several committed

 Txns – Buffer utilization might come down!
Undo-Redo Logging:
 Better flexibility; uses more detailed logging

Undo-Redo Logging

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

60

Undo-Redo Logging Update Entry:
 <T, X, U, V> :
 Txn T has changed the db item X and
 its old value is U and new value is V

UR Logging Rule:

Before modifying any database element X on disk, because
of changes made by some transaction T, it is necessary that
the update record <T, X, U, V> appears on disk.

 <Commit T> and disk changes – in any order!

20/10/20

21

Undo-Redo Logging Example

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

61

Step Action m Mem,A Mem,B Disk,A Disk,B Log
1 <start7T>
2 Read(A,m) 500 500 500 1500
3 m:=m,100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,500,400>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1500,1600>
8 Flush7Log
9 Output(A) 1600 400 1600 400 1500
10 <commit,T>
11 Output(B) 1600 400 1600 400 1600

Txn T is doing money transfer of Rs 100/- from account A to account B
Consistency Requirement: A+B is same before and after the Txn

Recovery Using Undo-Redo Logs

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

62

Examine Log and Partition Txns into:
 Committed Set : Txns for which <Commit T> exists
 Incomplete Set : Txns for which <Abort T> exists or

 <Commit T> does not exist

Recovery Method:
 Redo all committed Txns – order – earliest first
 Undo all incomplete Txns – order – latest first

 Necessary to do both!

Undo-Redo Log: Crash Recovery

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

63

Step Action m Mem,A Mem,B Disk,A Disk,B Log
1 <start7T>
2 Read(A,m) 500 500 500 1500
3 m:=m,100 400 500 500 1500
4 Write(A,m) 400 400 500 1500 <T,A,500,400>
5 Read(B,m) 1500 400 1500 500 1500
6 m:=m+100 1600 400 1500 500 1500
7 Write(B,m) 1600 400 1600 500 1500 <T,B,1500,1600>
8 Flush7Log
9 Output(A) 1600 400 1600 400 1500
10 <commit,T>
11 Output(B) 1600 400 1600 400 1600

Crash before <Commit T> is on disk: Txn T – incomplete – undone.
Crash after <Commit T> is on disk: Txn T – completed – redone.

20/10/20

22

Issue of Dirty Data and Commits

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

64

•  Consider Txns T and S:
–  T has modified a db item X and it is doing some

more work
–  Meanwhile, S has read X, completed its work
–  Suppose S is allowed to Commit
–  Now, T has an internal error and decides to Abort
–  S has read ‘dirty’ data
–  But S can’t be undone as it was allowed to commit

•  DB got into a trouble!

Recoverable Schedules

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

65

•  A schedule S is called recoverable if
no Txn T in S commits until all the Txns, that
have written an item T reads, have committed
–  T needs to wait till each of the Txn from which it

has read completes.
–  If all commit, then T can go ahead and commit
–  If at least one such Txn aborts, T also has to abort
–  Cascading Aborts/Rollbacks may occur

•  Recoverability is an essential requirement!!

Recoverability vs Serializability

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

66

•  Orthogonal concepts
•  Both are important for a Transaction System!
•  It is possible that a recoverable schedule is not

conflict-serializable
–  Recoverability defn has no restrictions on locking

•  It is also possible that a serializable schedule is
not recoverable
–  Serializability definition has no restriction on

committing

20/10/20

23

Cascadeless Schedules

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

67

•  A recoverable schedule
–  may result in cascading rollbacks or aborts

•  A schedule is called cascadeless or
 ACR (avoiding cascading rollbacks) if

–  in the schedule, Txns read only values written by
committed Txns

•  Every ACR schedule is recoverable
–  Such a Txn surely commits only after all the Txns it

has read from commit; in fact it does not read values
written by uncommitted Txns.

Strict Schedules

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

68

•  A schedule is called strict if in the schedule
–  a Txn neither reads nor writes an item X until the last

Txn that writes X has terminated
•  Strict 2PL:

–  A Txn must not release any write locks until the Txn
has either committed or aborted and the commit or
abort log record has been written to disk

–  Results in strict schedules
–  Strict schedules are cascadeless and serializable

Transactions in SQL

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

69

•  Important parameters of Transactions in SQL:
–  Can be set for each transaction
–  Access-Mode:

– Read-Only; Read-Write (default)
–  Isolation Level: Default is serializable

– Other lower isolation levels are also available
– Meant for running transactions that collect statistics
– For isolation level “uncommitted” – Read-Only Txns only

•  Each transaction ends with Commit or Rollback

20/10/20

24

Transaction isolation levels

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

70

Level Dirty
Reads

Unrepeatable
Reads Phantoms

Read
Uncommitted

May Be May Be May Be

Read
Committed

No May Be May Be

Repeatable
Read

No No May Be

Serializable No No No

Phantom Records

Prof P Sreenivasa Kumar,
Department of CS&E, IITM.

71

•  Phantom records problem:
–  Txn T1 has selected a set of tuples based on a certain

condition C, say “student.Dept = 5”
–  And is working with them, say get max(marks)
–  Txn T2 updated the DB with a new tuple that satisfies

C after T1 started
–  Can cause T1 to be incorrect
–  Such rows are called phantom rows

– Come into picture out of the blue…
–  “index locking” needs to be adopted

