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Concepts Covered:

(1 FCN/Deconv NN Training
[ Pixelwise Entropy Loss
JDice Loss

CONCEPTS COVERED

L1 Image Restoration

O Image Restoration Network

1 Low dose C.T. denoising




Training for Sem Segmentation
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Dice Loss

O Another popular loss function for image segmentation tasks is based on the Dice
coefficient.

U A measure of overlap between two samples.

O This measure ranges from O to 1 where a Dice coefficient of 1 denotes perfect and
complete overlap.
Di 2|A N B|
ce = ——————
|A] + |B|

O |ANB| represents the common elements between sets A and B
O |A| represents the number of elements in set A (and likewise for set B)

O |ANB| is the element-wise multiplication between the prediction and target
mask, and then sum the resulting matrix
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Image Restoration

O A general Image degradation operation consists of a degradation operator followed by additive noise.

O Image restoration is fundamental problem in image processing research.

O There are different type of restoration process like: deblurring, denoising, super resolution, inpainting
etc depending on the degradation function H.

0 Image restoration becomes a problem of image denoising if degradation operator is an identity matrix.
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Image Denoising

Clean Image




Image Restoration Network



Image Restoration Network

O The network contains layers of symmetric convolution (encoder) and deconvolution
(decoder).

0 Convolutional layers successively down-sample the inputiimage content into a small
size abstraction.

L

Deconvolutional layers then up-sample the abstraction back into its original resolution.

O The convolutional layers act as the feature extractor, which capture the abstraction of
image contents while eliminating noises/corruptions

L

The deconvolutional layers are then combined to recover the details of image contents.

U

Deconvolutional layers associate a singleinput activation with multiple outputs.

Deconvolution is usually used as learnable up-sampling layers.




Comparison with Fully Convolutional Network
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Image Restoration Network




Why Skip Connections?

O As the network goes deeper image details are lost, making
it difficult for deconvolution recovering them.

O The feature maps passed by skip connections carry much
image detail, which helps deconvolution to recover an
improved clean version of the image.

O The skip connections also achieve benefits on back-
propagating the gradient to bottom layers, which makes
training deeper network much-easier.




Why Skip Connections?
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Training the Restoration Network

O Learning the end-to-end mapping from corrupted images to clean images needs to estimate the
weights 0O represented by the convolutional and deconvolutional kernels.

 Specifically, given a collection of N training sample pairs {Xi, Y}, where X, is a noisy image and Y,
is the clean version as the ground truth. We can minimize the following Mean Squared Error (MSE):

1 N
L@ =5 ) IIF(X; @)= Yil?
=1

O Traditionally, a network can learn the mapping from the corrupted image to the
clean version directly.

O However, it has been reported the if the network learns for the additive
corruption from the input image then the network converges fast to a minima.




Low Dose CT denoising

O X-RAY computed tomography (CT) has been widely utilized
in clinical, industrial and other applications.

O Due to the increasing use of medical CT, concerns have
been expressed on the overall radiation dose to a patient.

U We can lower the radiation dose of a CT image by lowering
the operating current, or shortening the exposure time.

U This type of lower dose CT image is known as Low dose CT
images.

U However doing so results in distorting the image.

O A example of low dose CT image distorted with photon
noise is given.




Low Dose CT Denoising

U Due to presence of noise low
dose CT images some time
loose their diagnosis value

O Many important nodules are
no more visible in Low dose
CT image.

Normal dose CT image




Low Dose CT Denoising

Deep Learning network can be applied to solve this real life crucial problem. A network with architecture of previous
network can effectively remove noise from this low dose CT images and can recover the visibility.

.CONV .DeCONV 'ReLU




Low Dose CT Denoising

Low Dose Restored Normal Dose
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Generative Model

d Big Animal.

d Has four legs.
J Big ears.

J Long trunk.
A pair of tusks

ad ... N

Latent Voariables




Traditional Autoencoder

[ Maps an input image via an encoder to a deterministic latent code

(J Decoder maps the latent code to reconstruct the input image

— e

Smile : 0.99
Skin Tone : 0.85
Gender: -0.81

Beard: 0.75
Glasses: 0.001
Hair Color: 0.68

s —_—

Latent Vector




Traditional Autoencoder : Limitations

O In pursuit of compact representations,.auto-encoders
tends to create a latent space which'is not continuous

 As a generative model, we need a latent space from
which we can smoothly sample and yet get realistic
reconstructions

1 Auto-encoders do not allow such easy interpolations in
latent space




Traditional Autoencoder : Limitations




Traditional Autoencoder : Limitations




Traditional Autoencoder : Limitations

] Distinct cluster for each class

e .a [ Not easy.for decoder to

3 Far ikl g 5 reconstruct since we need

1;%7&,% s different distinct codes for
Lo each image




Traditional Autoencoder : Limitations

d Discontinuous latent space means
decoder never reconstructed from

AR | such unexplored points

- O If we sample from such points,
Ezi%% | decoder will give unrealistic output
i S0 Aim: Try to make latent space

continuous yet maintain the class
specific compactness




Variational Autoencoder Intuition

1 Instead of deterministic latent code we might be interested
to learn a distribution over the latent code

d For example, it is more intuitive to determine a range of
“smile” value for a face instead of an absolute “smile” value

 Instead of deterministic code, we will now output the mean
and standard deviation of each component of the vector
(assuming each component is independent of each other)




Autoencoder Intuition vs. VAE Latent Space

Smile (discrete value) Smile (probability distribution)
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Variational Autoencoder Intuition

d With this setup we can represent each latent factor as a
probability distribution

J We can sample from such distribution

d Then the sampled vector can be passed through Decoder
(Generator) to generate an image




Variational Autoencoder Intuition

Smile: =t /\ i
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Skin tone: <+ ——=
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Variational Autoencoder Intuition

(d Mean vector controls where the encoding of an
input should be centered around

[ Standard deviation controls the “area”, how much
from the mean the encoding can vary

[ As encodings are generated at random from inside a
hyper-sphere (distribution).decoder learns that not
only is a single point in latent space referring to a
sample of that class, but all nearby points refer to
the same as well




Variational Autoencoder Intuition

1 For smooth interpolations, ideally,
we want overlap between samples
that are not very similar too, in e
order to interpolate between £ 4

classes.
Our goal Network might

O However u and o can take any converge to

value and learn to cluster the mean
vectors of different classes far apart
(and minimize o) to reduce

uncertainty for the Decoder




Variational Autoencoder Intuition

 In order to enforce smooth transition we will apply
Kullback—Leibler divergence (KL divergence) between the
distribution of encoded vectors and a prior distribution
asserted on latent distribution space

KL divergence between two probability distributions simply
measures how much they diverge from each other.

d Minimizing the KL divergence here means optimizing the
probability distribution parameters (1 and o) to closely
resemble that of the target distribution.




Variational Autoencoder Intuition

 In VAE, it is usually assumed that the distribution of the
latent space follows a zero mean Normal distribution with
diagonal covariance matrix (each component is independent
of the other)

KL divergence loss will encourage encodings from different
inputs to be clustered about the center of the latent space

 If network creates clusters in specific regions then KL
divergence loss will penalize such clusters formation




Variational Autoencoder Intuition

1 But, only KL loss results in a latent space encodings densely
placed randomly, near the center of the target distribution,
with little regard for similarity/dis-similarity of input samples.

[ The decoder finds it impossible to decode anything
meaningful from this space, simply because there really isn’t
any structure/context specific meaning.




Variational Autoencoder Intuition

Latent space after training on
MNIST when only optimized
with KL loss




Variational Autoencoder Intuition

J Optimizing reconstruction loss + KL

divergence loss results in the | «4:;5;’53; i
generation of a latent space which , Wl e
maintains the similarity of nearby N e
encodings on the local scale via W

clustering

[ Yet globally, is very densely packed
near the latent space origin




Variational Autoencoder Intuition

KL Divergence +
Reconstruction Loss

Reconstruction Loss KL Divergence Loss
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Variational Autoencoder Intuition

1 Instead of deterministic latent code we might be interested
to learn a distribution over the latent code

d For example, it is more intuitive to determine a range of
“smile” value for a face instead of an absolute “smile” value

 Instead of deterministic code, we will now output the mean
and standard deviation of each component of the vector
(assuming each component is independent of each other)




Variational Autoencoder Intuition

d With this setup we can represent each latent factor as a
probability distribution

J We can sample from such distribution

d Then the sampled vector can be passed through Decoder
(Generator) to generate an image




Variational Autoencoder Intuition

1 For smooth interpolations, ideally,
we want overlap between samples
that are not very similar too, in e
order to interpolate between £ 4

classes.
Our goal Network might

O However u and o can take any converge to

value and learn to cluster the mean
vectors of different classes far apart
(and minimize o) to reduce

uncertainty for the Decoder




Variational Autoencoder Intuition

 In order to enforce smooth transition we will apply
Kullback—Leibler divergence (KL divergence) between the
distribution of encoded vectors and a prior distribution
asserted on latent distribution space

KL divergence between two probability distributions simply
measures how much they diverge from each other.

d Minimizing the KL divergence here means optimizing the
probability distribution parameters (1 and o) to closely
resemble that of the target distribution.




Variational Autoencoder Intuition

 In VAE, it is usually assumed that the distribution of the
latent space follows a zero mean Normal distribution with
diagonal covariance matrix (each component is independent
of the other)

KL divergence loss will encourage encodings from different
inputs to be clustered about the center of the latent space

 If network creates clusters in specific regions then KL
divergence loss will penalize such clusters formation




Variational Autoencoder Intuition

KL Divergence +
Reconstruction Loss

Reconstruction Loss KL Divergence Loss




Variational Autoencoder Intuition

[ This equilibrium is attributed to cluster-forming nature of the
reconstruction loss, and the dense packing nature of the KL loss

1 It means when randomly generating, if you sample a vector
from the prior distribution, P(z) of latent space, the Decoder
will successfully decode it.

d For interpolation, since thereis no sudden gap between
clusters, but a smooth mix of features, a Decoder can
understand.




Variational Autoencoder : Variational Inference

O In VAE, we assume that there is a latent (unobserved) variable, z,
generating our observed random variable, x.

|
&S

O Our aim: To compute the posterior = P(z|x) =

QP(x) = [Px|2)P(2)d7 mmmmp

P(X|Z)P(2)
P(x)




Variational Autoencoder : Variational Inference

1 Let’s assume there is a tractable distribution Q, such that
P(z|x) = Q(z|x)

d We want Q(+) to be in the family of tractable distributions
(Gaussian for example) such that'we can play around with its
parameters to match P(z|x)

[ So, we will aim towards minimizing KL divergence of P(z|x)
with respect to Q(z|x)

(d Our objective: minimize KL(Q(z|x) || P(z|x))




KL Divergence

KLQ(zlx) || P(z]%))= % Q(x)log L2

P(x)

Distribution P Distribution Q O 1 2
Binomial withp=04,N=2 Uniform with p =1/3




KL Divergence

P(x)
Q(x)

KL(PIIQ) = ) P()log
x P(x) | 0.36 | 0.48 | 0.16

0.36 0.48 0.16
= O.3610g (@) + 0.48 log (m) + 0.16 log <m) =0.0414 Q(X) 0.33/0.33/0.33

Q(x)
P(x)

KLQ@QIIP) = ) Q()log




KL Divergence

Minimize

KL(Q(z[x)}|P (z]x))

- N\
H uf, L s Es=—s >}




KL Divergence

KL(Q(z|x)||P(z|x))

3 | P(x,z)
= ) QG log =




KL Divergence

= =N ) 109 222 — 1ogp(x)
Z Q)

B P(x,z)
= — ZZ: Q(z|x) logQ(le) + ZZ: Q(z|x) log P(x)

T ZQ(zlx) logp(x'z) + logP(x)
g Q(z|x)

|x




KL Divergence

(x,2)

KLQUADIIP(1) = = )" QGal)logy o + logP ()

!

log P(x) = KLQ(I0)||PI®). + ) Q(z1x)log

|x

P(x,z)
Q(z|x)




KL Divergence

P(x,z)
Q(z]x)

log P(x) = KLQQzI)||[P(z1)) + ) Q(z]x) log

[ Since, x is given, LHS is constant.

[ Aim is to minimize KL(Q(zlx)||P(Z|x))
P(x,z)
Q(z|x)

O This is same as maximizing )., Q(z|x) log
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Variational Autoencoder : Variational Inference

O In VAE, we assume that there is a latent (unobserved) variable, z,
generating our observed random variable, x.

|
&S

O Our aim: To compute the posterior = P(z|x) =

QP(x) = [Px|2)P(2)d7 mmmmp

P(X|Z)P(2)
P(x)




Variational Autoencoder : Variational Inference

1 Let’s assume there is a tractable distribution Q, such that
P(z|x) = Q(z|x)

d We want Q(+) to be in the family of tractable distributions
(Gaussian for example) such that'we can play around with its
parameters to match P(z|x)

[ So, we will aim towards minimizing KL divergence of P(z|x)
with respect to Q(z|x)

(d Our objective: minimize KL(Q(z|x) || P(z|x))




KL Divergence

Minimize

KL(Q(z[x)}|P (z]x))

- N\
H uf, L s Es=—s >}




KL Divergence

(x,2)

KLQUADIIP(1) = = )" QGal)logy o + logP ()

!

log P(x) = KLQ(I0)||PI®). + ) Q(z1x)log

|x

P(x,z)
Q(z|x)




KL Divergence

P(x,z)
Q(z]x)

log P(x) = KLQQzI)||[P(z1)) + ) Q(z]x) log

[ Since, x is given, LHS is constant.

[ Aim is to minimize KL(Q(zlx)||P(Z|x))
P(x,z)
Q(z|x)

O This is same as maximizing )., Q(z|x) log




KL Divergence

P(x,z)
Q(z]x)

log P(x) = KLQQzI)||[P(z1)) + ) Q(z]x) log

[ Since, x is given, LHS is constant.

[ Aim is to minimize KL(Q(zlx)||P(Z|x))
P(x,z)
Q(z|x)

O This is same as maximizing )., Q(z|x) log

7

Variational Lower Bound




Variational Lower Bound

P(x,z)
Q(z]x)

log P(x) = KLQQzI)||[P(z1)) + ) Q(z]x) log

KL(Q(z|x)||P(z]x)) = 0




Variational Autoencoder : Variational Inference

[ Our initial objective: minimize KL(Q(z|x) || P(z|x))

P(x,z)
Q(z]x)

Variational Lower Boand

O Which is same as maximizing )., Q(z|x)log

» So, aim now is: maximize

P(x|z)P(z)
= Y aGlog 2




Variational Autoencoder : Variational Inference

Maximize




Variational Autoencoder : Variational Inference

Maximize
P(x, P(X|Z)P
L= 2,00 logto2 = 3, Q(z|x) log “oEE




Variational Autoencoder : Variational Inference

Maximize
P(x, P(X|Z)P
L=7Y,0(z|x) logle?) = Y 0(z|x)log <Q|(Zl)x)(z>
P(z)

= Y0Q(z|x)log P(x|z) + Y.Q(z]x) log

Q(z|x)




Variational Autoencoder : Variational Inference

Maximize
P(X|Z)P(2)

P(x,
(xZ) — ZZ Q(le) log Q(le)

Q(z|x)
_ 1 198 e
_ ;Q(le) ng(x|z? +E]Q(Z|x) %500 |

| |
EQ(le) log P(XlZ) _KL(Q(le) || P(Z) )

L= ),0(z|x)log




Variational Autoencoder : Variational Inference

Maximize
P(X|Z)P(2)

P (X,
o2 = 3,00 leg =

Q(z|x)
_ log P 1% 5y
_ \ZQ(le) og (x|z? +LZQ(Z|X) OgQ(le) J

| |
EQ(le) log P(XlZ) _KL(Q(le) || P(Z) )

L= ),0(z|x)log

» Translate the loss functions into an auto-encoder
architecture.




Variational Autoencoder : Network Realization

d We have the following graphical U Realize both P(:) and Q(-) with
model neural networks




Variational Autoencoder : Network Realization

d The z codes we get here should
match with the distribution of
P(z) and we can decide what X==1Q@zlx) ||z| P(x|z) ==X
prior distribution to choose for
P(2).

J Usual practice is to selecta
Normal distribution N (0, I').for
the prior.




Variational Autoencoder : Network Realization

1 Instead of generating a fixed code for an input, Encoder now
gives parameters of the distribution of the latent code.

 For a given input x, we need to generate mean vector u(x)
and diagonal covariance matrix, 2 (x).

J We need to SAMPLE a code from that latent distribution and
pass forward to the Decoder.




Variational Autoencoder : Network Realization

Define
latent state
distributions

Mean Sample from
distributions ,-;.‘r




Variational Autoencoder : Network Realization

Sampling breaks computati Mh
and
hinders Gradient I&n ased




Variational Autoencoder : Reparameterization Trick

O We randomly sample € from a unit Gaussian, and then shift the randomly sampled ¢
by the latent distribution's mean p and scale it by the latent distribution's variance o.

‘ Deterministic

Re parameterlzatlon
z=pu+ogQ@ce
‘ Random - Q(zlx) /' \
o 0

Decoder T Decoder

Encoder Encoder




Variational Autoencoder : Reparameterization Trick

Decoder Re-parameterization enables

oy l T

d Optimization of the parameters
) 0 z=putoQe of the distribution.
“/
dWl dzvx 3 Still maintaining the ability to
o0 e - v randomly sample from that
' distribution.

|

Encoder




Variational Autoencoder : Coding the Cost Functions

Eq(z1x) log P(x|z) — KL(Q(z|x) [[P(2))




Variational Autoencoder : Coding the Cost Functions

0 Maximizing Egz|x) log P(x|z) is a maximum likelihood estimation.
It is observed all the time in discriminative supervised model, for
example Logistic Regression, SVM, or Linear Regression.

O In the other words, given an input z and an output x, we want to
maximize the conditional distribution P(x|z) under some model
parameters.

0 So we could implement it by using any classifier with input z and
output x, then optimize the objective function by using for
example log loss or regression loss.




Variational Autoencoder : Coding the Cost Functions

O We want to minimize the second component of the loss, KL((Q(z|x) || P(2))

 We assumed that P(z) follows N(0, 1), so we have to push Q(z|x) towards
N(0,1)

Assuming P(z) to be N(0, 1) has 2 advantages:

[ Easy to sample latent vectors from N (0, 1) when we want to generate
samples.

O Assuming Q(z|x) to be a Gaussian distribution with parameters,
u(x) and 2(x) allows KL(Q(z|x) || P(z)) to be in a closed form and
easy for optimization.
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Variational Autoencoder : Variational Inference

[ Our initial objective: minimize KL(Q(z|x) || P(z|x))

P(x,z)
Q(z]x)

Variational Lower Boand

O Which is same as maximizing )., Q(z|x)log

» So, aim now is: maximize

P(x|z)P(z)
= Y aGlog 2




Variational Autoencoder : Variational Inference

Maximize
P(x, P(X|Z)P
L=7Y,0(z|x) logle?) = Y 0(z|x)log <Q|(Zl)x)(z>
P(z)

= Y0Q(z|x)log P(x|z) + Y.Q(z]x) log

Q(z|x)




Variational Autoencoder : Variational Inference

Maximize
P(X|Z)P(2)

P(x,
(xZ) — ZZ Q(le) log Q(le)

Q(z|x)
_ 1 198 e
_ ;Q(le) ng(x|z? +E]Q(Z|x) %500 |

| |
EQ(le) log P(XlZ) _KL(Q(le) || P(Z) )

L= ),0(z|x)log




Variational Autoencoder : Variational Inference

Maximize
P(X|Z)P(2)

P (X,
o2 = 3,00 leg =

Q(z|x)
_ log P 1% 5y
_ \ZQ(le) og (x|z? +LZQ(Z|X) OgQ(le) J

| |
EQ(le) log P(XlZ) _KL(Q(le) || P(Z) )

L= ),0(z|x)log

» Translate the loss functions into an auto-encoder
architecture.




Variational Autoencoder : Network Realization

d We have the following graphical U Realize both P(:) and Q(-) with
model neural networks




Variational Autoencoder : Network Realization

d The z codes we get here should
match with the distribution of
P(z) and we can decide what X==1Q@zlx) ||z| P(x|z) ==X
prior distribution to choose for
P(2).

J Usual practice is to selecta
Normal distribution N (0, I').for
the prior.




Variational Autoencoder : Network Realization

1 Instead of generating a fixed code for an input, Encoder now
gives parameters of the distribution of the latent code.

 For a given input x, we need to generate mean vector u(x)
and diagonal covariance matrix, 2 (x).

J We need to SAMPLE a code from that latent distribution and
pass forward to the Decoder.




Variational Autoencoder : Network Realization

Define
latent state
distributions

Mean Sample from
distributions ,-;.‘r




Variational Autoencoder : Network Realization

Sampling breaks computati Mh
and
hinders Gradient I&n ased




Variational Autoencoder : Reparameterization Trick

O We randomly sample € from a unit Gaussian, and then shift the randomly sampled ¢
by the latent distribution's mean p and scale it by the latent distribution's variance o.

‘ Deterministic

Re parameterlzatlon
z=pu+ogQ@ce
‘ Random - Q(zlx) /' \
o 0

Decoder T Decoder

Encoder Encoder




Variational Autoencoder : Reparameterization Trick

Decoder Re-parameterization enables

oy l T

d Optimization of the parameters
) 0 z=putoQe of the distribution.
“/
dWl dzvx 3 Still maintaining the ability to
o0 e - v randomly sample from that
' distribution.

|

Encoder




Variational Autoencoder : Coding the Cost Functions

Eq(z1x) log P(x|z) — KL(Q(z|x) [[P(2))




Variational Autoencoder : Coding the Cost Functions

0 Maximizing Egz|x) log P(x|z) is a maximum likelihood estimation.
It is observed all the time in discriminative supervised model, for
example Logistic Regression, SVM, or Linear Regression.

O In the other words, given an input z and an output x, we want to
maximize the conditional distribution P(x|z) under some model
parameters.

0 So we could implement it by using any classifier with input z and
output x, then optimize the objective function by using for
example log loss or regression loss.




Variational Autoencoder : Coding the Cost Functions

O We want to minimize the second component of the loss, KL((Q(z|x) || P(2))

 We assumed that P(z) follows N(0, 1), so we have to push Q(z|x) towards
N(0,1)

Assuming P(z) to be N(0, 1) has 2 advantages:

[ Easy to sample latent vectors from N (0, 1) when we want to generate
samples.

O Assuming Q(z|x) to be a Gaussian distribution with parameters,
u(x) and 2(x) allows KL(Q(z|x) || P(z)) to be in a closed form and
easy for optimization.




Variational Autoencoder : Coding the Cost Functions

KL(N(u(x),2(x)) [| N(0,1)) = 0.5 = [tr(Z(x)) + p(x)" u(x) —k —logdet(Z(x)))]

> kis dimension of the latent code
> tr(2.(x)) is trace of a covariance matrix

» X(x) is the diagonal covariance matrix. So, its determinant
can be computed as product of its diagonal entries.

» In practice X(x) can be predicted only as vector containing
the diagonal entries




Variational Autoencoder : Coding the Cost Functions

KL(N(u(x),2(x)) [ N(0,1) = 0.5 * [tr(Z(x) + p(x)" p(x) —k —logdet(Z(x)))]

— 0.5« z 502 + Z(,u(x)k)z 4 z 1 —log HkZ(X)k]
Lk k k

— 0.5 % z X(x), + E(M(x)k)z + 2 1-— z logZ(x)k‘
Lk k k k

= 0.5 + Z[Z(x)k F(u())? + 1+ log Z(x)y]




Variational Autoencoder : Coding the Cost Functions

In practice, we predict log X(x) instead of only X(x) since
it is numerically better to exponentiate a value during run
time rather than taking log.

KL(N(u(x),2(x)) || N0, 1))

= 0.5 * z[exp(Z(x)k) +(x))? + 1+ log Z(x)y]




Variational Autoencoder :After training

Visualizing Reconstructions:

npu
H"E Reconstructions




Variational Autoencoder :After training

Visualizing Reconstructions:

npu
H"E Reconstructions

Using as Generative Model

[ Sample a random vector from N.(0,1)

O Feed forward the vector through the pre-trained Decoder

E n n E n n Generated Samples




Variational Autoencoder : Generative Model

VAE generating novel faces after trained
on CelebA dataset




Variational Autoencoder : Vector Arithmetic

How do you interpolate between two samples ?

[ Take a face image with glasses and find the latent code (C;)

[ Take another face without glasses and find latent code (C5)

4 C; = C; - C, gives code for glasses Face without glasses

[ Take a new face without glasses and find latent code (C,)

Q C; + C, will overlay glasses on this new image

O Such transitions are possible only if the latent space is
continuous instead of clusters




Variational Autoencoder : Generative Model

man man woman
with glasses without glasses without glasses

woman with glasses




Generative Adversarial Network




Implicit Generative Models

 Implicitly defines a probability distribution.

(d Sample code vector, z, from a simple and fixed
distribution (e.g. spherical Gaussian or Uniform).

A generator network is trained as a differentiable
network to map z to.a data point x.




Implicit Generative Models

unit gaussian

generative
model
(neural net)

generated disgtribution

kive data distribution

p(x)

®. [loSs] .

Image space

image space




Implicit Generative Models

L Blue Region shows areas with high probability of real image.

U Black dots represent actual images from true distribution p(x).

L Generative model (parameterized by 0) also describes a function p(x)
» Takes points (latent codes) from an unit Gaussian distribution.
» Maps those points to a generator distribution.
» 0 can be optimized to reduce KL (p(x)||p(x))

» Green distribution starts randomly then aligns with blue distribution




GAN Overview

J In GAN the main idea is to have two neural networks
compete with each other.

1 Its Game Theoretic Approach.

» Generator network samples a z vector and tries to
produce realistic samples.

» Discriminator network tries to distinguish fake
samples (from Generator) and real samples.




GAN Overview

O Assume D(x) represents probability of belonging to real class for a
given sample, x

O Discriminator will try to increase D (x) for real samples and decrease
D (x) for fake/generated samples

d Generator will try to increase D (x) for generated samples

1 Real)

O(fake)

1(real)

D

(discriminator

— Discriminator training
— Generator training

fake image




GAN Overview

1{Rea|)

O(fake)
1(rea|)

— Discriminator training
~ Generator training

g G
‘ (generator)

Z N(0,1)

fake image

Training the Discriminator

mgx V(D,G) = Expyppn) 108 DO+ E, oy ) [log{1 — D(G(2))}]
\ ] !

| I

Maximize probability for real Minimize probability for generated




GAN Overview

1(Rea|)
| D 0
¢ |(discriminator (fake)
1(real)

— Discriminator training
— Generator training

£:NOD) fake image

Training the Generator
mGln V(D,G) = Ez~pz(z) [log{1 — D(G(Z))}]
= max E;p,(2)llogD(G (Z))]'
[

Maximize probability for generated




GAN Training : Alternate updates of D and G

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z'!), ..., z'"™) } from noise prior p,(z).
e Sample minibatch of m examples {z'', ..., ™)} from data‘generating distribution
.”dalu[m]r

e Update the discriminator by ascending its stochastic gradient:

m

Vo, ﬁ ; [lug,D () +10g (1 0 (zf'i)))] .

1

end for
e Sample minibatch of m noise samples {z'") ... 2"} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

m

vﬂ"i ;lng (1 — D (G’ (zi'}))) :

end for




GAN Applications: High Resolution Image Synthesis




GAN Applications: Image to Image Translation

BW to Color

Labels to Street Scene Labels to Facade

input output
Day to Night

output
Edges to Photo




GAN Appl Ications: Video to Video Translations

m
_ 1

-_'_




GAN Applications: image Inpainting

Input: Masked/damaged image, I;, with binary mask, M
Intermediate Output : Image, [, after iterative optimization for z
Final Output: Inpainted image, f; =M *xI;+ (1 —M)*I,;

Stage 1: Pre-training a GAN

N

o

Fake

Real/|
Fake

Stage 2. lterative search for z

d(Perceptual) _ d(log[1 -D(G(2))])
dz ~ az

r ay S5\
— Zlmt e —

G(2)
0. Eml
. ;,,l,LfJReaVFake
(7R VI

d(Contextual) i
dz " oz




GAN Applications: Image Inpainting
PROPOSED IMAGE INPAINTING (5X SPEEDUP)

Nearest Neighbour Search for Better z Initialization
- Sample a pool of z vectors and pass through pre-trained G

- Data + Structure loss = L,,,,(-) between masked, I; & pooled, Izi)

- Select z;,;; as initial solution, s.t: z;,,;p.= argmin L,,, (Id, G(z‘))
!
4

=

unmasked pixels info




lications: Image Inpainting

GAN A

-




GAN Applications: Video Inpainting

PROPOSED VIDEO INPAINTING (80X SPEEDUP)

» Reuse Noise Priors

- Exploit temporal redundancy
- Temporal neighbours should have close z representaitons

Reuse to Initiahize l

nit P i ;
) (e
Frame =t-1 Frame=1t

+ Group Consistency Loss
- Penalize if a local temporal neighbourhood of W frames differ
- Helps in reducing sudden flickering effects across frames
-Loss = |z —z;|Vie[1,2u WEV/je[l, 2,..,W]

1 |2g - 24] l LG-z,.,\l
- [Z({ina
X

= ot
4 121 Zad 'lv
(| | 2fmat| @ | 2fmet




GAN Applications: Video Inpainting
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