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Concepts Covered:

 CNN

 CNN Architecture

 Convolution Layer

 Receptive Field

 Nonlinearity

 Pooling
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1 D Convolution

2 D Convolution



Finite Convolution 
Kernel

Feature at a point is local in nature
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Finite Convolution 
Kernel
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2 D 
Convolution

6 x 6 Image

3 x 3 Kernel



2 D 
Convolution

0 Padding

Flipping
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Stride
No. of steps the kernel is moved during convolution 

7 x 7 Input Image
3 x 3 Kernel

Stride =1
Stride =2



CNN 
Architecture
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• Color image has 3 dimensions: height, width and depth (depth is the 
color channels i.e RGB)

• Filter or kernels that will be convolved with the RGB image could also 
be 3D

• For multiple Kernels: All feature maps obtained from distinct kernels 
are stacked to get the final output of that layer

Convolution Layer: 3 D 
Convolution



• The kernel strides over the input 
Image.

• At each location  compute

collect them in the feature map. 

• The animation shows the sliding 
operation at 4 locations, but in reality 
it is performed over the entire input.

Animation:- Arden Dertat
https://towardsdatascience.com/applied-deep-learning-
part-4-convolutional-neural-networks-584bc134c1e2 
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3 D Convolution-
Visualization



• Red and green boxes are two different 
featured maps obtained by convolving 
the same input with two different 
kernels. The feature maps are stacked 
along the depth dimension as shown.

Figure: Arden Dertat
https://towardsdatascience.com/applied-deep-learning-
part-4-convolutional-neural-networks-584bc134c1e2 

3 D Convolution-
Visualization



• An RGB Image of size 
32X32X3

• 10 Kernels of size 5x5x3

• Output featuremap of size 
32x32x10

3 D Convolution-
Visualization

Figure: Arden Dertat
https://towardsdatascience.com/applied-deep-learning-
part-4-convolutional-neural-networks-584bc134c1e2 



• ReLU is an element wise operation (applied per pixel) and 
replaces all negative pixel values in the feature map by zero

Nonlinearity

Figure: Arden Dertat
https://towardsdatascience.com/applied-deep-learning-
part-4-convolutional-neural-networks-584bc134c1e2 



• Replaces the output of a node at certain locations with a 
summary statistic of nearby locations.

• Spatial Pooling can be of different types: Max, Average, Sum etc.

• Max Pooling report the maximum output within a rectangular 
neighborhood.

• Pooling helps to make the output approximately invariant to 
small translation.

• Pooling layers down sample each feature map independently, 
reducing the height and width, keeping the depth intact.

• In pooling layer stride and window size needs to be specified

Poolin
g



• Figure below is the result of max pooling using a 2x2 window and 
stride 2. Each color denotes a different window. Since both the 
window size and stride are 2, the windows are not overlapping

3 2 5 6

8 9 5 3

4 4 6 8

1 1 2 1

9 6

4 8
Max pool with 2x2 window 
with stride = 2

Poolin
g

Figure: Arden Dertat
https://towardsdatascience.com/applied-deep-learning-
part-4-convolutional-neural-networks-584bc134c1e2 



• Pooling reduces the height and the width of the feature map, but the 
depth remains unchanged as shown in figure

• Pooling operation is independently carried out across each depth

Poolin
g

Figure: Arden Dertat
https://towardsdatascience.com/applied-deep-learning-
part-4-convolutional-neural-networks-584bc134c1e2 
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Architecture



MLP vs
CNN

 Sparse Connectivity: Every node in the Convolution Layer receives input from a 
small number of nodes in the previous layer (Receptive Field), needing smaller 
number of parameters.

 Parameter Sharing: Each member of the Convolution Kernel is used at every 
position of the input, dramatically reducing the number of parameters.

 This makes CNN much more efficient than MLP.



Some popular CNN 
Models



LeNet



LeNet
5• Proposed by Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick Haffner for 

handwritten and machine-printed character recognition. 
• Used by many Banks for recognition of hand written numbers on cheques.
• This architecture achieves an error rate as low as 0.95% on test data

Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick 
Haffner, “Gradient –Based Learning Applied to 
Document Recognition”, Proc. IEEE, Nov. 1998



LeNet
5

Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick 
Haffner, “Gradient –Based Learning Applied to 
Document Recognition”, Proc. IEEE, Nov. 1998

No. of Kernels- 6
Kernel Size- 5 x 5

Stride- 1



LeNet
5

Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick 
Haffner, “Gradient –Based Learning Applied to 
Document Recognition”, Proc. IEEE, Nov. 1998

Average Pooling
Window Size- 2 x 2

Stride- 2



LeNet
5

Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick 
Haffner, “Gradient –Based Learning Applied to 
Document Recognition”, Proc. IEEE, Nov. 1998

No. of Kernels- 16
Kernel Size- 5 x 5

Stride- 1



LeNet
5

Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick 
Haffner, “Gradient –Based Learning Applied to 
Document Recognition”, Proc. IEEE, Nov. 1998

No. of Kernels- 16
Kernel Size- 5 x 5

Stride- 1



LeNet
5

Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick 
Haffner, “Gradient –Based Learning Applied to 
Document Recognition”, Proc. IEEE, Nov. 1998

No. of Kernels- 16
Kernel Size- 5 x 5

Stride- 1

 Break the symmetry in the 
network

 Keep number of connections 
within reasonable bounds. 



LeNet
5

Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick 
Haffner, “Gradient –Based Learning Applied to 
Document Recognition”, Proc. IEEE, Nov. 1998

Average Pooling
Window Size- 2 x 2

Stride- 2



LeNet 5: Summary



IMAGENET Large Scale Visual Recognition 
Challenge (ILSVRC)

https://engmrk.com/lenet-5-a-classic-cnn-architecture/



ILSVR
C• IMAGENET Large Scale Visual Recognition Challenge.

• Evaluates algorithms for Object Detection and Image 
Classification on large image database.

• Helps researchers to review state of the art Machine Learning 
techniques for object detection across a wider variety of objects.

• Monitor the progress of computer vision for large scale image 
indexing for retrieval and annotation.

• Database contains large number of Images from 1000 
categories.

• More than 1000 images in every category.



ILSVR
C
• Every year of the challenge the forum also organizes a 

workshop at one of the premier computer vision 
conferences. 

• The purpose of the workshop is to disseminate the new 
findings of the challenge. 

• Contestants with the most successful and innovative 
techniques are invited to present their work.
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AlexNet
ILSVRC 2012 Winer

Krizhevsky Alex, Ilya Sutskever and Geoffrey E. Hilton, “Imagenet
Classification with deep convolutional neural networks”, 
Advances in Neural Information Processing Systems, 2012



Sample Images from ImageNet 
Dataset



https://www.learnopencv.com/understanding-alexnet/

AlexNe
t

ILSVRC 2012 
Winner

https://www.learnopencv.com/understanding-alexnet/



Krizhevsky Alex, Ilya Sutskever and Geoffrey E. Hilton, “Imagenet
Classification with deep convolutional neural networks”, 
Advances in Neural Information Processing Systems, 2012

AlexNe
t



Krizhevsky Alex, Ilya Sutskever and Geoffrey E. Hilton, “Imagenet
Classification with deep convolutional neural networks”, 
Advances in Neural Information Processing Systems, 2012

AlexN
et
 60 Million parameters and 650000 neurons.
 The network is split into two pipelines and was trained on 

two GPU.
 Input Image size 256 x 256 RGB. 
 Grey scale images to be replicated to obtain 3-Channel RGB
 Random crops of size 227 x 227 are fed to the input layer of 

AlexNet.
 Stochastic Gradient Descent with Momentum Optimizer.
 Top-5 error rate 15.3%.



Krizhevsky Alex, Ilya Sutskever and Geoffrey E. Hilton, “Imagenet
Classification with deep convolutional neural networks”, 
Advances in Neural Information Processing Systems, 2012

Vanishing Gradient 
Problem

 Uses ReLU activation instead of sigmoidal function.

 ReLU output is unbounded- uses Local Response Normalization 
(LRN).

 LRN carries out a normalization amplifying the excited neuron 
while dampening the surrounding neurons at the same time in a 
local neighbourhood.

 Encourage Lateral Inhibition: concept in neuro biology that 
indicates capacity of a neuron to reduce activity of its 
neighbours.



Local Response Normalization (Inter-
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https://towardsdatascience.com/difference-between-local-
response-normalization-and-batch-normalization-
272308c034ac

Local Response 
Normalization



Local Response Normalization (Intra-
Channel)
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Local Response 
Normalization

https://towardsdatascience.com/difference-between-local-
response-normalization-and-batch-normalization-
272308c034ac



Krizhevsky Alex, Ilya Sutskever and Geoffrey E. Hilton, “Imagenet
Classification with deep convolutional neural networks”, 
Advances in Neural Information Processing Systems, 2012

Reducing 
Overfitting
 Train the network with different variants of the 

same image helps avoiding overfitting.

 Generate additional data from existing data 
(Augmentation).

 Data augmentation by mirroring.

 Data Augmentation by random crops.

 Dropout Regularization.



Dropou
t

Srivastava Nitish et. al. “Dropout: A Simple  Way to Prevent 
Neural Networks from Overfitting” Journal of Machine 
Learning Research 15 (2014), 1929-1958

 Regularization Technique proposed by Srivastava et. 
al. in 2014.

 During training randomly selected neurons are 
dropped from the network (with probability 0.5) 
temporarily .

 Their activations are not passed to the downstream 
neurons in the forward pass.

 In the backward pass weight updates are not 
applied to theses neurons.



https://www.learnopencv.com/understanding-alexnet/

Dropou
t



How does it 
help?

Srivastava Nitish et. al. “Dropout: A Simple  Way to Prevent 
Neural Networks from Overfitting” Journal of Machine 
Learning Research 15 (2014), 1929-1958

 While training weights of neurons are tuned for specific 
features that provides some sort of specialization.

 Neighbouring neurons starts relying on these specializations 
(co-adaptation).

 This leads to a neural network model too specialized to the 
training data.

 As neurons are randomly dropped other neurons have to 
step in to compensate.

 Thus the network learns multiple independent 
representations



Learned 
Features



How does it 
help?

Srivastava Nitish et. al. “Dropout: A Simple  Way to Prevent 
Neural Networks from Overfitting” Journal of Machine 
Learning Research 15 (2014), 1929-1958

 This makes the network less sensitive to specific weights.

 Enhances the generalization capability of the network

 Less vulnerable to overfitting.

 The whole network is used during testing – there is no dropout.

 Dropout increases number of iterations for the network to 
converge.

 But helps avoid overfitting.
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VGG 16
ILSVRC 2014 1st

Runner-Up
Visual Geometry Group

Oxford University

1/15



VGG 
16

Very Deep Convolutional Networks for Large-Scale
Image Recognition by Karen Simonyan and 
Andrew Zisserman

2/15



VGG 
16

Very Deep Convolutional Networks for Large-Scale
Image Recognition by Karen Simonyan and 
Andrew Zisserman

 Input to the architecture are color images of size 224x224.
 The image is passed through a stack of convolutional layers.
 Every convolution filter has very small receptive field: 3×3, 

Stride 1.
 Uses row and column padding to maintain spatial resolution 

after convolution.
 There are 13 Convolution Layers. 

 There are 5 max-pool layers.

 Max pooling window size 2x2, stride 2.

3/15



VGG 
16

Very Deep Convolutional Networks for Large-Scale
Image Recognition by Karen Simonyan and 
Andrew Zisserman

 Not every convolution layer is followed by max-pool 
layer.

 3 Fully connected layers.
 First two FC layers have 4096 channels each.
 Last FC layer has 1000 channels.
 Last layer is a softmax layer with 1000 channels, one 

for each category of images in ImageNet database.
 Hidden layers have ReLU as activation function.

4/15



VGG 
16

Very Deep Convolutional Networks for Large-Scale
Image Recognition by Karen Simonyan and 
Andrew Zisserman

Striking difference from AlexNet

 All convolution kernels are of size 3x3 with stride 1.

 All maxpool kernels are of size 2x2 stride 2

 All variable size kernels as in AlexNet can be realised using 
multiple 3x3 kernels.

 This realisation is in terms of size of the receptive field 
covered by the kernels.

 Top-5 error rate ~ 7 %

5/15



Transfer Learning

6/15



Transfer 
Learning

Kevin McGuinness
https://www.slideshare.net/xavigiro/transfer-learning-
d2l4-insightdcu-machine-learning-workshop-2017

7/15



Transfer 
Learning

CNN as Fixed Feature Extractor:
 Take a pre-trained CNN architecture trained on a large

dataset (like ImageNet)
 Remove the last fully connected layer of this pre-trained

network
 Remaining CNN acts as a fixed feature extractor for the

new dataset

8/15



Image Source:-
https://becominghuman.ai/what-exactly-does-cnn-see-
4d436d8e6e52

Transfer 
Learning
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Image Source:-
https://becominghuman.ai/what-exactly-does-cnn-see-
4d436d8e6e52

Transfer 
Learning

10/15



Image Source:-
https://becominghuman.ai/what-exactly-does-cnn-see-
4d436d8e6e52

Transfer 
Learning

11/15



Transfer 
Learning

Image Source:-
https://becominghuman.ai/what-exactly-does-cnn-see-
4d436d8e6e52

12/15



Transfer 
Learning

Image Source:-
https://becominghuman.ai/what-exactly-does-cnn-see-
4d436d8e6e52

13/15



Transfer 
Learning
 Lower layers generate more general features:-

knowledge transfers very well to other tasks.
 Higher layers are more task specific.
 Fine-tuning improves generalization when sufficient 

examples are available.
 Transfer learning and fine tuning often lead to better 

performance than training from scratch on the target 
dataset.

 Even features transferred from distant tasks often 
perform better than random initial weights.

14/15



Fine 
tuning
 Weights of the pre-trained CNN is fine-tuned for the 

new dataset by continuing the back propagation.
 Fine-tuning can be done for all layers.
 Due to overfitting concern, the earlier layers of the net 

may be fixed  and fine tuning is done only on the higher 
layers.

 Earlier layers can be fixed as lower layers extract 
features that are more generic. 

 Higher layers on the other hand are task specific.

15/15
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Deep Learning
Challenges

9



Challenges
 Deep learning is data hungry.
 Overfitting or lack of generalization.
 Vanishing/Exploding Gradient Problem.
 Appropriate Learning Rate.
 Covariate Shift.
 Effective training.

15/15



Vanishing Gradient

14



Vanishing Gradient 
Problem

https://towardsdatascience.com/an-overview-of-
resnet-and-its-variants-5281e2f56035

13

https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035


Vanishing Gradient 
Problem
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Vanishing Gradient 
Problem
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Vanishing Gradient 
Problem

10

 Choice of activation function: ReLU instead 
of Sigmoid.

 Appropriate initialization of weights.

 Intelligent Back Propagation Learning 
Algorithm.
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