
Course Name: Deep Learning 
Faculty Name: Prof. P. K. Biswas

Department : E & ECE, IIT Kharagpur

Topic
Lecture 41: Popular CNN Models V



Concepts Covered:

 CNN

 AlexNet

 VGG Net

 Transfer Learning

 Challenges in Deep Learning

 GoogLeNet

 ResNet

 etc.



Challenges
 Deep learning is data hungry.
 Overfitting or lack of generalization.
 Vanishing/Exploding Gradient Problem.
 Appropriate Learning Rate.
 Covariate Shift.
 Effective training.
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Vanishing Gradient 
Problem
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Vanishing Gradient 
Problem

17

 Choice of activation function: ReLU instead 
of Sigmoid.

 Appropriate initialization of weights.

 Intelligent Back Propagation Learning 
Algorithm.



GoogLeNet
ILSVRC 2014 Winner
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GoogLeNe
t

22 Layers with parameters

27 Layer including Maxpool layers

Convolution Layer

Maxpool Layer

Feature Concatenation

Softmax Layer
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GoogLeNe
t

Inception Module
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Inception 
Module

 Computing 1×1, 3×3, and 5×5 convolutions within 
the same module of the network. 

 Covers a bigger area, at the same time preserves 
fine resolution for small information on the images.

 Use different convolution kernels of different sizes 
in parallel from the most accurate detailing (1x1) to 
a bigger one (5x5).

 1x1 convolution also reduces computation.
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Inception 
Module

Number of operations for 1×1 = 
(14×14×16)×(1×1×480) = 1.5M
Number of operations for 5×5 = 
(14×14×48)×(5×5×16) = 3.8M
Total number of operations = 
1.5M + 3.8M = 5.3M

Number of operations = 
(14×14×48)×(5×5×480) = 
112.9M

https://medium.com/coinmonks/paper-review-of-googlenet-
inception-v1-winner-of-ilsvlc-2014-image-classification-
c2b3565a64e7
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Inception 
Module

 Outputs of these filters are then 
stacked along the channel 
dimension.

 Multi-level feature extractor.

 There are 9 such inception 
modules.

 Top-5 error rate of less than 7 %.
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GoogLeNe
t

Auxiliary Classifier

9



Auxiliary 
Classifier

 Due to large depth of the network, ability to 
propagate gradient back through all the layers was a 
concern.

 Auxiliary Classifiers are smaller CNNs put on top of 
middle Inception modules.

 Addition of auxiliary classifiers in the middle 
exploits the discriminative power of the features 
produced by the layers in the middle.

28



Auxiliary 
Classifier

 During training, loss of Auxiliary classifiers are added to 
the total loss of the network.

 Losses from Auxiliary classifiers were weighted by 0.3.

 Auxiliary classifiers are discarded at Inference time. 
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 CNN

Challenges in Deep Learning

 GoogLeNet

 ResNet

Momentum Optimizer



Challenges
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 Appropriate Learning Rate.
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 Choice of activation function: ReLU instead 
of Sigmoid.

 Appropriate initialization of weights.

 Intelligent Back Propagation Learning 
Algorithm.
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GoogLeNe
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Auxiliary Classifier
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ResNet
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ResNe
t

https://towardsdatascience.com/an-overview-of-resnet-and-
its-variants-5281e2f56035

 Core idea is: introduction of  Skip 
Connection/ Identity Shortcut 
Connection that skips one or 
more layers.

 Stacking layers should not 
degrade performance compared 
to its shallow counterpart.

 Weight layer learns F(x)=H(x)-x

H(x)

5



ResNe
t
 By stacking identity mappings the 

resultant deep network should give at 
least same performance as its shallow 
counterpart.

 Deeper network should not give higher 
training error than shallow network.

 During learning the gradient can flow to 
any earlier network through shortcut 
connections alleviating vanishing 
gradient problem.

H(x)

4



ResNe
t

https://towardsdatascience.com/an-overview-of-resnet-and-
its-variants-5281e2f56035
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ResNe
t
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ResNe
t

Layer l -2

Layer l -1

Layer l

llW ,1−

llW ,2−

Backward Propagation:

path normal.1,1 llll aW δ−− −=∇

path skip.2,2 llll aW δ−− −=∇

If the skip path has fixed weights, identity 
matrix, then they are not updated. 
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Challenges
 Deep learning is data hungry.
 Overfitting or lack of generalization.
 Vanishing/Exploding Gradient Problem.
 Appropriate Learning Rate.
 Covariate Shift.
 Effective training.
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Optimizing
Gradient Descent

9



Gradient Descent 
Challenges

Challenges of Mini-batch Gradient 
Descent
 Choice of Proper Learning Rate: 

 Too small a learning rate leads to 
slow convergence. 

 A large learning rate may lead to 
oscillation around the minima or 
may even diverge.



Gradient Descent 
Challenges

Challenges of Mini-batch Gradient 
Descent
 Choice of Proper Learning Rate: 

 Too small a learning rate leads to 
slow convergence. 

 A large learning rate may lead to 
oscillation around the minima or 
may even diverge.
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Gradient Descent 
Challenges

 Learning Rate Schedules: changing learning rate according to 
some predefined schedule.

 The same learning rate applies to all parameter updates.

 The data may be sparse and different features have very 
different frequencies.

 Updating all of them to the same extent might not be 
proper.

 Larger update for rarely occurring features might be a 
better choice.



Gradient Descent 
Challenges

 Avoiding getting trapped in suboptimal 
local minima.

 Difficulty arises in from saddle points, 
i.e. points where one dimension slopes 
up and another slopes down.

 These saddle points are usually 
surrounded by a plateau of the same 
error, which makes it hard for SGD to 
escape, as the gradient is close to zero 
in all dimensions.



Momentum 
Optimizer
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Concepts Covered:

 CNN

 ResNet

 Gradient Descent Challenges

Momentum Optimizer

 Nestevor Accelerated Gradient

 Adagrad.
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Gradient Descent 
Challenges

Challenges of Mini-batch Gradient 
Descent
 Choice of Proper Learning Rate: 

 Too small a learning rate leads to 
slow convergence. 

 A large learning rate may lead to 
oscillation around the minima or 
may even diverge.
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Gradient Descent 
Challenges

 Learning Rate Schedules: changing learning rate according to 
some predefined schedule.

 The same learning rate applies to all parameter updates.

 The data may be sparse and different features have very 
different frequencies.

 Updating all of them to the same extent might not be 
proper.

 Larger update for rarely occurring features might be a 
better choice.



Gradient Descent 
Challenges

 Avoiding getting trapped in suboptimal 
local minima.

 Difficulty arises from saddle points, i.e. 
points where one dimension slopes up 
and another slopes down.

 These saddle points are usually 
surrounded by a plateau of the same 
error, which makes it hard for SGD to 
escape, as the gradient is close to zero 
in all dimensions.



Optimizing
Gradient Descent
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Concepts Covered:

 CNN

 ResNet

 Gradient Descent Challenges

Momentum Optimizer

 Adagrad.

 etc.



Momentum Optimizer
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Momentum 
Optimizer
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Momentum 
Optimizer

W1

W2

W1

W2

SGD SGD with Momentum



Nesterov Accelerated 
Gradient (NAG)
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Nesterov Accelerated Gradient 
(NAG)
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Problem with Momentum 
Optimizer/NAG

 Both the algorithms require the hyper-parameters  to be 
set manually.

 These hyper-parameters decide the learning rate.

 The algorithm uses same learning rate for all dimensions.

 The high dimensional (mostly) non-nonconvex nature of 
loss function may lead to different sensitivity on different 
dimension.

 We may require learning rate could be small in some 
dimension and large in another dimension.
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Momentum 
Optimizer

W1

W2

W1

W2

SGD SGD with Momentum



Nesterov Accelerated 
Gradient (NAG)
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Nesterov Accelerated Gradient 
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Problem with Momentum 
Optimizer/NAG

 Both the algorithms require the hyper-parameters  to be 
set manually.

 These hyper-parameters decide the learning rate.

 The algorithm uses same learning rate for all dimensions.

 The high dimensional (mostly) non-nonconvex nature of 
loss function may lead to different sensitivity on different 
dimension.

 We may require learning rate  be small in some dimension 
and large in another dimension.



Adagrad

9



Adagra
d
 Adagrad adaptively scales the learning rate for different 

dimensions.

 Scale factor of a parameter is inversely proportional to the 
square root of sum of historical squared values of the 
gradient.

 The parameters with the largest partial derivative of the 
loss will have rapid decrease in their learning rate.

 Parameters with small partial derivatives will have 
relatively small decrease in learning rate.



Adagra
d
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Adagra
dPositive Side:

 Adagrad adaptively scales the learning rate for different 
dimensions by normalizing with respect to the gradient magnitude 
in the corresponding dimension.

 Adagrad eliminates the need to manually tune the learning rate.

 Reduces learning rate faster for parameters showing large slope 
and slower for parameters giving smaller slope.

 Adagrad converges rapidly when applied to convex functions.



Adagra
d

Negative side:

 If the function is non-convex:- trajectory may pass through 
many complex terrains eventually arriving at a locally region.

 By then learning rate may become too small due to the 
accumulation of gradients from the beginning of training.

 So at some point the model may stop learning.
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Concepts Covered:

 CNN

 Gradient Descent Challenges

Momentum Optimizer

 Nesterov Accelerated Gradient

 Adagrad

RMSProp

 etc.
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Adagra
dPositive Side:

 Adagrad adaptively scales the learning rate for different 
dimensions by normalizing with respect to the gradient magnitude 
in the corresponding dimension.

 Adagrad eliminates the need to manually tune the learning rate.

 Reduces learning rate faster for parameters showing large slope 
and slower for parameters giving smaller slope.

 Adagrad converges rapidly when applied to convex functions.



Adagra
d

Negative side:

 If the function is non-convex:- trajectory may pass through 
many complex terrains eventually arriving at a locally region.

 By then learning rate may become too small due to the 
accumulation of gradients from the beginning of training.

 So at some point the model may stop learning.



RMSProp
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RMSPro
p
 RMSProp uses exponentially decaying average of squared 

gradient and discards history from the extreme past.

 Converges rapidly once it finds a locally convex bowl.

 Treats this as an instance of Adagrad algorithm initialized 
within that bowl.
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RMSProp with Nesterov
Momentum
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Adaptive Moments
(Adam)
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Adam
 Variant of the combination of RMSProp and Momentum.

 Incorporates first order moment (with exponential weighting) 
of the gradient (Momentum term).

 Momentum is incorporated in RMSProp by adding momentum 
to the rescaled gradients.

 Both first and second moments are corrected for bias to 
account for heir initialization to zero.
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Adam
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Momentum 
Optimizer

Animation Source:-
https://imgur.com/a/Hqolp
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