
 

 

 

 

 

 

 

 

 
 

 

 

 

 

Course Name: Deep Learning 
Faculty Name: Prof. P. K. Biswas 

Department : E & ECE, IIT Kharagpur 
 

Topic 
Lecture 16: Optimization 



Concepts Covered: 
 

 Multiclass SVM Loss Function
 

 Optimization
 

 Stochastic Gradient descent
 

 Batch Optimization
 

 Mini-Batch Optimization
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Optimizing Loss Function 
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Optimizing Loss Function 
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Gradient descent 
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Local and Global Minima 
 



 
 
 
 
 
 
 
 
 

Stochastic/ Batch/ Mini batch 
Optimization 



Stochastic Gradient Descent 
Upsides 

 The frequent updates immediately give an insight into the 
performance of the model and the rate of improvement. 

 
 This variant of gradient descent may be the simplest to understand 

and implement. 
 

 The increased model update frequency can result in faster learning 
on some problems. 

 
 The noisy update process can allow the model to avoid local 

minima (e.g. premature convergence). 



Stochastic Gradient Descent 
Downsides 

 Updating the model so frequently is more computationally 
expensive than other configurations of gradient descent, taking 
significantly longer to train models on large datasets. 

 
 The frequent updates can result in a noisy gradient signal, which 

may cause the model parameters and in turn the model error to 
jump around (have a higher variance over training epochs). 

 
 The noisy learning process down the error gradient can also make 

it hard for the algorithm to settle on an error minimum for the 
model. 



Batch Gradient Descent 
Upsides 

 Fewer updates to the model means this variant of gradient 
descent is more computationally efficient than stochastic 
gradient descent. 

 
 The decreased update frequency results in a more stable 

error gradient and may result in a more stable convergence 
on some problems. 

 
 The separation of the calculation of prediction errors and the 

model update lends the algorithm to parallel processing 
based implementations. 



Batch Gradient Descent 
Downsides 

 The more stable error gradient may result in premature convergence of 
the model to a less optimal set of parameters.

 The updates at the end of the training epoch require the additional 
complexity of accumulating prediction errors across all training examples.

 It requires the entire training dataset in memory and available to the 
algorithm.

 Model updates, and in turn training speed, may become very slow for 
large datasets.



Mini-Batch Gradient Descent 

Upsides 

 The model update frequency is higher than batch gradient 
descent which allows for a more robust convergence, avoiding 
local minima.

 
 The batched updates provide a computationally more efficient 

process than stochastic gradient descent.
 

 The batching allows both the efficiency of not having all training 
data in memory and algorithm implementations.



Mini-Batch Gradient Descent 

Downsides 

 Mini-batch requires the configuration of an additional “mini- 
batch size” hyper parameter for the learning algorithm. 

 
 Error information must be accumulated across mini-batches 

of training examples like batch gradient descent. 



Error minimization with iterations 
 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

Course Name: Deep Learning 
Faculty Name: Prof. P. K. Biswas 

Department : E & ECE, IIT Kharagpur 
 

Topic 
Lecture 17: Optimization in ML 



Concepts Covered: 

 Optimization

 Stochastic Gradient Descent 

 Batch Optimization 

 Mini-batch optimization 

 Optimization in ML

 Linear and Logistic Regression

 Softmax classifier

 Nonlinearity



 
 
 
 
 
 
 
 
 

Optimization in Machine 
Learning 



Optimization in Machine 
Learning 
 Goal of optimization is to reduce a cost function J(W) to optimize 

some performance measure P.

 In pure optimization minimizing J is the goal in and of itself.

 In Machine Learning J(W) is minimized w.r.t parameter W on 
training data (training error), and we the error to be low on 
unforeseen (test) data.

 Test error (generalization error) should be low.



Optimization in Machine 
Learning 

Assumptions 
 Test and Training data are generated by a probability 

distribution: Data generating process.

 Data samples in each data set are independent.

 Training set and Test set are identically distributed.

Performance of ML is its ability to 

 Make the training error small.

 Reduce the gap between training and test error.



Underfitting and Overfitting 

 Underfitting: Model is not able to obtain sufficiently low training error. 

 Overfitting: The gap between training and test error is too large. 
 
 
 
 
 

We can control Overfitting/ Underfitting by altering its Capacity 

Set of functions the learning algorithm can select as being the solution 



 
 
 
 
 
 
 
 
 

Linear and Logistic 
Regression 



Linear & Logistic Regression- Binary 
Classification 

Linear Regression 

f : X  Rd
  y  R ŷ  W t X 

 

 

 

Logistic Regression 
 

p( y | X ;W )   (W t X ) 



Linear Regression 
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Logistic Regression 
 
 
 
 
 
 
 
 
 

 

 (W 

 
t X )  

1 


1 eW t X 



 (W t X ) 
 

 

 

 

 

 

 

 

W t X 



y 

Softmax Classifier 

 Generalization of Binary Logistic Classifier to 
Multiple Classes 
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Course Name: Deep Learning 
Faculty Name: Prof. P. K. Biswas 

Department : E & ECE, IIT Kharagpur 
 

Topic 
Lecture 18: Nonlinearity 



 

Concepts Covered: 

 Optimization in ML

 Linear and Logistic Regression

 Softmax classifier

 Nonlinearity

 Neural Network



 
 
 
 
 
 
 
 
 
 
 

Nonlinearity 



Linear 
Seperability 
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Nonlinearity 
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Nonlinearity 
 
 
 
 

 



Threshold 
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Logistic Regression 
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Nonlinearity 

ReLU : Rectified Linear Unit 
 
 
 
 
 

 

y  max(0, x) 


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x 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

Course Name: Deep Learning 
Faculty Name: Prof. P. K. Biswas 

Department : E & ECE, IIT Kharagpur 
 

Topic 
Lecture 19: Neural Network 



 

Concepts Covered: 

 Nonlinearity

 Neural Network

 AND Logic 

 OR Logic 

 XOR Logic 

 Feed Forward NN

 Back Propagation Learning
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Logistic Regression 
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Nonlinearity 

ReLU : Rectified Linear Unit 
 
 
 
 
 

 

y  max(0, x) 



y 

x 



Neuron 
 
 

• Dendrite: receives signals from 
other neurons 

• Synapse : point of connection 
to other neurons 

• Soma : processes the 
information 

• Axon : transmits the output of 
this neuron. 
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Neural Network 
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AND Function 
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OR Function 
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Course Name: Deep Learning 
Faculty Name: Prof. P. K. Biswas 

Department : E & ECE, IIT Kharagpur 
 

Topic 
Lecture 20: Neural Network - II 



 

Concepts Covered: 

 Neural Network 

 AND Logic

 OR Logic

 XOR Logic

 Feed Forward NN 

 Back Propagation Learning 



AND/ OR 
Function 

 

 



XOR Function 
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XOR Function 
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XOR Function 
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Function 
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