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Topic

Lecture 46: Normalization




Concepts Covered:

(1 Deep Neural Network
J Gradient Descent Challenges
d Normalization

CONCEPTS COVERED & Batch Normalization

J Layer Normalization

1 Instance Normalization

J Group Normalization




Normalization
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bi ax,y

w7 min(N—L,i+n/2) \/

K+ Z (a)f,y)z
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X, Y

max(W ,x+n/2) min(H,y+n/2) Z
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p=max(0,x—n/2) g=max(0,y—n/2)
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J Normalization that address the
problem of covariate shift.

[ Makes learning process faster.

1 Different layers learn independently
of others.

What does a classifier learn?










o
&,
#.\1};’/

Tl

J
-~

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning
Faculty Name: Prof. P. K. Biswas
Department : E & ECE, lIT Kharagpur

Topic

Lecture 47







Normalization
IN
HiddenLayers




technigques

( Batch Normalization
J Layer Normalization

J Instance Normalization

J Group Normalization




Batch Normalization
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Normallzatlon

Input: Values of x over a mini-batch: B = {21, }:
Parameters to be learned: ~,
Output: {y; = BN, 5(2;)}

B — Z; // mini-batch mean
B — Z
9 1 « 5 L .
OB — (i — ug) // mini-batch variance
1=1
T; = // normalize
VOoE 4 €
Y; — YZ; + B = BN, g(z;) // scale and shift
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Concepts Covered:

J Deep Neural Network
d Normalization

& Batch Normalization
CONCEPTS COVERED L] Layer Normalization

J Instance Normalization

J Group Normalization




Normalization
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technigques

( Batch Normalization
J Layer Normalization

J Instance Normalization

J Group Normalization
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Normallzatlon

Input: Values of x over a mini-batch: B = {21, }:
Parameters to be learned: ~,
Output: {y; = BN, 5(2;)}

B — Z; // mini-batch mean
B — Z
9 1 « 5 L .
OB — (i — ug) // mini-batch variance
1=1
T; = // normalize
VOoE 4 €
Y; — YZ; + B = BN, g(z;) // scale and shift
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Normalization

O Inception: A network, trained with — :
the initial learning rate of 0.0015. § B I PP -
 BN-Baseline: Same as Inception s M -7
with Batch Normalization before s |
each nonlinearity. 5
O BN-x5: The initial learning rate was }E e
O increased by a factor of 5, to 0.0075. = _Eﬁiiiu
( BN-x30: Like BN-x5, but with the = I gth;;zstalsr;ga:];]ic:ncep’ldon

initial learning rate 0.045 (30 times 1ou 5M  20M  25M 30M

that of Inception).
O BN-x5-Sigmoid: Like BN-x5, but with
sigmoid nonlinearity instead of

Training steps
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Concepts Covered:

J Deep Neural Network
d Normalization

& Batch Normalization
CONCEPTS COVERED L] Layer Normalization

J Instance Normalization

J Group Normalization




Normalization




Layer Normalization




Normalization
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Normalization
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Group Normalization
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Normalizat
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Normalization

x € RNXCXWXH _y RNXGXC'XWxH (C = (G.C'

G=number of groups
C'=number of channel per group C
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Tan

AA AN\ N\Z

Group Norm

A AeA

Instance Norm
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Laver Norm

Batch Norm




Normalization

BT val error

Y S ——Bartch Norm (BN | ';: _ —Barch Norm (BN}
Y ——Laer Norm (LN) Yo

1
: e S5 —Layer Norm (LN)
a . T —— Instance Morm (N ) —TInstamce Morm (TN
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50 | i ——Group Norm (GIN) —Group Norm (GN)
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Normalization

Batch Morm i BN

—BN. 32 ims/epu
—BN. 16 mms‘gpu
—BN. § ims/gpu
—BN. 4 ims/gpu
—BN. 2 ims/gpu

Model Name: Resnet-50,

Groap Neorm (G

GN. 32 ms/zpu
—GN., 16 ms/gpu
—GN. § ims/epu
—GN. 4 ims/epu
—GN. 2 ims/epu

Dataset: Imagenet




- Batch/Group

Normalization
36
——Batch Norm
34 |- Group Norm
32 -
R 30
S 13
)
26
24 ¢ — < € —©
L
22 | ' ' |
32 16 8 4 2

batch size (images per worker)
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Concepts Covered:

J Deep Neural Network

d Normalization

& Underfitting/Ovefitting
CONCEPTS COVERED N Resularization

(J Dropout
J Early Stopping




Regularization
Early stopping




OQverfitting/Underfitin =~~~

g

1 Overfitting occurs when a
statistical model or machine
learning algorithm captures
the noise of the data.

 Intuitively, overfitting occurs
when the model or the
algorithm fits the data too
well.

J A statistical model or a

machine learning
algorithm is said to have
underfitting when it
cannot capture the
underlying trend of the
data.



Degree: 1

— Model
—— Tree function
» Samples

ee: 4

Regressiqn

Degree: 15

[
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— ligdel
True fumction
s Samples

— Model
—— Tree function
a Samples

Perfxectly fit

vaerfit




Classification

Underfit Perfectly fit Overfit
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J Regularization is a way to prevent overfitting.

J L1 and L2 are the most common types of regularization used in
training deep models.

J General cost function with regularization for training is defined
as: Cost function = Loss + Regularization term

J Due to this regularization term, the numerical values of
weights decrease because it-assumes that a neural network
with smaller weights leads to simpler models.

1 So this helps to reduce overfitting.
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U L1 regularizer: Cost function = Loss + 4 ), |w|

U It penalizes absolute value of weights

U It can make some weights to zero. Souseful for model
compression.

W Ais a regularization hyper parameter. Controls the relative
weight.

QL2 regularizer: Cost function.='Loss + A1 Y ||w||?
U It penalizes second norm of weights.

U Itis also termed as weight decay as it pushes the weights
near to zero. But it does not make exactly zero always.
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Augmentation

J

J
J
J

Increasing the size of training data is a way to prevent
overfitting.

It is difficult and costly to increase the training data.

Data augmentation is a way to create a different image
from one image while keeping the context same.

There are a few ways of augmenting training data—
rotating, flipping, scaling, shifting, contrast
enhancement, brightness control, etc.
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Dropout




Dropout

PW
Present with Always

probability p present

During Training During Testing




Features learned by an
autoencoder on MNIST
with a single hidden
layer of 256 rectified
linear units with/
without dropout.

With dropout
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Without dropout
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=+ with dropout
- Without dropout

25F

Classification Error %
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Dataset size

d While model complexity is
fixed, dropout does not
generalize the model for very
small amount of data

O As the size of the data set is
increased, the gain from doing
dropout increases up to a point
and then declines.

1 There is a sweet spot where
amount of data is large

enough.
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Stopping
O Hyperparameters need to be tuned for good
performance while training neural networks.

d Number of iteration is a hyperparameter to
be tuned. Lesser iteration may lead to
underfit and more iteration may lead to
overfit.

d Early stopping attempts to remove the need
of manually setting this value.

[ It can also be considered a type of
regularization method.




I A

Stopping
d Hyperparameters need to be tuned for good Emor
performance while training neural networks.

. . . Validation set
d Number of iteration is a hyperparameter to

be tuned. Lesser iteration may lead to
underfit and more iteration may lead to

overfit. Training set
L Early stopping attempts to remove the need $ Stf;'iig ‘ft‘:r"i’nif
of manually setting this value. . point

[ It can also be considered a type of
regularization method.




I A

Stopping

Early stopping algorithm is as follows:

 Split data into train, validation and
test set

 After each training epoch:

1 Evaluate the model performance
using validation data

] Save the best model evaluated on
validation data

1 Use final model that has the best
validation performance for testing.

Test Set Accuracy

Training Set Accuracy

Overfitting

Early Stopping
:  Epoch
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