
Name Equivalence

• Two types are name equivalent if they have same name or label

typedef int Value

typedef int Total

...

Value var1, var2

Total var3, var4

• Variables var1, var2 are name equivalent, so are var3 and var4

• Variables var1 and var4 are not name equivalent, as their type

names are different

1

Structural Equivalence

• Checks the structure of the type

• Determines equivalence by checking whether they have same constructor
applied to structurally equivalent types

• Checked recursively

• Types array(I1, T1) and array(I2, T2) are structurally equivalent if I1 and I2
are equal and T1 and T2 are structurally equivalent

2

Directed Acyclic Graph Representation

• Type expressions can be represented as a DAG or a tree

• “record((length × integer) × (word × array(10, character)))”

3

Function dag_equivalence

4

Cycles in Type Representation
• Some languages allow types to be defined in a cyclical fashion

struct list

{

int val;

struct list *next;

}

• (a) Acyclic representation (b) Cyclic representation

5

Cycles in Type Representation
• Most programming languages, including C, uses acyclic one

• Type names are to be declared before using it, excepting
pointers

• Name of the structure is also part of the type

• Equivalence test stops when a structure is reached

• At this point, type expressions are equivalent if they point to
the same structure name, nonequivalent otherwise

6

Type Conversion
• Refers to local modification of type for a variable or subexpression

• For example, it may be necessary to add an integer quantity to a real variable,
however, the language may require both the operands to be of same type

• Modifying integer variable to real will require more space

• Solution: to treat integer operand as really operand locally and perform the
operation

• May be done explicitly or implicitly

• Implicit conversion  type coercion

7

int x;
float y;
...
y = ((float)x)/14.0

int x;
float y;
...
y = x/14.0

8

• Compilers usually perform static type checking
• Dynamic type checking is costly
• Types are normally represented as type expressions
• Type checking can be performed by syntax directed techniques
• Type graphs may be compared to check type equivalence

10

Compiler Design
Symbol Tables

Santanu Chattopadhyay

Electronics and Electrical Communication Engineering

11

 Information in Symbol Table
 Features of Symbol Table
 Simple Symbol Table
 Scoped Symbol Table
 Conclusion

Introduction
• Essential data structure used by compilers to remember

information about identifiers in the source program

• Usually lexical analyzer and parser fill up the entries in the

table, later phases like code generator and optimizer make use

of table information

• Types of symbols stored in the symbol table include variables,

procedures, functions, defined constants, labels, structures etc.

• Symbol tables may vary widely from implementation to

implementation, even for the same language

12

Information in Symbol Table
• Name

– Name of the identifier

– May be stored directly or as a pointer to another character string in an associated string table –
names can be arbitrarily long

• Type
– Type of the identifier: variable, label, procedure name etc.

– For variables, its type: basic types, derived types etc.

• Location
– Offset within the program where the identifier is defined

• Scope
– Region of the program where the current definition is valid

• Other attributes: array limits, fields of records, parameters, return values etc.

13

Usage of Symbol Table Information
• Semantic Analysis – check correct semantic usage of language constructs,

e.g. types of identifiers

• Code Generation – Types of variables provide their sizes during code
generation

• Error Detection – Undefined variables. Recurrence of error messages can
be avoided by marking the variable type as undefined in the symbol table

• Optimization – Two or more temporaries can be merged if their types are
same

14

Operations on Symbol Table
• Lookup – Most frequent, whenever an identifier is seen it is needed to

check its type, or create a new entry

• Insert – Adding new names to the table, happens mostly in lexical and
syntax analysis phases

• Modify – When a name is defined, all information may not be available,
may be updated later

• Delete – Not very frequent. Needed sometimes, such as when a procedure
body ends

15

Issues in Symbol Table Design

• Format of entries – Various formats from linear array to tree structured
table

• Access methodology – Linear search, Binary search, Tree search, Hashing,
etc.

• Location of storage – Primary memory, partial storage in secondary
memory

• Scope Issues – In block-structured language, a variable defined in upper
blocks must be visible to inner blocks, not the other way

16

Simple Symbol Table

• Works well for languages with a single scope

• Commonly used techniques are

– Linear table

– Ordered list

– Tree

– Hash table

17

Linear Table
• Simple array of records with each record corresponding to an

identifier in the program

• Example:

18

int x, y
real z
...
procedure abc
...
L1:...
...

Name Type Location

x integer Offset of x

y integer Offset of y

z real Offset of z

abc procedure Offset of abc

L1 label Offset of L1

Linear Table
• If there is no restriction in the length of the string for the name of an

identifier, string table may be used, with name field holding pointers

• Lookup, insert, modify take O(n) time

• Insertion can be made O(1) by remembering the pointer to the next free
index

• Scanning most recent entries first may probably speed up the access –

due to program locality – a variable defined just inside a block is

expected to be referred to more often than some earlier variables

19

Ordered List

• Variation of linear tables in which list organization is used

• List is sorted in some fashion , then binary search can be used
with O(log n) time

• Insertion needs more time

• A variant – self-organizing list: neighbourhood of entries
changed dynamically

20

Self-Organizing List

21

•In Fig (a), Identifier4 is the most
recently used symbol, followed by
Identifier2, Identifier3 and so on
•In Fig (b), Identifier5 is accessed

next, accordingly the order changes
•Due to program locality, it is expected

that during compilation, entries near
the beginning of the ordered list will
be accessed more frequently
•This improves lookup time

Tree
• Each entry represented by a node of the tree

• Based on string comparison of names, entries lesser than a reference
node are kept in its left subtree, otherwise in the right subtree

• Average lookup time O(log n)

• Proper height balancing techniques need to be utilized

22

Hash Table
• Useful to minimize access time

• Most common method for implementing symbol tables in compilers

• Mapping done using Hash function that results in unique location in the table
organized as array

• Access time O(1)

• Imperfection of hash function results in several symbols mapped to the same
location – collision resolution strategy needed

• To keep collisions reasonable, hash table is chosen to be of size between n and 2n
for n keys

23

Desirable Properties of Hash Functions
• Should depend on the name of the symbol. Equal emphasis

be given to each part

• Should be quickly computable

• Should be uniform in mapping names to different parts of the
table. Similar names (such as, data1 and data2) should not
cluster to the same address

• Computed value must be within the range of table index

24

Scoped Symbol Table
• Scope of a symbol defines the region of the program in which a particular

definition of the symbol is valid – definition is visible

• Block structured languages permit different types of scopes for the
identifiers – scope rules for the language
– Global scope: visibility throughout the program, global variables

– File-wide scope: visible only within the file

– Local scope within a procedure: visible only to the points inside the procedure, local
variables

– Local scope within a block: visible only within the block in which it is defined

25

Scoping Rules
• Two categories depending on the time at which the scope

gets defined

• Static or Lexical Scoping
– Scope defined by syntactic nesting

– Can be used efficiently by the compiler to generate correct references

• Dynamic or Runtime Scoping
– Scoping depends on execution sequence of the program

– Lot of extra code needed to dynamically decide the

definition to be used

26

Nested Lexical Scoping
• To reach the definition of a symbol, apart from the current block, the

blocks that contain this innermost one, also have to be considered

• Current scope is the innermost one

• There exists a number of open scopes – one corresponding to the current
scope and others to each of the blocks surrounding it

27

Procedure P1
…

Procedure P2
…
end procedure

Procedure P3
x =
…

Current scope of x is P3, it has another open scope P1

Visibility Rules
• Used to resolve conflicts arising out of same variable being defined more

than once

• If a name is defined in more than one scope, the innermost declaration
closest to the reference is used to interpret

• When a scope is exited all declared variables in that scope are deleted and
the scope is thus closed

• Two methods to implement symbol tables with nested scope

– One table for each scope

– A single global table

28

One Table Per Scope
• Maintain a different table for each scope

• A stack is used to remember the scopes of the symbol tables

• Drawbacks:
– For a single-pass compiler, table can be popped out and destroyed

when a scope is closed, not for a multi-pass compiler

– Search may be expensive if variable is defined much above in the
hierarchy

– Table size allotted to each block is another issue

• Lists, Trees, Hash Tables can be used

29

One Table Per Scope

30

Scoped Symbol Table – Lists Scoped Symbol Table – Trees

One Table for All Scopes
• All identifiers are stored in a single table

• Each entry in the symbol table has an extra field identifying the scope

• To search for an identifier, start with the highest scope number, then try
out the entries having next lesser scope number, and so on

• When a scope gets closed, all identifiers with that scope number are
removed from the table

• Suitable particularly for single-pass compilers

• List, Tree and Hash Table can be used

31

One Table for All Scopes

32

Single List

Tree

Hash Table

33

• Symbol table, though not part of code generated by the compiler,
helps in the compilation process

• Phases like Lexical Analysis and Syntax Analysis produce the
symbol table, while other phases use its content

• Depending upon the scope rules of the language, symbol table
needs to be organized in various different manners

• Data structures commonly used for symbol table are linear table,
ordered list, tree, hash table, etc.

Conclusions

Thank you

35

Compiler Design
Runtime Environment Management

Santanu Chattopadhyay

Electronics and Electrical Communication Engineering

36

 What is Runtime Environment
 Activation Record
 Environment without Local Procedures
 Environment with Local Procedures
 Display
 Conclusion

What is Runtime Environment
• Refers to the program snap-shot during execution

• Three main segments of a program
– Code

– Static and global variables

– Local variables and arguments

• Memory needed for each of these entities
– Generated code: Text for procedures and programs. Size known at compile time. Space can be

allotted statically before execution

– Data objects:

• Global variables/constants – space known at compile time

• Local variables – space known at compile time

• Dynamically created variables – space (heap) in response to memory allocation requests

– Stack: To keep track of procedure activations

37

Logical Address Space of Program

38

Code Static Heap Free Memory Stack

Low High

• Code occupies the lowest portion
• Global variables are allocated in the static portion
• Remaining portion of the address space, stack and heap are allocated

from the opposite ends to have maximum flexibility

Activation Record
• Storage space needed for variables associated with each

activation of a procedure – activation record or frame

• Typical activation record contains
– Parameters passed to the procedure

– Bookkeeping information, including return values

– Space for local variables

– Space for compiler generated local variables to hold sub-expression
values

39

