e~
& S>3
FREE ONLINE EDUCATION
s W7

AN
=
\ ~
Swa m 14N §
NV -
SN

—
—

f2Ac IR, I~id A

NPTEL ONLMNE ICATION COURSES

Confpiler Design
Infroduction

Santanu Chattopadhyay

lectronics and Electrical Communication Engineering



O w a Compiler
O _@ompilemApplications

es @f a Compiler

ges in Compiler Design
ompilation Process — An Example

O Conclusion

CONCEPTS COVERED




Introduction
Compilers have become part and parcel of computer

systems y

Makes user’s computing require specified as a piece
of program, understandable t&\ Ing machine
Complex transformation

Large number of optio
architecture, memo
systems

IMErms of advances in computer

ment and newer operating




What Is a compiler

A system software to convert source language
program to target language progra y

rce” language
warnings

Validates input program to
specification — produces erro
mpilers, programs
andcoded into machine

Primitive systems did not
written assembly langu
code

Compiler design s

Many tools have be€
automation

FORTRAN in 1950s
eveloped for compiler design




Compiler Input-Output

Source Program Target Program

Warnings

5 A ,
g ¢
AN

Uty







Compiler Applications
« Machine Code Generation \n ,
— Convert source language prog Ine understandable

one

— Takes care of semantics led G@nstructs of source language

— Considers limitations pecHic features of target machine

— Automata theory he yntactic checks — valid and invalid
programs

— Compilation a
programs

te code for syntactically correct




Compiler Applications (Contd.)

* Format Converters
— Act as interfaces between two thware packages

— Compatibility of input-outpdt fo between tools
coming from different vendo

— Also used to convert ’Q ly used programs written in
some older languag e COBOL) to newer languages
(like C/C++)




Compiler Applications (Contd.)

« Silicon Compilation y
— Automatically synthesize It from its behavioural

description In Ianguag« L, Verilog etc.
— Complexity of circuptSincreasing with reduced time-to-
market

— Optimization
power, delay, et

silicon compilation are area




* Query Optimization

Compiler Applications (Contd.)

In the domain of database query
Optimize search time

More than one evaluatio
Cost depends upon relé

Generate proper seq
processing

cewef operations suitable for fastest query




Compiler Applications (Contd.)

* Text Formatting \/
— Accepts an ordinary t %ﬁ Input having
formatting comma &b ded
— Generates formatteg'text
LaTex etc.




Phases of a Compiler

» Conceptually divided into a number of phases
— Lexical Analysis

— Syntax Analysis
— Semantic Analysis Does not exist any hard
— Intermediate Code rati demarcation between the

modules.
— Target Co_de_Ge_ Work in hand-in-hand
— Code Optimi interspersed manner
— Symbol Table




Phases of a Compiler

Source program
SEPNAE. A
| Lexical
Analysis

|

Error handling &
recovery

Symbol table
management

/
Target /
code /

- PR Y
\ Code /

Optimized target code

FREE ONLINE EDUCATION % ) f
swayam B ¢
.\ < %

Tendia siea, s aa

'?:

'lmvl




Interface of the compiler to the outside world

Scans input source program, identifies valid words of the geinit

Also removes cosmetics, like extra white space menis etc. from the program
Expands user-defined macros
Reports presence of foreign words
May perform case-conversion
Generates a sequence of integ

FREE ONLINE EDUCATION
Tendia siea, s aa

Lexical Analysis

tokens to be passed to the syntax analysis phase —




Syntax Analysis

Takes words/tokens from lexical analyze
Works hand-in-hand with lexical ana
Checks syntactic (grammatical) cafrect

Identifies sequence of grammarruleSyto de
start symbol

A parse tree is construc
Error messages are

Ive the input program from the

ntactically incorrect program




Semantic Analysis

« Semantics of a program Is dependent on the language
» A common check is for typ Mles and

expressions
* Applicability of operaters tyoperands

 Scope rules of the age are applied to determine
types — static s dynamic scope




Optional towards target code generation

Intermediate Code Generation
Code corresponding to input source |

Mm IS generated In terms
of some hypothetical machine instgéCcti

Helps to retarget the code from 0cesSor to another
Simple language supporte st of the contemporary processors
Powerful enough to express fardogramming language constructs




Targeting Difterent Mac

Source Program

Code gene
Machine #1
v
Code for
Machine #1

Code generator
Machine #2

¥
Code for
Machine #2

FREE ONLINE EDUCATION %

Tendia siea, s aa




Target Coae Generation
Uses template substitution frorrixnle;mediate code
I

Predefined target language are used to
generate final code &3
Machine instruction dréssing modes, CPU

registers play vit

Temporary vari er defined and compiler
generated) are packed into CPU registers




Code Optimization

Most vital step in target code generation

Automated steps of compilers generate lot @f redundant codes that can
possibly be eliminated

Code is divided into basic blocks — ce,oOf statements with single
entry and single exit

Local optimizations restrict within asinglebasic block
Global optimization spans the boundaries of basic blocks
Most important source zation are the loops

Algebraic simplificati ation of load-and-store are common
optimizations




Symbol Table Management

Symbol table is a data structure holding information about all symbols
defined In the source program

Not part of the final code, however uséd asgreference by all phases of a
compiler

Typical information stored ther
variables

Generally created by lexica yzer and syntax analyzer
Good data structure dedhto'minimize searching time
The data structure may¥ee flat or hierarchical

nClude name, type, size, relative offset of







Challenges in Compiler Design

« Language semantics
« Hardware platform \/
 Operating system and sys @/are
 Error handling &
 Aid in debugging

« Optimization

e Runtime envir
« Speed of compila

|

A

5%

"
(NZiNS

"', Vv

7T



Language Semantics

\/

remember last value

« “case” — fall through or not
* “loop” — Index may or

e “break” and “next” exccution sequence of the

program




Hardware Platform

» Code generation strateg (Nc:/umulator
based machine canno Imilar to a stack

based machine

 CISC vs. RISC '@ctions sets




Operating System and System Software

* Format of file to be exec @d\is/depicted by the

OS (more specificall )

 Linking process c &bme object files
generated by di t compilers into one
executable fi




Error Handling

Show appropriate error messages — detailed enough to pinpoint the error, not too verbose to
confuse

A missing semicolon may be reported as “<line
If a variable is reported to be undefined at o

Compiler designer has to imagine the pr
and recovery mechanism

Some compilers even go to the e @ odifyMg source program partially, in order to

rather than “syntax error”
not be reported again and again
le typ istakes, design suitable detection

correct it

FREE ONLINE EDUCATION % ‘
Tendia siea, s aa



Aid In Debugging

Debugging helps in detecting logical mistakes in a program
User needs to control execution of machihe la program from the
source language level

Compiler has to generate extra I atio arding the correspondence
between source and machine ig

Symbol table also needs to
Extra debugging informat

lable to the debugger
abedded into the machine code




Optimization

Needs to identify set of transformations that willbe beneficial for most of the
programs in a language

Transformations should be safe

Trade-off between the time spent to
execution time

Several levels of optimization
Selecting a debugging opti
correspondence between the

miz ram vis-a-vis improvement in

Isable any optimization that disturbs the
program and object code




Runtime Environment

Deals with creating space for par Wd local variables

For languages like FORTRAN 4t 1g'statiC — fixed memory
locations created for them

Not suitable for langua upparting recursion
To support recursions frames are used to hold variable

and parameters







Compilation — An Example
Consider the following program: \/

program

var X1, X2: integer¥integer variable declaration}
var XR1: re? {redhvariable declaration}

* 10; {assignment statement}




Lexical Analysis

nce of tokens:

* Produces the following s

program, var, X1, “,’, X2, “:’, integes ; j , ', real, %, begin, XR1,
“=’ X1, +, X2, ‘*’ 10, ‘;, end, &h

» Whitespaces anc cofnments are discarded and
removed by the:\.. ical Analyzer

1
;(% 07) JJ%




Syntax Analysis

« Assuming the program to be grammatically, correct, the following parse
tree is produced )V




Code Generation

« Assuming a stack oriented machinewvith instructions like
PUSH, ADD, MULT, STORE, %ﬁoks like

PUSH X2
PUSH 10 &
MULT

PUSH X1
ADD

PUSH @XR1
STORE

symbol returns the address of a variable




Symbol Table

Integer
Integer

Real




Seen an ovenyiew of t mpiler design process

* Different f a gompiler have been enumerated

* Challe face e compiler designer have been noted
An exampl&icompilation process has been illustrated

N
N /
loggn/

T

b, 20

forlzra sa, 3 g

|



NPTEL ON




