
Grammar
• A 4-tuple G = <VN, VT, P, S> of a language L(G)

– VN is a set of nonterminal symbols used to write the grammar
– VT is the set of terminals (set of words in the language L(G))
– P is a set of production rules
– S is a special symbol in VN, called the start symbol of the grammar

• Strings in language L(G) are those derived from S by applying the production rules from P
• Examples:

E -> E + T | T
T -> T * F | F
F -> (E) | id

E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

1

Error handling
• Common programming errors

– Lexical errors

– Syntactic errors

– Semantic errors

– Lexical errors

• Error handler goals

– Report the presence of errors clearly and accurately

– Recover from each error quickly enough to detect subsequent errors

– Add minimal overhead to the processing of correct programs

2

Error-recovery strategies
• Panic mode recovery

– Discard input symbol one at a time until one of designated set of
synchronization tokens is found

• Phrase level recovery
– Replacing a prefix of remaining input by some string that allows the parser to

continue

• Error productions
– Augment the grammar with productions that generate the erroneous

constructs

• Global correction
– Choosing minimal sequence of changes to obtain a globally least-cost

correction

3

Context free grammars

• Terminals

• Nonterminals

• Start symbol

• Productions

expression -> expression + term

expression -> expression – term

expression -> term

term -> term * factor

term -> term / factor

term -> factor

factor -> (expression)

factor -> id

4

Derivations
• Productions are treated as rewriting rules to

generate a string

• Rightmost and leftmost derivations
– E -> E + E | E * E | -E | (E) | id

– Derivations for –(id+id)
• E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id)

• E => -E => -(E) => -(E+E) => -(E+id)=>-(id+id)

5

Parse tree

6

Ambiguity
• For some strings there exist more than one parse tree
• Or more than one leftmost derivation
• Or more than one rightmost derivation
• Example: id+id*id

7

Elimination of ambiguity
if E1 then if E2 then S1 else S2 if E1 then S1 else if E2 then S2 else S3

8

Elimination of ambiguity (cont.)

• Idea:

– A statement appearing between a then and an
else must be matched

9

Elimination of left recursion
• A grammar is left recursive if it has a non-terminal A such

that there is a derivation A=> Aα
• Top down parsing methods cant handle left-recursive

grammars
• A simple rule for direct left recursion elimination:
– For a rule like:
• A -> A α|β

– We may replace it with
• A -> β A’
• A’ -> α A’ | ɛ

+

10

Left recursion elimination (cont.)
• There are cases like following

– S -> Aa | b
– A -> Ac | Sd | ɛ

• Left recursion elimination algorithm:
– Arrange the nonterminals in some order A1,A2,…,An.

– For (each i from 1 to n) {
For (each j from 1 to i-1) {

Replace each production of the form Ai-> Aj γ by the production Ai -> δ1γ | δ2 γ | …
|δk γ where Aj-> δ1 | δ2 | … |δk are all current Aj productions
}
Eliminate left recursion among the Ai-productions
}

11

Left Recursion Elimination Example

E -> E+T | T

T -> T*F | F

F -> (E) | id

E -> TE’

E’ -> +TE’ | ε

T -> FT’

T’ -> *FT’ | ε

F -> (E) | id

12

Left factoring
• Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive or top-down parsing.

• Consider following grammar:
– Stmt -> if expr then stmt else stmt

– | if expr then stmt

• On seeing input if it is not clear for the parser which production to use

• We can easily perform left factoring:

– If we have A->αβ1 | αβ2 then we replace it with
• A -> αA’

• A’ -> β1 | β2

13

Left factoring (cont.)
• Algorithm

– For each non-terminal A, find the longest prefix α common to two or more of its
alternatives. If α≠ ɛ, then replace all of A-productions A->αβ1 |αβ2 | … | αβn |
γ by
• A -> αA’ | γ
• A’ -> β1 |β2 | … | βn

• Example:
– S -> i E t S | i E t S e S | a
– E -> b

• Modifies to
– S -> i E t S S’ | a
– S’ -> e S | ɛ
– E -> b

14

TOP DOWN PARSING

15

Introduction

• A Top-down parser tries to create a parse tree from the root
towards the leafs scanning input from left to right

• It can be also viewed as finding a leftmost derivation for an
input string

• Example: id+id*id

E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

E
lm

E

T E’

lm
E

T E’

F T’

lm
E

T E’

F T’

id

lm
E

T E’

F T’

id Ɛ

lm
E

T E’

F T’

id Ɛ

+ T E’

16

Recursive descent parsing
• Consists of a set of procedures, one for each nonterminal
• Execution begins with the procedure for start symbol
• A typical procedure for a non-terminal

void A() {

choose an A-production, A->X1X2..Xk

for (i = 1 to k) {

if (Xi is a nonterminal

call procedure Xi();

else if (Xi equals the current input symbol a)

advance the input to the next symbol;

else /* an error has occurred */

}

}

17

Recursive descent parsing (cont)

• General recursive descent may require backtracking
• The previous code needs to be modified to allow backtracking
• In general form it cannot choose an appropriate production easily.
• So we need to try all alternatives
• If one fails, the input pointer needs to be reset and another

alternative has to be tried
• Recursive descent parsers cannot be used for left-recursive

grammars

18

Example

S->cAd

A->ab | a Input: cad

S

c A d

S

c A d

a b

S

c A d

a

19

Predictive parser

• It is a recursive-descent parser that needs no backtracking

• Suppose A -> A1 | A2 | ….| An

• If the non-terminal to be expanded next is ‘A’, then the choice
of rule is made on the basis of the current input symbol ‘a’.

20

Procedure

• Make a transition diagram (like dfa/nfa) for every rule of the grammar.

• Optimize the dfa by reducing the number of states, yielding the final
transition diagram

• To parse a string, simulate the string on the transition diagram

• If after consuming the input the transition diagram reaches an accept
state, it is parsed.

21

Example
Consider the grammar:

exp -> term exp_tail

exp_tail -> + term exp_tail | ε

term -> factor term_tail

term_tail -> * factor term_tail | ε

factor -> (exp) | id

22

Example – Simplification

23

Eliminate self-recursion Remove redundant ε edge Substituting exp_tail into exp

Final set of diagrams

SIMULATION METHOD
• Start from the start state

• If a terminal comes consume it, move to next state

• If a non – terminal comes go to the state of the “dfa” of the non-term
and return on reaching the final state

• Return to the original “dfa” and continue parsing

• If on completion(reading input string completely), you reach a final
state, string is successfully parsed.

24

Disadvantage

• It is inherently a recursive parser, so it
consumes a lot of memory as the stack grows.

• To remove this recursion, we use LL-parser,
which uses a table for lookup.

25

First and Follow
• First(α) is set of terminals that begins strings derived from α

• If α=>ɛ then ɛ is also in First(α)

• In predictive parsing when we have A-> α|β, if First(α) and First(β) are disjoint
sets then we can select appropriate A-production by looking at the next input

• Follow(A), for any nonterminal A, is set of terminals a that can appear immediately
after A in some sentential form

– If we have S => αAaβ for some αand βthen a is in Follow(A)

• If A can be the rightmost symbol in some sentential form, then $ is in Follow(A)

*

*

26

Computing First
• To compute First(X), apply following rules until no more

terminals or ɛ can be added to any First set:

1. If X is a terminal then First(X) = {X}.

1. If X is a nonterminal and X->Y1Y2…Yk is a production for some k ≥ 1, then
place a in First(X) if for some i a is in First(Yi) and ɛ is in all of
First(Y1),…,First(Yi-1) that is Y1…Yi-1 => ɛ. If ɛ is in First(Yj) for j=1,…,k then
add ɛ to First(X).

1. If X-> ɛ is a production then add ɛ to First(X)

*

27

Computing Follow

• To compute Follow(A) for all nonterminals A, apply following
rules until nothing can be added to any follow set:
1. Place $ in Follow(S) where S is the start symbol

2. If there is a production A-> αBβ then everything in First(β) except ɛ
is in Follow(B).

3. If there is a production A->αB or a production A->αBβ where
First(β) contains ɛ, then everything in Follow(A) is in Follow(B)

28

Example of First and Follow Sets

29

E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

LL(1) Grammars
• Predictive parsers are those recursive descent parsers needing no backtracking
• Grammars for which we can create predictive parsers are called LL(1)

– The first L means scanning input from left to right
– The second L means leftmost derivation
– And 1 stands for using one input symbol for lookahead
– More general one is LL(k), with k symbol lookahead

• A grammar G is LL(1) if and only if whenever A-> α|βare two distinct
productions of G, the following conditions hold:
– For no terminal a do αandβ both derive strings beginning with a
– At most one of α or βcan derive empty string
– If α=> ɛ then βdoes not derive any string beginning with a terminal in Follow(A)

*

30

Construction of predictive parsing table

• For each production A->α in grammar do the following:
1. For each terminal a in First(α) add A->αin M[A,a]

2. If ɛ is in First(α), then for each terminal b in Follow(A) add A-> ɛ to
M[A,b]. If ɛ is in First(α) and $ is in Follow(A), add A-> ɛ to M[A,$] as
well

• If after performing the above, there is no production in
M[A,a] then set M[A,a] to error

31

Example
E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

32

