>

L @

4
21t 31Xt Il kA g

S5
S| S
FREE ONLINE EDUCATION y
S ¥
X -
N\
>

NPTEL ONLINE CERFIFICATION COURSES

Compiler Design
Type Checking

Santanu Chattopadhyay

Electronics and Electrical Communication Engineering



What'is a Type Checking
Static vs. Dynamic Checking
Type Expressions

Type Equivalence

Type Conversion

Phases of a Compiler
Conclusion

CONCEPTS COVERED

Dooooo0D




What is Type Checking

One of the most important semantic aspects of compilation

Allows the programmer to limit what types may be used in
certain circumstances

Assigns types to values

Determines whether these values are used in an appropriate
manner

Simplest situation: check types of objects and report a type-
error in case of a violation

More complex: incorrect types may be corrected (type
coercing)




» Static Checking

Type checking done at compile
time

Properties can be verified before
program run

Can catch many common errors

Desirable when faster execution
is important

FREE ONLINE EDUCATION

Tendia siea, s aa

Static vs. Dynamic Checking

* Dynamic Checking

Performed during program
execution

Permits programmers to be less
concerned with types

Mandatory in some situations,
such as, array bounds check

More robust and clearer code




Type Expressions

* Used to represent types of language constructs

* Atype expression can be

— Basic type: integer, real, char, Boolean and other atomic types that do
not have internal structure. A special type, type-error is used to
indicate type violations

— Type name
— Type constructor applied to a list of type expressions




Type Expressions

Arrays are specified as array(l,T), where T is a type and | is an integer or a
range of integers. For example, C declaration “int a[100]” identifies type of
a to be array(100, integer)

If T1 and T2 are type expressions, T1 % T2 represents “anonymous
records”. For example, an argument list passed to a function with first
argument integer and second real, has type integer x real




Type Expressions

Named records are products with named elements. For a record structure with
two named fields — length (an integer) and word (of type array(10, char)), the
record is of type

record((length x integer) x (word x array(10, character)))

If T is a type expression, pointer(T) is also a type expression, representing objects
that are pointers to objects of type T

Function maps a collection of types to another, represented by D = R, where D is
the domain and R is the range of the function.




* Type expression “integer x integer = character” represents a

Type Expressions

function that takes two integers as arguments and returns a
character value

Type expression “integer—=> (real > character)” represents a
function that takes an‘integer as an argument and returns
another function which maps a real number to a characte




Type Systems

* Type system of a language is a collection of rules depicting the
type expression assignments to program objects

e Usually done with syntax directed definition
* ‘Type checker’ is an implementation of a type system




Strongly Typed Language

Compiler can verify that the program will execute without any type errors
All checks are made statically

Also called a sound type system

Completely eliminates necessity of dynamic type checking

Most programming languages are weakly typed

Strongly typed languages put lot of restrictions

There are cases in which a type error can be caught dynamically only
Many languages also allow the user ti override the system




e Use synthesized attribute ‘type’ for the
nonterminal E representing an expression

Type Chec

Ing of Expressions

| Expression Action
| E—id E .type — lookup(id.entry)
E — Eyop E, E type — if Eydype = Es.type then E|.type else type-error
E — Eyrelop E; | E.type — if E,.type = Es.type then boolean else type-error
.\ E — E\[E,] E type « if Egitype = integer and E,.type = array(s,t) then t
‘ else type-error
E-E1 E type « if By.type = pointer(t) then t else type-error




Type Checking of Statements

e Statements normally do not have any value, hence of type
void

* For propagating type error occurring in some statement
nested deep inside a block, a set of rules needed

S—id=F S.type — if id.type = E.type then void else type-error

S — if E then S, S.type — if E.type = boolean then S).type else type-error
S — while E do S, | Siype — if E.type = boolean then S).type else type-error
S — 51;8; S.type «— if.S;.type = void and Sa.type = void then void
else type-error




Type Checking of Functions

e A function call is equivalent to the application
of one expression to another

[E — E\(E:) | E-type — if Eq.type = sand E, type = s — ¢ then t else type-error




Type Equivalence

* |tis often needed to check whether two type
expressions ‘s’ and ‘t” are.same or not

* Can be answered by deciding equivalence between
the two types

* Two categories of equivalence

— Name equivalence

— Structural euwalence




