Name Equivalence

 Two types are name equivalent if they have same name or label

typedef int Value
typedef int Total

Value varl, var2
Total var3, var4

e Variables varl, var2 are name equivalent, so are var3 and var4
* Variables varl and var4 are.not name equivalent, as their type
names are different

FREE ONLINE EDUCATION aj
Tendia siea, s aa

Structural Equivalence

Checks the structure of the type

Determines equivalence by checking whether they have same constructor
applied to structurally equivalent types

Checked recursively

Types array(l1, T1) and array(12, T2) are structurally equivalent if I1 and 12
are equal and T1 and T2 are structurally equivalent

Directed Acyclic Graph Representation

* Type expressions can be represented as a DAG or a tree
* “record((length x integer) x (word x'array(10, character)))”

record
/
vl \
/X\ X\
length . integer word array

N\
10 character

: [l
Ny
AN

/7Y

gy

Function dag_equivalence

function dag-equivalence(s,t: type-DAGs): boolean
begin
if s and ¢ represents the same basic type then return true
if s represents array(l,, T1) and t represents array(l>, T) then
if I} = I, then return dag-equivalence(T;, T3)
else return false
if s represents s; x s; and ¢ represents fy X t, then
return dag-equivalence(s;, ty) and dag-equivalence(ss, t)
if s represents pointer(sy) and ¢ represents pointer(t,) then
return dag-equivalence(s,, t,)
if s =25, = 8, andt =ty = ¢, then
return dag-equivalence(s,, t;) and dag-equivalence(ss, t3)
return false
end.

3 S0
FREE ONLINE EDUCATION ? iy R %
S YW R
RN < > S|
AN S
Tedia aiea, Jaania e #

Cycles in Type Representation

 Some languages allow types to be defined in a cyclical fashion

. list = record list = record
struct list
{ R Ny A
int val; 4 ;(X X
1 * . / / \ ,,/ \\- // /\\-.
struct list *next; / /\ 2 % A% N
} val integer next poi‘mer \;al integer next pointer
@ ls)

* (a) Acyclic representation (b) Cyclic representation

1L

)/

/f{m,

N4

gy

Cycles in Type Representation

Most programming languages, including C, uses acyclic one

Type names are to be declared before using it, excepting
pointers

Name of the structure is also part of the type
Equivalence test stops when a structure is reached

At this point, type expressions are equivalent if they point to
the same structure name, nonequivalent otherwise

Type Conversion

Refers to local modification of type for a variable or subexpression

For example, it may be necessary to add an integer quantity to a real variable,
however, the language may require both the operands to be of same type

Modifying integer variable to real will require - more space

Solution: to treat integer operand as really operand locally and perform the
operation

May be done explicitly or implicitly
Implicit conversion = type coercion

int x; int x;
floaty; floaty;

;/n= ((float)x)/14.0

e

%

FREE ONLINE EDUCATION

Tendia siea, s aa

Compilers usually perform static type checking

* Dynamic type checking is costly

* Types are normally represented as type expressions

* Type checking can be performed by syntax directed techniques
Type graphs may be compared to check type equivalence

4
{

(" FREE ONLINE EDUCATION 3 AN
AN Z
< > =
| Z AN —]
L@!nz NV w$
21 M, J -1 Ml
S

\\\
\\

A9 a FREE ONLINE EDUCATION , = -

: g : AN .

2 “H § -

& / b = % Gy

W _ —

) s\ N s
e §¥f2ra si rIJ-'id e \&

NPTEL ONLINE CERTIFICATION COURSES

Thank
you!

<

Compiler Design
Symbol Tables

Santanu Chattopadhyay

Electronics and Electrical Communication Engineerij

% S A
FREE ONLINE EDUCATION y iy :
S NS
=‘. < > =._
Tedia aiea, Jaania P #

O Information in Symbol Table
O Features of Symbol Table

Q" Simple Symbol Table

[Scoped Symbol Table

L Conclusion

)

2

ree

AN
i/

’__"-% V4
0,

Introduction

Essential data structure used by compilers to remember
Information about identifiers in the source program

Usually lexical analyzer and parser fill .up.the entries in the
table, later phases like code generator and optimizer make use
of table information

Types of symbols stored in the symbol table include variables,
procedures, functions, defined constants, labels, structures etc.

Symbol tables may vary widely from implementation tq
Implementation, even for the same language

Information in Symbol Table

Name
— Name of the identifier

— May be stored directly or as a pointer to another character string in an associated string table —
names can be arbitrarily long

Type
— Type of the identifier: variable, label, procedure name etc.
— For variables, its type: basic types, derived types etc.

Location
— Offset within the program where the identifier is defined

Scope

— Region of the program where the current definition is valid

Other attributes: array limits, fields of records, parameters, return values etc.

FREE ONLINE EDUCATION 3j
Terldia sia, s 90 nia

Usage of Symbol Table Information

Semantic Analysis — check correct semantic usage of language constructs,
e.g. types of identifiers

Code Generation — Types of variables provide their sizes during code
generation

Error Detection — Undefined variables. Recurrence of error messages can
be avoided by marking the variable type as undefined in the symbol table

Optimization — Two or more temporaries can be merged if their types are

Operations on Symbol Table

Lookup — Most frequent, whenever an identifier is seen it is needed to
check its type, or create a new entry

Insert — Adding new names to the table, happens mostly in lexical and
syntax analysis phases

Modify — When a name is defined, all information may not be available,
may be updated later

Delete — Not very frequent. Needed sometimes, such as when a procedure
body ends

Issues in Symbol Table Design

Format of entries — Various formats from linear array to tree structured
table

Access methodology — Linear search, Binary search, Tree search, Hashing,
etc.

Location of storage — Primary memory, partial storage in secondary
memory

Scope Issues — In block-structured language, a variable defined in upper
blocks must be visible to inner blocks, not the other way

Simple Symbol Table

 Works well for languages with a single scope

e Commonly used technigues.are
— Linear table
— Ordered list
— Tree
— Hash table

Linear Table

* Simple array of records with each record corresponding to an
identifier in the program

e Example:
ey [
real z integer Offset of x
y integer Offset of y
procedure abc
z real Offset of z
L1 abc procedure Offset of abc

label Offset of L1

Linear Table

If there is no restriction in the length of the string for the name of an
identifier, string table may be used, with name field holding pointers

Lookup, insert, modify take O(n) time

Insertion can be made O(1) by remembering the pointer to the next free
index

Scanning most recent entries first may probably speed up the access —
due to program locality — a variable defined just inside a block is
expected to be referred to more often than some earlier variables

Ordered List

Variation of linear tables in which list organization is used

List is sorted in some fashion, then binary search can be used
with O(log n) time

Insertion needs more time

A variant — self-organizing list: neighbourhood of entries
changed dynamically

Selt-Organizing List

*In Fig (a), Identifier4 is the most
recently used symbol, followed by
Identifier2, Identifier3 and so on

*In Fig (b), Identifier5 is accessed
next, accordingly the order changes

*Due to program locality, it is expected
that during compilation, entries near
the beginning of the ordered list will
be accessed more frequently
*This improves lookup time

FREE ONLINE EDUCATION y oy 9
S WS
§‘ < > ~
SN S

Tendia siea, s aa N #

Before:

first —=

free

—
Identifier l

Identifier 2'

| —

Identifier 4 P
A
Identifier 5|

(a)

Identifier 3 L_|

After:

3%
lidentiﬁer >3 -

Identifier 1 <1——'

|

first —=f

free

ldentlﬁcr 3 ' J

ldcntlﬁer 4‘ :L

ldennf Lﬂ—‘—J
|

(b)

Tree

e Each entry represented by a node of the tree

e Based on string comparison of names, entries lesser than a reference
node are kept in its left subtree, otherwise in the right subtree

* Average lookup time O(log n)
* Proper height balancing techniques need to be utilized
(x)

Hash Table

Useful to minimize access time
Most common method for implementing symbol tables in compilers

Mapping done using Hash function that resultsin unique location in the table
organized as array

Access time O(1)

Imperfection of hash function results.in several symbols mapped to the same
location — collision resolution strategy needed

To keep collisions reasonable, hash table is chosen to be of size between n and 2n
for n keys

FREE ONLINE EDUCATION 3j
Terldia sia, s 90 nia

Desirable Properties of Hash Functions

Should depend on the name of the symbol. Equal emphasis
be given to each part

Should be quickly computable

Should be uniform in mapping names to different parts of the
table. Similar names (suchas, datal and data2) should not
cluster to the same address

Computed value must'be within the range of table index

Scope of a symbol defines the region of the program in which a particular
definition of the symbol is valid — definition is visible

Block structured languages permit different types of scopes for the
identifiers — scope rules for the language

Scoped Symbol Table

Global scope: visibility throughout the program, global variables
File-wide scope: visible only within the file

Local scope within a procedure: visible only to the points inside the procedure, local
variables

Local scope within a block: visible only within the block in which it is defined

FREE ONLINE EDUCATION

Tendia siea, s aa

Scoping Rules

 Two categories depending on the time at which the scope
gets defined

e Static or Lexical Scoping
— Scope defined by syntactic nesting
— Can be used efficiently by the compiler to generate correct references
* Dynamic or Runtime Scoping
— Scoping depends on execution sequence of the program

— Lot of extra code needed to dynamically decide the
definition to be used

Nested Lexical Scoping

* To reach the definition of a symbol, apart from the current block, the
blocks that contain this innermost one, also have to be considered

e Current scope is the innermost one

* There exists a number of open scopes —one.corresponding to the current
scope and others to each of the blocks surrounding it

Procedure P1

Procedure P2

—u‘ Current scope of x is P3, it has another open scope P1

end procedure
Procedure P3

X =

FREE ONLINE EDUCATION

Tendia siea, s aa

Visibility Rules

Used to resolve conflicts arising out of same variable being defined more
than once

If a name is defined in more than one scope, the innermost declaration
closest to the reference is used to interpret

When a scope is exited all declared variables in that scope are deleted and
the scope is thus closed

Two methods to implement symbol tables with nested scope
— One table for each scope
— Assingle global table

One Table Per Scope

 Maintain a different table for each scope
* Astack is used to remember the scopes of the symbol tables

e Drawbacks:

— For a single-pass compiler, table can be popped out and destroyed
when a scope is closed, not for a multi-pass compiler

— Search may be expensive if variable is defined much above in the
hierarchy

— Table size allotted to each block is another issue

* Lists, Trees, Hash Tables can be used

One Ta

Curent [| (g F~{c [l
g TiE g E iV

Scoped Symbol Table — Lists

§o~ NE EDUCATION m i%ﬂ)
NNaya 2 N

Tenaa

Uy,

v

e Per Scope

L]

Current i
scope 1 Fer——
0 W %
3 .
/]

Scoped Symbol Table — Trees

One Table for All Scopes

All identifiers are stored in a single table
Each entry in the symbol table has an extra field identifying the scope

To search for an identifier, start with the highest scope number, then try
out the entries having next lesser scope number, and so on

When a scope gets closed, all identifiers with that scope number are
removed from the table

Suitable particularly for single-pass compilers
List, Tree and Hash Table can be used

One Table tor All Scopes

start —(XBJ—~[AB[}~[XE}{YEI}{al] Single List

| ABGHLILGATY
2__ a[1]. an OEER il
I IA 1]« L|1]/|
i pon E
Al3 cl3 ;
|
Tree —
] "!
Hash Table
FREE ONLINE EDUCATION % s‘j\‘%ﬂ %
Swayain iy

Conclusions

Symbol table, though not part of code generated by the compiler,
helps in the compilation process

Phases like Lexical Analysis and Syntax Analysis produce the
symbol table, while other phases use'its content

Depending upon the scope rules of the language, symbol table
needs to be organized in various different manners

Data structures commonly used for symbol table are linear table,
ordered list, tree, hash table, etc.

FREE ONLINE EDUCATION aj
Tendia siea, s aa

Thank you

FREE ONLINE EDUCATION - S

SRNZA
Swayam §.f;_\’~§?

Tedia aiea, Jaania P #

Compiler Design
Runtime Environment Management

Santanu Chattopadhyay

Electronics and Electrical Communication Engineerij

FREE ONLINE EDUCATION % ny A X

Swayaim oy
32§
AN S

Tendia siea, s aa

L What is Runtime Environment

[Activation Record

" Environment without Local Procedures
L Environment with Local Procedures

L Display

[Conclusion

ity
N7
AN
U/

FREE ONLINE EDUCATION
Tendia siea, s aa

n,

What 1s Runtime Environment

» Refers to the program snap-shot during execution

» Three main segments of a program
— Code
— Static and global variables
— Local variables and arguments

« Memory needed for each of these entities

— Generated code: Text for procedures and programs. Size known at compile time. Space can be
allotted statically before execution

— Data objects:
 Global variables/constants — space known at compile time
» Local variables — space known at compile time
» Dynamically created variables — space (heap) in response to memory allocation request
— Stack: To keep track of procedure activations

FREE ONLINE EDUCATION

Tendia siea 1 M

Logical Address Space of Program

Code Static Heap <— Free Memory ——> Stack

Low High

* Code occupies the lowest portion

* Global variables are allocated in the static portion

* Remaining portion of the address space, stack and heap are allocated
from the opposite ends to-have maximum flexibility

1L

)/

/f{m,

N4

gy

Activation Record

e Storage space needed for variables associated with each
activation of a procedure — activation record or frame

* Typical activation record contains
— Parameters passed to the procedure
— Bookkeeping information, including return values
— Space for local variables

— Space for compiler generated local variables to hold sub-expression
values

