AN
FREE ONLINE EDUCATION = = Q %Rﬂ\

§ [«))E

™
swayam || ok:

R1f81a 3R, 3~1a Mmea

NPTELCONLINE CERTIFICATION COURSES

Compiler Design
Lexical Analysis

Santanu Chattopadhyay
Electronics and Electrical Communication Engineering

1 Role of Lexical Analyzer
Tokens, Patterns, Lexemes
Lexical Errors and Recovery
Specification of Tokens
Recognition of Tokens
Finite Automata

NFA and DFA

Tool lex

Conclusion

CONCEPTS COVERED

Do 0o00O

Role of lexical analyzer

analysis

token

Lexical Analyzer

Source
program

getNextToken

Why to separate Lexical analysis and parsing

1. Simplicity of design
2. Improving compiler efficiency

3. Enhancing compiler portability

Tokens, Patterns and Lexemes

* Atoken is a pair —a token name and an optional
token value

e A pattern is a description of the form that the
lexemes of a token may take

* Alexeme is a sequence of characters in the source
program that matches the pattern for a token

Example

Token Informal description Sample lexemes
if Characters i, f if
else Characters e, |, s, e else
comparison <or>or<=or>=or==orl= <= l=
id Letter followed by letter and digits pi, score, D2
number Any numeric constant
literal

FREE ONLINE EDUCATION
) 1#1kgra sna, 3

S

Anything but “ surrounded by “

fm%

N2
NES

logggy

7 A

3.14159, 0, 6.02e23
“core dumped”

Attributes for tokens

cE=M*C**2
— <id, pointer to symbol table entry for E>
— <assign-op>

— <id, pointer to symbol table entry for M>
— <mult-op>

— <id, pointer to symbol table entry for C>
— <exp-op>

— <number, integer value 2>

Lexical errors

 Some errors are out of power of lexical analyzer to recognize:
— fi (a == f(x)) ...

However it may be able to recognize errors like:
— d=2r

* Such errors are recognized when no pattern for tokens
matches a character sequence

1

Error recovery

Panic mode: successive characters are ignored
until we reach to a well formed token

Delete one character from the remaining input

Insert a missing character into the remaining
input

Replace a character by another character
Transpose two adjacent characters

Input buffering

 Sometimes lexical analyzer needs to look ahead some
symbols to decide about the token to return

— In Clanguage: we need to look after -, = or < to decide what
token to return

— In Fortran: DO 51=1.25

e We need to introduce a two buffer scheme to handle
large look-aheads safely

M* C**2eof |

Specification of tokens

* Intheory of compilation regular expressions are used to formalize the
specification of tokens

* Regular expressions are means for specifying regular languages

 Example:
» letter(letter | digit)*

* Each regular expression is a pattern specifying the form of strings

Y

N

W

iy

N
Wi/

5 A\

[]

Regular Expressions

* Eisaregular expression denoting the language L(€) = {€}, containing only the
empty string

 Ifaisasymbolin Xthen ais a regular expression, L(a) = {a}

* |If rand s are two regular expressions with languages L(r) and L(s), then

— r|sis a regular expression denoting the language L(r) U L(s), containing all
strings of L(r) and L(s)

— rsis a regular expression denoting the language L(r)L(s), created by
concatenating the strings of L(s) to L(r)

— r*is aregular expression denoting (L(r))*, the set containing zero or more
occurrences of the strings of L(r)

— (r) is a regular expression corresponding to the language L(r)

FREE ONLINE EDUCATION
Ll M, 3 L

Regular definitions

dl->rl
d2 ->r2

dn ->rn

e Example:

letter >A|B|..|Z]a]|b]|..|Z]|_
digit >0|1]..]9
id -> |etter_ (letter_ | digit)*

y {”"I
7 %
V7S

ot

Extensions

 One or more instances: (r)+
e Zero of one instances: r?

* Character classes: [abc]

e Example:
— letter_ ->[A-Za-z_]
— digit < ->[0-9]
— id

-> |etter (letter |digit)*

y {'”"J
i
AN

W

o/

Examples with 2= {0, 1}

(0]12)*: All binary strings including the empty string
(0]1)(0|1)*: All nonempty binary strings
0(0|1)*0: All binary strings of length at least 2, starting and ending with Os

(0]1)*0(0]1)(0|1)(0]1): All binary strings with at least three characters in
which the third-last character is always O

0*10*10*10*: All binary strings possessing exactly three 1s

Example

Set of floating-point numbers:

(+]-]€) digit (digit)™*(. digit (digit)™ | E)((E(+ -] E)
digit (digit)*)| €)

y {'”"J
i
AN

W

o/

Recognition of tokens

e Starting point is the language grammar to understand
the tokens:

stmt -> if expr then stmt
| if expr then stmt else stmt
| ¢
expr -> term relop term
| term
term -> id
| number

Recognition of tokens (cont.)

 The next step is to formalize the patterns:
digit ->[0-9]
Digits -> digit+
number -> digit(.digits)? (E[+-]? Digit)?
letter -> [A-Za-z_]

id -> |letter (letter|digit)*

If -> if

Then ->then

Else ->else

Relop -><|>|<=|>=]|=]|<>

 We also need to handle whitespaces:
ws -> (blank | tab | newline)+

y {'”"J
i
AN

o/

W

Transition diagrams
* Transition diagram for relop

start =

4-@\ = ~/:\‘ @ return (relop, LE)
%

_ return (relop, NE)

l\ other _© return (relop, LT)

\“- return (relop, EQ)
x-;@ - @ return (relop, GE)

*

‘. other
return (relop, GT)

Transition diagrams (cont.)

* Transition diagram for reserved words and
identifiers

letter or digit
_,® letter =® other @ return (getToken(), installlD())

Transition diagrams (cont.)

* Transition diagram for unsigned numbers

digit digit
l_/“_ _'\\ l/" o

*

digit

_ {”"l'
w4
N

T

Transition diagrams (cont.)

* Transition diagram for whitespace

delim

start delim Dther*

Architecture of a transition-diagram-based lexical analyzer

TOKEN getRelop()
{

TOKEN retToken = new (RELOP)
while (1) { /* repeat character processing until a

return or failure occurs */
switch(state) {

case 0: c= nextchar();
if (c == <) state = 1;
else if (c == ‘=) state = 5;
else if (c ==>’) state = 6;

else fail(); /* lexeme is not a relop */
break;
case 1: ...

case 8: retract();

retToken.attribute = GT;
return(retToken);

e -
FREE ONLINE EDUCATION =y Y.
AR EANVA
< > ‘
: AN 8§
L 4 O N~
) 1R1l2ia snza, s =a e 1 ﬁ

Finite Automata

Regular expressions = specification
Finite automata = implementation

A finite automaton consists of
— An input alphabet
— A set of states S
— A start state n
— A set of accepting states F = S

input
— A set of transitions state — state

Y

iy

5 A\

w7

Finite Automata

Transition

Is read

In state s, on input “a” go to state s,

If end of input

— If in accepting state => accept, othewise => reject
* If no transition possible => reject

un’

iy,

Finite Automata State Graphs

A state

e The start state

e An accepting state

e A transition

y {'”"J
i
AN

A Simple Example

A finite automaton that accepts only “1”

OO

A finite automaton accepts a string if we can follow transitions labeled with the
characters in the string from the start to some accepting state

o,

FREE ONLINE EDUCATION = A .
, - =\ s N7 ‘;'.t_..-
2 < > ‘
e 1L AN §
) 1R1l2ia snza, s =a e \ 1

Another Simple Example

* Afinite automaton accepting any number of 1’s followed by a
single O
* Alphabet: {0,1}

1

/0\.@)

* Check that “1110" is accepted but “110...” is not

And Another Example

 Alphabet {0,1}
 What language does this recognize?

And Another Example

Alphabet still {0, 1}

The operation of the automaton is not completely defined by the input
— Oninput “11” the automaton could be in either state

ot

Epsilon Moves
 Another kind of transition: e-moves

O

e Machine can move from state A to state B without
reading input

y {'”"J
i
NI

gy

Deterministic and Nondeterministic Automata

* Deterministic Finite Automata (DFA)
— One transition per input per state
— No e-moves
 Nondeterministic Finite Automata (NFA)
— Can have multiple transitions for one input in a given state
— Can have e-moves
* Finite automata have finite memory
— Need only to encode the current state

Execution of Finite Automata

* A DFA can take only one path through the state graph
— Completely determined by input

e NFAs can choose

— Whether to make e-moves
— Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

e |nput: 1 o0 1

Rule: NFA accepts if it can get in a final state

NS

logggy

NFA vs. DFA (1)

* NFAs and DFAs recognize the same set of
languages (regular languages)

* DFAs are easier to implement
— There are no choices to consider

NFA vs. DFA (2)

* For a given language the NFA can be simpler than the DFA

:oo

CX o 0 (0

1
e DFA can be exponentially larger than NFA

NFA

Regular Expressions to Finite
* High-level sketch Automata

Regular
expressions DIA
Lexical
Specification

Table-driven
Implementation of DF

y {'”"J
i
AN

W

1

4

Regular Expressions to NFA (1)

* For each kind of rexp, define an NFA
— Notation: NFA for rexp A

- Fore
) —&—0O

* For input a

O

Regular Expressions to NFA (2)

* For AB

Regular Expressions to NFA (3)
* For A*

Example of RegExp -> NFA conversion

* Consider the regular expression
(1 | 0)*1
* The NFA is

Next

/ NFA

RQQUIGP \

expressions DFA
I l)
Lexical Table-driven
SpecificaTion Implementation of DFA
: S
FREE ONLINE -Euu‘cnlnou % é?; N i:‘a .
SWayam S (<

NFA to DFA. The Trick

Each state of resulting DFA

= a non-empty subset of states of the NFA
* Start state

= the set of NFA states reachable through e-moves from NFA start state
Add a transition S —2 S’ to DFA iff

S’ is the set of NFA states reachable from the states in S after seeing the input a
* considering e-moves as well

o,

S S
FREE ONLINE EDUCATION 7 :
M AR SN 7R
» < > ‘
|1 7N §
1Ril21a siea, 310 na g

