
Translation Rules

1

S  if B then M S1
{ backpatch(B.truelist, M.quad)

S.nextlist = mergelist(B.falselist, S1.nextlist)
} 

S  if B then M1 S1 N else M2 S2
{ backpatch(B.truelist, M1.quad)
backpatch(B.falselist, M2.quad)
S.nextlist = mergelist(S1.nextlist,

mergelist(N.nextlist, S2.nextlist))
} 

S  while M1 B do M2 S1
{ backpatch(S1.nextlist, M1.quad)
backpatch(B.truelist, M2.quad)
S.nextlist = B.falselist
emit( ‘goto’ M1.quad)

} 



Translation Rules (Contd.)
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S  begin L end
{ S.nextlist = L.nextlist }

S  A
{ S.nextlist = nil }

L  L1 M S
{ backpatch(L1.nextlist, M.quad)
L.nextlist = S.nextlist

}

L  S
{ L.nextlist = S.nextlist }

M  ε
{ M.quad = nextquad() }

N  ε
{ N.nextlist = nextquad()
emit(‘goto’ ...)

}



Example
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begin
while a > b do
begin

x = y + z
a = a – b

end
x = y – z

end 

Final Code:
1: if a > b goto 3
2: goto 8
3: t1 = y + z
4: x = t1
5: t2 = a – b
6: a = t2
7: goto 1
8: x = t3
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Case Statements
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switch(E) {
case c1: ...
...
case cn: ...
default: ...

}

Implementation alternatives:
• Linear search for matching option
• Binary search for matching case
• A jump table
• Linear or binary search may be cheaper if number 

of cases small, for larger number of cases, jump 
table may be cheaper

• If case values are not clustered closely together, 
jump table may be too costly for space



Jump Table Implementation
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Let the maximum and the minimum case values be cmax and cmin respectively

Code to evaluate E into t
if t < cmin goto Default_Case
if t > cmax goto Default_Case
goto JumpTable[t]
Default_Case: ...

JumpTable[i] is the address of the code to execute, if E evaluates to i



Function Calls
• Can be divided into two subsequences

– Calling sequence: set of actions executed at the time of calling a 
function

– Return sequence: set of actions at the time of returning from the 
function call

• For both, some actions performed by Caller of the function 
and the other by the callee
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Calling Sequence
Caller
• Evaluate actual parameters
• Place actuals where the callee wants them
• Corresponding three-address instruction:

param t
• Save machine state (current stack and/or 

frame pointers, return address)
• Corresponding three-address instruction:

call p, n (n=number of actuals)

Callee

• Save registers, if necessary
• Update stack and frame pointers to 

accommodate m bytes of local storage
• Corresponding three-address instruction:

enter m
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Return Sequence

Callee
• Place return value, if any, where 

the caller wants it
• Adjust stack/frame pointers
• Jump to return address
• Corresponding three-address 

instruction:
return x or return

Caller
• Save the value returned by the 

callee
• Corresponding three-address 

instruction:
retrieve x
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Example Function Call
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X = f(0, y+1) – 1 

t1 = y + 1
param t1
param 0
call f, 2
retrieve t2
t3 = t2 – 1 
x = t3



Storage Allocation for Functions
• Creates problem as the first instruction in a function is:

enter n  /* n = space for locals, temporaries */
• Value of n not known until the whole function has been 

processed.
• There can be two possible solutions

– Generating final code in a list
– Using pair of goto statements
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Generating Final Code in List
• Generate final code in a list
• Backpatch the appropriate instructions after processing the function body
• Approach is similar to single-phase code generation for Boolean 

expressions and control flow statements
• Advantage: Possibility of machine dependent optimizations
• May be slow and may require more memory during code generation
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Using Pair of goto Statements
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• Intermediate code generation, though not mandatory, helps in 
retargeting the compiler towards different architectures

• Selecting a good intermediate language itself is a formidable task
• Three-address code is one such representation
• Syntax-directed schemes can be utilized to generate three-address

code from the parse tree of the input program
• Translation of almost all major programming language constructs 

have been carried out
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