Example (Contd.)

E->E 1‘ T | T Firstop+(E) = {+’ *, , Id} LaStOp'l'(E) = {+;*r) Id}
T->T*F|F Firstop+(T) = {*, (, id} Lastop+(T) = {*,), id}
F->(E) | id Firstop+(F) = {(, id} Lastop+(F) = {), id}
BN OEEENER
S <- < < <-

(<- - < <: <

LR Parsing

 The most prevalent type of bottom-up parsers
* LR(k), mostly interested on parsers with k<1
* Why LR parsers?
— Table driven
— Can be constructed to recognize all programming language constructs
— Most general non-backtracking shift-reduce parsing method
— Can detect a syntactic error as soon as it is possible to do so
— Class of grammars for which we can construct LR parsers are superset of those
which we can construct LL parsers

FREE ONLINE EDUCATION % ‘
Tel2ta siza, s aamta

LR Parsing Methods

 SLR-Simple LR. Easy to implement, less powerful

e (Canonical LR — most general and powerful. Tedious and costly to
implement, contains much more number of states compared to SLR

* LALR - Look Ahead LR. Mix of SLR and Canonical LR. Can be implemented
efficiently, contains same number of states as simple LR for a grammar

States of an LR parser

» States represent set of items

 An LR(0) item of G is a production of G with the dot at some
position of the body:

— For A->XYZ we have following items
A->.XYZ
A->X.YZ
A->XY.Z
A->XYZ.

next on the input.
— What about A->X.YZ?

Constructing canonical LR(0) item sets

* Augmented grammar:
— G with addition of a production: S’->S
* Closure of item sets:
— If lis a set of items, closure(l) is a set of items constructed from | by the
following rules:
* Add everyitemin | to closure(l)
* If A->a.BBis in closure(l) and B->y is a production then add the
item B->.y to closure(l).

* Example: I0=closure({[E’->.E]}
R E'->.E
E’->E E->.E+T
E->E+T|T E->T
T->T*F|F T->T*F
F->(E) | id T>F
F->.(E)
F->.id
o O
8 AN ¥

Constructing canonical LR(O) item sets (cont.

 Goto (I,X) where | is an item set and X is a
grammar symbol is closure of set of all items [A->
aX. B] where [A-> a.X B] isin |

Example

|0=closure({[E’->.E]}
E’->.E
E->.E+T
E->T
T->T*F
T->.F

F->.(E)
F->.id

Closure algorithm

SetOfltems CLOSURE(I) {
I=l;
repeat
for (each item A-> a.BB in J)
for (each production B->y of G)
if (B->.y is not in J)

add B->.y to J;
until no more items are added to J on one round;
return J;

GOTO algorithm

SetOfltems GOTO(I,X) {
J=empty;
if (A->a.XBisinl)
add CLOSURE(A-> aX. B) to J;
return J;

LR(O) items

Void items(G’) {

C= CLOSURE({[S’->.S]});
repeat

for (each set of items | in C)

for (each grammar symbol X)
if (GOTO(I,X) is noet empty and not in C)
add GOTO(I,X) to C;

until no new set of items are added to C on a round;

E’->E
E>E+T|T
T->T*F|F
F->(E)|id

accC

Ygya

Example

Example: id*id

1 o

(2) o5
3) o3
(4) o2
(5) 027
(6) 0275
(7) 02710
(8) o2
(9) o

FREE ONLINE EDUCATION % ‘
Tel2ta siza, s aamta

$ki
$F

Use of LR(0) automaton

id*id$
*ids
*ids
*ids

Shift to 5

Reduce by F->id
Reduce by T->F
Shift to 7

Shift to 5

Reduce by F->id
Reduce by T->T*F
Reduce by E->T

accept

LR-Parsing model

GOl .. Jai . Jan_|s

m LR Parsing Program Output

S
=)
=

< N l
7Y

b 20N

LR parsing algorithm

let a be the first symbol of wS;
while(1) { /*repeat forever */
let s be the state on top of the stack;
if (ACTION[s,a] = shift t) {
push t onto the stack;
let a be the next input symbol;
} else if (ACTION[s,a] = reduce A->pB) {
pop |B| symbols of the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack;
output the production A->p;
} else if (ACTION([s,a]=accept) break; /* parsing is done */
else call error-recovery routine;

FREE ONLINE EDUCATION % ‘
Tel2ta siza, s aamta

S5

S5
S5

S6
R2

R4

R6

S6
R1

R3

R5

ACTON

sS4

Acc

s7 R2 R2

R4 R4 R4
sS4

R6 R6 R6
sS4
sS4

s11

s7 RL R1

R3 R3 R3

R5 R5 RS

FREE ONLINE EDUCATION g

Tel2ta siza, s aamta

Example

E T F

1

2

3

10

(2)
®
(4)
®)
(6)
O]
®)
©)
(10)
(11)
(12)
(13)

(14)

05

03

02
027
0275
02710

02
01
016
0165
0163
0169

01

id

E

T
T*
T*id
T*F
T

E
E+
E+id
E+F

E+T

id*id+id$
*id+id$
*id+id$
*id+id$
id+id$
+id$
+id$
+id$
+id$

id$

Shiftto 5

Reduce by F->id
Reduce by T->F
Shiftto 7

Shift to 5

Reduce by F->id
Reduce by T->T*F

Reduce by E->T
Shift

Shift

Reduce by F->id
Reduce by T->F
Reduce by E->E+T

accept

id*id+id$

(0) E’->E
(UE->E+T
(QE->T
AT->T*F
4 T->F

(5) F->(E)
(6) F->id

Constructing SLR parsing table

* Method
— Construct C={I0,11, ..., In}, the collection of LR(0) items for G’

— State i is constructed from state Ii:
* If [A->a.aPB] is in li and Goto(li,a)=lj, then set ACTION]Ii,a] to “shift j”
* If[A->a.] isin li, then set ACTION[i,a] to “reduce A->a” for all a in follow(A)
e If[S’->S.]is in li, then set ACTION[i,S] to “Accept”

— If any conflicts appears then we say that the grammar is not SLR(1).

— If GOTO(li,A) = lj then GOTO[i,A]=j

— All entries not defined by above rules are made “error”

— The initial state of the parseris the one constructed from the set of items
containing [S'->.S]

FREE ONLINE EDUCATION % ‘
Tel2ta siza, s aamta

Example grammar which is not SLR

S->L=R|R
L->*R|id
R->L
10 11 13 15 17
S’->.S S’->S. S ->R. L ->id. L ->*R.
14 16 18
L->*R S->L=R
R->L.
R->.L R->.L
L->*R L->*R 19
L->.id L->.id S -> L=R.

Action = Shift6
Reduce R->L

More powerful LR parsers

e Canonical-LR or just LR method
— Use lookahead symbols for items: LR(1) items
— Results in a large collection of items

* LALR: lookaheadsare introduced in LR(O)

LR(1) Grammar

A grammar is said to be LR(1) if in a single left-to-
right scan, we can construct areverse rightmost
derivation, while using.atmost a single token
lookahead to resolve ambiguities.

e LR(k) parsers use k token lookahead

LR(k) item

 Apair [a;B], where
— ais a production from G with a . at some position in the right hand side
— B is a lookahead string contains k. symbols (terminals or S)

* Several LR(1) items may have same core. [A->X.YZ;a] and [A->X.YZ;b] are
represented together as [A->X.YZ;{a,b}]

Usage of LR(1) Lookahead

* Carry them along to allow choosing correct reduction when
there is any choice

Lookaheads are bookkeeping, unless item has a . at right end
— In [A->X.YZ;a], a has no direct use
— In [A->XYZ.;a], a is useful

— If there are two items [A->XYZ.;a] and [B->XYZ.;b], we can decide
between reducing to Aor B by looking at limited right context

Closure algorithm

SetOfltems CLOSURE(I) {
I=l;
repeat
for (each item [A-> a.Bf;a] in J)
for (each prodcution B->y of G and each terminal b in First(pa)
if ([B->.y;b] is not in J)
add [B->.y;b] to J;
until no more items are added to J on one round;
return J;

GOTO algorithm

SetOfltems GOTO(I,X) {
J=empty;
if ([A-> a.XB;a] isinl)
add CLOSURE([A-> aX.B;a]) to J;
return J;

Constructing LR(1) Parsing Table

e Method
— Construct C={I0,11, ..., In}, the collection of LR(1) items for G’
— State i is constructed from state li:
* If [A->a.aB;b] is in li and Goto(li,a)=lj, then set ACTION[i,a] to “shift j”
* [f [A->a.;a] isin li, then set ACTION([i,a] to “reduce A->a”
o If[S’->S.;S]isin li, then set ACTIONJi,S] to “Accept”
— If any conflicts appears then we say that the grammar is not SLR(1).
— If GOTO(li,A) = |j then GOTOIi,Al=j
— All entries not defined by above rules are made “error”
— The initial state of the parseris the one constructed from the set of items

containing [$'->.5;5]

FREE ONLINE EDUCATION % ‘
Tel2ta siza, s aamta

Example LR(1) Parser

o ¢ [goal = -expr, 8], [ezpr — term + ex
28], [ex pr, 8, [expr — ‘term, §], [term — -factor % ¢
goal > expr [term — - factor, {+, $}], [factor — idg{+, *, 8} e
I : [goal » expr-, §
expr -> term + expr L : [expr - term., 8], [expr — terms +expr, §]
I : [term — factor., {+.8})], [term — factor - stermi, {+, §}]

expr ->term
t > factor * t 3 Lactar sid {10
erm ->1actor = term . . fezpr - term + ezpiy$], [expr.— -term + expr, §), [expr — ‘term, §],
term -> factor : [[‘e”" = Jactor + tezm, {+,5}], {lexm — -factor, {+,8)], [factor — 4d {+,%,8}]
. s 1 [term — fact £ 2 {+. 8. [t) LR B B
fa Ctor '> |d [fact.or — id:):.:*e;’;; {+_ s}] [fﬁrﬂl - factor > lcrm, {+'$H' [tCT'Tn - -factor, {+'$}]’
I i [expr —uterm + expr-, §|

I : [term - faetor « termn., {+.8}]

LR(1) items

= S h
FREE ONLINE EDUCATION o "
S YW R
§ < > =
Tel2ta nia, s sga 2 #

Rty

Example LR(1) Parser (Contd)

FREE ONLINE EDUCATION % ‘
Tel2ta siza, s aamta

I
» %

V/

S4

S4

+

S5

S5

R6

R4

A

R6

R6

*

Expr Term factor

1 2 3
Acc
R3
R5
R6
7 2 3
8 3
R2
R4

LALR(1) Parsing

Reduces number of states in.an LR(1) parser
Merges states differing only.in lookahead sets
SLR and LALR tables have same number of states

For a C-like language, several hundred states in SLR
and LALR parsers, several thousands for LR(1)

Example

S'->S States I, and I, I; and I, I and |,
S->CC can be merged
C>cC|d
LR(1) items l,7: [C ->d.;{c,d,S}]
Iy : [§'—-58],[S—-CC3[C— C {cd}],[C - d{cd}] |36: [C->C.C'{C d S] [C-> C'{C d S}]
L : [S'— S8 \Y,921 A IANA LY ’
L : [S=C-C8$),[C~ C,8[C - d,3] [C->.d;{c,d,S}]
Iy : [C sl Cv {Cr d}],[C =¥ 'CC, {C:d}]v[c =¥ -d,{c, d}] |89: [C'>CC.;{C,d,$}]

Iy : [C—=d, {cd}]

I : [C—CC.§

Iy : [C—c-C8),[C— .cC8)[C - 48
F i [C—d-$]

L : [C—cC-{c.d)]

Iy : [C—cC-8)

3 O
FREE ONLINE EDUCATION = =y $
S WS
§ < > =
NN §
Tel2ta siza, s aamta 2. #,

LALR Construction — Step-by-Step Approac

Sets of states constructed as in LR(1) method

At each point where a new set is spawned, it may be merged with an
existing set

When a new state S is created, all other states are checked to see if one
with the same core exists

If not, S is kept; otherwise it is merged with the existing set T with the
same core to form state ST

E->E+E
E->E*E
E->(E)
E->id

10: E’->.E
E->.E+E
E->.E*E
E->.(E)
E->.id

I1: E’->E.
E->E.+E
E->E*E

12: E->(.
E->.E+E
E->.E*E
E->.(E)
E->.id

13: E->id.

STATE ACTON GO
TO

id
FO”OW(E) = {+) *1)I S} o S3
1
I6: E->(E) P,
E->E+E
- 3
E) 14:g->E+g EE7E .
_ 4 3
E->E+E o ESEeE
E->.E*E 5 S3
5 E->E+E
. B .
E->.id SEay ™
7
I5: E->E*E I8: E->E*E.
E->(E) E->E+E .
E->.E+E E->E.*E
E->.E*E 0
E->.(E) 19: E->(E).

E->.id

LINE EDUCATION g

Swaya

Tel2ta siza, s aamta

n

+

S4

R4

Sq
R1/
S4
R2/
S4
R3

*

S5

S2

Ss
S5/
R1

R2/
S5

R3

Using Ambiguous Grammars

(
Sa

S2

S2

)

R2

R3

$

Acc

R4

R1

R3

E

1

Error Recovery in LR Parsing

Undefined entries in LR parsing table means error
Proper error messages can be flashed to the user
Error handling routines can be made to modify the parser stack by

— popping out some entries
— pushing some desirable entries into the stack

Brings parser at a descent stage from which it can proceed further

Enables detection of multiple errors and flashing them to the user
for correction

Error Recovery — Example
E' > E T T T

E->E+E|E*E]|id

0 S2 el el el 1
Follow(E) = {+, *, S} 1 e2 s3 s4 Acc

2 e2 R3 R3 R3
10: {[E’->.E],[E->.E+E],[E->.E*E],[E-.id]} 3 52 el el el 5
11: {[E’->E.],[E->E.+E],[E->E.*E]} 4 S2 el el el 6
12: {[E->id.]} 5 e2 R1 S4 R1

6 e2 R2 R2 R2

13: {[E->E+.E],[E->.E+E],[E->.E*E],[E->.id]}
|4: {[E->E*.E],[E->.E+E],[E->.E*E],[E->.id]} el: Seen operator or end of string
I5: {[E->E+E.],[E->E.+E],[E->E.*E]} while expecting id

|6: {E->E+E.],[E->E.+E],[E->E.*E]} e2: Seen id while expecting
|7: {[E->E*E.],[E->E.+E],[E->E.*E]} operator

