
1

Compiler Design
Introduction

Santanu Chattopadhyay

Electronics and Electrical Communication Engineering

2

 What is a Compiler
 Compiler Applications
 Phases of a Compiler
 Challenges in Compiler Design
 Compilation Process – An Example
 Conclusion

Introduction
• Compilers have become part and parcel of computer

systems

• Makes user’s computing requirements, specified as a piece

of program, understandable to the underlying machine

• Complex transformation

• Large number of options in terms of advances in computer

architecture, memory management and newer operating

systems

3

What is a compiler
• A system software to convert source language

program to target language program

• Validates input program to the source language
specification – produces error messages / warnings

• Primitive systems did not have compilers, programs
written assembly language, handcoded into machine
code

• Compiler design started with FORTRAN in 1950s

• Many tools have been developed for compiler design
automation

4

Compiler Input-Output

5

CompilerSource Program Target Program

Error messages Warnings

How Many Compilers ??
• Impossible to quantify number of compilers designed so far

• Large number of well known, lesser known and possibly
unknown computer languages designed so far

• Equally large number of hardware-software platforms

• Efficient compilers must for survival of programming languages

• Inefficient translators developed for LISP made programs run
very slowly

• Advances in memory management policies, particularly garbage
collection, has paved the way for faster implementation of such
translators, rejuvenating such languages

6

Compiler Applications

• Machine Code Generation
– Convert source language program to machine understandable

one

– Takes care of semantics of varied constructs of source language

– Considers limitations and specific features of target machine

– Automata theory helps in syntactic checks – valid and invalid
programs

– Compilation also generate code for syntactically correct
programs

7

Compiler Applications (Contd.)
• Format Converters

– Act as interfaces between two or more software packages

– Compatibility of input-output formats between tools

coming from different vendors

– Also used to convert heavily used programs written in

some older languages (like COBOL) to newer languages

(like C/C++)

8

Compiler Applications (Contd.)

• Silicon Compilation

– Automatically synthesize a circuit from its behavioural

description in languages like VHDL, Verilog etc.

– Complexity of circuits increasing with reduced time-to-

market

– Optimization criteria for silicon compilation are area,

power, delay, etc.

9

Compiler Applications (Contd.)

• Query Optimization

– In the domain of database query processing

– Optimize search time

– More than one evaluation sequence for each query

– Cost depends upon relative sizes of tables, availability of indexes

– Generate proper sequence of operations suitable for fastest query

processing

10

Compiler Applications (Contd.)

• Text Formatting

– Accepts an ordinary text file as input having

formatting commands embedded

– Generates formatted text

– Example troff, nroff, LaTex etc.

11

Phases of a Compiler
• Conceptually divided into a number of phases

– Lexical Analysis

– Syntax Analysis

– Semantic Analysis

– Intermediate Code Generation

– Target Code Generation

– Code Optimization

– Symbol Table Management

– Error Handling and Recovery

12

Does not exist any hard
demarcation between the
modules.
Work in hand-in-hand
interspersed manner

Phases of a Compiler

13

Lexical Analysis

• Interface of the compiler to the outside world

• Scans input source program, identifies valid words of the language in it

• Also removes cosmetics, like extra white spaces, comments etc. from the program

• Expands user-defined macros

• Reports presence of foreign words

• May perform case-conversion

• Generates a sequence of integers, called tokens to be passed to the syntax analysis phase –

later phases need not worry about program text

• Generally implemented as a finite automata

14

Syntax Analysis

• Takes words/tokens from lexical analyzer

• Works hand-in-hand with lexical analyzer

• Checks syntactic (grammatical) correctness

• Identifies sequence of grammar rules to derive the input program from the

start symbol

• A parse tree is constructed

• Error messages are flashed for syntactically incorrect program

15

Semantic Analysis
• Semantics of a program is dependent on the language

• A common check is for types of variables and

expressions

• Applicability of operators to operands

• Scope rules of the language are applied to determine

types – static scope and dynamic scope

16

Intermediate Code Generation

• Optional towards target code generation

• Code corresponding to input source language program is generated in terms

of some hypothetical machine instructions

• Helps to retarget the code from one processor to another

• Simple language supported by most of the contemporary processors

• Powerful enough to express programming language constructs

17

Targeting Different Machines

18

Target Code Generation

• Uses template substitution from intermediate code

• Predefined target language templates are used to

generate final code

• Machine instructions, addressing modes, CPU

registers play vital roles

• Temporary variables (user defined and compiler

generated) are packed into CPU registers

19

Code Optimization
• Most vital step in target code generation

• Automated steps of compilers generate lot of redundant codes that can
possibly be eliminated

• Code is divided into basic blocks – a sequence of statements with single
entry and single exit

• Local optimizations restrict within a single basic block

• Global optimization spans across the boundaries of basic blocks

• Most important source of optimization are the loops

• Algebraic simplifications, elimination of load-and-store are common
optimizations

20

Symbol Table Management
• Symbol table is a data structure holding information about all symbols

defined in the source program

• Not part of the final code, however used as reference by all phases of a

compiler

• Typical information stored there include name, type, size, relative offset of

variables

• Generally created by lexical analyzer and syntax analyzer

• Good data structures needed to minimize searching time

• The data structure may be flat or hierarchical

21

Error Handling and Recovery
• An important criteria for judging quality of compiler

• For a semantic error, compiler can proceed

• For syntax error, parser enters into a erroneous state

• Needs to undo some processing already carried out by the parser for recovery

• A few more tokens may need to be discarded to reach a descent state from which

the parser may proceed

• Recovery is essential to provide a bunch of errors to the user, so that all of them

may be corrected together instead of one-by-one

22

Challenges in Compiler Design
• Language semantics

• Hardware platform

• Operating system and system software

• Error handling

• Aid in debugging

• Optimization

• Runtime environment

• Speed of compilation

23

Language Semantics

• “case” – fall through or not

• “loop” – index may or may not remember last value

• “break” and “next” modify execution sequence of the

program

24

Hardware Platform

• Code generation strategy for accumulator

based machine cannot be similar to a stack

based machine

• CISC vs. RISC instructions sets

25

Operating System and System Software

• Format of file to be executed is depicted by the

OS (more specifically, loader)

• Linking process can combine object files

generated by different compilers into one

executable file

26

Error Handling
• Show appropriate error messages – detailed enough to pinpoint the error, not too verbose to

confuse

• A missing semicolon may be reported as “<line no> ; expected” rather than “syntax error”

• If a variable is reported to be undefined at one place, should not be reported again and again

• Compiler designer has to imagine the probable types of mistakes, design suitable detection

and recovery mechanism

• Some compilers even go to the extent of modifying source program partially, in order to

correct it

27

Aid in Debugging
• Debugging helps in detecting logical mistakes in a program

• User needs to control execution of machine language program from the

source language level

• Compiler has to generate extra information regarding the correspondence

between source and machine instructions

• Symbol table also needs to be available to the debugger

• Extra debugging information embedded into the machine code

28

Optimization
• Needs to identify set of transformations that will be beneficial for most of the

programs in a language

• Transformations should be safe

• Trade-off between the time spent to optimize a program vis-a-vis improvement in

execution time

• Several levels of optimizations are often used

• Selecting a debugging option may disable any optimization that disturbs the

correspondence between the source program and object code

29

Runtime Environment

• Deals with creating space for parameters and local variables

• For languages like FORTRAN, it is static – fixed memory

locations created for them

• Not suitable for languages supporting recursion

• To support recursion, stack frames are used to hold variables

and parameters

30

Speed of Compilation
• An important criteria to judge the acceptability of a compiler

to the user community

• Initial phase of program development contains lots of bugs,

hence quick compilation may be the objective, rather than

optimized code

• Towards the final stages, execution efficiency becomes the

prime concern, more compilation time may be afforded to

optimize the machine code significantly

31

Compilation – An Example
Consider the following program:

program

var X1, X2: integer; {integer variable declaration}

var XR1: real; {real variable declaration}

begin

XR1 := X1 + X2 * 10; {assignment statement}

end.

32

Lexical Analysis

• Produces the following sequence of tokens:

program, var, X1, ‘ , ’, X2, ‘ : ’, integer, ‘;’, var, XR1, ‘:’, real, ‘;’, begin, XR1,

‘:=’, X1, ‘+’, X2, ‘*’, 10, ‘;’, end, ‘.’

• Whitespaces and comments are discarded and

removed by the Lexical Analyzer

33

Syntax Analysis
• Assuming the program to be grammatically correct, the following parse

tree is produced

34

Code Generation
• Assuming a stack oriented machine with instructions like

PUSH, ADD, MULT, STORE, the code looks like

PUSH X2
PUSH 10
MULT
PUSH X1
ADD
PUSH @XR1
STORE

35

@ symbol returns the address of a variable

Symbol Table

Name Class Type

X1 Variable Integer

X2 Variable Integer

XR1 Variable Real

36

37

• Seen an overview of the compiler design process
• Different phases of a compiler have been enumerated
• Challenges faced by the compiler designer have been noted
• An example compilation process has been illustrated

