Location for Activation Record

* Depending upon language, activation record can be created in the static,
stack or heap area

* Creation in Static Area:
— Early languages, like FORTRAN
— Address of all arguments, local variables etc. are preset at compile time itself

— To pass parameters, values are copied into these locations at the time of
invoking the procedure and copied back on return

— There can be a single activation of a procedure at a time
— Recursive procedures cannot be implemented

FREE ONLINE EDUCATION

Tendia siea, s aa

Location for Activation Record

e Creation in Stack Area:
— Used for languages like C, Pascal, Java etc.

— As and when a procedure is invoked, corresponding activation record
is pushed onto the stack

— On return, entry is popped out

— Works well if local variables are not needed beyond the procedure
body

* For languages like LISP, in'which a full function may be

returned, activation record created in the heap

Processor Registers

Also a part of the runtime environment

Used to store temporaries, local variables, global variables and some
special information

Program counter points to the statement to be executed next
Stack pointer points to the top of the stack
Frame pointer points to the current activation record

Argument pointer points to the area of the activation record reserved for
arguments

Environment Types

e Stack based environment without local procedures —
common for languages like C

e Stack based environment with local procedures —
followed for block structured languages like Pascal

Environment without Local Procedures

* For languages where all procedures are global

* Stack based environment needs two things about activation
records

— Frame pointer: Pointer to the current activation record to allow access
to local variables and parameters

— Control link / Dynamic link: Kept in current activation record to record
position of the immediately preceding activation record

Environment without Local Procedures

intx=2; x:2
void f(intn) { Alrom ;1
staticint x = 1; ” Activation record (main)
. m:2
g(n); control link o
Xt return address Activation record (g)
! y:l
} ol [Activation record (f)
i i > con 1vation recor
v0|.d g(intm){ A0
inty=m-1; m:l
. control link ivati
if (y > 0) { fo A turn add Activation record (g)
fly); . y:0
X--; 1
} Free space
} : Snapshot of program execution after main has
main() { .
g(x); return 0; called g, g has called f and f has in turn called g
}
FREE ONLINE EDUCATION % f‘ﬂ N
N YW R
swayain | B8 ¢t
[N §
Tedia aiea, Jaania N P #

Accessing Variables

* Parameters and local variables found by offset from the current frame

pointer
e Offsets can be calculated statically by the compiler
* Consider procedure g with parameter m and local variable y

| m

mOffset = size of control link = +4 bytes
control link

mOffset yOffset = - (size of y + size of return address) = -6

i< gl i Hence, m and y can be accessed by 4(fp) and -6(fp)

- return address I

e s 9 1

)

Caller

Allocate basic frame
Store parameters

Store return address

Save caller-saved registers
Store self frame pointer
Set frame pointer for child
Jump to child

Caller

Copy return value
Deallocate basic frame
Restore caller-saved registers

FREE ONLINE EDUCATION 3j

At a return

Activation Record Creation

At a call

b =

A~ .4

Tendia siea, s aa

Callee

Save callee saved registers, state
Extend frame for locals

Initialize locals

Fall through to.code

Callee

Store return value
Restore callee-saved registers, state
Unextend frame

Restore parent’s frame pointer
Jump to return address

Environment with Local Procedures

For supporting local procedures, variables may have various scopes

To determine the definition to be used for a reference to a variable, it
is needed to access non-local, non-global variables

These definitions are local to one of the procedures nesting the
current one — need to look into the activation records of nesting
procedures

Solution is to keep extra bookkeeping information, called access link,
pointing to the activation record for the defining environment of a
procedure

program chaining;
procedure p;
var x: integer;
procedure q;
procedure r
begin
X:=2;

if ... Then p;
end {of r}
begin
r;
end {of q}
begin
a;
end {of p}
begin {of main}
p;
end.

<no access link>
control link
return address
) L

access link
control link
return address

access link
control link
return address

fp —=

access link

control link

return address
i |

Sp

; — 4

Free space

FREE ONLINE EDUCATION % ‘

Tendia siea, s aa

Environment with Local Procedures

Activation record of main

Activation record of p

Activation record of g

Activation record of r

* Current procedure r
* To locate definition of ¥, it has to
traverse through the activation

records using access links

* When the required procedure
containing definition of x is
reached, it is accessed via offset
from the corresponding frame
pointer

Compiler’s Responsibility

* Proper code to access the correct definitions:

— Find difference d between the lexical nesting level of declaration of
the name and the lexical nesting level of the procedure referring to it

— Generate code for following d access links to reach the right activation
record

— Generate code to access the variable through offset mechanism

Example

program M;
procedure P;

varx,y, z; M | M | 1 M | M
procedure Q; / Lexical level(M) =1 [" I‘—“—_ ‘ i
procedure R; P xy.z Lexical level(P) =2 - B | PP - P1op
e) Lexical level(Q) = 3 ’ Xy . L xyz |, XY,
egin Lexical level(R) =4 ' | 1) ["
z2=P; Q N T YT Qe
) ees i | ! _7 . | -
end R; ‘ L | R W L e [
. ! Rl
begin N— ! : ‘ s 2
—_— . T P2 i #
en ; i
(b) LL Q2
begin
.. X=Q; ... (c)
end P;
begin
... P;...
end M;
2% FREE ONLINE EDUCATION % § A -
Swayam {5
- < -
w SN
Tedia aiea, Jaania s

DISPLAY

Difficulty in non-local definitions is to search by following
access links

Particularly for virtual paging environment, certain portion of
the stack containing activation records may be swapped out,
access may be very slow

To access variables without search, display is used

Display

* Display dis a global array of pointers to activation records,
indexed by the lexical nesting depth

* Element d[i] points to the most recent activation of the block
at nesting depth i

* A nonlocal X is found as follows:

— |If the most closely nested declaration of X is at nesting depth i, the
d[i] points to activation.record containing the location for X

— Use relative address within the activation record to access

Example

= display
* Maximum nesting depth 4, so M | —
4 entries in the display P | i_‘
* In Fig (a), M has called P, P has we |
called Q and Q has in turn called QI
R i A
* Compiler knows that x is in _R'_f
procedure P at lexical level 2 ()

* Code is generated to access second
entry of the display to reach the
activation record of P directly

* Same is in Fig (b)

FREE ONLINE EDUCATION
Tendia siea, s aa

yhiily

N2

N
gyt

'

display

- “__—P—X_ :
M | 2
— .8
Pl | 4
X,V.Z

QI

R1

P2 ~—

X2

(b)

Maintaining Display

* When a procedure P at nesting depth i is called, following
actions are taken:
— Save value of d[i] in the activation record for P
— Set dJi] to point to new activation record
* When a procedure P finishes:
— d[i] is reset to the value stored in the activation record of P

Program X
varx,y, z;
Procedure P
var a;
begin (of P)
a=Q
end (of P)
Procedure Q
Procedure R
begin (of R)
P
end (of R)

. begin (of Q)

R

. end (of Q)
. begin (of X)

P
Q

. end (of X)

FREE ONLINE EDUCATION % ‘
Tendia siea, s aa

Example

* Show the snapshots of the stack of activation
records at the time of executing line nos.
6,11, 14,17, 18

* Show the corresponding displays

Data structure activation record contains necessary information to
control program execution

* Compiler writer must generate appropriate code for operations

* A smallarray, display, helps in the process

Display management becomes a part of compiler’s responsibility

4
/

o

forlzra sa, 3 =a e

(" FREE ONLINE EDUCATION 3]

// A
()

{
'l

\\\
\\

A9 a FREE ONLINE EDUCATION , = -

: g : AN .

2 “H § -

& / b = % Gy

W _ —

) s\ N s
e §¥f2ra si rIJ-'id e \&

NPTEL ONLINE CERTIFICATION COURSES

Thank
you!

<

Compiler Design
Intermediate Code Generation

Santanu Chattopadhyay

Electronics and Electrical Communication Engineerij

FREE ONLINE EDUCATION % ny A X

Swayaim oy
32§
AN S

Tendia siea, s aa

O Intermediate Languages
O Intermediate Language Design Issues

O Intermediate Representation Techniques
 Statements in Three-Address Code

& Implementation of Three-Address Instruc
1 Three-Address Code Generation
O Conclusion

Intermediate Code

 Compilers are designed to produce a representation of input program in some
hypothetical language or data structure

* Representations between the source language and the target machine language
programs
e Offers several advantages
— Closer to target machine, hence easier to generate code from

— More or less machine independent, makes it easier to retarget the compiler to various
different target processors

— Allows variety of machine-independent optimizations
— Can be implemented via syntax-directed translation, can be folded into
parsing by augmenting the parser

FREE ONLINE EDUCATION

Tendia siea 1 M

Intermediate Languages

* (Can be classified into — High-level representation and Low-
level representation

High-level Representation Low-level Representation

* Closer to source language program . ¢ Closer to target machine

* Easy to generate from input program <« Easy to generate final code from

* Code optimization difficult, since Good amount of effort in generation
input program is not broken down from the source code
sufficiently

FREE ONLINE EDUCATION 3
Tedia aiea, Jaania

Intermediate Language Design Issues

Set of operators in intermediate language must be rich enough to allow
the source language to be implemented

A small set of operations in the intermediate language makes it easy to
retarget

Intermediate code operations that are closely tied to a particular machine
or architecture can make it harder to port

A small set of intermediate code operations may led to long instruction
sequences for some source language constructs. Implies more work

during optimization

Intermediate Representation Techniques

* High-level Representation
— Abstract Syntax Trees
— Directed Acyclic Graphs
— P-code

* Low-level Representation

Abstract Syntax Tree

e Compact form of parse tree
* Represents hierarchical structure of a program
* Nodes represent operators, children of a node the operands

 Example: “if x>0 then x = 3*(y+1) else y = y+1”
if

> assg assg
A TA N
WA

Directed Acyclic Graph (DAG

e Similar to syntax tree
« Common subexpressions represented by single node

A AN
L XY
N

P-code
e Used for stack based virtual machines
* Operands are always found on the top of the stack

* May need to push operands to the stack first
e Syntax tree to P-code:

/t\ Code to evaluate Fy Code to evaluate Fy
/' \\ Code to evaluate B OR Code to evaluate E)
/ X Mult o =pop
i E e
1 2 n=n*n
push ry

J:

% S g
FREE ONLINE EDUCATION y L) 3
Swaydain SoCT
t‘. < > -
AN S
Tel2ianied, s aa ; #

Low-level Representation — Three Address Code

e Sequence of instructions of the form “x =y op 2"
* Only one operator permitted in the right hand side

* Due to its simplicity, offers better flexibility in terms
of target code generation and code optimization

t, =y*z

Statements in Three-Address Code

* Intermediate languages usually have the following
types of statements
— Assignment
— Jumps
— Address and Pointer Assignments
— Procedure Call/Return
— Miscellaneous

Assignment Statement

* Three types of assignment statements
— X=Yyo0pz op being a binary operator
— X =o0pY, op being a unary.operator
— x=y

* For all operators in.the source language, there shou
be a counterpartin.the intermediate language

Jump Statement

* Both conditional and unconditional jumps are
required
— goto L, L being a label
— if xrelop y goto L

Indexed Assignment

* Only one-dimensional arrays need to be supported

* Arrays of higher dimensions-are converted to one-
dimensional arrays

e Statements to be supported
— x=yli]
— Xlil =y

Address and Pointer Assignments

e Statements required are of following types
— X = &y, address of y assigned to x

— x = *y, content of location pointed to by y is
assigned to x

— x =y, simple pointer assignment, where x and y
are pointer variables

Procedure Call/Return

* Acalltothe procedure P(x1, x2, ..., xn) is converted as

param x1
param x2

param xn
* A procedure is implemented using the following statements
enter f, Setup and initialization
leave f, Cleanup actions (if any)
return
return x
retrieve X, Save returned value in x

FREE ONLINE EDUCATION % ‘
Tendia siea, s aa

