Grammar

A 4-tuple G = <V,, V;, P, S> of a language L(G)
— Vyis a set of nonterminal symbols used to write the grammar
— V;is the set of terminals (set of words in the language L(G))
— Pis aset of production rules
— Sis aspecial symbol in V|, called the start symbol of the grammar
Strings in language L(G) are those derived from S by applying the production rules from P

* Examples:

E->E+T|T
T->T*F|F
F->(E) | id
E->TE
E'->+TE" | €
T->FT

T ->*FT" | €
F->(E) | id

FREE ONLINE EDUCATION aj
Tendia siea, s aa

Error handling

e Common programming errors
— Lexical errors
— Syntactic errors
— Semantic errors
— Lexical errors
* Error handler goals
— Report the presence of errors clearly and accurately
— Recover from each error quickly enough to detect subsequent errors
— Add minimal overhead to the processing of correct programs

FREE ONLINE EDUCATION 3j
Terldia sia, s 90 nia

Error-recovery strategies

* Panic mode recovery

— Discard input symbol one at a time until one of designated set of
synchronization tokens is found

* Phrase level recovery

— Replacing a prefix of remaining input by some string that allows the parser to
continue

e Error productions

— Augment the grammar with productions that generate the erroneous
constructs

* Global correction

— Choosing minimal sequence of changes to obtain a globally least-cost
correction

FREE ONLINE EDUCATION

Tendia siea, s aa

Context free grammars

* Termina IS expression -> expression + term
. expression -> expression — term
* Nonterminals expression -> term
term -> term * factor
e Start sym bol term -> term / factor
term -> factor
e Productions factor -> (expression)

factor -> id

Derivations

* Productions are treated as.rewriting rules to
generate a string

* Rightmost and leftmost derivations
—E->E+E|E*E|-E | (E)|id
— Derivations for.—(id+id)
e E=>-E=>+E)=>-(E+E) => -(id+E)=>-(id+id)
e E=>-E=>-(E)=>-(E+E) => -(E+id)=>-(id+id)

Parse tree

_/E \E

{ E 1

E + E

il i
SANZAN
=9 =
AN §
S

Ambiguity

For some strings there exist more than one parse tree
Or more than one leftmost derivation

Or more than one rightmost derivation

Example: id+id*id

\ AN

id E b E E + E id
id id id id
%;\
FREE ONLINE EDUCATION % $ A
swayaih B (o<t
ya AN §
Terldia sia, s 90 nia ; #

Elimination of ambiguity

if E1 then if E2 then S1 else S2
stmt — If expr then stmt

| If expr then stmt else stmt

|aﬂ1ar

if expr th else stnl

if E1 then S1 else if E2 then S2 else S3

/\\\\

stmt else stmt

AT N

EZ 3 52

El if expr else simi

Z_& L_\.,z_\.

W then simt

/|\\

if expr then stmit

LN LN
E2 51

Elimination of ambiguity (cont.)

* |dea:

— A statement appearing between a then and an
else must be matched

gt — matched strmit
| open_stmit

matched_stmt — If exprthen matched_stmt else matched_stmt
el
open_stmt =3 If axpr then stmt

—
3

If expr then matched simt else open_stmt

Elimination of left recursion

A grammar is left recursive if it has a non-terminal A such
that there is a derivation A=> A«

e Top down parsing methods cant. handle left-recursive
grammars

 Asimple rule for direct left recursion elimination:
— For arule like:

e A>Aa]B
— We may replace it with
e A>3 A

e A>alA |e

Left recursion elimination (cont.)

* There are cases like following
— S->Aa|b
— A->Ac|Sd| s
e Left recursion elimination algorithm:
— Arrange the nonterminals in some order A1,A2,...,An.

— For (eachifrom1ton){
For (each j from 1 toi-1) {
Replace each production of the form Ai-> Aj y by the productionAi-> 0,y | 6, v | ..,

| 0 v whereAj-> 6, | 0, |..|0, areall current Aj productions
}

Eliminate left recursion among the Ai-productions

}

FREE ONLINE EDUCATION 3j
Terldia sia, s 90 nia

Left Recursion Elimination Example

E->TE
E->E+T | T EL>+TE | €
T—>T*F| F e T->FT
F->(E) | id T ->*FT' | &

F->(E) | id

Left factoring

» Left factoring is a grammar transformation thatis useful for producing a grammar
suitable for predictive or top-down parsing.

e Consider following grammar:

— Stmt -> if expr then stmt else stmt

— | if expr then stmt
* Onseeinginput if it is not clear for the parser which production to use
 We can easily perform left factoring:

— Ifwehave A->a 3 | o B , then we replace it with
e A > ahA
* A’ -> :8 1 ‘ B 2

FREE ONLINE EDUCATION 3j
Terldia sia, s 90 nia

Left factoring (cont.)

e Algorithm
— For each non-terminal A, find the longest prefix « common to two or more of its
alternatives. If a # ¢, then replace all of A-productionsA->a 8, |a S, | ..| « B,]|
y by

* A>aA |y
« A->f, ‘Bz|| B
 Example:
— S>iEtS|iEtSeS|a
— E->b
* Modifies to
— S->iEtSS |a
— §>eS|s
— E->b

FREE ONLINE EDUCATION aj
Tendia siea, s aa

TOP DOWN PARSING

$ A
S W S
§‘()=
AN S

)/

Introduction

* A Top-down parser tries to create a parse tree from the root
towards the leafs scanning input from left to right

* |t can be also viewed as finding a leftmost derivation for an

input string
* Example: id+id*id
E 2 E—EFE — E~— E —

E > TE’ VAN VAN VAN VAN VAN
B’ > +TE’ | € AN AN AN AN

) /I’
T->FT F T FT FT F T+T E
T’ ->*FT’| € | I

F->(E) | id d i ¢ id

Recursive descent parsing

e Consists of a set of procedures, one for each nonterminal
* Execution begins with the procedure for start symbol
* Atypical procedure for a non-terminal

void A() {
choose an A-production, A->X1X2..Xk
for(i=1tok){
if (Xi isa nonterminal
call procedure Xi();
else if (Xiequals the current input symbol a)
advance the input to the next symbol;
else /*an error has occurred */
¥
}

FREE ONLINE EDUCATION 3j
Terldia sia, s 90 nia

Recursive descent parsing (cont)

General recursive descent may require backtracking

The previous code needs to be madified to allow backtracking
In general form it cannot choose an appropriate production easily.
So we need to try all alternatives

If one fails, the input pointer needs to be reset and another
alternative has to be tried

Recursive descent parsers cannot be used for left-recursive
grammars

Example

Input: cad

S->cAd
A->ab | a

.. \i\)&#é.)
SN2

b AN
Uy V
Qttee

Predictive parser

It is a recursive-descent parser that needs no backtracking
Suppose A->A1| A2 | ...| An

If the non-terminal to be expanded next is ‘A’, then the choice
of rule is made on the basis of the current input symbol ‘a".

Procedure

Make a transition diagram (like dfa/nfa) for every rule of the grammar.

Optimize the dfa by reducing the number of states, yielding the final
transition diagram

To parse a string, simulate the string on the transition diagram

If after consuming the input the transition diagram reaches an accept
state, it is parsed.

Example

Consider the grammar: exp: (o)t () exe il (5
exp -> term exp_tail exp_tail @;a@im—@_x&i@
exp_tail -> + term exp_tail | € _

term: @_'a_cwr_.GD_lu_m_t_au@

term -> factor term_tail
i 1 il: e i factor term_tail /7,
term_tail -> * factor term_tail | & ™ (0 ®

factor -> (exp) | id - -
factor: CIT{}_—(—@ jl—.CLGD___)_@

>

, AN
[//

i

e/
A

)/

Example — Simpliftication

e_ N = term . term ' +
exp_tail: Iri\ + —@ Lerm @ exp_tail: { 3 }:--“L—-Cb exp: exp:

Eliminate self-recursion Remove redundant & edge Substituting exp_tail into exp

exp: M
g
term: Mo Final set of diagrams
:
factor: (@ i:lx o
§o~n~(EDUCATION % i% 47) =
Ewaya AN §
feil2ia uied, S0 nea 3 #

SIMULATION METHOD

Start from the start state
If a terminal comes consume it, move to next state

If a non —terminal comes go to the state of the “dfa” of the non-term
and return on reaching the final state

Return to the original “dfa” and continue parsing

If on completion(reading input string completely), you reach a final
state, string is successfully parsed.

Disadvantage

* |tisinherently a recursive parser, so it
consumes a lot of memory as the stack grows.

* To remove this recursion, we use LL-parser,
which uses a table for lookup.

First and Follow

First(«) is set of terminals that begins strings derived from «
If o=>¢ then ¢ isalsoin First(o«)

In predictive parsing when we have A-> « | 3, if First(@) and First(3) are disjoint
sets then we can select appropriate A-production by looking at the next input

* Follow(A), for any nonterminal A, is set of terminals a that can appear immediately
after A in some sentential form

— Ifwe have S => a Aa B for some aand S thenaisin Follow(A)
* If A can be the rightmost symbol in some sentential form, then S is in Follow(A)

FREE ONLINE EDUCATION

Tendia siea, s aa

Computing First
e To compute First(X), apply following rules until no more
terminals or € can be added to any First set:

1. If Xis a terminal then First(X) = {X}.

1. If Xis a nonterminal and X->Y1Y2...Yk is a production for some k > 1, then
place a in First(X) if for some i aisin First(Yi) and € isin all of
First(Y1),...,First(Yi-1) thatis Y1...Yi-1 => 8 If & is in First(Yj) for j=1,...,.k then
add & to First(X).

1. If X-> & is a production then add & to First(X)

Computing Follow

* To compute Follow(A) for all nonterminals A, apply following
rules until nothing can be added toany follow set:
1. Place S in Follow(S) where S is the start symbol

2. Ifthereis a production A->.a B 3 then everything in First(3) except ¢
is in Follow(B).

3. If there is a production A-> « B or a production A->a B 3 where
First(8) containsg, then everything in Follow(A) is in Follow(B)

Example of First and Follow Sets

First Follow
E->TE’
E’->+TE’| € F {(id} et e
T->FT 4 {Gid} L
T’ ->*FT’| € E {Gid} {), 8}
F->(E)|id E’ {+.€} 0, $}
T {*.e} {+,), 8}

gy

ree

LL(1) Grammars

* Predictive parsers are those recursive descent parsers needing no backtracking

 Grammars for which we can create predictive parsers are called LL(1)
— The first L means scanning input from left to right
— The second L means leftmost derivation
— And 1 stands for using one input symbol for lookahead
— More general one is LL(k), with k symbol lookahead
e Agrammar G is LL(1) if and onlyif whenever A-> « | S are two distinct
productions of G, the following conditions hold:
— Fornoterminalado awand 8 both derive strings beginning with a
— At most one of & or [3 can derive empty string
— If az>¢ then 3 does notderive any string beginning with a terminal in Follow(A)

FREE ONLINE EDUCATION

Tendia siea 1 M

Construction of predictive parsing table

* For each production A-> « in grammar do the following:
1. For each terminal ain First(«) add A->« in M[A,3]

2. If & isin First(«), then for each terminal b in Follow(A) add A-> ¢ to
MI[A,b]. If € isin First(o) and S isiin Follow(A), add A-> & to M[A,S] as
well

e If after performing the above, there is no production in

MI[A,a] then set M[A,a] to error

Exam P le First Follow

E->TE’ _
E>->+TE’| € F {(id} =ty
T->FT’ T {(1ld} {+9).'» $}
T = *FT | € E {Gid) 0.8}
F-> (E) | id E’ = 0.8}
Non - Input Symbol "N *.e} {+.). 8}
terminal id l = ’ . . (l) $ i

E E ->TE’ E >TE’

E’->+TE’ E'SQE | - €

E
i T->IT T->IT
T

