
1

NFA -> DFA Example

1
0 1 













A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1

2

NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states ?

• If there are N states, the NFA must be in some subset of
those N states

• How many non-empty subsets are there?
– 2N - 1 = finitely many, but exponentially many

3

Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”
– For every transition Si 

a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip to

state Sk

– Very efficient

4

Table Implementation of a DFA

S

T

U

0

1

0

10 1

0 1

S T U

T T U

U T U

5

Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools such as lex, flex
or jflex

• But, DFAs can be huge

• In practice, lex-like tools trade off speed for space in the
choice of NFA and DFA representations

Lexical Analyzer Generator - Lex

Lexical CompilerLex Source program
lex.l

lex.yy.c

C
compilerlex.yy.c a.out

a.outInput stream Sequence
of tokens

6

Structure of Lex programs

declarations
%%
translation rules
%%
auxiliary functions

Pattern {Action}

7

Example%{
/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions
delim [\t\n]
ws {delim}+
letter[A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%
{ws} {/* no action and no return */}
if {return(IF);}
then {return(THEN);}
else {return(ELSE);}
{id} {yylval = (int) installID(); return(ID); }
{number} {yylval = (int) installNum(); return(NUMBER);}
…

int installID() {/* funtion to install the
lexeme, whose first character is
pointed to by yytext, and whose
length is yyleng, into the symbol
table and return a pointer thereto
*/

}

int installNum() { /* similar to
installID, but puts numerical
constants into a separate table */

}

8

9

• Words of a language can be specified using regular
expressions

• NFA and DFA can act as acceptors
• Regular expressions can be converted to NFA
• NFA can be converted to DFA
• Automated tool lex can be used to generate lexical analyser

for a language

10

11

Compiler Design
Syntax Analysis

Santanu Chattopadhyay

Electronics and Electrical Communication Engineering

12

 Role of Parsers
 Context Free Grammars
 Top-Down Parsing
 Bottom-Up Parsing
 Parser Generators
 Conclusion

The role of parser

Lexical
Analyzer

Parser
Source

program

token

getNext

Token

Symbol
table

Parse tree Rest of Front
End

Intermediate

representation

13

Grammar
• A 4-tuple G = <VN, VT, P, S> of a language L(G)

– VN is a set of nonterminal symbols used to write the grammar
– VT is the set of terminals (set of words in the language L(G))
– P is a set of production rules
– S is a special symbol in VN, called the start symbol of the grammar

• Strings in language L(G) are those derived from S by applying the production rules from P
• Examples:

E -> E + T | T
T -> T * F | F
F -> (E) | id

E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

14

