
Translation Rules

1

S  if B then M S1
{ backpatch(B.truelist, M.quad)

S.nextlist = mergelist(B.falselist, S1.nextlist)
}

S  if B then M1 S1 N else M2 S2
{ backpatch(B.truelist, M1.quad)
backpatch(B.falselist, M2.quad)
S.nextlist = mergelist(S1.nextlist,

mergelist(N.nextlist, S2.nextlist))
}

S  while M1 B do M2 S1
{ backpatch(S1.nextlist, M1.quad)
backpatch(B.truelist, M2.quad)
S.nextlist = B.falselist
emit(‘goto’ M1.quad)

}

Translation Rules (Contd.)

2

S  begin L end
{ S.nextlist = L.nextlist }

S  A
{ S.nextlist = nil }

L  L1 M S
{ backpatch(L1.nextlist, M.quad)
L.nextlist = S.nextlist

}

L  S
{ L.nextlist = S.nextlist }

M  ε
{ M.quad = nextquad() }

N  ε
{ N.nextlist = nextquad()
emit(‘goto’ ...)

}

Example

3

begin
while a > b do
begin

x = y + z
a = a – b

end
x = y – z

end

Final Code:
1: if a > b goto 3
2: goto 8
3: t1 = y + z
4: x = t1
5: t2 = a – b
6: a = t2
7: goto 1
8: x = t3

4

5

Case Statements

6

switch(E) {
case c1: ...
...
case cn: ...
default: ...

}

Implementation alternatives:
• Linear search for matching option
• Binary search for matching case
• A jump table
• Linear or binary search may be cheaper if number

of cases small, for larger number of cases, jump
table may be cheaper

• If case values are not clustered closely together,
jump table may be too costly for space

Jump Table Implementation

7

Let the maximum and the minimum case values be cmax and cmin respectively

Code to evaluate E into t
if t < cmin goto Default_Case
if t > cmax goto Default_Case
goto JumpTable[t]
Default_Case: ...

JumpTable[i] is the address of the code to execute, if E evaluates to i

Function Calls
• Can be divided into two subsequences

– Calling sequence: set of actions executed at the time of calling a
function

– Return sequence: set of actions at the time of returning from the
function call

• For both, some actions performed by Caller of the function
and the other by the callee

8

Calling Sequence
Caller
• Evaluate actual parameters
• Place actuals where the callee wants them
• Corresponding three-address instruction:

param t
• Save machine state (current stack and/or

frame pointers, return address)
• Corresponding three-address instruction:

call p, n (n=number of actuals)

Callee

• Save registers, if necessary
• Update stack and frame pointers to

accommodate m bytes of local storage
• Corresponding three-address instruction:

enter m

9

Return Sequence

Callee
• Place return value, if any, where

the caller wants it
• Adjust stack/frame pointers
• Jump to return address
• Corresponding three-address

instruction:
return x or return

Caller
• Save the value returned by the

callee
• Corresponding three-address

instruction:
retrieve x

10

Example Function Call

11

X = f(0, y+1) – 1

t1 = y + 1
param t1
param 0
call f, 2
retrieve t2
t3 = t2 – 1
x = t3

Storage Allocation for Functions
• Creates problem as the first instruction in a function is:

enter n /* n = space for locals, temporaries */
• Value of n not known until the whole function has been

processed.
• There can be two possible solutions

– Generating final code in a list
– Using pair of goto statements

12

Generating Final Code in List
• Generate final code in a list
• Backpatch the appropriate instructions after processing the function body
• Approach is similar to single-phase code generation for Boolean

expressions and control flow statements
• Advantage: Possibility of machine dependent optimizations
• May be slow and may require more memory during code generation

13

Using Pair of goto Statements

14

15

• Intermediate code generation, though not mandatory, helps in
retargeting the compiler towards different architectures

• Selecting a good intermediate language itself is a formidable task
• Three-address code is one such representation
• Syntax-directed schemes can be utilized to generate three-address

code from the parse tree of the input program
• Translation of almost all major programming language constructs

have been carried out

	Translation Rules
	Translation Rules (Contd.)
	Example
	Slide Number 4
	Slide Number 5
	Case Statements
	Jump Table Implementation
	Function Calls
	Calling Sequence
	Return Sequence
	Example Function Call
	Storage Allocation for Functions
	Generating Final Code in List
	Using Pair of goto Statements
	Slide Number 15
	Slide Number 16

