
Example (Contd.)

1

E -> E + T | T
T -> T * F | F
F -> (E) | id

Firstop+(E) = {+, *, (, id}
Firstop+(T) = {*, (, id}
Firstop+(F) = {(, id}

Lastop+(E) = {+,*,), id}
Lastop+(T) = {*,), id}
Lastop+(F) = {), id}

$ () id + *

$ <· <· <· <·

(<· <· <· <·

) ·> ·> ·> ·>

id ·> ·> ·> ·>

+ ·> <· ·> <· ·> <·

* ·> <· ·> <· ·> ·>

LR Parsing
• The most prevalent type of bottom-up parsers

• LR(k), mostly interested on parsers with k≤1

• Why LR parsers?

– Table driven

– Can be constructed to recognize all programming language constructs

– Most general non-backtracking shift-reduce parsing method

– Can detect a syntactic error as soon as it is possible to do so

– Class of grammars for which we can construct LR parsers are superset of those

which we can construct LL parsers

2

LR Parsing Methods

• SLR – Simple LR. Easy to implement, less powerful

• Canonical LR – most general and powerful. Tedious and costly to
implement, contains much more number of states compared to SLR

• LALR – Look Ahead LR. Mix of SLR and Canonical LR. Can be implemented
efficiently, contains same number of states as simple LR for a grammar

3

States of an LR parser
• States represent set of items
• An LR(0) item of G is a production of G with the dot at some

position of the body:
– For A->XYZ we have following items

• A->.XYZ
• A->X.YZ
• A->XY.Z
• A->XYZ.

– In a state having A->.XYZ we hope to see a string derivable from XYZ
next on the input.

– What about A->X.YZ?

4

Constructing canonical LR(0) item sets
• Augmented grammar:

– G with addition of a production: S’->S
• Closure of item sets:

– If I is a set of items, closure(I) is a set of items constructed from I by the
following rules:
• Add every item in I to closure(I)
• If A->α.Bβ is in closure(I) and B->γ is a production then add the

item B->.γ to closure(I).
• Example:

E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

5

Constructing canonical LR(0) item sets (cont.)

• Goto (I,X) where I is an item set and X is a
grammar symbol is closure of set of all items [A->
αX. β] where [A-> α.X β] is in I

• Example
I0=closure({[E’->.E]}

E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

E

I1
E’->E.
E->E.+T

I2
E->T.
T->T.*F

T I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(

6

Closure algorithm
SetOfItems CLOSURE(I) {

J=I;

repeat

for (each item A-> α.Bβ in J)

for (each production B->γ of G)

if (B->.γ is not in J)

add B->.γ to J;

until no more items are added to J on one round;

return J;

}

7

GOTO algorithm

SetOfItems GOTO(I,X) {

J=empty;

if (A-> α.X β is in I)

add CLOSURE(A-> αX. β) to J;

return J;

}

8

LR(0) items
Void items(G’) {

C= CLOSURE({[S’->.S]});
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (GOTO(I,X) is not empty and not in C)
add GOTO(I,X) to C;

until no new set of items are added to C on a round;
}

9

Example
E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

E

I1
E’->E.
E->E.+T

I2
E->T.
T->T.*F

T

I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(

I5
F->id.

id

I3
T>F.

+

I6
E->E+.T
T->.T*F
T->.F
F->.(E)
F->.id

*
I7

T->T*.F
F->.(E)
F->.id

E
I8

E->E.+T
F->(E.)

)
I11

F->(E).

I9

E->E+T.
T->T.*F

T

I10

T->T*F.

F

id

+

$acc

10

Use of LR(0) automaton

• Example: id*id
Line Stack Symbols Input Action

(1) 0 $ id*id$ Shift to 5

(2) 05 $id *id$ Reduce by F->id

(3) 03 $F *id$ Reduce by T->F

(4) 02 $T *id$ Shift to 7

(5) 027 $T* id$ Shift to 5

(6) 0275 $T*id $ Reduce by F->id

(7) 02710 $T*F $ Reduce by T->T*F

(8) 02 $T $ Reduce by E->T

(9) 01 $E $ accept

11

LR-Parsing model

a1 … ai … an $INPUT

LR Parsing ProgramSm

Sm-1

…

$

ACTION GOTO

Output

12

LR parsing algorithm
let a be the first symbol of w$;
while(1) { /*repeat forever */

let s be the state on top of the stack;
if (ACTION[s,a] = shift t) {

push t onto the stack;
let a be the next input symbol;

} else if (ACTION[s,a] = reduce A->β) {
pop |β| symbols of the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack;
output the production A->β;

} else if (ACTION[s,a]=accept) break; /* parsing is done */
else call error-recovery routine;

}

13

Example
(0) E’->E
(1) E -> E + T
(2) E-> T
(3) T -> T * F
(4) T-> F
(5) F -> (E)
(6) F->id

STATE ACTON GOTO

id + * () $ E T F

0 S5 S4 1 2 3

1 S6 Acc

2 R2 S7 R2 R2

3 R4 R4 R4 R4

4 S5 S4 8 2 3

5 R6 R6 R6 R6

6 S5 S4 9 3

7 S5 S4 10

8 S6 S11

9 R1 S7 R1 R1

10 R3 R3 R3 R3

11 R5 R5 R5 R5

id*id+id$

Line Stack Symbols Input Action

(1) 0 id*id+id$ Shift to 5

(2) 05 id *id+id$ Reduce by F->id

(3) 03 F *id+id$ Reduce by T->F

(4) 02 T *id+id$ Shift to 7

(5) 027 T* id+id$ Shift to 5

(6) 0275 T*id +id$ Reduce by F->id

(7) 02710 T*F +id$ Reduce by T->T*F

(8) 02 T +id$ Reduce by E->T

(9) 01 E +id$ Shift

(10) 016 E+ id$ Shift

(11) 0165 E+id $ Reduce by F->id

(12) 0163 E+F $ Reduce by T->F

(13) 0169 E+T` $ Reduce by E->E+T

(14) 01 E $ accept

14

Constructing SLR parsing table
• Method

– Construct C={I0,I1, … , In}, the collection of LR(0) items for G’
– State i is constructed from state Ii:

• If [A->α.aβ] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to “shift j”
• If [A->α.] is in Ii, then set ACTION[i,a] to “reduce A->α” for all a in follow(A)
• If [S’->S.] is in Ii, then set ACTION[i,$] to “Accept”

– If any conflicts appears then we say that the grammar is not SLR(1).
– If GOTO(Ii,A) = Ij then GOTO[i,A]=j
– All entries not defined by above rules are made “error”
– The initial state of the parser is the one constructed from the set of items

containing [S’->.S]

15

Example grammar which is not SLR
S -> L=R | R

L -> *R | id

R -> L

I0

S’->.S

S -> .L=R

S->.R

L -> .*R |

L->.id

R ->. L

I1

S’->S.

I2

S ->L.=R

R ->L.

I3

S ->R.

I4

L->*.R

R->.L

L->.*R

L->.id

I5

L -> id.

I6

S->L=.R

R->.L

L->.*R

L->.id

I7

L -> *R.

I8

R -> L.

I9

S -> L=R.

Action =

2

Shift 6

Reduce R->L

16

More powerful LR parsers

• Canonical-LR or just LR method

– Use lookahead symbols for items: LR(1) items

– Results in a large collection of items

• LALR: lookaheads are introduced in LR(0)
items

17

LR(1) Grammar

• A grammar is said to be LR(1) if in a single left-to-
right scan, we can construct a reverse rightmost
derivation, while using atmost a single token
lookahead to resolve ambiguities.

• LR(k) parsers use k token lookahead

18

LR(k) item

• A pair [α;β], where

– α is a production from G with a . at some position in the right hand side

– β is a lookahead string contains k symbols (terminals or $)

• Several LR(1) items may have same core. [A->X.YZ;a] and [A->X.YZ;b] are
represented together as [A->X.YZ;{a,b}]

19

Usage of LR(1) Lookahead

• Carry them along to allow choosing correct reduction when
there is any choice

• Lookaheads are bookkeeping, unless item has a . at right end
– In [A->X.YZ;a], a has no direct use

– In [A->XYZ.;a], a is useful

– If there are two items [A->XYZ.;a] and [B->XYZ.;b], we can decide
between reducing to A or B by looking at limited right context

20

Closure algorithm
SetOfItems CLOSURE(I) {

J=I;

repeat

for (each item [A-> α.Bβ;a] in J)

for (each prodcution B->γ of G and each terminal b in First(βa)

if ([B->.γ;b] is not in J)

add [B->.γ;b] to J;

until no more items are added to J on one round;

return J;

}

21

GOTO algorithm

SetOfItems GOTO(I,X) {

J=empty;

if ([A-> α.Xβ;a] is in I)

add CLOSURE([A-> αX.β;a]) to J;

return J;

}

22

Constructing LR(1) Parsing Table
• Method

– Construct C={I0,I1, … , In}, the collection of LR(1) items for G’
– State i is constructed from state Ii:

• If [A->α.aβ;b] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to “shift j”
• If [A->α.;a] is in Ii, then set ACTION[i,a] to “reduce A->α”
• If [S’->S.;$] is in Ii, then set ACTION[i,$] to “Accept”

– If any conflicts appears then we say that the grammar is not SLR(1).
– If GOTO(Ii,A) = Ij then GOTO[i,A]=j
– All entries not defined by above rules are made “error”
– The initial state of the parser is the one constructed from the set of items

containing [S’->.S;$]

23

Example LR(1) Parser

24

goal -> expr
expr -> term + expr
expr -> term
term -> factor * term
term -> factor
factor -> id

LR(1) items

Example LR(1) Parser (Contd.)
id + * $ Expr Term factor

0 S4 1 2 3

1 Acc

2 S5 R3

3 S5 R6 R5

4 R6 R6 R6

5 S4 7 2 3

6 S4 8 3

7 R2

8 R4 R4

25

LALR(1) Parsing

• Reduces number of states in an LR(1) parser

• Merges states differing only in lookahead sets

• SLR and LALR tables have same number of states

• For a C-like language, several hundred states in SLR
and LALR parsers, several thousands for LR(1)

26

Example

27

S’ -> S
S -> CC
C -> cC | d

LR(1) items

States I4 and I7, I3 and I6, I8 and I9

can be merged

I47: [C ->d.;{c,d,$}]
I36: [C->c.C;{c,d,$], [C->.c;{c,d,$}],

[C->.d;{c,d,$}]
I89: [C->cC.;{c,d,$}]

LALR Construction – Step-by-Step Approach

• Sets of states constructed as in LR(1) method

• At each point where a new set is spawned, it may be merged with an
existing set

• When a new state S is created, all other states are checked to see if one
with the same core exists

• If not, S is kept; otherwise it is merged with the existing set T with the
same core to form state ST

28

Using Ambiguous Grammars
E->E+E
E->E*E
E->(E)
E->id

I0: E’->.E

E->.E+E

E->.E*E

E->.(E)

E->.id

I1: E’->E.

E->E.+E

E->E.*E

I2: E->(.E)

E->.E+E

E->.E*E

E->.(E)

E->.id

I3: E->id.

I4: E->E+.E

E->.E+E

E->.E*E

E->.(E)

E->.id

I5: E->E*.E

E->(.E)

E->.E+E

E->.E*E

E->.(E)

E->.id

I6: E->(E.)

E->E.+E

E->E.*E

I7: E->E+E.

E->E.+E

E->E.*E

I8: E->E*E.

E->E.+E

E->E.*E

I9: E->(E).

STATE ACTON GO
TO

id + * () $ E

0 S3 S2 1

1 S4 S5 Acc

2 S3 S2 6

3 R4 R4 R4 R4

4 S3 S2 7

5 S3 S2 8

6 S4 S5

7 R1/
S4

S5/
R1

R1 R1

8 R2/
S4

R2/
S5

R2 R2

9 R3 R3 R3 R3

Follow(E) = {+, *,), $}

29

Error Recovery in LR Parsing
• Undefined entries in LR parsing table means error
• Proper error messages can be flashed to the user
• Error handling routines can be made to modify the parser stack by

– popping out some entries
– pushing some desirable entries into the stack

• Brings parser at a descent stage from which it can proceed further
• Enables detection of multiple errors and flashing them to the user

for correction

30

Error Recovery – Example

31

E’ -> E
E -> E + E | E * E| id

I0: {[E’->.E],[E->.E+E],[E->.E*E],[E-.id]}
I1: {[E’->E.],[E->E.+E],[E->E.*E]}
I2: {[E->id.]}
I3: {[E->E+.E],[E->.E+E],[E->.E*E],[E->.id]}
I4: {[E->E*.E],[E->.E+E],[E->.E*E],[E->.id]}
I5: {[E->E+E.],[E->E.+E],[E->E.*E]}
I6: {E->E+E.],[E->E.+E],[E->E.*E]}
I7: {[E->E*E.],[E->E.+E],[E->E.*E]}

Follow(E) = {+, *, $}

State ACTION GOTO

id + * $ E

0 S2 e1 e1 e1 1

1 e2 S3 S4 Acc

2 e2 R3 R3 R3

3 S2 e1 e1 e1 5

4 S2 e1 e1 e1 6

5 e2 R1 S4 R1

6 e2 R2 R2 R2

e1: Seen operator or end of string
while expecting id

e2: Seen id while expecting
operator

