
SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 31: Transactions/1

NPTEL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan31.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Week 06 Recap

 Module 26: Indexing and Hashing/1
(Indexing/1)
 Basic Concepts of Indexing
 Ordered Indices

 Module 27: Indexing and Hashing/2
(Indexing/2)
 Balanced Binary Search Trees
 2-3-4 Tree

 Module 28: Indexing and Hashing/3
(Indexing/3)
 B+-Tree Index Files
 B-Tree Index Files

 Module 29: Indexing and Hashing/4 (Hashing)
 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices

 Module 30: Indexing and Hashing/5 (Index
Design)
 Index Definition in SQL
 Guidelines for Indexing

PPD

NPTEL

©Silberschatz, Korth and Sudarshan31.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 To understand the concept of transaction – ‘doing a task in a database’ and its state
 To explore issues in concurrent execution of transactions

PPD

NPTEL

©Silberschatz, Korth and Sudarshan31.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 Transaction Concept
 Transaction State
 Concurrent Executions

PPD

NPTEL

©Silberschatz, Korth and Sudarshan31.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TRANSACTION CONCEPT

PPD

• Transaction
Concept

• Transaction State
• Concurrent

Executions

NPTEL

©Silberschatz, Korth and Sudarshan31.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Transaction Concept

 A transaction is a unit of program execution that accesses and possibly updates various data items
 For example, transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

 Two main issues to deal with:
 Failures of various kinds, such as hardware failures and system crashes
 Concurrent execution of multiple transactionsNPTEL

©Silberschatz, Korth and Sudarshan31.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Required Properties of a Transaction

 Atomicity requirement
 If the transaction fails after step 3 and before step 6, money will be “lost” leading to an inconsistent

database state
 Failure could be due to software or hardware

 The system should ensure that updates of a partially executed transaction are not reflected in the database

Transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)NPTEL

©Silberschatz, Korth and Sudarshan31.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Required Properties of a Transaction

 Consistency requirement
 In example, the sum of A and B is unchanged by the execution of the transaction
 In general, consistency requirements include

 Explicitly specified integrity constraints
– primary keys and foreign keys

 Implicit integrity constraints
– sum of balances of all accounts, minus sum of loan amounts must equal value of cash-in-hand

 A transaction, when starting to execute, must see a consistent database
 During transaction execution the database may be temporarily inconsistent
 When the transaction completes successfully the database must be consistent

 Erroneous transaction logic can lead to inconsistency

Transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

NPTEL

©Silberschatz, Korth and Sudarshan31.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Required Properties of a Transaction (Cont.)

 Isolation requirement
 If between steps 3 and 6 (of the fund transfer transaction) , another transaction T2 is allowed to access

the partially updated database, it will see an inconsistent database (the sum A + B will be less than it
should be).

T1 T2
1. read(A)
2. A := A – 50
3. write(A)

read(A), read(B), print(A+B)
4. read(B)
5. B := B + 50
6. write(B

 Isolation can be ensured trivially by running transactions serially
 That is, one after the other

 However, executing multiple transactions concurrently has significant benefits

NPTEL

©Silberschatz, Korth and Sudarshan31.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Required Properties of a Transaction

 Durability requirement
 Once the user has been notified that the transaction has completed (i.e., the transfer of the $50 has taken

place), the updates to the database by the transaction must persist even if there are software or hardware
failures

Transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

NPTEL

©Silberschatz, Korth and Sudarshan31.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

ACID Properties

A transaction is a unit of program execution that accesses and possibly updates various data
items. To preserve the integrity of data the database system must ensure:
 Atomicity:

 Either all operations of the transaction are properly reflected in the database or none are
 Consistency:

 Execution of a transaction in isolation preserves the consistency of the database
 Isolation:

 Although multiple transactions may execute concurrently, each transaction must be unaware
of other concurrently executing transactions. Intermediate transaction results must be hidden
from other concurrently executed transactions

 That is, for every pair of transactions Ti and Tj, it appears to Ti that either Tj, finished
execution before Ti started, or Tj started execution after Ti finished

 Durability:
 After a transaction completes successfully, the changes it has made to the database persist,

even if there are system failures

NPTEL

©Silberschatz, Korth and Sudarshan31.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TRANSACTION STATE

PPD

• Transaction Concept
• Transaction State
• Concurrent

Executions

NPTEL

©Silberschatz, Korth and Sudarshan31.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Transaction State
 Active

 The initial state; the transaction stays in this state while it is executing
 Partially committed

 After the final statement has been executed
 Failed

 After the discovery that normal execution can no longer proceed
 Aborted

 After the transaction has been rolled back and the database restored to its state prior to the start of the
transaction. Two options after it has been aborted:
 Restart the transaction

– can be done only if no internal logical error
 Kill the transaction

 Committed
 After successful completion

PPD

Transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

NPTEL

©Silberschatz, Korth and Sudarshan31.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Transitions for Transaction State
PPD

NPTEL

©Silberschatz, Korth and Sudarshan31.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

CONCURRENT EXECUTIONS

PPD

• Transaction Concept
• Transaction State
• Concurrent

Executions

NPTEL

©Silberschatz, Korth and Sudarshan31.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Concurrent Executions
 Multiple transactions are allowed to run concurrently in the system. Advantages are:

 Increased processor and disk utilization, leading to better transaction throughput
 For example, one transaction can be using the CPU while another is reading from or

writing to the disk
 Reduced average response time for transactions: short transactions need not wait behind

long ones
 Concurrency control schemes – mechanisms to achieve isolation

 That is, to control the interaction among the concurrent transactions in order to prevent them
from destroying the consistency of the database

NPTEL

©Silberschatz, Korth and Sudarshan31.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Schedules

 Schedule – a sequences of instructions that specify the chronological order in which instructions
of concurrent transactions are executed
 A schedule for a set of transactions must consist of all instructions of those transactions
 Must preserve the order in which the instructions appear in each individual transaction

 A transaction that successfully completes its execution will have a commit instructions as the last
statement
 By default transaction assumed to execute commit instruction as its last step

 A transaction that fails to successfully complete its execution will have an abort instruction as the
last statement

NPTEL

©Silberschatz, Korth and Sudarshan31.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Schedule 1

 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B
 An example of a serial schedule in which T1 is followed by T2 :

A B A+B Transaction Remarks
100 200 300 @ Start
50 200 250 T1, write A
50 250 300 T1, write B @ Commit
45 250 295 T2, write A
45 255 300 T2, write B @Commit

Consistent @ Commit

Inconsistent @ Transit

Inconsistent @ Commit

PPD

NPTEL

©Silberschatz, Korth and Sudarshan31.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Schedule 2

 A serial schedule in which T2 is followed by T1 :

A B A+B Transaction Remarks
100 200 300 @ Start
90 200 290 T2, write A
90 210 300 T2, write B @ Commit
40 210 250 T1, write A
40 260 300 T1, write B @Commit

Consistent @ Commit

Inconsistent @ Transit

Inconsistent @ Commit

Values of A & B are different from
Schedule 1 – yet consistent

PPD

NPTEL

©Silberschatz, Korth and Sudarshan31.20Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Schedule 3

 Let T1 and T2 be the transactions defined previously. The following schedule is not a serial schedule, but it is
equivalent to Schedule 1

Note – In schedules 1, 2 and 3, the sum “A + B” is preserved

A B A+B Transaction Remarks
100 200 300 @ Start
50 200 250 T1, write A
45 200 245 T2, write A
45 250 295 T1, write B @ Commit
45 255 300 T2, write B @Commit

Schedule 3 Schedule 1

Consistent @ Commit

Inconsistent @ Transit

Inconsistent @ Commit

PPD

NPTEL

©Silberschatz, Korth and Sudarshan31.21Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Schedule 4

 The following concurrent schedule does not preserve the sum of “A + B”

A B A+B Transaction Remarks
100 200 300 @ Start
90 200 290 T2, write A
90 200 290 T1, write A
90 250 340 T1, write B @ Commit
90 260 350 T2, write B @Commit

Consistent @ Commit

Inconsistent @ Transit

Inconsistent @ Commit

PPD

NPTEL

©Silberschatz, Korth and Sudarshan31.22Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 A task is a database is done as a transaction that passes through several states
 Transactions are executed in concurrent fashion for better throughput
 Concurrent execution of transactions raise serializability issues that need to be addressed
 All schedules may not satisfy ACID properties

NPTEL

©Silberschatz, Korth and Sudarshan31.23Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

NPTEL

http://db-book.com/

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 32: Transactions/2: Serializability

NPTEL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan32.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Recap

 Transaction Concept
 Transaction State
 Concurrent Executions

PPD

NPTEL

©Silberschatz, Korth and Sudarshan32.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 To understand the issues that arise when two or more transactions work concurrently
 To introduce the notions of Serializability that ensure schedules for transactions that may run in

concurrent fashion but still guarantee and serial behavior
 To analyze the conditions, called conflicts, that need to be honored to attain Serializable

schedules

PPD

NPTEL

©Silberschatz, Korth and Sudarshan32.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 Serializability
 Conflict Serializability

PPD

NPTEL

©Silberschatz, Korth and Sudarshan32.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

SERIALIZABILITY

PPD

• Serializability
• Conflict

Serializability

NPTEL

©Silberschatz, Korth and Sudarshan32.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Serializability

 Basic Assumption – Each transaction preserves database consistency
 Thus, serial execution of a set of transactions preserves database consistency
 A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule. Different

forms of schedule equivalence give rise to the notions of:
1. conflict serializability
2. view serializability

NPTEL

©Silberschatz, Korth and Sudarshan32.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Simplified view of transactions

 We ignore operations other than read and write instructions
 Other operations happen in memory (are temporary in nature) and (mostly) do not affect the

state of the database
 This is a simplifying assumption for analysis

 We assume that transactions may perform arbitrary computations on data in local buffers in
between reads and writes

 Our simplified schedules consist of only read and write instructions

NPTEL

©Silberschatz, Korth and Sudarshan32.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Conflicting Instructions

 Let li and lj be two Instructions of transactions Ti and Tj respectively. Instructions li and lj conflict
if and only if there exists some item Q accessed by both li and lj, and at least one of these
instructions wrote Q

1. li = read(Q), lj = read(Q). li and lj don’t conflict
2. li = read(Q), lj = write(Q). They conflict
3. li = write(Q), lj = read(Q). They conflict
4. li = write(Q), lj = write(Q). They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal order between them
 If li and lj are consecutive in a schedule and they do not conflict, their results would remain the

same even if they had been interchanged in the scheduleNPTEL

©Silberschatz, Korth and Sudarshan32.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

CONFLICT SERIALIZABILITY

PPD

• Serializability
• Conflict

Serializability

NPTEL

©Silberschatz, Korth and Sudarshan32.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Conflict Serializability

 If a schedule S can be transformed into a schedule S’ by a series of swaps of non-conflicting
instructions, we say that S and S’ are conflict equivalent

 We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule

NPTEL

©Silberschatz, Korth and Sudarshan32.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Conflict Serializability (Cont.)
 Schedule 3 can be transformed into Schedule 6 – a serial schedule where T2 follows T1, by a series of swaps

of non-conflicting instructions.
 Swap T1.read(B) and T2.write(A)
 Swap T1.read(B) and T2.read(A)
 Swap T1.write(B) and T2.write(A)
 Swap T1.write(B) and T2.read(A)

 Therefore, Schedule 3 is conflict serializable:

Schedule 3 Schedule 6Schedule 5

PPD

These swaps do not conflict as they work with
different items (A or B) in different transactions.

NPTEL

©Silberschatz, Korth and Sudarshan32.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable:

 We are unable to swap instructions in the above schedule to obtain either the serial schedule
<T3, T4>, or the serial schedule < T4, T3 >

NPTEL

©Silberschatz, Korth and Sudarshan32.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example: Bad Schedule

 Consider two transactions:

 In terms of read / write we can write these as:

 Consider schedule S:
 Schedule S: r1(A), r2(A), w1(A), w2(A), r2(B), w2(B)
 Suppose: A starts with $200, and account B starts with $100

 Schedule S is very bad! (At least, it's bad if you're the bank!) We
withdrew $100 from account A, but somehow the database has
recorded that our account now holds $201!

Transaction 1 Transaction 2
UPDATE accounts
SET balance = balance - 100
WHERE acct_id = 31414

UPDATE accounts
SET balance = balance * 1.005

Transaction 1: r1(A), w1(A) // A is the balance for acct_id = 31414
Transaction 2: r2(A), w2(A), r2(B), w2(B) // B is balance of other accounts

Schedule S
Source: http://www.cburch.com/cs/340/reading/serial/

PPD

NPTEL

©Silberschatz, Korth and Sudarshan32.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example: Bad Schedule

 Ideal schedule is serial:

 We call a schedule serializable if it has the same effect
as some serial schedule regardless of the specific
information in the database.

 As an example, consider Schedule T, which has
swapped the third and fourth operations from S:
 Schedule S: r1(A), r2(A), w1(A), w2(A), r2(B), w2(B)
 Schedule T: r1(A), r2(A), w2(A), w1(A), r2(B), w2(B)

 By first example, the outcome is the same as Serial
schedule 1. But that's just a peculiarity of the data, as
revealed by the second example, where the final value
of A can't be the consequence of either of the possible
serial schedules.

 So neither S nor T are serializable

Serial schedule 1: r1(A), w1(A), r2(A), w2(A), r2(B), w2(B)

Serial schedule 2: r2(A), w2(A), r2(B), w2(B), r1(A), w1(A)

Schedule T
Source: http://www.cburch.com/cs/340/reading/serial/

Schedule 1 Schedule 2

A B A B

Initial Values 200.00 100.00 200.00 100.00

Final Values 100.50 100.50 101.00 100.50

Initial Values 100.00 100.00 100.00 100.00

Final Values 0.00 100.50 1.00 100.50

NPTEL

©Silberschatz, Korth and Sudarshan32.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example: Good Schedule

 What's a non-serial example of a serializable schedule?
 We could credit interest to A first, then withdraw the money, then credit interest to B:
 Schedule U: r2(A), w2(A), r1(A), w1(A), r2(B), w2(B)

 Initial: A = 200, B = 100
 Final: A = 101, B = 100.50

 Schedule U is conflict serializable to Schedule 2:

Source: http://www.cburch.com/cs/340/reading/serial/

Schedule U: r2(A), w2(A), r1(A), w1(A), r2(B), w2(B)
swap w1(A) and r2(B): r2(A), w2(A), r1(A), r2(B), w1(A), w2(B)
swap w1(A) and w2(B): r2(A), w2(A), r1(A), r2(B), w2(B), w1(A)
swap r1(A) and r2(B): r2(A), w2(A), r2(B), r1(A), w2(B), w1(A)
swap r1(A) and w2(B): r2(A), w2(A), r2(B), w2(B), r1(A), w1(A): Schedule 2

PPD

NPTEL

©Silberschatz, Korth and Sudarshan32.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Serializability

 Are all serializable schedules conflict-serializable? No.
 Consider the following schedule for a set of three transactions.

 w1(A), w2(A), w2(B), w1(B), w3(B)
 We can perform no swaps to this:

 The first two operations are both on A and at least one is a write;
 The second and third operations are by the same transaction;
 The third and fourth are both on B at least one is a write; and
 So are the fourth and fifth.
 So this schedule is not conflict-equivalent to anything – and certainly not any serial

schedules.
 However, since nobody ever reads the values written by the w1(A), w2(B), and w1(B) operations,

the schedule has the same outcome as the serial schedule:
 w1(A), w1(B), w2(A), w2(B), w3(B)

Source: http://www.cburch.com/cs/340/reading/serial/

NPTEL

©Silberschatz, Korth and Sudarshan32.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Precedence Graph

 Consider some schedule of a set of transactions T1, T2, ..., Tn

 Precedence graph
 A direct graph where the vertices are the transactions (names)

 We draw an arc from Ti to Tj if the two transactions conflict, and Ti accessed the data item on
which the conflict arose earlier

 We may label the arc by the item that was accessed
 Example

NPTEL

©Silberschatz, Korth and Sudarshan32.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Testing for Conflict Serializability

 A schedule is conflict serializable if and only if its precedence graph is acyclic
 Cycle-detection algorithms exist which take order n2 time, where n is the

number of vertices in the graph
 (Better algorithms take order n + e where e is the number of edges.)

 If precedence graph is acyclic, the serializability order can be obtained by a
topological sorting of the graph
 That is, a linear order consistent with the partial order of the graph.
 For example, a serializability order for the schedule (a) would be one of

either (b) or (c)

NPTEL

©Silberschatz, Korth and Sudarshan32.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Testing for Conflict Serializability

 Build a directed graph, with a vertex for each transaction.
 Go through each operation of the schedule.

 If the operation is of the form wi(X), find each subsequent operation in the schedule also
operating on the same data element X by a different transaction: that is, anything of the
form rj(X) or wj(X). For each such subsequent operation, add a directed edge in the graph
from Ti to Tj.

 If the operation is of the form ri(X), find each subsequent write to the same data element X by
a different transaction: that is, anything of the form wj(X). For each such subsequent write,
add a directed edge in the graph from Ti to Tj.

 The schedule is conflict-serializable if and only if the resulting directed graph is acyclic.
 Moreover, we can perform a topological sort on the graph to discover the serial schedule to

which the schedule is conflict-equivalent.

PPD

NPTEL

©Silberschatz, Korth and Sudarshan32.20Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Testing for Conflict Serializability
 Consider the following schedule:

 w1(A), r2(A), w1(B), w3(C), r2(C), r4(B), w2(D), w4(E), r5(D), w5(E)
 We start with an empty graph with five vertices labeled T1, T2, T3, T4, T5.
 We go through each operation in the schedule:

 We end up with precedence graph
 This graph has no cycles, so the original schedule must be serializable. Moreover, since one way to topologically sort the

graph is T3–T1–T4–T2–T5, one serial schedule that is conflict-equivalent is
 w3(C), w1(A), w1(B), r4(B), w4(E), r2(A), r2(C), w2(D), r5(D), w5(E)

w1(A): A is subsequently read by T2, so add edge T1 → T2

r2(A): no subsequent writes to A, so no new edges

w1(B): B is subsequently read by T4, so add edge T1 → T4

w3(C): C is subsequently read by T2, so add edge T3 → T2

r2(C): no subsequent writes to C, so no new edges

r4(B): no subsequent writes to B, so no new edges

w2(D): C is subsequently read by T2, so add edge T3 → T2

w4(E): E is subsequently written by T5, so add edge T4 → T5

r5(D): no subsequent writes to D, so no new edges

w5(E): no subsequent operations on E, so no new edges

Source: http://www.cburch.com/cs/340/reading/serial/

PPD

NPTEL

©Silberschatz, Korth and Sudarshan32.21Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 Understood the issues that arise when two or more transactions work concurrently
 Learnt the forms of serializability in terms of conflict and view serializability
 Acyclic precedence graph can ensure conflict serializability

NPTEL

©Silberschatz, Korth and Sudarshan32.22Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

NPTEL

http://db-book.com/

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 33: Transactions/3: Recoverability

NPTEL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan33.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Recap

 Serializability
 Conflict Serializability

PPD

NPTEL

©Silberschatz, Korth and Sudarshan33.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 What happens if system fails while a transaction is in execution? Can a consistent state be
reached for the database? Recoverability attempts to answer issues in state and transaction
recovery in the face of system failures

 Conflict serializability is a crisp concept for concurrent execution that guarantees ACID
properties and has a simple detection algorithm. Yet only few schedules are Conflict
serializable in practice. There is a need to explore – View Serializability – a weaker system for
better concurrency

PPD

NPTEL

©Silberschatz, Korth and Sudarshan33.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 Recoverability and Isolation
 Transaction Definition in SQL
 View Serializability
 Complex Notions of Serializability

PPD

NPTEL

©Silberschatz, Korth and Sudarshan33.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

RECOVERABILITY AND ISOLATION

PPD

• Recoverability and
Isolation

• Transaction
Definition in SQL

• View Serializability
• Complex Notions of

Serializability

NPTEL

©Silberschatz, Korth and Sudarshan33.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

What is recovery?

 Serializability helps to ensure Isolation and Consistency of a schedule
 Yet, the Atomicity and Consistency may be compromised in the face of system failures
 Consider a schedule comprising a single transaction (obviously serial):

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

7. commit // Make the changes permanent; show the results to the user

 What if system fails after Step 3 and before Step 6?
 Leads to inconsistent state
 Need to rollback update of A

 This is known as Recovery

PPD

NPTEL

©Silberschatz, Korth and Sudarshan33.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Recoverable Schedules

 Recoverable schedule
 If a transaction Tj reads a data item previously written by a transaction Ti , then the commit operation of

Ti must appear before the commit operation of Tj.
 The following schedule is not recoverable if T9 commits immediately after the read(A) operation

 If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent database state.
Hence, database must ensure that schedules are recoverableNPTEL

©Silberschatz, Korth and Sudarshan33.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Cascading Rollbacks

 Cascading rollback – a single transaction failure leads to a series of transaction rollbacks.
Consider the following schedule where none of the transactions has yet committed (so the
schedule is recoverable)

 If T10 fails, T11 and T12 must also be rolled back
 Can lead to the undoing of a significant amount of work

NPTEL

©Silberschatz, Korth and Sudarshan33.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Cascadeless Schedules

 Cascadeless schedules — for each pair of transactions Ti and Tj such that Tj reads a data item
previously written by Ti, the commit operation of Ti appears before the read operation of Tj.

 Every cascadeless schedule is also recoverable
 It is desirable to restrict the schedules to those that are cascadeless
 Example of a schedule that is NOT cascadeless

NPTEL

©Silberschatz, Korth and Sudarshan33.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Recoverable Schedules: Example

 Irrecoverable Schedule

Source: https://www.geeksforgeeks.org/dbms-recoverability-of-schedules/

T1 T1’s Buffer T2 T2’s Buffer Database
A = 5000

R(A); A = 5000 A = 5000
A = A – 1000; A = 4000 A = 5000
W(A); A = 4000 A = 4000

R(A); A = 4000 A = 4000
A = A + 500; A = 4500 A = 4000
W(A); A = 4500 A = 4500
Commit;

Failure Point
Commit;

PPD

NPTEL

©Silberschatz, Korth and Sudarshan33.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Recoverable Schedules: Example

 Recoverable Schedule with cascading rollback

Source: https://www.geeksforgeeks.org/dbms-recoverability-of-schedules/

T1 T1’s Buffer T2 T2’s Buffer Database
A = 5000

R(A); A = 5000 A = 5000
A = A – 1000; A = 4000 A = 5000
W(A); A = 4000 A = 4000

R(A); A = 4000 A = 4000
A = A + 500; A = 4500 A = 4000
W(A); A = 4500 A = 4500

Failure Point
Commit;

Commit;

PPD

NPTEL

©Silberschatz, Korth and Sudarshan33.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Recoverable Schedules: Example

 Recoverable Schedule without cascading rollback

Source: https://www.geeksforgeeks.org/dbms-recoverability-of-schedules/

T1 T1’s Buffer T2 T2’s Buffer Database
A = 5000

R(A); A = 5000 A = 5000
A = A – 1000; A = 4000 A = 5000
W(A); A = 4000 A = 4000
Commit;

R(A); A = 4000 A = 4000
A = A + 500; A = 4500 A = 4000
W(A); A = 4500 A = 4500
Commit;

PPD

NPTEL

©Silberschatz, Korth and Sudarshan33.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TRANSACTION DEFINITION IN SQL

PPD

• Recoverability and
Isolation

• Transaction
Definition in SQL

• View Serializability
• Complex Notions of

Serializability

NPTEL

©Silberschatz, Korth and Sudarshan33.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Transaction Definition in SQL

 Data manipulation language must include a construct for specifying the set of actions that
comprise a transaction

 In SQL, a transaction begins implicitly
 A transaction in SQL ends by:

 Commit work commits current transaction and begins a new one
 Rollback work causes current transaction to abort

 In almost all database systems, by default, every SQL statement also commits implicitly if it
executes successfully
 Implicit commit can be turned off by a database directive

 For example in JDBC, connection.setAutoCommit(false);NPTEL

©Silberschatz, Korth and Sudarshan33.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Transaction Control Language (TCL)

 The following commands are used to control transactions.
 COMMIT − to save the changes
 ROLLBACK − to roll back the changes
 SAVEPOINT − creates points within the groups of transactions in which to ROLLBACK
 SET TRANSACTION − Places a name on a transaction

 Transactional control commands are only used with the DML Commands such as
 INSERT, UPDATE and DELETE only
 They cannot be used while creating tables or dropping them because these operations are

automatically committed in the database

PPD

Source: http://www.tutorialspoint.com/sql/sql-transactions.htm

NPTEL

©Silberschatz, Korth and Sudarshan33.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TCL: COMMIT Command

 The COMMIT is the transactional command used to save changes invoked by a transaction to the database
 The COMMIT saves all the transactions to the database since the last COMMIT or ROLLBACK command
 The syntax for the COMMIT command is as follows:

 SQL> DELETE FROM Customers WHERE AGE = 25;
 SQL> COMMIT;

PPD

Source: http://www.tutorialspoint.com/sql/sql-transactions.htm

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000

3 kaushik 23 Kota 2000

5 Hardik 27 Bhopal 8500

6 Komal 22 MP 4500

7 Muffy 24 Indore 10000

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000

2 Khilan 25 Delhi 1500

3 kaushik 23 Kota 2000

4 Chaitali 25 Mumbai 6500

5 Hardik 27 Bhopal 8500

6 Komal 22 MP 4500

7 Muffy 24 Indore 10000

SQL> SELECT * FROM Customers; SQL> SELECT * FROM Customers;

B
ef

or
e

D
EL

ET
E

Af
te

r
D

EL
ET

E

NPTEL

©Silberschatz, Korth and Sudarshan33.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TCL: ROLLBACK Command

 The ROLLBACK is the command used to undo transactions that have not already been saved to the database
 This can only be used to undo transactions since the last COMMIT or ROLLBACK command was issued
 The syntax for a ROLLBACK command is as follows:

 SQL> DELETE FROM Customers WHERE AGE = 25;
 SQL> ROLLBACK;

PPD

Source: http://www.tutorialspoint.com/sql/sql-transactions.htm

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000

2 Khilan 25 Delhi 1500

3 kaushik 23 Kota 2000

4 Chaitali 25 Mumbai 6500

5 Hardik 27 Bhopal 8500

6 Komal 22 MP 4500

7 Muffy 24 Indore 10000

SQL> SELECT * FROM Customers; SQL> SELECT * FROM Customers;

B
ef

or
e

D
EL

ET
E

Af
te

r
D

EL
ET

E

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000

2 Khilan 25 Delhi 1500

3 kaushik 23 Kota 2000

4 Chaitali 25 Mumbai 6500

5 Hardik 27 Bhopal 8500

6 Komal 22 MP 4500

7 Muffy 24 Indore 10000

NPTEL

©Silberschatz, Korth and Sudarshan33.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TCL: SAVEPOINT / ROLLBACK Command

 A SAVEPOINT is a point in a transaction when
you can roll the transaction back to a certain point
without rolling back the entire transaction

 The syntax for a SAVEPOINT command is:
 SAVEPOINT SAVEPOINT_NAME;

 This command serves only in the creation of a
SAVEPOINT among all the transactional
statements.

 The ROLLBACK command is used to undo a
group of transactions

 The syntax for rolling back to a SAVEPOINT is:
 ROLLBACK TO SAVEPOINT_NAME;

 Example:
 SQL> SAVEPOINT SP1;

 Savepoint created.
 SQL> DELETE FROM Customers WHERE ID=1;

 1 row deleted.
 SQL> SAVEPOINT SP2;

 Savepoint created.
 SQL> DELETE FROM Customers WHERE ID=2;

 1 row deleted.
 SQL> SAVEPOINT SP3;

 Savepoint created.
 SQL> DELETE FROM Customers WHERE ID=3;

 1 row deleted.

PPD

Source: http://www.tutorialspoint.com/sql/sql-transactions.htm

NPTEL

©Silberschatz, Korth and Sudarshan33.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TCL: SAVEPOINT / ROLLBACK Command

 Three records deleted
 Undo the deletion of first two
 SQL> ROLLBACK TO SP2;

 Rollback complete

PPD

Source: http://www.tutorialspoint.com/sql/sql-transactions.htm

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000

2 Khilan 25 Delhi 1500

3 kaushik 23 Kota 2000

4 Chaitali 25 Mumbai 6500

5 Hardik 27 Bhopal 8500

6 Komal 22 MP 4500

7 Muffy 24 Indore 10000

SQL> SELECT * FROM Customers; SQL> SELECT * FROM Customers;

At
 th

e
be

gi
nn

in
g

Af
te

r
R

O
LL

B
AC

K

ID NAME AGE ADDRESS SALARY

2 Khilan 25 Delhi 1500

3 kaushik 23 Kota 2000

4 Chaitali 25 Mumbai 6500

5 Hardik 27 Bhopal 8500

6 Komal 22 MP 4500

7 Muffy 24 Indore 10000

SQL> SAVEPOINT SP1;
SQL> DELETE FROM Customers WHERE ID=1;
SQL> SAVEPOINT SP2;
SQL> DELETE FROM Customers WHERE ID=2;
SQL> SAVEPOINT SP3;
SQL> DELETE FROM Customers WHERE ID=3;

NPTEL

©Silberschatz, Korth and Sudarshan33.20Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TCL: RELEASE SAVEPOINT Command

 The RELEASE SAVEPOINT command is used to remove a SAVEPOINT that you have created
 The syntax for a RELEASE SAVEPOINT command is as follows.

 RELEASE SAVEPOINT SAVEPOINT_NAME;
 Once a SAVEPOINT has been released, you can no longer use the ROLLBACK command to undo

transactions performed since the last SAVEPOINT

PPD

Source: http://www.tutorialspoint.com/sql/sql-transactions.htm

NPTEL

©Silberschatz, Korth and Sudarshan33.21Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TCL: SET TRANSACTION Command

 The SET TRANSACTION command can be used to initiate a database transaction
 This command is used to specify characteristics for the transaction that follows

 For example, you can specify a transaction to be read only or read write
 The syntax for a SET TRANSACTION command is as follows:

 SET TRANSACTION [READ WRITE | READ ONLY];

PPD

Source: http://www.tutorialspoint.com/sql/sql-transactions.htm

NPTEL

©Silberschatz, Korth and Sudarshan33.22Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

VIEW SERIALIZABILITY

PPD

• Recoverability and
Isolation

• Transaction
Definition in SQL

• View Serializability
• Complex Notions of

Serializability

NPTEL

©Silberschatz, Korth and Sudarshan33.23Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

View Serializability

 Let S and S’ be two schedules with the same set of transactions. S and S’ are view equivalent if the
following three conditions are met, for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in schedule S’ also transaction Ti must
read the initial value of Q.

2. If in schedule S transaction Ti executes read(Q), and that value was produced by transaction Tj (if any),
then in schedule S’ also transaction Ti must read the value of Q that was produced by the same write(Q)
operation of transaction Tj .

3. The transaction (if any) that performs the final write(Q) operation in schedule S must also perform the
final write(Q) operation in schedule S’

 As can be seen, view equivalence is also based purely on reads and writes alone

NPTEL

©Silberschatz, Korth and Sudarshan33.24Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

View Serializability (Cont.)

 A schedule S is view serializable if it is view equivalent to a serial schedule
 Every conflict serializable schedule is also view serializable
 Below is a schedule which is view-serializable but not conflict serializable

 What serial schedule is above equivalent to?
 T27–T28–T29

 The one read(Q) instruction reads the initial value of Q in both schedules and
 T29 performs the final write of Q in both schedules

 T28 and T29 perform write(Q) operations called blind writes, without having performed a read(Q) operation
 Every view serializable schedule that is not conflict serializable has blind writes

NPTEL

©Silberschatz, Korth and Sudarshan33.25Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Test for View Serializability

 The precedence graph test for conflict serializability cannot be used directly to test for view serializability
 Extension to test for view serializability has cost exponential in the size of the precedence graph

 The problem of checking if a schedule is view serializable falls in the class of NP-complete problems
 Thus, existence of an efficient algorithm is extremely unlikely

 However, practical algorithms that just check some sufficient conditions for view serializability can still be
used

NPTEL

©Silberschatz, Korth and Sudarshan33.26Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

View Serializability: Example 1

 Check whether the schedule is view serializable or not?
 S : R2(B); R2(A); R1(A); R3(A); W1(B); W2(B); W3(B);

 Solution:
 With 3 transactions, total number of schedules possible = 3! = 6

 <T1 T2 T3>
 <T1 T3 T2>
 <T2 T3 T1>
 <T2 T1 T3>
 <T3 T1 T2>
 <T3 T2 T1>

 Final update on data items :
 A : -
 B : T1 T2 T3
 Since the final update on B is made by T3, so the transaction T3 must execute after transactions T1 and T2.
 Therefore, (T1,T2) → T3. Now, Removing those schedules in which T3 is not executing at last:

– <T1 T2 T3>
– <T2 T1 T3>

PPD

Source: http://www.edugrabs.com/how-to-check-for-view-serializable-schedule/

NPTEL

©Silberschatz, Korth and Sudarshan33.27Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

View Serializability: Example 1

 Check whether the schedule is view serializable or not?
 S : R2(B); R2(A); R1(A); R3(A); W1(B); W2(B); W3(B);

 Solution:
 Initial Read + Which transaction updates after read?

 A : T2 T1 T3 (initial read)
 B : T2 (initial read); T1 (update after read)
 The transaction T2 reads B initially which is updated by T1. So T2 must execute before T1.
 Hence, T2 → T1. Removing those schedules in which T2 is executing before T1:
 <T2 T1 T3>

 Write Read Sequence (WR)
 No need to check here

 Hence, view equivalent serial schedule is:
 T2 → T1 → T3

Source: http://www.edugrabs.com/how-to-check-for-view-serializable-schedule/

PPD

NPTEL

©Silberschatz, Korth and Sudarshan33.28Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

View Serializability: Example 2

 Check whether the schedule is Conflict serializable and view serializable or not?
 S : R1(A); R2(A); R3(A); R4(A); W1(B); W2(B); W3(B); W4(B)

 Solution is given in the next slide (hidden). First try to solve is and then check the solution.

PPD

Source: http://www.edugrabs.com/how-to-check-for-view-serializable-schedule/

NPTEL

©Silberschatz, Korth and Sudarshan33.31Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

COMPLEX NOTIONS OF
SERIALIZABILITY

PPD

• Recoverability and
Isolation

• Transaction
Definition in SQL

• View Serializability
• Complex Notions

of Serializability

NPTEL

©Silberschatz, Korth and Sudarshan33.32Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

More Complex Notions of Serializability

 The schedule below produces the same outcome as the serial schedule < T1, T5 >, yet is not conflict
equivalent or view equivalent to it

 If we start with A = 1000 and B = 2000, the final result is 960 and 2040
 Determining such equivalence requires analysis of operations other than read and write

NPTEL

©Silberschatz, Korth and Sudarshan33.33Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 With proper planning, a database can be recovered back to a consistent state from inconsistent
state in the face of system failures. Such a recovery is done via cascaded or cascadeless rollback

 View Serializability is a weaker serializability system for better concurrency. However, testing for
view serializability is NP complete

NPTEL

©Silberschatz, Korth and Sudarshan33.34Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

NPTEL

http://db-book.com/

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 34: Concurrency Control/1

NPTEL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan34.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Recap

 Recoverability and Isolation
 Transaction Definition in SQL
 View Serializability
 Complex Notions of Serializability

PPD

NPTEL

©Silberschatz, Korth and Sudarshan34.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 Concurrency Control through design of serializable schedule is difficult in general. Hence we
take a look into locking mechanism and Lock-Based Protocols

 We need to understand how locks may be implemented

PPD

NPTEL

©Silberschatz, Korth and Sudarshan34.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 Concurrency Control
 Lock-Based Protocols
 Implementing Locking

PPD

NPTEL

©Silberschatz, Korth and Sudarshan34.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

CONCURRENCY CONTROL

PPD

• Concurrency
Control

• Lock-Based
Protocols

• Implementing
Locking

NPTEL

©Silberschatz, Korth and Sudarshan34.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Concurrency Control

 A database must provide a mechanism that will ensure that all possible schedules are both:
 Conflict serializable
 Recoverable and preferably cascadeless

 A policy in which only one transaction can execute at a time generates serial schedules, but
provides a poor degree of concurrency

 Concurrency-control schemes tradeoff between the amount of concurrency they allow and the
amount of overhead that they incur

 Testing a schedule for serializability after it has executed is a little too late!
 Tests for serializability help us understand why a concurrency control protocol is correct

 Goal – to develop concurrency control protocols that will assure serializabilityNPTEL

©Silberschatz, Korth and Sudarshan34.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Concurrency Control

 One way to ensure isolation is to require that data items be accessed in a mutually exclusive
manner; that is, while one transaction is accessing a data item, no other transaction can modify
that data item
 Should a transaction hold a lock on the whole database

Would lead to strictly serial schedules – very poor performance
 The most common method used to implement locking requirement is to allow a transaction to

access a data item only if it is currently holding a lock on that item

PPD

NPTEL

©Silberschatz, Korth and Sudarshan34.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

LOCK-BASED PROTOCOLS

PPD

• Concurrency Control
• Lock-Based

Protocols
• Implementing

Locking

NPTEL

©Silberschatz, Korth and Sudarshan34.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item
 Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as written. X-lock is requested using
lock-X instruction

2. shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction
 A transaction can unlock a data item Q by the unlock(Q) Instruction
 Lock requests are made to the concurrency-control manager by the programmer
 Transaction can proceed only after request is granted

NPTEL

©Silberschatz, Korth and Sudarshan34.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Lock-Based Protocols
 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock is compatible with locks
already held on the item by other transactions

 Any number of transactions can hold shared locks on an item,
 But if any transaction holds an exclusive on the item no other transaction may hold any lock

on the item
 If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks

held by other transactions have been released. The lock is then granted
 Transaction Ti may unlock a data item that it had locked at some earlier point
 Note that a transaction must hold a lock on a data item as long as it accesses that item
 Moreover, it is not necessarily desirable for a transaction to unlock a data item immediately after

its final access of that data item, since serializability may not be ensured

NPTEL

©Silberschatz, Korth and Sudarshan34.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Lock-Based Protocols: Example
 Let A and B be two accounts that are accessed by transactions T1 and T2.

 Transaction T1 transfers $50 from account B to account A.
 Transaction T2 displays the total amount of money in accounts A and B, that is, the sum A + B
 Suppose that the values of accounts A and B are $100 and $200, respectively

 If these transactions are executed serially, either as T1, T2 or the order T2, T1, then transaction T2 will display
the value $300

T2:
lock-S(A);
read(A);
unlock(A);
lock-S(B);
read(B);
unlock(B);
display(A + B)

T1:
lock-X(B);
read(B);
B := B − 50;
write(B);
unlock(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(A); NPTEL

©Silberschatz, Korth and Sudarshan34.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Lock-Based Protocols: Example
 If, however, these transactions are executed

concurrently, then schedule 1 is possible
 In this case, transaction T2 displays $250, which

is incorrect. The reason for this mistake is that
 the transaction T1 unlocked data item B too

early, as a result of which T2 saw an
inconsistent state

 Suppose we delay unlocking till the end

T2:
lock-S(A);
read(A);
unlock(A);
lock-S(B);
read(B);
unlock(B);
display(A + B)

T1:
lock-X(B);
read(B);
B := B − 50;
write(B);
unlock(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(A); Schedule 1

NPTEL

©Silberschatz, Korth and Sudarshan34.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Lock-Based Protocols: Example
 Delaying unlocking till the end, T1 becomes T3

and T2 becomes T4

 Hence, sequence of reads and writes as in
Schedule 1 is no longer possible

 T4 will correctly display $300

T4:
lock-S(A);
read(A);
lock-S(B);
read(B);
display(A + B);
unlock(A);
unlock(B)

T3:
lock-X(B);
read(B);
B := B − 50;
write(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(B);
unlock(A)

Schedule 1

NPTEL

©Silberschatz, Korth and Sudarshan34.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Lock-Based Protocols: Example
 Given, T3 and T4, consider Schedule 2 (partial)
 Since T3 is holding an exclusive mode lock on B and T4

is requesting a shared-mode lock on B, T4 is waiting for
T3 to unlock B

 Similarly, since T4 is holding a shared-mode lock on A
and T3 is requesting an exclusive-mode lock on A, T3 is
waiting for T4 to unlock A

 Thus, we have arrived at a state where neither of these
transactions can ever proceed with its normal execution

 This situation is called deadlock
 When deadlock occurs, the system must roll back one of

the two transactions.
 Once a transaction has been rolled back, the data items

that were locked by that transaction are unlocked
 These data items are then available to the other

transaction, which can continue with its execution

T4:
lock-S(A);
read(A);
lock-S(B);
read(B);
display(A + B);
unlock(A);
unlock(B)

T3:
lock-X(B);
read(B);
B := B − 50;
write(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(B);
unlock(A)

Schedule 2

NPTEL

©Silberschatz, Korth and Sudarshan34.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Lock-Based Protocols

 If we do not use locking, or if we unlock data items too soon after reading or writing them, we
may get inconsistent states

 On the other hand, if we do not unlock a data item before requesting a lock on another data
item, deadlocks may occur

 Deadlocks are a necessary evil associated with locking, if we want to avoid inconsistent states
 Deadlocks are definitely preferable to inconsistent states, since they can be handled by rolling

back transactions, whereas inconsistent states may lead to real-world problems that cannot be
handled by the database system

 A locking protocol is a set of rules followed by all transactions while requesting and releasing
locks

 Locking protocols restrict the set of possible schedules
 The set of all such schedules is a proper subset of all possible serializable schedules
 We present locking protocols that allow only conflict-serializable schedules, and thereby ensure

isolation

NPTEL

©Silberschatz, Korth and Sudarshan34.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

The Two-Phase Locking Protocol

 This protocol ensures conflict-serializable schedules
 Phase 1: Growing Phase

 Transaction may obtain locks
 Transaction may not release locks

 Phase 2: Shrinking Phase
 Transaction may release locks
 Transaction may not obtain locks

 The protocol assures serializability. It can be proved that the transactions can be serialized in the
order of their lock points

 That is, the point where a transaction acquired its final lockNPTEL

©Silberschatz, Korth and Sudarshan34.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

The Two-Phase Locking Protocol (Cont.)

 There can be conflict serializable schedules that cannot be obtained if two-phase locking is used
 However, in the absence of extra information (e.g., ordering of access to data), two-phase

locking is needed for conflict serializability in the following sense:
 Given a transaction Ti that does not follow two-phase locking, we can find a transaction Tj

that uses two-phase locking, and a schedule for Ti and Tj that is not conflict serializable

NPTEL

©Silberschatz, Korth and Sudarshan34.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Lock Conversions

 Two-phase locking with lock conversions:
– First Phase:
 can acquire a lock-S on item
 can acquire a lock-X on item
 can convert a lock-S to a lock-X (upgrade)

– Second Phase:
 can release a lock-S
 can release a lock-X
 can convert a lock-X to a lock-S (downgrade)

 This protocol assures serializability. But still relies on the programmer to insert the various
locking instructions NPTEL

©Silberschatz, Korth and Sudarshan34.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Automatic Acquisition of Locks: Read

 A transaction Ti issues the standard read/write instruction, without explicit locking calls

 The operation read(D) is processed as:
if Ti has a lock on D

then
read(D)

else begin
if necessary wait until no other transaction has a lock-X on D
grant Ti a lock-S on D;
read(D)

end NPTEL

©Silberschatz, Korth and Sudarshan34.20Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Automatic Acquisition of Locks: Write

 write(D) is processed as:
if Ti has a lock-X on D

then
write(D)

else begin
if necessary wait until no other transaction has any lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

 All locks are released after commit or abort
NPTEL

©Silberschatz, Korth and Sudarshan34.21Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Deadlocks

 Two-phase locking does not ensure freedom from deadlocks

 Observe that transactions T3 and T4 are two phase, but, in deadlock

T4:
lock-S(A);
read(A);
lock-S(B);
read(B);
display(A + B);
unlock(A);
unlock(B)

T3:
lock-X(B);
read(B);
B := B − 50;
write(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(B);
unlock(A) NPTEL

©Silberschatz, Korth and Sudarshan34.22Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Starvation

 In addition to deadlocks, there is a possibility of starvation
 Starvation occurs if the concurrency control manager is badly designed. For example:

 A transaction may be waiting for an X-lock on an item, while a sequence of other
transactions request and are granted an S-lock on the same item

 The same transaction is repeatedly rolled back due to deadlocks
 Concurrency control manager can be designed to prevent starvation

NPTEL

©Silberschatz, Korth and Sudarshan34.23Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Cascading roll-back

 The potential for deadlock exists in most locking
protocols. Deadlocks are a necessary evil

 When a deadlock occurs there is a possibility of
cascading roll-backs

 Cascading roll-back is possible under two-phase
locking

 In the schedule here, each transaction observes the
two-phase locking protocol, but the failure of T5 after
the read(A) step of T7 leads to cascading rollback of
T6 and T7. NPTEL

©Silberschatz, Korth and Sudarshan34.24Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

More Two Phase Locking Protocols

 To avoid Cascading roll-back, follow a modified protocol called strict two-phase locking
 a transaction must hold all its exclusive locks till it commits/aborts

 Rigorous two-phase locking is even stricter.

 All locks are held till commit/abort. In this protocol transactions can be serialized in the
order in which they commit

NPTEL

©Silberschatz, Korth and Sudarshan34.25Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

IMPLEMENTING LOCKING

PPD

• Concurrency Control
• Lock-Based

Protocols
• Implementing

Locking

NPTEL

©Silberschatz, Korth and Sudarshan34.26Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Implementation of Locking

 A lock manager can be implemented as a separate process to which transactions send lock and
unlock requests

 The lock manager replies to a lock request by sending a lock grant messages (or a message
asking the transaction to roll back, in case of a deadlock)

 The requesting transaction waits until its request is answered
 The lock manager maintains a data-structure called a lock table to record granted locks and

pending requests
 The lock table is usually implemented as an in-memory hash table indexed on the name of the

data item being locked

NPTEL

©Silberschatz, Korth and Sudarshan34.27Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Lock Table

 Dark blue rectangles indicate granted locks; light blue indicate
waiting requests

 Lock table also records the type of lock granted or requested
 New request is added to the end of the queue of requests for

the data item, and granted if it is compatible with all earlier
locks

 Unlock requests result in the request being deleted, and later
requests are checked to see if they can now be granted

 If transaction aborts, all waiting or granted requests of the
transaction are deleted
 lock manager may keep a list of locks held by each

transaction, to implement this efficientlyNPTEL

©Silberschatz, Korth and Sudarshan34.28Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 Understood the locking mechanism and protocols
 Realized that deadlock is a peril of locking and needs to be handled through rollback

NPTEL

©Silberschatz, Korth and Sudarshan34.29Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

NPTEL

http://db-book.com/

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 35: Concurrency Control/2

NPTEL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan35.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Recap

 Concurrency Control
 Lock-Based Protocols
 Implementing Locking

PPD

NPTEL

©Silberschatz, Korth and Sudarshan35.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 Deadlocks are peril of locking. We need to understand how to detect, prevent and recover from
deadlock

 Introduce a simple time-based protocol that avoids deadlocks

PPD

NPTEL

©Silberschatz, Korth and Sudarshan35.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 Deadlock Handling
 Timestamp-Based Protocols

PPD

NPTEL

©Silberschatz, Korth and Sudarshan35.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

DEADLOCK HANDLING

PPD

• Deadlock Handling
• Timestamp-Based

Protocols

NPTEL

©Silberschatz, Korth and Sudarshan35.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Deadlock Handling

 System is deadlocked if there is a set of transactions such that every transaction in the set is
waiting for another transaction in the set

 Deadlock prevention protocols ensure that the system will never enter into a deadlock state.
Some prevention strategies :
 Require that each transaction locks all its data items before it begins execution

(predeclaration)
 Impose partial ordering of all data items and require that a transaction can lock data items

only in the order specified by the partial order

NPTEL

©Silberschatz, Korth and Sudarshan35.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Deadlock Prevention

 Following schemes use transaction timestamps for the sake of deadlock prevention alone
 wait-die scheme — non-preemptive

 Older transaction may wait for younger one to release data item. (older means smaller
timestamp)
 Younger transactions never wait for older ones; they are rolled back instead

 A transaction may die several times before acquiring needed data item
 wound-wait scheme — preemptive

 Older transaction wounds (forces rollback) of younger transaction instead of waiting for it
 Younger transactions may wait for older ones

 May be fewer rollbacks than wait-die schemeNPTEL

©Silberschatz, Korth and Sudarshan35.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Deadlock Prevention

 Both in wait-die and in wound-wait schemes, a rolled back transactions is restarted with its
original timestamp. Older transactions thus have precedence over newer ones, and starvation
is hence avoided

 Timeout-Based Schemes:
 a transaction waits for a lock only for a specified amount of time. If the lock has not been

granted within that time, the transaction is rolled back and restarted,
 Thus, deadlocks are not possible
 simple to implement; but starvation is possible. Also difficult to determine good value of the

timeout interval

NPTEL

©Silberschatz, Korth and Sudarshan35.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Deadlock Detection

 Deadlocks can be described as a wait-for graph, which consists of a pair G = (V,E),
 V is a set of vertices (all the transactions in the system)
 E is a set of edges; each element is an ordered pair Ti →Tj.

 If Ti → Tj is in E, then there is a directed edge from Ti to Tj, implying that Ti is waiting for Tj to
release a data item

 When Ti requests a data item currently being held by Tj, then the edge Ti → Tj is inserted in the
wait-for graph. This edge is removed only when Tj is no longer holding a data item needed by Ti

 The system is in a deadlock state if and only if the wait-for graph has a cycle. Must invoke a
deadlock-detection algorithm periodically to look for cycles

NPTEL

©Silberschatz, Korth and Sudarshan35.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Deadlock Detection: Example

Wait-for graph without a cycle Wait-for graph with a cycleNPTEL

©Silberschatz, Korth and Sudarshan35.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Deadlock Recovery

 When deadlock is detected :
 Some transaction will have to rolled back (made a victim) to break deadlock. Select that

transaction as victim that will incur minimum cost
 Rollback -- determine how far to roll back transaction

 Total rollback: Abort the transaction and then restart it
More effective to roll back transaction only as far as necessary to break deadlock

 Starvation happens if same transaction is always chosen as victim. Include the number of
rollbacks in the cost factor to avoid starvation

NPTEL

©Silberschatz, Korth and Sudarshan35.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

TIMESTAMP-BASED PROTOCOLS

PPD

• Deadlock Handling
• Timestamp-Based

Protocols

NPTEL

©Silberschatz, Korth and Sudarshan35.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Timestamp-Based Protocols

 Each transaction is issued a timestamp when it enters the system. If an old transaction Ti has
time-stamp TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj).

 The protocol manages concurrent execution such that the time-stamps determine the
serializability order

 In order to assure such behavior, the protocol maintains for each data Q two timestamp values:

 W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q)
successfully

 R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q)
successfully NPTEL

©Silberschatz, Korth and Sudarshan35.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Timestamp-Based Protocols

 The timestamp ordering protocol ensures that any conflicting read and write operations are
executed in timestamp order

 Suppose a transaction Ti issues a read(Q)
1. If TS(Ti) ≤ W-timestamp(Q), then Ti needs to read a value of Q that was already overwritten.

 Hence, the read operation is rejected, and Ti is rolled back.
2. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set

to max(R-timestamp(Q), TS(Ti)).

NPTEL

©Silberschatz, Korth and Sudarshan35.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).
1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously,

and the system assumed that that value would never be produced
 Hence, the write operation is rejected, and Ti is rolled back

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q
 Hence, this write operation is rejected, and Ti is rolled back

3. Otherwise, the write operation is executed, and W-timestamp(Q) is set to TS(Ti)

NPTEL

©Silberschatz, Korth and Sudarshan35.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example Use of the Protocol

A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5

NPTEL

©Silberschatz, Korth and Sudarshan35.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence
graph are of the form:

Thus, there will be no cycles in the precedence graph
 Timestamp protocol ensures freedom from deadlock as no transaction ever waits
 But the schedule may not be cascade-free, and may not even be recoverableNPTEL

©Silberschatz, Korth and Sudarshan35.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 Explained how to detect, prevent and recover from deadlock
 Introduced a time-based protocol that avoids deadlocks

NPTEL

©Silberschatz, Korth and Sudarshan35.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

NPTEL

http://db-book.com/

	Module 31
	Module 31: Transactions/1
	Week 06 Recap
	Module Objectives
	Module Outline
	Transaction Concept
	Transaction Concept
	Required Properties of a Transaction
	Required Properties of a Transaction
	Required Properties of a Transaction (Cont.)
	Required Properties of a Transaction
	ACID Properties
	Transaction State
	Transaction State
	Transitions for Transaction State
	Concurrent Executions
	Concurrent Executions
	Schedules
	Schedule 1
	Schedule 2
	Schedule 3
	Schedule 4
	Module Summary
	Instructor and TAs

	Module 32
	Module 32: Transactions/2: Serializability
	Module Recap
	Module Objectives
	Module Outline
	Serializability
	Serializability
	Simplified view of transactions
	Conflicting Instructions
	Conflict Serializability
	Conflict Serializability
	Conflict Serializability (Cont.)
	Conflict Serializability (Cont.)
	Example: Bad Schedule
	Example: Bad Schedule
	Example: Good Schedule
	Serializability
	Precedence Graph
	Testing for Conflict Serializability
	Testing for Conflict Serializability
	Testing for Conflict Serializability
	Module Summary
	Instructor and TAs

	Module 33
	Module 33: Transactions/3: Recoverability
	Module Recap
	Module Objectives
	Module Outline
	Recoverability and Isolation
	What is recovery?
	Recoverable Schedules
	Cascading Rollbacks
	Cascadeless Schedules
	Recoverable Schedules: Example
	Recoverable Schedules: Example
	Recoverable Schedules: Example
	Transaction Definition in SQL
	Transaction Definition in SQL
	Transaction Control Language (TCL)
	TCL: COMMIT Command
	TCL: ROLLBACK Command
	TCL: SAVEPOINT / ROLLBACK Command
	TCL: SAVEPOINT / ROLLBACK Command
	TCL: RELEASE SAVEPOINT Command
	TCL: SET TRANSACTION Command
	View Serializability
	View Serializability
	View Serializability (Cont.)
	Test for View Serializability
	View Serializability: Example 1
	View Serializability: Example 1
	View Serializability: Example 2
	Complex Notions of Serializability
	More Complex Notions of Serializability
	Module Summary
	Instructor and TAs

	Module 34
	Module 34: Concurrency Control/1
	Module Recap
	Module Objectives
	Module Outline
	Concurrency Control
	Concurrency Control
	Concurrency Control
	Lock-Based Protocols
	Lock-Based Protocols
	Lock-Based Protocols
	Lock-Based Protocols: Example
	Lock-Based Protocols: Example
	Lock-Based Protocols: Example
	Lock-Based Protocols: Example
	Lock-Based Protocols
	The Two-Phase Locking Protocol
	The Two-Phase Locking Protocol (Cont.)
	Lock Conversions
	Automatic Acquisition of Locks: Read
	Automatic Acquisition of Locks: Write
	Deadlocks
	Starvation
	Cascading roll-back
	More Two Phase Locking Protocols
	Implementing Locking
	Implementation of Locking
	Lock Table
	Module Summary
	Instructor and TAs

	Module 35
	Module 35: Concurrency Control/2
	Module Recap
	Module Objectives
	Module Outline
	Deadlock Handling
	Deadlock Handling
	Deadlock Prevention
	Deadlock Prevention
	Deadlock Detection
	Deadlock Detection: Example
	Deadlock Recovery
	Timestamp-Based Protocols
	Timestamp-Based Protocols
	Timestamp-Based Protocols
	Timestamp-Based Protocols (Cont.)
	Example Use of the Protocol
	Correctness of Timestamp-Ordering Protocol
	Module Summary
	Instructor and TAs

