

Module
5

Function-Oriented
Software Design

Version 2 CSE IIT, Kharagpur

Lesson
12

Structured Design

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Identify the aim of structured design.
• Explain what a structure chart is.
• Differentiate between a structure chart and a flow chart.
• Identify the activities carried out during transform analysis with examples.
• Explain what is meant by transaction analysis.

Structured Design
The aim of structured design is to transform the results of the structured analysis
(i.e. a DFD representation) into a structure chart. Structured design provides two
strategies to guide transformation of a DFD into a structure chart.

• Transform analysis
• Transaction analysis

Normally, one starts with the level 1 DFD, transforms it into module
representation using either the transform or the transaction analysis and then
proceeds towards the lower-level DFDs. At each level of transformation, it is
important to first determine whether the transform or the transaction analysis is
applicable to a particular DFD. These are discussed in the subsequent sub-
sections.

Structure Chart
A structure chart represents the software architecture, i.e. the various modules
making up the system, the dependency (which module calls which other
modules), and the parameters that are passed among the different modules.
Hence, the structure chart representation can be easily implemented using some
programming language. Since the main focus in a structure chart representation
is on the module structure of the software and the interactions among different
modules, the procedural aspects (e.g. how a particular functionality is achieved)
are not represented.

The basic building blocks which are used to design structure charts are the
following:

• Rectangular boxes: Represents a module.

• Module invocation arrows: Control is passed from one module to
another module in the direction of the connecting arrow.

Version 2 CSE IIT, Kharagpur

• Data flow arrows: Arrows are annotated with data name; named data
passes from one module to another module in the direction of the
arrow.

• Library modules: Represented by a rectangle with double edges.

• Selection: Represented by a diamond symbol.

• Repetition: Represented by a loop around the control flow arrow.

Structure Chart vs. Flow Chart
We are all familiar with the flow chart representation of a program. Flow chart is a
convenient technique to represent the flow of control in a program. A structure
chart differs from a flow chart in three principal ways:

• It is usually difficult to identify the different modules of the software
from its flow chart representation.

• Data interchange among different modules is not represented in a flow
chart.

• Sequential ordering of tasks inherent in a flow chart is suppressed in a
structure chart.

Transform Analysis

Transform analysis identifies the primary functional components (modules) and
the high level inputs and outputs for these components. The first step in
transform analysis is to divide the DFD into 3 types of parts:

• Input
• Logical processing
• Output

The input portion of the DFD includes processes that transform input data from
physical (e.g. character from terminal) to logical forms (e.g. internal tables, lists,
etc.). Each input portion is called an afferent branch.

The output portion of a DFD transforms output data from logical to physical form.
Each output portion is called an efferent branch. The remaining portion of a DFD
is called the central transform.

In the next step of transform analysis, the structure chart is derived by drawing
one functional component for the central transform, and the afferent and efferent

Version 2 CSE IIT, Kharagpur

branches. These are drawn below a root module, which would invoke these
modules.

Identifying the highest level input and output transforms requires experience and
skill. One possible approach is to trace the inputs until a bubble is found whose
output cannot be deduced from its inputs alone. Processes which validate input
or add information to them are not central transforms. Processes which sort input
or filter data from it are. The first level structure chart is produced by representing
each input and output unit as boxes and each central transform as a single box.

In the third step of transform analysis, the structure chart is refined by adding
sub-functions required by each of the high-level functional components. Many
levels of functional components may be added. This process of breaking
functional components into subcomponents is called factoring. Factoring includes
adding read and write modules, error-handling modules, initialization and
termination process, identifying customer modules, etc. The factoring process is
continued until all bubbles in the DFD are represented in the structure chart.

Example: Structure chart for the RMS software
For this example, the context diagram was drawn earlier.
To draw the level 1 DFD (fig. 5.11), from a cursory analysis of the problem
description, we can see that there are four basic functions that the system needs
to perform – accept the input numbers from the user, validate the numbers,
calculate the root mean square of the input numbers and, then display the result.

validate-
input

0.1

compute-
rms
0.2

display-
result

0.3

data-items

valid-
data rms rms

Fig. 5.11: Level 1 DFD

By observing the level 1 DFD, we identify the validate-input as the afferent
branch and write-output as the efferent branch. The remaining portion (i.e.
compute-rms) forms the central transform. By applying the step 2 and step 3 of
transform analysis, we get the structure chart shown in fig. 5.12.

Version 2 CSE IIT, Kharagpur

main

get-good-
data

compute-
rms write-result

read-input validate-
input

rms

valid-data

data-items

data-items

valid-data

valid-data
rms

Fig. 5.12: Structure chart

Transaction Analysis

A transaction allows the user to perform some meaningful piece of work.
Transaction analysis is useful while designing transaction processing programs.
In a transaction-driven system, one of several possible paths through the DFD is
traversed depending upon the input data item. This is in contrast to a transform
centered system which is characterized by similar processing steps for each data
item. Each different way in which input data is handled is a transaction. A simple
way to identify a transaction is to check the input data. The number of bubbles on
which the input data to the DFD are incident defines the number of transactions.
However, some transaction may not require any input data. These transactions
can be identified from the experience of solving a large number of examples.

For each identified transaction, trace the input data to the output. All the
traversed bubbles belong to the transaction. These bubbles should be mapped to
the same module on the structure chart. In the structure chart, draw a root

Version 2 CSE IIT, Kharagpur

module and below this module draw each identified transaction a module. Every
transaction carries a tag, which identifies its type. Transaction analysis uses this
tag to divide the system into transaction modules and a transaction-center
module.

The structure chart for the supermarket prize scheme software is shown in fig.
5.13.

Fig. 5.13: Structure chart for the supermarket prize scheme

The following questions have been designed to test the
objectives identified for this module:

1. Identify the aim of the structured analysis activity. Which documents are
produced at the end of structured analysis activity?

Ans.: - The aim of the structured analysis activity is to transform a textual
problem description into a graphic model. Structured analysis is used to carry out
the top-down decomposition of the set of high-level functions depicted in the
problem description and to represent them graphically. During structured
analysis, functional decomposition of the system is achieved. That is, each
function that the system performs is analyzed and hierarchically decomposed
into more detailed functions.

Version 2 CSE IIT, Kharagpur

 During structured analysis, the major processing tasks (functions) of the
system are analyzed, and the data flow among those processing tasks is
represented graphically. Structured analysis technique is based on the following
essential underlying principles:

• Top-down decomposition approach.
• Divide and conquer principle. Each function is decomposed

independently.
• Graphical representation of the analysis results using Data Flow

Diagrams (DFDs).

2. Identify the necessity of constructing DFDs in the context of a good
software design.

Ans.: - Data Flow Diagram (DFD) is a very simple formalism. It is simple to
understand and use. Starting with a set of high-level functions that a system
performs, a DFD model hierarchically represents various sub-functions. The data
flow diagramming technique follows a very simple set of intuitive concepts and
rules. DFD is an elegant modeling technique that turns out to be useful not only
to represent the results of structured analysis of a software problem but also
useful for several other applications such as showing the flow of documents or
items in an organization.

3. Write down the importance of data dictionary in the context of good
software design.

Ans.: - A data dictionary plays a very important role in any software development
process because of the following reasons:

• A data dictionary provides a standard terminology for all relevant data
for use by the engineers working in a project. A consistent vocabulary
for data items is very important, since in large projects, different
engineers of the project have a tendency to use different terms to refer
to the same data, which unnecessary causes confusion.

• The data dictionary provides the analyst with a means to determine the
definition of different data structures in terms of their component
elements.

4. What does the term “balancing a DFD” mean? Give an example to
explain your answer.

Ans.: - The data that flow into or out of a bubble must match the data flow at the
next level of DFD. This is known as balancing a DFD. The concept of balancing a
DFD has been illustrated in fig. 5.2. In the level 1 of the DFD, data items d1 and
d3 flow out of the bubble 0.1 and the data item d2 flows into the bubble P1. In the

Version 2 CSE IIT, Kharagpur

next level, bubble 0.1 is decomposed. The decomposition is balanced, as d1 and
d3 flow out of the level 2 diagram and d2 flows in.

5. Write down some essential activities required to develop the DFD of a
system more systematically.

Ans.: - A DFD model of a system can be systematically developed in the
following way:

1. The SRS document is examined to determine:
• Different high-level functions that the system needs to perform.
• Data input to every high-level function.
• Data output from every high-level function.
• Interactions (data flow) among the identified high-level functions.

 These aspects of the high-level functions are then represented in a
diagrammatic form. This forms the top-level Data Flow Diagram (DFD),
usually called the DFD 0.

2. The high-level functions described in the SRS document are examined. If

there are between 3 to 7 high-level requirements in the SRS document,
then each of the high-level function can be represented in the form of a
bubble, if there are more than 7 bubbles, then some of them have to be
combined. If there are less than 3 bubbles, then some of these have to be
split.

3. Each high-level function is decomposed into its constituent sub-functions

through the following set of activities:
 Different sub-functions of the high-level function are identified.
 Data input to each of these sub-functions are identified.
 Data output from each of these sub-functions are identified.
 Interactions (data flow) among these sub-functions are identified.

 Step 3 is repeated recursively for each sub-function until a sub-function can
be represented by using a simple algorithm.

6. What do you understand by top-down decomposition in the context of
structured analysis? Explain your answer using a suitable example.

Ans.:- In the context of function-oriented design, top-down decomposition starts
with the high-level functional requirements. Then it successively decomposes
those high-level functions into more detailed functions.

7. Identify some commonly made errors while constructing of a DFD model.

Ans.:- The different types of mistakes that users usually make while constructing
the DFD model of systems are as follows:

Version 2 CSE IIT, Kharagpur

• Many beginners commit the mistake of drawing more than one bubble
in the context diagram. A context diagram should depict the system as
a single bubble.

• Many beginners have external entities appearing at all levels of DFDs.
All external entities interacting with the system should be represented
only in the context diagram. The external entities should not appear at
other levels of the DFD.

• It is a common oversight to have either too less or too many bubbles in
a DFD. Only 3 to 7 bubbles per diagram should be allowed, i.e. each
bubble should be decomposed to between 3 and 7 bubbles.

• Many beginners leave different levels of DFD unbalanced.
• A common mistake committed by many beginners while developing a

DFD model is attempting to represent control information in a DFD. It is
important to realize that a DFD is the data flow representation of a
system, and it does not represent control information. For an example
mistake of this kind: click here.

- Consider the following example. A book can be searched in the

library catalog by inputting its name. If the book is available in the
library, then the details of the book are displayed. If the book is not
listed in the catalog, then an error message is generated. While
generating the DFD model for this simple problem, many beginners
commit the mistake of drawing an arrow (as shown in fig. 5.10) to
indicate the error function is invoked after the search book. But, this
is a control information and should not be shown on the DFD.

- Another error is trying to represent when or in what order different
functions (processes) are invoked and neither does it represent the
conditions under which different functions are invoked.

- If a bubble A invokes either the bubble B or the bubble C
depending upon some conditions, we need only to represent the
data that flows between bubbles A and B or bubbles A and C and
not the conditions based on which the two modules are invoked.

• A data store should be connected only to bubbles through data arrows.
A data store cannot be connected to another data store or to an
external entity.

• All the functionalities of the system must be captured by the DFD
model. No function of the system specified in its SRS document should
be overlooked.

• Only those functions of the system specified in the SRS document
should be represented, i.e. the designer should not assume

Version 2 CSE IIT, Kharagpur

functionality of the system not specified by the SRS document and
then try to represent them in the DFD.

• Improper or unsatisfactory data dictionary.
• The data and function names must be intuitive. Some students and

even practicing engineers use symbolic data names such a, b, c, etc.
Such names hinder understanding the DFD model.

8. Identify some important shortcomings of the DFD model.

Ans.: - DFD models suffer from several shortcomings. The important
shortcomings of the DFD models are the following:

• DFDs leave ample scope to be imprecise. In the DFD model, the function
performed by a bubble is judged from its label. However, a short label may
not capture the entire functionality of a bubble. For example, a bubble
named find-book-position has only intuitive meaning and does not specify
several things, e.g. what happens when some input information are
missing or are incorrect. Further, the find-book-position bubble may not
convey anything regarding what happens when the required book is
missing.

• Control aspects are not defined by a DFD. For instance, the order in which
inputs are consumed and outputs are produced by a bubble is not
specified. A DFD model does not specify the order in which the different
bubbles are executed. Representation of such aspects is very important
for modeling real-time systems.

• The method of carrying out decomposition to arrive at the successive
levels and the ultimate level to which decomposition is carried out are
highly subjective and depend on the choice and judgment of the analyst.
Due to this reason, even for the same problem, several alternative DFD
representations are possible. Further, many times it is not possible to say
which DFD representation is superior or preferable to another one.

• The data flow diagramming technique does not provide any specific
guidance as to how exactly to decompose a given function into its sub-
functions and we have to use subjective judgment to carry out
decomposition.

9. Differentiate between a structure chart and a flow chart.

Ans.: - A structure chart differs from a flow chart in three principal ways:

• It is usually difficult to identify the different modules of the software
from its flow chart representation.

• Data interchange among different modules is not represented in a flow
chart.

Version 2 CSE IIT, Kharagpur

• Sequential ordering of tasks inherent in a flow chart is suppressed in a
structure chart.

For the following, mark all options which are true.

1. The purpose of structured analysis is

 to capture the detailed structure of the system as perceived by the
user √

 to define the structure of the solution that is suitable for
implementation in some programming language

 all of the above

2. Structured analysis technique is based on

 top-down decomposition approach √
 bottom-up approach
 divide and conquer principle √
 none of the above

3. Data Flow Diagram (DFD) is also known as a:

 structure chart
 bubble chart √
 Gantt chart
 PERT chart

4. The context diagram of a DFD is also known as

 level 0 DFD √
 level 1 DFD
 level 2 DFD
 none of the above

5. Decomposition of a bubble is also known as

 classification
 factoring √
 exploding √
 aggregation

6. Decomposition of a bubble should be carried on

 till the atomic program instructions are reached
 upto two levels
 until a level is reached at which the function of the bubble can be

described using a simple algorithm √
 none of the above

Version 2 CSE IIT, Kharagpur

7. The bubbles in a level 1 DFD represent

 exactly one high-level functional requirement described in SRS
document

 more than one high-level functional requirement
 part of a high-level functional requirement
 any of the above depending on the problem √

8. By looking at the structure chart, we can

 say whether a module calls another module just once or many times
 not say whether a module calls another module just once or many

times √
 tell the order in which the different modules are invoked
 not tell the order in which the different modules are invoked √

9. In a structure chart, a module represented by a rectangle with double

edges is called
 root module
 library module √
 primary module
 none of the above

10. A structure chart differs from a flow chart in which of the following ways

 it is always difficult to identify the different modules of the software
from its flow chart representation √

 data interchange among different modules is not presented in a flow
chart √

 sequential ordering of tasks inherent in a flow chart is suppressed in
a structure chart √

 none of the above

11. The input portion in the DFD that transform input data from physical to
logical form is called

 central transform
 efferent branch
 afferent branch √
 none of the above

12. If during structured design you observe that the data entering a DFD are

incident on different bubbles, then you would use:

 transform analysis
 transaction analysis √
 combination of transform and transaction analysis

Version 2 CSE IIT, Kharagpur

 neither transform nor transaction analysis

13. During structured design, if all the data flow into the diagram are
processed in similar ways i.e. if all the input data are incident on the same
bubble in the DFD, the one have to use:

 transform analysis √
 transaction analysis
 combination of transform and transaction analysis
 neither transform nor transaction analysis

14. Which of the following types of bubbles may belong to the central

transform ?

 input validation
 adding information to the input
 sorting input √
 filtering data √

15. During detailed design which of the following activities take place?

 the pseudo code for the different modules of the structure chart are

developed in the form of MSPECs √
 data structures are designed for the different modules of the structure

chart √
 module structure is designed
 none of the above

Mark the following as either True or False. Justify your
answer.

1. A DFD model of a system represents the functions performed by the
system and the data flow taking place among these functions.

Ans.: - True

Explanation: - A DFD in simple words, is a hierarchical graphical model
of a system that shows the different processing activities or functions that
the system performs and the data interchange among these functions.

2. A data dictionary lists the purpose of all data items and the definition of all

composite data items in terms of their component data items.

Ans.: - True.

Version 2 CSE IIT, Kharagpur

Explanation: - A data dictionary lists the purpose of all data items and the
definition of all composite data items in terms of their component data
items. For example, a data dictionary entry may represent that the data
grossPay consists of the components regularPay and overtimePay.

 grossPay = regularPay + overtimePay

3. The context diagram of a system represents it using more than one

bubble.

Ans.: - False.

Explanation: - The context diagram is the most abstract data flow
representation of a system. It represents the entire system as a single
bubble. This bubble is labeled according to the main function of the
system. The various external entities with which the system interacts and
the data flow occurring between the system and the external entities are
also represented.

4. External entities may appear at all levels of DFDs.

Ans.: - False.

Explanation: - All external entities interfacing with the system should be
represented only in the context diagram. The external entities should not
appear at other levels of the DFD.

5. A DFD captures the order in which the processes (bubbles) operate.

Ans.: - False.

Explanation: - A DFD does not capture the order in which the processes
(bubbles) operate.

6. DFDs enable a software engineer to develop the data domain and

functional domain decomposition of the system at the same time.

Ans.: - True.

Explanation: - As the DFD is refined into greater levels of detail, the
analyst performs an implicit functional decomposition. At the same time,
the DFD refinement automatically results in refinement of corresponding
data items.

7. There should be at most one control relationship between any two

modules in a properly designed structure chart.

Version 2 CSE IIT, Kharagpur

Ans.: - True.

Explanation: - It can be considered the different modules of a structure
chart to be arranged in layers or levels. The principle of abstraction does
not allow lower-level modules to be aware of the existence of the high-
level modules. However, it is possible for two higher-level modules to
invoke the same lower-level module.

Version 2 CSE IIT, Kharagpur

	Function-Oriented Software Design
	Structured Design
	Specific Instructional Objectives
	Structured Design
	Structure Chart
	Structure Chart vs. Flow Chart
	Transform Analysis
	Transaction Analysis
	questions
	mark true.
	True or False.

