

Module
16

Software Reuse

Version 2 CSE IIT, Kharagpur

Lesson
40

Reuse Approach

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain a scheme by which software reusable components can be
satisfactorily classified.

• Search an item from the domain repository.
• Explain how a reuse repository can be maintained.
• Explain what is meant by an application generator.
• Identify the advantages of using an application generator compared to

parameterized programs.
• Identify the shortcomings of application generator.
• Identify the steps that can be adopted for achieving organization-level

reuse.
• Identify the non-technical factors that inhibit an effective reuse program.

Components classification
Components need to be properly classified in order to develop an effective
indexing and storage scheme. Hardware reuse has been very successful.
Hardware components are classified using a multilevel hierarchy. At the lowest
level, the components are described in several forms: natural language
description, logic schema, timing information, etc. The higher the level at which a
component is described, the more is the ambiguity. This has motivated the
Prieto-Diaz’s classification scheme.

Prieto-Diaz’s classification scheme: Each component is best described using
a number of different characteristics or facets. For example, objects can be
classified using the following:

• actions they embody
• objects they manipulate
• data structures used
• systems they are part of, etc.

Prieto-Diaz’s faceted classification scheme requires choosing an n-tuple that best
fits a component. Faceted classification has advantages over enumerative
classification. Strictly enumerative schemes use a predefined hierarchy.
Therefore, these forces to search for an item that best fit the component to be
classified. This makes it very difficult to search a required component. Though
cross-referencing to other items can be included, the resulting network becomes
complicated.

Version 2 CSE IIT, Kharagpur

Searching
The domain repository may contain thousands of reuse items. A popular search
technique that has proved to be very effective is one that provides a web
interface to the repository. Using such a web interface, one would search an item
using an approximate automated search using key words, and then from these
results do a browsing using the links provided to look up related items. The
approximate automated search locates products that appear to fulfill some of the
specified requirements. The items located through the approximate search serve
as a starting point for browsing the repository. These serve as the starting point
for browsing the repository. The developer may follow links to other products until
a sufficiently good match is found. Browsing is done using the keyword-to-
keyword, keyword-to-product, and product-to-product links. These links help to
locate additional products and compare their detailed attributes. Finding a
satisfactorily item from the repository may require several locations of
approximate search followed by browsing. With each iteration, the developer
would get a better understanding of the available products and their differences.
However, we must remember that the items to be searched may be components,
designs, models, requirements, and even knowledge.

Repository maintenance
Repository maintenance involves entering new items, retiring those items which
are no more necessary, and modifying the search attributes of items to improve
the effectiveness of search. The software industry is always trying to implement
something that has not been quite done before. As patterns requirements
emerge, new reusable components are identified, which may ultimately become
more or less the standards. However, as technology advances, some
components which are still reusable, do not fully address the current
requirements. On the other hand, restricting reuse to highly mature components,
sacrifices one of the creates potential reuse opportunity. Making a product
available before it has been thoroughly assessed can be counter productive.
Negative experiences tend to dissolve the trust in the entire reuse framework.

Application generator
The problem-oriented languages are known as application generators.
Application generators translate specifications into application programs. The
specification is usually written using 4GL. The specification might also in a visual
form. Application generator can be applied successfully to data processing
application, user interface, and compiler development.

Version 2 CSE IIT, Kharagpur

Advantages of application generators
Application generators have significant advantages over simple parameterized
programs. The biggest of these is that the application generators can express the
variant information in an appropriate language rather than being restricted to
function parameters, named constants, or tables. The other advantages include
fewer errors, easier to maintain, substantially reduced development effort, and
the fact that one need not bother about the implementation details.

Shortcomings of application generator.
Application generators are handicapped when it is necessary to support some
new concepts or features. Application generators are less successful with the
development of applications with close interaction with hardware such as real-
time systems.

Re-use at organization level
Achieving organization-level reuse requires adoption of the following steps:

• Assessing a product’s potential for reuse

• Refining products for greater reusability

• Entering the product in the reuse repository

Assessing a product’s potential for reuse. Assessment of components reuse
potential can be obtained from an analysis of a questionnaire circulated among
the developers. The questionnaire can be devised to access a component’s
reusability. The programmers working in similar application domain can be used
to answer the questionnaire about the product’s reusability. Depending on the
answers given by the programmers, either the component be taken up for reuse
as it is, it is modified and refined before it is entered into the reuse repository, or
it is ignored. A sample questionnaire to assess a component’s reusability is the
following.

• Is the component’s functionality required for implementation of systems

in the future?
• How common is the component’s function within its domain?
• Would there be a duplication of functions within the domain if the

component is taken up?
• Is the component hardware dependent?
• Is the design of the component optimized enough?
• If the component is non-reusable, then can it be decomposed to yield

some reusable components?

Version 2 CSE IIT, Kharagpur

• Can we parameterize a non-reusable component so that it becomes
reusable?

Refining products for greater reusability. For a product to be reusable, it must
be relatively easy to adapt it to different contexts. Machine dependency must be
abstracted out or localized using data encapsulation techniques. The following
refinements may be carried out:

• Name generalization: The names should be general, rather than
being directly related to a specific application.

• Operation generalization: Operations should be added to make the
component more general. Also, operations that are too specific to an
application can be removed.

• Exception generalization: This involves checking each component to
see which exceptions it might generate. For a general component,
several types of exceptions might have to be handled.

• Handling portability problems: Programs typically make some
assumption regarding the representation of information in the
underlying machine. These assumptions are in general not true for all
machines. The programs also often need to call some operating
system functionality and these calls may not be same on all machines.
Also, programs use some function libraries, which may not be available
on all host machines. A portability solution to overcome these
problems is shown in fig. 16.1. The portability solution suggests that
rather than call the operating system and I/O procedures directly,
abstract versions of these should be called by the application program.
Also, all platform-related calls should be routed through the portability
interface. One problem with this solution is the significant overhead
incurred, which makes it inapplicable to many real-time systems and
applications requiring very fast response.

Version 2 CSE IIT, Kharagpur

Fig. 16.1: Improving reusability of a component by using a portability interface

Factors that inhibit an effective reuse program
In spite of all the shortcomings of the state-of-the-art reuse techniques, it is the
experience of several organizations that most of the factors inhibiting an effective
reuse program are non-technical. Some of these factors are the following.

• Need for commitment from the top management.
• Adequate documentation to support reuse.
• Adequate incentive to reward those who reuse. Both the people

contributing new reusable components and those reusing the existing
components should be rewarded to start a reuse program and keep it
going.

• Providing access to and information about reusable components.
Organizations are often hesitant to provide an open access to the
reuse repository for the fear of the reuse components finding a way to
their competitors.

The following questions have been designed to test the
objectives identified for this module:

1. Why is it important for an organization to undertake an effective reuse
program?

2. What are the important artifacts that can be reused?

Version 2 CSE IIT, Kharagpur

3. Why is reuse of software components much more difficult than hardware

components?

4. Do you agree with the statement: “code” is the most important reuse
artifact that can be used during software development.

5. Identify the reasons why reuse of mathematical software is so successful.

Also, identify the reasons why the reuse of software components other
than those of the mathematical software is difficult.

6. What are the issues that must be clearly understood for starting any reuse

program?

7. Devise a scheme to store software reuse artifacts. Explain how
components can be searched in that scheme.

8. What do you understand by the term reuse domain?

9. How does domain analysis increase software reusability?

10. Identify the stages through which a reuse domain progresses.

11. What do you understand by the term “faceted classification” in the

context of software reuse? How does faceted classification simplify
component search in a component store?

12. What is meant by the term “application generator”?

13. Why reuse is easier while using an application generator compared to a

component library?

14. What are the shortcomings of an application generator?

15. How can you improve reusability of the components you have identified

for reuse during program development?

Mark all options which are true.

1. Component-based software development leads to

□ high quality software product
□ reduced development cost
□ reduced development time
□ all of the above

Version 2 CSE IIT, Kharagpur

2. Which of the following kinds of artifacts associated with software

development can be reused?

□ requirements specification
□ design
□ code
□ knowledge
□ all of the above

3. The most abstract artifact associated with software development that can

be reused is

□ requirements specification
□ design
□ code
□ knowledge
□ test cases

4. For efficient access, the reusable components are needed to be stored in
which of the following systems?

□ Relational Database Management System (RDBMS)
□ Object-Oriented Database System (ODBMS)
□ both of RDBMS and ODBMS

5. Domain analysis identifies which of the following?

□ objects
□ operations
□ relationships among objects
□ all of the above

6. The actual construction of the reusable components for a domain is called

□ domain analysis
□ domain engineering
□ component creation
□ none of the above

7. Application generators can successfully be applied to

□ data processing application
□ user interface
□ compiler development
□ all of the above

Version 2 CSE IIT, Kharagpur

8. Which of the following steps is required to achieve successful

organization-level reuse?

□ assess of an item’s potential for reuse
□ refine the item for greater reusability
□ enter the product in the reuse repository
□ all of the above

Mark the following statements as either True or False. Justify
your answer.

1. We can easily create components that can be reused in different software
development applications.

2. The reuse of commonly used mathematical functions is very much easy.

3. Classification of reusable components is very much required for

component indexing and storage.

4. A component repository requires continuous maintenance.

5. Application generators translate specifications into application programs.

Version 2 CSE IIT, Kharagpur

	At the end of this lesson the student would be able to:
	Software Reuse
	Reuse Approach
	Specific Instructional Objectives
	Components classification
	Searching
	Repository maintenance
	Application generator
	Advantages of application generators
	Shortcomings of application generator.
	Re-use at organization level
	Factors that inhibit an effective reuse program
	questions
	Mark true.
	True or False.

