

Module
2

Software Life Cycle
Model

Version 2 CSE IIT, Kharagpur

Lesson
4

Prototyping and Spiral
Life Cycle Models

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Explain what a prototype is.
• Explain why and when a prototype needs to be developed during software

development.
• Identify the situations in which one would prefer to build a prototype.
• State the activities carried out during each phase of a spiral model.
• Identify circumstances under which spiral model should be used for

software development.
• Tailor a development process to a specific project.

Prototype
A prototype is a toy implementation of the system. A prototype usually exhibits
limited functional capabilities, low reliability, and inefficient performance
compared to the actual software. A prototype is usually built using several
shortcuts. The shortcuts might involve using inefficient, inaccurate, or dummy
functions. The shortcut implementation of a function, for example, may produce
the desired results by using a table look-up instead of performing the actual
computations. A prototype usually turns out to be a very crude version of the
actual system.

Need for a prototype in software development

There are several uses of a prototype. An important purpose is to illustrate the
input data formats, messages, reports, and the interactive dialogues to the
customer. This is a valuable mechanism for gaining better understanding of the
customer’s needs:

• how the screens might look like
• how the user interface would behave
• how the system would produce outputs

This is something similar to what the architectural designers of a building do; they
show a prototype of the building to their customer. The customer can evaluate
whether he likes it or not and the changes that he would need in the actual
product. A similar thing happens in the case of a software product and its
prototyping model.

Another reason for developing a prototype is that it is impossible to get the
perfect product in the first attempt. Many researchers and engineers advocate
that if you want to develop a good product you must plan to throw away the first
version. The experience gained in developing the prototype can be used to
develop the final product.

Version 2 CSE IIT, Kharagpur

A prototyping model can be used when technical solutions are unclear to the
development team. A developed prototype can help engineers to critically
examine the technical issues associated with the product development. Often,
major design decisions depend on issues like the response time of a hardware
controller, or the efficiency of a sorting algorithm, etc. In such circumstances, a
prototype may be the best or the only way to resolve the technical issues.

Examples for prototype model
A prototype of the actual product is preferred in situations such as:

• user requirements are not complete
• technical issues are not clear

Let’s see an example for each of the above category.

Example 1: User requirements are not complete

In any application software like billing in a retail shop, accounting in
a firm, etc the users of the software are not clear about the different
functionalities required. Once they are provided with the prototype
implementation, they can try to use it and find out the missing
functionalities.

Example 2: Technical issues are not clear

Suppose a project involves writing a compiler and the development
team has never written a compiler.

In such a case, the team can consider a simple language, try to

build a compiler in order to check the issues that arise in the process and
resolve them. After successfully building a small compiler (prototype), they
would extend it to one that supports a complete language.

Spiral model
The Spiral model of software development is shown in fig. 2.2. The diagrammatic
representation of this model appears like a spiral with many loops. The exact
number of loops in the spiral is not fixed. Each loop of the spiral represents a
phase of the software process. For example, the innermost loop might be
concerned with feasibility study. The next loop with requirements specification,
the next one with design, and so on. Each phase in this model is split into four
sectors (or quadrants) as shown in fig. 2.2. The following activities are carried out
during each phase of a spiral model.

Version 2 CSE IIT, Kharagpur

- First quadrant (Objective Setting)

• During the first quadrant, it is needed to identify the objectives of
the phase.

• Examine the risks associated with these objectives.

- Second Quadrant (Risk Assessment and Reduction)

• A detailed analysis is carried out for each identified project risk.
• Steps are taken to reduce the risks. For example, if there is a risk

that the requirements are inappropriate, a prototype system may be
developed.

Fig. 2.2: Spiral Model

- Third Quadrant (Development and Validation)

• Develop and validate the next level of the product after resolving
the identified risks.

- Fourth Quadrant (Review and Planning)

• Review the results achieved so far with the customer and plan the
next iteration around the spiral.

• Progressively more complete version of the software gets built with
each iteration around the spiral.

Version 2 CSE IIT, Kharagpur

Circumstances to use spiral model

The spiral model is called a meta model since it encompasses all other life cycle
models. Risk handling is inherently built into this model. The spiral model is
suitable for development of technically challenging software products that are
prone to several kinds of risks. However, this model is much more complex than
the other models – this is probably a factor deterring its use in ordinary projects.

Comparison of different life-cycle models

The classical waterfall model can be considered as the basic model and all other
life cycle models as embellishments of this model. However, the classical
waterfall model can not be used in practical development projects, since this
model supports no mechanism to handle the errors committed during any of the
phases.

This problem is overcome in the iterative waterfall model. The iterative
waterfall model is probably the most widely used software development model
evolved so far. This model is simple to understand and use. However, this model
is suitable only for well-understood problems; it is not suitable for very large
projects and for projects that are subject to many risks.

The prototyping model is suitable for projects for which either the user

requirements or the underlying technical aspects are not well understood. This
model is especially popular for development of the user-interface part of the
projects.

 The evolutionary approach is suitable for large problems which can be
decomposed into a set of modules for incremental development and delivery.
This model is also widely used for object-oriented development projects. Of
course, this model can only be used if the incremental delivery of the system is
acceptable to the customer.

The spiral model is called a meta model since it encompasses all other life

cycle models. Risk handling is inherently built into this model. The spiral model is
suitable for development of technically challenging software products that are
prone to several kinds of risks. However, this model is much more complex than
the other models – this is probably a factor deterring its use in ordinary projects.

The different software life cycle models can be compared from the

viewpoint of the customer. Initially, customer confidence in the development team
is usually high irrespective of the development model followed. During the
lengthy development process, customer confidence normally drops off, as no
working product is immediately visible. Developers answer customer queries
using technical slang, and delays are announced. This gives rise to customer

Version 2 CSE IIT, Kharagpur

resentment. On the other hand, an evolutionary approach lets the customer
experiment with a working product much earlier than the monolithic approaches.
Another important advantage of the incremental model is that it reduces the
customer’s trauma of getting used to an entirely new system. The gradual
introduction of the product via incremental phases provides time to the customer
to adjust to the new product. Also, from the customer’s financial viewpoint,
incremental development does not require a large upfront capital outlay. The
customer can order the incremental versions as and when he can afford them.

The following questions have been designed to test the
objectives identified for this module:

1. Identify the definite stages through which a software product undergoes
during its lifetime.

Ans.: - The definite stages through which a software product undergoes during

its lifetime are as follows:

 Feasibility Study
 Requirements Analysis and Specification
 Design
 Coding and Unit Testing
 Integration and System Testing, and
 Maintenance

2. Explain the problems that might be faced by an organization if it does
not follow any software life cycle model.

Ans.: - The development team must identify a suitable life cycle model for the

particular project and then adhere to it. Without using of a particular life
cycle model the development of a software product would not be in a
systematic and disciplined manner. When a software product is being
developed by a team there must be a clear understanding among team
members about when and what to do. Otherwise it would lead to chaos
and project failure. This problem can be illustrated by using an example.
Suppose a software development problem is divided into several parts
and the parts are assigned to the team members. From then on,
suppose the team members are allowed the freedom to develop the
parts assigned to them in whatever way they like. It is possible that one
member might start writing the code for his part, another might decide to
prepare the test documents first, and some other engineer might begin
with the design phase of the parts assigned to him. This would be one of
the perfect recipes for project failure.

Version 2 CSE IIT, Kharagpur

A software life cycle model defines entry and exit criteria for every
phase. A phase can start only if its phase-entry criteria have been
satisfied. So without software life cycle model the entry and exit criteria
for a phase cannot be recognized. Without software life cycle models
(such as classical waterfall model, iterative waterfall model, prototyping
model, evolutionary model, spiral model etc.) it becomes difficult for
software project managers to monitor the progress of the project.

3. Identify six different phases of a classical waterfall model.

Ans.: - The classical waterfall model is intuitively the most obvious way to

develop software. Though the classical waterfall model is elegant and
intuitively obvious, it is not a practical model in the sense that it can not
be used in actual software development projects. Thus, this model can
be considered to be a theoretical way of developing software. But all
other life cycle models are essentially derived from the classical waterfall
model. So, in order to be able to appreciate other life cycle models it is
necessary to learn the classical waterfall model.

 Classical waterfall model divides the life cycle into the following
phases as shown in fig. 2.1(Classical Waterfall Model):

 Feasibility Study

Requirements Analysis
& Specification

Design

Coding & Unit
Testing

Integration &
System Testing

Maintenance

 Feasibility Study
 Requirements Analysis and Specification
 Design
 Coding and Unit Testing
 Integration and System Testing, and
 Maintenance

Version 2 CSE IIT, Kharagpur

4. Identify two basic roles of a system analyst.

Ans.:- For performing requirements analysis activity system analyst collects all
relevant data regarding the product to be developed from the users of
the product and from the customer through interviews and discussions.
For example, to perform the requirements analysis of a business
accounting software required by an organization, the analyst might
interview all the accountants of the organization to ascertain their
requirements. The data collected from such a group of users usually
contain several contradictions and ambiguities, since each user typically
has only a partial and incomplete view of the system. Therefore a
system analyst identifies all ambiguities and contradictions in the
requirements and resolves them through further discussions with the
customer. After all ambiguities, inconsistencies, and incompleteness
have been resolved and all the requirements properly understood, the
system analyst starts requirements specification activity. During this
activity, the user requirements are systematically organized into a
Software Requirements Specification (SRS) document.

5. Differentiate between structured analysis and structured design.

Ans.: - Traditional design consists of two different activities; first a structured
analysis of the requirements specification is carried out where the
detailed structure of the problem is examined. This is followed by a
structured design activity. During structured design, the results of
structured analysis are transformed into the software design.

6. Identify at least three activities undertaken in an object-oriented software
design approach.

Ans.: - In this technique, various objects that occur in the problem domain and
the solution domain are first identified, and the different relationships that
exist among these objects are identified. The object structure is further
refined to obtain the detailed design.

7. State why it is a good idea to test a module in isolation from other
modules.

Ans.: - During unit testing, each module is unit tested to determine the correct

working of all the individual modules. It involves testing each module in
isolation as this is the most efficient way to debug the errors identified at
this stage. So it is always a good idea to test a module in isolation from
other modules.

Version 2 CSE IIT, Kharagpur

8. Identify why different modules making up a software product are almost
never integrated in one shot.

Ans.: - Integration of different modules is undertaken once they have been

coded and unit tested. During the integration and system testing phase,
the modules are integrated in a planned manner. The different modules
making up a software product are almost never integrated in one shot.
Integration is normally carried out incrementally over a number of steps.
During each integration step, the partially integrated system is tested
and a set of previously planned modules are added to it. Finally, when all
the modules have been successfully integrated and tested, system
testing is carried out.

9. Mention at least two reasons as to why classical waterfall model can be
considered impractical and cannot be used in real projects.

Ans.: - The classical waterfall model is an idealistic one since it assumes that no

development error is ever committed by the engineers during any of the
life cycle phases. However, in practical development environments, the
engineers do commit a large number of errors in almost every phase of
the life cycle. The source of the defects can be many: oversight, wrong
assumptions, use of inappropriate technology, communication gap
among the project engineers, etc. These defects usually get detected
much later in the life cycle. For example, a design defect might go
unnoticed till we reach the coding or testing phase. Once a defect is
detected, the engineers need to go back to the phase where the defect
had occurred and redo some of the work done during that phase and the
subsequent phases to correct the defect and its effect on the later
phases. Therefore, in any practical software development work, it is not
possible to strictly follow the classical waterfall model.

10. Explain what is a software prototype.

Ans.: - A prototype is a toy implementation of the system. A prototype usually

exhibits limited functional capabilities, low reliability, and inefficient
performance compared to the actual software. A prototype is usually
built using several shortcuts. The shortcuts might involve using
inefficient, inaccurate, or dummy functions. The shortcut implementation
of a function, for example, may produce the desired results by using a
table look-up instead of performing the actual computations. A prototype
usually turns out to be a very crude version of the actual system.

11. Identify three reasons for the necessity of developing a prototype
during software development.

Version 2 CSE IIT, Kharagpur

Ans.: - There are several uses of a prototype. An important purpose is to
illustrate the input data formats, messages, reports, and the interactive
dialogues to the customer. This is a valuable mechanism for gaining
better understanding of the customer’s needs:

 how screens might look like
 how the user interface would behave
 how the system would produce outputs

This is something similar to what the architectural designers of a
building do; they show a prototype of the building to their customer. The
customer can evaluate whether he likes it or not and the changes that he
would need in the actual product. A similar thing happens in the case of
a software product and its prototyping model.

Another reason for developing a prototype is that it is impossible to get
the perfect product in the first attempt. Many researchers and engineers
advocate that if you want to develop a good product you must plan to
throw away the first version. The experience gained in developing the
prototype can be used to develop the final product.

12. Identify when does a prototype need to develop.

Ans.: - A prototype can be developed when technical solutions are unclear to
the development team. A developed prototype can help engineers to
critically examine the technical issues associated with the product
development. Often, major design decisions depend on issues like the
response time of a hardware controller, or the efficiency of a sorting
algorithm, etc. In such circumstances, a prototype may be the best or the
only way to resolve the technical issues.

13. Identify at least two activities carried out during each phase of a spiral
model.

Ans.: - The Spiral model of software development is shown in fig. 2.2. The

diagrammatic representation of this model appears like a spiral with
many loops. The exact number of loops in the spiral is not fixed. Each
loop of the spiral represents a phase of the software process. For
example, the innermost loop might be concerned with feasibility study.
The next loop with requirements specification, the next one with design,
and so on. Each phase in this model is split into four sectors (or
quadrants) as shown in fig. 2.2. The following activities are carried out
during each phase of a spiral model.

Version 2 CSE IIT, Kharagpur

• First quadrant (Objective Setting)

 During the first quadrant, it is needed to identify the objectives of
the phase.

 Examine the risks associated with these objectives.

• Second Quadrant (Risk Assessment and Reduction)

 A detailed analysis is carried out for each identified project risk.
 Steps are taken to reduce the risks. For example, if there is a

risk that the requirements are inappropriate, a prototype system
may be developed.

• Third Quadrant (Development and Validation)

 Develop and validate the next level of the product after resolving
the identified risks.

• Fourth Quadrant (Review and Planning)

 Review the results achieved so far with the customer and plan
the next iteration around the spiral.

 Progressively more complete version of the software gets built
with each iteration around the spiral.

14. Write down the two advantages of using spiral model.

Ans.: - The spiral model is called a meta model since it encompasses all other

life cycle models. Risk handling is inherently built into this model. The
spiral model is suitable for development of technically challenging
software products that are prone to several kinds of risks. However, this
model is much more complex than the other models – this is probably a
factor deterring its use in ordinary projects.

For the following, mark all options which are true.

1. In a classical waterfall model, which phase precedes the design phase ?
□ Coding and unit testing
□ Maintenance
□ Requirements analysis and specification √
□ Feasibility study

Version 2 CSE IIT, Kharagpur

2. Among development phases of software life cycle, which phase typically
consumes the maximum effort?
□ Requirements analysis and specification
□ Design
□ Coding
□ Testing √

3. Among all the phases of software life cycle, which phase consumes the

maximum effort?
□ Design
□ Maintenance √
□ Testing
□ Coding

4. In the classical waterfall model during which phase is the Software

Requirement Specification (SRS) document produced?
□ Design
□ Maintenance
□ Requirements analysis and specification √
□ Coding

5. Which phase is the last development phase of a classical waterfall

software life cycle?
□ Design
□ Maintenance
□ Testing √
□ Coding

6. Which development phase in classical waterfall life cycle immediately

follows coding phase?
□ Design
□ Maintenance
□ Testing √
□ Requirement analysis and specification

7. Out of the following life cycle models which one can be considered as the

most general model, and the others as specialization of it?
□ Classical Waterfall Model √
□ Iterative Waterfall Model
□ Prototyping Model
□ Spiral Model

Version 2 CSE IIT, Kharagpur

Mark the following as either True or False. Justify your
answer.

1. Evolutionary life cycle model is ideally suited for development of very
small software products typically requiring a few months of development
effort.

Ans.: - False.

Explanation: - The Evolutionary model is very useful for very large
problems where it becomes easier to find modules for incremental
implementation.

2. Prototyping life cycle model is the most suitable one for undertaking a

software development project susceptible to schedule slippage.

Ans.: - False.

Explanation: - The prototype model is suitable for projects whose user
requirements or the underlying technical aspects are not well understood.

3. Spiral life cycle model is not suitable for products that are vulnerable to

large number of risks.

Ans.: - False.

Explanation: - The spiral model is suitable for development of technically
challenging software products that are prone to several kinds of risks.

Version 2 CSE IIT, Kharagpur

	Software Life Cycle Model
	Prototyping and Spiral Life Cycle Models
	Specific Instructional Objectives
	Prototype
	Need for a prototype in software development
	Examples for prototype model
	Spiral model
	Circumstances to use spiral model
	Comparison of different life-cycle models
	questions
	mark true.
	True or False

