

Module
16

Software Reuse

Version 2 CSE IIT, Kharagpur

Lesson
39

Basic Ideas

on Software Reuse

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain the advantages of software reuse.
• Identify the artifacts that can be reused during software development.
• Explain the pros and cons of knowledge reused.
• Explain why reuse of commonly used mathematical functions is easy to

achieve.
• Identify the basic issues that must be clearly addressed for starting any

reuse program.
• Explain what is meant by domain analysis.

Advantages of software reuse

Software products are expensive. Software project managers are worried about
the high cost of software development and are desperately look for ways to cut
development cost. A possible way to reduce development cost is to reuse parts
from previously developed software. In addition to reduced development cost and
time, reuse also leads to higher quality of the developed products since the
reusable components are ensured to have high quality.

Artifacts that can be reused

It is important to know about the kinds of the artifacts associated with software
development that can be reused. Almost all artifacts associated with software
development, including project plan and test plan can be reused. However, the
prominent items that can be effectively reused are:

• Requirements specification

• Design

• Code

• Test cases

• Knowledge

Pros and cons of knowledge reuse
Knowledge is the most abstract development artifact that can be reused. Out of
all the reuse artifacts i.e. requirements specification, design, code, test cases,
reuse of knowledge occurs automatically without any conscious effort in this
direction. However, two major difficulties with unplanned reuse of knowledge are
that a developer experienced in one type of software product might be included
in a team developing a different type of software. Also, it is difficult to remember

Version 2 CSE IIT, Kharagpur

the details of the potentially reusable development knowledge. A planned reuse
of knowledge can increase the effectiveness of reuse. For this, the reusable
knowledge should be systematically extracted and documented. But, it is usually
very difficult to extract and document reusable knowledge.

Easiness of reuse of mathematical functions
The routines of mathematical libraries are being reused very successfully by
almost every programmer. No one in his right mind would think of writing a
routine to compute sine or cosine. Reuse of commonly used mathematical
functions is easy. Several interesting aspects emerge. Cosine means the same
to all. Everyone has clear ideas about what kind of argument should cosine take,
the type of processing to be carried out and the results returned. Secondly,
mathematical libraries have a small interface. For example, cosine requires only
one parameter. Also, the data formats of the parameters are standardized.

Basic issues in any reuse program
The following are some of the basic issues that must be clearly understood for
starting any reuse program.

• Component creation
• Component indexing and storing
• Component search
• Component understanding
• Component adaptation
• Repository maintenance

Component creation. For component creation, the reusable components have
to be first identified. Selection of the right kind of components having potential for
reuse is important. Domain analysis is a promising technique which can be used
to create reusable components.

Component indexing and storing. Indexing requires classification of the
reusable components so that they can be easily searched when looking for a
component for reuse. The components need to be stored in a Relational
Database Management System (RDBMS) or an Object-Oriented Database
System (ODBMS) for efficient access when the number of components becomes
large.

Component searching. The programmers need to search for right components
matching their requirements in a database of components. To be able to search
components efficiently, the programmers require a proper method to describe the
components that they are looking for.

Version 2 CSE IIT, Kharagpur

Component understanding. The programmers need a precise and sufficiently
complete understanding of what the component does to be able to decide
whether they can reuse the component. To facilitate understanding, the
components should be well documented and should do something simple.

Component adaptation. Often, the components may need adaptation before
they can be reused, since a selected component may not exactly fit the problem
at hand. However, tinkering with the code is also not a satisfactory solution
because this is very likely to be a source of bugs.

Repository maintenance. A component repository once is created requires
continuous maintenance. New components, as and when created have to be
entered into the repository. The faulty components have to be tracked. Further,
when new applications emerge, the older applications become obsolete. In this
case, the obsolete components might have to be removed from the repository.

Domain analysis
The aim of domain analysis is to identify the reusable components for a problem
domain.

Reuse domain. A reuse domain is a technically related set of application areas.
A body of information is considered to be a problem domain for reuse, if a deep
and comprehensive relationship exists among the information items as
categorized by patterns of similarity among the development components of the
software product. A reuse domain is shared understanding of some community,
characterized by concepts, techniques, and terminologies that show some
coherence. Examples of domains are accounting software domain, banking
software domain, business software domain, manufacturing automation software
domain, telecommunication software domain, etc.

 Just to become familiar with the vocabulary of a domain requires months
of interaction with the experts. Often, one needs to be familiar with a network of
related domains for successfully carrying out domain analysis. Domain analysis
identifies the objects, operations, and the relationships among them. For
example, consider the airline reservation system, the reusable objects can be
seats, flights, airports, crew, meal orders, etc. The reusable operations can be
scheduling a flight, reserving a seat, assigning crew to flights, etc. The domain
analysis generalizes the application domain. A domain model transcends specific
applications. The common characteristics or the similarities between systems are
generalized.

 During domain analysis, a specific community of software developers
gets together to discuss community-wide-solutions. Analysis of the application
domain is required to identify the reusable components. The actual construction
of reusable components for a domain is called domain engineering.

Version 2 CSE IIT, Kharagpur

Evolution of a reuse domain. The ultimate result of domain analysis is
development of problem-oriented languages. The problem-oriented languages
are also known as application generators. These application generators, once
developed form application development standards. The domains slowly
develop. As a domain develops, it is distinguishable the various stages it
undergoes:
Stage 1: There is no clear and consistent set of notations. Obviously, no
reusable components are available. All software is written from scratch.

Stage 2: Here, only experience from similar projects is used in a development
effort. This means that there is only knowledge reuse.

Stage 3: At this stage, the domain is ripe for reuse. The set of concepts are
stabilized and the notations standardized. Standard solutions to standard
problems are available. There is both knowledge and component reuse.

Stage 4: The domain has been fully explored. The software development for the
domain can be largely automated. Programs are not written in the traditional
sense any more. Programs are written using a domain specific language, which
is also known as an application generator.

Version 2 CSE IIT, Kharagpur

	Software Reuse
	Basic Ideason Software Reuse
	Specific Instructional Objectives
	Advantages of software reuse
	Artifacts that can be reused
	Pros and cons of knowledge reuse
	Easiness of reuse of mathematical functions
	Basic issues in any reuse program
	Domain analysis

