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Specific Instructional Objectives 
At the end of this lesson the student will be able to: 
 

• Explain what a formal technique is. 
• Explain what a formal specification language is. 
• Differentiate between model-oriented and property-oriented approaches in 

the context of requirements specification. 
• Explain the operational semantics of a formal method. 
• Identify the merits of formal requirements specification. 
• Identify the limitations of formal requirements specification. 
• Develop axiomatic specification of simple problems. 

 
Formal technique 
A formal technique is a mathematical method to specify a hardware and/or 
software system, verify whether a specification is realizable, verify that an 
implementation satisfies its specification, prove properties of a system without 
necessarily running the system, etc. The mathematical basis of a formal method 
is provided by the specification language.  
 
Formal specification language 
A formal specification language consists of two sets syn and sem, and a relation 
sat between them. The set syn is called the syntactic domain, the set sem is 
called the semantic domain, and the relation sat is called the satisfaction relation. 
For a given specification syn, and model of the system sem, if sat (syn, sem), as 
shown in fig. 3.6, then syn is said to be the specification of sem, and sem is said 
to be the specificand of syn. 

 

 
Fig. 3.6: sat (syn, sem)  

 
 

Syntactic Domains 
 
The syntactic domain of a formal specification language consists of an alphabet 
of symbols and set of formation rules to construct well-formed formulas from the 
alphabet. The well-formed formulas are used to specify a system.  
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Semantic Domains 
 
Formal techniques can have considerably different semantic domains. Abstract 
data type specification languages are used to specify algebras, theories, and 
programs. Programming languages are used to specify functions from input to 
output values. Concurrent and distributed system specification languages are 
used to specify state sequences, event sequences, state-transition sequences, 
synchronization trees, partial orders, state machines, etc. 
 
Satisfaction Relation 
 
Given the model of a system, it is important to determine whether an element of 
the semantic domain satisfies the specifications. This satisfaction is determined 
by using a homomorphism known as semantic abstraction function. The 
semantic abstraction function maps the elements of the semantic domain into 
equivalent classes. There can be different specifications describing different 
aspects of a system model, possibly using different specification languages. 
Some of these specifications describe the system’s behavior and the others 
describe the system’s structure. Consequently, two broad classes of semantic 
abstraction functions are defined: those that preserve a system’s behavior and 
those that preserve a system’s structure. 

   
 

Model-oriented vs. property-oriented approaches 

Formal methods are usually classified into two broad categories – model – 
oriented and property – oriented approaches. In a model-oriented style, one 
defines a system’s behavior directly by constructing a model of the system in 
terms of mathematical structures such as tuples, relations, functions, sets, 
sequences, etc.  

              In the property-oriented style, the system's behavior is defined indirectly 
by stating its properties, usually in the form of a set of axioms that the system 
must satisfy.  

Example:- 

Let us consider a simple producer/consumer example. In a property-
oriented style, it is probably started by listing the properties of the system 
like: the consumer can start consuming only after the producer has 
produced an item, the producer starts to produce an item only after the 
consumer has consumed the last item, etc. A good example of a 
producer-consumer problem is CPU-Printer coordination. After processing 
of data, CPU outputs characters to the buffer for printing. Printer, on the 
other hand, reads characters from the buffer and prints them. The CPU is 
constrained by the capacity of the buffer, whereas the printer is 
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constrained by an empty buffer. Examples of property-oriented 
specification styles are axiomatic specification and algebraic specification.  

In a model-oriented approach, we start by defining the basic operations, p 
(produce) and c (consume). Then we can state that S1 + p → S, S + c → S1. 
Thus the model-oriented approaches essentially specify a program by writing 
another, presumably simpler program. Examples of popular model-oriented 
specification techniques are Z, CSP, CCS, etc.    

Model-oriented approaches are more suited to use in later phases of life cycle 
because here even minor changes to a specification may lead to drastic changes 
to the entire specification. They do not support logical conjunctions (AND) and 
disjunctions (OR).  

Property-oriented approaches are suitable for requirements specification 
because they can be easily changed. They specify a system as a conjunction of 
axioms and you can easily replace one axiom with another one. 

Operational semantics 
Informally, the operational semantics of a formal method is the way computations 
are represented. There are different types of operational semantics according to 
what is meant by a single run of the system and how the runs are grouped 
together to describe the behavior of the system. Some commonly used 
operational semantics are as follows: 

 
Linear Semantics:- 
 
In this approach, a run of a system is described by a sequence (possibly infinite) 
of events or states. The concurrent activities of the system are represented by 
non-deterministic interleavings of the automatic actions. For example, a 
concurrent activity a║b is represented by the set of sequential activities a;b and 
b;a. This is simple but rather unnatural representation of concurrency. The 
behavior of a system in this model consists of the set of all its runs. To make this 
model realistic, usually justice and fairness restrictions are imposed on 
computations to exclude the unwanted interleavings. 
 
Branching Semantics:- 
 
In this approach, the behavior of a system is represented by a directed graph as 
shown in the fig. 3.7. The nodes of the graph represent the possible states in the 
evolution of a system. The descendants of each node of the graph represent the 
states which can be generated by any of the atomic actions enabled at that state. 
An example involving the transactions in an ATM is shown in fig. 3.7. Although 
this semantic model distinguishes the branching points in a computation, still it 
represents concurrency by interleaving. 
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Fig. 3.7: Branching semantics 
 

Maximally parallel semantics:-  

In this approach, all the concurrent actions enabled at any state are assumed to 
be taken together. This is again not a natural model of concurrency since it 
implicitly assumes the availability of all the required computational resources. 

Partial order semantics:-  

Under this view, the semantics ascribed to a system is a structure of states 
satisfying a partial order relation among the states (events). The partial order 
represents a precedence ordering among events, and constraints some events to 
occur only after some other events have occurred; while the occurrence of other 
events (called concurrent events) is considered to be incomparable. This fact 
identifies concurrency as a phenomenon not translatable to any interleaved 
representation.  

For example, figure (fig. 3.8) shows the semantics implied by a simplified 
beverage selling machine. From the figure, we can infer that beverage is 
dispensed only if an inserted coin is accepted by the machine (precedence). 
Similarly, preparation of ingredients and milk are done simultaneously 
(concurrence). Hence, node Ingredient can be compared with node Brew, but 
neither can it be compared with node Hot/Cold nor with node Accepted. 

 

 

ED

A

C

A - Insert ATM Card 
B - Withdraw Cash 
C - Print Mini-Statement 
D - Savings Account 
E - Current Account 

B
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Fig. 3.8: Partial order semantics implied by a beverage selling machine 
 

Merits of formal requirements specification 
Formal methods possess several positive features, some of which are discussed 
below. 

• Formal specifications encourage rigour. Often, the very process of 
construction of a rigorous specification is more important than the formal 
specification itself. The construction of a rigorous specification clarifies 
several aspects of system behavior that are not obvious in an informal 
specification.  

• Formal methods usually have a well-founded mathematical basis. Thus, 
formal specifications are not only more precise, but also mathematically 
sound and can be used to reason about the properties of a specification 
and to rigorously prove that an implementation satisfies its specifications. 

• Formal methods have well-defined semantics. Therefore, ambiguity in 
specifications is automatically avoided when one formally specifies a 
system. 

• The mathematical basis of the formal methods facilitates automating the 
analysis of specifications. For example, a tableau-based technique has 
been used to automatically check the consistency of specifications. Also, 
automatic theorem proving techniques can be used to verify that an 
implementation satisfies its specifications. The possibility of automatic 
verification is one of the most important advantages of formal methods. 

• Formal specifications can be executed to obtain immediate feedback on 
the features of the specified system. This concept of executable 
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specifications is related to rapid prototyping. Informally, a prototype is a 
“toy” working model of a system that can provide immediate feedback on 
the behavior of the specified system, and is especially useful in checking 
the completeness of specifications. 

Limitations of formal requirements specification 
It is clear that formal methods provide mathematically sound frameworks within 
large, complex systems can be specified, developed and verified in a systematic 
rather than in an ad hoc manner. However, formal methods suffer from several 
shortcomings, some of which are the following: 

• Formal methods are difficult to learn and use. 
• The basic incompleteness results of first-order logic suggest that it is 

impossible to check absolute correctness of systems using theorem 
proving techniques. 

• Formal techniques are not able to handle complex problems. This 
shortcoming results from the fact that, even moderately complicated 
problems blow up the complexity of formal specification and their analysis. 
Also, a large unstructured set of mathematical formulas is difficult to 
comprehend. 

 
Axiomatic specification 
In axiomatic specification of a system, first-order logic is used to write the pre and 
post-conditions to specify the operations of the system in the form of axioms. The 
pre-conditions basically capture the conditions that must be satisfied before an 
operation can successfully be invoked. In essence, the pre-conditions capture 
the requirements on the input parameters of a function. The post-conditions are 
the conditions that must be satisfied when a function completes execution for the 
function to be considered to have executed successfully. Thus, the post-
conditions are essentially constraints on the results produced for the function 
execution to be considered successful. 

The following are the sequence of steps that can be followed to systematically 
develop the axiomatic specifications of a function: 

• Establish the range of input values over which the function should behave 
correctly. Also find out other constraints on the input parameters and write 
it in the form of a predicate. 

• Specify a predicate defining the conditions which must hold on the output 
of the function if it behaved properly. 
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• Establish the changes made to the function’s input parameters after 
execution of the function. Pure mathematical functions do not change their 
input and therefore this type of assertion is not necessary for pure 
functions.  

• Combine all of the above into pre and post conditions of the function. 

Example1: - 

Specify the pre- and post-conditions of a function that takes a real number 
as argument and returns half the input value if the input is less than or 
equal to 100, or else returns double the value. 

f (x : real) : real 

pre : x ∈ R  

post : {(x≤100) ∧ (f(x) = x/2)} ∨ {(x>100) ∧ (f(x) = 2∗x)} 
 

Example2: - 

Axiomatically specify a function named search which takes an integer 
array and an integer key value as its arguments and returns the index in 
the array where the key value is present. 

search(X : IntArray, key : Integer) : Integer 

pre : ∃ i ∈ [Xfirst….Xlast], X[i] = key 

post : {(X′[search(X, key)] = key) ∧ (X = X′)} 
 
Here the convention followed is: If a function changes any of its input parameters 
and if that parameter is named X, then it is referred to as X′ after the function 
completes execution.mes faster. 
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