

Module
14

Software Maintenance

Version 2 CSE IIT, Kharagpur

Lesson
36

Characteristics of
Software Maintenance

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain the necessity of software maintenance.
• Identify the types of software maintenance.
• Identify the disadvantages associated with software maintenance.
• Explain what is meant by software reverse engineering.
• What are legacy software products? Identify the problems in their

maintenance.
• Identify the factors upon which software maintenance activities depend.
• Identify the process models for software maintenance.
• Explain what is meant by software reengineering.
• Estimate the approximate maintenance cost of a software product.

Necessity of software maintenance
Software maintenance is becoming an important activity of a large number of
software organizations. This is no surprise, given the rate of hardware
obsolescence, the immortality of a software product per se, and the demand of
the user community to see the existing software products run on newer
platforms, run in newer environments, and/or with enhanced features. When the
hardware platform is changed, and a software product performs some low-level
functions, maintenance is necessary. Also, whenever the support environment of
a software product changes, the software product requires rework to cope up
with the newer interface. For instance, a software product may need to be
maintained when the operating system changes. Thus, every software product
continues to evolve after its development through maintenance efforts. Therefore
it can be stated that software maintenance is needed to correct errors, enhance
features, port the software to new platforms, etc.

Types of software maintenance
There are basically three types of software maintenance. These are:

• Corrective: Corrective maintenance of a software product is necessary to
rectify the bugs observed while the system is in use.

• Adaptive: A software product might need maintenance when the

customers need the product to run on new platforms, on new operating
systems, or when they need the product to interface with new hardware or
software.

• Perfective: A software product needs maintenance to support the new

features that users want it to support, to change different functionalities of

Version 2 CSE IIT, Kharagpur

the system according to customer demands, or to enhance the
performance of the system.

Problems associated with software maintenance
Software maintenance work typically is much more expensive than what it should
be and takes more time than required. In software organizations, maintenance
work is mostly carried out using ad hoc techniques. The primary reason being
that software maintenance is one of the most neglected areas of software
engineering. Even though software maintenance is fast becoming an important
area of work for many companies as the software products of yester years age,
still software maintenance is mostly being carried out as fire-fighting operations,
rather than through systematic and planned activities.

 Software maintenance has a very poor image in industry. Therefore, an
organization often cannot employ bright engineers to carry out maintenance
work. Even though maintenance suffers from a poor image, the work involved is
often more challenging than development work. During maintenance it is
necessary to thoroughly understand someone else’s work and then carry out the
required modifications and extensions.

 Another problem associated with maintenance work is that the majority of
software products needing maintenance are legacy products.

Software reverse engineering
Software reverse engineering is the process of recovering the design and the
requirements specification of a product from an analysis of its code. The purpose
of reverse engineering is to facilitate maintenance work by improving the
understandability of a system and to produce the necessary documents for a
legacy system. Reverse engineering is becoming important, since legacy
software products lack proper documentation, and are highly unstructured. Even
well-designed products become legacy software as their structure degrades
through a series of maintenance efforts.

 The first stage of reverse engineering usually focuses on carrying out
cosmetic changes to the code to improve its readability, structure, and
understandability, without changing of its functionalities. A process model for
reverse engineering has been shown in fig. 14.1. A program can be reformatted
using any of the several available prettyprinter programs which layout the
program neatly. Many legacy software products with complex control structure
and unthoughtful variable names are difficult to comprehend. Assigning
meaningful variable names is important because meaningful variable names are
the most helpful thing in code documentation. All variables, data structures, and
functions should be assigned meaningful names wherever possible. Complex

Version 2 CSE IIT, Kharagpur

nested conditionals in the program can be replaced by simpler conditional
statements or whenever appropriate by case statements.

Fig. 14.1: A process model for reverse engineering

After the cosmetic changes have been carried out on a legacy software, the
process of extracting the code, design, and the requirements specification can
begin. These activities are schematically shown in fig. 14.2. In order to extract
the design, a full understanding of the code is needed. Some automatic tools can
be used to derive the data flow and control flow diagram from the code. The
structure chart (module invocation sequence and data interchange among
modules) should also be extracted. The SRS document can be written once the
full code has been thoroughly understood and the design extracted.

Version 2 CSE IIT, Kharagpur

Fig. 14.2: Cosmetic changes carried out before reverse engineering

Legacy software products
It is prudent to define a legacy system as any software system that is hard to
maintain. The typical problems associated with legacy systems are poor
documentation, unstructured (spaghetti code with ugly control structure), and
lack of personnel knowledgeable in the product. Many of the legacy systems
were developed long time back. But, it is possible that a recently developed
system having poor design and documentation can be considered to be a legacy
system.

Factors on which software maintenance activities depend
The activities involved in a software maintenance project are not unique and
depend on several factors such as:

• the extent of modification to the product required
• the resources available to the maintenance team
• the conditions of the existing product (e.g., how structured it is, how

well documented it is, etc.)
• the expected project risks, etc.

When the changes needed to a software product are minor and straightforward,
the code can be directly modified and the changes appropriately reflected in all

Version 2 CSE IIT, Kharagpur

the documents. But more elaborate activities are required when the required
changes are not so trivial. Usually, for complex maintenance projects for legacy
systems, the software process can be represented by a reverse engineering
cycle followed by a forward engineering cycle with an emphasis on as much
reuse as possible from the existing code and other documents.

Software maintenance process models

Two broad categories of process models for software maintenance can be
proposed. The first model is preferred for projects involving small reworks where
the code is changed directly and the changes are reflected in the relevant
documents later. This maintenance process is graphically presented in fig. 14.3.
In this approach, the project starts by gathering the requirements for changes.
The requirements are next analyzed to formulate the strategies to be adopted for
code change. At this stage, the association of at least a few members of the
original development team goes a long way in reducing the cycle team,
especially for projects involving unstructured and inadequately documented
code. The availability of a working old system to the maintenance engineers at
the maintenance site greatly facilitates the task of the maintenance team as they
get a good insight into the working of the old system and also can compare the
working of their modified system with the old system. Also, debugging of the
reengineered system becomes easier as the program traces of both the systems
can be compared to localize the bugs.

Version 2 CSE IIT, Kharagpur

Fig. 14.3: Maintenance process model 1

The second process model for software maintenance is preferred for projects
where the amount of rework required is significant. This approach can be
represented by a reverse engineering cycle followed by a forward engineering
cycle. Such an approach is also known as software reengineering. This process
model is depicted in fig. 14.4. The reverse engineering cycle is required for
legacy products. During the reverse engineering, the old code is analyzed
(abstracted) to extract the module specifications. The module specifications are
then analyzed to produce the design. The design is analyzed (abstracted) to
produce the original requirements specification. The change requests are then
applied to this requirements specification to arrive at the new requirements
specification. At the design, module specification, and coding a substantial reuse
is made from the reverse engineered products. An important advantage of this
approach is that it produces a more structured design compared to what the
original product had, produces good documentation, and very often results in
increased efficiency. The efficiency improvements are brought about by a more
efficient design. However, this approach is more costly than the first approach.
An empirical study indicates that process 1 is preferable when the amount of

Version 2 CSE IIT, Kharagpur

rework is no more than 15% (as shown in fig. 14.5). Besides the amount of
rework, several other factors might affect the decision regarding using process
model 1 over process model 2:

• Reengineering might be preferable for products which exhibit a high
failure rate.

• Reengineering might also be preferable for legacy products having
poor design and code structure.

Fig. 14.4: Maintenance process model 2

Version 2 CSE IIT, Kharagpur

Fig. 14.5: Empirical estimation of maintenance cost versus percentage rework

Software reengineering
Software reengineering is a combination of two consecutive processes i.e.
software reverse engineering and software forward engineering as shown in the
fig. 14.4.

Estimation of approximate maintenance cost
It is well known that maintenance efforts require about 60% of the total life cycle
cost for a typical software product. However, maintenance costs vary widely from
one application domain to another. For embedded systems, the maintenance
cost can be as much as 2 to 4 times the development cost.

 Boehm [1981] proposed a formula for estimating maintenance costs as
part of his COCOMO cost estimation model. Boehm’s maintenance cost
estimation is made in terms of a quantity called the Annual Change Traffic (ACT).
Boehm defined ACT as the fraction of a software product’s source instructions
which undergo change during a typical year either through addition or deletion.

KLOC KLOCadded deletedACT

KLOCtotal

+
=

Version 2 CSE IIT, Kharagpur

where, KLOCadded is the total kilo lines of source code added during

maintenance. KLOCdeleted is the total KLOC deleted during maintenance.

Thus, the code that is changed, should be counted in both the code added and
the code deleted. The annual change traffic (ACT) is multiplied with the total
development cost to arrive at the maintenance cost:

 maintenance cost = ACT × development cost.

Most maintenance cost estimation models, however, yield only approximate
results because they do not take into account several factors such as experience
level of the engineers, and familiarity of the engineers with the product, hardware
requirements, software complexity, etc.

The following questions have been designed to test the
objectives identified for this module:

1. What for software products are required to maintain?

2. What are the different types of maintenance that a software product might
need? Why are these maintenance required?

3. What are the disadvantages associated with software maintenance?

4. What do you mean by the term software reverse engineering? Why is it

required? Explain the different activities undertaken during reverse
engineering.

5. What is legacy software product? Explain the problems one would

encounter while maintaining a legacy product.

6. What are the different factors upon which software maintenance activities
depend?

7. What do you mean by the term software reengineering? Why is it

required?

8. If the development cost of a software product is Rs. 10,000,000/-,
compute the annual maintenance cost given that every year approximately
5% of the code needs modification. Identify the factors which render the
maintenance cost estimation inaccurate.

Version 2 CSE IIT, Kharagpur

Mark all options which are true.

1. Software products need maintenance to

□ correct errors
□ enhance features
□ port to new platforms

 □ overcome wear and tear caused by use

2. Software products need adaptive maintenance for which of the following
reasons?

□ to rectify bugs observed while the system is in use
□ when the customers need the product to run on new platforms.
□ to support the new features that users want it to support.

 □ all of the above

3. Hardware products need maintenance to

□ correct errors
□ enhance features
□ port to new platforms

 □ overcome wear and tear caused by use

4. Legacy software products having poor design and code structure are
maintained by performing which task?

□ the code can be directly modified and the changes appropriately
reflected in all the relevant documents
□ suitable software maintenance process must be followed by a reverse
engineering cycle followed by a forward engineering cycle with an
emphasis on as much reuse as possible from the existing code and other
documents
□ none of the above

5. A reverse engineering cycle during maintenance phase is required for which
type of software products?

□ well documented software products
□ well structured software products
□ legacy software products

 □ both well documented and well structured software products

Version 2 CSE IIT, Kharagpur

6. Reengineering is preferable for which of the software products?

□ software products exhibiting high failure rates
□ software products having poor design
□ software products having poor code structure

 □ all of the above

7. Identify which of the following factors software maintenance cost estimation
models should take into account.

□ experience level of the engineers
□ familiarity of the engineers with the product
□ hardware requirements

 □ software complexity
 □ all of the above

8. Software maintenance effort requires approximately what percentage of the
total life cycle cost for a typical software product?

□ about 90%
□ about 70%
□ about 60%

 □ about 40%

Mark the following statements as either True or False. Justify
your answer.

1. Corrective maintenance is the type of maintenance that is frequently

carried out on average software product.

2. Only badly designed software products need maintenance.

3. The structure of a program may be degraded as more and more
maintenance is carried out.

4. Legacy software products are very difficult to maintain.

5. Legacy products are those products which have been developed long

time back.

6. In the process of reverse engineering, we change the functionalities of an
existing code.

Version 2 CSE IIT, Kharagpur

	Software Maintenance
	Characteristics of Software Maintenance
	Specific Instructional Objectives
	Necessity of software maintenance
	Types of software maintenance
	Problems associated with software maintenance
	Software reverse engineering
	Legacy software products
	Factors on which software maintenance activities depend
	Software maintenance process models
	Software reengineering
	Estimation of approximate maintenance cost
	questions
	Mark true.
	True or False.

