

Module
3

Requirements Analysis
and Specification

Version 2 CSE IIT, Kharagpur

Lesson
7

Algebraic Specification

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Explain algebraic specification and its use.
• Explain how algebraic specifications are represented.
• Develop algebraic specification of simple problems.
• Identify the basic properties that a good algebraic specification should

satisfy.
• State the properties of a structured specification.
• State the advantages and disadvantages of algebraic specifications.
• State the features of an executable specification language (4GL) with

suitable examples.

Algebraic specification

In the algebraic specification technique an object class or type is specified in
terms of relationships existing between the operations defined on that type. It
was first brought into prominence by Guttag [1980, 1985] in specification of
abstract data types. Various notations of algebraic specifications have evolved,
including those based on OBJ and Larch languages.

Representation of algebraic specification

Essentially, algebraic specifications define a system as a heterogeneous algebra.
A heterogeneous algebra is a collection of different sets on which several
operations are defined. Traditional algebras are homogeneous. A homogeneous
algebra consists of a single set and several operations; {I, +, -, *, /}. In contrast,
alphabetic strings together with operations of concatenation and length {A, I, con,
len}, is not a homogeneous algebra, since the range of the length operation is the
set of integers.

Each set of symbols in the algebra, in turn, is called a sort of the algebra. To
define a heterogeneous algebra, we first need to specify its signature, the
involved operations, and their domains and ranges. Using algebraic specification,
we define the meaning of a set of interface procedure by using equations. An
algebraic specification is usually presented in four sections.

Types section:-
In this section, the sorts (or the data types) being used is specified.

Exceptions section:-
This section gives the names of the exceptional conditions that
might occur when different operations are carried out. These

Version 2 CSE IIT, Kharagpur

exception conditions are used in the later sections of an algebraic
specification. For example, in a queue, possible exceptions are
novalue (empty queue), underflow (removal from an empty queue),
etc.

Syntax section:-
This section defines the signatures of the interface procedures. The
collection of sets that form input domain of an operator and the sort
where the output is produced are called the signature of the
operator. For example, the append operation takes a queue and an
element and returns a new queue. This is represented as:

append : queue x element → queue

Equations section:-
This section gives a set of rewrite rules (or equations) defining the
meaning of the interface procedures in terms of each other. In
general, this section is allowed to contain conditional expressions.
For example, a rewrite rule to identify an empty queue may be
written as:

 isempty(create()) = true

By convention each equation is implicitly universally quantified over
all possible values of the variables. Names not mentioned in the
syntax section such as ‘r’ or ‘e’ are variables. The first step in
defining an algebraic specification is to identify the set of required
operations. After having identified the required operators, it is
helpful to classify them as either basic constructor operators, extra
constructor operators, basic inspector operators, or extra inspection
operators. The definition of these categories of operators is as
follows:

1. Basic construction operators. These operators are used
to create or modify entities of a type. The basic construction
operators are essential to generate all possible element of
the type being specified. For example, ‘create’ and ‘append’
are basic construction operators for a FIFO queue.

2. Extra construction operators. These are the construction
operators other than the basic construction operators. For
example, the operator ‘remove’ is an extra construction
operator for a FIFO queue because even without using
‘remove’, it is possible to generate all values of the type
being specified.

Version 2 CSE IIT, Kharagpur

3. Basic inspection operators. These operators evaluate
attributes of a type without modifying them, e.g., eval, get,
etc. Let S be the set of operators whose range is not the
data type being specified. The set of the basic operators S1
is a subset of S, such that each operator from S-S1 can be
expressed in terms of the operators from S1. For example,
‘isempty’ is a basic inspection operator because it does not
modify the FIFO queue type.

4. Extra inspection operators. These are the inspection
operators that are not basic inspectors.

A good rule of thumb while writing an algebraic specification, is to first establish
which are the constructor (basic and extra) and inspection operators (basic and
extra). Then write down an axiom for composition of each basic construction
operator over each basic inspection operator and extra constructor operator.
Also, write down an axiom for each of the extra inspector in terms of any of the
basic inspectors. Thus, if there are m1 basic constructors, m2 extra constructors,
n1 basic inspectors, and n2 extra inspectors, we should have m1 × (m2+n1) + n2
axioms are the minimum required and many more axioms may be needed to
make the specification complete. Using a complete set of rewrite rules, it is
possible to simplify an arbitrary sequence of operations on the interface
procedures.

Develop algebraic specification of simple problems

The first step in defining an algebraic specification is to identify the set of
required operations. After having identified the required operators, it is helpful to
classify them into different catgories.

A simple way to determine whether an operator is a constructor (basic or extra)
or an inspector (basic or extra) is to check the syntax expression for the operator.
If the type being specified appears on the right hand side of the expression then
it is a constructor, otherwise it is an inspection operator. For example, in a FIFO
queue, ‘create’ is a constructor because the data type specified ‘queue’ appears
on the right hand side of the expression. But, ‘first’ and ‘isempty’ are inspection
operators since they do not modify the queue data type.

Example:-

Let us specify a FIFO queue supporting the operations create, append, remove,
first, and isempty where the operations have their usual meaning.

Types:
 defines queue

Version 2 CSE IIT, Kharagpur

 uses boolean, integer

Exceptions:
 underflow, novalue

Syntax:
1. create : φ → queue
2. append : queue x element → queue
3. remove : queue → queue + {underflow}
4. first : queue → element + {novalue}
5. isempty : queue → boolean

Equations:
1. isempty(create()) = true
2. isempty((append(q,e)) = false
3. first(create()) = novalue
4. first(append(q,e)) = is isempty(q) then e else first(q)
5. remove(create()) = underflow
6. remove(append(q,e)) = if isempty(q) then create() else

append(remove(q),e)

In this example, there are two basic constructors (create and
append), one extra construction operator (remove) and two basic
inspectors (first and empty). Therefore, there are 2 x (1+2) + 0 = 6
equations.

Properties of algebraic specifications

Three important properties that every algebraic specification should possess are:

 Completeness: This property ensures that using the equations, it
should be possible to reduce any arbitrary sequence of operations
on the interface procedures. There is no simple procedure to
ensure that an algebraic specification is complete.

 Finite termination property: This property essentially addresses
the following question: Do applications of the rewrite rules to
arbitrary expressions involving the interface procedures always
terminate? For arbitrary algebraic equations, convergence (finite
termination) is undecidable. But, if the right hand side of each
rewrite rule has fewer terms than the left, then the rewrite process
must terminate.

 Unique termination property: This property indicates whether
application of rewrite rules in different orders always result in the
same answer. Essentially, to determine this property, the answer to
the following question needs to be checked: Can all possible

Version 2 CSE IIT, Kharagpur

sequence of choices in application of the rewrite rules to an
arbitrary expression involving the interface procedures always give
the same number? Checking the unique termination property is a
very difficult problem.

Structured specification

Developing algebraic specifications is time consuming. Therefore efforts have
been made to device ways to ease the task of developing algebraic
specifications. The following are some of the techniques that have successfully
been used to reduce the effort in writing the specifications.

 Incremental specification. The idea behind incremental
specification is to first develop the specifications of the simple types
and then specify more complex types by using the specifications of
the simple types.

 Specification instantiation. This involves taking an existing
specification which has been developed using a generic parameter
and instantiating it with some other sort.

Advantages and disadvantages of algebraic specifications
Algebraic specifications have a strong mathematical basis and can be viewed as
heterogeneous algebra. Therefore, they are unambiguous and precise. Using an
algebraic specification, the effect of any arbitrary sequence of operations
involving the interface procedures can automatically be studied. A major
shortcoming of algebraic specifications is that they cannot deal with side effects.
Therefore, algebraic specifications are difficult to interchange with typical
programming languages. Also, algebraic specifications are hard to understand.

Executable specification language (4GLs).
If the specification of a system is expressed formally or by using a programming
language, then it becomes possible to directly execute the specification.
However, executable specifications are usually slow and inefficient, 4GLs3 (4th
Generation Languages) are examples of executable specification languages.
4GLs are successful because there is a lot of commonality across data
processing applications. 4GLs rely on software reuse, where the common
abstractions have been identified and parameterized. Careful experiments have
shown that rewriting 4GL programs in higher level languages results in up to 50%
lower memory usage and also the program execution time can reduce ten folds.
Example of a 4GL is Structured Query Language (SQL).

Version 2 CSE IIT, Kharagpur

The following questions have been designed to test the
objectives identified for this module:

1. Identify at least four roles of a system analyst.

Ans.: - The system analyst starts requirements gathering and analysis activity by
collecting all information from the customer which could be used to
develop the requirements of the system. He then analyzes the collected
information to obtain a clear and thorough understanding of the product
to be developed, with a view to removing all ambiguities and
inconsistencies from the initial customer perception of the problem. The
following basic questions pertaining to the project should be clearly
understood by the analyst in order to obtain a good grasp of the
problem:

 What is the problem?
 Why is it important to solve the problem?
 What are the possible solutions to the problem?
 What exactly are the data input to the system and what exactly are

the data output by the system?
 What are the likely complexities that might arise while solving the

problem?
 If there are external software or hardware with which the developed

software has to interface, then what exactly would the data
interchange formats with the external system be?

 After the analyst has understood the exact customer requirements,
he proceeds to identify and resolve the various requirements problems.
The most important requirements problems that the analyst has to
identify and eliminate are the problems of anomalies, inconsistencies,
and incompleteness. When the analyst detects any inconsistencies,
anomalies or incompleteness in the gathered requirements, he resolves
them by carrying out further discussions with the end-users and the
customers.

2. Identify three important parts of an SRS document.

Ans.: - The important parts of SRS document are:

 Functional requirements of the system
 Non-functional requirements of the system, and
 Goals of implementation

The functional requirements part discusses the functionalities
required from the system. Nonfunctional requirements deal with the
characteristics of the system which can not be expressed as functions -

Version 2 CSE IIT, Kharagpur

such as the maintainability of the system, portability of the system,
usability of the system, etc. The goals of implementation part documents
some general suggestions regarding development. These suggestions
guide trade-off among design goals. The goals of implementation section
might document issues such as revisions to the system functionalities
that may be required in the future, new devices to be supported in the
future, reusability issues, etc. These are the items which the developers
might keep in their mind during development so that the developed
system may meet some aspects that are not required immediately.

3. Without developing an SRS document an organization might face severe
problems. Identify those problems.

Ans.: - The important problems that an organization would face if it does not

develop an SRS document are as follows:

 Without developing the SRS document, the system would not be
implemented according to customer needs.

 Software developers would not know whether what they are
developing is what exactly required by the customer.

 Without SRS document, it will be very much difficult for the
maintenance engineers to understand the functionality of the
system.

 It will be very much difficult for user document writers to write the
users’ manuals properly without understanding the SRS document.

4. Identify the non-functional requirement-issues that are considered for
any given problem description?

Ans.: - Nonfunctional requirements are the characteristics of the system which
can not be expressed as functions - such as the maintainability of the
system, portability of the system, usability of the system, etc.

Nonfunctional requirements may include:

reliability issues,
performance issues,
human - computer interface issues,
interface with other external systems,
security and maintainability of the system, etc.

5. Mention at least five problems that an unstructured specification would
create during software development.

Version 2 CSE IIT, Kharagpur

Ans.: - Some problems that might be created by an unstructured specification

are as follows:

 It would be very much difficult to understand that document.

 It would be very much difficult to modify that document.

 Conceptual integrity in that document would not be shown.

 The SRS document might be unambiguous and inconsistent.

6. Identify the necessity of using formal specification technique in the
context of requirements specification.

Ans.: - A formal specification technique is a mathematical method to specify a
hardware and/or software system, verify whether a specification is
realizable, verify that an implementation satisfies its specification, prove
properties of a system without necessarily running the system, etc. The
mathematical basis of a formal method is provided by the specification
language. There are also some advantages of formal specification
technique. Those advantages are:

 Formal specifications encourage rigour. Often, the very process of
construction of a rigorous specification is more important than the
formal specification itself. The construction of a rigorous
specification clarifies several aspects of system behavior that are
not obvious in an informal specification.

 Formal methods usually have a well-founded mathematical basis.
Thus, formal specifications are not only more precise, but also
mathematically sound and can be used to reason about the
properties of a specification and to rigorously prove that an
implementation satisfies its specifications.

 Formal methods have well-defined semantics. Therefore, ambiguity
in specifications is automatically avoided when one formally
specifies a system.

 The mathematical basis of the formal methods facilitates
automating the analysis of specifications. For example, a tableau-
based technique has been used to automatically check the
consistency of specifications. Also, automatic theorem proving
techniques can be used to verify that an implementation satisfies its
specifications. The possibility of automatic verification is one of the
most important advantages of formal methods.

 Formal specifications can be executed to obtain immediate
feedback on the features of the specified system. This concept of

Version 2 CSE IIT, Kharagpur

executable specifications is related to rapid prototyping. Informally,
a prototype is a “toy” working model of a system that can provide
immediate feedback on the behavior of the specified system, and is
especially useful in checking the completeness of specifications.

7. Identify at least two disadvantages of formal technique.

Ans.: - It is clear that formal methods provide mathematically sound frameworks
within large, complex systems can be specified, developed and verified
in a systematic rather than in an ad hoc manner. However, formal
methods suffer from several shortcomings, some of which are the
following:

 Formal methods are difficult to learn and use.
 The basic incompleteness results of first-order logic suggest that it

is impossible to check absolute correctness of systems using
theorem proving techniques.

 Formal techniques are not able to handle complex problems. This
shortcoming results from the fact that, even moderately
complicated problems blow up the complexity of formal
specification and their analysis. Also, a large unstructured set of
mathematical formulas is difficult to comprehend.

8. Identify at least two differences between model-oriented and property-
oriented approaches in the context of requirements specification.

Ans.: - Formal methods are usually classified into two broad categories – model
– oriented and property – oriented approaches.

 In a model-oriented style, one defines a system’s behavior directly
by constructing a model of the system in terms of mathematical
structures such as tuples, relations, functions, sets, sequences, etc.

 In the property-oriented style, the system's behavior is
defined indirectly by stating its properties, usually in the form of a
set of axioms that the system must satisfy.

Let us consider a simple producer/consumer example. In a
property-oriented style, it is probably started by listing the
properties of the system like: the consumer can start consuming
only after the producer has produced an item, the producer starts to
produce an item only after the consumer has consumed the last
item, etc. Examples of property-oriented specification styles are
axiomatic specification and algebraic specification. In a model-
oriented approach, we start by defining the basic operations, p

Version 2 CSE IIT, Kharagpur

(produce) and c (consume). Then we can state that S1 + p → S, S
+ c → S1. Thus the model-oriented approaches essentially specify
a program by writing another, presumably simpler program.
Examples of popular model-oriented specification techniques are Z,
CSP, CCS, etc.

 Model-oriented approaches are more suited to use in later phases
of life cycle because here even minor changes to a specification
may lead to drastic changes to the entire specification. They do not
support logical conjunctions (AND) and disjunctions (OR).

 Property-oriented approaches are suitable for requirements
specification because they can be easily changed. They specify a
system as a conjunction of axioms and you can easily replace one
axiom with another one.

9. Explain the use of operational semantic.

Ans.: - Informally, the operational semantics of a formal method is the way
computations are represented. There are different types of operational
semantics according to what is meant by a single run of the system and
how the runs are grouped together to describe the behavior of the
system. Some commonly used operational semantics are as follows:

Linear Semantics:-

In this approach, a run of a system is described by a sequence (possibly infinite)
of events or states. The concurrent activities of the system are represented by
non-deterministic interleaving of the automatic actions. For example, a
concurrent activity a║b is represented by the set of sequential activities a;b and
b;a. This is simple but rather unnatural representation of concurrency. The
behavior of a system in this model consists of the set of all its runs. To make this
model realistic, usually justice and fairness restrictions are imposed on
computations to exclude the unwanted interleavings.

Branching Semantics:-

In this approach, the behavior of a system is represented by a directed graph as
shown in the fig. 3.7. The nodes of the graph represent the possible states in the
evolution of a system. The descendants of each node of the graph represent the
states which can be generated by any of the atomic actions enabled at that state.
Although this semantic model distinguishes the branching points in a
computation, still it represents concurrency by interleaving.

Version 2 CSE IIT, Kharagpur

ED

A

CB

A - Insert ATM Card
B - Withdraw Cash
C - Print Mini-Statement
D - Savings Account
E - Current Account

Fig. 3.7: Branching semantics

Maximally parallel semantics:-

In this approach, all the concurrent actions enabled at any state are assumed to
be taken together. This is again not a natural model of concurrency since it
implicitly assumes the availability of all the required computational resources.

Partial order semantics:-

Under this view, the semantics ascribed to a system is a structure of states
satisfying a partial order relation among the states (events). The partial order
represents a precedence ordering among events, and constraints some events to
occur only after some other events have occurred; while the occurrence of other
events (called concurrent events) is considered to be incomparable. This fact
identifies concurrency as a phenomenon not translatable to any interleaved
representation.

For example, from figure (fig. 3.8), we can see that node Ingredient can be
compared with node Brew, but neither can it be compared with node Hot/Cold
nor with node Accepted.

Version 2 CSE IIT, Kharagpur

 Dispense

 Accepted Inserted

 Ready

 Brew

 Hot/Cold

 Ingredient

Insert Coin

Get Ingredients

Reject Coin

Prepare Milk

Accept Coin

Press OK

Prepare

OK/Mix

OK/Mix

Fig. 3.8: Partial order semantics implied by a beverage selling machine

10. Identify the requirements of algebraic specifications in order to define a
system.

Ans.: - In the algebraic specification technique an object class or type is
specified in terms of relationships existing between the operations
defined on that type. Various notations of algebraic specifications have
evolved, including those based on OBJ and Larch languages.

Essentially, algebraic specifications define a system as a
heterogeneous algebra. A heterogeneous algebra is a collection of
different sets on which several operations are defined. Traditional
algebras are homogeneous. A homogeneous algebra consists of a
single set and several operations; {I, +, -, *, /}. In contrast, alphabetic
strings together with operations of concatenation and length {A, I, con,
len}, is not a homogeneous algebra, since the range of the length
operation is the set of integers. To define a heterogeneous algebra,
firstly it is needed to specify its signature, the involved operations, and
their domains and ranges. Using algebraic specification, it can be easily
defined the meaning of a set of interface procedure by using equations.
An algebraic specification is usually presented in four sections.

Version 2 CSE IIT, Kharagpur

Types section:-
In this section, the sorts (or the data types) being used is specified.

Exceptions section:-
This section gives the names of the exceptional conditions that might
occur when different operations are carried out. These exception
conditions are used in the later sections of an algebraic specification.

Syntax section:-
This section defines the signatures of the interface procedures. The
collection of sets that form input domain of an operator and the sort where
the output is produced are called the signature of the operator. For
example, PUSH takes a stack and an element and returns a new stack.

stack x element → stack

Equations section:-
This section gives a set of rewrite rules (or equations) defining the
meaning of the interface procedures in terms of each other. In general,
this section is allowed to contain conditional expressions.

By convention each equation is implicitly universally quantified over all
possible values of the variables. Names not mentioned in the syntax
section such ‘r’ or ‘e’ is variables. The first step in defining an algebraic
specification is to identify the set of required operations. After having
identified the required operators, it is helpful to classify them as either
basic constructor operators, extra constructor operators, basic inspector
operators, or extra inspection operators. The definition of these categories
of operators is as follows:

 Basic construction operators. These operators are used to create
or modify entities of a type. The basic construction operators are
essential to generate all possible element of the type being specified.
For example, ‘create’ and ‘append’ are basic construction operators
in a FIFO queue.

 Extra construction operators. These are the construction operators
other than the basic construction operators. For example, the
operator ‘remove’ is an extra construction operator in a FIFO queue
because even without using ‘remove’, it is possible to generate all
values of the type being specified.

 Basic inspection operators. These operators evaluate attributes of
a type without modifying them, e.g., eval, get, etc. Let S be the set of
operators whose range is not the data type being specified. The set
of the basic operators S1 is a subset of S, such that each operator
from S-S1 can be expressed in terms of the operators from S1.

Version 2 CSE IIT, Kharagpur

 Extra inspection operators. These are the inspection operators that
are not basic inspectors.

A good rule of thumb while writing an algebraic specification, is to
first establish which are the constructor (basic and extra) and inspection
operators (basic and extra). Then write down an axiom for composition
of each basic construction operator over each basic inspection operator
and extra constructor operator. Also, write down an axiom for each of the
extra inspector in terms of any of the basic inspectors. Thus, if there are
m1 basic constructors, m2 extra constructors, n1 basic inspectors, and
n2 extra inspectors, we should have m1 × (m2+n1) + n2 axioms are the
minimum required and many more axioms may be needed to make the
specification complete. Using a complete set of rewrite rules, it is
possible to simplify an arbitrary sequence of operations on the interface
procedures.

11. Identify the use of algebraic specifications in the context of
requirements specification.

Ans.: - The first step in defining an algebraic specification is to identify the set of
required operations. After having identified the required operators, it is
helpful to classify them as either basic constructor operators, extra
constructor operators, basic inspector operators, or extra inspector
operators. A simple way to determine whether an operator is a
constructor (basic or extra) or an inspector (basic or extra) is to check
the syntax expression for the operator. If the type being specified
appears on the right hand side of the expression then it is a constructor,
otherwise it is an inspection operator. For example, in case of the
following example, create is a constructor because point appears on the
right hand side of the expression and point is the data type being
specified. But, xcoord is an inspection operator since it does not modify
the point type.

Example:-

Let us specify a data type point supporting the operations create, xcoord, ycoord,
isequal; where the operations have their usual meaning.

Types:
 defines point
 uses boolean, integer

Version 2 CSE IIT, Kharagpur

Syntax:

1. create : integer × integer → point
2. xcoord : point → integer
3. ycoord : point → integer
4. isequal : point × point → boolean

Equations:

1. xcoord(create(x, y)) = x
2. ycoord(create(x, y)) = y
3. isequal(create(x1, y1), create(x2, y2)) = ((x1 = x2) and (y1 = y2))

In this example, there is only one basic constructor (create), and three
basic inspectors (xcoord, ycoord, and isequal). Therefore, there are only 3
equations.

12. Identify the three important properties that every good algebraic
specification should possess.

Ans.: - Three important properties that every algebraic specification should
possess are:

 Completeness: This property ensures that using the equations, it
should be possible to reduce any arbitrary sequence of operations on
the interface procedures. There is no simple procedure to ensure that
an algebraic specification is complete.

 Finite termination property: This property essentially addresses the
following question: Do applications of the rewrite rules to arbitrary
expressions involving the interface procedures always terminate? For
arbitrary algebraic equations, convergence (finite termination) is
undecidable. But, if the right hand side of each rewrite rule has fewer
terms than the left, then the rewrite process must terminate.

 Unique termination property: This property indicates whether
application of rewrite rules in different orders always result in the
same answer. Essentially, to determine this property, the answer to
the following question needs to be checked: Can all possible
sequence of choices in application of the rewrite rules to an arbitrary
expression involving the interface procedures always give the same
number? Checking the unique termination property is a very difficult
problem.

13. Identify at least two properties of a structured specification.

Ans.: - Two properties of a structured specification are as follows:

Version 2 CSE IIT, Kharagpur

 Incremental specification. The idea behind incremental
specification is to first develop the specifications of the simple types
and then specify more complex types by using the specifications of
the simple types.

 Specification instantiation. This involves taking an existing
specification which has been developed using a generic parameter
and instantiating it with some other sort.

14. Identify at least two advantages of algebraic specification.

Ans.: - Algebraic specifications have a strong mathematical basis and can be

viewed as heterogeneous algebra. Therefore, they are unambiguous
and precise. Using an algebraic specification, the effect of any arbitrary
sequence of operations involving the interface procedures can be
automatically studied.

15. Identify at least two disadvantages of algebraic specification.

Ans.: - A major shortcoming of algebraic specifications is that they cannot deal
with side effects. Therefore, algebraic specifications are difficult to
interchange with typical programming languages. Also, algebraic
specifications are hard to understand.

16. Write down at least two features of an executable specification
language with examples.

Ans.: - If the specification of a system is expressed formally or by using a
programming language, then it becomes possible to directly execute the
specification. However, executable specifications are usually slow and
inefficient, 4GLs3 (4th Generation Languages) are examples of
executable specification languages. 4GLs are successful because there
is a lot of commonality across data processing applications. 4GLs rely on
software reuse, where the common abstractions have been identified
and parameterized. Careful experiments have shown that rewriting 4GL
programs in higher level languages results in up to 50% lower memory
usage and also the program execution time can reduce ten folds.
Example of a 4GL is Structured Query Language (SQL).

Version 2 CSE IIT, Kharagpur

For the following, mark all options which are true.

1. An SRS document normally contains

□ Functional requirements of the system √
□ Module structure
□ Configuration management plan
□ Non-functional requirements of the system √
□ Constraints on the system √

2. The structured specification technique that is used to reduce the effort in
writing specification is

□ Incremental specification
□ Specification instantiation
□ Both of the above √
□ None of the above

3. Examples of executable specifications are

□ Third generation languages
□ Fourth generation languages √
□ Second-generation languages
□ First generation languages

Mark the following as either True or False. Justify your
answer.

1. Functional requirements address maintainability, portability, and usability
issues.

Ans.: - False.

Explanation: - The functional requirements of the system should clearly
describe each of the functions that the system needs to perform along with
the corresponding input and output dataset. Non-functional requirements
deal with the characteristics of the system that cannot be expressed
functionally e.g. maintainability, portability, usability etc.

Version 2 CSE IIT, Kharagpur

2. The edges of decision tree represent corresponding actions to be
performed according to conditions.

Ans.: - False.

Explanation: - The edges of decision tree represent conditions and the
leaf nodes represent the corresponding actions to be performed.

3. The upper rows of the decision table specify the corresponding actions to

be taken when an evaluation test is satisfied.

Ans.: - False.

Explanation: - The upper rows of the table specify the variables or
conditions to be evaluated and the lower rows specify the corresponding
actions to be taken when an evaluation test is satisfied.

4. A column in a decision table is called an attribute.

Ans.: - False.

Explanation: - A column in a decision table is called a rule. A rule implies
that if a condition is true, then execute the corresponding action.

5. Pre – conditions of axiomatic specifications state the requirements on the

parameters of the function before the function can start executing.

Ans.: - True.

Explanation: - The pre-conditions basically capture the conditions that
must be satisfied before an operation can successfully be invoked. In
essence, the pre-conditions capture the requirements on the input
parameters of a function.

6. Post – conditions of axiomatic specifications state the requirements on the
parameters of the function when the function is completed.

Ans.: - True.

Explanation: - The post-conditions are the conditions that must be
satisfied when a function completes execution for the function to be
considered to have executed successfully. Thus, the post-conditions are
essentially constraints on the results produced for the function execution
to be considered successful.

Version 2 CSE IIT, Kharagpur

7. Homogeneous algebra is a collection of different sets on which several
operations are defined.

Ans.: - False.

Explanation: - A heterogeneous algebra is a collection of different sets on
which several operations are defined. But homogeneous algebra consists
of a single set and several operations; {I, +, -, *, /}.

8. Applications developed using 4 GLs would normally be more efficient and

run faster compared to applications developed using 3 GL.

Ans.: - False.

Explanation: - Even though 4th Generation Languages (4 GLs) reduce
the effort for development; it is normally inefficient as these are more
general-purpose languages. If somebody rewrite 4 GL programs in higher
level languages (i.e. 3GLs), it might result in upto 50% lower memory
requirements and also the program can run upto 10 times faster.

Version 2 CSE IIT, Kharagpur

	Requirements Analysis and Specification
	Algebraic Specification
	Specific Instructional Objectives
	Algebraic specification
	Representation of algebraic specification
	Types section:-

	Develop algebraic specification of simple problems
	Properties of algebraic specifications
	Structured specification
	Advantages and disadvantages of algebraic specifications
	Executable specification language (4GLs).
	questions
	mark true.
	True or False.

