

Module
7

Object Modeling using
UML

Version 2 CSE IIT, Kharagpur

Lesson
16

Class and Interaction
Diagrams

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Explain the features represented by a class diagram.
• Explain the relationships among different types of classes by means of

association.
• Explain the relationships among different types of classes by means of

aggregation.
• Explain the relationships among different types of classes by means of

composition.
• Draw interaction diagrams for any given problem.
• Explain the tradeoff between inheritance and aggregation/ composition
• Bring out a comparison of the three relationships: association, aggregation

and composition

Class diagrams
A class diagram describes the static structure of a system. It shows how a
system is structured rather than how it behaves. The static structure of a system
comprises of a number of class diagrams and their dependencies. The main
constituents of a class diagram are classes and their relationships:
generalization, aggregation, association, and various kinds of dependencies.

Classes
 The classes represent entities with common features, i.e. attributes and
operations. Classes are represented as solid outline rectangles with
compartments. Classes have a mandatory name compartment where the name
is written centered in boldface. The class name is usually written using mixed
case convention and begins with an uppercase. The class names are usually
chosen to be singular nouns. An example of a class is shown in fig. 6.2 (Lesson
6.1).
 Classes have optional attributes and operations compartments. A class
may appear on several diagrams. Its attributes and operations are suppressed
on all but one diagram.

Attributes
 An attribute is a named property of a class. It represents the kind of data
that an object might contain. Attributes are listed with their names, and may
optionally contain specification of their type, an initial value, and constraints. The
type of the attribute is written by appending a colon and the type name after the
attribute name. Typically, the first letter of a class name is a small letter. An
example for an attribute is given.

bookName : String

Version 2 CSE IIT, Kharagpur

Operation
 Operation is the implementation of a service that can be requested from
any object of the class to affect behaviour. An object’s data or state can be
changed by invoking an operation of the object. A class may have any number of
operations or no operation at all. Typically, the first letter of an operation name is
a small letter. Abstract operations are written in italics. The parameters of an
operation (if any), may have a kind specified, which may be ‘in’, ‘out’ or ‘inout’. An
operation may have a return type consisting of a single return type expression.
An example for an operation is given.

issueBook(in bookName):Boolean

Association
Associations are needed to enable objects to communicate with each other. An
association describes a connection between classes. The association relation
between two objects is called object connection or link. Links are instances of
associations. A link is a physical or conceptual connection between object
instances. For example, suppose Amit has borrowed the book Graph Theory.
Here, borrowed is the connection between the objects Amit and Graph Theory
book. Mathematically, a link can be considered to be a tuple, i.e. an ordered list
of object instances. An association describes a group of links with a common
structure and common semantics. For example, consider the statement that
Library Member borrows Books. Here, borrows is the association between the
class LibraryMember and the class Book. Usually, an association is a binary
relation (between two classes). However, three or more different classes can be
involved in an association. A class can have an association relationship with itself
(called recursive association). In this case, it is usually assumed that two different
objects of the class are linked by the association relationship.

Association between two classes is represented by drawing a straight line
between the concerned classes. Fig. 7.9 illustrates the graphical representation
of the association relation. The name of the association is written along side the
association line. An arrowhead may be placed on the association line to indicate
the reading direction of the association. The arrowhead should not be
misunderstood to be indicating the direction of a pointer implementing an
association. On each side of the association relation, the multiplicity is noted as
an individual number or as a value range. The multiplicity indicates how many
instances of one class are associated with each other. Value ranges of
multiplicity are noted by specifying the minimum and maximum value, separated
by two dots, e.g. 1.5. An asterisk is a wild card and means many (zero or more).
The association of fig. 7.9 should be read as “Many books may be borrowed by a
Library Member”. Observe that associations (and links) appear as verbs in the
problem statement.

Version 2 CSE IIT, Kharagpur

Fig. 7.9: Association between two classes

Associations are usually realized by assigning appropriate reference
attributes to the classes involved. Thus, associations can be implemented using
pointers from one object class to another. Links and associations can also be
implemented by using a separate class that stores which objects of a class are
linked to which objects of another class. Some CASE tools use the role names of
the association relation for the corresponding automatically generated attribute.

Aggregation

Aggregation is a special type of association where the involved classes represent
a whole-part relationship. The aggregate takes the responsibility of forwarding
messages to the appropriate parts. Thus, the aggregate takes the responsibility
of delegation and leadership. When an instance of one object contains instances
of some other objects, then aggregation (or composition) relationship exists
between the composite object and the component object. Aggregation is
represented by the diamond symbol at the composite end of a relationship. The
number of instances of the component class aggregated can also be shown as in
fig. 7.10.

Fig. 7.10: Representation of aggregation

Aggregation relationship cannot be reflexive (i.e. recursive). That is, an
object cannot contain objects of the same class as itself. Also, the aggregation
relation is not symmetric. That is, two classes A and B cannot contain instances
of each other. However, the aggregation relationship can be transitive. In this
case, aggregation may consist of an arbitrary number of levels.

Version 2 CSE IIT, Kharagpur

Composition
Composition is a stricter form of aggregation, in which the parts are

existence-dependent on the whole. This means that the life of the parts closely
ties to the life of the whole. When the whole is created, the parts are created and
when the whole is destroyed, the parts are destroyed. A typical example of
composition is an invoice object with invoice items. As soon as the invoice object
is created, all the invoice items in it are created and as soon as the invoice object
is destroyed, all invoice items in it are also destroyed. The composition
relationship is represented as a filled diamond drawn at the composite-end. An
example of the composition relationship is shown in fig. 7.11.

Fig. 7.11: Representation of composition

Association vs. Aggregation vs. Composition
• Association is the most general (m:n) relationship. Aggregation is a

stronger relationship where one is a part of the other. Composition is
even stronger than aggregation, ties the lifecycle of the part and the
whole together.

• Association relationship can be reflexive (objects can have relation to
itself), but aggregation cannot be reflexive. Moreover, aggregation is
anti-symmetric (If B is a part of A, A can not be a part of B).

• Composition has the property of exclusive aggregation i.e. an object
can be a part of only one composite at a time. For example, a Frame
belongs to exactly one Window whereas in simple aggregation, a part
may be shared by several objects. For example, a Wall may be a part
of one or more Room objects.

• In addition, in composition, the whole has the responsibility for the
disposition of all its parts, i.e. for their creation and destruction.

o in general, the lifetime of parts and composite coincides
o parts with non-fixed multiplicity may be created after composite

itself
o parts might be explicitly removed before the death of the

composite

For example, when a Frame is created, it has to be attached to an
enclosing Window. Similarly, when the Window is destroyed, it must in turn
destroy its Frame parts.

Version 2 CSE IIT, Kharagpur

Inheritance vs. Aggregation/Composition

• Inheritance describes ‘is a’ / ‘is a kind of’ relationship between classes
(base class - derived class) whereas aggregation describes ‘has a’
relationship between classes. Inheritance means that the object of the
derived class inherits the properties of the base class; aggregation means
that the object of the whole has objects of the part. For example, the
relation “cash payment is a kind of payment” is modeled using inheritance;
“purchase order has a few items” is modeled using aggregation.
 Inheritance is used to model a “generic-specific” relationship
between classes whereas aggregation/composition is used to model a
“whole-part” relationship between classes.

• Inheritance means that the objects of the subclass can be used anywhere
the super class may appear, but not the reverse; i.e. wherever we could
use instances of ‘payment’ in the system, we could substitute it with
instances of ‘cash payment’, but the reverse can not be done.

• Inheritance is defined statically. It can not be changed at run-time.
Aggregation is defined dynamically and can be changed at run-time.
Aggregation is used when the type of the object can change over time.
 For example, consider this situation in a business system. A
BusinessPartner might be a Customer or a Supplier or both. Initially we
might be tempted to model it as in Fig 7.12(a). But in fact, during its
lifetime, a business partner might become a customer as well as a
supplier, or it might change from one to the other. In such cases, we prefer
aggregation instead (see Fig 7.12(b). Here, a business partner is a
Customer if it has an aggregated Customer object, a Supplier if it has an
aggregated Supplier object and a "Customer_Supplier" if it has both.
Here, we have only two types. Hence, we are able to model it as
inheritance. But what if there were several different types and
combinations there of? The inheritance tree would be absolutely
incomprehensible.
 Also, the aggregation model allows the possibility for a business
partner to be neither - i.e. has neither a customer nor a supplier object
aggregated with it.

• The advantage of aggregation is the integrity of encapsulation. The
operations of an object are the interfaces of other objects which imply low
implementation dependencies. The significant disadvantage of
aggregation is the increase in the number of objects and their
relationships. On the other hand, inheritance allows for an easy way to
modify implementation for reusability. But the significant disadvantage is
that it breaks encapsulation, which implies implementation dependence.

Version 2 CSE IIT, Kharagpur

(a)

(b)

Fig. 7.12 Representation of BusinessPartner, Customer, Supplier relationship
(a) using inheritance (b) using aggregation

Interaction Diagrams

Interaction diagrams are models that describe how group of objects collaborate
to realize some behavior. Typically, each interaction diagram realizes the

Customer

BusinessPartner

Supplier

1

∗

1

∗

Customer

Customer_Supplier

BusinessPartner

Supplier

Version 2 CSE IIT, Kharagpur

behavior of a single use case. An interaction diagram shows a number of
example objects and the messages that are passed between the objects within
the use case.

There are two kinds of interaction diagrams: sequence diagrams and
collaboration diagrams. These two diagrams are equivalent in the sense that any
one diagram can be derived automatically from the other. However, they are both
useful. These two actually portray different perspectives of behavior of the
system and different types of inferences can be drawn from them. The interaction
diagrams can be considered as a major tool in the design methodology.

Sequence Diagram

A sequence diagram shows interaction among objects as a two
dimensional chart. The chart is read from top to bottom. The objects participating
in the interaction are shown at the top of the chart as boxes attached to a vertical
dashed line. Inside the box the name of the object is written with a colon
separating it from the name of the class and both the name of the object and the
class are underlined. The objects appearing at the top signify that the object
already existed when the use case execution was initiated. However, if some
object is created during the execution of the use case and participates in the
interaction (e.g. a method call), then the object should be shown at the
appropriate place on the diagram where it is created. The vertical dashed line is
called the object’s lifeline. The lifeline indicates the existence of the object at any
particular point of time. The rectangle drawn on the lifetime is called the
activation symbol and indicates that the object is active as long as the rectangle
exists. Each message is indicated as an arrow between the lifeline of two
objects. The messages are shown in chronological order from the top to the
bottom. That is, reading the diagram from the top to the bottom would show the
sequence in which the messages occur. Each message is labeled with the
message name. Some control information can also be included. Two types of
control information are particularly valuable.

• A condition (e.g. [invalid]) indicates that a message is sent, only if the
condition is true.

• An iteration marker shows the message is sent many times to multiple
receiver objects as would happen when a collection or the elements of
an array are being iterated. The basis of the iteration can also be
indicated e.g. [for every book object].

The sequence diagram for the book renewal use case for the Library
Automation Software is shown in fig. 7.13. The development of the sequence
diagram in the development methodology would help us in determining the
responsibilities of the different classes; i.e. what methods should be supported
by each class.

Version 2 CSE IIT, Kharagpur

Fig. 7.13: Sequence diagram for the renew book use case

Collaboration Diagram
A collaboration diagram shows both structural and behavioral aspects

explicitly. This is unlike a sequence diagram which shows only the behavioral
aspects. The structural aspect of a collaboration diagram consists of objects and
the links existing between them. In this diagram, an object is also called a
collaborator. The behavioral aspect is described by the set of messages
exchanged among the different collaborators. The link between objects is shown
as a solid line and can be used to send messages between two objects. The
message is shown as a labeled arrow placed near the link. Messages are
prefixed with sequence numbers because they are only way to describe the
relative sequencing of the messages in this diagram. The collaboration diagram
for the example of fig. 7.13 is shown in fig. 7.14. The use of the collaboration
diagrams in our development process would be to help us to determine which
classes are associated with which other classes.

Version 2 CSE IIT, Kharagpur

Fig. 7.14: Collaboration diagram for the renew book use case s

Version 2 CSE IIT, Kharagpur

	Object Modeling using UML
	Class and Interaction Diagrams
	Specific Instructional Objectives
	Class diagrams
	Classes
	Attributes
	Operation

	Association
	Aggregation
	Composition
	Association vs. Aggregation vs. Composition
	Inheritance vs. Aggregation/Composition
	Interaction Diagrams
	Sequence Diagram
	Collaboration Diagram

