

Module
13

Software Reliability and
Quality Management

Version 2 CSE IIT, Kharagpur

Lesson
32

Software Reliability
Issues

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Differentiate between a repeatable software development organization
and a non-repeatable software development organization.

• What is the relationship between the number of latent errors in a software
system and its reliability?

• Identify the main reasons for why software reliability is difficult to measure.
• Explain how the characteristics of hardware reliability and software

reliability differ.
• Identify the reliability metrics which can be used to quantify the reliability of

software products.
• Identify the different types of failures of software products.
• Explain the reliability growth models of a software product.

Repeatable vs. non-repeatable software development
organization

A repeatable software development organization is one in which the software
development process is person-independent. In a non-repeatable software
development organization, a software development project becomes successful
primarily due to the initiative, effort, brilliance, or enthusiasm displayed by certain
individuals. Thus, in a non-repeatable software development organization, the
chances of successful completion of a software project is to a great extent
depends on the team members.

Software reliability
Reliability of a software product essentially denotes its trustworthiness or
dependability. Alternatively, reliability of a software product can also be defined
as the probability of the product working “correctly” over a given period of time.

 It is obvious that a software product having a large number of defects
is unreliable. It is also clear that the reliability of a system improves, if the number
of defects in it is reduced. However, there is no simple relationship between the
observed system reliability and the number of latent defects in the system. For
example, removing errors from parts of a software which are rarely executed
makes little difference to the perceived reliability of the product. It has been
experimentally observed by analyzing the behavior of a large number of
programs that 90% of the execution time of a typical program is spent in
executing only 10% of the instructions in the program. These most used 10%
instructions are often called the core of the program. The rest 90% of the
program statements are called non-core and are executed only for 10% of the
total execution time. It therefore may not be very surprising to note that removing

Version 2 CSE IIT, Kharagpur

60% product defects from the least used parts of a system would typically lead to
only 3% improvement to the product reliability. It is clear that the quantity by
which the overall reliability of a program improves due to the correction of a
single error depends on how frequently is the corresponding instruction
executed.

 Thus, reliability of a product depends not only on the number of latent
errors but also on the exact location of the errors. Apart from this, reliability also
depends upon how the product is used, i.e. on its execution profile. If it is
selected input data to the system such that only the “correctly” implemented
functions are executed, none of the errors will be exposed and the perceived
reliability of the product will be high. On the other hand, if the input data is
selected such that only those functions which contain errors are invoked, the
perceived reliability of the system will be very low.

Reasons for software reliability being difficult to measure
The reasons why software reliability is difficult to measure can be summarized as
follows:

• The reliability improvement due to fixing a single bug depends on where
the bug is located in the code.

• The perceived reliability of a software product is highly observer-

dependent.

• The reliability of a product keeps changing as errors are detected and
fixed.

Hardware reliability vs. software reliability differ
Reliability behavior for hardware and software are very different. For example,
hardware failures are inherently different from software failures. Most hardware
failures are due to component wear and tear. A logic gate may be stuck at 1 or 0,
or a resistor might short circuit. To fix hardware faults, one has to either replace
or repair the failed part. On the other hand, a software product would continue to
fail until the error is tracked down and either the design or the code is changed.
For this reason, when a hardware is repaired its reliability is maintained at the
level that existed before the failure occurred; whereas when a software failure is
repaired, the reliability may either increase or decrease (reliability may decrease
if a bug introduces new errors). To put this fact in a different perspective,
hardware reliability study is concerned with stability (for example, inter-failure
times remain constant). On the other hand, software reliability study aims at
reliability growth (i.e. inter-failure times increase).

Version 2 CSE IIT, Kharagpur

 The change of failure rate over the product lifetime for a typical hardware
and a software product are sketched in fig. 13.1. For hardware products, it can
be observed that failure rate is high initially but decreases as the faulty
components are identified and removed. The system then enters its useful life.
After some time (called product life time) the components wear out, and the
failure rate increases. This gives the plot of hardware reliability over time its
characteristics “bath tub” shape. On the other hand, for software the failure rate
is at it’s highest during integration and test. As the system is tested, more and
more errors are identified and removed resulting in reduced failure rate. This
error removal continues at a slower pace during the useful life of the product. As
the software becomes obsolete no error corrections occurs and the failure rate
remains unchanged.

(a) Hardware product

(b) Software product

Fig. 13.1: Change in failure rate of a product

Version 2 CSE IIT, Kharagpur

Reliability metrics
The reliability requirements for different categories of software products may be
different. For this reason, it is necessary that the level of reliability required for a
software product should be specified in the SRS (software requirements
specification) document. In order to be able to do this, some metrics are needed
to quantitatively express the reliability of a software product. A good reliability
measure should be observer-dependent, so that different people can agree on
the degree of reliability a system has. For example, there are precise techniques
for measuring performance, which would result in obtaining the same
performance value irrespective of who is carrying out the performance
measurement. However, in practice, it is very difficult to formulate a precise
reliability measurement technique. The next base case is to have measures that
correlate with reliability. There are six reliability metrics which can be used to
quantify the reliability of software products.

• Rate of occurrence of failure (ROCOF). ROCOF measures the
frequency of occurrence of unexpected behavior (i.e. failures). ROCOF
measure of a software product can be obtained by observing the
behavior of a software product in operation over a specified time
interval and then recording the total number of failures occurring during
the interval.

• Mean Time To Failure (MTTF). MTTF is the average time between
two successive failures, observed over a large number of failures. To
measure MTTF, we can record the failure data for n failures. Let the
failures occur at the time instants t1, t2, …, tn. Then, MTTF can be

calculated as 1

1 (1)

n
i i

i

t t
n
+ −

= −∑ . It is important to note that only run time is

considered in the time measurements, i.e. the time for which the
system is down to fix the error, the boot time, etc are not taken into
account in the time measurements and the clock is stopped at these
times.

• Mean Time To Repair (MTTR). Once failure occurs, some time is
required to fix the error. MTTR measures the average time it takes to
track the errors causing the failure and to fix them.

• Mean Time Between Failure (MTBR). MTTF and MTTR can be
combined to get the MTBR metric: MTBF = MTTF + MTTR. Thus,
MTBF of 300 hours indicates that once a failure occurs, the next failure
is expected after 300 hours. In this case, time measurements are real
time and not the execution time as in MTTF.

• Probability of Failure on Demand (POFOD). Unlike the other
metrics discussed, this metric does not explicitly involve time
measurements. POFOD measures the likelihood of the system failing
when a service request is made. For example, a POFOD of 0.001
would mean that 1 out of every 1000 service requests would result in a
failure.

Version 2 CSE IIT, Kharagpur

• Availability. Availability of a system is a measure of how likely shall
the system be available for use over a given period of time. This metric
not only considers the number of failures occurring during a time
interval, but also takes into account the repair time (down time) of a
system when a failure occurs. This metric is important for systems
such as telecommunication systems, and operating systems, which are
supposed to be never down and where repair and restart time are
significant and loss of service during that time is important.

Classification of software failures
A possible classification of failures of software products into five different types is
as follows:

• Transient. Transient failures occur only for certain input values while

invoking a function of the system.
• Permanent. Permanent failures occur for all input values while

invoking a function of the system.
• Recoverable. When recoverable failures occur, the system recovers

with or without operator intervention.
• Unrecoverable. In unrecoverable failures, the system may need to be

restarted.
• Cosmetic. These classes of failures cause only minor irritations, and

do not lead to incorrect results. An example of a cosmetic failure is the
case where the mouse button has to be clicked twice instead of once
to invoke a given function through the graphical user interface.

Reliability growth models

A reliability growth model is a mathematical model of how software reliability
improves as errors are detected and repaired. A reliability growth model can be
used to predict when (or if at all) a particular level of reliability is likely to be
attained. Thus, reliability growth modeling can be used to determine when to stop
testing to attain a given reliability level. Although several different reliability
growth models have been proposed, in this text we will discuss only two very
simple reliability growth models.

Jelinski and Moranda Model
The simplest reliability growth model is a step function model where it is
assumed that the reliability increases by a constant increment each time an error
is detected and repaired. Such a model is shown in fig. 13.2. However, this
simple model of reliability which implicitly assumes that all errors contribute
equally to reliability growth, is highly unrealistic since it is already known that
correction of different types of errors contribute differently to reliability growth.

Version 2 CSE IIT, Kharagpur

Fig. 13.2: Step function model of reliability growth

Littlewood and Verall’s Model
This model allows for negative reliability growth to reflect the fact that when a
repair is carried out, it may introduce additional errors. It also models the fact that
as errors are repaired, the average improvement in reliability per repair
decreases (Fig. 13.3). It treat’s an error’s contribution to reliability improvement to
be an independent random variable having Gamma distribution. This distribution
models the fact that error corrections with large contributions to reliability growth
are removed first. This represents diminishing return as test continues.

Different reliability improvements

Fault repair adds new fault
and decreases reliability

(increases ROCOF)
ROCOF

TIME

Fig. 13.3: Random-step function model of reliability growth

Version 2 CSE IIT, Kharagpur

	Software Reliability and Quality Management
	Software Reliability Issues
	Specific Instructional Objectives
	Repeatable vs. non-repeatable software development organization
	Software reliability
	Reasons for software reliability being difficult to measure
	Hardware reliability vs. software reliability differ
	Reliability metrics
	Classification of software failures
	Reliability growth models
	Jelinski and Moranda Model
	Littlewood and Verall’s Model

