

Module
3

Requirements Analysis
and Specification

Version 2 CSE IIT, Kharagpur

Lesson
6

Formal Requirements
Specification

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Explain what a formal technique is.
• Explain what a formal specification language is.
• Differentiate between model-oriented and property-oriented approaches in

the context of requirements specification.
• Explain the operational semantics of a formal method.
• Identify the merits of formal requirements specification.
• Identify the limitations of formal requirements specification.
• Develop axiomatic specification of simple problems.

Formal technique
A formal technique is a mathematical method to specify a hardware and/or
software system, verify whether a specification is realizable, verify that an
implementation satisfies its specification, prove properties of a system without
necessarily running the system, etc. The mathematical basis of a formal method
is provided by the specification language.

Formal specification language
A formal specification language consists of two sets syn and sem, and a relation
sat between them. The set syn is called the syntactic domain, the set sem is
called the semantic domain, and the relation sat is called the satisfaction relation.
For a given specification syn, and model of the system sem, if sat (syn, sem), as
shown in fig. 3.6, then syn is said to be the specification of sem, and sem is said
to be the specificand of syn.

Fig. 3.6: sat (syn, sem)

Syntactic Domains

The syntactic domain of a formal specification language consists of an alphabet
of symbols and set of formation rules to construct well-formed formulas from the
alphabet. The well-formed formulas are used to specify a system.

Version 2 CSE IIT, Kharagpur

Semantic Domains

Formal techniques can have considerably different semantic domains. Abstract
data type specification languages are used to specify algebras, theories, and
programs. Programming languages are used to specify functions from input to
output values. Concurrent and distributed system specification languages are
used to specify state sequences, event sequences, state-transition sequences,
synchronization trees, partial orders, state machines, etc.

Satisfaction Relation

Given the model of a system, it is important to determine whether an element of
the semantic domain satisfies the specifications. This satisfaction is determined
by using a homomorphism known as semantic abstraction function. The
semantic abstraction function maps the elements of the semantic domain into
equivalent classes. There can be different specifications describing different
aspects of a system model, possibly using different specification languages.
Some of these specifications describe the system’s behavior and the others
describe the system’s structure. Consequently, two broad classes of semantic
abstraction functions are defined: those that preserve a system’s behavior and
those that preserve a system’s structure.

Model-oriented vs. property-oriented approaches

Formal methods are usually classified into two broad categories – model –
oriented and property – oriented approaches. In a model-oriented style, one
defines a system’s behavior directly by constructing a model of the system in
terms of mathematical structures such as tuples, relations, functions, sets,
sequences, etc.

 In the property-oriented style, the system's behavior is defined indirectly
by stating its properties, usually in the form of a set of axioms that the system
must satisfy.

Example:-

Let us consider a simple producer/consumer example. In a property-
oriented style, it is probably started by listing the properties of the system
like: the consumer can start consuming only after the producer has
produced an item, the producer starts to produce an item only after the
consumer has consumed the last item, etc. A good example of a
producer-consumer problem is CPU-Printer coordination. After processing
of data, CPU outputs characters to the buffer for printing. Printer, on the
other hand, reads characters from the buffer and prints them. The CPU is
constrained by the capacity of the buffer, whereas the printer is

Version 2 CSE IIT, Kharagpur

constrained by an empty buffer. Examples of property-oriented
specification styles are axiomatic specification and algebraic specification.

In a model-oriented approach, we start by defining the basic operations, p
(produce) and c (consume). Then we can state that S1 + p → S, S + c → S1.
Thus the model-oriented approaches essentially specify a program by writing
another, presumably simpler program. Examples of popular model-oriented
specification techniques are Z, CSP, CCS, etc.

Model-oriented approaches are more suited to use in later phases of life cycle
because here even minor changes to a specification may lead to drastic changes
to the entire specification. They do not support logical conjunctions (AND) and
disjunctions (OR).

Property-oriented approaches are suitable for requirements specification
because they can be easily changed. They specify a system as a conjunction of
axioms and you can easily replace one axiom with another one.

Operational semantics
Informally, the operational semantics of a formal method is the way computations
are represented. There are different types of operational semantics according to
what is meant by a single run of the system and how the runs are grouped
together to describe the behavior of the system. Some commonly used
operational semantics are as follows:

Linear Semantics:-

In this approach, a run of a system is described by a sequence (possibly infinite)
of events or states. The concurrent activities of the system are represented by
non-deterministic interleavings of the automatic actions. For example, a
concurrent activity a║b is represented by the set of sequential activities a;b and
b;a. This is simple but rather unnatural representation of concurrency. The
behavior of a system in this model consists of the set of all its runs. To make this
model realistic, usually justice and fairness restrictions are imposed on
computations to exclude the unwanted interleavings.

Branching Semantics:-

In this approach, the behavior of a system is represented by a directed graph as
shown in the fig. 3.7. The nodes of the graph represent the possible states in the
evolution of a system. The descendants of each node of the graph represent the
states which can be generated by any of the atomic actions enabled at that state.
An example involving the transactions in an ATM is shown in fig. 3.7. Although
this semantic model distinguishes the branching points in a computation, still it
represents concurrency by interleaving.

Version 2 CSE IIT, Kharagpur

Fig. 3.7: Branching semantics

Maximally parallel semantics:-

In this approach, all the concurrent actions enabled at any state are assumed to
be taken together. This is again not a natural model of concurrency since it
implicitly assumes the availability of all the required computational resources.

Partial order semantics:-

Under this view, the semantics ascribed to a system is a structure of states
satisfying a partial order relation among the states (events). The partial order
represents a precedence ordering among events, and constraints some events to
occur only after some other events have occurred; while the occurrence of other
events (called concurrent events) is considered to be incomparable. This fact
identifies concurrency as a phenomenon not translatable to any interleaved
representation.

For example, figure (fig. 3.8) shows the semantics implied by a simplified
beverage selling machine. From the figure, we can infer that beverage is
dispensed only if an inserted coin is accepted by the machine (precedence).
Similarly, preparation of ingredients and milk are done simultaneously
(concurrence). Hence, node Ingredient can be compared with node Brew, but
neither can it be compared with node Hot/Cold nor with node Accepted.

ED

A

C

A - Insert ATM Card
B - Withdraw Cash
C - Print Mini-Statement
D - Savings Account
E - Current Account

B

Version 2 CSE IIT, Kharagpur

 Dispense

 Accepted Inserted

 Ready

 Brew

 Hot/Cold

 Ingredient

Insert Coin

Get Ingredients

Reject Coin

Prepare Milk

Accept Coin

Press OK

Prepare

OK/Mix

OK/Mix

Fig. 3.8: Partial order semantics implied by a beverage selling machine

Merits of formal requirements specification
Formal methods possess several positive features, some of which are discussed
below.

• Formal specifications encourage rigour. Often, the very process of
construction of a rigorous specification is more important than the formal
specification itself. The construction of a rigorous specification clarifies
several aspects of system behavior that are not obvious in an informal
specification.

• Formal methods usually have a well-founded mathematical basis. Thus,
formal specifications are not only more precise, but also mathematically
sound and can be used to reason about the properties of a specification
and to rigorously prove that an implementation satisfies its specifications.

• Formal methods have well-defined semantics. Therefore, ambiguity in
specifications is automatically avoided when one formally specifies a
system.

• The mathematical basis of the formal methods facilitates automating the
analysis of specifications. For example, a tableau-based technique has
been used to automatically check the consistency of specifications. Also,
automatic theorem proving techniques can be used to verify that an
implementation satisfies its specifications. The possibility of automatic
verification is one of the most important advantages of formal methods.

• Formal specifications can be executed to obtain immediate feedback on
the features of the specified system. This concept of executable

Version 2 CSE IIT, Kharagpur

specifications is related to rapid prototyping. Informally, a prototype is a
“toy” working model of a system that can provide immediate feedback on
the behavior of the specified system, and is especially useful in checking
the completeness of specifications.

Limitations of formal requirements specification
It is clear that formal methods provide mathematically sound frameworks within
large, complex systems can be specified, developed and verified in a systematic
rather than in an ad hoc manner. However, formal methods suffer from several
shortcomings, some of which are the following:

• Formal methods are difficult to learn and use.
• The basic incompleteness results of first-order logic suggest that it is

impossible to check absolute correctness of systems using theorem
proving techniques.

• Formal techniques are not able to handle complex problems. This
shortcoming results from the fact that, even moderately complicated
problems blow up the complexity of formal specification and their analysis.
Also, a large unstructured set of mathematical formulas is difficult to
comprehend.

Axiomatic specification
In axiomatic specification of a system, first-order logic is used to write the pre and
post-conditions to specify the operations of the system in the form of axioms. The
pre-conditions basically capture the conditions that must be satisfied before an
operation can successfully be invoked. In essence, the pre-conditions capture
the requirements on the input parameters of a function. The post-conditions are
the conditions that must be satisfied when a function completes execution for the
function to be considered to have executed successfully. Thus, the post-
conditions are essentially constraints on the results produced for the function
execution to be considered successful.

The following are the sequence of steps that can be followed to systematically
develop the axiomatic specifications of a function:

• Establish the range of input values over which the function should behave
correctly. Also find out other constraints on the input parameters and write
it in the form of a predicate.

• Specify a predicate defining the conditions which must hold on the output
of the function if it behaved properly.

Version 2 CSE IIT, Kharagpur

• Establish the changes made to the function’s input parameters after
execution of the function. Pure mathematical functions do not change their
input and therefore this type of assertion is not necessary for pure
functions.

• Combine all of the above into pre and post conditions of the function.

Example1: -

Specify the pre- and post-conditions of a function that takes a real number
as argument and returns half the input value if the input is less than or
equal to 100, or else returns double the value.

f (x : real) : real

pre : x ∈ R

post : {(x≤100) ∧ (f(x) = x/2)} ∨ {(x>100) ∧ (f(x) = 2∗x)}

Example2: -

Axiomatically specify a function named search which takes an integer
array and an integer key value as its arguments and returns the index in
the array where the key value is present.

search(X : IntArray, key : Integer) : Integer

pre : ∃ i ∈ [Xfirst….Xlast], X[i] = key

post : {(X′[search(X, key)] = key) ∧ (X = X′)}

Here the convention followed is: If a function changes any of its input parameters
and if that parameter is named X, then it is referred to as X′ after the function
completes execution.mes faster.

Version 2 CSE IIT, Kharagpur

	Requirements Analysis and Specification
	Formal Requirements Specification
	Specific Instructional Objectives
	Formal technique
	Formal specification language
	Syntactic Domains
	Semantic Domains
	Satisfaction Relation

	Model-oriented vs. property-oriented approaches
	Operational semantics
	Linear Semantics:-
	Branching Semantics:-
	Maximally parallel semantics:-
	Partial order semantics:-

	Merits of formal requirements specification
	Limitations of formal requirements specification
	Axiomatic specification

