

Module
9

User Interface Design
Version 2 CSE IIT, Kharagpur

Lesson
22

Component-Based GUI
Development

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain what is window in terms of GUI.
• Explain what is meant by window management system.
• Identify the responsibilities of a window manager.
• Identify at least eight primary types of window objects.
• Explain what X Window is.
• Explain why the X Window is so popular.
• Explain architecture of an X System.
• Explain what is meant by visual programming.
• Differentiate between a user-centered design and a design by users.
• Explain implications of human cognition capabilities on user interface

design.
• Define seven important steps needed to design a GUI methodology.
• Prepare a check list for user interface inspection.

Window
A window is a rectangular area on the screen. A window can be considered to be
a virtual screen, in the sense that it provides an interface to the user for carrying
out independent activities, e.g. one window can be used for editing a program
and another for drawing pictures, etc.

 A window can be divided into two parts: client part, and non-client part.
The client area makes up the whole of the window, except for the borders and
scroll bars. The client area is the area available to a client application for display.
The non-client part of the window determines the look and feel of the window.
The look and feel defines a basic behavior for all windows, such as creating,
moving, resizing, and iconifying the windows. A basic window with its different
parts is shown in fig. 9.6.

Version 2 CSE IIT, Kharagpur

Fig. 9.6: Window with client and user areas marked

Window Management System

Window Management System (WMS)

A graphical user interface typically consists of a large number of windows.
Therefore, it is necessary to have some systematic way to manage these
windows. Most graphical user interface development environments do this
through a window management system (WMS). A window management
system is primarily a resource manager. It keeps track of the screen area
resource and allocates it to the different windows that seek to use the
screen. From a broader perspective, a WMS can be considered as a user
interface management system (UIMS) – which not only does resource
management, but also provides the basic behavior to the windows and
provides several utility routines to the application programmer for user
interface development. A WMS simplifies the task of a GUI designer to a
great extent by providing the basic behavior to the various windows such
as move, resize, iconify, etc. as soon as they are created and by providing
the basic routines to manipulate the windows from the application such as
creating, destroying, changing different attributes of the windows, and
drawing text, lines, etc.

A WMS consists of two parts (as shown in fig. 9.7):

Version 2 CSE IIT, Kharagpur

• a window manager, and
• a window system.

Fig. 9.7: Window Management System

Window Manager and Window System

Window manager is the component of WMS with which the end user
interacts to do various window-related operations such as window
repositioning, window resizing, iconification, etc. The window manager is
built on the top of the window system in the sense that it makes use of
various services provided by the window system. The window manager
and not the window system determines how the windows look and
behave. In fact, several kinds of window managers can be developed
based on the same window system. The window manager can be
considered as a special kind of client that makes use of the services
(function calls) supported by the window system. The application
programmer can also directly invoke the services of the window system to
develop the user interface. The relationship between the window
manager, window system, and the application program is shown in fig.
9.7. This figure shows that the end-user can either interact with the
application itself or with the window manager (resize, move, etc.) and both

Version 2 CSE IIT, Kharagpur

the application and the window manager invoke services of the window
manager.

Window Manager
The window manager is responsible for managing and maintaining the non-client
area of a window. Window manager manages the real-estate policy, provides
look and feel of each individual window.

Types of widgets (window objects)
Different interface programming packages support different widget sets.
However, a surprising number of them contain similar kinds of widgets, so that
one can think of a generic widget set which is applicable to most interfaces. The
following widgets are representatives of this generic class.

Label widget. This is probably one of the simplest widgets. A label
widget does nothing except to display a label, i.e. it does not have any
other interaction capabilities and is not sensitive to mouse clicks. A label
widget is often used as a part of other widgets.

Container widget. These widgets do not stand by themselves, but exist
merely to contain other widgets. Other widgets are created as children of
the container widget. When the container widget is moved or resized, its
children widget also get moved or resized. A container widget has no
callback routines associated with it.

Pop-up menu. These are transient and task specific. A pop-up menu
appears upon pressing the mouse button, irrespective of the mouse
position.

Pull-down menu. These are more permanent and general. You have to
move the cursor to a specific location and pull down this type of menu.

Dialog boxes. We often need to select multiple elements from a selection
list. A dialog box remains visible until explicitly dismissed by the user. A
dialog box can include areas for entering text as well as values. If an apply
command is supported in a dialog box, the newly entered values can be
tried without dismissing the box. Through most dialog boxes ask you to
enter some information, there are some dialog boxes which are merely
informative, alerting you to a problem with your system or an error you
have made. Generally, these boxes ask you to read the information
presented and then click OK to dismiss the box.

Push button. A push button contains key words or pictures that describe
the action that is triggered when you activate the button. Usually, the

Version 2 CSE IIT, Kharagpur

action related to a push button occurs immediately when you click a push
button unless it contains an ellipsis (…). A push button with an ellipsis
generally indicates that another dialog box will appear.

Radio buttons. A set of radio buttons is used when only one option has
to be selected out of many options. A radio button is a hollow circle
followed by text describing the option it stands for. When a radio button is
selected, it appears filled and the previously selected radio button from the
group is unselected. Only one radio button from a group can be selected
at any time. This operation is similar to that of the band selection buttons
that were available in old radios.

Combo boxes. A combo box looks like a button until the user interacts
with it. When the user presses or clicks it, the combo box displays a menu
of items to choose from. Normally a combo box is used to display either
one-of-many choices when space is limited, the number of choices is
large, or when the menu items are computed at run-time.

X-Window.
The X-window functions are low-level functions written in C language which can
be called from application programs. But only the very serious application
designer would program directly using the X-windows library routines. Built on
top of X-windows are higher-level functions collectively called Xtoolkit. Xtoolkit
consists of a set of basic widgets and a set of routines to manipulate these
widgets. One of the most widely used widget sets is X/Motif. Digital Equipment
Corporation (DEC) used the basic X-window functions to develop its own look
and feel for interface designs called DECWindows.

Popularity of X-Window
One of the important reasons behind the extreme popularity of the X-window
system is probably due to the fact that it allows development of portable GUIs.
Applications developed using X-window system are device-independent. Also,
applications developed using the X-window system become network independent
in the sense that the interface would work just as well on a terminal connected
anywhere on the same network as the computer running the application is.
Network-independent GUI operation has been schematically represented in the
fig. 9.8. Here, “A” is the computer application in which the application is running.
“B” can be any computer on the network from where interaction with the
application can be made. Network-independent GUI was pioneered by the X-
window system in the mid-eighties at MIT (Massachusetts Institute of
Technology) with support from DEC (Digital Equipment Corporation). Now-a-
days many user interface development systems support network-independent
GUI development, e.g. the AWT and Swing components of Java.

Version 2 CSE IIT, Kharagpur

Fig. 9.8: Network-independent GUI

Architecture of an X-System

The X-architecture is pictorially depicted in fig. 9.9. The different terms used in
this diagram are explained below.

Fig. 9.9: Architecture of the X-System

Version 2 CSE IIT, Kharagpur

X-server. The X server runs on the hardware to which the display
and keyboard attached. The X server performs low-level graphics,
manages window, and user input functions. The X server controls
accesses to a bit-mapped graphics display resource and manages
it.

X-protocol. The X protocol defines the format of the requests
between client applications and display servers over the network.
The X protocol is designed to be independent of hardware,
operating systems, underlying network protocol, and the
programming language used.

X-library (Xlib). The Xlib provides a set of about 300 utility
routines for applications to call. These routines convert procedure
calls into requests that are transmitted to the server. Xlib provides
low level primitives for developing an user interface, such as
displaying a window, drawing characteristics and graphics on the
window, waiting for specific events, etc.

Xtoolkit (Xt). The Xtoolkit consists of two parts: the intrinsics and
the widgets. We have already seen that widgets are predefined
user interface components such as scroll bars, push buttons, etc.
for designing GUIs. Intrinsics are a set of about a dozen library
routines that allow a programmer to combine a set of widgets into a
user interface. In order to develop a user interface, the designer
has to put together the set of components (widgets) he needs, and
then he needs to define the characteristics (called resources) and
behavior of these widgets by using the intrinsic routines to complete
the development of the interface. Therefore, developing an
interface using Xtoolkit is much easier than developing the same
interface using only X library.

Visual Programming

Visual programming is the drag and drop style of program development. In this
style of user interface development, a number of visual objects (icons)
representing the GUI components are provided by the programming
environment. The application programmer can easily develop the user interface
by dragging the required component types (e.g. menu, forms, etc.) from the
displayed icons and placing them wherever required. Thus, visual programming
can be considered as program development through manipulation of several
visual objects. Reuse of program components in the form of visual objects is an
important aspect of this style of programming. Though popular for user interface
development, this style of programming can be used for other applications such
as Computer-Aided Design application (e.g. factory design), simulation, etc. User

Version 2 CSE IIT, Kharagpur

interface development using a visual programming language greatly reduces the
effort required to develop the interface.

Examples of popular visual programming languages are Visual Basic,

Visual C++, etc. Visual C++ provides tools for building programs with window-
based user interfaces for Microsoft Windows environments. In Visual C++, menu
bars, icons, and dialog boxes, etc. can be designed easily before adding them to
program. These objects are called as resources. Shape, location, type, and size
of the dialog boxes can be designed before writing any C++ code for the
application.

Difference between user-centered design and design by
users

• User-centered design is the theme of almost all modern user interface
design techniques. However, user-centered design does not mean design
by users. One should not get the users to design the interface, nor should
one assume that the user’s opinion of which design alternative is superior
is always right.

• Users have good knowledge of the tasks they have to perform, they also
know whether they find an interface easy to learn and use but they have
less understanding and experience in GUI design than the GUI
developers.

Implications of human cognition capabilities on user interface
design

An area of human-computer interaction where extensive research has been
conducted is how human cognitive capabilities and limitations influence the way
an interface should be designed. The following are some of the prominent issues
extensively discussed in the literature.

• Limited memory. Humans can remember at most seven unrelated items
of information for short periods of time. Therefore, the GUI designer
should not require the user to remember too many items of information at
a time. It is the GUI designer’s responsibility to anticipate what information
the user will need at what point of each task and to ensure that the
relevant information is displayed for the user to see. Showing the user
some information at some point, and then asking him to recollect that
information in a different screen where they no longer see the information
places a memory burden on the user and should be avoided wherever
possible.

• Frequent task closure. Doing a task (except for very trivial tasks)

requires doing several subtasks. When the system gives a clear feedback

Version 2 CSE IIT, Kharagpur

to the user that a task has been successfully completed, the user gets a
sense of achievement and relief. The user can clear out information
regarding the completed task from memory. This is known as task closure.
When the overall task is fairly big and complex, it should be divided into
subtasks, each of which has a clear subgoal which can be a closure point.

• Recognition rather than recall. Information recall incurs a larger

memory burden on the users and is to be avoided as far as possible. On
the other hand, recognition of information from the alternatives shown to
him is more acceptable.

• Procedural versus object-oriented. Procedural designs focus on tasks,

prompting the user in each step of the task, giving them few options for
anything else. This approach is the best applied in situations where the
tasks are narrow and well-defined or where the users are inexperienced,
such as an ATM. An object-oriented interface on the other hand focuses
on objects. This allows the users a wide range of options.

GUI design methodology
GUI design methodology consists of the following important steps:

• Examine the use case model of the software. Interview, discuss, and
review the GUI issues with the end-users.

• Task and object modeling

• Metaphor selection

• Interaction design and rough layout

• Detailed presentation and graphics design

• GUI construction

• Usability evaluation

The starting point for GUI design is the use case model. This captures the
important tasks the users need to perform using the software. As far as
possible, a user interface should be developed using one or more metaphors.
Metaphors help in interface development at lower effort and reduced costs for
training the users. Over time, people have developed efficient methods of
dealing with some commonly occurring situations. These solutions are the
themes of the metaphors. Metaphors can also be based on physical objects
such as a visitor’s book, a catalog, a pen, a brush, a scissor, etc. A solution
based on metaphors is easily understood by the users, reducing learning time
and training costs. Some commonly used metaphors are the following:

Version 2 CSE IIT, Kharagpur

• White board
• Shopping cart
• Desktop
• Editor’s work bench
• White page
• Yellow page
• Office cabinet
• Post box
• Bulletin board
• Visitor’s book

Task and Object Modeling
A task is a human activity intended to achieve some goals. Example of task goals
can be:

• reserve an airline seat
• buy an item
• transfer money from one account to another
• book a cargo for transmission to an address

A task model is an abstract model of the structure of a task. A task model should
show the structure of the subtasks that the user needs to perform to achieve the
overall task goal. Each task can be modeled as a hierarchy of subtasks. A task
model can be drawn using a graphical notation similar to the activity network
model. Tasks can be drawn as boxes with lines showing how a task is broken
down into subtasks. An underlined task box would mean that no further
decomposition of the task is required. An example decomposition of a task into
subtasks is shown in fig. 9.10.

Fig. 9.10: Decomposition of a task into subtasks

Version 2 CSE IIT, Kharagpur

Selecting a metaphor

The first place one should look for while trying to identify the candidate
metaphors is the set of parallels to objects, tasks, and terminologies of the use
cases. If no obvious metaphors can be found, then the designer can fall back on
the metaphors of the physical world of concrete objects. The appropriateness of
each candidate metaphor should be tested by restating the objects and tasks of
the user interface model in terms of the metaphor. Another criterion that can be
used to judge metaphors is that the metaphor should be as simple as possible,
the operations using the metaphor should be clear and coherent and it should fit
with the users’ ‘common sense’ knowledge. For example, it would indeed be very
awkward and a nuisance for the users if the scissor metaphor is used to glue
different items.

Example: We need to develop the interface for the automation shop, where the
users can examine the contents of the shop through a web interface and can
order them.

 Several metaphors are possible for different parts of this problem.

• Different items can be picked up from racks and examined. The

user can request for the catalog associated with the items by
clicking on the item.

• Related items can be picked from the drawers of an item

cabinet.

• The items can be organized in the form of a book, similar to the

way information about electronic components are organized in a
semiconductor hand book.

Once the users make up their mind about an item they wish to buy, they can put
them into a shopping cart.

User interface inspection
Nielson [Niel94] studied common usability problems and built a check list of
points which can be easily checked for an interface. The following check list is
based on the work of Nielson [Niel94].

Visibility of the system status. The system should as far as possible
keep the user informed about the status of the system and what is going
on.

Version 2 CSE IIT, Kharagpur

Match between the system and the real world. The system should
speak the user’s language words, phrases, and concepts familiar to that
used by the user, rather than using system-oriented terms.

Undoing mistakes. The user should feel that he is in control rather than
feeling helpless or to be at the control of the system. An important step
toward this is that the users should be able to undo and redo operations.

Consistency. The user should not have to wonder whether different
words, concepts, and operations mean the same thing in different
situations.

Recognition rather than recall. The user should not have to recall
information which was presented in another screen. All data and
instructions should be visible on the screen for selection by the user.

Support for multiple skill levels. Provision of accelerations for
experienced users allows them to efficiently carry out the actions they
frequently require to perform.

Aesthetic and minimalist design. Dialogs should not contain
information which are irrelevant and are rarely needed. Every extra unit of
information in a dialog competes with the relevant units and diminishes
their visibility.

Help and error messages. These should be expressed in plain language
(no codes), precisely indicating the problem, and constructively suggesting
a solution.

Error prevention. Error possibilities should be minimized. A key principle
in this regard is to prevent the user from entering wrong values. In
situations where a choice has to be made from among a discrete set of
values, the control should present only the valid values using a drop-down
list, a set of option buttons or a similar multichoice control. When a specific
format is required for attribute data, the entered data should be validated
when the user attempts to submit the data.

Version 2 CSE IIT, Kharagpur

The following questions have been designed to test the
identified objectives for this module:

1. List five desirable characteristics that a good user interface should
possess.

2. What is the difference between user guidance and on-line help system in

the user interface of a software system?

3. Discuss the different ways in which on-line help can be provided to a user

while he is executing the software.

4. What is the difference between a mode-based interface and a modeless

interface?

5. Compare the relative advantages of textual and graphical user interfaces.

6. Compare the relative advantages of command language, menu-based,

and direct manipulation interfaces.

7. List the important advantages and disadvantages of a command

language interface.

8. List the important advantages and disadvantages of a menu-based

interface.

9. Compare the relative advantages of scrolling menu, hierarchical menu,

and walking menu as techniques for organizing user commands.

10. What do you understand by an iconic interface? Explain how you

can issue commands using an iconic interface.

11. List the important advantages and disadvantages of a direct manipulation

interface.

12. Suppose you have been asked to design the user interface of a large

software product. Would you choose a menu-based, a direct
manipulation, a command language-based, or a mixture of all these types
of interfaces to develop the interface for your product? Justify your
choice.

13. Explain the reason of popularity of component-based GUI development.

14. What is Window Management System (WMS)? Represent the main

components of a WMS in a schematic diagram and explain their roles.

Version 2 CSE IIT, Kharagpur

15. What are the advantages of using a Window Management System
(WMS) for a GUI design? Name some commercially available Window
Management Systems.

16. Explain the responsibilities of a window manager in the context of

Window Management System (WMS).

17. Discuss the architecture of the X window system.

18. What are the important advantages of using the X window system for

developing graphical user interfaces?

19. What do you understand by visual programming?

20. Distinguish between a user-centric interface design and interface design

by users.

21. How does the human cognition capabilities and limitations influence

human-computer user interface designing?

22. What do you understand by a metaphor in a user interface design? Is a

metaphor-based user interface design advantageous? Justify it.

23. List a few metaphors which can be used for user interface design.

24. What is meant by a task model? Explain it with examples.

25. Do prepare a check list for user interface inspection.

Mark all options which are true.

1. The interface of a software product which is supporting a large number of
commands can be developed using
□ mode-based interface
□ modeless interface
□ either mode-based interface or modeless interface
□ neither mode-based interface nor modeless interface

2. The interface that can be implemented even on cheap alphanumeric
terminals is
□ menu-based interface
□ command language-based interface
□ iconic interface
□ none of them

Version 2 CSE IIT, Kharagpur

3. The term “iconic interface” is applicable to
□ command language-based interface
□ menu-based interface
□ direct manipulation interface
□ none of the above

4. A command composition facility can be made available in case of

□ menu-based interface
□ command language-based interface
□ direct manipulation interface
□ none of the above

5. A development style based on widgets is called
□ command language-based GUI development style
□ component-based GUI development style
□ menu-based GUI development style
□ direct manipulation based GUI development style

6. In the case of X Window architecture, the format of the requests between
client applications and display servers over the network is defined by
□ X-server
□ X-library
□ X-protocol
□ Xtoolkit

7. The low level primitives for developing a user interface, such as displaying
a window, drawing characteristics and graphics on the window etc. in case
of X Window system are provided by

□ X-server
□ X-library
□ X-protocol
□ Xtoolkit

Mark the following as either True or False. Justify your
answer.

1. A good user interface must provide feedback to various user actions.

2. A good user interface should support multiple levels of sophistication of

command issue procedure for different categories of users.

3. In the context of user interface, “Guidance” and “On-line Help” are used
for the same purpose.

Version 2 CSE IIT, Kharagpur

4. Novice users normally prefer command language interfaces over both
menu-based and iconic interfaces.

5. Intrinsics of Xtoolkit of a X Window system are a set of about dozen

library routines that allow a programmer/user interface designer to
combine a set of widgets into a user interface.

6. Visual programming style is restricted to user interface development only.

7. Visual programming can be considered as program development through

manipulation of several visual objects.

8. For modern user interfaces, LOC is an accurate measure of the size of
the interface.

9. When a window is a modal dialog, no other windows in the application are

accessible until the current window is closed.

10. Graphical User Interfaces should let the user recall commands rather than
have him recognize commands from a repertoire of displayed commands.

11. In case of good user interface design, the GUI designer should try to

reduce the number of screens by cramping as much information on a
screen as possible.

Version 2 CSE IIT, Kharagpur

	User Interface Design
	Component-Based GUI Development
	Specific Instructional Objectives
	Window
	Window Management System
	Window Management System (WMS)
	Window Manager and Window System

	Window Manager
	Types of widgets (window objects)
	X-Window.
	Popularity of X-Window
	Architecture of an X-System
	Visual Programming
	Difference between user-centered design and design by users
	Implications of human cognition capabilities on user interface design
	GUI design methodology
	User interface inspection
	questions
	Mark true.
	True or False

