

Module
10

Coding and Testing
Version 2 CSE IIT, Kharagpur

Lesson
23

Code Review

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Identify the necessity of coding standards.
• Differentiate between coding standards and coding guidelines.
• State what code review is.
• Explain what clean room testing is.
• Explain the necessity of properly documenting software.
• Differentiate between internal documentation and external

documentation.
• Explain what is testing.
• Explain the aim of testing.
• Differentiate between verification and validation.
• Explain why random selection of test cases is not effective.
• Differentiate between functional testing and structural testing.

Coding
Good software development organizations normally require their programmers to
adhere to some well-defined and standard style of coding called coding
standards. Most software development organizations formulate their own coding
standards that suit them most, and require their engineers to follow these
standards rigorously. The purpose of requiring all engineers of an organization to
adhere to a standard style of coding is the following:

• A coding standard gives a uniform appearance to the codes written by
different engineers.

• It enhances code understanding.

• It encourages good programming practices.

A coding standard lists several rules to be followed during coding, such as the
way variables are to be named, the way the code is to be laid out, error return
conventions, etc.

Coding standards and guidelines
Good software development organizations usually develop their own coding
standards and guidelines depending on what best suits their organization and the
type of products they develop.
The following are some representative coding standards.

Rules for limiting the use of global: These rules list what types of data can be
declared global and what cannot.

Version 2 CSE IIT, Kharagpur

Contents of the headers preceding codes for different modules: The
information contained in the headers of different modules should be standard for
an organization. The exact format in which the header information is organized in
the header can also be specified. The following are some standard header data:

• Name of the module.
• Date on which the module was created.
• Author’s name.
• Modification history.
• Synopsis of the module.
• Different functions supported, along with their input/output parameters.
• Global variables accessed/modified by the module.

Naming conventions for global variables, local variables, and constant
identifiers: A possible naming convention can be that global variable names
always start with a capital letter, local variable names are made of small letters,
and constant names are always capital letters.

Error return conventions and exception handling mechanisms: The way
error conditions are reported by different functions in a program are handled
should be standard within an organization. For example, different functions while
encountering an error condition should either return a 0 or 1 consistently.

The following are some representative coding guidelines recommended by many
software development organizations.

Do not use a coding style that is too clever or too difficult to understand:
Code should be easy to understand. Many inexperienced engineers actually take
pride in writing cryptic and incomprehensible code. Clever coding can obscure
meaning of the code and hamper understanding. It also makes maintenance
difficult.

Avoid obscure side effects: The side effects of a function call include
modification of parameters passed by reference, modification of global variables,
and I/O operations. An obscure side effect is one that is not obvious from a
casual examination of the code. Obscure side effects make it difficult to
understand a piece of code. For example, if a global variable is changed
obscurely in a called module or some file I/O is performed which is difficult to
infer from the function’s name and header information, it becomes difficult for
anybody trying to understand the code.

Do not use an identifier for multiple purposes: Programmers often use the
same identifier to denote several temporary entities. For example, some

Version 2 CSE IIT, Kharagpur

programmers use a temporary loop variable for computing and a storing the final
result. The rationale that is usually given by these programmers for such multiple
uses of variables is memory efficiency, e.g. three variables use up three memory
locations, whereas the same variable used in three different ways uses just one
memory location. However, there are several things wrong with this approach
and hence should be avoided. Some of the problems caused by use of variables
for multiple purposes as follows:

• Each variable should be given a descriptive name indicating its purpose.

This is not possible if an identifier is used for multiple purposes. Use of a
variable for multiple purposes can lead to confusion and make it difficult
for somebody trying to read and understand the code.

• Use of variables for multiple purposes usually makes future

enhancements more difficult.

The code should be well-documented: As a rule of thumb, there must be at
least one comment line on the average for every three-source line.

The length of any function should not exceed 10 source lines: A function
that is very lengthy is usually very difficult to understand as it probably carries out
many different functions. For the same reason, lengthy functions are likely to
have disproportionately larger number of bugs.

Do not use goto statements: Use of goto statements makes a program
unstructured and makes it very difficult to understand.

Code review
Code review for a model is carried out after the module is successfully compiled
and the all the syntax errors have been eliminated. Code reviews are extremely
cost-effective strategies for reduction in coding errors and to produce high quality
code. Normally, two types of reviews are carried out on the code of a module.
These two types code review techniques are code inspection and code walk
through.

Code Walk Throughs
Code walk through is an informal code analysis technique. In this technique, after
a module has been coded, successfully compiled and all syntax errors
eliminated. A few members of the development team are given the code few
days before the walk through meeting to read and understand code. Each
member selects some test cases and simulates execution of the code by hand
(i.e. trace execution through each statement and function execution). The main
objectives of the walk through are to discover the algorithmic and logical errors in
the code. The members note down their findings to discuss these in a walk
through meeting where the coder of the module is present.

Version 2 CSE IIT, Kharagpur

 Even though a code walk through is an informal analysis technique, several
guidelines have evolved over the years for making this naïve but useful analysis
technique more effective. Of course, these guidelines are based on personal
experience, common sense, and several subjective factors. Therefore, these
guidelines should be considered as examples rather than accepted as rules to be
applied dogmatically. Some of these guidelines are the following.

• The team performing code walk through should not be either too big or too
small. Ideally, it should consist of between three to seven members.

• Discussion should focus on discovery of errors and not on how to fix the

discovered errors.

• In order to foster cooperation and to avoid the feeling among engineers
that they are being evaluated in the code walk through meeting, managers
should not attend the walk through meetings.

Code Inspection
In contrast to code walk through, the aim of code inspection is to discover some
common types of errors caused due to oversight and improper programming. In
other words, during code inspection the code is examined for the presence of
certain kinds of errors, in contrast to the hand simulation of code execution done
in code walk throughs. For instance, consider the classical error of writing a
procedure that modifies a formal parameter while the calling routine calls that
procedure with a constant actual parameter. It is more likely that such an error
will be discovered by looking for these kinds of mistakes in the code, rather than
by simply hand simulating execution of the procedure. In addition to the
commonly made errors, adherence to coding standards is also checked during
code inspection. Good software development companies collect statistics
regarding different types of errors commonly committed by their engineers and
identify the type of errors most frequently committed. Such a list of commonly
committed errors can be used during code inspection to look out for possible
errors.

Following is a list of some classical programming errors which can be checked
during code inspection:

• Use of uninitialized variables.

• Jumps into loops.

• Nonterminating loops.

• Incompatible assignments.

• Array indices out of bounds.

• Improper storage allocation and deallocation.

Version 2 CSE IIT, Kharagpur

• Mismatches between actual and formal parameter in procedure calls.

• Use of incorrect logical operators or incorrect precedence among
operators.

• Improper modification of loop variables.

• Comparison of equally of floating point variables, etc.

Clean room testing
Clean room testing was pioneered by IBM. This type of testing relies heavily on
walk throughs, inspection, and formal verification. The programmers are not
allowed to test any of their code by executing the code other than doing some
syntax testing using a compiler. The software development philosophy is based
on avoiding software defects by using a rigorous inspection process. The
objective of this software is zero-defect software.

The name ‘clean room’ was derived from the analogy with semi-conductor
fabrication units. In these units (clean rooms), defects are avoided by
manufacturing in ultra-clean atmosphere. In this kind of development, inspections
to check the consistency of the components with their specifications has replaced
unit-testing.

This technique reportedly produces documentation and code that is more reliable
and maintainable than other development methods relying heavily on code
execution-based testing.

The clean room approach to software development is based on five
characteristics:

• Formal specification: The software to be developed is formally
specified. A state-transition model which shows system responses to
stimuli is used to express the specification.

• Incremental development: The software is partitioned into increments
which are developed and validated separately using the clean room
process. These increments are specified, with customer input, at an
early stage in the process.

• Structured programming: Only a limited number of control and data
abstraction constructs are used. The program development process is
process of stepwise refinement of the specification.

• Static verification: The developed software is statically verified using
rigorous software inspections. There is no unit or module testing
process for code components.

Version 2 CSE IIT, Kharagpur

• Statistical testing of the system: The integrated software increment
is tested statistically to determine its reliability. These statistical tests
are based on the operational profile which is developed in parallel with
the system specification.

The main problem with this approach is that testing effort is
increased as walk throughs, inspection, and verification are time-
consuming.

Software documentation
When various kinds of software products are developed then not only the
executable files and the source code are developed but also various kinds of
documents such as users’ manual, software requirements specification (SRS)
documents, design documents, test documents, installation manual, etc are also
developed as part of any software engineering process. All these documents are
a vital part of good software development practice. Good documents are very
useful and server the following purposes:

• Good documents enhance understandability and maintainability of a
software product. They reduce the effort and time required for
maintenance.

• Use documents help the users in effectively using the system.

• Good documents help in effectively handling the manpower turnover
problem. Even when an engineer leaves the organization, and a new
engineer comes in, he can build up the required knowledge easily.

• Production of good documents helps the manager in effectively
tracking the progress of the project. The project manager knows that
measurable progress is achieved if a piece of work is done and the
required documents have been produced and reviewed.

Different types of software documents can broadly be classified into the
following:

• Internal documentation

• External documentation

Internal documentation is the code comprehension features provided as part of
the source code itself. Internal documentation is provided through appropriate
module headers and comments embedded in the source code. Internal
documentation is also provided through the useful variable names, module and
function headers, code indentation, code structuring, use of enumerated types
and constant identifiers, use of user-defined data types, etc. Careful experiments

Version 2 CSE IIT, Kharagpur

suggest that out of all types of internal documentation meaningful variable names
is most useful in understanding the code. This is of course in contrast to the
common expectation that code commenting would be the most useful. The
research finding is obviously true when comments are written without thought.
For example, the following style of code commenting does not in any way help in
understanding the code.

 a = 10; /* a made 10 */
But even when code is carefully commented, meaningful variable names still are
more helpful in understanding a piece of code. Good software development
organizations usually ensure good internal documentation by appropriately
formulating their coding standards and coding guidelines.

External documentation is provided through various types of supporting
documents such as users’ manual, software requirements specification
document, design document, test documents, etc. A systematic software
development style ensures that all these documents are produced in an orderly
fashion.

Program Testing
Testing a program consists of providing the program with a set of test inputs (or
test cases) and observing if the program behaves as expected. If the program
fails to behave as expected, then the conditions under which failure occurs are
noted for later debugging and correction.

Some commonly used terms associated with testing are:

• Failure: This is a manifestation of an error (or defect or bug). But, the
mere presence of an error may not necessarily lead to a failure.

• Test case: This is the triplet [I,S,O], where I is the data input to the
system, S is the state of the system at which the data is input, and O is
the expected output of the system.

• Test suite: This is the set of all test cases with which a given software
product is to be tested.

Aim of testing
The aim of the testing process is to identify all defects existing in a software
product. However for most practical systems, even after satisfactorily carrying out
the testing phase, it is not possible to guarantee that the software is error free.
This is because of the fact that the input data domain of most software products
is very large. It is not practical to test the software exhaustively with respect to
each value that the input data may assume. Even with this practical limitation of
the testing process, the importance of testing should not be underestimated. It
must be remembered that testing does expose many defects existing in a

Version 2 CSE IIT, Kharagpur

software product. Thus testing provides a practical way of reducing defects in a
system and increasing the users’ confidence in a developed system.

Differentiate between verification and validation.
Verification is the process of determining whether the output of one phase of
software development conforms to that of its previous phase, whereas validation
is the process of determining whether a fully developed system conforms to its
requirements specification. Thus while verification is concerned with phase
containment of errors, the aim of validation is that the final product be error free.

Design of test cases
Exhaustive testing of almost any non-trivial system is impractical due to the fact
that the domain of input data values to most practical software systems is either
extremely large or infinite. Therefore, we must design an optional test suite that is
of reasonable size and can uncover as many errors existing in the system as
possible. Actually, if test cases are selected randomly, many of these randomly
selected test cases do not contribute to the significance of the test suite, i.e. they
do not detect any additional defects not already being detected by other test
cases in the suite. Thus, the number of random test cases in a test suite is, in
general, not an indication of the effectiveness of the testing. In other words,
testing a system using a large collection of test cases that are selected at
random does not guarantee that all (or even most) of the errors in the system will
be uncovered. Consider the following example code segment which finds the
greater of two integer values x and y. This code segment has a simple
programming error.
 If (x>y) max = x;
 else max = x;
For the above code segment, the test suite, {(x=3,y=2);(x=2,y=3)} can detect the
error, whereas a larger test suite {(x=3,y=2);(x=4,y=3);(x=5,y=1)} does not
detect the error. So, it would be incorrect to say that a larger test suite would
always detect more errors than a smaller one, unless of course the larger test
suite has also been carefully designed. This implies that the test suite should be
carefully designed than picked randomly. Therefore, systematic approaches
should be followed to design an optimal test suite. In an optimal test suite, each
test case is designed to detect different errors.

Functional testing vs. Structural testing
In the black-box testing approach, test cases are designed using only the
functional specification of the software, i.e. without any knowledge of the internal
structure of the software. For this reason, black-box testing is known as
functional testing.

Version 2 CSE IIT, Kharagpur

 On the other hand, in the white-box testing approach, designing test cases
requires thorough knowledge about the internal structure of software, and
therefore the white-box testing is called structural testing..

Version 2 CSE IIT, Kharagpur

	Coding and Testing
	Code Review
	Specific Instructional Objectives
	Coding
	Coding standards and guidelines
	Code review
	Code Walk Throughs
	Code Inspection

	Clean room testing
	Software documentation
	Program Testing
	Aim of testing
	Differentiate between verification and validation.
	Design of test cases
	Functional testing vs. Structural testing

