

Module
17

Client-Server Software
Development

Version 2 CSE IIT, Kharagpur

Lesson
41

Basic Ideas on Client-

Server Software
Development and

Client-Server
Architecture

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain what is a client-server software.
• Explain the advantages of client-server software over centralized

solutions.
• Explain the factors responsible for making client-server solutions feasible,

affordable, and popular in recent times.
• Identify the advantages of client-server software development compared

to monolithic ones.
• Identify the disadvantages of client-server software.
• Differentiate between host-slave computing and client-server computing.

Give an example for each.
• Explain the two-tier client-server architecture.
• Explain the limitations of two-tier client-server architecture.
• Explain three-tier client-server architecture.
• Identify the functions of middleware.
• Identify the popular middleware standards.

Client-server software
A client is basically a consumer of services and server is a provider of services
as shown in fig. 17.1. A client requests some services from the server and the
server provides the required services to the client. Client and server are usually
software components running on independent machines. Even a single machine
can sometimes acts as a client and at other times a server depending on the
situations. Thus, client and server are mere roles.

Fig. 17.1: Client-server model

Example:
A man was visiting his friend’s town in his car. The man had a handheld
computer (client). He knew his friend’s name but he didn’t know his friend’s

Version 2 CSE IIT, Kharagpur

address. So he sent a wireless message (request) to the nearest “address
server” by his handheld computer to enquire his friend’s address. The message
first came to the base station. The base station forwarded that message through
landline to local area network where the server is located. After some processing,
LAN sent back that friend’s address (service) to the man.

Advantages of client-server software

The client-server software architecture is a versatile, message-based and
modular infrastructure that is intended to improve usability, flexibility,
interoperability and scalability as compared to centralized, mainframe, time
sharing computing.

Factors for feasibility and popularity of client-server solutions
Client-server concept is not a new concept. It already existed in the society for
long time. A doctor is a client of a barber, who in turn is a client of the lawyer and
so forth. Something can be a server in some context and a client in some other
context. So client and server are mere roles as shown in fig. 17.2.

Fig. 17.2: Client and server as roles

There are many reasons for the popularity of client-server software development.
Some reasons are:

Version 2 CSE IIT, Kharagpur

• Computers have become small, decentralized and cheap

• Networking has become affordable, reliable, and efficient.

• Client-server systems divide up the work of computing among many
separate machines. Thus client-server solutions are modular and loosely
coupled. So they are easy to develop and maintain.

Advantages of client-server software development
There are many advantages of client-server software products as compared to
monolithic ones. These advantages are:

• Simplicity and modularity – Client and server components are loosely

coupled and therefore modular. These are easy to understand and
develop.

• Flexibility – Both client and server software can be easily migrated across
different machines in case some machine becomes unavailable or
crashes. The client can access the service anywhere. Also, clients and
servers can be added incrementally.

• Extensibility – More servers and clients can be effortlessly added.

• Concurrency – The processing is naturally divided across several
machines. Clients and servers reside in different machines which can
operate in parallel and thus processing becomes faster.

• Cost Effectiveness – Clients can be cheap desktop computers whereas

severs can be sophisticated and expensive computers. To use a
sophisticated software, one needs to own only a cheap client and invoke
the server.

• Specialization – One can have different types of computers to run

different types of servers. Thus, servers can be specialized to solve some
specific problems.

• Current trend – Mobile computing implicitly uses client-server technique.

Cell phones (handheld computers) are being provided with small
processing power, keyboard, small memory, and LCD display. Cell
phones cannot really compute much as they have very limited processing
power and storage capacity but they can act as clients. The handhold
computers only support the interface to place requests on some remote
servers.

Version 2 CSE IIT, Kharagpur

• Application Service Providers (ASPs) – There are many application
software products which are very expensive. Thus it makes prohibitively
costly to own those applications. The cost of those applications often runs
into millions of dollars. For example, a Chemical Simulation Software
named “Aspen” is very expensive but very powerful. For small industries it
would not be practical to own that software. Application Service Providers
can own ASPEN and let the small industries use it as client and charge
them based on usage time. A client and simply logs in and ASP charges
according to the time that the software is used.

• Component-based development – It is the enabler of the client-server

technology. Component-based development is radically different from
traditional software development. In component-based development, a
developer essentially integrates pre-built components purchased off-the-
shelf. This is akin to the way hardware developers integrate ICs on a
Printed Circuit Board (PCB). Components might reside on different
computers which act as servers and clients.

• Fault-tolerance – Client-server based systems are usually fault-tolerant.

There can be many servers. If one server crashes then client requests can
be switched to a redundant server.

There are many other advantages of client-server software. For example, we can
locate a server near to the client. There might be several servers and the client
requests can be routed to the nearest server. This would reduce the
communication overhead.

Disadvantages of client-server software
There are several disadvantages of client-server software development. Those
disadvantages are:

• Security – In a monolithic application, implementation of security is very

easy. But in a client-server based development a lot of flexibility is
provided and a client can connect from anywhere. This makes it easy for
hackers to break into the system. Therefore, ensuring security in client-
server system is very challenging.

• Servers can be bottlenecks – Servers can turn out to be bottlenecks
because many clients might try to connect to a server at the same time.
This problem arises due to the flexibility given that any client can connect
anytime required.

• Compatibility – Clients and servers may not be compatible to each other.
Since the client and server components may be manufactured by different

Version 2 CSE IIT, Kharagpur

vendors, they may not be compatible with respect to data types, language,
etc.

• Inconsistency – Replication of servers is a problem as it can make data
inconsistent.

Host-slave computing vs. client-server computing
An example of a host-slave computing is a Railway-reservation system. The
software is divided into two parts – one resides on the terminals of the booking
clerks. The master at any time directs the slaves what to do. A slave can only
make requests and master takes over and tells what to do.

 On the other hand, in a client-server computing, different components are
interfaced using an open protocol. In a master-slave they are proprietary. An
example of a client-server system is a world wide web.

Two-tier client-server architecture
The simplest way to connect clients and servers is a two-tier architecture as
shown in fig. 17.3. In a two-tier architecture, any client can get service from any
server by initiating a request over the network. With two tier client-server
architectures, the user interface is usually located in the user’s desktop and the
services are usually supported by a server that is a powerful machine that can
service many clients. Processing is split between the user interface and the
database management server. There are a number of software vendors who
provide tools to simplify development of applications for the two-tier client-server
architecture.

Fig. 17.3: Two-tier client-server architecture

Version 2 CSE IIT, Kharagpur

Limitations of two-tier client-server architecture
A two tier architecture for client-server applications is an ideal solution but is not
practical. The problem is that client and server components are manufactured by
different vendors and the different vendors come up with different sets of
interfaces and different implementation standards. That’s the reason why clients
and servers can often not talk to each other. A two tier architecture can work only
in an open environment. In an open environment all components have standard
interfaces. However, till date an open environment is still far from becoming
practical.

Three-tier client-server architecture
The three-tier architecture overcomes the important limitations of the two-tier
architecture. In the three-tier architecture, a middleware was added between the
user system interface client environment and the server environment as shown in
fig. 17.4. The middleware keeps track of all server locations. It also translates
client’s requests into server understandable form. For example, if the middleware
provides queuing, the client can deliver its request to the middleware and
disengage because the middleware will access the data and return the answer to
the client.

Fig. 17.4: Three-tier client-server architecture

Functions of middleware
The middleware performs many activities such as:

Version 2 CSE IIT, Kharagpur

• It knows the addresses of servers. So, based on client requests, it can
locate the servers.

• It can translate between client and server formats of data and vice versa.

Popular middleware standards
Two popular middleware standards are:

• CORBA (Common Object Request Broker Architecture)

• COM/DCOM

CORBA is being promoted by Object Management Group (OMG), a
consortium of a large number of computer industries such as IBM, HP,
Digital etc. Actually OMG is not a standards body, they only try to promote
de facto standards. They don’t have any authority to make or enforce
standards. They just try to popularize good solutions with the hope that if
they become highly popular they would automatically become standard.

COM/DCOM is being promoted by Microsoft alone.

Version 2 CSE IIT, Kharagpur

	Client-Server Software Development
	Basic Ideas on Client-Server Software Development and Client-Server Architecture
	Specific Instructional Objectives
	Client-server software
	Advantages of client-server software
	Factors for feasibility and popularity of client-server solutions
	Advantages of client-server software development
	Disadvantages of client-server software
	Host-slave computing vs. client-server computing
	Two-tier client-server architecture
	Limitations of two-tier client-server architecture
	Three-tier client-server architecture
	Functions of middleware
	Popular middleware standards

