

Module
10

Coding and Testing
Version 2 CSE IIT, Kharagpur

Lesson
26

Debugging, Integration
and System Testing

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Explain why debugging is needed.
• Explain three approaches of debugging.
• Explain three guidelines for effective debugging.
• Explain what is meant by a program analysis tool.
• Explain the functions of a static program analysis tool.
• Explain the functions of a dynamic program analysis tool.
• Explain the type of failures detected by integration testing.
• Identify four types of integration test approaches and explain them.
• Differentiate between phased and incremental testing in the context of

integration testing.
• What are three types of system testing? Differentiate among them.
• Identify nine types of performance tests that can be performed to check

whether the system meets the non-functional requirements identified in
the SRS document.

• Explain what is meant by error seeding.
• Explain what functions are performed by regression testing.

Need for debugging
Once errors are identified in a program code, it is necessary to first identify the
precise program statements responsible for the errors and then to fix them.
Identifying errors in a program code and then fix them up are known as
debugging.

Debugging approaches
The following are some of the approaches popularly adopted by programmers for
debugging.

Brute Force Method:
This is the most common method of debugging but is the least efficient method.
In this approach, the program is loaded with print statements to print the
intermediate values with the hope that some of the printed values will help to
identify the statement in error. This approach becomes more systematic with the
use of a symbolic debugger (also called a source code debugger), because
values of different variables can be easily checked and break points and watch
points can be easily set to test the values of variables effortlessly.

Version 2 CSE IIT, Kharagpur

Backtracking:
This is also a fairly common approach. In this approach, beginning from the
statement at which an error symptom has been observed, the source code is
traced backwards until the error is discovered. Unfortunately, as the number of
source lines to be traced back increases, the number of potential backward paths
increases and may become unmanageably large thus limiting the use of this
approach.

Cause Elimination Method:
In this approach, a list of causes which could possibly have contributed to the
error symptom is developed and tests are conducted to eliminate each. A related
technique of identification of the error from the error symptom is the software
fault tree analysis.

Program Slicing:
This technique is similar to back tracking. Here the search space is reduced by
defining slices. A slice of a program for a particular variable at a particular
statement is the set of source lines preceding this statement that can influence
the value of that variable [Mund2002].

Debugging guidelines
Debugging is often carried out by programmers based on their ingenuity. The
following are some general guidelines for effective debugging:

• Many times debugging requires a thorough understanding of the

program design. Trying to debug based on a partial understanding of
the system design and implementation may require an inordinate
amount of effort to be put into debugging even simple problems.

• Debugging may sometimes even require full redesign of the system.
In such cases, a common mistakes that novice programmers often
make is attempting not to fix the error but its symptoms.

• One must be beware of the possibility that an error correction may
introduce new errors. Therefore after every round of error-fixing,
regression testing must be carried out.

Program analysis tools
A program analysis tool means an automated tool that takes the source code or
the executable code of a program as input and produces reports regarding
several important characteristics of the program, such as its size, complexity,
adequacy of commenting, adherence to programming standards, etc. We can
classify these into two broad categories of program analysis tools:

Version 2 CSE IIT, Kharagpur

• Static Analysis tools
• Dynamic Analysis tools

Static program analysis tools

Static analysis tool is also a program analysis tool. It assesses and computes
various characteristics of a software product without executing it. Typically, static
analysis tools analyze some structural representation of a program to arrive at
certain analytical conclusions, e.g. that some structural properties hold. The
structural properties that are usually analyzed are:

• Whether the coding standards have been adhered to?
• Certain programming errors such as uninitialized variables and

mismatch between actual and formal parameters, variables that are
declared but never used are also checked.

Code walk throughs and code inspections might be considered as static analysis
methods. But, the term static program analysis is used to denote automated
analysis tools. So, a compiler can be considered to be a static program analysis
tool.

Dynamic program analysis tools
Dynamic program analysis techniques require the program to be executed and
its actual behavior recorded. A dynamic analyzer usually instruments the code
(i.e. adds additional statements in the source code to collect program execution
traces). The instrumented code when executed allows us to record the behavior
of the software for different test cases. After the software has been tested with its
full test suite and its behavior recorded, the dynamic analysis tool caries out a
post execution analysis and produces reports which describe the structural
coverage that has been achieved by the complete test suite for the program. For
example, the post execution dynamic analysis report might provide data on
extent statement, branch and path coverage achieved.

Normally the dynamic analysis results are reported in the form of a
histogram or a pie chart to describe the structural coverage achieved for different
modules of the program. The output of a dynamic analysis tool can be stored and
printed easily and provides evidence that thorough testing has been done. The
dynamic analysis results the extent of testing performed in white-box mode. If the
testing coverage is not satisfactory more test cases can be designed and added
to the test suite. Further, dynamic analysis results can help to eliminate
redundant test cases from the test suite.

Version 2 CSE IIT, Kharagpur

Integration testing
The primary objective of integration testing is to test the module interfaces, i.e.
there are no errors in the parameter passing, when one module invokes another
module. During integration testing, different modules of a system are integrated
in a planned manner using an integration plan. The integration plan specifies the
steps and the order in which modules are combined to realize the full system.
After each integration step, the partially integrated system is tested. An important
factor that guides the integration plan is the module dependency graph. The
structure chart (or module dependency graph) denotes the order in which
different modules call each other. By examining the structure chart the integration
plan can be developed.

Integration test approaches

There are four types of integration testing approaches. Any one (or a mixture) of
the following approaches can be used to develop the integration test plan. Those
approaches are the following:

• Big bang approach

• Top-down approach

• Bottom-up approach

• Mixed-approach

Big-Bang Integration Testing
It is the simplest integration testing approach, where all the modules making up a
system are integrated in a single step. In simple words, all the modules of the
system are simply put together and tested. However, this technique is practicable
only for very small systems. The main problem with this approach is that once an
error is found during the integration testing, it is very difficult to localize the error
as the error may potentially belong to any of the modules being integrated.
Therefore, debugging errors reported during big bang integration testing are very
expensive to fix.

Bottom-Up Integration Testing

In bottom-up testing, each subsystem is tested separately and then the full
system is tested. A subsystem might consist of many modules which
communicate among each other through well-defined interfaces. The primary
purpose of testing each subsystem is to test the interfaces among various
modules making up the subsystem. Both control and data interfaces are tested.
The test cases must be carefully chosen to exercise the interfaces in all possible
manners.

Version 2 CSE IIT, Kharagpur

 Large software systems normally require several levels of subsystem
testing; lower-level subsystems are successively combined to form higher-level
subsystems. A principal advantage of bottom-up integration testing is that several
disjoint subsystems can be tested simultaneously. In a pure bottom-up testing no
stubs are required, only test-drivers are required. A disadvantage of bottom-up
testing is the complexity that occurs when the system is made up of a large
number of small subsystems. The extreme case corresponds to the big-bang
approach.

Top-Down Integration Testing
Top-down integration testing starts with the main routine and one or two
subordinate routines in the system. After the top-level ‘skeleton’ has been tested,
the immediately subroutines of the ‘skeleton’ are combined with it and tested.
Top-down integration testing approach requires the use of program stubs to
simulate the effect of lower-level routines that are called by the routines under
test. A pure top-down integration does not require any driver routines. A
disadvantage of the top-down integration testing approach is that in the absence
of lower-level routines, many times it may become difficult to exercise the top-
level routines in the desired manner since the lower-level routines perform
several low-level functions such as I/O.

Mixed Integration Testing
A mixed (also called sandwiched) integration testing follows a combination of top-
down and bottom-up testing approaches. In top-down approach, testing can start
only after the top-level modules have been coded and unit tested. Similarly,
bottom-up testing can start only after the bottom level modules are ready. The
mixed approach overcomes this shortcoming of the top-down and bottom-up
approaches. In the mixed testing approaches, testing can start as and when
modules become available. Therefore, this is one of the most commonly used
integration testing approaches.

Phased vs. incremental testing
The different integration testing strategies are either phased or incremental. A
comparison of these two strategies is as follows:

• In incremental integration testing, only one new module is added to the

partial system each time.
• In phased integration, a group of related modules are added to the

partial system each time.

Phased integration requires less number of integration steps compared to the
incremental integration approach. However, when failures are detected, it is
easier to debug the system in the incremental testing approach since it is known

Version 2 CSE IIT, Kharagpur

that the error is caused by addition of a single module. In fact, big bang testing is
a degenerate case of the phased integration testing approach.

System testing
System tests are designed to validate a fully developed system to assure that it
meets its requirements. There are essentially three main kinds of system testing:

• Alpha Testing. Alpha testing refers to the system testing carried out

by the test team within the developing organization.

• Beta testing. Beta testing is the system testing performed by a select
group of friendly customers.

• Acceptance Testing. Acceptance testing is the system testing
performed by the customer to determine whether he should accept the
delivery of the system.

In each of the above types of tests, various kinds of test cases are designed by
referring to the SRS document. Broadly, these tests can be classified into
functionality and performance tests. The functionality tests test the functionality of
the software to check whether it satisfies the functional requirements as
documented in the SRS document. The performance tests test the conformance
of the system with the nonfunctional requirements of the system.

Performance testing
Performance testing is carried out to check whether the system needs the non-
functional requirements identified in the SRS document. There are several types
of performance testing. Among of them nine types are discussed below. The
types of performance testing to be carried out on a system depend on the
different non-functional requirements of the system documented in the SRS
document. All performance tests can be considered as black-box tests.

• Stress testing
• Volume testing
• Configuration testing
• Compatibility testing
• Regression testing
• Recovery testing
• Maintenance testing
• Documentation testing
• Usability testing

Version 2 CSE IIT, Kharagpur

Stress Testing

Stress testing is also known as endurance testing. Stress testing evaluates
system performance when it is stressed for short periods of time. Stress tests are
black box tests which are designed to impose a range of abnormal and even
illegal input conditions so as to stress the capabilities of the software. Input data
volume, input data rate, processing time, utilization of memory, etc. are tested
beyond the designed capacity. For example, suppose an operating system is
supposed to support 15 multiprogrammed jobs, the system is stressed by
attempting to run 15 or more jobs simultaneously. A real-time system might be
tested to determine the effect of simultaneous arrival of several high-priority
interrupts.

Stress testing is especially important for systems that usually operate
below the maximum capacity but are severely stressed at some peak demand
hours. For example, if the non-functional requirement specification states that the
response time should not be more than 20 secs per transaction when 60
concurrent users are working, then during the stress testing the response time is
checked with 60 users working simultaneously.

Volume Testing
It is especially important to check whether the data structures (arrays, queues,
stacks, etc.) have been designed to successfully extraordinary situations. For
example, a compiler might be tested to check whether the symbol table overflows
when a very large program is compiled.

Configuration Testing
This is used to analyze system behavior in various hardware and software
configurations specified in the requirements. Sometimes systems are built in
variable configurations for different users. For instance, we might define a
minimal system to serve a single user, and other extension configurations to
serve additional users. The system is configured in each of the required
configurations and it is checked if the system behaves correctly in all required
configurations.

Compatibility Testing
This type of testing is required when the system interfaces with other types of
systems. Compatibility aims to check whether the interface functions perform as
required. For instance, if the system needs to communicate with a large
database system to retrieve information, compatibility testing is required to test
the speed and accuracy of data retrieval.

Version 2 CSE IIT, Kharagpur

Regression Testing
This type of testing is required when the system being tested is an upgradation of
an already existing system to fix some bugs or enhance functionality,
performance, etc. Regression testing is the practice of running an old test suite
after each change to the system or after each bug fix to ensure that no new bug
has been introduced due to the change or the bug fix. However, if only a few
statements are changed, then the entire test suite need not be run - only those
test cases that test the functions that are likely to be affected by the change need
to be run.

Recovery Testing
Recovery testing tests the response of the system to the presence of faults, or
loss of power, devices, services, data, etc. The system is subjected to the loss of
the mentioned resources (as applicable and discussed in the SRS document)
and it is checked if the system recovers satisfactorily. For example, the printer
can be disconnected to check if the system hangs. Or, the power may be shut
down to check the extent of data loss and corruption.

Maintenance Testing
This testing addresses the diagnostic programs, and other procedures that are
required to be developed to help maintenance of the system. It is verified that the
artifacts exist and they perform properly.

Documentation Testing
It is checked that the required user manual, maintenance manuals, and technical
manuals exist and are consistent. If the requirements specify the types of
audience for which a specific manual should be designed, then the manual is
checked for compliance.

Usability Testing
Usability testing concerns checking the user interface to see if it meets all user
requirements concerning the user interface. During usability testing, the display
screens, report formats, and other aspects relating to the user interface
requirements are tested.

Error seeding
Sometimes the customer might specify the maximum number of allowable errors
that may be present in the delivered system. These are often expressed in terms
of maximum number of allowable errors per line of source code. Error seed can
be used to estimate the number of residual errors in a system.

Version 2 CSE IIT, Kharagpur

 Error seeding, as the name implies, seeds the code with some known
errors. In other words, some artificial errors are introduced into the program
artificially. The number of these seeded errors detected in the course of the
standard testing procedure is determined. These values in conjunction with the
number of unseeded errors detected can be used to predict:

• The number of errors remaining in the product.
• The effectiveness of the testing strategy.

Let N be the total number of defects in the system and let n of these defects be
found by testing.

Let S be the total number of seeded defects, and let s of these defects be found
during testing.
 n/N = s/S

 or

 N = S × n/s

Defects still remaining after testing = N–n = n×(S – s)/s

Error seeding works satisfactorily only if the kind of seeded errors matches
closely with the kind of defects that actually exist. However, it is difficult to predict
the types of errors that exist in a software. To some extent, the different
categories of errors that remain can be estimated to a first approximation by
analyzing historical data of similar projects. Due to the shortcoming that the types
of seeded errors should match closely with the types of errors actually existing in
the code, error seeding is useful only to a moderate extent.

Regression testing
Regression testing does not belong to either unit test, integration test, or system
testing. Instead, it is a separate dimension to these three forms of testing. The
functionality of regression testing has been discussed earlier.

The following questions have been designed to test the
objectives identified for this module:

1. What are the different ways of documenting program code? Which of
these is usually the most useful while understanding a piece of code?

2. What is a coding standard? Identify the problems that might occur if the
engineers of an organization do not adhere to any coding standard.

Version 2 CSE IIT, Kharagpur

3. What is the difference between coding standards and coding guidelines?
Why are these considered as important in a software development
organization?

4. Write down five important coding standards.
5. Write down five important coding guidelines.
6. What do you mean by side effects of a function call? Why are obscure

side effects undesirable?
7. What is meant by code review? Why is it required to be completed

before performing integration and system testing?
8. Identify the type of errors that can be detected during code walk

throughs.
9. Identify the type of errors that can be detected during code inspection.
10. What is clean room testing?
11. Why is it important to properly document a software product?
12. Differentiate between the external and internal documentation of a

software product.
13. Identify the necessity of testing of a software product.
14. Distinguish between error and failure. Testing detects which of these

two? Justify it.
15. Differentiate between verification and validation in the contest of

software testing.
16. Is random selection of test cases effective? Justify.
17. Write down major differences between functional testing and structural

testing.
18. Do you agree with the statement: “The effectiveness of a testing suite in

detecting errors in a system can be determined by examining the
number of test cases in the suite”. Justify your answer.

19. What are driver and stub modules in the context of unit testing of a
software product?

20. Given a software and its requirements specification document, how can
black-box test suites for this software be designed?

21. Identify two guidelines for the design of equivalence classes for a
problem.

22. Explain why boundary value analysis is so important for the design of
black box test suite for a problem.

23. Compare the features of stronger testing with the features of
complementary testing.

Version 2 CSE IIT, Kharagpur

24. Which is strongest structural testing technique among statement
coverage-based testing, branch coverage-based testing, and condition
coverage-based testing? Why?

25. Discuss how does control flow graph (CFG) of a problem help in
understanding of path coverage based testing strategy.

26. Draw the control flow graph for the following function named find-
maximum. From the control flow graph, determines its Cyclomatic
complexity.

 int find-maximum(int i, int j, int k)
 {
 int max;

 if(i>j) then
 if(i>k) then max = i;
 else max = k;
 else if(j>k) max = j;
 else max = k;
 return(max);
 }

27. What is the difference between path and linearly independent path in
terms of control flow graph (CFG) of a problem?

28. Define a metric form which the upper bound for the number of linearly
independent paths of a program can be computed.

29. Consider the following C function named bin-search:

/* num is the number the function searches in a presorted
integer array arr */

 int bin_search(int num)
 {
 int min, max;
 min = 0;
 max = 100;
 while(min!=max){
 if (arr[(min+max)/2]>num)
 max = (min+max)/2;
 else if(arr[(min+max)/2]<num)
 min = (min+max)/2;
 else return((min+max)/2); }
 return(-1);
 }

 Determine the cyclomatic complexity of the above problem.

Version 2 CSE IIT, Kharagpur

30. What is meant by data flow-based testing approach?
31. What are the advantages of performing mutation testing upon a software

product?
32. Write down three general guidelines for performing effective debugging.
33. Distinguish between the static and dynamic analysis of a program. How

are static and dynamic program analysis results useful?
34. What do you understand by the term integration testing? What are the

different types of integration testing methods that can be used to carry
out integration testing of a large software product?

35. Do you agree with the following statement: “System testing can be
considered as a pure black-box test.” Justify your answer.

36. What do you understand by performance testing? Write down the different
types of performance testing.

37. What is meant by error seeding?
38. Explain the necessity of performing regression testing.

Mark all options which are true.

1. The side effects of a function call include

□ modification of parameters passed by reference
□ modification of global variables
□ modification of I/O operations
□ all of the above

2. Code review for a module is carried out

□ as soon as skeletal code written
□ before the module is successfully compiled
□ after the module is successfully compiled and all the syntax errors have
been eliminated
□ before the module is successfully compiled and all the syntax errors
have been eliminated

3. An important factor that guides the integration plan for integration testing is

□ ER diagram
□ data flow diagram
□ structure chart
□ none of the above

Version 2 CSE IIT, Kharagpur

4. An integration testing approach, where all the modules making up a system
are integrated in a single step is known as

□ top-down integration testing
□ bottom-up integration testing
□ big-bang integration testing
□ mixed integration testing

5. An integration testing approach, where testing can start whenever modules
become available is known as

□ top-down integration testing
□ bottom-up integration testing
□ big-bang integration testing
□ mixed integration testing

6. When a system interfaces with other types of systems then that time the
testing that will be required is

□ volume testing
□ configuration testing
□ compatibility testing
□ maintenance testing

7. When a system being tested is an upgradation of an already existing system to
fix some bugs or enhance functionality, performance, etc. then the testing
required to be performed is:

□ documentation testing
□ regression testing
□ maintenance testing
□ recovery testing

8. Error seed can be used

□ to estimate the total number of defects in the system
□ to estimate the total number of seeded defects in a system
□ to estimate the number of residual errors in a system
□ none of the above

9. Test summary report comprises of

□ the total number of tests that have been applied to a subsystem
□ how many tests have been successful
□ how many tests have been unsuccessful
□ all of the above

Version 2 CSE IIT, Kharagpur

 Mark the following as either True or False. Justify your
answer.

1. Coding standards are synonyms for coding guidelines.
2. During code inspection, you detect errors whereas during code testing

you detect failures.
3. Out of all types of internal documentation (i.e. provided in the source

code), careful commenting is most useful.
4. Error and failure are synonymous in software testing terminology.
5. Software verification and validation are synonyms terms.
6. The effectiveness of a test suite in detecting errors in a system can be

determined by counting the number of test cases in the suite.
7. The number of test cases required for statement coverage-based testing

of a program can be greater than those required for path coverage-
based testing of the same program.

8. Condition testing strategy is a stronger testing strategy than branch
testing strategy.

9. A program can have more than one linearly independent path.
10. Once the McCabe’s Cyclomatic complexity of a program has been

determined, it is very easy to identify all the linearly independent paths of
the program.

11. Introduction of additional edges and nodes in the CFG due to
introduction of sequence types of statements in the program can
increase the cyclomatic complexity of the program.

12. A pure top-down integration testing does not require the use of any stub
modules.

13. Adherence to coding standards is checked during the system testing
stage.

14. Development of suitable driver and stub functions are essential for
carrying out effective system testing of a product.

15. System testing can be considered as a white box testing.
16. The main purpose of integration testing is to find design errors.

Version 2 CSE IIT, Kharagpur

	Coding and Testing
	Debugging, Integration and System Testing
	Specific Instructional Objectives
	Need for debugging
	Debugging approaches
	Brute Force Method:
	Backtracking:
	Cause Elimination Method:
	Program Slicing:

	Debugging guidelines
	Program analysis tools
	Static program analysis tools
	Dynamic program analysis tools

	Integration testing
	Integration test approaches
	Big-Bang Integration Testing
	Bottom-Up Integration Testing
	Top-Down Integration Testing
	Mixed Integration Testing

	Phased vs. incremental testing
	System testing
	Performance testing
	Stress Testing
	Volume Testing
	Configuration Testing
	Compatibility Testing
	Regression Testing
	Recovery Testing
	Maintenance Testing
	Documentation Testing
	Usability Testing

	Error seeding
	Regression testing
	questions
	Mark true.
	True or False

