

Module
10

Coding and Testing
Version 2 CSE IIT, Kharagpur

Lesson
24

Black-Box Testing

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Differentiate between testing in the large and testing in the small.
• Explain what unit testing.
• Explain what black box testing is.
• Identify equivalence classes for any given problem.
• Explain what is meant by boundary value analysis.
• Design test cases corresponding to equivalence class testing and

boundary value analysis for any given problem.

Testing in the large vs. testing in the small
Software products are normally tested first at the individual component (or unit)
level. This is referred to as testing in the small. After testing all the components
individually, the components are slowly integrated and tested at each level of
integration (integration testing). Finally, the fully integrated system is tested
(called system testing). Integration and system testing are known as testing in
the large.

Unit testing
Unit testing is undertaken after a module has been coded and successfully
reviewed. Unit testing (or module testing) is the testing of different units (or
modules) of a system in isolation.

 In order to test a single module, a complete environment is needed to
provide all that is necessary for execution of the module. That is, besides the
module under test itself, the following steps are needed in order to be able to test
the module:

• The procedures belonging to other modules that the module under test

calls.
• Nonlocal data structures that the module accesses.
• A procedure to call the functions of the module under test with

appropriate parameters.

Modules required to provide the necessary environment (which either call or are
called by the module under test) is usually not available until they too have been
unit tested, stubs and drivers are designed to provide the complete environment
for a module. The role of stub and driver modules is pictorially shown in fig. 10.1.
A stub procedure is a dummy procedure that has the same I/O parameters as the
given procedure but has a highly simplified behavior. For example, a stub
procedure may produce the expected behavior using a simple table lookup

Version 2 CSE IIT, Kharagpur

mechanism. A driver module contain the nonlocal data structures accessed by
the module under test, and would also have the code to call the different
functions of the module with appropriate parameter values.

Fig. 10.1: Unit testing with the help of driver and stub modules

Black box testing
In the black-box testing, test cases are designed from an examination of the
input/output values only and no knowledge of design, or code is required. The
following are the two main approaches to designing black box test cases.

• Equivalence class portioning

• Boundary value analysis

Equivalence Class Partitioning
In this approach, the domain of input values to a program is partitioned into a set
of equivalence classes. This partitioning is done such that the behavior of the
program is similar for every input data belonging to the same equivalence class.
The main idea behind defining the equivalence classes is that testing the code
with any one value belonging to an equivalence class is as good as testing the
software with any other value belonging to that equivalence class. Equivalence
classes for a software can be designed by examining the input data and output
data. The following are some general guidelines for designing the equivalence
classes:

Version 2 CSE IIT, Kharagpur

1. If the input data values to a system can be specified by a range of
values, then one valid and two invalid equivalence classes should be
defined.

2. If the input data assumes values from a set of discrete members of
some domain, then one equivalence class for valid input values and
another equivalence class for invalid input values should be defined.

Example#1: For a software that computes the square root of an input integer
which can assume values in the range of 0 to 5000, there are three equivalence
classes: The set of negative integers, the set of integers in the range of 0 and
5000, and the integers larger than 5000. Therefore, the test cases must include
representatives for each of the three equivalence classes and a possible test set
can be: {-5,500,6000}.

Example#2: Design the black-box test suite for the following program. The
program computes the intersection point of two straight lines and displays the
result. It reads two integer pairs (m1, c1) and (m2, c2) defining the two straight
lines of the form y=mx + c.

The equivalence classes are the following:

• Parallel lines (m1=m2, c1≠c2)
• Intersecting lines (m1≠m2)
• Coincident lines (m1=m2, c1=c2)

Now, selecting one representative value from each equivalence class, the test
suit (2, 2) (2, 5), (5, 5) (7, 7), (10, 10) (10, 10) are obtained.

Boundary Value Analysis
A type of programming error frequently occurs at the boundaries of different
equivalence classes of inputs. The reason behind such errors might purely be
due to psychological factors. Programmers often fail to see the special
processing required by the input values that lie at the boundary of the different
equivalence classes. For example, programmers may improperly use < instead
of <=, or conversely <= for <. Boundary value analysis leads to selection of test
cases at the boundaries of the different equivalence classes.

Example: For a function that computes the square root of integer values in the
range of 0 and 5000, the test cases must include the following values: {0, -
1,5000,5001}.

Version 2 CSE IIT, Kharagpur

Test cases for equivalence class testing and boundary value
analysis for a problem

Let’s consider a function that computes the square root of integer values in the
range of 0 and 5000. For this particular problem, test cases corresponding to
equivalence class testing and boundary value analysis have been found out
earlier.

Version 2 CSE IIT, Kharagpur

	Coding and Testing
	Black-Box Testing
	Specific Instructional Objectives
	Testing in the large vs. testing in the small
	Unit testing
	Black box testing
	Equivalence Class Partitioning
	Boundary Value Analysis

	Test cases for equivalence class testing and boundary value analysis for a problem

