

Module
11

Software Project
Planning

Version 2 CSE IIT, Kharagpur

Lesson
27

Project Planning and
Project Estimation

Techniques

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student would be able to:

• Identify the job responsibilities of a software project manager.
• Identify the necessary skills required in order to perform software project

management.
• Identify the essential activities of project planning.
• Determine the different project related estimates performed by a project

manager and suitably order those estimates.
• Explain what is meant by Sliding Window Planning.
• Explain what is Software Project Management Plan (SPMP).
• Identify and explain two metrics for software project size estimation.
• Identify the shortcomings of function point (FP) metric.
• Explain the necessity of feature point metric in the context of project size

estimation.
• Identify the types of project-parameter estimation technique.

Responsibilities of a software project manager
Software project managers take the overall responsibility of steering a project to
success. It is very difficult to objectively describe the job responsibilities of a
project manager. The job responsibility of a project manager ranges from
invisible activities like building up team morale to highly visible customer
presentations. Most managers take responsibility for project proposal writing,
project cost estimation, scheduling, project staffing, software process tailoring,
project monitoring and control, software configuration management, risk
management, interfacing with clients, managerial report writing and
presentations, etc. These activities are certainly numerous, varied and difficult to
enumerate, but these activities can be broadly classified into project planning,
and project monitoring and control activities. The project planning activity is
undertaken before the development starts to plan the activities to be undertaken
during development. The project monitoring and control activities are undertaken
once the development activities start with the aim of ensuring that the
development proceeds as per plan and changing the plan whenever required to
cope up with the situation.

Skills necessary for software project management
A theoretical knowledge of different project management techniques is certainly
necessary to become a successful project manager. However, effective software
project management frequently calls for good qualitative judgment and decision
taking capabilities. In addition to having a good grasp of the latest software
project management techniques such as cost estimation, risk management,
configuration management, project managers need good communication skills
and the ability get work done. However, some skills such as tracking and

Version 2 CSE IIT, Kharagpur

controlling the progress of the project, customer interaction, managerial
presentations, and team building are largely acquired through experience. None
the less, the importance of sound knowledge of the prevalent project
management techniques cannot be overemphasized.

Project planning
Once a project is found to be feasible, software project managers undertake
project planning. Project planning is undertaken and completed even before any
development activity starts. Project planning consists of the following essential
activities:

• Estimating the following attributes of the project:

Project size: What will be problem complexity in terms of the effort
and time required to develop the product?
Cost: How much is it going to cost to develop the project?
Duration: How long is it going to take to complete development?
Effort: How much effort would be required?

The effectiveness of the subsequent planning activities is based on the
accuracy of these estimations.

• Scheduling manpower and other resources

• Staff organization and staffing plans

• Risk identification, analysis, and abatement planning

• Miscellaneous plans such as quality assurance plan, configuration
management plan, etc.

Precedence ordering among project planning activities
Different project related estimates done by a project manager have already been
discussed. Fig. 11.1 shows the order in which important project planning
activities may be undertaken. From fig. 11.1 it can be easily observed that size
estimation is the first activity. It is also the most fundamental parameter based on
which all other planning activities are carried out. Other estimations such as
estimation of effort, cost, resource, and project duration are also very important
components of project planning.

Version 2 CSE IIT, Kharagpur

Fig. 11.1: Precedence ordering among planning activities

Sliding Window Planning

Project planning requires utmost care and attention since commitment to
unrealistic time and resource estimates result in schedule slippage. Schedule
delays can cause customer dissatisfaction and adversely affect team morale. It
can even cause project failure. However, project planning is a very challenging
activity. Especially for large projects, it is very much difficult to make accurate
plans. A part of this difficulty is due to the fact that the proper parameters, scope
of the project, project staff, etc. may change during the span of the project. In
order to overcome this problem, sometimes project managers undertake project
planning in stages. Planning a project over a number of stages protects
managers from making big commitments too early. This technique of staggered
planning is known as Sliding Window Planning. In the sliding window technique,
starting with an initial plan, the project is planned more accurately in successive
development stages. At the start of a project, project managers have incomplete
knowledge about the details of the project. Their information base gradually
improves as the project progresses through different phases. After the
completion of every phase, the project managers can plan each subsequent
phase more accurately and with increasing levels of confidence.

Software Project Management Plan (SPMP)
Once project planning is complete, project managers document their plans in a
Software Project Management Plan (SPMP) document. The SPMP document
should discuss a list of different items that have been discussed below. This list
can be used as a possible organization of the SPMP document.

Organization of the Software Project Management Plan (SPMP) Document

Version 2 CSE IIT, Kharagpur

1. Introduction

(a) Objectives
(b) Major Functions
(c) Performance Issues
(d) Management and Technical Constraints

2. Project Estimates

(a) Historical Data Used
(b) Estimation Techniques Used
(c) Effort, Resource, Cost, and Project Duration Estimates

3. Schedule

(a) Work Breakdown Structure
(b) Task Network Representation
(c) Gantt Chart Representation
(d) PERT Chart Representation

4. Project Resources

(a) People
(b) Hardware and Software
(c) Special Resources

5. Staff Organization

(a) Team Structure
(b) Management Reporting

6. Risk Management Plan

(a) Risk Analysis
(b) Risk Identification
(c) Risk Estimation
(d) Risk Abatement Procedures

7. Project Tracking and Control Plan

8. Miscellaneous Plans

(a) Process Tailoring
(b) Quality Assurance Plan
(c) Configuration Management Plan

Version 2 CSE IIT, Kharagpur

(d) Validation and Verification
(e) System Testing Plan
(f) Delivery, Installation, and Maintenance Plan

Metrics for software project size estimation
Accurate estimation of the problem size is fundamental to satisfactory estimation
of effort, time duration and cost of a software project. In order to be able to
accurately estimate the project size, some important metrics should be defined in
terms of which the project size can be expressed. The size of a problem is
obviously not the number of bytes that the source code occupies. It is neither the
byte size of the executable code. The project size is a measure of the problem
complexity in terms of the effort and time required to develop the product.

 Currently two metrics are popularly being used widely to estimate size:
lines of code (LOC) and function point (FP). The usage of each of these metrics
in project size estimation has its own advantages and disadvantages.

Lines of Code (LOC)

LOC is the simplest among all metrics available to estimate project size. This
metric is very popular because it is the simplest to use. Using this metric, the
project size is estimated by counting the number of source instructions in the
developed program. Obviously, while counting the number of source instructions,
lines used for commenting the code and the header lines should be ignored.

Determining the LOC count at the end of a project is a very simple job.
However, accurate estimation of the LOC count at the beginning of a project is
very difficult. In order to estimate the LOC count at the beginning of a project,
project managers usually divide the problem into modules, and each module into
submodules and so on, until the sizes of the different leaf-level modules can be
approximately predicted. To be able to do this, past experience in developing
similar products is helpful. By using the estimation of the lowest level modules,
project managers arrive at the total size estimation.

Function point (FP)

Function point metric was proposed by Albrecht [1983]. This metric overcomes
many of the shortcomings of the LOC metric. Since its inception in late 1970s,
function point metric has been slowly gaining popularity. One of the important
advantages of using the function point metric is that it can be used to easily
estimate the size of a software product directly from the problem specification.
This is in contrast to the LOC metric, where the size can be accurately
determined only after the product has fully been developed.

Version 2 CSE IIT, Kharagpur

 The conceptual idea behind the function point metric is that the size of a
software product is directly dependent on the number of different functions or
features it supports. A software product supporting many features would certainly
be of larger size than a product with less number of features. Each function when
invoked reads some input data and transforms it to the corresponding output
data. For example, the issue book feature (as shown in fig. 11.2) of a Library
Automation Software takes the name of the book as input and displays its
location and the number of copies available. Thus, a computation of the number
of input and the output data values to a system gives some indication of the
number of functions supported by the system. Albrecht postulated that in addition
to the number of basic functions that a software performs, the size is also
dependent on the number of files and the number of interfaces.

Fig. 11.2: System function as a map of input data to output data

Besides using the number of input and output data values, function point metric
computes the size of a software product (in units of functions points or FPs)
using three other characteristics of the product as shown in the following
expression. The size of a product in function points (FP) can be expressed as the
weighted sum of these five problem characteristics. The weights associated with
the five characteristics were proposed empirically and validated by the
observations over many projects. Function point is computed in two steps. The
first step is to compute the unadjusted function point (UFP).

 UFP = (Number of inputs)*4 + (Number of outputs)*5 +
 (Number of inquiries)*4 + (Number of files)*10 +
 (Number of interfaces)*10

Number of inputs: Each data item input by the user is counted. Data inputs
should be distinguished from user inquiries. Inquiries are user commands such
as print-account-balance. Inquiries are counted separately. It must be noted that
individual data items input by the user are not considered in the calculation of the
number of inputs, but a group of related inputs are considered as a single input.

Version 2 CSE IIT, Kharagpur

For example, while entering the data concerning an employee to an employee
pay roll software; the data items name, age, sex, address, phone number, etc.
are together considered as a single input. All these data items can be considered
to be related, since they pertain to a single employee.

Number of outputs: The outputs considered refer to reports printed, screen
outputs, error messages produced, etc. While outputting the number of outputs
the individual data items within a report are not considered, but a set of related
data items is counted as one input.

Number of inquiries: Number of inquiries is the number of distinct interactive
queries which can be made by the users. These inquiries are the user
commands which require specific action by the system.

Number of files: Each logical file is counted. A logical file means groups of
logically related data. Thus, logical files can be data structures or physical files.

Number of interfaces: Here the interfaces considered are the interfaces used
to exchange information with other systems. Examples of such interfaces are
data files on tapes, disks, communication links with other systems etc.

 Once the unadjusted function point (UFP) is computed, the technical
complexity factor (TCF) is computed next. TCF refines the UFP measure by
considering fourteen other factors such as high transaction rates, throughput,
and response time requirements, etc. Each of these 14 factors is assigned from 0
(not present or no influence) to 6 (strong influence). The resulting numbers are
summed, yielding the total degree of influence (DI). Now, TCF is computed as
(0.65+0.01*DI). As DI can vary from 0 to 70, TCF can vary from 0.65 to 1.35.
Finally, FP=UFP*TCF.

Shortcomings of function point (FP) metric
LOC as a measure of problem size has several shortcomings:

• LOC gives a numerical value of problem size that can vary widely with
individual coding style – different programmers lay out their code in
different ways. For example, one programmer might write several
source instructions on a single line whereas another might split a
single instruction across several lines. Of course, this problem can be
easily overcome by counting the language tokens in the program
rather than the lines of code. However, a more intricate problem arises
because the length of a program depends on the choice of instructions
used in writing the program. Therefore, even for the same problem,
different programmers might come up with programs having different
LOC counts. This situation does not improve even if language tokens
are counted instead of lines of code.

Version 2 CSE IIT, Kharagpur

• A good problem size measure should consider the overall complexity

of the problem and the effort needed to solve it. That is, it should
consider the local effort needed to specify, design, code, test, etc. and
not just the coding effort. LOC, however, focuses on the coding activity
alone; it merely computes the number of source lines in the final
program. We have already seen that coding is only a small part of the
overall software development activities. It is also wrong to argue that
the overall product development effort is proportional to the effort
required in writing the program code. This is because even though the
design might be very complex, the code might be straightforward and
vice versa. In such cases, code size is a grossly improper indicator of
the problem size.

• LOC measure correlates poorly with the quality and efficiency of the
code. Larger code size does not necessarily imply better quality or
higher efficiency. Some programmers produce lengthy and
complicated code as they do not make effective use of the available
instruction set. In fact, it is very likely that a poor and sloppily written
piece of code might have larger number of source instructions than a
piece that is neat and efficient.

• LOC metric penalizes use of higher-level programming languages,
code reuse, etc. The paradox is that if a programmer consciously uses
several library routines, then the LOC count will be lower. This would
show up as smaller program size. Thus, if managers use the LOC
count as a measure of the effort put in the different engineers (that is,
productivity), they would be discouraging code reuse by engineers.

• LOC metric measures the lexical complexity of a program and does not
address the more important but subtle issues of logical or structural
complexities. Between two programs with equal LOC count, a program
having complex logic would require much more effort to develop than a
program with very simple logic. To realize why this is so, consider the
effort required to develop a program having multiple nested loop and
decision constructs with another program having only sequential
control flow.

• It is very difficult to accurately estimate LOC in the final product from
the problem specification. The LOC count can be accurately computed
only after the code has been fully developed. Therefore, the LOC
metric is little use to the project managers during project planning,
since project planning is carried out even before any development
activity has started. This possibly is the biggest shortcoming of the
LOC metric from the project manager’s perspective.

Version 2 CSE IIT, Kharagpur

Feature point metric
A major shortcoming of the function point measure is that it does not take into
account the algorithmic complexity of a software. That is, the function point
metric implicitly assumes that the effort required to design and develop any two
functionalities of the system is the same. But, we know that this is normally not
true, the effort required to develop any two functionalities may vary widely. It only
takes the number of functions that the system supports into consideration without
distinguishing the difficulty level of developing the various functionalities. To
overcome this problem, an extension of the function point metric called feature
point metric is proposed.

 Feature point metric incorporates an extra parameter algorithm
complexity. This parameter ensures that the computed size using the feature
point metric reflects the fact that the more is the complexity of a function, the
greater is the effort required to develop it and therefore its size should be larger
compared to simpler functions.

Project Estimation techniques
Estimation of various project parameters is a basic project planning activity. The
important project parameters that are estimated include: project size, effort
required to develop the software, project duration, and cost. These estimates not
only help in quoting the project cost to the customer, but are also useful in
resource planning and scheduling. There are three broad categories of
estimation techniques:

• Empirical estimation techniques

• Heuristic techniques

• Analytical estimation techniques

Empirical Estimation Techniques
Empirical estimation techniques are based on making an educated guess of the
project parameters. While using this technique, prior experience with
development of similar products is helpful. Although empirical estimation
techniques are based on common sense, different activities involved in
estimation have been formalized over the years. Two popular empirical
estimation techniques are: Expert judgment technique and Delphi cost
estimation.

Expert Judgment Technique

Expert judgment is one of the most widely used estimation
techniques. In this approach, an expert makes an educated guess of the
problem size after analyzing the problem thoroughly. Usually, the expert

Version 2 CSE IIT, Kharagpur

estimates the cost of the different components (i.e. modules or
subsystems) of the system and then combines them to arrive at the overall
estimate. However, this technique is subject to human errors and
individual bias. Also, it is possible that the expert may overlook some
factors inadvertently. Further, an expert making an estimate may not have
experience and knowledge of all aspects of a project. For example, he
may be conversant with the database and user interface parts but may not
be very knowledgeable about the computer communication part.

A more refined form of expert judgment is the estimation made by

group of experts. Estimation by a group of experts minimizes factors such
as individual oversight, lack of familiarity with a particular aspect of a
project, personal bias, and the desire to win contract through overly
optimistic estimates. However, the estimate made by a group of experts
may still exhibit bias on issues where the entire group of experts may be
biased due to reasons such as political considerations. Also, the decision
made by the group may be dominated by overly assertive members.

Delphi cost estimation

Delphi cost estimation approach tries to overcome some of the
shortcomings of the expert judgment approach. Delphi estimation is
carried out by a team comprising of a group of experts and a coordinator.
In this approach, the coordinator provides each estimator with a copy of
the software requirements specification (SRS) document and a form for
recording his cost estimate. Estimators complete their individual estimates
anonymously and submit to the coordinator. In their estimates, the
estimators mention any unusual characteristic of the product which has
influenced his estimation. The coordinator prepares and distributes the
summary of the responses of all the estimators, and includes any unusual
rationale noted by any of the estimators. Based on this summary, the
estimators re-estimate. This process is iterated for several rounds.
However, no discussion among the estimators is allowed during the entire
estimation process. The idea behind this is that if any discussion is
allowed among the estimators, then many estimators may easily get
influenced by the rationale of an estimator who may be more experienced
or senior. After the completion of several iterations of estimations, the
coordinator takes the responsibility of compiling the results and preparing
the final estimate.

Heuristic Techniques
Heuristic techniques assume that the relationships among the different project
parameters can be modeled using suitable mathematical expressions. Once the
basic (independent) parameters are known, the other (dependent) parameters
can be easily determined by substituting the value of the basic parameters in the

Version 2 CSE IIT, Kharagpur

mathematical expression. Different heuristic estimation models can be divided
into the following two classes: single variable model and the multi variable model.

 Single variable estimation models provide a means to estimate the desired
characteristics of a problem, using some previously estimated basic
(independent) characteristic of the software product such as its size. A single
variable estimation model takes the following form:

 Estimated Parameter = c1 * e

d
1

 In the above expression, e is the characteristic of the software which has
already been estimated (independent variable). Estimated Parameter is the
dependent parameter to be estimated. The dependent parameter to be estimated
could be effort, project duration, staff size, etc. c1 and d1 are constants. The
values of the constants c1 and d1 are usually determined using data collected
from past projects (historical data). The basic COCOMO model is an example of
single variable cost estimation model.

A multivariable cost estimation model takes the following form:

 Estimated Resource = c1*e1

d
1 + c2*e2

d
2 + ...

Where e1, e2, … are the basic (independent) characteristics of the software
already estimated, and c1, c2, d1, d2, … are constants. Multivariable estimation
models are expected to give more accurate estimates compared to the single
variable models, since a project parameter is typically influenced by several
independent parameters. The independent parameters influence the dependent
parameter to different extents. This is modeled by the constants c1, c2, d1, d2, … .
Values of these constants are usually determined from historical data. The
intermediate COCOMO model can be considered to be an example of a
multivariable estimation model.

Analytical Estimation Techniques
Analytical estimation techniques derive the required results starting with basic
assumptions regarding the project. Thus, unlike empirical and heuristic
techniques, analytical techniques do have scientific basis. Halstead’s software
science is an example of an analytical technique. Halstead’s software science
can be used to derive some interesting results starting with a few simple
assumptions. Halstead’s software science is especially useful for estimating
software maintenance efforts. In fact, it outperforms both empirical and heuristic
techniques when used for predicting software maintenance efforts.

Version 2 CSE IIT, Kharagpur

 Halstead’s Software Science – An Analytical Technique

Halstead’s software science is an analytical technique to measure size,
development effort, and development cost of software products. Halstead
used a few primitive program parameters to develop the expressions for
over all program length, potential minimum value, actual volume, effort,
and development time.

For a given program, let:

 η1 be the number of unique operators used in the program,
 η2 be the number of unique operands used in the program,
 N1 be the total number of operators used in the program,
 N2 be the total number of operands used in the program.

Length and Vocabulary

The length of a program as defined by Halstead, quantifies total usage
of all operators and operands in the program. Thus, length N = N1 +N2.
Halstead’s definition of the length of the program as the total number of
operators and operands roughly agrees with the intuitive notation of
the program length as the total number of tokens used in the program.
 The program vocabulary is the number of unique operators and
operands used in the program. Thus, program vocabulary η = η1 + η2.

Program Volume

The length of a program (i.e. the total number of operators and
operands used in the code) depends on the choice of the operators
and operands used. In other words, for the same programming
problem, the length would depend on the programming style. This type
of dependency would produce different measures of length for
essentially the same problem when different programming languages
are used. Thus, while expressing program size, the programming
language used must be taken into consideration:

 V = Nlog2η

Here the program volume V is the minimum number of bits needed to
encode the program. In fact, to represent η different identifiers
uniquely, at least log2η bits (where η is the program vocabulary) will be
needed. In this scheme, Nlog2η bits will be needed to store a program
of length N. Therefore, the volume V represents the size of the
program by approximately compensating for the effect of the
programming language used.

Version 2 CSE IIT, Kharagpur

Potential Minimum Volume
The potential minimum volume V* is defined as the volume of most
succinct program in which a problem can be coded. The minimum
volume is obtained when the program can be expressed using a single
source code instruction., say a function call like foo() ;. In other words,
the volume is bound from below due to the fact that a program would
have at least two operators and no less than the requisite number of
operands.
 Thus, if an algorithm operates on input and output data d1, d2, …
dn, the most succinct program would be f(d1, d2, … dn); for which η1 =
2, η2 = n. Therefore, V* = (2 + η2)log2(2 + η2).
 The program level L is given by L = V*/V. The concept of program
level L is introduced in an attempt to measure the level of abstraction
provided by the programming language. Using this definition,
languages can be ranked into levels that also appear intuitively correct.
 The above result implies that the higher the level of a language,
the less effort it takes to develop a program using that language. This
result agrees with the intuitive notion that it takes more effort to
develop a program in assembly language than to develop a program in
a high-level language to solve a problem.

Effort and Time
The effort required to develop a program can be obtained by dividing
the program volume with the level of the programming language used
to develop the code. Thus, effort E = V/L, where E is the number of
mental discriminations required to implement the program and also the
effort required to read and understand the program. Thus, the
programming effort E = V²/V* (since L = V*/V) varies as the square of
the volume. Experience shows that E is well correlated to the effort
needed for maintenance of an existing program.
 The programmer’s time T = E/S, where S the speed of mental
discriminations. The value of S has been empirically developed from
psychological reasoning, and its recommended value for programming
applications is 18.

Length Estimation
Even though the length of a program can be found by calculating the
total number of operators and operands in a program, Halstead
suggests a way to determine the length of a program using the number
of unique operators and operands used in the program. Using this
method, the program parameters such as length, volume, cost, effort,
etc. can be determined even before the start of any programming
activity. His method is summarized below.
 Halstead assumed that it is quite unlikely that a program has
several identical parts – in formal language terminology identical

Version 2 CSE IIT, Kharagpur

substrings – of length greater than η (η being the program vocabulary).
In fact, once a piece of code occurs identically at several places, it is
made into a procedure or a function. Thus, it can be assumed that any
program of length N consists of N/ η unique strings of length η. Now, it
is standard combinatorial result that for any given alphabet of size K,
there are exactly Kr different strings of length r.

Thus.

N/η ≤ ηη Or, N ≤ ηη+1

 Since operators and operands usually alternate in a program, the
upper bound can be further refined into N ≤ η η1

η1 η2
η2. Also, N must

include not only the ordered set of n elements, but it should also
include all possible subsets of that ordered sets, i.e. the power set of N
strings (This particular reasoning of Halstead is not very convincing!!!).
 Therefore,
 2N = η η1

η1 η2
η2

 Or, taking logarithm on both sides,
 N = log2η +log 2(η1

η1 η2
η2)

 So we get,
 N = log 2(η1

η1 η2
η2)

 (approximately, by ignoring log2η)
 Or,
 N = log2η1

η1 + log2η2
η2

 = η1log2η1 + η2log2η2

 Experimental evidence gathered from the analysis of larger
number of programs suggests that the computed and actual lengths
match very closely. However, the results may be inaccurate when
small programs when considered individually.

 In conclusion, Halstead’s theory tries to provide a formal
definition and quantification of such qualitative attributes as program
complexity, ease of understanding, and the level of abstraction based
on some low-level parameters such as the number of operands, and
operators appearing in the program. Halstead’s software science
provides gross estimation of properties of a large collection of
software, but extends to individual cases rather inaccurately.

Version 2 CSE IIT, Kharagpur

Example:

Let us consider the following C program:

main()
{
 int a, b, c, avg;

 scanf(“%d %d %d”, &a, &b, &c);
 avg = (a+b+c)/3;
 printf(“avg = %d”, avg);
}

The unique operators are:

main,(),{},int,scanf,&,“,”,“;”,=,+,/, printf

The unique operands are:

a, b, c, &a, &b, &c, a+b+c, avg, 3,
“%d %d %d”, “avg = %d”

Therefore,

η1 = 12, η2 = 11

Estimated Length = (12*log12 + 11*log11)
 = (12*3.58 + 11*3.45)
 = (43+38) = 81

Volume = Length*log(23)
 = 81*4.52

 = 366

Version 2 CSE IIT, Kharagpur

	Software Project Planning
	Project Planning and Project Estimation Techniques
	Specific Instructional Objectives
	Responsibilities of a software project manager
	Skills necessary for software project management
	Project planning
	Precedence ordering among project planning activities
	Sliding Window Planning
	Software Project Management Plan (SPMP)
	Metrics for software project size estimation
	Lines of Code (LOC)
	Function point (FP)

	Shortcomings of function point (FP) metric
	Feature point metric
	Project Estimation techniques
	Empirical Estimation Techniques
	Expert Judgment Technique
	Delphi cost estimation

	Heuristic Techniques
	Analytical Estimation Techniques
	Halstead’s Software Science – An Analytical Technique

