Handling Resource Sharing and Dependencies Among Real-Time Tasks

The different task scheduling algorithms that we discussed in the last Chapter were all based on the premise
that the different tasks in a system are all independent. However, that is rarely the case in real-life applications.
Tasks often have explicit dependencies specified among themselves, implicit dependencies are more common. Tasks
might become inter-dependent for several reasons. A common form of dependency arises when one task needs the
results of another task to proceed with its computations. For example, the positional error computation task of a
fly-by-wire aircraft may need the results of a task computing the current position of the aircraft from the sampled
velocity and acceleration values. Thus, the positional error computation task can meaningfully run only after the
“current position determination” task completes. Further, even when no explicit data exchanges are involved, tasks
might be required to run in certain order. For example, the system initialization task may need to run first, before
other tasks can run.

Dependency among tasks severely restricts the applicability of the results on task scheduling we developed in the
last Chapter. The reason is that EDF and RMA schedulers impose no constraints on the order in which various
tasks execute. Schedules produced by EDF or RMA might violate the constraints imposed due to task dependencies.
We therefore need to extend the results of the last chapter in order to be able to cope up with inter-task dependencies.

Further, the CPU scheduling techniques that we studied in the last chapter cannot be satisfactorily be used to
schedule access of a set of real-time tasks to shared critical resources. We had assumed in the last chapter that tasks
can be started and preempted at any time without making any difference to the correctness of the final computed
results. However a task using a critical resource can not be preempted at any time from resource usage without
risking the correctness of the computed results. Non-preemptability is a violation of one of the basic premise with
which we had developed the scheduling results of the last Chapter. So, the results of the last Chapter are clearly
inapplicable to scheduling the access of several real-time tasks to some critical resources and new methods to schedule
critical resources among tasks are required.

In this Chapter first we discuss how critical resources may be shared (scheduled) among a set of real-time tasks.
We first investigate the problems that may arise if the traditional resource sharing mechanisms are deployed in
real-time applications. Subsequently, we discuss a few important protocols for effective sharing of critical resources
among real-time tasks. Finally, we discuss how the scheduling methods of the last Chapter can be augmented to
make them applicable to tasks with dependencies.

1 Resource Sharing Among Real-Time Tasks

In many applications, real-time tasks need to share some resources among themselves. Often these shared resources
need to be used by the individual tasks in exclusive mode. This means that a task that is using a resource, can not
immediately hand over the resource to another task that requests the resource at any arbitrary point in time; but it
can do so only after it completes its use of the resource. If a task is preempted before it completes using the resource,
then the resource can become corrupted. Examples of such resources are files, devices, and certain data structures.
These resources are also called nonpreemptable resources, or critical resources. Nowadays nonpreemptable resources
are sometimes loosely referred to as critical sections, though the original operating system literature used this term
to refer to sections of code where some nonpreemptable resource is used in exclusive mode.

Version 2 CSE, IIT Kharagpur



Sharing of critical resources among tasks requires a different set of rules, compared to the rules used for sharing
resources such as a CPU among tasks. We have in the last Chapter discussed how resources such as CPU can be
shared among tasks. Cyclic scheduling, EDF, and RMA being the popular methodologies. We must understand
that CPU is an example of a serially reusable resource. But, what exactly is a serially reusable resource and how
does it differ from a critical resource? A task once gains access to a serially reusable resource such as CPU, uses it
exclusively. That is, two different tasks can not run on one CPU at the same time. Another important feature of a
serially reusable resource is that a task executing on a CPU can be preempted and restarted at a later time without
any problem. A serially reusable resource is one which is used in exclusive mode, but a task using it may at any time
be preempted from using it, and then allowed to use it at some later time without affecting the correctness of the
computed results. A non-preemptable resource is also used in the exclusive mode. A task using a non-preemptable
resource on the other hand can not be preempted from the resource usage, otherwise the resource would become
inconsistent and can lead to system failure. Therefore, when a lower priority task has already gained access to a
non-preemptable resource and is using it, even a higher priority task would have to wait until the lower priority task
using the resource completes. For this reason, algorithms such as EDF and RMA that are popularly used for sharing
a set of serially reusable resources (e.g., CPU) can not satisfactorily be used to share non-preemptable resources
among a set of real-time tasks.

We now discuss the problems that would arise when traditional techniques of resource sharing such as semaphores
and locks are used to share critical resources among a set of real-time tasks.

2 Priority Inversion

In traditional systems, the mechanisms popularly employed to achieve mutually exclusive use of data and resources
among a set of tasks include semaphores, locks, and monitors. However, these traditional operating system tech-
niques prove to be inadequate for use in real-time applications. The reason is that if these techniques are used
for resource sharing in a real-time application, not only simple priority inversions but also more serious unbounded
priority inversions can occur. Unbounded priority inversions are severe problems that may lead to a real-time task
to miss its deadline and cause system failure.

To explain the concept of a simple priority inversion, consider the following. When a lower priority task is al-
ready holding a resource, a higher priority task needing the same resource has to wait and can not make progress
with its computations. The higher priority task would remain blocked until the lower priority task releases the re-
quired non-preemptable resource. In this situation, the higher priority task is said to undergo simple priority inversion
on account of the lower priority task for the duration it waits while the lower priority task keeps holding the resource.

It should be obvious that simple priority inversions are often unavoidable when two or more tasks share a non-
preemptable resource. Fortunately, a single simple priority inversion is not really that difficult to cope with. The
duration for which a simple priority inversion can occur is bounded by the longest duration for which a lower priority
task might need a critical resource in an exclusive mode. While even a simple priority inversion does delay a higher
priority task by some time, the duration for which a task blocks due to a simple priority inversion can be made very
small if all tasks are made to restrict themselves to very brief periods of critical section usage. Therefore, a simple
priority inversion can easily be tolerated through careful programming. However, a more serious problem that arises
during sharing of critical resource among tasks is unbounded priority inversion.

Unbounded priority inversion is a troublesome problem that programmers of real-time and embedded systems

often have to encounter. Unbounded priority inversions can upset all calculations of a programmer regarding the
worst case response time of a real-time task and cause it to miss its deadline.

Version 2 CSE, IIT Kharagpur



Unbounded priority inversion occurs when a higher priority task waits for a lower priority task to release
a resource it needs, and in the meanwhile intermediate priority tasks preempt the lower priority task
from CPU usage repeatedly; as a result, the lower priority task can not complete its usage of the critical
resource and the higher priority task waits indefinitely for its required resource to be released.

0
® ® @ -

Let us now examine more closely what is meant by unbounded priority inversion and how it arises through a sim-
ple example. Consider a real-time application having a high priority task Tx and a low priority task 7. Assume that
Ty and T, need to share a critical resource R. Besides Ty and T, assume that there are several tasks T71, 172,173, ---
that have priorities intermediate between Ty and 77, and do not need the resource R in their computations. These
tasks have schematically been shown in Fig. 1. Assume that the low priority task (7) starts executing at some
instant and locks the non-preemptable resource as shown in Fig. 1. Suppose soon afterward, the high priority
task (T'y) becomes ready, preempts T, and starts executing. Also assume that it needs the same non-preemptable
resource. It is clear that Ty would block for the resource as it is already being held by Ty, and T, would continue its
execution. But, the low priority task 77, may be preempted (from CPU usage) by other intermediate priority tasks
(Tr1,Tr2, ...) which become ready and do not require R. In this case, the high priority task (Tr) would have to wait
not only for the low priority task (77) to complete its use of the resource, but also all intermediate priority tasks
(Tr1,Tr2,...) preempting the low priority task to complete their computations. This might result in the high priority
task having to wait for the required resource for a considerable period of time. In the worst case, the high priority
task might have to wait indefinitely for a low priority task to complete its use of the resource in the face of repeated
preemptions of the low priority tasks by the intermediate priority tasks not needing the resource. In such a scenario,
the high priority task is said to undergo unbounded priority inversion.

Figure 1: Unbounded Priority Inversion

Unbounded priority inversion is an important problem that real-time system developers face. We therefore illus-
trate this problem using another example and this time showing the actions of the different tasks on a time line.
Consider the example shown in Fig. 2. In this example, there are five tasks: T; ...T5. T5 is a low priority task and T}
is a high priority task. Tasks Ty, T3, Ty have priorities higher than T but lower than T} (called intermediate priority
tasks). At time tg, the low priority task Ty is executing and is using a non-preemptable resource (CR). After a while
(at time instant t1) the higher priority task T arrives, preempts T and starts to execute. Task T; requests to use
the resource CR at t5 and blocks since the resource is being held by Ts. Since T} blocks, T resumes its execution
at t2. However, the task Ty which does not require the non-preemptable resource CR preempts T5 from CPU usage
and starts to execute at time t3. T} is in turn is preempted by T3 and so on. As a result, 77 suffers multiple priority
inversions and may even have to wait indefinitely for 75 to get a chance to execute and complete its usage of the
critical resource CR and release it. It should be clear that when a high priority task undergoes unbounded priority
inversion, it is very likely to miss its deadline.

We wish to emphasize again that unbounded priority inversions arise when traditional techniques for sharing
non-preemptable resources such as semaphores or monitors are deployed in real-time applications. Possibly the sim-

Version 2 CSE, IIT Kharagpur



lock(CR)

A // T1 needs non—preemptable resource CR being held by T5
T1 — N
|<-T1 undergoing unbounded priority inversion —=] \\\
T2 T5 preempted by T4 - T1 gets non—preemptable

; resource CR held by T5
T3 !

| ,unlock(CR)
T4 Jock(cR) 1 )/

TS [~ v —%

1T © 3 4 tSM

Figure 2: Unbounded Priority Inversion

\J

time —= tn

plest way to avoid priority inversions is to prevent preemption (from CPU usage) of the low priority task holding a
critical resource by intermediate priority tasks. This can be achieved by raising the priority level of the low priority
task to be equal to that of the waiting high priority task. In other words, the low priority task is made to inherit
the priority of the waiting high priority task. This basic mechanism of a low priority task inheriting the priority of a
high priority task forms the central idea behind the priority Inheritance Protocol (PIP). This simple protocol serves
as the basic real-time resource sharing mechanism, based on which more sophisticated protocols have been designed.

In the following sections we first discuss the basic priority inheritance protocol (PIP) in some detail. Subsequently,
we discuss highest locker protocol (HLP) and priority ceiling protocol (PCP) that have been developed by extending
the simple priority inheritance idea further.

3 Priority Inheritance Protocol (PIP)

The basic priority inheritance protocol (PIP) is a simple technique to share critical resources among tasks without
incurring unbounded priority inversions. As it turns out, real-time operating system designers do not find it very
difficult to support the basic priority inheritance mechanism. In fact, as we discuss in the Chapter 5, most of the
real-time operating systems that are commercially available at present do support this protocol.

The basic PIP was proposed by Sha and Rajkumar [1]. The essence of this protocol is that whenever a task suffers
priority inversion, the priority of the lower priority task holding the resource is raised through a priority inheritance
mechanism. This enables it to complete its usage of the critical resource as early as possible without having to suffer
preemptions from the intermediate priority tasks. When many tasks are waiting for a resource, the task holding
the resource inherits the highest priority of all tasks waiting for the resource (if this priority is greater than its own
priority). Since the priority of the low priority task holding the resource is raised to equal the highest priority of
all tasks waiting for the resource being held by it, intermediate priority tasks can not preempt it and unbounded
priority inversion is avoided. As soon as a task that had inherited the priority of a waiting higher priority task
(because of holding a resource), releases the resource it gets back its original priority value if it is holding no other
critical resources. In case it is holding other critical resources, it would inherit the priority of the highest priority
task waiting for the resources being held by it.

Version 2 CSE, IIT Kharagpur



pri(Ti)=5 pri(Ti)=5

Ti Ti
@
pri(Tj)=10 pri(Tj)=10 k

pri(Tj)=10

pri(Ti)=5

scenario 1 : > scenario 2 > scenario 3 : > scenario 4

Figure 3: Snapshots Showing Working of Priority Inheritance Protocol

if the required resource is free then
grant it.

if the required resource is being held by a higher priority task then
wait for the resource

if the required resource is held by a lower priority task then

{
wait for the resource
the low priority task holding the
resource acquires the highest priority of
tasks waiting for the resource.

X

The priority changes that a task holding a resource undergoes has been illustrated through an example as shown
in the Figs. 3 and 4. In Fig. 3 four consecutive scenarios in the execution a system deploying PIP are shown. In
each scenario, the executing task is shown shaded, and the blocked task are shown unshaded. The priority changes
that two tasks T; and T; undergo in the course of execution due to priority inheritance is shown. T} is a low priority
task with priority 5 and Tj is a higher priority task with priority 10. In scenario 1, T; is executing and has acquired
a critical resource CR. In scenario 2, T; has became ready and being of higher priority is executing. In scenario 3,
T; is blocking after requesting for the resource R and T} inherits T}’s priority. In scenario 4, T; has unlocked the
resource and has got back its original priority and T} is executing with the resource.

In Fig. 4 the priority changes of tasks are captured on a time line. The task T3 initially locks the resource CR.
After some time it is preempted by T5. The task T» request the resource CR at t2. Since, T3 already holds the
resource, Ty blocks and T3 inherits the priority of T5. This has been shown by drawing T3 and T3 at the same priority
levels. Before T3 could complete use of resource CR, it is preempted by a higher priority task 77. Ti requests for
CR1 at time t3 and 77 blocks as CR1 is still being held by T3. So, at this point there are two tasks (7> and T7)
waiting for the resource. T3 inherits the priority of the highest priority waiting task (that is, T1). T35 completes its
usage of the resource at t4 and as soon as it releases the resource, it gets back its original priority. It should be noted
that a lower priority task retains the inherited priority, until it holds the resource required by the waiting higher
priority task. Whenever more than one higher priority task are waiting for the same resource, the task holding the
resource inherits the maximum of the priorities of all waiting high priority tasks.

It is clear that PIP can let real-time tasks share critical resources without letting them incur unbounded priority

Version 2 CSE, IIT Kharagpur



A
I
| | |
T1
Task & | L 13 1) T3 gets back
priority g | : | its original
. g ge s ' 7 priority
(é [ Im I§ I','/
(=] | L
'§ | g | N
e i m
= | | [ |
I I I I I
| | ----r---
T3 ! : : }—————:————'
I I I I I
11 12 t3 t4

time

Figure 4: Priority Changes Under Priority Inheritance Protocol

inversions. However, it suffers from two important problems:

PIP is susceptible to chain blocking and it does nothing to prevent deadlocks.

We elaborate these two issues in the following.

Deadlock: The basic priority inheritance protocol (PIP) leaves open the possibility of deadlocks. In the following
we illustrate how deadlocks can occur in PIP using an example. Consider the following sequence of actions by two
tasks 71 and T which need access to two shared critical resources CR1 and CR2.

Ty: Lock CR1, Lock CR2, Unlock CR2, Unlock CR1
T>: Lock CR2, Lock CR1, Unlock CR1, Unlock CR2

Assume that 77 has higher priority than Ty. Ty starts running first and locks critical resource CR2 (T} was not
ready at that time). After some time, T} arrives, preempts T», and starts executing. After some time, 7T} locks CR1
and then tries to lock CR2 which is being held by T5. As a consequence T; blocks and T» inherits T}’s priority ac-
cording to the priority inheritance protocol. T> resumes its execution and after some time needs to lock the resource
CR1 being held by 77. Now, T} and T, are both deadlocked.

Chain Blocking: A task is said to undergo chain blocking, if each time it needs a resource, it undergoes priority
inversion. Thus if a task needs n resources for its computations, it might have to undergo priority inversions n times
to acquire all its resources. Let us now explain how chain blocking can occur using the example shown in Fig. 5.
Assume that a task T; needs several resources. In the first snapshot (shown in Fig. 5), a low priority task T5 is
holding two resources CR1 and CR2, and a high priority task 77 arrives and requests to lock CR1. It undergoes
priority inversion and causes 75 to inherit its priority. In the second snapshot, as soon as T» releases CR1 its priority
reduces to its original priority and T3 is able to lock CR1. In the third snapshot, after executing for some time, T}
requests to lock CR2. This time it again undergoes priority inversion since T3 is holding CR2. T; waits until T5
releases CR2. From this example, we can see that chain blocking occurs when a task undergoes multiple priority
inversions to lock its required resources.

Version 2 CSE, IIT Kharagpur



: | T2
T2 T2 :
CR2
: A : : P A :
 Waiting for CR1 ; ———=1 : iWaiting for CR2 :
ERE (T
T2 Executing T1 Executing T2 Executing
T1 Blocked
T1 Blocked T2 Blocked
Snapshot 1 Snapshot 2 Snapshot 3

Figure 5: Chain Blocking in Priority Inheritance Protocol

4 Highest Locker Protocol(HLP)

HLP is an extension of PIP and it overcomes some of the shortcomings of PIP. In HLP every critical resource is
assigned a ceiling priority value. The ceiling priority of a critical resource CR is informally defined as the maximum
of the priorities of all those tasks which may request to use this resource. Under HLP, as soon as a task acquires
a resource, its priority is set equal to the ceiling priority of the resource. If a task holds multiple resources, then it
inherits the highest ceiling priority of all its locked resources. An assumption that is implicitly made while using
HLP is that the resource requirements of every task is known before compile time.

Though we informally defined the ceiling priority of a resource as the maximum of the priorities of all those
tasks which may request to use this resource, the rule for computing the ceiling priority is slightly different for the
schedulers that follow FCFS (first come first served) policy among equal priority ready tasks and the schedulers that
follow a time sliced round robin scheduling among equal priority ready task. In the FCFS policy, a task runs to
completion while (any ready) equal priority tasks wait. On the other hand, in time-sliced round robin scheduling,
the equal priority tasks execute for one time slice at a time in a round robin fashion.

Let us first consider a scheduler that follows FCFS scheduling policy among equal priority tasks. Let the ceiling
priority of a resource R; be denoted by Ceil(R;) and the priority of a task T; be denoted as pri(T;). Then, Ceil(R;)
is defined as follows:

Ceil(R;) = maz({ pri(T;)/T; needs R; }) ..-(3.1)

That is, the ceiling priority of a critical resource R; is the maximum of the priority of all tasks that may use R;.
This expression holds only when higher priority values indicate higher priority (as in Windows operating system). If
higher priority values indicate lower priorities (as in Unix), then the ceiling priority would be the minimum priority
of all tasks needing the resource. That is,

Ceil(R;) = min({ pri(T;)/T; needs R; }) ...(3.2)

For operating systems supporting time-sliced round robin scheduling among equal priority tasks and larger priority
value indicates higher priority, the rule for computing the ceiling priority is:

Ceil(R;) = maz({ Pri(T;)/T; needs R; })+1 ..-(3.3)

For the case where larger priority value indicates lower priority (and time-sliced round-robin scheduling among
equal priority tasks), we have to take the minimum of the task priorities. That is:

Ceil(R;) = min({ Pri(T;)/T; needs R; })+1 ...(3.4)

Version 2 CSE, IIT Kharagpur



In the rest of this Chapter we shall assume FCFS scheduling among equal priority tasks and also that increasing
priority values indicate increasing priority of tasks. To illustrate how priority ceilings of resources are computed,
consider the following example system with FCFS scheduling among equal priority tasks. In this system, a resource
CR1 is shared by the tasks T3, T5,and T7 and CR2 is shared by Ts,and T7. Let us assume that the priority of 77 =
10, that of Ty = 5, priority of T7; = 2. Then, the priority of CR1 will be the maximum of the priorities of T}, T5,
and T;. Then, the celling priority of CR1 is Ceil(CR1) = max({10,5,2})=10. Therefore, as soon as either of 77, T,
or T7 acquires CR1, its priority will be raised to 10. The rule of inheritance of priority is that any task that acquires
the resource inherits the corresponding ceiling priority. If a task is holding more than one resource, its priority will
become maximum of the celling priorities of all the resources it is holding. For example, Ceil(CR2)==max({5,2}=5.
A task holding both CR1 and CR2 would inherits the larger of the two ceiling priorities, i.e. 10.

Under HLP, a task soon after acquiring a resource operates at the ceiling priority. ‘

A little thinking can show that this helps eliminate the problems of unbounded priority inversions, deadlock, and
chain blocking. However, it creates new problems. We formally analyze this point a little later in this section.
HLP solves the problems of unbounded priority inversion, chain blocking, and deadlock. Recollect that the basic
PIP was susceptible to these problems. The following theorem and its corollaries substantiate these features of HLP.

Theorem 1. When HLP is used for resource sharing, once a task gets a resource required by it, it is not blocked any
further.

Proof: Let us consider two tasks T and T that need to share two critical resources CR1 and CR2. Let us assume
that a task T; acquires CR1. Then, T}’s priority becomes Ceil(CR1) by HLP. Assume that subsequently it also
requires a resource CR2. Suppose T5 is already holding CR2. If T5 is holding CR2, T5’s priority should have been
raised to Ceil(CR2) by HLP rule. Obviously Ceil(C'R2) must be greater than pri(Ty), because Ceil(CR2) is one
more than the maximum of the priority of all tasks using the resource (that includes T7). Therefore, T5 being of
higher priority should have been executing, and T} should not have got a chance to execute. This is a contradiction
to the assumption that 77 is executing while T3 is holding the resource CR2. Therefore, T5 could not be holding a
resource requested by 77 when T is executing. Using a similar reasoning, we can show that when 77 acquires one
resource, all resources required by it must be free. From this we can conclude that a task blocks at best once for all
its resource requirements for any set of tasks and resource requirements.

O

It follows from Theorem 1 that under HLP tasks are blocked at most once for all their resource requirements.
That is tasks are single blocking. However we should remember that once a task after getting a resource may be
preempted (from CPU usage) by a higher priority task which does not share any resources with the task. But, the
“single blocking” we discussed, is blocking on account of resource sharing.

Another point which we must remember is that the deadlock and chain blocking results of HLP (as well as that
of PCP discussed in the next section) are valid only under the assumption that a task releases a resource it does not
acquire any further resources. That is, the request and release of resources by a task can be divided into two clear
phases: it first acquires all resources it needs and then releases the resources.

The following are two important corollaries which easily follow from Theorem 1.

Corollary 1. Under HLP, before a task can acquire one resource, all the resources that might be required by it must
be free.

Corollary 2. A task can not undergo chain blocking in HLP.

Version 2 CSE, IIT Kharagpur



An interesting observation regarding HLP is the following. In PIP whenever several tasks request a critical re-
source that is already in use, they are maintained in a queue in the order in which they requested the resource. When
a resource becomes free, the longest waiting task in the queue is granted the resource. Thus every critical resource
is associated with a queue of waiting tasks. However, in HLP no such queue is needed. The reason is that whenever
a task acquires a resource, it executes at the ceiling priority of the resource, and other tasks that may need this
resource do not even a get chance to execute and request for the resource.

HLP prevents deadlocks from occurring since when a task gets a single resource, all other resources required by
it must be free (by Corollary 2).

Shortcomings of HLP: Though HLP solves the problems of unbounded priority inversion, deadlock, and chain
blocking, it opens up the possibility for inheritance-related inversion which did not exist in PIP. Inheritance-related
inversion occurs when the priority value of a low priority task holding a resource is raised to a high value by the ceiling
rule, the intermediate priority tasks not needing the resource can not execute and are said to undergo inheritance-
related priority inversion.

We now illustrate inheritance-related inversion through an example. Consider a system consisting of five tasks:
T:,T5,T3,Ty, and Ts, and their priority values be 1, 2, 3, 4, and 5 respectively. Also, assume that the higher the
priority value, the higher is the priority of the task. That is, 5 is the highest and 1 is the lowest priority value. Let
Ty,T>, and T3 need the resource CR1 and T, Ty and Ts need the resource CR2. Then, Ceil(CR1) is max(1,2,3)=3,
and Ceil(CR2) is max(1,4,5)=5. When T} acquires the resource CR2 its priority would become 5. After T} acquires
CR2, T5 and T3 would not be able to execute even though they may be ready, since their priority is less than the
inherited priority of 7;. In this situation, 7> and T3 are said to be undergoing inheritance related inversion.

HLP is rarely used in real-life applications as the problem of inheritance related inversion often become so severe
as to make the protocol unusable. This arises because the priority of even very low priority tasks might be raised
to very high values when it acquires any resource. As a result, several intermediate priority tasks not needing any
resource might undergo inheritance-related inversion and miss their respective deadlines. In spite of this major
handicap of HLP, we study this protocol in this text as the foundation for understanding the priority ceiling protocol
that is very popular and is being used extensively in real-time application development. Priority ceiling protocol
(PCP) is discussed in the next section.

5 Priority Ceiling Protocol (PCP)

Priority Ceiling Protocol (PCP) extends the ideas of PIP and HLP to solve the problems of unbounded priority
inversion, chain blocking, and deadlocks, while at the same time minimizing inheritance-related inversions. A fun-
damental difference between PIP and PCP is that the former is a greedy approach whereas the latter is not. In PIP
whenever a request for a resource is made, the resource will be allocated to the requesting task if it is free. However,
in PCP a resource may not be granted to a requesting task even if the resource is free.

Just as HLP does, PCP associates a ceiling value Ceil (CR;) with every resource C' R;, that is the maximum of the
priority values of all tasks that might use CR;. An operating system variable called CSC(Current System Ceiling)
is used to keep track of the maximum ceiling value of all the resources that are in use at any instant of time. Thus,
at any time CSC = maz({Ceil(CR;)/CR; is currently in use}). At system start, CSC is initialized to 0 (lower
priority than the least priority task in the system).

Resource sharing among tasks under PCP is regulated using two rules for handling resource requests: resource
grant and resource release. We elaborate these two rules in the following:

Resource grant rule:

Version 2 CSE, IIT Kharagpur



Resource grant rule consists of two clauses. These two clauses are applied when a task requests to lock a resource.

1. Resource request clause:
(a) If a task T; is holding a resource whose ceiling priority equals CSC, then the task is granted access to the
resource.
(b) Otherwise, T; will not be granted CR;, unless its priority is greater than CSC (i.e. pri(T;) > CSC). In
both (a) and (b) above, if T; is granted access to the resource CR;, and if CSC < Ceil(CR;), then CSC is set
to Ceil(CR;)

2. Inheritance clause: When a task is prevented from locking a resource by failing to meet the resource grant
clause, it blocks and the task holding the resource inherits the priority of the blocked task if the priority of the
task holding the resource is less than that of the blocked task.

Resource release rule:

If a task releases a critical resource it was holding and if the ceiling priority of this resource equals CSC, then CSC
is made equal to the maximum of the ceiling value of all other resources in use; else CSC remains unchanged. The
task releasing the resource either gets back its original priority or the highest priority of all tasks waiting for any
resources which it might still be holding, whichever is higher.

PCP is very similar to HLP except that in PCP a task when granted a resource does not immediately acquire
the ceiling priority of the resource. In fact, under PCP the priority of a task does not change upon acquiring a
resource merely the value of a system variable CSC changes. The priority of a task changes by the inheritance
clause of PCP only when one or more tasks wait for a resource it is holding. Tasks requesting a resource block
almost under identical situations under PCP and HLP. The only difference with PCP is that a task T; can also be
blocked from entering a critical section, if there exists any resource currently held by some other task whose priority
ceiling is greater or equal to that of T;. A little thought would show that this arrangement prevents the unnecessary
inheritance blockings caused due to the priority of a task acquiring a resource being raised to very high values (ceiling
priority) at the instant it acquires a resource. In PCP, in stead of actually raising the priority of the task acquiring
a resource, merely the value of a system variable (CSC) is raised to the ceiling value. By comparing the value of
CSC against the priority of a task requesting a resource, the possibility of deadlocks is avoided. If no comparison
with CSC would have been made (as in PIP), a higher priority task may later lock some resource required by this
task leading to a potential deadlock situation where each task holds a part of the resources required by the other task.

We now explain the working of PCP through an example.

Example 3.1:

Consider a system consisting of four real-time tasks 77, T, T3, Ty. These four tasks share two non-preemptable
resources CR; and CRy. Assume CR; is used by Ti, T> and T3, and CR; is used by T} and Ty. Assume that
the priority values of T1, Ta, T3, and Ty are 10, 12, 15, and 20 respectively. Assume FCFS scheduling among equal
priority tasks, and that higher priority values indicate higher priorities.

From the given data, the ceiling priority of the two resources can be easily computed.

Ceil(CRy) = maz(pri(Ty), pri(Tz), pri(Ts)) = 15.

Ceil(CRy) = max(pri(Ty), Pri(Ty)) = 20.

Let us consider an instant in the execution of the system in which T; is executing after acquiring the resource C'R;.
When T acquires CR1, CSC is set to Ceil(CR;) =15.

Now consider the following two alternate situations that might arise in the course of execution of the tasks.

Situation 1:
Assume that Ty becomes ready. Being of higher priority T4, preempts 77 and starts to execute. After some time, Ty

requests the resource CR». Since the priority value of Ty (given to be 20) is greater than CSC (which is 15); Ty is
granted the resource CRy (by the resource request clause) and CSC is set to 20. When T completes its execution,

10

Version 2 CSE, IIT Kharagpur



T; will get a chance to execute.

Situation 2:

Assume that T3 becomes ready. Being of higher priority, T3 preempts 77 and starts to execute. After some time, T3
requests for the resource CR;. As the priority of T3 (given to be 15) is not greater than CSC (which is 15); T3 will
not be granted CR;. T3 would block, and T would inherit the priority of T3 (by the PCP inheritance clause). So,
T} ’s priority would change from 10 to 15.

O

6 Different Types of Priority Inversions Under PCP

Tasks sharing a set of resources using PCP may undergo three important types of priority inversions: direct inversion,
inheritance-related inversion, and avoidance inversion. In the following, we discuss these three types of inversions
that tasks may undergo in PCP.

1. Direct Inversion: Direct inversion occurs when a higher priority task waits for a lower priority task to release
a resource that it needs.

T

Figure 6: Direct Priority Inversion

Consider the example shown in Fig. 6. Suppose a low priority task 77, is holding a critical resource named C'R.
Now if a higher priority task T needs this resource, then it would have to wait till 77, finishes using C' R and releases
it. We can see that in this type of inversion, a lower priority task directly causes a higher priority task to undergo
inversion by holding the resource it needs.

2. Inheritance-Related Inversion: Consider a situation where a lower priority task is holding a resource and
a higher priority task is waiting for it. Then, the priority of the lower priority task is raised to that of the waiting
higher priority task by the inheritance clause of PCP. As a result, the intermediate priority tasks not needing the
resource undergo inheritance-related inversion.

Inheritance-related inversion has been illustrated in the example shown in Fig. 7. Ty is a higher priority task
than T, and T7 has priority intermediate between Tr, and Ty. Ty and T both need the critical resource CR,
whereas T has no resource requirements. At some point of time in the execution, a low priority task T, has acquired
a resource CR. Therefore, CSC value is set to Ceil(CR) by the resource request clause. A little later, a high priority
task Ty requests the resource CR. Ty would block on CR by the resource request clause. By the inheritance clause,
T, would inherit the priority of Ty. Now, consider the intermediate priority task 77. Though T needs no resource,
it can not execute due to the raised priority of Tr. In this case, the task 77 is said to undergo inheritance-related
inversion.

3. Avoidance-Related Inversion: In PCP, when a task requests a resource its priority is checked against CSC.
The requesting task is granted use of the resource only when its priority is greater than CSC. Therefore, even when

a resource that a task is requesting is idle, the requesting task may be denied access to the resource if the requesting
task’s priority is less than CSC. A task whose priority is greater than the currently executing task, but greater than

11

Version 2 CSE, IIT Kharagpur



BNNG

Figure 7: Inheritance-Related Inversion

CSC and needs a resource that is currently not in use, is said to undergo avoidance-related inversion.

Avoidance-related inversion is also sometimes referred to as priority ceiling-related inversion, since a higher pri-
ority task is not allowed to execute, not because it requests a resource that is already locked by another task, but
because its priority is less than the value of CSC. In avoidance-related inversion, a higher priority task blocks for
a resource that is not being used by any of the tasks. Though this restriction might appear to be too restrictive
and wasteful, a little thought would show that this restriction is necessary to prevent deadlocks. This type of in-
version is therefore popularly called as deadlock avoidance inversion, or simply avoidance inversion; the reason for
this term is that the blocking caused due to the priority ceiling rule is the cost for avoidance of deadlock among tasks.

T [ CR?
Ceil(R1)=10

CC=10 (T )=8

Figure 8: Avoidance Related Inversion

We now illustrate deadlock avoidance inversion using an example. Consider the example shown in Fig. 8. In the
example shown in Fig. 8, a low priority task (T) and a high priority task (T ) both need two resources R1 and R2
during their computations. Assume that the low priority task T is presently using a critical resource CR;. This
means that when the resource was granted, CSC must have been set equal to the Ceil(CR;). Now, when a high
priority task Ty requests to use the resource C'Rs, it blocks because its priority is less than CSC. As already pointed
out, this provision has been incorporated in PCP in order to avoid deadlocks. Not allowing the task T to access Ra
precludes the possibility that Tr may later request Ry and Tt may request Rs leading to a deadlock. Also note that
if Ty’s priority is higher than CSC, then it does mean that Ty will never need R; and Ty in that case can safely
be allowed to access Rz. The example shows that avoidance related inversion is the price to pay to avoid deadlocks.
However, a task may be denied access to a resource even when a grant of the resource could in no way would have
caused a deadlock. That is, it is possible that under PCP a task undergoes avoidance inversion, though its request
for a resource in no way could have caused any deadlocks. We illustrate this aspect in the following using an example.

Consider a real-time system in which there are four tasks 77, Ts, T3, and Ty. Assume that the priorities of these
three tasks are 2,4,5, and 10 respectively. Further assume that the tasks 77 and T, share a critical resource CR1
and that the tasks T» and T3 share a critical resource CR2. The ceiling priorities of the resources CR1 and CR2 are
10 and 5 respectively. Assume that the task T} first acquires the resource CR1. Then, the CSC would be set to 10
(ceiling priority of CR1) by the resource grant clause. If task T5 requests CR2 next, then it would be refused access
because T5’s priority is less than CSC. In this case, T» would suffer avoidance inversion though there is no possibility
of a deadlock even if T5 was permitted access to CR2.

12

Version 2 CSE, IIT Kharagpur



Now let us try to quantitatively determine the duration for which a task may undergo the different types of
inversions when resources are shared under PCP. To illustrate how this can be done, we compute the task inversions
due to resource sharing through the following two examples. In the analysis regarding priority inversions due to
resource sharing, we have assumed that once a task it releases a resource, it does not acquire any other resource. In
other words, tasks execute in two phases, resource acquire phase followed by resource release phase. In the resource
acquire phase, tasks keep on acquiring the resources they need (no release) and in the resource release phase they
only release resources (no acquiring). Unless the tasks are enforced to follow this discipline, determination of a
quantitative bound on the inversion time would become difficult.

Example 3.2:

A system has four tasks: T7,75,73. These tasks need two critical resources CR1 and CR2. Assume that the priorities
of the four tasks are as follows: pri(Ty) = 10,pri(T>) = 7,pri(T3) = 5,pri(Ty) = 2. The four tasks: T7,7,T3 and
T4 have been arranged in decreasing order of their priorities. That is, pri(Ty) > pri(T2) > ... > pri(Ty). The exact
resource requirements of these tasks and the duration for which the tasks need the two resources have been shown
in Fig. 9. Compute the different types of inversions that each task might have to undergo in the worst case.

Task Priorities
Pri(TD)=10 40ms
CRy
. 60ms
Pri(T2)=7
10ms
Pri(T3)=5
(T3) a CR,
20ms
Pri(T4)=2

Figure 9: Task Graph of Example 3.2

Solution: As shown in Fig. 9, the task 77 would require the resource C'R; for 40ms and C'Rs for 10ms. The task
T3 would require resource C'Ry for 60ms and task Ty would require C' Ry for 20ms. Let us assume FCFS scheduling
among equal priority tasks. Now the ceiling of any resource CR can be calculated using Expr. 3.1 as:

Ceil(CR) = maz({pri{T:}| T; may need CR })

Using this, we get Ceil(CR;) = max({10,5}) = 10 and Ceil(CR;) = max({10,2})=10. Let us now determine the
different types of inversions that each task might suffer, and the duration of the inversions. Considering the tasks
one by one:

e Task T; can suffer direct inversion (due to the resource CR1) by task T3 or (due to the resource CR2) by Tjy.
From an inspection of Fig. 9 it can be easily seen that T; can suffer direct inversion due to T3 for 60ms and

13

Version 2 CSE, IIT Kharagpur



due to Ty for 20ms. T will not suffer any inheritance-related inversion, since it is the highest priority task.
From a similar reasoning, it is easy to see that 77 can not undergo deadlock avoidance inversion.

Task T will not suffer any direct inversion, since it does not need any resource for its computations. But, T3
can suffer inheritance related inversion due to 75 when T3 acquires CR; and T} waits for CR;. It is not difficult
to see from Fig. 9 that T» will suffer inheritance related inversion on account of T3 for 60ms. Similarly, due
to Ty it can undergo inheritance-related inversion for 20ms. Since T3 does not require any resource, it can not
suffer any deadlock avoidance-related inversion.

T3 will not suffer any direct inversion since it does not share any resource with a lower priority task. However,
T3 can suffer inheritance related inversion and deadlock avoidance related inversion due to Ty for at most 20
ms.

T, will not suffer any priority inversion, as it is the lowest priority task.

We now represent the maximum duration for which each task suffers from each type of inversion in Table 3.1.

Task Direct Inheritance Avoidance
Ty T3 Ty | Ty T3 Ty | Ty T3 T,
T x 60 40 X X X X X b'e
T b'e X b'e x 60 20 X X b'e
T x x x| x x 20 x x 20
Table 3.1 Priority Inversions for Example 3.2 0O

Figure 10: Resource Sharing Among Tasks of Example 3.3

Example 3.3:
Let us consider a system with a set of periodic real-time tasks 77...Tg. The resource and computing requirements of
these tasks have been shown in Fig. 10. Assume that the tasks 73...Ts have been arranged in decreasing order of

14

Version 2 CSE, IIT Kharagpur



their priorities. Compute the different types of inversions that a task might have to undergo.

Solution:

For each of the given tasks we have computed the maximum duration for which it might have to suffer from different
types of inversions and have represented those in Table 3.2.

Task Direct Inheritance Avoidance

T, T3 Ty, Ts T |To T3 Ty Ts T |To T3 Ty Ts Tp
T x 10 X x 10 X X X X X X X X X X
T X x 40 X X x 10 X x 10 x 10 X x 10
T3 X X X x 10 X x 40 x 10 X x 40 x 10
T, X X X X X X X X x 10 X X X x 10
Ty X X X X X X X X x 10 X b'e X X X

Table 3.2 Different Types of Inversions for Example 3.3 0

Let us now examine the properties that hold for such an inversion table.

e Each inversion table is an upper triangular matrix. The lower triangular items of each table are all zero. This
structure of the inversion tables is expected since a lower priority task can not suffer any inversions due to a
higher priority task.

e The avoidance table is similar to inheritance table except for the case of task that do not need any resource.
The reason for this is again not very far to seek. The tasks not needing any resource, never request for any
resource as a consequence they can not suffer avoidance inversions.

From Corollary 1 of Theorem 3.2 we already had the following result:

A task can suffer at best any one of direct, inheritance, avoidance inversions.

From this result it follows that the total duration for which any task 7; may be blocked by lower priority tasks,
considering all types of inversions is as follows:

bt; = mamj-_l{(bidj), (biij)7 (biaj)} - (3.5)

where b;4; is blocking of task T by a lower priority task T} due to direct inversion, b;; is blocking of T; by T} due
to inheritance-related inversion, b;,; is blocking of T; by T; due to avoidance-related inversion.

Thus, the maximum duration for which a task can be blocked by its lower priority tasks on account of sharing of
is the largest entry in the corresponding row for the task in the inversion table. We can now modify Expr. 2.16 of
Chapter 2 to determine the response time of a task T; as follows:

i—1
Di
e; + bss; + bt; + — 1 xe; ...(3.6
i j;fpﬂ i (3.6)

where bss; is the delay due to self-suspensions, and bt; is the total inversion due to resource sharing.

7 Important Features of PCP

In this section, we discuss some important features of PCP. We first prove that tasks are single blocking on account
of resource usage.

15

Version 2 CSE, IIT Kharagpur



Theorem 2. Tasks are single blocking under PCP.

Proof: Consider that a task T; needs a set of resources SR={R;}. Obviously, the ceiling of each resource R; in SR
must be greater than or equal to pri(T;). Now assume that when T; acquires some resource R;, another task T; was
already holding a resource R;, and that R;, R; € SR. Such a situation would lead to T; to block after acquiring a
resource. But, when T locked R; CSC should have been set to at least pri(7;) by the resource grant clause of PCP
and T; could not have been granted R;. This is a contradiction with the premise. Therefore, when T; acquires one
resource all resources required by it must be free.

We can in a similar way show that once a task 7; acquires a resource, it can not undergo any inheritance-related
inversion. Assume that a lower priority task T} is holding some resource R, and a higher priority task T}, is waiting
for the resource. But, this is not possible as ceil(R2) must be at least as much as pri(7}). The CSC should therefore
have been set to a value that is at least as much as pri(7}) and T; would have been prevented from accessing the
resource R; in the first place. This is a contradiction with the premise we started with. Therefore, it is not possible
that a task undergoes inheritance-related inversion after it acquires a resource.

Using a similar reasoning, we can show that a task can not suffer any avoidance inversion after acquiring a resource.

Thus, once a task acquires a resource it can not undergo any inversion. It is therefore clear that task under PCP
are single blocking. O

The following corollary easily follows from Theorem 3.2

Corollary 1. Under PCP a task can undergo at most one inversion during its execution.

Priority Ceiling Protocol is free from deadlocks, unbounded priority inversions, and chain blockings. In the fol-
lowing, we discuss these features of PCP.

How is deadlock avoided in PCP? Deadlocks occur only when different (more than one) tasks hold parts of each
other’s required resources at the same time, and then they request for the resources being held by each other. But
under PCP, when one task is executing with some resources, any other task can not hold a resource that may ever
be needed by this task by Theorem 3.2. That is, when a task is granted one resource, all its required resources must
be free. This prevents the possibility of any deadlock.

How is unbounded priority inversion avoided?

A higher priority task suffers unbounded priority inversion, when it is waiting for a lower priority task to release
some of the resources required by it, and in the mean while intermediate priority tasks preempt the low priority
task from CPU usage. But such a situation can never happen in PCP since whenever a higher priority task waits
for some resources which is currently being used by a low priority task, then the executing lower priority task
is made to inherit the priority of the high priority task (by Theorem 3.2). So, the intermediate priority tasks can
not preempt lower priority task from CPU usage. Therefore, unbounded priority inversions can not occur under PCP.

How is chain blocking avoided?
By Theorem 3.2 resource sharing among tasks under PCP is single blocking.

Though PCP avoids deadlocks, unbounded priority inversions, and chain blocking; tasks under PCP still suffer
from a few types of inversions. In the following, we discuss the different types of inversions that tasks may undergo
when resource sharing among them is managed using PCP.

16

Version 2 CSE, IIT Kharagpur



8 Some Issues in Using A Resource Sharing Protocol

In this section we discuss some issues that may arise while using resource sharing protocols to develop a real-time
applications requiring tasks to share non-preemptable resources. The first issue that we discuss is how to use PCP in
dynamic priority systems. Subsequently, we discuss the situations in which the different resource sharing protocols
we had discussed would be useful.

8.1 Using PCP in Dynamic Priority Systems

So far in all our discussions regarding usage of PCP, we had implicitly assumed that the task priorities are static.
That is, a task’s priority does not change for its entire life time — from the time it arrives to the time it completes.
In dynamic priority systems, the priority of a task might change with time. As a consequence, the priority ceilings
of every resource needs to be appropriately recomputed each time a task’s priority changes. In addition, the value
of the CSC and the inherited priority values of the tasks holding resources also need to be changed. This represents
a high run-time overhead. The high run time overhead makes use of PCP in dynamic priority systems unattractive.

8.2 Comparison of Resource Sharing Protocols

We have so far discussed three important resource sharing protocols for real-time tasks: priority inheritance protocol
(PIP), highest locker protocol (HLP) and priority ceiling protocol (PCP). The shortcomings and advantages of these
protocols are discussed below.

e Priority Inheritance Protocol (PIP): This is a simple protocol and effectively overcomes the unbounded priority
inversion problem of traditional resource sharing techniques. This protocol requires the minimal support from
the operating system among all the resource sharing protocols we discussed. However, under PIP tasks may
suffer from chain blocking and PIP also does not prevent deadlocks.

e Highest Locker Protocol(HLP): HLP requires only moderate support from the operating system. It solves the
chain blocking and deadlock problems of PIP. However, HLP can make the intermediate priority tasks undergo
large inheritance-related inversions and can therefore cause tasks to miss their deadlines.

e Priority Ceiling Protocol (PCP): PCP overcomes the shortcomings of the basic PIP as well as HLP protocols.
PCP protocol is free from deadlock and chain blocking. In PCP priority of a task is not changed until a higher
priority task requests the resource. It therefore suffers much lower inheritance-related inversions than HLP.

From the above discussions we can infer that PCP is well suited for use in applications having large number of
tasks and many critical resources, while PIP being a very simple protocol is suitable to be used in small applications.

9 Handling Task Dependencies

An assumption that was implicit in all the scheduling algorithms we discussed in Chapter 2 is that the tasks in an
application are independent. That is, there is no constraint on the order in which the different tasks can be taken up
for execution. However, this is far from true in practical situations, where one task may need results from another
task, or the tasks might have to be carried out in certain order for the proper functioning of the system. When such
dependencies among tasks exist, the scheduling techniques discussed in Chapter 2 turn out to be insufficient and
need to be suitably modified.

We first discuss how to develop a satisfactory schedule for a set of tasks than can be used in table-driven scheduling.

Table-driven algorithm: The following are the main steps of a simple algorithm for determining a feasible schedule
for a set of periodic real-time tasks whose dependencies are given:

17

Version 2 CSE, IIT Kharagpur



Figure 11: Precedence Relationship Among Tasks for Example 3.4

1. Sort task in increasing order of their deadlines, without violating any precedence
constraints and store the sorted tasks in a linked list.

2. Repeat
Take up the task having largest deadline and not yet
scheduled (i.e. scan the task list of step 1 from left).
Schedule it as late as possible.
until all tasks are scheduled.

3. Move the schedule of all tasks to as much left (i.e. early) as possible without disturbing
their relative positions in the schedule.

We now illustrate the use of the above algorithm to compute a feasible schedule for a set of tasks with dependencies.

Example 3.4: Determine a feasible schedule for the real-time tasks of a task set {T1,T5, ..., T5} for which the prece-
dence relations have been shown in Fig. 11 for use with a table-driven scheduler. The execution times of the tasks
T1,Ts,...,Ts are: 7, 10, 5, 6, 2 and the corresponding deadlines are 40,50,25,20,8, respectively.

Solution: The different steps of the solution have been worked out and shown in Fig. 12.
O

EDF and RMA-based Schedulers: Precedence constraints among tasks can be handled in both EDF and RMA
through the following modification to the algorithm.

e Do not enable a task until all its predecessor complete their execution.

e Check the tasks waiting to be enabled (on account of its predecessors completing their executions) after every
task completes.

We however must remember that the achievable schedulable utilization of tasks with dependencies would be lower
compared to when the tasks are independent. Therefore, the schedulability results worked out in the last chapter
would not be applicable when task dependencies exist.

SUMMARY

e In many real-life applications, real-time tasks are required to share non-preemptable resources among them-
selves. If traditional resource sharing techniques such as semaphores are deployed in this situation, unbounded
priority inversions might occur leading to real-time tasks to miss their deadlines.

18

Version 2 CSE, IIT Kharagpur



Stepl: Arrangement of tasks in ascending order:

T1 T3 T2 T5 T4

Step 2: Schedule tasks as late as possible
without violating precedence constraints:

[ talt2l [75] T4 _
0O 68 14 2025 33 40 50

Step 3 Move tasks as early as possible
4 Without altering the schedule:

T1] T3lT2[T5[ T4 | .
02 8 13 20 20

Figure 12: Solution of Example 3.4

The priority inheritance protocol (PIP) is possibly the simplest protocol for sharing critical resources among
a set of real-time tasks. It requires minimal support from the underlying real-time operating system. This
protocol for sharing critical resources is therefore supported by almost every real-time operating systems. The
priority inheritance mechanism prevents unbounded priority inversions. However, it becomes the programmer’s
responsibility to overcome the deadlock and chain blocking problems through careful programming.

PCP incorporates additional rules in the basic PIP and overcomes the deadlock, unbounded priority inversion,
and chain blocking problems of PIP. However, under PCP tasks might still suffer moderate inversions. PCP has
been widely accepted as a popular resource sharing protocol and is normally used used for developing moderate
and large real-time applications. PCP is supported by many modern commercial real-time operating systems.

Task dependencies can be handled through minor alterations to the basic task scheduling algorithms. However,
the achievable utilization of the schedulers drop when tasks are not independent.

EXERCISES

. Determine whether the following statements are TRUE or FALSE. In each case justify your choice in one or
two sentences.

(a) Rate monotonic scheduling can satisfactorily be used for scheduling access of several hard real-time periodic
tasks to a certain shared critical resource.

(b) Algorithms exist which permit sharing of a set of resources in the exclusive mode among tasks of different
priorities without any tasks having to incur any priority inversion.

(¢c) When a set of real-time tasks are scheduled using RMA and share critical resources using the priority
ceiling protocol (PCP), it is possible that a task may be denied access to a resource even when the resource
is not required by any other task.

(d) Highest locker protocol (HLP) maintains the tasks waiting for a shared non-preemptable resource in FIFO
order.

(e) When a set of periodic real-time tasks scheduled using RMA share certain critical resources using Priority
Inheritance Protocol (PIP), some of the tasks might suffer unbounded priority inversions.

19

Version 2 CSE, IIT Kharagpur



(f) In the Highest Locker Protocol (HLP), for each critical resource a separate queue needs to be maintained
for the tasks waiting for the resources.

(g) Using the basic Priority Inheritance Protocol (PIP) for scheduling access of a set of real-time tasks to a
set of non-preemptable resources would result in tasks incurring unbounded priority inversions.

(h) When a set of static priority periodic real-time tasks scheduled using RMA share some critical resources
using the priority ceiling protocol (PCP), the time duration for which a task can undergo inheritance-
related inversion is exactly the same as the duration for which it can undergo deadlock avoidance-related
inversion.

(i) Suppose a task needs three non-preemptable shared resources CR1, CR2, and CR3 during its computation.
Under HLP (Highest Locker Protocol), once the task acquires one of these resources, it is guaranteed not
to block for acquiring the other required resources.

(j) When HLP (Highest Locker Protocol) is used as the protocol for sharing some critical resources among a
set, of real-time tasks, deadlock cannot occur due to resource sharing.

(k) If traditional resource sharing mechanisms such as semaphores and monitors are used to share access of
several real-time tasks to a single critical resource, neither unbounded priority inversions, nor deadlocks
can occur.

() When a set of periodic real-time tasks scheduled using RMA share critical resources using the priority
ceiling protocol (PCP), if a task can suffer inheritance blocking by another task for certain duration, then
it may also suffer direct inversion due to that task for the same duration.

(m) When a set of periodic real-time tasks scheduled using RMA share certain critical resources using the
priority ceiling protocol (PCP), if a task T can suffer inheritance blocking by another task T4 for certain
duration, then it may also suffer deadlock avoidance inversion for the same duration due to 75 excepting
if T1 does not need any resource.

(n) When a set of real-time tasks share certain critical resources using the priority ceiling protocol (PCP),
the highest priority task does not suffer any inversions.

(o) When a set of real-time tasks share critical resources using the priority ceiling protocol (PCP), the lowest
priority task does not suffer any inversions.

(p) It is possible that in a real-time system even the lowest priority task may suffer unbounded priority
inversions unless a suitable resource-sharing protocol is used.

(q) When a set of real-time tasks share critical resources using the priority ceiling protocol (PCP), a task can
undergo at best one of direct, inheritance, or avoidance-related inversion due to any task.

(r) The priority ceiling protocol (PCP) can be considered to be a satisfactory protocol to share a set of serially
reusable preemptable resources among a set of real-time tasks.

(s) If priority ceiling protocol (PCP) is implemented in Unix operating systems, then the ceiling priority value
of a critical resource would be the maximum of the priority values of all the tasks using this resource.

(t) The duration for which a lower priority task can inheritance block a higher priority task is also identical
to the duration for which it can avoidance block it.

(u) Under PCP even a task which does not require any resource can undergo priority inversion for some
duration.

2. Explain the problems that might arise if hard real-time tasks are made to share critical resources among
themselves using traditional operating system primitives such as semaphores or monitors. Briefly explain how
these problems can be overcome.

3. Explain using an appropriate example as to why a critical resource can get corrupted if the task using it is
preempted, and then another task is granted use of the resource.

20

Version 2 CSE, IIT Kharagpur



10.

11.

12.

. What do you understand by the term “priority inversion” in the context of real-time task scheduling? When

several tasks share a set of critical resources, is it possible to avoid priority inversion altogether by using a
suitable task scheduling algorithm? Explain your answer.

. Explain the operation of priority ceiling protocol (PCP) in sharing critical resources among real-time tasks.

Explain how PCP is able to avoid deadlock, unbounded priority inversions, and chain blockings.

. Explain the different types of priority inversions that a task might suffer due to a lower priority task when the

priority ceiling protocol (PCP) is used to share critical resources among a set of real-time task. Can a task
suffer both inheritance-related inversion and direct inversion due to some lower priority task? If you answer in
the affirmative, construct a suitable example to corroborate your answer. If you answer in the negative, explain
why not.

. Define the terms priority inversion and unbounded priority inversion as used in real-time operating systems.

Is it possible to devise a resource sharing protocol which can guarantee that no task undergoes: (i) priority
inversion? (ii) unbounded priority inversion? Justify your answers.

. What do you understand by inheritance-related inversion? Explain how it can arise when resources are shared

in exclusive mode in a real-time environment. Can inheritance-related inversion be eliminated altogether? If
your answer is ”yes”, explain how? If your answer is ”no”, then explain how can inheritance-related inversions
be contained?

. Using two or three sentences explain how PCP can be used for resource sharing among a set of tasks when the

tasks are scheduled using EDF. Can your solution be used in practical situations? If not, why not?

When EDF is used for task scheduling in a real-time application, explain a scheme by which sharing of critical
resources among tasks can be supported. Give an algorithm in pseudo-code notation to describe the steps to
handle resource grant and release.

A set of hard real-time periodic tasks need to be scheduled on a uniprocessor using RMA. The following table
contains the details of these periodic tasks and their use of three non-preemptable shared resources. Can
the tasks T and T3 meet their respective deadlines when priority ceiling protocol (PCP) is used for resource
scheduling?

T, [400]30] 15 20
T, [ 200 25| - | 20 | 10
T, [300 40| - | - | -
[ T. [250[35] 10 10 10 |
L T [450]50] - [ - [5 ]

p; indicates the period of task T; and e; indicates its computation time. The period of each task is the same
as its deadline. The entries in the R1, R2, and R3 columns indicate the time duration for which a task needs
the named resource in non-preemptive mode. Assume that after a task releases a resource, it does not acquire
the same or any other resource.

While it is in general true that avoidance inversion in PCP is the price paid to avoid situations leading to
deadlocks; sometimes tasks might undergo avoidance inversion when their request for a resource can in no way
cause deadlocks. Tllustrate this by constructing an example to show that even when there is no chance of any
deadlocks being caused, a task under PCP might still undergo avoidance inversion.

21

Version 2 CSE, IIT Kharagpur



13. A set of periodic tasks need to be scheduled on a uniprocessor. The following table contains the details of

14.

15.

16.

these periodic tasks and their use of non-preemptable shared resources R1, R2, and R3. Can task T3 meet
its deadline when the tasks are scheduled under RMA and priority ceiling protocol (PCP) is used for resource
scheduling?

| Task [ p; | e [RI[R2[R3 [ s |

Ty | 400 | 30| 15 | 20 10
T, |1 20025 - |20 | 10 | 20
T3 | 300 | 40 | - - - |10
T, | 250 35| 10 | 10 | 10 | 40
Ty | 450 | 50 | - - 5 | 55

p; indicates the period of task T; and e; indicates its computation time. The entries in the R1, R2, and R3
columns indicate the time duration for which a task needs the named resource in non-preemptive mode, s; is
the self suspension time of task T;. All time units have been specified in milliSeconds.

A set of periodic tasks need to be scheduled on a uniprocessor. The following table contains the details of these
periodic tasks and their use of non-preemptable shared resources. Can the task 73 meet its deadline when the
tasks are scheduled under RMA and the priority ceiling protocol (PCP) is used for resource scheduling?

| Task | pi | es |[RI[R2][R3 |

T, [400]30] 1520
T, [20025] - | 20 | 10
T; [300 40 - | - | -
[ T. [250[35] 10 10 ] 10 |
L T [450]50] - [ - [5 ]

p; indicates the period of task T; and e; indicates its computation time. The entries in the R1, R2, and R3
columns indicate the time duration for which a task needs the named resource in non-preemptive mode. All
time units have been specified in milliSeconds.

Consider a real-time system whose task characteristics and dependencies are described in the following table.
Assume that the tasks have zero phasing and repeat with a period of 90 mSec. Determine a feasible schedule
which could be used by a table-driven scheduler.

| Task | Computation time(e;) mSec | Deadline (d;) mSec | Dependency ||

T 30 90 -
T 15 40 Ty, T
Ts 20 40 T
T 10 70 T

Consider a real-time system in which five real-time periodic tasks 7j...T5 have zero phasing and repeat with a
period of 150 msec. The task characteristics and dependencies are described in the following table. Determine
a feasible schedule which could be used by a table-driven scheduler.

| Task | Computation time(e;) mSec | Deadline (d;) mSec | Dependency ||

Th 15 40 -

T, 30 70 T

T 10 90 T

T, 20 40 T
22

Version 2 CSE, IIT Kharagpur



17. Consider a real-time system whose task characteristics and dependencies are described in the following table.
These tasks repeat every 150 msec. Determine a feasible schedule which could be used by a table-driven

scheduler.
| Task | Computation time(e;) msec | Deadline (d;) msec | Dependency ||
Ty 10 50 -
T 10 80 Ty
Ts 30 60 Ty
Ty 50 150 13,1
T, 35 140 T
References

[1] John P. Lehoczky Lui Sha, Ragunathan Rajkumar. Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers, 39:1175-1185, 1990.

23

Version 2 CSE, IIT Kharagpur





