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Recap of Previous Lecture:

In previous lecture, we have discussed the k-connected
graphs, k-edge-connected graphs, Menger’s theorem and Line
graph.

Content of this Lecture:

In this lecture, we will discuss the Network Flow Problems i.e.
Maximum Network Flow, f-augmenting path, Ford-Fulkerson
labeling algorithm, Max-flow Min-cut Theorem and the Proof
of Menger’s Theorem using max-flow min-cut theorem.

Advanced Graph Theory Network Flow Problems



Network and Flows

¢ Consider a network of pipes where valves allow flow in only
one direction.

e Each pipe has a capacity per unit time. We can model this
with a vertex for each junction and a (directed) edge for
each pipe, weighted by the capacity. We also assume that
flow cannot accumulate at a junction.

e Given two locations s, t in the network, we may ask “what
is the maximum flow (per unit time) from s to t?”

e This questions arises in many contexts. The network may
represent roads with traffic capacities, or links in a
computer network with data transmission capacities, or
currents in an electrical network. There are applications in
industrial settings and to combinatorial min-max theorems.
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e A network s :

» A digraph with a nonegative capacity c(e) on each
edge e and

« A distinguished source vertex s and sink vertex t.
» Vertices are also called node s.
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Network Flow: Definitions and constraints 4.3

e A flow f assigns a value f(e) to each edge e.
o Let:

o f*(v) : the total flow on edges leaving v and
o f~(v): the total flow on edges entering v

e A flow is feasible if it satisfies

» The capacity constraints 0<f(e)<c(e) for each edge
and

» The conservation constraints f* (v) = f ~ (v) for each
node v¢{s, t}.
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Maximum Network Flow

e The value val(f) of a flow fis the net flow
f(t) - f*(t) into the sink.

e A maximum flow is a feasible flow of maximum
value.
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Example of Max Flow

e The zero flow assigns flow 0 to each edge

e Itis feasible.
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Example of Max Flow

e In the network below we illustrate a non-zero
feasible flow.

» Capacities are shown in bold, flow values in
parentheses.

» Our flow f assigns f(sx) = f(vt) =0, and f(e) = 1 for
every other edge e. This is a feasible flow of value 1.

u (1)1 v

(1)2 N (0)2
i (1)1 :
(0)2

X (1)1 vy
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Example of Max Flow

e A path from the source to the sink with excess
capacity would allow us to increase flow.

+ In this example, no path remains with excess
capacity, but the flow f” with f’(vx) =0 and f’(e) = 1
for e # vx has value 2.
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f‘Augmenting Path 4.3.4

e When fis a feasible flow in a network N, an
f-augmenting path is a source-to-sink path P in
the underlying graph G such that for each e €E(P),

a) if P follows e in the forward direction, then
fle) < cle).
b) if P follows e in the backward direction, then f(e)>0.

e Let g(e)=c(e) - f(e) when e is forward on P, and let
e(e)=f(e) when e is backward on P.

e The tolerance of P is min.ezp€(e).
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New Flow after Augmenting

e The edges of P incident to an internal vertex v of P
occur in one of the four ways shown below.

e In each case, the change to the flow out of v is the
same as the change to the flow into v, so

frv)=f*v).
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New Flow after Augmenting
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New Flow after Augmenting
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New Flow after Augmenting
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Lemma. If Pis an f-augmenting path with tolerance z, then changing
flow by +z on edges followed forward by P and by —z on edges followed

backward by P produces a feasible flow f” with val(f’) = val(f)+z.

Proof:

e The definition of tolerance ensures that 0 < f'(e) < c(e) for every
edge e, so the capacity constraints hold.

. We need only check vertices of P, since flow elsewhere has not
changed.

o Forevery vertexv, f(v)=Ff(v)
o Finally, the net flow into the sink Zincreases by z.

+ At oAt -a. &t
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Source/sink cut

e In a network, a source/sink cut [S,T] consists of the
edges from a source set S to a sink set T, where S and
T partition the set of nodes, withse€ Sand t e T.

e The capacity of the cut [S, T],written cap(S, T7), is the
total of the capacities on the edges of [S, T].

e Keep in mind that in a digraph [S, T] denotes the set of
edges with tail in S and head in T. Thus the capacity of
a cut [S, T] is completely unaffected by edges from T

to S.
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Ford-Fulkerson Labeling Alg. For Max- flow 1.

e Input: A feasible flow fin a network.
e Output: An f-augmenting path or a cut with capacity

val(f).

e ldea: Find the nodes reachable from s by paths with
positive tolerance. Reaching t completes an
f-augmenting path. During the search, R is the set of
nodes labeled Reached, and S is the subset of R

labeled Searched.
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Ford-Fulkerson Labeling Alg. For Max- flow 2

Initialization: R = {s}, S = ¢.
lteration: Choose v €R-S.

e For each exiting edge vw with fvw) < c(vw) and w & R, add
w to R.

e For each entering edge uv with f(uv>0) and u &R, add u to R.

e Label each vertex added to R as “reached”, and record v as
the vertex reaching it. After exploring all edges at v, add v to
S.

e If the sink t has been reached (put in R), then trace the path
reaching t to report an f-augmenting path and terminate. If
R = S, then return the cut [S, S] and terminate. Otherwise,
iterate.
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Theorem: Max-flow Min-cut Theorem-

Ford and Fulkerson [1956

e In every network, the maximum value of a feasible flow equals
the minimum capacity of a source/sink cut.

Proof:

e In the max-flow problem, the zero flow (f(e)=0 for all e) is always
a feasible flow and gives us a place to start. Given a feasible flow,
we apply the labeling algorithm. It iteratively adds vertices to S
(each vertex at most once) and terminates with t € R
(“breakthrough”) or with S=R.

e In the breakthrough case, we have an f-augmenting path and
increase the flow value. We then repeat the labeling algorithm,
When the capacities are rational, each augmentation increases
the flow by a multiple of 1/a, where a is the least common
multiple of the denominators, so after finitely many
augmentations the capacity of some cut is reached. The labeling
algorithm then terminates with S=R.
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Theorem: Max-flow Min-cut-Ford and Fulkerson [1956] contd...

® When terminating this way, we claim that [S,T] is a source/sink
cut with capacity val(f), where T=S and f is the present flow, It is a
cut becauseseSandt & R=S.

® Since applying the labeling algorithm to the flow f introduces no
node of T into R, no edge from S to T has excess capacity, and no
edge from T to S has nonzero flow in f. Hence f *(S)= cap(S,T) and
f($)=0.

® Since the net flow out of any set containing the source but not
the sink is val(f), we have proved

Val(f) = £*(S)- £(S) = £*(S) =cap(S,T).
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Examples:

Ford Fulkerson Algorithm
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Example (1)

Q. 1 Apply the Ford Fulkerson Algorithm to determine the value of
maximum flow from the source x to the sink y.

G Ite] b

3[=]

3(5)
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Residual Flow
Q | Capacity 2 (Q)
(forward) (reverse)
xaby 3,1,3 - 1
xdcy 3,1,3 - 1

Max flow = val(f)
=f*x)- f(x)=1+1-0=2
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Q. 2 Apply the Ford Fulkerson Algorithm to determine the value of
maximum flow from the source x to the sink y.

e [[a] L,

=]

1Ca}) 4::1
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X—>a—-b*
X —>a—>c—>b*
max flow =0 X—>c—b*
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Q. 3 Apply the Ford Fulkerson Algorithm to determine the value
of maximum flow from the source x to the sink y.
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X=>C ib ~>a’ Residual Flow
d* Q Capacity (reverse) 2(Q)
Max fIOW (forward)
= F+(x) - f-(x) xcbaey | 3,2,3,7 4 2
5.0 Xaey 1,1,5 - 1
=5
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Menger’s Theorem Proof
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Remark: Menger from Max-flow Min-cut 4.3.13

e When x, y are vertices in a digraph D, we can view D as a
network with source x and sink y and capacity 1 on every
edge. Capacity 1 ensures that units of flow from x to vy
correspond to pairwise edge-disjoint x, y-paths in D. Thus a
flow of value k yields a set of k such paths.

e Similarly, every source/sink partition S, T defines a set of
edges whose deletion makes y unreachable from x: the set
[S,T]. Since every capacity is 1, the size of this set is cap(S,T).

e The paths and the edge cut we have obtained might not be
optimal, but by the Max-flow Min-cut Theorem we have

A'p(x,y) 2 max val(f) = min cap(S,T) 2 k’p(x,y)

e Since always k’(x,y) = N'(x,y), equality now holds.
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Menger’s Theorem Proof

e Goal: Deduce Menger’s Theorem (vertex version) from
max-flow min-cut

Theorem (Menger’s Theorem-vertex version)

Let x,y be two distinct vertices in a connected graph
G=(V,E), such that xy ¢ E. Then «k(x,y) = A (x,y)

Proof:
We will show that
(1) A(x,y) £ k(x,y) (use definitions)

(2) k(x,y) 2 A(x,y) (use max-flow min-cut)
K(x,y) is the minimum size of an x,y cut

A(x,y) is the maximum number of pairwise
vertex disjoint/internally disjoint paths
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(1) To show A(x,y) < k(x,y): Proof

e Take a minimum (x, y)-cut U.
e Every xy-path must go through U.
e Number of (pairwise) internally disjoint paths is at most |U]|

—> Alx,y) < |[U| =«(x y)
U

A

X
’ '
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(2) To show k(x,y) < A(x,y): Proof

Construct a network N with source x and sink y as follows:

e Replace each edge uv with two directed arcs: u - v and
V—ou
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e Split each vertex w ¢{x,y} into two vertices w and w*,
together with a (new) directed edge from w™ to w*.

e Such an arc w = wtis called an internal arc of the network.

e Otherarcs u - v will be replaced by
o Ut Vvifu,ve{x vy} =

e U Vvifu=xy; _r_/——:j——‘\{

e U vVvifv=xy;
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X

After Step 1, we have the source X
directed to a and another arc in
the opposite direction and we
have an arc from a to b and
another arc in the opposite
direction

Rule is form the + vertex
to the minus vertex
ut->v-

According to Step 2, we are going to split the vertex
which are not the source or sink.

Vertex a is splitted to — vertex and + vertex.
Similarly vertex b is splitted and source remain the
same

As mentioned in step 2- there will be internal arcs
directed from a  to a*, and b~ to b* highlighted by
red. Also there is an arc from a to b then we are
going to direct from the + vertex to — vertex. i.e.
replace by a* to b™, b*to a highlighted by green.

By rule draw arc from source to (-) vertex then draw
arc from (+) vertex to the source vertex.
i.e.xtoa and a*to x.
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e Everyinternal arc will have a capacity of 1, and other arcs will
have a capacity of n (which is the number of vertices).

Gr

e In Graph G, there are 5 vertices all together. Therefore for every arc which is
not an internal arc in network N, we have a capacity of 5 where as all
internal arcs assigned the capacity 1.
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(1) Every vertex of the form w™ has exactly one arc going out
from it, which is the internal arc w >w*

(2) Every vertex of the form w* has exactly one arc coming
into it, which is the internal arc w- ->w*

Approach: Show

(1) A(x,y) = max flow K(x,y) < A(x,y)
(2) k(x,y) £ min cut

Max-flow min cut —
K(x,y) £ min cut = max flow < A(x,y)
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To show that A(x,y) = max flow

e Let fbe a max flow, with val(f) = m.

e Ifthereis a flow into u-, then the value must be 1 (since
there is only one arc directed from u- - Observation (1))

e This one unit of flow must travel from x to y.
¢ m units flow transform into m internally disjoint xy-paths

—> A(Xx,y) 2 m = max flow @ u T
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K(x,y) < min cut

1) K=[S,T] minimum (x,y)-cut of N.

S T
Assume not. 1
Can find a non-internal
arc directed fromSto T X 1 % Y
(] 1 q
=> cap(K) 2 n / 1 \)

T

Internal arcs
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To show that k(x,y) < min cut

e Consider the following x-y-cut K* = [S*, T*] given by
S*={x} U {u :xueE(G)}, T* = g%
e Note: cap(K*) £ n-2

e Since x has at most n-2 neighbors in G (n = |V(G)]|)
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Source X, all the vertices which are the endpoints of arc directed from X and all the
vertices inside the T* including the sink Y. Inside the S* all the vertices are the (-) vertices
except from the source . All the arcs are going from the S* are the internal arcs.
Therefore the capacity of these arcs are 1.
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1) K=[S,T] minimum (x,y)-cut of N.

S T
Assume not. 1
Can find a non-internal - n
arc directed fromSto T X 1 > Y
C 1 [0
= >
> cap(K) =n / 1 \)

Internal arcs
Contradicts the minimality of cut K
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o Let K=[S,T] be a minimum x-y cut in N.
=> all arcs directed from S to T are internal arcs.

e If not, there is a non-internal arc (whose capacity is n)
directed from S to T => cap[S,T] 2 n > cap [S*, T*]
(contradiction)
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K(x,y) < min cut

Idea:

e K=[S,T] min — Construct (x,y)-cut Uin G
(x,y)- cutin N
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o Let
U={ue V(G):u €S, uteT}
e Note that |U| = cap(K) = min cut. S 1 T
o A;m: ;J islanI (x,y) —(Cl)]t in G. u- 1 S U
=>K(X, V) £ |U| = cap(K) = min cut
y p (] 1 5 0
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Path P from source x to y. Start at source x the followed by ul,u2,u3
before it reaches to vertex y

e P=xu;....uybeanxy-pathin G.

—>
e P can be converted into a directed xy-path P in the directed
graph D uncﬂlying the network N as follows:

P=x=2u"2u, 2> u” ... 2 ut 2>V
— - - ” t
EX U 2l ==l Y, .ﬁdq

Directed Path in network N denoted by P
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delete

Let’s visualize the Path starting at X then at some point it must cross over to set T
In order to reach Y. This will be an internal arc directed from the u*to u-and the
capacity of this arc is 1. If we delete these arcs then the source will be

separated from the sink
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e This directed path?must contain an internal arc directed
fromStoT.

e deleting internal arcs from S to T will break the
path.

e transforming back to G, deleting vertices in U from
G will separate x fromy

e Uisan (x,y)-cut of G.

We are done
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Conclusion

e In this lecture, we have discussed the Network Flow
Problems i.e.

- Maximum Network Flow

- fraugmenting path

-Ford-Fulkerson labeling algorithm

- Examples based on Ford-Fulkerson labeling algorithm
- Max-flow Min-cut Theorem and

- Proof of Menger’s Theorem

* In upcoming lecture, we will discuss Graph Coloring i.e.
Vertex Coloring and Upper Bounds.
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