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Preface 

     Advanced Graph Theory 

Recap of Previous Lecture: 

In the previous lecture, we have discussed the Concept 
of Matching, Perfect matchings, Maximal matchings, 
Maximum Matchings, M-alternating path,                           
M-augmenting path, Symmetric difference, Hall’s 
Matching condition and Vertex covers. 

 

Content of this Lecture: 

In this lecture, we will discuss König-Egerváry theorem, 
Independent sets, Covers i.e. edge cover, vertex cover, 
Maximum bipartite matching and Augmenting Path 
Algorithm. 

 Independent Sets and Covers 
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Theorem: If G is a bipartite graph, then the        
maximum size of a matching in G equals the 
minimum size of a vertex cover of G.  

Theorem: (König [1931], Egerváry [1931]) 3.1.16 

A B C 

D E F G 

A B C 

D E F G 

Green: Vertex cover 

Red:     Matching 

|Q||M| 
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Theorem: If G is a bipartite graph, then the maximum size of a 
matching in G equals the minimum size of a vertex cover of G. 3.1.16 

Proof : Let G be an X, Y-bigraph.  

Since distinct vertices must be used to cover 
the edges of a matching, |Q|  |M| whenever 
Q is a vertex cover and M is a matching in G.   

Given a smallest vertex cover Q of G, we 
construct a matching of size |Q| to prove that 
equality can always be achieved. 

A B C 

D E F G 

A B C 

D E F G 

Green: Vertex cover 

Red: Matching 

|Q||M| 
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Theorem 3.1.16 Continue 

Partition  min vertex cover Q into R = Q  X and T = Q  Y.  

Let H be the subgraphs of G induced by R  (Y-T)  

     and H’ be the subgraphs of G induced by T  (X-R). 

• We use Hall’s Theorem to show that  

     H has a matching that saturates R into Y-T and 

     H’ has a matching that saturates T into X-R. 

Since H and H’ are disjoint, the two matchings together form a 
matching of size |Q| in G.  

T 

R 

H 

H’ 

X 

Y 
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Theorem 3.1.16 Continue 

• Since R  T is a vertex cover, G has no edge from Y-T to X-R. 

• For each S  R, we consider NH(S), which is contained in Y-T. 
If |NH(S)|<|S|, then we can substitute NH(S) for S in Q to 
obtain a smaller vertex cover, since NH(S) cover all edges 
incident to S that are not covered by T. 

T 

R 

H 
H’ 

X 

Y 

NH(S) 

S 
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The minimality of Q thus yields Hall’s Condition in H, and hence H has a matching that 
saturates R. Applying the same argument to H’ yields the matching that saturates T. 
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Remark 3.1.17 

A min-max relation is a theorem stating equality between 
the answers to a minimization problem and a 
maximization problem over a class of instances.  

The Konig-Egervary Theorem is such a relation for 
vertex covering and matching in bipartite graphs. 

Consider a pair of dual optimization problems as a 
maximization problem M and a minimization problem N, 
defined on the same instances (such as graphs), such that 
for every candidate solution M to M and every candidate 
N to N (on the same instance), the value of M is less than 
or equal to the value of N. Often the “value” is cardinality, 
as when M is maximum matching and N is minimum 
vertex cover. 
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When M and N are dual problems, obtaining candidate 
solutions M and N that have the same value PROVES that 
M and N are optimal solutions for that instance. 

 

A min-max relation states that, on same class of 
instances, these short proofs of optimality exist. 

 

These theorems are desirable because they save work. 
Our next objective is another such theorem for 
independent sets in bipartite graphs. 

Remark continue 
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Duality of Max Matching 

Let Xij indicate whether (i, j) is included in the 
matching. 
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Independent sets and Covers 
• The independence number of a graph is the maximum 

size of an independent set of vertices. 

• The independence number of a bipartite graph does 
not always equal the size of a partite set.  

 
• Example: In the graph below, both partite sets have size 3, 

but we have marked an independent set of size 4. 

No vertex covers two edges of a matching.  Similarly, no edge 
contains two vertices of an independent set. This yields 
another dual covering problem. 
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Edge cover 3.1.19 

An edge cover of G is a set L of edges such that every vertex 
of G is incident to some edge of L. 

Example: We say that the vertices of G are covered by the 
edges of L. In the given example, the four edges incident to 
the marked vertices form an edge cover, the remaining two 
vertices are covered “for free.” 

 

 

 

 

Only graphs without isolated vertices have edge covers. A perfect 
matching forms an edge cover with n(G)/2 edges. In general, we can 
obtain an edge cover by adding edges to a maximum matching. 
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Definitions 

For the optimal sizes of the sets in the 
independence and covering problems, 
following notations are defined: 

 

Maximum size of independent set   (G) 

Maximum size of matching                ’(G) 

Minimum size of vertex cover           (G) 

Minimum size of edge cover             ’(G) 
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A graph may have many independent sets of 
maximum size (C5 has five of them), but the 
independence number (G) is a single integer                
((C5 )=2).  

 

The notation treats the numbers that answer these 
optimization problems as graph parameter, like the 
order, size, maximum degree, diameter, etc. The use 
of ’(G) to count the edges in a maximum matching 
suggests a relationship with the parameter (G) that 
counts the vertices in a maximum independent set. 

Notations 
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In this notation, the König-Egerváry theorem states 
that ’(G) = (G) for every bipartite graph G.  

 

We will prove that also (G) = ’(G) for bipartite 
graphs without isolated vertices. Since no edge can 
cover two vertices of an independent set, the 
inequality  ’(G) ≥ (G) is immediate.  

 

(When S      V(S), we often use     to denote V(G)-S, the 
remaining vertices) 

Contd… 

S
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Lemma: In a graph G, S V(G) is an independent set if and 
only if S is a vertex cover, and hence   (G)+ (G) = n(G). 3.1.21 

Proof : 

• If S is an independent set, then every edge is 
incident to at least one vertex of   

• Conversely, if     covers all the edges, then there are 
no edges joining vertices of S.                             

 Independent set 

S

S
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Hence every maximum independent set is the complement of a 
minimum vertex cover, and  (G) +  (G) = n (G) 
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The relationship between matchings and edge coverings is 
more subtle. Nevertheless, a similar formula holds. 

 

Lemma: In a graph G, S V(G) is an independent set if and 
only if S is a vertex cover, and hence   (G)+ (G) = n(G). 3.1.21 

 (G) = 4 

 (G) = 2 

N (G) = 6 
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Theorem: (Gallai [1959]) If G is a graph without isolated vertices, then  
α’(G)+ ’(G) =n(G).3.1.22  ’(G): Maximum size of matching   ’(G): Minimum size of edge cover 

Proof:  

From a maximum matching M, we will construct an 
edge cover of size n(G)-|M|.  

Since a smallest edge cover is no bigger than this cover, 
this will imply that  ’(G)  n(G) -  ’(G).  

 

Also, from a minimum edge cover L, we will construct 
a matching of size n(G) - |L|.  

Since a largest matching is no smaller than this 
matching, this will imply that  ’(G)  n(G) -  ’(G).  

 

These two inequalities complete the proof.   
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(König [1916] If G is a bipartite graph with no isolated 
vertices then (G) = ’(G). 

 

Proof: By Lemma 3.1.21 and Theorem 3.1.22,                    
(G) + (G) = ’(G) + ’(G). Subtracting the König-
Egerváry relation ’(G) = (G) completes the proof.  

Corollary 3.1.24 
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Maximum Bipartite Matching 3.2 

To find a maximum matching, we iteratively seek 
augmenting paths to enlarge the current matching.  

 

In a bipartite graph, if we don’t find an augmenting 
path, we will find a vertex cover with the same size as 
the current matching, thereby proving that the 
current matching has maximum size.  

 

This yields both an algorithm to solve the maximum 
matching problem and an algorithmic proof of the 
König-Egerváry theorem. 
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Given a matching M in an X, Y –bigraph G, we search 
for M-augmenting paths from each M-unsaturated 
vertex in X. We need only search from vertices in X, 
because every augmenting path has odd length and 
thus has ends in both X and Y.  

 

We will search from the unsaturated vertices in X 
simultaneously. Starting with a matching of size 0, 
’(G) applications of the Augmenting Path Algorithm 
produce a maximum matching. 

 

Maximum Bipartite Matching Continue 
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Algorithm: Augmenting Path Algorithm 3.2.1 

Input: An X, Y-bigraph G, a matching M in G, and 
the set U of M-unsaturated vertices in X. 

 

Idea: Explore M-alternating paths from U, letting 
S  X and T  Y be the sets of vertices reached. 
Mark vertices of S that have been explored for 
path extensions. As a vertex is reached, record 
the vertex from which it is reached. 

 

Initialization: S = U and T = . 
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Algorithm: Augmenting Path Algorithm 3.2.1  

Iteration:  
If S has no unmarked vertex, stop and report T  (X - S) as a 
minimum cover and M as a maximum matching.  

Otherwise, select an unmarked x  S. To explore x, consider 
each y  N (x) such that xy  M.  
• If y is unsaturated, terminate and report an M-augmenting path from           

U to y.  

• Otherwise, y is matched to some w  X by M. In this case, include y in          
T (reached from x) and include w in S (reached from y).  

• After exploring all such edges incident to x, mark x and iterate. 

Independent Sets and Covers      Advanced Graph Theory 
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Example of Finding Matching1 

M = Ø,   U=1, 2, 3, 4, 5, 6  

U: Unsaturated Vertices in X 

- Select one vertex from U, say v1. 

- Consider the neighbors of v1 which 

is unsaturated. 

- va is unsaturated.   

- v1-va is an augmenting path.  

- M= {(1,a)},  U={2, 3, 4, 5, 6} 

1 2 3 4 5 6 

a b c d e f 

X 

Y 

1 2 3 4 5 6 

a b c d e f 

X 

Y 
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Example of Finding Matching2 

M = {(1,a)(2,c)(3,d)(5,e)}   

U=4, 6  
- Select one vertex from U, say v4. 

- Consider the neighbors of v4 : va, vc 

- Neither va nor vc  is unsaturated 

- Mark va and vc reached  

- Consider the mate of va and the                   

mate of vc 

- Consider the neighbors of v2 : va, vc 

- Either va or vc is already reached 

- Consider the neighbors of v1 : va, vb 

- vb is unsaturated, 

- v4-va-v1-vb is an augmenting path.  

- M= { (1,b)(2,c)(3,d)(4,a)(5,e)}  

- U={6} 

2 

a 

1 2 3 4 5 6 

b c d e f 

X 

Y 
From 

v4 
From 

v4 

From 
va 

From 
vc 

From 
v1 

4 

c a 

1 

b 

1 2 3 4 5 6 

a b c d e f 

X 

Y 
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Example of Finding Matching2 

M = {(1,b) (2,c) (3,d) (4,a) (5,e)}   

U= 6  

S = {1, 2, 3, 4, 6} 

T= {a, b, c, d} 

Vertex cover: T  (X - S) = {a, b, c, d, 5} 

1 2 3 4 5 6 

a b c d e f 

X 

Y 

6 

a 

4 

3 

1 

d 

c 2 

b 

Independent Sets and Covers      Advanced Graph Theory 



Vu Pham 

Theorem: Repeatedly applying the Augmenting Path Algorithm to a bipartite 
graph produces a matching and a vertex cover of equal size. 3.2.2 

Proof: We need only verify that the Augmenting Path 
Algorithm produces an M-augmenting path or a vertex 
cover of size |M|.  

If the algorithm produces an M-augmenting path, we 
are finished.  

Otherwise, it terminates by marking all vertices of S 
and claiming that Q = T  (X - S) is a vertex cover of 
size |M|.  

We must prove that Q is a vertex cover and has size 
|M|. 

 

Independent Sets and Covers      Advanced Graph Theory 



Vu Pham 

Theorem 3.2.2 Continue 

To show that Q is a vertex cover, it suffices to show that 
there is no edge joining S to Y - T.  

An M-alternating path from U enters X only on an 
edge of M.  

Hence every vertex x of S - U is matched via M to a 
vertex of T, and there is no edge of M from S to Y - T. 

• Also there is no such edge outside M. When the path 
reaches x  S, it can continue along any edge not in M, 
and exploring  x puts all other neighbors of  x into T.  

• Since the algorithm marks all of S before terminating, all 
edges from S go to T.    
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Theorem 3.2.2 Continue 

• Now we study the size of Q. The algorithm puts only 
saturated vertices in T; each y ϵ T is matched via M to a 
vertex of S, Since U     S, also each vertex of X - S  is saturated, 
and the edges of M incident to X- S cannot involve T.  

 

• Hence they are different from the edges saturating T, and 
we find that M has at least |T| + |X-S| edges. Since there is 
no matching large than this vertex  cover, we have                   
|M|=|T| + |X-S| = |Q|                       



Independent Sets and Covers      Advanced Graph Theory 
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Let G be an X,Y-bigraph with n vertices and m edges. Since 
’(G) ≤ n/2 we find a maximum matching in G by applying 
Algorithm 3.2.1 (Augmenting Path Algorithm) at most n/2 
times. 

 

Each application explores a vertex of X at most once, just 
before marking it; thus it considers each edge at most 
once. If the time for one edge exploration is bounded by a 
constant, then this algorithm to find a maximum matching 
runs in time O(nm). 

 

The Hopcroft-Karp [1973] algorithm is a faster algorithm, 
with running time  

Remark 3.2.4 

Independent Sets and Covers      Advanced Graph Theory 
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In this lecture, we have discussed König-Egerváry 
theorem, Independent sets, Covers i.e. edge cover, 
vertex cover, Maximum bipartite matching and 
Augmenting Path Algorithm. 

 

In upcoming lectures, we will discuss weighted 
bipartite matching, stable matching and faster 
bipartite matching. 

 

Conclusion 
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Preface 

     Advanced Graph Theory 

Recap of Previous Lecture: 

In the previous lecture, we have discussed the Concept 
of Matching, Perfect matchings, Maximal matchings, 
Maximum Matchings, M-alternating path, M-
augmenting path, Symmetric difference, Hall’s 
Matching condition and Vertex covers. 

 

Content of this Lecture: 

In this lecture, we will discuss König-Egerváry theorem, 
Independent sets, Covers i.e. edge cover, vertex cover, 
Maximum bipartite matching, Augmenting Path 
Algorithm and Running time. 

 Independent Sets and Covers 
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Weighted Bipartite Matching 

Seek a matching of maximum total weight. 

It is assumed that the given graph is Kn,n. 

If the given graph is not a complete bipartite graph, 
insert edges with zero weight. 

Matching and Factors      Advanced Graph Theory (CS-505) 
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Examples of  Weighted bipartite matching and 
its dual 3.2.5 

• A farming company owns n farms and n processing 

plants.  

• Each farm can produce corn to the capacity of one 

plant.  

• The profit that results from sending the output of 

farm i to plant j is wi,j.  

• Placing weight wi,j on edge xiyj gives us a weighted 

bipartite graph with partite sets X={x1,…,xn} and 

Y={y1,…,yn}.  

• The company wants to select edges forming a 

matching to maximize total profit. 
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Examples of  Weighted bipartite matching 
and its dual 

The government claims that too much corn is being 
produced, so it will pay the company not to process corn.  

The government will pay ui if the company agrees not 
to use farm i and vj if it agrees not to use plant j. 

 If ui+vj<wi,j, then the company makes more by using 
the edge xiyj than by taking the government payments 
for those vertices. 

 In order to stop all production, the government must 
offer amounts such that ui+vjwi,j for all i, j. The 
governments wants to find such values to minimize 
ui+ vj. 

Matching and Factors      Advanced Graph Theory (CS-505) 
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A transversal of an n-by-n matrix consists of n 
positions, one in each row and each column.  

Finding a transversal with maximum sum is the 
Assignment Problem.  

 

Transversal of an n-by-n matrix 























68564

43643

85432

67305

32614
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This is the matrix formulation of the maximum 
weighted matching problem, where 
nonnegative weight wi,j is assigned to edge xiyj 
of Kn,n and 

 We seek a perfect matching M to maximize the 
total weight w(M). 

 

Assignment Problem 























68564

43643

85432

67305

32614

4 
1 6 

3 
2 
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Minimum weighted Cover 

• With these weights, a (weighted) cover is a choice 
of labels ui,…,un  and vj,…,vn such that ui+vjwi,j 
for all i, j. The cost c(u, v) for a cover (u, v) is 
ui+vj.  

• The minimum weighted cover problem is that of 
finding a cover of minimum cost. 























68564

43643

85432

67305

326146 

7 

8 

6 

8 

 0   0   0   0   0 
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Lemma: For a perfect matching M and cover(u, v) in a weighted 
bipartite graph G, also c(u, v) =w(M) if and only if M consists 
of edges xiyi such that ui+vj = wi,j. In this case, M and (u,v) are 
optimal. 3.2.7 

Proof:  

• Since M saturates each vertex, summing the constraints 
ui+vjwi,j that arise from its edges yields c(u, v)=w(M), 
then equality must hold in each of the n inequalities 
summed.  

• Finally, since c(u, v)w(M) for every matching and every 
cover, c(u, v)=w(M) implies that there is no matching 
with weight greater than c(u, v) and no cover with cost 
less than w(M). 
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Equality subgraph 3.2.8 

The equality subgraph Gu,v for a cover (u, v) is 
the spanning subgraph of Kn,n

 having the edges 
xiyj such that ui+vj=wi,j. 























68564

43643

85432

67305

326146 

7 

8 

6 

8 

 0   0   0   0   0 

X 

Y 

X 

Y 
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Equality Subgraph 3.2.8 

If Gu,v has a perfect matching, then its 
weight is ui+ vj, and by Lemma 3.2.7 we 
have the optimal solution.  

Matching and Factors      Advanced Graph Theory (CS-505) 
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Equality Subgraph Continue 

Otherwise, we find a matching M and a vertex 
cover Q of the same size in Gu,v (by using the 
Augmenting Path Algorithm, for example). Let R= 
QX and T=QY. Our matching of size |Q| 
consists of |R| edges from R to Y-T and |T| 
edges from T to X-R, as shown below.  

  T 

R X-R 

Y-T 
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Equality Subgraph Continue 

• Enlarge the equality subgraph so that there is a larger 
matching in the new equality subgraph,  

• We change (u, v) to introduce an edge from X-R to Y-T 
while maintaining equality on all edges of M. 

R - 

  T 

X-R 

Y-T 
+ 
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Equality Subgraph Continue 

A cover requires ui+vjwi,j for all i, j; the 
difference ui+vj-wi,j is the excess for i, j.  

Edges joining X-R and Y-T are not in Gu,v
 and 

have positive excess.  























68564

43643

85432

67305

326146 

7 

8 

6 

8 

 0   0   0   0   0 R 

T T 

6 7 8 6 8 

0 0 0 0 0 

R 

T T R∪T: Vertex Cover 
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Equality Subgraph Continue 

Let  be the minimum excess on the edges from X-R to Y-T. 
Reduce ui by  for all xiX-R  

To maintain the cover condition for these edges while bringing 
at least one into the equality subgraph  

Increase vj by  for yjT 

To maintain the cover condition for the edges from X-R to T 























68564

43643

85432

67305

326146 

7 

8 

6 

8 

 0   0   0   0   0 

R 

T T T   T 

R 

2 0 3 2 4 

2 3 0 2 3 

0 3 4 5 6 

1 0 4 7 2 

3 4 0 5 2 

8 

6 

8 

7 

6 

0 0 0 0 0 

Matrix  

of excess 

Min excess ε = 1 
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Equality Subgraph Continue 























68564

43643

85432

67305

326146 

7 

8 

6 

8 

 0   0   0   0   0 

R 

T T 























68564

43643

85432

67305

326145 

6 

8 

5 

7 

R 

T T 

 0   0   1   1   0 

Equality subgraph is expanded 
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Equality Subgraph Continue 

Repeat the procedure with the new 
equality subgraph; eventually we obtain a 
cover whose equality subgraph has a 
perfect matching. 
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Hungarian Algorithm 3.2.9 

Input: A matrix of weights on the edges of Kn,n with 
bipartition X,Y. 

 

Idea: Iteratively adjusting the cover (u, v) until the 
equality subgraph Gu,v has a perfect matching. 

 

Initialization: Let (u, v) be a cover, such as ui=maxj 
wi,j and vj=0. 

Matching and Factors      Advanced Graph Theory (CS-505) 
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Hungarian Algorithm Continue 

Iteration: Find a maximum matching M in Gu,v.  

If M is a perfect matching, stop and report M 
as a maximum weight matching.  

Otherwise, 

• Let Q be a vertex cover of size |M| in Gu,v.  

• Let R=XQ and T=Y Q.   

• Let  =min{ui+vj-wi,j: xi X-R, yj Y-T}.    

• Decrease ui by  for xi X-R, and  

• increase vj by  for yj T.  

Form the new equality subgraph and repeat. 
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Solving the Assignment Problem 3.2.10 

The first matrix below is the matrix of 
weights.  

The others display a cover (u,v) and the 
corresponding excess matrix.  























68564

43643

85432

67305

32614

R























20324

23023

03456

10472

34052

8

6

8

7

6

00000

T   T 
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• We underscore entries in the excess matrix to mark a 
maximum matching M of Gu,v, which appears as bold 
edges in the equality subgraphs drawn for the first two 
excess matrices. (Drawing the equality subgraphs is not 
necessary.)  

• A matching in Gu,v corresponds to a set of 0s in the excess 
matrix with no two in any row or column; call this a partial 
transversal. 

 

Solving the Assignment Problem 3.2.10 
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





















20324

23023

03456

10472

34052

8

6

8

7

6
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T   T 

X 

Y 
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Solving the Assignment Problem 

A set of rows and columns covering the 0s in 
the excess matrix is a covering set; this 
corresponds to a vertex cover in Gu,v. A 
covering set of size less than n yields progress 
toward a solution, since the next weighted 
cover costs less. We study the 0s in the excess 
matrix and find a partial transversal and a 
covering set of the same size. In a small matrix, 
we can do this by inspection. 
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Solving the Assignment Problem 























68564

43643

85432

67305

32614

R























20324

23023

03456

10472

34052

8

6

8

7

6

00000

T   T 

X 

Y 
T T 

R 























10313

13012

04556

00461

24041

7

5

8

6

5

01100

T   T   T 

X 

Y 
T T T 























10302

13001

04545

00450

24030

6

4

7

5

4

12200
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Theorem: The hungarian Algorithm finds a maximum 
weight matching and a minimum cost cover. 3.2.11 

The algorithm begins with a cover. It can terminate only 
when the equality subgraph has a perfect matching, which 
guarantees equal value for the current matching and cover.  

Suppose that (u, v) is the current cover and that the 
equality subgraph has no perfect matching.  

Let (u’, v’) denote the new lists of numbers assigned to the 
vertices. Because  is the minimum of a nonempty finite 
set of positive numbers, >0. 
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Theorem 3.2.11 Continue 

We verify first that (u’, v’) is a cover.  

The change of labels on vertices of X-R and T yields 
ui’+vj’=ui+vj for edges xiyj from X-R to T or from R to Y-T.  

If xiR and yi T, then ui’+vj’=ui+vj+, and the weight 
remains covered.  

If xiX-R and yj Y-T, then ui’+vj’ equals ui+vj-, which 
by the choice of  is at least wi,j. 

  T 
+ 

R - 
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Theorem 3.2.11 Continue 

The algorithm terminates only when the 
equality subgraph has a perfect matching, 
so it suffices to show that it does terminate.  

Suppose that the weights wi,j are rational. 
Multiplying the weights by their least 
common denominator yields an equivalent 
problem with integer weights. 
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Theorem 3.2.11 Continue 

We can now assume that the labels in the 
current cover also are integers.  

Thus each excess is also an integer, and at each 
iteration we reduce the cost of the cover by an 
integer amount.  

Since the cost starts at some value and is 
bounded bellow by the weight of a perfect 
matching, after finitely many iterations we 
have equality. 
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Factor 

• A factor of graph G is a spanning subgraph of G.  
• A k-factor is a spanning k-regular subgraph.  
• An odd component of a graph is a component of odd 

order; the number of odd components of H is o(H). 

• A 1-factor and a perfect matching are almost the 
same thing. 

G 1-factor 
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Tutte’s 1-factor Theorem 

Tutte found a necessary and sufficient 
condition for which graphs have 1-factors.  

If G has a 1-factor and we consider a set SV(G), 
then every odd component of G-S has a vertex 
matched to something outside it, which can only 
belong to S.  

Since these vertices of S must be distinct, o(G-
S)|S|. 

Tutte’s Condition: For all S V(G), o(G-S)|S|.  

Tutte proved that this obvious necessary condition 
is also sufficient (TONCAS). 
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Theorem: A graph G has a 1-factor if and only if o(G-S) |S| 
for every S V(G) 3.3.3 

Example:  

G - U 

U 
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Join 3.3.6 

The join of simple graphs G and H, written 
GH, is the graph obtained from the 
disjoint union G+H by adding the edges             
{xy : xV(G), y V(H)}. 

P4 

K3 

P4  K3 
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Corollary: The largest number of vertices saturated by a matching 
in G is min sv(G) {n(G)-d(S)}, where d(S) = o(G-S) - |S|. 3.3.7 

Proof: 

Given SV(G), at most |S| edges can match vertices 
of S to vertices in odd components of G-S, so every 
matching have at least o(G-S)-|S| unsaturated 
vertices. We want to achieve this bound. 

Let d=max{o(G-S)-|S|: SV(G)}. The case S= yields 
d0. Let G’=GKd.  Since d(S) has the same parity as 
n(G) for each S, we know that n(G’) is even. If G’ 
satisfies Tutte’s Condition, then we obtain a matching 
of the desired size in G from a perfect matching in G’, 
because deleting the d added vertices eliminates 
edges that saturate at most d vertices of G. 
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Corollary 3.3.7 continue 

The condition o(G’-S’)|S’| holds for S’= 
because n(G’) is even.  

If S’ is nonempty but does not contain all of Kd, 
then G’-S’ has only one component, and 1<|S’|.  

Finally, when KdS’, we let S=S’-V(Kd). We have 
G’-S’=G-S, so o(G’-S’)=o(G-S)|S|+d=|S’|.  

We have verified that G’ satisfies Tutte’s 
Condition 
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Edmonds’ Blossom Algorithm 
In bipartite graphs, we can search quickly for 
augmenting paths (Algorithm 3.2.1) because 
we explore from each vertex at most once.  

An M-alternating path from u can reach a 
vertex x in the same partite set as u only along 
a saturated edge. Hence only once can we 
search and explore x.  

This property fails in graphs with odd cycles, 
because M-alternating paths from an 
unsaturated vertex may reach x both along 
saturated and along unsaturated edges. 
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Flower, Stem, Blossom 

That M be a matching in a graph G, and let u 
be an M-unsaturated vertex.  

A flower is the union of two M-alternating paths 
from u that reach a vertex x on steps of opposite 
parity (having not done so earlier).  

The stem of the flower is the maximal common 
initial path (of nonnegative even length).  

The blossom of the flower is the odd cycle 
obtained by deleting the stem. 
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Example of Flower, Stem, and Blossom 

Flower 

Blossom 

Stem 

Matching and Factors      Advanced Graph Theory (CS-505) 



Vu Pham 

Example 3.3.16 

a c 

u 

f g 

h 

e 

d b 

x 

a C g 

h u 

b d 

x 

Start 

point 

Blossom Contract Blossom  
{c, e, f} 

Find a new  
Blossom  

{u,a,b,C,d} 
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Example 

a c 

u 

f 

e 

d b 

x 

U g h 

x 

U 

x 

a C 

u 

b d 
x 

Contract Blossom  
{u,a,b,C,d} 

Augmenting Path  
in original graph 

New  
Augmenting Path!!! 

Expand  
Blossom U 
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Example 3.3.16 

a c 

u 

f g 

h 

e 

d b 

x 

a c 

u 

f g 

h 

e 

d b 

x 

Original Matching New Matching 
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Edmonds’ Blossom Algorithm3.3.17 

Input: A graph G, a matching M in G, an M-unsaturated 
vertex u. 

Idea: Explore M-altenating paths from u, recording for 
each vertex the vertex from which it was reached, and 
contracting blossoms when found. Maintain sets S 
and T analogous to those in Algorithm 3.2.1, with S 
consisting of u and the vertices reached along 
saturated edges. Reaching an unsaturated vertex 
yields an augmentation.  

Initialization: S={u}and T= 
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Edmonds’ Blossom Algorithm3.3.17 

Iteration: 

If S has no unmarked vertex, stop; there is no M-augmenting 
path from u. Otherwise, select an unmarked vS. To explore 
from v, successively consider each y  N(v) such that yT. 

If y is unsaturdated by M, then trace back from y (expanding 
blossoms as needed) to report an M-augmrnting u,y-path. 

If y  S, then a blossom has been found. Suspend the 
exploration of v and contract the blossom, replacing its 
vertices in S and T by a single new vertex in S.  Continue the 
search from this vertex in the smaller graph. Otherwise, y is 
matched to some w by M. Include y in T (reached from v), and 
include w in S (reached from y). 

After exploring all such neighbors of v, mark v and iterate. 
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