
Vu Pham

Lecture 06
 Spanning Trees and Enumeration

Dr. Rajiv Misra

Associate Professor

Dept. of Computer Science & Engg.

Indian Institute of Technology Patna

rajivm@iitp.ac.in

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Preface

 Advanced Graph Theory

Recap of previous Lecture:

In the previous lecture, we have discussed the basic
properties of trees and distance.

Content of this Lecture:

In this lecture, we will discuss the Prüfer code
Cayley’s formula, counting of spanning trees using
various methods including Matrix Tree Theorem.

Spanning Trees and Enumeration

Vu Pham

There are 2 simple graphs with vertex set [n]={1,…,n},
since each pair may or may not form an edge.

How many of these are trees?

With vertex set [n], there are nn-2 labelled trees; this is
Cayley’s Formula.

Spanning Trees and Enumeration 2.2

Spanning Trees and Enumeration Advanced Graph Theory










2

n

Vu Pham

With one or two vertices, only one tree can be formed.

With three vertices there is till only one isomorphism class,
but there are three trees with vertex set [3].

With vertex set [4], there are four stars and 12 paths,
yielding 16 trees.

With vertex set [5], a careful study yields 125 trees.

Enumeration of Trees 2.2

Spanning Trees and Enumeration Advanced Graph Theory

3 2

1

3 2

1

3 2

1
Example: n = 3

Vu Pham

Now we may see a pattern. With vertex set [n], there are
nn-2 trees; this is Cayley’s Formula. Prüfer, Kirchhoff, Pόlya,
Renyi, and others found proofs.

We will discuss a bijective proof, establishing a one-to-one
correspondence between the set of trees with vertex set
[n] and a set of known size.

Given a set S on n numbers, there are exactly nn-2 ways to
form a list of length n-2 with entries in S. The set of lists is
denoted Sn-2 .

We use Sn-2 to encode the trees with vertex set S. The list
that results from a tree is its Prüfer code.

Cayley’s Formula and Prüfer Code

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Algorithm. (Prüfer code) Production of
f (T) = (a1,…,an-2)

Input: A tree T with vertex set S  N

Iteration: At the ith step, delete the least
remaining leaf, and let ai be the neighbor of
this leaf.

Algorithm 2.2.1. (Prüfer code) Production of
f (T) = (a1,…,an-2)

2 7 1 4 3

6 8 5

1. Delete 2 a1= 7
2. Delete 3 a2= 4
3. Delete 5 a3= 4
4. Delete 4 a4= 1
5. Delete 6 a5= 7
6. Delete 7 a6= 1

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

 Proof Idea: Labelled tree T ↔ Prüfer sequence S

How many such sequence ? n x n x n x ……x n = nn-2

Algorithm: Labelled tree T → Prüfer Sequence S

Find a leaf of T with smallest label

 → add the neighbour to sequence S

 → delete this leaf

 Repeat until our tree is K2

Generation of Prüfer Sequence from Labelled Tree

on n elements
of length n-2

1:1
correspondence

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Example

1 2

7

3

4
6

5

T

S = ()

S = (1)

S = (1, 7)

S = (1, 7, 6)

S = (1, 7, 6, 6)

S = (1, 7, 6, 6, 1)

Why n-2?

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

OBSERVATIONS

• No leaf gets appended to S

• Every vertex v is added to S a total of deg(v)-1 times

So in given Tree let n vertices, m edges m = n – 1

Number of terms in S

 = 2m – n

 = 2 (n-1) – n

 = n - 2

Contd…












)()(

)1())deg((

)(

)1)(deg(

Tvv Tvv

v

Tvv

v

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Generation of Labelled Tree from Prüfer Sequence

Spanning Trees and Enumeration Advanced Graph Theory

 Proof Idea: Prüfer sequence S of length n-2 using symbols 1,….n
→ Labelled tree T

Let S = (a1, a2…,an-2), ai ϵ {1,….n}

Algorithm: Prüfer Sequence S → Labelled tree T

Find smallest element x ϵ {1,….n} x S

→ join x to 1st element of S

→ delete a1 from S, delete x from {1,….n}

Find smallest y ϵ L \ {x} not in S \ {a1 }

→ join y to the 1st element of S \ {a1 }

→ delete a2 from S

→ delete y from L

Continue until 2 items remain in L

 → join these two with an edge



x a1

y a2

Vu Pham

S = (1, 7, 6, 6, 1) length 5 → n = 7

L = {1, 2, ……, 7}- vertices with labels

x ϵ L \ {S} smallest → x = 2

(edge 12, remove 2 from L and 1 from S)

S = (7, 6, 6, 1)

L = (1, 3, 4, 5, 6, 7}

Example

1 2

7

3

4
6

5

T

S → T

T → S

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Theorem: For a set S  N of size n, there are nn-2 trees
with vertex set S

Proof: (Prüfer [1918]).

 This holds for n = 1, so we assume n ≥ 2. We prove
that Algorithm 2.2.1 defines a bijection f from the set
of trees with vertex set S to the set Sn-2 of lists of
length n-2 from S. We must show for each
a = (a1,….,an-2) ϵ Sn-2 that exactly one tree T with
vertex set S satisfies f(T) = a. We can prove this by
induction on n.

Theorem: Cayley’s Formula [1889] 2.2.3

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

 Basis step: n =2:

There is one tree with two vertices. The Prüfer code is a
list of length 0, and it is the only such list.

 Induction step: n > 2:

Computing f(T) reduces each vertex to degree 1 and then
possibly deletes it. Thus every nonleaf vertex in T appears
in f(T).

No leaf appears, because recording a leaf as a neighbor of
a leaf would require reducing the tree to one vertex.
Hence the leaves of T are the elements of S not in f(T).
If f(T) = a, then the first leaf deleted is the least element of
S not in a (call it x), and the neighbor of x is a1.

Proof by Induction

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

We are given a ϵ Sn-2 and seek all solutions to f(T)=a. We have
shown that every such tree has x as its least leaf and has the
edge xa1. Deleting x leaves a tree with vertex set S’ = S - {x}. Its
Prüfer code is a’ = (a2,….,an-2) , an n-3-tuple formed from S’.

By the induction hypothesis, there exists exactly one tree T’
having vertex set S’ and Prüfer code a’. Since every tree with
Prüfer code a is formed by adding the edge xa1 to such a tree,
there is at most one solution to f(T) = a. Furthermore, adding
xa1 to T’ does create a tree with vertex set S and Prüfer code a,
so there is at least one solution.

Contd…

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Given positive integers d1,….dn summing to 2n-2, there are exactly
 trees with vertex set [n] such that vertex i has degree
 di, for each i.

Proof: While constructing the Prüfer code of a tree T, we record x
each time we delete a neighbor of x, until we delete x itself or
leave x among the last two vertices. Thus each vertex x appears
dT(x) - 1 times in the Prüfer code.

Therefore, we count trees with these vertex degrees by counting
lists of length n-2 that for each i have di -1 copies of i. If we assign
subscripts to the copies of each i to distinguish them, then we are
permuting n-2 distinct objects and there are (n-2)! lists. Since the
copies of i are not distinguishable, we have counted each desired
arrangement times, once for each way to order the
subscripts on each type of label.

Corollary 2.2.4 count the trees by their vertex degrees.

 



)!1(

)!2(

di

n

 )!1(di

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Trees with fixed degrees. Consider trees with vertices
{1,2,3,4,5,6,7} that have degrees (3,1,2,1,3,1,1),
respectively. We compute = 30; The trees are
suggested below

Only the vertices {1,3,5} are non-leaves. Deleting the
leaves yields a subtree on {1,3,5}. There are three such
subtrees, determined by which of the three is in the
middle.

Example

 



)!1(

)!2(

di

n

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

To complete each tree, we add the appropriate number of
leaf neighbors for each non-leaf to give it the desired
degree, There are six ways to complete the first tree (pick
from the remaining four vertices the two adjacent to
vertex 1) and twelve ways to compute each of the others
(pick the neighbor of vertex 3 from the remaining four, and
then pick the neighbor of the central vertex from the
remaining three)

Contd…

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

We can interpret Cayley’s Formula in another way.

Since the complete graph with vertex set [n] has all edges
that can be used in forming trees with vertex set [n], the
number of trees with a specified vertex set of size n equals
the number of spanning trees in a complete graph on n
vertices.

We now consider the more general problem of computing
the number of spanning trees in any graph G. In general, G
will not have as much symmetry as a complete graph, so it
is unreasonable to expect as simple a formula as for Kn,
but we can hope for an algorithm that provides a simple
way to compute the answer when given a graph G.

Counting number of Spanning Trees in Graph

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Example. A kite.

To count the spanning trees, observe that four are
paths around the outside cycle in the drawing

The remaining spanning trees use the diagonal edge

Since we must include an edge to each vertex of
degree 2, we obtain four more spanning trees.

The total is eight.

Spanning Trees in Graphs 2.2.6

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

In Example 2.2.6, we counted separately the trees
that did or did not contain the diagonal edge.

This suggests a recursive procedure to count spanning
trees.

It is clear that the spanning trees of G not containing e
are simply the spanning trees of G-e, but how do we
count the trees that contain e? The answer uses an
elementary operation on graphs.

Contd…

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

In a graph G, contraction of edge e with endpoints u, v
is the replacement of u and v with a single vertex
whose incident edges are the edges other than e that
were incident to u or v. The resulting graph G·e has
one less edge than G.

Contraction 2.2.7

u

e

v
G G·e

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

In a drawing of G, contraction of e shrinks the edge to
a single point, Contracting an edge can produce
multiple edges or loops.

To count spanning trees correctly, we must keep
multiple edges .

In other applications of contraction, the multiple
edges may be irrelevant. The recurrence applies for all
graphs.

Contd…

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Proof:

The spanning trees of G that omit e are precisely the
spanning trees of G - e.

To show that G has (G · e) spanning trees containing e
we show that contraction of e defines a bijection from
the set of spanning trees of G containing e to the set of
spanning trees of G · e.

Proposition. Let (G) denote the number of spanning
trees of a graph G. If e  E(G) is not a loop, then
(G)= (G - e) + (G · e) 2.2.8

Spanning Trees and Enumeration Advanced Graph Theory

Recurrence

Vu Pham

Proof:

When we contract e in a spanning tree that contains e, we
obtain a spanning tree of G·e, because the resulting
subgraph of G·e is spanning and connected and has the
right number of edges.

The other edges maintain their identity under contraction,
so no two trees are mapped to the same spanning tree of
G·e by this operation. Also, each spanning tree of G·e
arises in this way, since expanding the new vertex back
into e yields a spanning tree of G. Since each spanning
tree of G·e arises exactly once, the function is a bijection.

Spanning Trees and Enumeration Advanced Graph Theory

Contd…

Vu Pham

A step in the recurrence.

The graphs on the right each have four spanning
trees, so Proposition 2.2.8 implies that the kite has
eight spanning trees, Without the multiple edges, the
computation would fail.

 → ⁺

We can save some computation time by recognizing
special graphs G where we know (G), such as the
graph on the right above.

Example

e

G G - e G . e

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

If G is a connected loopless graph with no cycle of
length at least 3, then  (G) is the product of the edge
multiplicities. A disconnected graph has no spanning
trees.

We cannot apply the recurrence of Proposition 2.2.8
when e is a loop. For example, a graph consisting of
one vertex and one loop has one spanning tree, but
deleting and contracting the loop would count it
twice.

Since loops do not affect the number of spanning
trees, we can delete loops as they arise.

Remark2.2.10

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Counting trees recursively requires initial conditions for
graphs in which all edges are loops.

Such a graph has one spanning tree if it has only one
vertex, and it has no spanning trees if it has more than
one vertex.

If a computer completes the computation by deleting or
contracting every edge in a loopless graph G, then it may
compute as many as 2e(G) terms.

Even with savings from Remark 2.2.10, the amount of
computation grows exponentially with the size of the
graph; this is impractical.

Contd…

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Another technique leads to a much faster
computation.

The Matrix Tree Theorem, implicit in the work of
Krichhoff [1847], computes  (G) using a determinant.

This is much faster, because determinants of n-by-n
matrices can be computed using fewer than n3

operations. Also, Cayley’s Formula follows from the
Matrix Tree Theorem with G = Kn , but it does not
follow easily from Proposition 2.2.8.

Matrix Tree Theorem (Krichhoff)

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

Theorem 2.2.12 instructs us to form a matrix by putting the
vertex degrees on the diagonal and subtracting the adjacency
matrix. We then delete a row and a column and take the
determinant, When G is the kite of Example 2.2.9, the vertex
degrees are 3,3,2,2. We form the matrix and take the
determinant of the matrix in the middle, The result is the
number of spanning trees!

Loops don’t affect spanning trees, so we delete them before
the computation, The proof of the theorem uses properties
of determinants.

Example: A Matrix Tree computation. 2.2.11

G

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

 Theorem: Given a loopless graph G with vertex set
v1, …., vn, let ai,j be the number of edges with
endpoints vi and vj. Let Q be the matrix in which entry
(i, j) is – ai,j when i  j and is d(vi) when i = j. If Q* is a
matrix obtained by deleting row s and column t of Q,
then (G) = (-1)s+t detQ*

Matrix Tree Theorem 2.2.12

Spanning Trees and Enumeration Advanced Graph Theory

Vu Pham

In this lecture, we have discussed the Enumeration
of trees, Cayley’s formula, Prüfer code, Algorithm
for generation of Prüfer Sequence from Labelled
Tree and Generation of Labelled Tree from Prüfer
Sequence, Spanning trees in graphs, Matrix tree
computation and Matrix tree theorem.

In upcoming lecture, we will discuss the minimum
spanning tree and shortest paths.

Conclusion

Spanning Trees and Enumeration Advanced Graph Theory

