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Preface 

Recap of Previous Lecture: 

 

In previous lecture, we have discussed the elementary 
properties of Subdivision, Minor, Kuratowski’s theorem 
and Wagner’s Theorem and also proved the Non-
planarity of Peterson Graph. . 
 

Content of this Lecture: 

 
In this lecture, we will discuss Line Graph, Edge-coloring 
and 1-factorization. 
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Many questions about vertices have natural analogues for 
edges. Independent sets have no adjacent vertices; 
matchings have no “adjacent” edges. 

 

Vertex colorings partition vertices into independent sets; 
we can instead partition edges into matchings. These pairs 
of problems are related via line graphs. 

 

Here we repeat the definition, emphasizing our return to 
the context in which a graph may have multiple edges. We 
use “line graph” and L(G) instead of “edge graph” because 
E(G) already denotes the edge set. 

Line Graphs and Edge-coloring 
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     Definition: The line graph of G, written L(G), is the simple 
graph whose vertices are the edges of G, with ef ϵ E(L(G)) 
when e and f have a common endpoint in G. 

 

     Example: 

Definition: Line graph 7.1.11  
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Example: Line Graph 
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Edge-coloring problems arise when the objects being 
scheduled are pairs of underlying elements. 

 

Example: Edge-coloring of K2n.  

 

In a league with 2n teams, we want to schedule games so that 
each pair of teams plays a game, but each team plays at most 
once a week. Since each team must play 2n-1 others, the 
season lasts at least 2n-1 weeks. The games of each week must 
form a matching. We can schedule the season in 2n-1 weeks if 
and only if we can partition E(K2n) into 2n-1 matchings. Since 
K2n is 2n-1 regular, these must be perfect matchings. 

Edge colorings 
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A k-edge coloring of G is labeling f: E(G) → S , where |S|=k (often 
we use S = [k].  

The labels are colors; the edges of one color form a color class. 

A k-edge-coloring is proper if incident edges have different 
labels; that is, if each color class is a matching.  

A graph is k-edge colorable if it has a proper k-edge coloring. 

The edge chromatic number ’(G) of a loopless graph G is the 
least k such that G is k-edge-colorable. 

 

Example: Edge-coloring a complete graph 

Definition 7.1.3 
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Chromatic index is another name for ’(G) . Since edges 
sharing a vertex need different colors, ’(G) ≥ (G).  

Vizing [1964] and Gupta [1966] independently proved that           
(G) + 1 colors suffice when G is simple.  

A clique in L(G) is a set of pairwise-intersecting edges of G. 
When G is simple, such edges form a star or a triangle in G. 
For the hereditary class of line graphs of simple graphs, 
Vizing’s Theorem thus states that (H) ≤ (H) +1; thus line 
graphs are “almost” perfect. 

In contrast to (G) , multiple edges greatly affect ’(G). A 
graph with a loop has no proper edge-coloring; the adjective 
“loopless” excludes loops but allows multiple edges. 

 

 

Chromatic index 
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In a  graph G with multiple edges, we say that a vertex pair 
x, y is an edge of multiplicity m if there are m edges with 
endpoints x, y.  

 

We write (xy) for the multiplicity of the pair, and we write 
(G)  for the maximum of the edge multiplicities in G. 

 

Example: The “Fat Triangle” 

 

Definition: Multiplicity 7.1.4 
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Proof:  

Corollary 3.1.13 states that every regular bipartite graph H has 
a 1–factor. By induction on (H), this yields a proper (H)-edge- 
coloring. It therefore suffices to show that for every bipartite 
graph G with maximum degree k, there is a k-regular bipartite 
graph H containing G. 

To construct such a graph, first add vertices to the smaller 
partite set of G, if necessary, to equalize the sizes. If the 
resulting graph G’ is not regular, then each partite set has a 
vertex with degree less than k. Add an edge with these two 
vertices as endpoints. Continue adding such edges until the 
graph becomes k-regular; the resulting graph is H. 

For a regular graph G, proper edge-coloring with (G) colors is 
equivalent to decomposition into 1-factors. 

 

Theorem: (König [1916]) If G is bipartite, then ’(G) = (G)7.1.7 
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A decomposition of a regular graph G into 1-factors is a         
1-factorization of G.  

 

A graph with a 1-factorization is 1-factorable. 

 

An odd cycle is not 1-factorable; ’(C2m+1) = 3 > (C2m+1). 

The Petersen graph also requires an extra color, but only 
one extra color. 

Definition: 1-factorization 7.1.8  
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The Petersen graph is 3-regular; 3-edge-colorability requires a 
1-factorization. Deleting a perfect matching leaves a 2-factor; 
all components are cycles. The 1-factorization can be 
completed only if these are all even cycles. 

Thus it suffices to show that every 2-factor is isomorphic to 
2C5. Consider the drawing consisting of two 5-cycles and a 
matching (the cross edges) between them. We consider cases 
by the number of cross edges used. 

Example: The Petersen graph is 4-edge-chromatic. 
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Every cycle uses an even number of cross edges, so a 2-factor H has an 
even number m of cross edges. If m = 0 (left figure), then H = 2C5. 

If m = 2 (central figure), then the two cross edges have nonadjacent 
endpoints on the inner cycle or the outer cycle. On the cycle where 
their endpoints are nonadjacent, the remaining three vertices force all 
five edges of that cycle into H, which violates the 2-factor 
requirement. 

If m = 4 (right figure), then the cycle edges forced into H by the 
unused cross edges form a 2P5 whose only completion to a 2-factor in 
H is 2C5. 

Note that since C5 is 3-edge-colorable, the graph is 4-edge-colorable. 

Example: The Petersen graph is 4-edge-chromatic 
continue 
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(Vizing [1964,1965], Gupta [1966]) 

Theorem: If G is a simple graph, then ’(G) ≤ (G) +1. 

 

Definition: A simple graph G is Class 1 if ’(G) = (G). It is Class 2 
if ’(G) = (G) +1  

    Determining whether a graph is Class 1 or Class2 is generally 
hard. Thus we seek conditions that forbid or guarantee            
(G)-edge-colorability.  

Example: 1) All bipartite graphs are Class 1. (By König's line 
coloring theorem) 

2) Class 2 graphs include the Petersen graph, complete 
graphs  Kn for n= 3, 5, 7, ...,  

 

 

Vizing’s Theorem 
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In this lecture, we have discussed the characterization 
of Line Graphs, Edge-coloring, Chromatic index, 
Multiplicity and 1-factorization. 

Conclusion 
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