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Preface 

Recap of Previous Lecture: 

 
In previous lecture, we have discussed the k-connected 
graphs, k-edge-connected graphs, Menger’s theorem and Line 
graph. 
 

Content of this Lecture: 

 

In this lecture, we will discuss the Network Flow Problems i.e. 
Maximum Network Flow, f-augmenting path, Ford-Fulkerson 
labeling algorithm, Max-flow Min-cut Theorem and the Proof 
of Menger’s Theorem using max-flow min-cut theorem. 
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Consider a network of pipes where valves allow flow in only 
one direction. 

Each pipe has a capacity per unit time. We can model this 
with a vertex for each junction and a (directed) edge for 
each pipe, weighted by the capacity. We also assume that 
flow cannot accumulate at a junction. 

Given two locations s, t in the network, we may ask “what 
is the maximum flow (per unit time) from s to t?” 

This questions arises in many contexts. The network may 
represent roads with traffic capacities, or links in a 
computer network with data transmission capacities, or 
currents in an electrical network. There are applications in 
industrial settings and to combinatorial min-max theorems.  

Network and Flows 
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A network is : 

A digraph with a nonegative capacity c(e) on each 
edge e and  

A distinguished source vertex s and sink vertex t.  

Vertices are also called node s.  

Network  4.3 
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A flow f assigns a value f(e) to each edge e. 

Let: 

f +(v) :  the total flow on edges leaving v and 

 f –(v): the total flow on edges entering v 

A flow is feasible if it satisfies  

The capacity constraints 0≤f(e)≤c(e)  for each edge 
and 

The conservation constraints f + (v) = f – (v) for each 
node v{s, t}. 

Network Flow: Definitions and constraints 4.3 
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The value val(f) of a flow f is the net flow            
f –(t) - f +(t) into the sink.  

 

A maximum flow is a feasible flow of maximum 
value. 

Maximum Network Flow  
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The zero flow assigns flow 0 to each edge 
 
 It is feasible.  

Example of Max Flow 
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In the network below we illustrate a non-zero 
feasible flow.  

Capacities are shown in bold, flow values in 
parentheses.  
Our flow f assigns f(sx) = f(vt) = 0, and f(e) = 1 for 
every other edge e. This is a feasible flow of value 1. 

Example of Max Flow 
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A path from the source to the sink with excess 
capacity would allow us to increase flow. 

In this example, no path remains with excess 
capacity, but the flow f’ with f’(vx) = 0 and f’(e) = 1 
for e ≠ vx has value 2.  

Example of Max Flow 
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When f is a feasible flow in a network N, an                 
f-augmenting path is a source-to-sink path P in 
the underlying graph G such that for each e ∈ E(P), 

  a) if P follows e in the forward direction, then                    
f(e) < c(e). 

  b) if P follows e in the backward direction, then f(e)>0. 

Let ε(e)=c(e) - f(e) when e is forward on P, and let 
ε(e)=f(e) when e is backward on P.  

The tolerance of P is mine∈E(P)ε(e). 

f-Augmenting Path 4.3.4 
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The edges of P incident to an internal vertex v of P 
occur in one of the four ways shown below.  
In each case, the change to the flow out of v is the 
same as the change to the flow into v, so  

                  f ⁻(v) = f ⁺(v). 

New Flow after Augmenting 
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New Flow after Augmenting 

 Examples 
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New Flow after Augmenting 

 Examples 
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New Flow after Augmenting 

 Examples 
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Proof:  

The definition of tolerance ensures that 0 ≤ f’(e) ≤ c(e) for every 
edge e, so the capacity constraints hold.  

 We need only check vertices of P, since flow elsewhere has not 
changed. 

For every vertex v,  f+(v) = f–(v)   
Finally, the net flow into the sink t increases by z. 

Lemma. If P is an f-augmenting path with tolerance z, then changing 
flow by +z on edges followed forward by P and by –z on edges followed 

backward by P produces a feasible flow f’ with val(f’) = val(f)+z.  
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In a network, a source/sink cut [S,T] consists of the 
edges from a source set S to a sink set T, where S and 
T partition the set of nodes, with s ∈ S and t ∈ T.  

 

The capacity of the cut [S, T],written cap(S, T), is the 
total of the capacities on the edges of [S, T]. 

 

Keep in mind that in a digraph [S, T] denotes the set of 
edges with tail in S and head in T. Thus the capacity of 
a cut [S, T] is completely unaffected by edges from T 
to S. 

Source/sink cut 
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Input: A feasible flow f in a network. 

Output: An f-augmenting path or a cut with capacity 
val(f). 

Idea: Find the nodes reachable from s by paths with 
positive tolerance. Reaching t completes an                        
f-augmenting path. During the search, R is the set of 
nodes labeled Reached, and S is the subset of R 
labeled Searched. 

Ford-Fulkerson Labeling Alg. For Max- flow 1 4.3.9 
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Initialization: R = {s}, S = . 

Iteration: Choose v ∈ R-S. 

For each exiting edge vw with f(vw) < c(vw) and w ∉  R, add 
w to R. 

For each entering edge uv with f(uv>0) and u ∉ R, add u to R. 

Label each vertex added to R as “reached”, and record v as 
the vertex reaching it. After exploring all edges at v, add v to 
S. 

If the sink t has been reached (put in R), then trace the path 
reaching t to report an f-augmenting path and terminate. If         
R = S, then return the cut [S, Ŝ] and terminate. Otherwise, 
iterate. 

Ford-Fulkerson Labeling Alg. For Max- flow 2 
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In every network, the maximum value of a feasible flow equals 
the minimum capacity of a source/sink cut. 

     Proof:  

In the max-flow problem, the zero flow (f(e)=0 for all e) is always 
a feasible flow and gives us a place to start. Given a feasible flow, 
we apply the labeling algorithm. It iteratively adds vertices to S 
(each vertex at most once) and terminates with t ϵ R 
(“breakthrough”) or with S=R. 

In the breakthrough case, we have an f-augmenting path and 
increase the flow value. We then repeat the labeling algorithm, 
When the capacities are rational, each augmentation increases 
the flow by a multiple of 1/a, where a is the least common 
multiple of the denominators, so after finitely many 
augmentations the capacity of some cut is reached. The labeling 
algorithm then terminates with S=R. 

Theorem: Max-flow Min-cut Theorem-                                         
Ford and Fulkerson [1956] 4.3.11 
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• When terminating this way, we claim that [S,T] is a source/sink 
cut with capacity val(f), where T=S and f is the present flow, It is a 
cut because s ϵ S and t ∉  R = S. 

• Since applying the labeling algorithm to the flow f introduces no 
node of T into R, no edge from S to T has excess capacity, and no 
edge from T to S has nonzero flow in f. Hence f +(S)= cap(S,T) and  
f -(S)=0. 

• Since the net flow out of any set containing the source but not 
the sink is val(f), we have proved  

 

 Val(f) = f +(S)- f -(S) = f +(S) =cap(S,T). 

 

Theorem: Max-flow Min-cut-Ford and Fulkerson [1956] contd… 
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Examples:                                         
Ford Fulkerson Algorithm 
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Q. 1 Apply the Ford Fulkerson Algorithm to determine the value of 
maximum flow from the source x to the sink y. 

 

Example (1) 
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 x → a → d 

 x→ d 

 

 

 

 

 

 

Max flow = val(f) 

                 = f +(x) -  f -(x) = 1 + 1 - 0 = 2 

 

Solution: 

Q 
Residual 
Capacity 
(forward) 

Flow 
(reverse) 

∑ (Q) 

xaby 3,1,3 - 1 

xdcy 3,1,3 - 1 
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Q. 2 Apply the Ford Fulkerson Algorithm to determine the value of 
maximum flow from the source x to the sink y. 

 

Example (2) 
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x → a → b* 

x → a →c → b* 

x → c → b* 

 

Solution: 

max flow = 0 
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Example (3) 

Q. 3 Apply the Ford Fulkerson Algorithm to determine the value 
of maximum flow from the source x to the sink y. 
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Max flow 

= f +(x) -  f -(x) 

= 5 - 0   

=  5 

Solution: 

Q 
Residual 
Capacity 
(forward) 

Flow 
(reverse) 

∑ (Q) 

xcbaey 3,2,3,7 4 2 

xaey 1,1,5 - 1 

 x → c → b → a* 

d* 
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Menger’s Theorem Proof 
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When x, y are vertices in a digraph D, we can view D as a 
network with source x and sink y and capacity 1 on every 
edge. Capacity 1 ensures that units of flow from x to y 
correspond to pairwise edge-disjoint x, y-paths in D. Thus a 
flow of value k yields a set of k such paths. 

Similarly, every source/sink partition S, T defines a set of 
edges whose deletion makes y unreachable from x: the set 
[S,T]. Since every capacity is 1, the size of this set is cap(S,T). 

The paths and the edge cut we have obtained might not be 
optimal, but by the Max-flow Min-cut Theorem we have 

   

Since always κ’(x,y) ≥ λ’(x,y), equality now holds. 

Remark: Menger from Max-flow Min-cut 4.3.13 

Network Flow Problems      Advanced Graph Theory 

 λ’D(x,y) ≥ max val(f) = min cap(S,T) ≥ κ’D(x,y)  



Vu Pham 

Goal: Deduce Menger’s Theorem (vertex version) from               
max-flow min-cut 

 

Theorem (Menger’s Theorem-vertex version) 

Let x,y be two distinct vertices in a connected graph                       
G= (V,E), such that xy  E. Then  κ(x,y) =  (x,y) 

Proof: 

We will show that 

(1) (x,y) ≤ κ(x,y)   (use definitions) 

(2) κ(x,y) ≥ (x,y)   (use max-flow min-cut) 

 

Menger’s Theorem Proof 
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κ(x,y) is the minimum size of an x,y cut 

(x,y) is the maximum number of pairwise  
vertex disjoint/internally disjoint paths 
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Take a minimum (x, y)-cut U. 

Every xy-path must go through U. 

Number of (pairwise) internally disjoint paths is at most |U|         

(x, y) ≤ |U| = κ(x, y) 

(1) To show (x,y) ≤ κ(x,y): Proof 

X Y 

U 
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Construct a network N with source x and sink y as follows: 

Replace each edge uv with two directed arcs: u → v and              
v → u 

(2) To show κ(x,y) ≤ (x,y): Proof 
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Split each vertex w {x,y} into two vertices w- and w+, 
together with a (new) directed edge from w- to w+. 

 

Such an arc w- → w+ is called an internal arc of the network. 

 

Other arcs u → v will be replaced by 

u+ → v- if u, v {x, y}; 

u → v- if u = x, y; 

u+ → v if v = x, y; 
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After Step 1, we have the source X 
directed to a and another arc in 
the opposite direction and we 
have an arc from a to b and 
another arc in the opposite 
direction  

According to Step 2, we are going to split the vertex 
which are not the source or sink. 
Vertex a is splitted to – vertex and + vertex.  
Similarly vertex b is splitted and source remain the 
same 
As mentioned in step 2- there will be internal arcs 
directed from a- to a+, and b- to b+ highlighted by 
red. Also there is an arc from a to b then we are 
going to direct from the + vertex to – vertex. i.e. 
replace by a+ to b- , b+ to a- highlighted by green. 
By rule draw arc from source to (-) vertex then draw 
arc from (+) vertex to the source vertex.                        
i.e. x to a-  and  a+ to x. 
 

Rule is form the + vertex 
to the minus vertex               
u+ → v -  
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Every internal arc will have a capacity of 1, and other arcs will 
have a capacity of n (which is the number of vertices). 

 

 

 

 

 

 

 

 
In Graph G, there are 5 vertices all together. Therefore for every arc which is 
not an internal arc in network N, we have a capacity of 5 where as all 
internal arcs assigned the capacity 1. 

Network Flow Problems      Advanced Graph Theory 



Vu Pham 

(1) Every vertex of the form w- has exactly one arc going out 
from it, which is the internal arc w- →w+ 

(2) Every vertex of the form w+ has exactly one arc coming 
into it, which is the internal arc w- →w+ 

 

Approach: Show 
 

(1) (x,y) ≥ max flow 

(2) κ(x,y) ≤ min cut 

 

Max-flow min cut 

κ(x,y) ≤ min cut = max flow ≤ (x,y)  

 
 

Observation: 

κ(x,y) ≤ (x,y)  
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Let f be a max flow, with val(f) = m. 

If there is a flow into u-, then the value must be 1 (since 
there is only one arc directed from u- - Observation (1)) 

This one unit of flow must travel from x to y. 

m units flow transform into m internally disjoint xy-paths 

 

   (x,y) ≥ m = max flow 

 

To show that (x,y) ≥ max flow  
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1)  K = [S,T] minimum (x,y)-cut of N. 

 

κ(x,y) ≤ min cut 

X 

S 

Y 

T 

Internal arcs 

1 

1 
1 

1 

Assume not. 
Can find a non-internal 
arc directed from S to T 
 
=> cap(K) ≥ n 
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Consider the following x-y-cut K* = [S*, T*] given by 

    

   S* = {x} U {u- : xu ϵ E(G)}, T* = S* 

 

Note: cap(K*) ≤ n-2 

 

Since x has at most n-2 neighbors in G (n = |V(G)|) 

To show that κ(x,y) ≤ min cut 
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≤ n-2 
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Source X, all the vertices which are the endpoints of arc directed from X and all the 
 vertices inside the T* including the sink Y. Inside the S* all the vertices are the (-) vertices  
except from the source . All the arcs are going from the S* are the internal arcs.  
Therefore the capacity of these arcs are 1. 

cap (K*) ≤ n-2 < n 
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1)  K = [S,T] minimum (x,y)-cut of N. 

 

X 

S 

Y 

T 

Internal arcs 

1 

1 
1 

1 

Assume not. 
Can find a non-internal 
arc directed from S to T 
 
=> cap(K) ≥n 
 

Contradicts the minimality of cut K 

n 
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Let K = [S,T] be a minimum x-y cut in N. 

 

=> all arcs directed from S to T are internal arcs. 

 

If not, there is a non-internal arc (whose capacity is n) 
directed from S to T => cap[S,T] ≥ n > cap [S*, T*] 
(contradiction) 
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Idea: 

 

K = [S,T] min               Construct (x,y)-cut U in G 

           (x,y)- cut in N 

κ(x,y) ≤ min cut 
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Let  

                 U = { u ϵ  V(G): u- ϵ S, u+ ϵ T} 

 

Note that |U| = cap(K) = min cut. 

 

Aim: U is an (x, y) –cut in G. 

=> κ(x, y) ≤ |U| = cap(K) = min cut 
 u- 

S T 
1 

1 
1 

 u+ 
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P = xu1
 ……uty be an xy-path in G. 

P can be converted into a directed xy-path P in the directed 
graph D underlying the network N as follows: 

   P = x → u1
+ → u2

- → u2
+ …… → ut

+ → y. 
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Path P from source x to y. Start at source x the followed by u1,u2,u3  
before it reaches to vertex y 

Directed Path in network N denoted by P  
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X 

S T 

Y 

1 

u- u+ 
1 

1 

delete 
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Let’s visualize the Path starting at X then at some point it must cross over to set T 
In order to reach Y.  This will be an internal arc directed from the u+ to u- and the 
capacity of this arc is 1. If we delete these arcs then the source will be  
separated from the sink 
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This directed path P must contain an internal arc directed 
from S to T. 

deleting internal arcs from S to T will break the 
path. 

transforming back to G, deleting vertices in U from 
G will separate x from y 

U is an (x,y)-cut of G. 

 

We are done 
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In this lecture, we have discussed the Network Flow 
Problems i.e.  

- Maximum Network Flow 

- f-augmenting path 

-Ford-Fulkerson labeling algorithm 

- Examples based on Ford-Fulkerson labeling algorithm 

- Max-flow Min-cut Theorem and 

- Proof of Menger’s Theorem 

 

• In upcoming lecture, we will discuss Graph Coloring i.e. 
Vertex Coloring and Upper Bounds. 

 

 

Conclusion 
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