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Content of this Lecture: 

 

In this lecture, we will discuss the Concept of Matching, 
Perfect matchings, Maximal matchings, Maximum 
Matchings, M-alternating path, M-augmenting path, 
Symmetric difference, Hall’s Matching condition and 
Vertex covers. 
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Within a set of people, some pairs are compatible as 
roommates; under what conditions can be pair them all 
up? Many applications of graphs involve such pairings.  

Example: Problem of filling jobs with qualified candidates 

 

 

 

 

Bipartite graphs have a natural vertex partition into two 
sets, and we want to know whether the two sets can be 
paired using edges. In the roommate question, the graph 
need not be bipartite. 
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Matching 3.1.1 

A matching in a graph G is a set of non-loop edges 
with no shared endpoints. 

 The vertices incident to the edges of a matching M 
are saturated by M; the others are unsaturated 
(we say M- saturated and M- unsaturated) 

Example: 
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A matching in bipartite graph A matching in general graph 

Saturated 

Unsaturated 
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Perfect Matching 3.1.2 

A perfect matching in a graph is a matching 
that saturates every vertex. 

 

Example: 
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X 

Y 

X1      X2      X3      X4 

Y1      Y2      Y3      Y4 



Vu Pham 

Example: Perfect matchings in Kn,n 3.1.2 

Consider Kn,n with partite sets X={x1,…, xn} and 
Y={y1,…, yn}. Perfect matching bijection from X to Y.  

Successively finding mates for x1, x2,… yields n! 
perfect matchings.  
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0   1   0    0 

0   0   1    0 

1   0   0    0 

0   0   0    1 

Y1    Y2    Y3     Y4 

X1 

X2 

X3  

X4 

X 

Y 

X1      X2      X3      X4 

Y1      Y2      Y3      Y4 

We can express the matchings as matrices 
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Example: Perfect Matchings in Complete graphs 2.1.3 

K2n+1 has no perfect matching. Since it has odd order 

K2n  ways to pair up 2n distinct people is fn 

There are 2n-1 choices for partner of v2n, and for 
each such choices there are fn-1 ways to complete 
the matching.  

Hence fn=(2n-1)fn-1 for n1. With f0=1, it follows by 
induction that fn=(2n-1)·(2n-3) · · ·(1). 
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There is also a counting argument for fn . From an ordering of 2n people, we form a matching 
by pairing the first two, the next two, and so on. Each ordering thus yields one matching. 
Each matching is generated by  2nn! orderings, since changing the order of the pairs or the 
order within a pair does not change the resulting matching.  
Thus there are fn = (2n)!/(2nn!) perfect matchings. 
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Example: Perfect Matchings in K6 

For K6 , number of perfect matchings is f3,   

f3 is the number of perfect matchings 

f3= (2n-1) * f2 = 5* f2=5*3*f1  
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Maximal Matching and Maximum Matching 3.1.4 

A maximal matching in a graph is matching 
that can not be enlarged by adding an edge.  

A maximum matching is a matching of 
maximum size among all matchings in the 
graph. 

A matching M is maximal if every edge not in 
M is incident to an edge already in M.  

Every maximum matching is a maximal 
matching, but the converse need not hold.  
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Example: Maximal Matching 
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A matching is maximal if no more edges 
may be added. 

Maximal 

Maximum 

A graph’s maximum matching is 
its largest (more edges or total 
edge weight) 
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Maximal  Maximum 3.1.5 

The smallest graph having a maximal 
matching that is not a maximum matching 
is P4.  

If we take the middle edge, then we can add no 
other, but the two end edges form a larger 
matching.  

Below we show this phenomenon in P4. 

Maximal Maximum 
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Alternating path & Augmenting path 3.1.6  

• Given a matching M, an M-alternating path is 
a path that alternates between edges in M 
and edges not in M.  

• An M-alternating path whose endpoints are 
unsaturated by M is a M-augmenting path. 

A B C D 

E F G H 

Augmenting path:  

  1) E-B-F-D 

  2) A-F-B-G-C-H 

A B C D 

E F G H 
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Given an M-augmenting path P, we can replace the 
edges of M in P with the other edges of P to obtain a 
new matching M’ with one more edge. Thus when M 
is a maximum matching, there is no M-augmenting 
path. 

 

Maximum matchings are characterized by the absence 
of augmenting paths. It can be proved by considering 
two matchings and examining the set of edges 
belonging to exactly one of them. This operation can 
be defined for any two graphs with the same vertex 
set. 

Alternating path & Augmenting path 3.1.6  
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Symmetric Difference 3.1.7 

• If G and H are graphs with vertex set V, then 
the symmetric difference GH is the graph 
with vertex set V whose edges are those 
edges appearing in exactly one of G and H.  

 

• We also use this notation for sets of edges ; in 
particular, if M and M’ are matchings, then  

    MM’ = (M - M’)  (M’ - M). 
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Example of Symmetric Difference (1) 

A B C D 

H I J K 

E 

L 

F 

M 

G 

N 

A B C D 

H I J K 

E 

L 

F 

M 

G 

N 

A B C D 

H I J K 

E 

L 

F 

M 

G 

N 

M’ M 

MM’ 
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In the graph below, M is the matching with five solid 
edges M’ is the one with six bold edges, and the 
dashed edges belong to neither M not M’. The two 
matchings have one common edge e; it is not in their 
symmetric difference. The edges of MM’ form a 

cycle of length 6 and a path of length 3. 

 

Example of Symmetric Difference (2) 

e 
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Lemma: Every component of the symmetric difference of 
two matchings is a path or an even cycle 3.1.9 

Proof: Let M and M’ be matchings, and F = MM’.  

• Since M and M’ are matchings, every vertex has at 
most one incident edge from each of them.                

• Thus F has at most two edges at each vertex. 

•  Since (F)  2, every component of F is a path or a 
cycle.  

• Furthermore, every path or cycle in F alternates 
between edges M - M’ and edges of M’ - M.  

• Thus each cycle has even length, with an equal 
number of edges from M and from M’. 

     Advanced Graph Theory Matchings and Covers 
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Theorem: (Berge [1957)] A matching M in a graph G is a maximum 
matching in G if and only if G has no M-augmenting path. 3.1.10 

Proof: We prove the contrapositive of each direction;  

G has a matching larger than M if and only if G has an M-augmenting path.  

(sufficiency) an M-augmenting path can be used to produce a 
matching larger than M.  

(necessity) Let M’ be a matching in G larger than M;                                         
we construct an M-augmenting path  

• Let F=MM ’. By Lemma 3.1.9, F consists of paths and even cycles; 
the cycles have the same number of edges from M and M’.  

• Since |M’|>|M|, F must have a component with more edges of M’ 
than of M. Such a component can only be a path that starts and 
ends with an edge of  M’; thus it is a M-augmenting path in G. 
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When we are filling jobs with applicants, there 
may be many more applicants than jobs; 
successfully filling the jobs will not use all 
applicants.  

 

To model this problem, we consider an X, Y-
bigraph (bipartite graph with bipartition X, Y), and 
we seek a matching that saturates X. 

Hall’s Matching Condition 
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If a matching M saturates X, then for every S  X there 
must be at least |S| vertices that have neighbors in S, 
because the vertices matched to S must be chosen 
from that set.  

We use NG(S) or simply N(S) to denote the set of 
vertices having a neighbor is S. Thus |N(S)|  |S| is a 
necessary condition. 

The condition “For all S X , |N(S)|  |S|” is Hall’s 
Condition, Hall proved that this obvious necessary 
condition is also sufficient (TONCAS) 

 

Hall’s Matching Condition 
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Does G have a matching of size 4? 

 

 

 

 

 

Let X={B,C}   N(X) = {3}.  |N(X)|=1    |X|=2 

Since |N(X)|<|X|, Hence violates Hall’s 
Condition i.e no matching of size 4 exists. 

 

 

Example 

  1                2                 3            4             5             6 

A                       B          C              D 
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Does G have a matching of size 5? 

 

 

 

 

 

Let X={B,C, D}   N(X) = {1, 3}.  |N(X)| ≥|X| 

                                                          2  >  3 

Violates Hall’s Condition: No matching of size 5. 

 

 

Example 

  1                2                 3            4             5 

A                       B          C              D                 E              
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Does G have a matching of size 4? 

 

 

 

 

 

Yes. {C4, D3, A2, B1} 

 

 

Example 

  1                2                 3            4         

A                B                    C              D 
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You have a group of 5 friends and you only want to offer your 
friends chocolate if you know for sure that each of them can 
get a piece 

Example 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 
|A|= 5 
|N(A)|=9 
|N(A)|≥ |A| 
     9 > 5 
 Matchings and Covers      Advanced Graph Theory 

A 

B 

C 

D 

E 

1 

2 

3 

4 

5 
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Theorem: (Hall’s Theorem- P. Hall [1935] An X,Y-bigraph G has a 
matching that saturates X if and only if |N(S)|  |S| for all S  X. 3.1.11 

Necessity. The |S| vertices matched to S must lie in N (S).                          
i.e |N(S)|  |S| for all S X 

Sufficiency. To prove that Hall’s Condition is sufficient, we prove the 
contrapositive:   

 If M is a maximum matching in G and M does not saturate X,   then 
there is a set S  X such that |N(S)|<|S|.  

Let u  X be a vertex unsaturated by M. Among all the vertices reachable 
from u by M-alternating paths in G, let S consist of those in X, and let T 
consist of those in Y.  Note that u ϵ S.          

T = N(S) 

S 

X 

Y 

u 

Matchings and Covers      Advanced Graph Theory 



Vu Pham 

Theorem 3.1.11  Continue 

We claim that M matches T with S - {u}.                          
The M-alternating paths from u reach Y along edges 
not in M and return to X along edges in M.  

Hence every vertex of S - {u} is reached by an edge in 
M from a vertex in T.  

T=N(S) 

S 

X 

Y 

u 
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Theorem 3.1.11  Continue 

Since there is no M-augmenting path, every vertex of T 
is saturated; thus an M-alternating path reaching y  T 
extends via M to a vertex of S.  

Hence these edges of M yield a bijection from T to           
S - {u}, and we have |T|=|S - {u}|. 

T=N(S) 

S 

X 

Y 

u 
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Theorem 3.1.11  Continue 
The matching between T and S - {u} yields T  N(S).  In fact,              

T = N(S). Suppose that y ϵ Y - T has a neighbor v ϵ S. The edge vy 
can not be in M, since u is unsaturated and the rest of S is 
matched to T by M. Thus adding vy to an M-alternating path 
reaching v yields an M-alternating path to y. This contradicts              
y ϵ T, and hence vy cannot exist 

With T = N(S), we have proved that |N(S)|=|T|=|S|-1 < |S| for 
this choice of S. This completes the proof of the contrapositive. 

T=N(S) 

S 

X 

Y 

u 
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Theorem 3.1.11 implies that whenever an X,Y-bigraph 
has no matching saturating X, we can verify this by 
exhibiting a subset of X with too few neighbors. 

When the sets of the bipartition have the same size, 
Hall’s Theorem is the Marriage Theorem(proved 
originally by Frobenius [1917].) The name arises from the 
setting of the compatibility relation between a set of n 
men and a set of n women, If every man is compatible 
with k women and every woman is compatible by k men, 
then a perfect matching must exist.  

Remark 3.1.12 
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Corollary: for k>0, every k-regular bipartite graph has 
a perfect matching. 3.1.13 

Proof: Let G be a k-regular X,Y- bigraph.  

Counting the edges by endpoints in X and by 
endpoints in Y shows that k|X|=k|Y|, so |X|=|Y|. 
Hence it suffices to verify Hall’s Condition; a 
matching that saturates X will also saturate Y and 
be perfect matching.                                                                   
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Corollary: for k>0, every k-regular bipartite graph 
has a perfect matching. 3.1.13 

Proof:  Continued 

Consider S  X. Let m be the number of edges 
from S to N(S). Since G is k-regular, m=k|S|. 
These m edges are incident to N(S), so                      
m  k|N(S)|. Hence k|S|  k|N(S)|, which 
yields |N(S)||S| when k>0. Having chosen            
S  X arbitrarily, we have established Hall’s 
condition. 

S 

m = k|S|,    m  k|N(S)|  

N(S) 

Matchings and Covers      Advanced Graph Theory 



Vu Pham 

When a graph G does not have a perfect matching, 
Theorem 3.1.10 allows us to prove that M is a 
maximum matching by proving that G has no M-
augmenting path.  

Exploring all M-alternating paths to eliminate the 
possibility of augmentation could take a long time. 

Instead of exploring all M-alternating paths, we would 
prefer to exhibit an explicit structure in G that forbids 
a matching larger than M. 

Min-Max Theorems 
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Vertex Cover  3.1.14 

A vertex cover of a graph G is a set Q  V(G) 
that contains at least one endpoint of every 
edge. The vertices in Q cover E(G). 

Example: 
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Since no vertex can cover two edges of a matching, 
the size of every vertex cover is at least the size of 
every matching.  

 

Therefore, obtaining a matching and a vertex cover of 
the same size PROVES that each is optimal Such 
proofs exist for bipartite graphs, but not for all graphs. 

Contd… 
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Example: Matchings and Vertex covers 
In the graph on the left below,  

We mark a vertex cover of size 2 and show a matching of size 2 
in bold.  The vertex cover of size 2 prohibits matchings with 
more than 2 edges, and the matching of size 2 prohibits vertex 
covers with fewer than 2 vertices. 

|vertex cover|  | matching|  

As illustrated on the right in the next page, the optimal 
values differ by 1 for an odd cycle. The difference can be 
arbitrarily large. 
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If G is a bipartite graph, then the maximum size 
of a matching in G equals the minimum size of 
a vertex cover of G.  

Theorem: (König [1931], Egerváry [1931]) 3.1.16 

A B C 

D E F G 

A B C 

D E F G 

Green: Vertex cover 

Red:     Matching 

|Q||M| 

Since distinct vertices must be used to cover the 
edges of a matching, |Q|  |M| whenever Q is a 
vertex cover and M is a matching in G.   
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In this lecture, we have discussed the Concept of 
Matching, Perfect matchings, Maximal matchings, 
Maximum Matchings, M-alternating path, M-
augmenting path, Symmetric difference, Hall’s 
Matching condition and Vertex covers. 

 

In upcoming lectures, we will discuss Min-Max 
Theorems, Independent sets and covers. 

 

Conclusion 
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