
Vu Pham 

Planar Graphs 

Dr. Rajiv Misra 

Associate Professor 

Dept. of Computer Science & Engg. 

Indian Institute of Technology Patna 

rajivm@iitp.ac.in 

Planar Graphs      Advanced Graph Theory 



Vu Pham 

Preface 

Recap of Previous Lecture: 

 

In previous lecture, we have discussed the properties of 
counting function, chromatic polynomial, chromatic 
recurrence, and further related topics. 
 

Content of this Lecture: 

 
In this lecture, we will discuss planar graphs i.e. plane 
graph embeddings, Dual graphs, Euler’s formula for plane 
graphs and Regular Polygedra. 
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Topological graph theory, broadly conceived, is the study 
of graph layouts.  

Initial motivation involved famous Four Color Problem: 
can the regions of every map on a globe be colored with 
four colors so that regions sharing a nontrivial boundary 
have different colors?  

Later motivation involves circuit layouts on silicon chips. 
Wire crossings cause problems in layouts, so we ask ; 
Which circuits have layouts without crossings? 

Embeddings on Plane: Applications 
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Three sworn enemies A,B,C live in houses in the woods. 
We must cut paths so that each has a path to each of 
three utilities, which by tradition are gas, water, and 
electricity. In order to avoid confrontations, we don’t want 
any of the paths to cross. Can this be done? This asks 
whether K3,3 can be drawn in the plane without edge 
crossing. 

Example: Gas-water-electricity 6.1.1 
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Arguments about drawings of graphs in the plane are 
based on the fact that every closed curve in the plane 
separates the plane into two regions (the inside and the 
outside). 

Before discussing a way to make the arguments precise for 
graph theory, we will show informally how this result is 
used to prove impossibility for planar drawings. 
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Proof:   

Considers a drawing of K5 or K3,3 in the plane.  

Let C be a spanning cycle.      

Proposition 6.1.2:  K5 and K3,3 cannot be drawn 
without crossings 
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Proposition 6.1.2:  K5 and K3,3 cannot be drawn 
without crossings 

Proof: (continue) 

If the drawing does not have crossing edges,  

then C is drawn as a closed curve.  

Chords of C must be drawn inside or outside this curve.  

Two chords conflict if their endpoints on C occur in 
alternating order.  

When two chords conflict, we can draw only one inside C 
and one outside C.  
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Chord 
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Proposition 6.1.2:  K5 and K3,3 cannot be drawn 
without crossings  Continued 

Proof: continued 

A 6-cycle in K3,3 has three pairwise conflicting chords.  

We can put at most one inside and one outside,  

so it is not possible to complete the embedding.  

When C is a 5-cycle in K5, at most two chords can go inside 
or outside.  

Since there are five chords, again it is not possible to 
complete the embeddings. 

 Hence neither of these graphs is planar. 
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A curve is the image of a continuous map from [0, 1] to R2.  

A polygonal curve is a curve composed of finitely many 
line segments.  

It is a polygonal u, v-curve when it starts at u and ends 
at v. 

A drawing of a graph G is a function f defined on 
V(G)∪E(G) that assigns each vertex v a point f(v) in the 
plane and assigns each edge with endpoints u, v a 
polygonal f(u), f(v)-curve.  

The images of vertices are distinct.  

A point in f(e)∩f(e’) that is not a common endpoint is a 
crossing. 

Definitions: Curve, Drawing 6.1.3 
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It is common to use the same name for a graph G and a particular 
drawing of G, referring to the points and curves in the drawing as the 
vertices and edges of G. Since the endpoint relation between the 
points and curves is the same as the incidence relation between the 
vertices and edges, the drawing can be viewed as a member of the 
isomorphism class containing G. 

By moving edges slightly, we can ensure that no three edges have a 
common internal point, that an edge contains no vertex except its 
endpoints, and that no two edges are tangent.  

If two edges cross more than once, then modifying them as shown 
below reduces the number of crossings; thus we also require that 
edges cross at most once. We consider only drawings with these 
properties. 
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Definitions: Planar Graph, Plane Graph 6.1.4 

A graph is planar if it has a drawing without crossings.  

Such a drawing is a planar embedding of G.   

 

A plane graph is a particular planar embedding of a planar 
graph. 

 

 

 

A curve is closed if its first and last points are the same.   

It is simple if it has no repeated points except possibly 
first = last. 

A planar embedding of a graph cuts the plane into pieces.  

These pieces are fundamental objects of study. 
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An open set in the plane is a set U  R2 such that for every 
p  U, all points within some small distance from p belong 
to U.  

A region is an open set U that contains a polygonal u,v-
curve for every pair u,v  U. 

The faces of a plane graph are the maximal regions of the 
plane that contain no point used in the embedding. 

Definitions: Open set, Region, Faces 6.1.5 

A face 

Totally, 4 faces 
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A finite plane graph G has one unbounded face (also called the 
outer face). The faces are pairwise disjoint. Points p,q  R2 
lying in no edge of G are in the same face if and only if there is 
a polygonal p,q-curve that crosses no edge. 

 

In a plane graph, every cycle is embedded as a simple closed 
curve. Some faces lie inside it, some outside. This again relies 
on the fact that a simple closed curve cuts the plane into two 
regions. As we have suggested, this is not too difficult for 
polygonal curves. We will present some detail of this case in 
order to explain how to compute whether a point is in the 
inside or the outside. This proof appears in Tveberg [1980] 
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A map on the plane or the sphere can be viewed as a 
plane graph in which the faces are the territories, the 
vertices are places where boundaries meet, and the edges 
are the portions of the boundaries that join two vertices. 

 

We allow the full generality of loops and multiple edges. 
From any plane graph G, we can form a related plane 
graph called its “dual”. 

Dual Graphs 
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Definition: Dual Graphs 6.1.7 

• The dual graph G* of a plane graph G is a plane graph whose  
vertices correspond to the faces of G.  

 

• The edges of G* correspond to the edges of G as follows:  

– if e is an edge of G with face X on one side and face Y on the other 
side, then the endpoints of the dual edge e*ϵ E(G*) are the vertices 
x, y of G* that represent the faces X, Y of G.  

– The order in the plane of the edges incident to x ϵ V(G*) is the 
order of the edges bounding the face X of G in a walk around its 
boundary.   
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Every planar embedding of K4 has four faces, and these pairwise 
share boundary edges. Hence the dual is another copy of K4. 

Every planar embedding of the cube Q3 has eight vertices, 12 edges, 
and six faces. Opposite faces have no common boundary;  the dual is 
a planar embedding of K2,2,2, which has six vertices, 12 edges, and 
eight faces. 

Taking the dual can introduce loops and multiple edges. For example, 
let G be the paw, drawn below in bold edges as a plane graph. Its 
dual graph G* is drawn in solid edges. Since G has four vertices, four 
edges, and two faces, G* has four faces, four edges, and two vertices. 

Example: Dual of Graph6.1.8 
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1) Example 6.1.8 shows that a simple plane graph may have loops and 
multiple edges in its dual. A cut-edge of G becomes a loop in G*, 
because the faces on both sides of it are the same. Multiple edges arise 
in the dual when distinct faces of G have more that one common 
boundary edge. 

2) Some arguments require more careful geometric description of the dual. 
For each face X of G, we place the dual vertex x in the interior of X, so 
each face of G contains one vertex of G*. For each edge e in the 
boundary of X, we draw a curve from x to a point on e; these do not 
cross. Each such curve meets another from the other side of e at the 
same point on e to form the edge of G* that is dual to e. No other edges 
enter X. Hence G* is a plane graph, and each edge of G* in this layout 
crosses exactly one edge of G. 

      Such arguments lead to a proof that (G*)* is isomorphic to G if and 
only if G is connected. Mathematicians often use the word “dual” in a 
setting when performing an operation twice returns the original object. 

Remark 6.1.9 
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Two embeddings of a planar graph may have nonisomorphic 
duals. Each embedding shown below has three faces, so in each 
case the dual has three vertices. In the embedding on the right, 
the dual vertex corresponding to the outside face has degree 4. 
In the embedding on the left, no dual vertex has degree 4, so 
the duals are not isomorphic. 

This does not happen with 3-connected graphs. Every                        
3-connected planar graph has essentially one embedding. 

 

 

 

When a plane graph is connected, the boundary of each face is 
a closed walk. When the graph is not connected, there are faces 
whose boundary consists of more than one closed walk. 

Example 6.1.10 Non-isomorphic dual 
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Face and its length 6.1.11 

The length of a face in a plane graph G is the total length of the 
closed walk(s) in G bounding the face. 

 

Example: A cut-edge belongs to the boundary of only one face, 
and it contributes twice to its length. Each graph in the given 
example has three faces. In the embedding on the left the 
lengths are 3,6,7; on the right they are 3,4,9. The sum of the 
lengths is 16 in each case, which is twice the number of edges.  
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Proposition 6.1.13: If l(Fi) denotes the length of face Fi in a 

plane graph G, then 2e(G)=  l(Fi). 

Proof:  

 

The face lengths are the degrees of the dual vertices. Since 
e(G) = e(G*), the statement 2e(G) =  l(Fi) is thus the same 
as the degree-sum formula 2e(G*) = dG* (x) for G*.            
(Both sums count each edge twice.) 

Example: 

l = 4 

l = 3 

l = 5 
e (G) = 6 

 l(Fi) = 12 
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Proposition 6.1.13 illustrates that statements about a connected 
plane graph becomes statements about the dual graph when we 
interchange the roles of vertices and faces. Edge incident to a vertex 
become edge bounding  a face, and vice versa, so the roles of face 
lengths and vertex degrees interchange. 

 

We can also interpret coloring of G* in terms of G. The edges of G* 
represent shared boundaries between faces of G. Hence the 
chromatic number of G* equals the number of colors needed to 
properly color the faces of G. Since the dual of the dual of a 
connected plane graph is the original graph, this means that four 
colors suffice to properly color the regions in every planar map if 
and only if every planar graph has chromatic number at most four. 

Remark 

Planar Graphs      Advanced Graph Theory 



Vu Pham 

Theorem 6.1.16 

The following are equivalent for a plane graph G. 

A) G is bipartite. 

B) Every face of G has even length. 

C) The dual graph G* is Eulerian. 

C 
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Theorem 6.1.16 Continued 

Proof: AB 

 

A face boundary consists of closed walks. 

Every odd closed walk contains an odd cycle.  

Therefore, in a bipartite plane graph the contributions 
to the length of faces are all even. 
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Theorem 6.1.16 Continued 

Proof: BA 

 

 Let C be a cycle in G. Since G has no crossings, C is laid out as a 
simple closed curve; let F be the region enclosed by C.  

Every region of G is wholly within F or wholly outside F.  

If we sum the face lengths for the regions inside F, we obtain 
an even number, since each face length is even.  

This sum counts each edge of C once. It also counts each edge 
inside F twice, since each such edge belongs twice to faces in F. 
Hence the parity of the length of C is the same as the parity of 
the full sum, which is even. 

C 
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Theorem 6.1.16 Continued 

 

Proof: BC. 

 

 The dual graph G* is connected, and its vertex degrees are the 
face lengths of G. 

 

C 
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Definition: Outerplanar, Outerplane 6.1.17 

A graph is outerplanar if it has an embedding with every 
vertex on the boundary of the unbounded face.  

 

An outerplane graph is such an embedding of an 
outerplanar graph. 

 

Example: Outerplanar 
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Proposition:  K4 and K2,3 are planar but not 
outerplanar 6.1.19 

Proof:  

The figure below shows that K4 and K2,3 are planar. 
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Proposition:  K4 and K2,3 are planar but not 
outerplanar 6.1.19 

Proof: Continued 

 

To show that they are not outerplanar, observe that they are          
2-connected. Thus an outerplane embedding requires a 
spanning cycle. There is no spanning cycle in K2,3, since it would 
be a cycle of length 5 in a bipartite graph. 

There is a spanning cycle in K4, but the endpoints of the 
remaining two edges alternate along it. Hence these chords 
conflict and cannot both be drawn inside. Drawing a chord 
outside separates a vertex from the outer face. 
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Euler’s Formula: If a connected plane graph with n 
vertices, m edges, and r regions, then n-m+r = 2. 6.1.21  

R1 

R3 

R2 

n = 7 

m = 8 

r = 3 

n-m+r =2 

R1 R2 

R4 

R3 

n = 7 

m = 9 

r = 4 

n-m+r =2 
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Proof:  (Induction on m)  

Basis: (m =0) 

Then G = K1 so  

 

 

Euler’s Formula: If a connected plane graph with n 
vertices, m edges, and r regions, then n-m+r=2. 6.1.21  

n-m+r = 1-0+1=2 

n=1 

m=0 

r=1 
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Induction Hypothesis: Suppose the theorem is true for all 
connected plane graphs with <m edges (where m ≥ 1) 

Now consider a connected plane graph G on m edges, n vertices,            
r regions. 

Case1: If G is a tree then m = n-1 and r =1   
                    so  n-m+r = n-(n-1) +1 = 2 

Case2: If G is not a tree then G has a cycle C                     
Let e be an edge of C     
 Then e is not a cut=edge    
 Hence G-e is connected and planar   
  and has n vertices,      
    m-1 edges,      
     r-1 regions 

By the Induction Hypothesis the theorem holds for G-e 

Hence n – (m-1) + (r-1) = 2 

                   n – m + r = 2 

 

Euler’s Formula: If a connected plane graph with n 
vertices, m edges, and r regions, then n-m+r=2. 6.1.21  
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A connected plane graph satisfies n – m + r = 2 

 

Corollary: If G is a plane graph with c(G) connected components 
then n-m+r = 1+ c(G) 

 

Example: 

 

 

n=12 

m=13 

r=5 

C(G) = 3 

n-m+r=12-13+5 

R1 R2 
R4 

R5 
R3 
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     Euler’s Formula has many applications, particularly for 
simple plane graphs, where all faces have length at least 3. 

Remark 6.1.22 
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Theorem 6.1.23: If G is a simple planar graph with at least three vertices, 
then e(G) ≤ 3n(G) - 6. If also G is triangle-free, then  e(G) ≤ 2n(G) – 4. 

Proof: 

 It suffices to consider connected graphs; otherwise we could 
add edges. Euler’s Formula will relate n(G) and e(G) if we can 
dispose of  f. 

 

Proposition 6.1.13 provides an inequality between e and f. 
Every face boundary in a simple graph contains at least three 
edges (if n(G)  3). Letting { fi } be the list of face lengths, this 
yields 2e =  fi  3f. Substituting into n – e + f = 2 yields                         
e ≤ 3n – 6.  

When G is triangle-free, the faces have length at least 4. In 
this case 2e =  fi   4f, and we obtain e  2n-4. 
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Example 6.1.24 

Nonplanarity of K5 and K3,3 follows immediately from 
Theorem 6.1.23. For K5, we have 

e = 10 and  3n - 6 = 9.  

Thus e > 3n – 6. 

 

Since K3,3 is triangle-free, we have  

e = 9 and  2n - 4 = 8.  

Thus  e  >  2n - 4 

These graphs have too many edges to be planar. 
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Definition: Maximal planar graph and Triangulation 
6.1.25 

A maximal planar graph is simple planar graph 
that is not a spanning subgraph of another planar 
graph.  

 

A triangulation is a simple plane graph where 
every face boundary is a 3-cycle. 
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Proposition 6.1.26: For a simple n-vertex plane graph G, the 
following are equivalent. 

A) G has 3n – 6 edges. 

B) G is a triangulation. 

C) G is a maximal plane graph. 

 

Proof: 

AB. For a simple n-vertex plane graph, the proof of 
Theorem 6.1.23 shows that having 3n-6 edges is equivalent 
to 2e = 3f, which occurs if and only if each face is a 3-cycle. 

B C. there is a face that is longer than a 3-cycle if and only if 
there is a way to add an edge to the drawing and obtain a 
larger simple plane graph. 
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A graph embeds in the plane if and only of it embeds on a 
sphere. Given an embedding on a sphere, we can 
puncture the sphere inside a face and project the 
embedding onto a plane tangent to the opposite point. 

 

This yields a planar embedding in which the punctured 
face on the sphere becomes the unbounded face in the 
plane. The process is reversible. 

Planar Embeddings: method 
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Euler’s Polyhedron Formula 

R2 
R1 

R5 
R3 

R4 

Polyhedron with 

5 vertices      V =5 

8 edges          E = 8 

5 face             F = 5 

Associated graph 

n = 5 

m = 8 

r = 5 

 If V, E, F are the number of vertices, edges and faces of a polyhedron 
 then 

V – E + F = 2            (Euler’s Polyhedron Formula) 
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Informally, we think of a regular polyhedron as a solid 
whose boundary consists of regular polygons of the same 
length, with the same number of faces meeting at each 
vertex.  

 

When we expand the polyhedron out to a sphere and then 
lay out the drawing in the plane as in Remark 6.1.27, we 
obtain a regular plane graph with faces of the same 
length. Hence the dual also is a regular graph. 

Application: Regular Polyhedra 6.1.28 
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Let G be a plane graph with n vertices, e edges, and f faces. 
Suppose that G is regular of degree k and that all faces have 
length l. The degree-sum formula for G and for G* yields 
kn=2e=lf. By substituting for n and f in Euler’s Formula, we 
obtain e(2/k - 1 + 2/l)=2. Since e and 2 are positive, the other 
factor must also be positive, which yields (2/k) + (2/l) > 1, and 
hence 2l + 2k > kl. This inequality is equivalent to (k-2) (l-2)< 4. 

 

Because the dual of a 2-regular graph is not simple, we require 
that k,l ≥ 3. Now (k-2)(l-2) < 4 also requires k,l ≤ 5. The only 
integer pairs satisfying these requirements for (k,l) are (3,3), 
(3,4), (3,5), (4,3), and (5,3). 

 Regular Polyhedra continue 
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Once we specify k and l, there is only one way to lay out the plane 
graph when we start with any face. Hence there are only the five 
Platonic solids listed below, one for each pair (k,l) that satisfy the 
requirements. 

 

Application: Regular Polyhedra continue 

k l (k-2)(l-2) e n f Name Diagram 

3 3 1 6 4 4 Tetrahedron  
 

3 4 2 12 8 6 Cube  
 

4 3 2 12 6 8 Octahedron  
 

3 5 3 30 20 12 Dodecahedron  
 

5 3 3 30 12 20 Icosahedron 

     Advanced Graph Theory Planar Graphs 



Vu Pham 

In this lecture, we have discussed the Planar Graphs 
i.e. Drawings in the plane, Dual graphs and Euler’s 
formula. 

 

In upcoming lecture, we will discuss the Non Planar 
Graphs. 

Conclusion 
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