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Preface 

Recap of Previous Lecture: 
In previous lecture, we have discussed Matchings in 
General Graphs, Tutte’s 1-Factor Theorem and  f-Factor of 
Graphs 

 

Content of this Lecture: 

In this lecture, we will discuss the Matchings in General 
Graphs  i.e. Edmonds’ Blossom Algorithm.   
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Edmonds’ Blossom Algorithm :  
                   Matchings in general graphs vs bipartite graphs 

Berge’s Theorem stated that a matching M in G has maximum size if 
and only if G has no M-augmenting path.  

We can thus find a maximum matching using successive augmenting 
path. Since we augment at most n/2 times, we obtain a good 
algorithm if the search for an augmenting path does not take too long. 
Edmonds [1965a] presented the first such algorithm in his famous 
paper “Paths, trees, and flowers’. 

In bipartite graphs, we can search quickly for augmenting paths 
because we explore from each vertex at most once.  An M-alternating 
path from u can reach a vertex x in the same partite set as u only 
along a saturated edge. Hence only once can we search and explore x.  

This property fails in graphs with odd cycles,  because                         
M-alternating paths from an unsaturated vertex may reach x both 
along saturated and along unsaturated edges. 
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In the graph below, with M indicated in bold, a search for 
shortest M-augmenting paths from u reaches x via the 
unsaturated edge ax. If we do not also consider a longer 
path reaching x via a saturated edge, then we miss the 
augmenting path u, v, a, b, c, d, x, y. 

Example 3.3.14 
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Definitions: Flower, Stem, Blossom 

Let M be a matching in a graph G, and let u 
be an M-unsaturated vertex.  

A flower is the union of two M-alternating paths 
from u that reach a vertex x on steps of opposite 
parity (having not done so earlier).  

The stem of the flower is the maximal common 
initial path (of nonnegative even length).  

The blossom of the flower is the odd cycle 
obtained by deleting the stem. 
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Example of Flower, Stem, and Blossom 

Flower 

Blossom 

Stem 
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Algorithm: Edmonds’ Blossom Algorithm [1965a] 3.3.17 

Input: A graph G, a matching M in G, an M-unsaturated 
vertex u. 

 

Idea: Explore M-alternating paths from u, recording for 
each vertex the vertex from which it was reached, and 
contracting blossoms when found. Maintain sets S 
and T analogous to those in Algorithm 3.2.1, with S 
consisting of u and the vertices reached along 
saturated edges. Reaching an unsaturated vertex 
yields an augmentation.  

 

Initialization: S={u}and T= 
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Edmonds’ Blossom Algorithm3.3.17 

Iteration: 

If S has no unmarked vertex, stop; there is no M-augmenting 
path from u. Otherwise, select an unmarked v  S. To explore 
from v, successively consider each y  N(v) such that y  T. 

If y is unsaturated by M, then trace back from y (expanding 
blossoms as needed) to report an M-augmenting u, y-path. 

If y  S, then a blossom has been found. Suspend the 
exploration of v and contract the blossom, replacing its 
vertices in S and T by a single new vertex in S.  Continue the 
search from this vertex in the smaller graph. Otherwise, y is 
matched to some w by M. Include y in T (reached from v), 
and include w in S (reached from y). 

After exploring all such neighbors of v, mark v and iterate. 
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Let M be the bold matching in the graph on the left below.  We search 
from the unsaturated vertex u for an M-augmenting path. We first explore 
the unsaturated edges incident to u, reaching a and b. Since a and b are 
saturated, we immediately extend the paths along the edges ac and bd. 
Now S={u, c, d}. If we next explore from c, then we find its neighbors e 
and f along unsaturated edges. Since e f ϵ M, we discover the blossom 
with vertex set {c, e, f}. We contract the blossom to obtain the new vertex 
C, changing S to  {u, C, d}. This yields the graph on the rights. 

Example 3.3.16 
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Suppose we now explore from the vertex C ϵ S. Unsaturated 
edges take us to g and to d. Since g is saturated by the edge gh, 
we place h in S so S={u, C, d,h}. Since d is already in S, we have 
found another blossom. The paths reaching d are u, b, d and  

     u, a, C, d.  

Example continue 
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We contract the blossom, obtaining the new vertex U and the graph 
on the right below, with  S = {U, h}. We next explore from h, finding 
nothing new (if we exhaust S without reaching an unsaturated 
vertex, then there is no M-augmenting path from u). Finally, we 
explore from U, reaching the unsaturated vertex x. 

Example continue 
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Having recorded the edge on which we reached each vertex, we can 
extract an M-augmenting u, x-path. We reached x from U, so we expand 
the blossom back into {u, a, C, d, b} and find that x is reached from U 
along bx. The path in the blossom U that reaches b on a saturated edge 
ends with C, d, b. Since C is a blossom in the original graph, we expand C 
back into {c, f, e}. Note that d is reached from C by the unsaturated edge 
ed. The path from the “base” of C that reaches e along a saturated edge 
is c, f, e. Finally, c was reached from a and a from u, so we obtain the full 
augmenting path u, a, c, f, e, d, b, x.  

Example continue 
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Edmonds’ original algorithm runs in time O(n4).                         
The implementation in Ahuja-Magnanti-Orlin [1993] runs in 
time O(n3). This requires: (1) appropriate data structures to 
represent the blossoms and to process contractions, and              
(2) careful analysis of the number of contractions that can be 
performed, the time spent exploring edges, and the time 
spent contracting and expanding blossoms. 

The first algorithm solving the maximum matching problem in 
less than cubic time was the O(n5/2) algorithm in Even-Kariv 
[1975]. The best algorithm now known runs in time O(n1/2m) 
for a graph with n vertices and m edges (this is faster than 
O(n5/2) for sparse graphs). The algorithm is rather complicated 
and appears in Micali-Vazirani [1980], with a complete proof in 
Vazirani [1994] 

Remark 3.3.18 
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In this lecture, we have discussed the Edmonds’ 
Blossom Algorithm and also discuss the concepts 
of flower, stem and blossom. 

 

In upcoming lectures, we will discuss the 
Connectivity and Paths.   

 

Conclusion 
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