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Preface 

     Advanced Graph Theory 

Recap of previous Lecture: 

 

In the previous lecture, we have discussed the basic 
properties of trees and distance.  

 

Content of this Lecture: 

 

In this lecture, we will discuss the Prüfer code 
Cayley’s formula, counting of spanning trees using 
various methods including Matrix Tree Theorem. 
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There are 2     simple graphs with vertex set [n]={1,…,n}, 
since each pair may or may not form an edge. 

 

How many of these are trees? 

 

With vertex set [n], there are nn-2  labelled trees; this is 
Cayley’s Formula. 

 

Spanning Trees and Enumeration 2.2 
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With one or two vertices, only one tree can be formed. 

With three vertices there is till only one isomorphism class, 
but there are three trees with vertex set [3]. 

With vertex set [4], there are four stars and 12 paths, 
yielding 16 trees. 

With vertex set [5], a careful study yields 125 trees.  

Enumeration of Trees 2.2 
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Now we may see a pattern. With vertex set [n], there are 
nn-2  trees; this is Cayley’s Formula. Prüfer, Kirchhoff, Pόlya, 
Renyi, and others found proofs.  

We will discuss a bijective proof, establishing a one-to-one 
correspondence between the set of trees with vertex set 
[n] and a set of known size. 

Given a set S on n numbers, there are exactly nn-2  ways to 
form a list of length n-2 with entries in S. The set of lists is 
denoted Sn-2 . 

We use Sn-2 to encode the trees with vertex set S. The list 
that results from a tree is its Prüfer code. 

Cayley’s Formula and Prüfer Code 
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Algorithm. (Prüfer code) Production of                        
f (T) = (a1,…,an-2) 

Input: A tree T with vertex set S  N 

Iteration: At the ith step, delete the least 
remaining leaf, and let ai be the neighbor of 
this leaf. 

Algorithm 2.2.1. (Prüfer code) Production of                         
f (T) = (a1,…,an-2) 

2 7 1 4 3 

6 8 5 

1. Delete 2  a1= 7 
2. Delete 3  a2= 4 
3. Delete 5  a3= 4 
4. Delete 4  a4= 1 
5. Delete 6  a5= 7 
6. Delete 7  a6= 1 
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 Proof Idea:  Labelled tree T ↔ Prüfer sequence S  

 

 

How many such sequence ?  n x n x n x ……x n = nn-2 

 

Algorithm: Labelled tree T → Prüfer Sequence S 

Find a leaf  of T with smallest label 

    → add the neighbour to sequence S 

     → delete this leaf 

  Repeat until our tree is K2 

 

Generation of Prüfer Sequence from Labelled Tree 

on n elements  
of length n-2 

1:1 
correspondence 

Spanning Trees and Enumeration      Advanced Graph Theory 



Vu Pham 

Example 

1 2 

7 

3 

4 
6 

5 

T 

S = ( ) 

S = (1) 

S = (1, 7) 

S = (1, 7, 6) 

S = (1, 7, 6, 6) 

S = (1, 7, 6, 6, 1) 

Why n-2? 
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OBSERVATIONS 

• No leaf gets appended to S 

• Every vertex v is added to S a total of deg(v)-1 times 

So in given Tree let n vertices, m edges           m = n – 1 

Number of terms in S 

 

                                 = 2m – n 

                                 = 2 (n-1) – n 

                                  = n - 2 

 

Contd… 
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Generation of Labelled Tree from Prüfer Sequence 
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 Proof Idea:  Prüfer sequence S of length n-2 using symbols 1,….n                    
→  Labelled tree T  

Let S = (a1, a2…,an-2), ai ϵ {1,….n} 

Algorithm: Prüfer Sequence S → Labelled tree T  

Find smallest element x ϵ {1,….n} x     S 

→ join x to 1st element of S 

→ delete a1 from S, delete x from {1,….n} 

Find smallest y ϵ L \ {x} not in S \ {a1 } 

→ join y to the 1st element of S \ {a1 } 

→ delete a2 from S 

→ delete y from L 

Continue until 2 items remain in L 

       → join these two with an edge 

 
 



x a1 

y a2 
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S = (1, 7, 6, 6, 1)   length 5 → n = 7 

L = {1, 2, ……, 7}- vertices with labels 

 

x ϵ L \ {S} smallest → x = 2 

( edge 12, remove 2 from L and 1 from S) 

S = (7, 6, 6, 1) 

L = (1, 3, 4, 5, 6, 7} 

 

 

Example 

1 2 

7 

3 

4 
6 

5 

T 

S → T 
 
T → S  
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Theorem: For a set S  N of size n, there are nn-2 trees 
with vertex set S 

 

Proof:  (Prüfer [1918]).  

    This holds for n = 1, so we assume n ≥ 2.  We prove 
that Algorithm 2.2.1 defines a bijection f from the set 
of trees with vertex set S to the set Sn-2 of lists of 
length n-2 from S. We must show for each                            
a = (a1,….,an-2) ϵ Sn-2 that exactly one tree T with 
vertex set S satisfies f(T) = a. We can prove this by 
induction on n. 

Theorem: Cayley’s Formula [1889] 2.2.3 
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     Basis step: n =2: 

There is one tree with two vertices. The Prüfer code is a 
list of length 0, and it is the only such list. 

     Induction step: n > 2: 

Computing f(T) reduces each vertex to degree 1 and then 
possibly deletes it. Thus every nonleaf vertex in T appears 
in f(T).  

No leaf appears, because recording a leaf as a neighbor of 
a leaf would require reducing the tree to one vertex. 
Hence the leaves of T are the elements of S not in f(T).             
If f(T) = a, then the first leaf deleted is the least element of 
S not in a (call it x), and the neighbor of x is a1.  

 

Proof by Induction 
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We are given a ϵ Sn-2 and seek all solutions to f(T)=a. We have 
shown that every such tree has x as its least leaf and has the 
edge xa1. Deleting x leaves a tree with vertex set  S’ = S - {x}. Its 
Prüfer code is a’ = (a2,….,an-2) , an n-3-tuple formed from S’. 

By the induction hypothesis, there exists exactly one tree T’ 
having vertex set S’ and Prüfer code a’. Since every tree with 
Prüfer code a is formed by adding the edge xa1 to such a tree, 
there is at most one solution to f(T) = a. Furthermore, adding 
xa1 to T’ does create a tree with vertex set S and Prüfer code a, 
so there is at least one solution. 

Contd… 
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Given positive integers d1,….dn summing to 2n-2, there are exactly                                                   
  trees with vertex set [n] such that vertex i has degree  
  di, for each i.  

Proof: While constructing the Prüfer code of a tree T, we record x 
each time we delete a neighbor of x, until we delete x itself or 
leave x among the last two vertices. Thus each vertex x appears 
dT(x) - 1 times in the Prüfer code. 

Therefore, we count trees with these vertex degrees by counting 
lists of length n-2 that for each i have di -1 copies of i. If we assign 
subscripts to the copies of each i to distinguish them, then we are 
permuting n-2 distinct objects and there are (n-2)! lists. Since the 
copies of i are not distinguishable, we have counted each desired 
arrangement                  times, once for each way to order the 
subscripts on each type of label. 

Corollary 2.2.4 count the trees by their vertex degrees.  

 



)!1(

)!2(

di

n

  )!1(di
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Trees with fixed degrees. Consider trees with vertices 
{1,2,3,4,5,6,7} that have degrees (3,1,2,1,3,1,1), 
respectively. We compute                    = 30; The trees are 
suggested below 

Only the vertices {1,3,5} are non-leaves. Deleting the 
leaves yields a subtree on {1,3,5}. There are three such 
subtrees, determined by which of the three is in the 
middle. 

Example 

 



)!1(

)!2(

di

n
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To complete each tree, we add the appropriate number of 
leaf neighbors for each non-leaf to give it the desired 
degree, There are six ways to complete the first tree (pick 
from the remaining four vertices the two adjacent to 
vertex 1) and twelve ways to compute each of the others 
(pick the neighbor of vertex 3 from the remaining four, and 
then pick the neighbor of the central vertex from the 
remaining three) 

Contd… 
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We can interpret Cayley’s Formula in another way. 

Since the complete graph with vertex set [n] has all edges 
that can be used in forming trees with vertex set [n], the 
number of trees with a specified vertex set of size n equals 
the number of spanning trees in a complete graph on n 
vertices. 

We now consider the more general problem of computing 
the number of spanning trees in any graph G. In general, G 
will not have as much symmetry as a complete graph, so it 
is unreasonable to expect as simple a formula as for Kn, 
but we can hope for an algorithm that provides a simple 
way to compute the answer when given a graph G. 

Counting number of Spanning Trees in Graph 
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Example. A kite.    

To count the spanning trees, observe that four are 
paths around the outside cycle in the drawing 

The remaining spanning trees use the diagonal edge  

Since we must include an edge to each vertex of 
degree 2, we obtain four more spanning trees.  

The total is eight. 

Spanning Trees in Graphs   2.2.6 
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In Example 2.2.6, we counted separately the trees 
that did or did not contain the diagonal edge. 

 

This suggests a recursive procedure to count spanning 
trees.  

 

It is clear that the spanning trees of G not containing e 
are simply the spanning trees of G-e, but how do we 
count the trees that contain e? The answer uses an 
elementary operation on graphs. 

Contd… 
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In a graph G, contraction of edge e with endpoints u, v 
is the replacement of u and v with a single vertex 
whose incident edges are the edges other than e that 
were incident  to u or v. The resulting graph G·e has 
one less edge than G.  

Contraction 2.2.7 

u 

e 

v 
G G·e 
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In a drawing of G, contraction of e shrinks the edge to 
a single point, Contracting an edge can produce 
multiple edges or loops.  

 

To count spanning trees correctly, we must keep 
multiple edges .  

 

In other applications of contraction, the multiple 
edges may be irrelevant. The recurrence applies for all 
graphs. 

Contd…  
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Proof: 

The spanning trees of G that omit e are precisely the 
spanning trees of G - e.  

To show that G has (G · e) spanning trees containing e 
we show that contraction of e defines a bijection from 
the set of spanning trees of G containing e to the set of 
spanning trees of G · e. 

Proposition. Let (G) denote the number of spanning 
trees of a graph G. If e  E(G) is not a loop, then           
(G)= (G - e) + (G · e)   2.2.8 
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Proof: 
 

When we contract e in a spanning tree that contains e, we 
obtain a spanning tree of G·e, because the resulting 
subgraph of G·e is spanning and connected and  has the 
right number of edges.  

The other edges maintain their identity under contraction,  
so no two trees are mapped to the same spanning tree of 
G·e by this operation. Also, each spanning tree of G·e 
arises in this way, since expanding the new vertex back 
into e yields a spanning tree of G. Since each spanning 
tree of G·e arises exactly once, the function is a bijection. 

Spanning Trees and Enumeration      Advanced Graph Theory 
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A step in the recurrence. 

The graphs on the right each have four spanning 
trees, so Proposition 2.2.8 implies that the kite has 
eight spanning trees, Without the multiple edges, the 
computation would fail. 

 

                                     →                             ⁺ 
 

We can save some computation time by recognizing 
special graphs G where we know (G), such as the 
graph on the right above. 

Example 

e 

G G - e G . e 
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If G is a connected loopless graph with no cycle of 
length at least 3, then  (G) is the product of the edge 
multiplicities. A disconnected graph has no spanning 
trees. 

 

We cannot apply the recurrence of Proposition 2.2.8 
when e is a loop. For example, a graph consisting of 
one vertex and one loop has one spanning tree, but 
deleting and contracting the loop would count it 
twice.  

Since loops do not affect the number of spanning 
trees, we can delete loops as they arise. 

Remark2.2.10 
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Counting trees recursively requires initial conditions for 
graphs in which all edges are loops.  

Such a graph has one spanning tree if it has only one 
vertex, and it has no spanning trees if it has more than 
one vertex. 

If a computer completes the computation by deleting or 
contracting every edge in a loopless graph G, then it may 
compute as many as 2e(G) terms.  

Even with savings from Remark 2.2.10, the amount of 
computation grows exponentially with the size of the 
graph; this is impractical.  

Contd… 
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Another technique leads to a much faster 
computation.  

 

The Matrix Tree Theorem, implicit in the work of 
Krichhoff [1847], computes  (G) using a determinant. 

 

This is much faster, because determinants of n-by-n 
matrices can be computed using fewer than n3 

operations. Also, Cayley’s Formula follows from the 
Matrix Tree Theorem with G = Kn , but it does not 
follow easily from Proposition 2.2.8. 

Matrix Tree Theorem (Krichhoff) 
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Theorem 2.2.12  instructs us to form a matrix by putting the 
vertex degrees on the diagonal and subtracting the adjacency 
matrix. We then delete a row and a column and take the 
determinant, When G is the kite of Example 2.2.9, the vertex 
degrees are 3,3,2,2. We form the matrix and take the 
determinant of the matrix in the middle, The result is the 
number of spanning trees! 

 

 

 

 

Loops don’t affect spanning trees, so we delete them before 
the computation, The proof of the theorem uses properties 
of determinants.  

Example: A Matrix Tree computation. 2.2.11 

G 
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   Theorem:   Given a loopless graph G with vertex set 
v1, …., vn, let ai,j be the number of edges with 
endpoints vi and vj. Let Q be the matrix in which entry 
(i, j) is – ai,j when i  j and is d(vi) when i = j.  If Q* is a 
matrix obtained by deleting row s and column t of Q, 
then  (G) = (-1)s+t detQ* 

 

Matrix Tree Theorem 2.2.12 
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In this lecture, we have discussed the Enumeration 
of trees, Cayley’s formula, Prüfer code, Algorithm 
for generation of Prüfer Sequence from Labelled 
Tree and Generation of Labelled Tree from Prüfer 
Sequence, Spanning trees in graphs, Matrix tree 
computation and Matrix tree theorem. 

 

In upcoming lecture, we will discuss the minimum 
spanning tree and shortest paths. 

Conclusion 

Spanning Trees and Enumeration      Advanced Graph Theory 


