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Preface 

Recap of Previous Lecture: 

 

In previous lecture, we have discussed the 
characterization of Line Graphs, Edge-coloring, 
Chromatic index, Multiplicity and 1-factorization. 

 

Content of this Lecture: 

 

In this lecture, we will discuss Hamiltonian Graph, 
Travelling Salesman Problem and NP-Completeness. 
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Hamiltonian Graph 
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Studied first by Kirkman [1856], Hamiltonian cycles are named 
for Sir William Hamiltonian, who described a game on the 
graph of the dodecahedron in which one player specifies a           
5-vertex path and the other must extend it to a spanning cycle. 

 

The game was marketed as the “Traveller’s Dodecahedron”,        
a wooden version in which the vertices were named for                  
20 important cities. 

Hamiltonian Cycles 
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A Hamiltonian graph is a graph with a spanning cycle, also 
called a Hamiltonian cycle. 

 

Example: 

Definition: Hamiltonian Graph  
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Hamiltonian Path: Path that covers every vertex once 

Hamiltonian Cycle: Cycle that covers every vertex once 

Hamiltonian Graph: A graph containing a Hamiltonian 
Cycle is called a Hamiltonian Graph 

Nonhamiltonian Graph: A nonhamiltonian graph is a 
graph that is not Hamiltonian 

Example: Hamiltonian 

 

 

 

Hamiltonian cycle can be converted to a Hamiltonian path 
by removing one edge. 

 

 

Hamiltonian Graphs 

Hamiltonian Graph      Advanced Graph Theory 



Vu Pham 

Example: Hamiltonian Path  

A B 

C D 

E 

F 

G H I 
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Example: Hamiltonian Circuit  

M 

B C 

W X 

Y Z 

L 

A 

P 

N O 

Complete Graphs 

Hamiltonian Graph      Advanced Graph Theory 



Vu Pham 

Example: Hamiltonian Graphs 
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Example: Nonhamiltonian Graphs 
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Example: Nonhamiltonian Graphs 
Graph  V(G) 

Singleton graph 1 

Claw graph 4 

Theta-0 graph 7 

PETERSEN GRAPH 10 

HERSCHEL GRAPH 11 

No perfect matching graph 16 

First blanuša snark 18 

Second blanuša snark 18 

Flower snark 20 

WALTHER GRAPH 25 

COXETER GRAPH 28 

Double star snark 30 

THOMASSEN GRAPH 34 

TUTTE'S GRAPH 46 

SZEKERES SNARK 50 

MEREDITH GRAPH 70 

SEE ALSO: 
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Until the 1970s, interest in Hamiltonian cycles centered on 
their relation-ship to the Four Color Problem. Later study was 
stimulated by practical applications and by the issue of 
complexity. 

 

No easily testable characterization is known for Hamiltonian 
graphs; we will study necessary conditions. Loops and multiple 
edges are irrelevant; a graph is Hamiltonian if and only if the 
simple graph obtained by keeping one copy of each non-loop 
edge is Hamiltonian.  

 

Therefore, in this lecture we will restrict our discussion to 
simple graphs; this is relevant when discussing conditions 
involving vertex degrees. 
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Every Hamiltonian graph is 2-connected, because deleting a 
vertex leaves a subgraph with a spanning path. Bipartite graphs 
suggest a way to strengthen this necessary condition. 

 

      Example: Bipartite graphs. A spanning cycle in a bipartite 
graph visits the two partite sets alternatively, so there can be 
no such cycle unless the partite sets have the same size.  

 

     Hence Km,n is Hamiltonian only if m = n. Alternatively, we can 
argue that the cycle returns to different vertices of one partite 
set after each visit to the other partite set. 

Necessary Conditions 
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If G has a Hamiltonian cycle, then for each nonempty set S  V, 
the graph G-S has at most |S| components. 

 

      Proof: When leaving a component of G-S, a Hamiltonian cycle 
can go only to S, and the arrivals in S must use distinct vertices 
of S. Hence S must have at least as many vertices as G-S has 
components. 

Proposition 7.2.3 
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Let c(H) denote the number of components of a graph H. 

 

Thus the necessary condition is that c(G-S) ≤ |S| for all                
  S  V.  

 

This condition gurantees that G is 2-connected (deleting one 
vertex leaves at most one component), but it does not 
guarantee a Hamiltonian cycle. 

Definition 7.2.4 
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Example: The graph on the left below is bipartite with partite sets of 
equal size. However, it fails the necessary condition of Proposition 
7.2.3. Hence it is not Hamiltonian. 

 

 

 

 

 

The graph on the right shows that the necessary condition is not 
sufficient. This graph satisfies the condition but has no spanning 
cycle. All edges incident to vertices of degree 2 must be used, but in 
this graph that requires three edges incident to the central vertex.  

The Petersen graph is another non-Hamiltonian graph satisfying the 
condition. We proved in previous lecture that 2C5 is the only 2-factor 
of the Petersen graph, so it has no spanning cycle. 

 

Example7.2.5 
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Because C is a cycle and u, vi ϵ E(G) for all i 

For each i=1,…,k there is a vi ϵ S |S| ≥ k 

               k = c(G-S) ≤ |S| 

G1 G2 G3 

u1 

v1 

v3 

u2 

v2 
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Lemma: If G is hamiltonian, then for every nonempty subset S  
V(G), c(G-S) ≤ |S|  

 

 

Example:  

Example:  

Number of connected components of G-S  

u v 

 S  V(G) 
C(G-S) > |S| 
 
 
Then G is non-hamiltonian  

S = {u,v}            c(G-S) = 3 
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Petersen Graph 

 

Satisfies 

  S  V(G) 

C(G-S) ≤ |S| 

 

 

 

 

However, it has no Hamiltonian cycle. 

 

 

 

Example: Petersen Graph 
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1) Find a Hamiltonian path in the Petersen graph 

 

2) Prove that the Petersen graph has no Hamiltonian cycle. 

Example: Petersen Graph is Not Hamiltonian 

Hamiltonian Path 

Observe: The Petersen graph 
has no cycle on ≤ 4 vertices 
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Suppose C is a Hamiltonian cycle of the Petersen graph. 

Proof (By Contradiction): 

Then the Petersen graph consists of 
the 10-cycle C=(v1,v2,….,v10 )           
together with 5 “chord” edges that 
connect vertices not already adjacent 
in C. 

V1 
V2 

V3 

V4 

V5 

V6 
V7 

V8 

V9 

V10 

If each chord joins 
vertices opposite on 
C then  a 4-cycle  
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v1v5 ϵ E 

There is a chord that joins vertices at distance <5 in C, these 
vertices must be at distance 4 in C. 

WLOG say v1v5ϵ E 

 

 

 

 

 

 

Now v6 cannot be incident with any chord edge without making a 
cycle of length ≤ 4. 

Proof (Continue) 

V1 
V2 

V3 

V4 

V5 

V6 
V7 

V8 

V9 

V10 

The Petersen graph is NOT Hamiltonian. 

Hamiltonian Graph      Advanced Graph Theory 



Vu Pham 

Traveling Salesman Problem (TSP)                                             
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A salesman plans to visit n-1 other cities and return home. 
The natural objective is to minimize the total travel time. 

 

If we assign each edge of Kn a weight equal to the travel 
time between the corresponding cities, then we seek the 
spanning cycle of minimum total weight. This is the 
famous Traveling Salesman Problem (TSP). Seemingly 
analogous to the Minimum Spanning Tree problem, the 
TSP as yet has no good algorithm. 

Traveling Salesman Problem (TSP) 
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Traveling Salesman Problem: 

Sales man has to start from one place 

Go to all other city just once 

And come back to original city 

Let’s see an example 

Say there are five cities then 

TSP is all about finding the                                                                    
least cost (distance) path with above conditions 

 

Traveling Salesman Problem (TSP) 

1 

2 

3 

4 
5 
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In 4 cities problem 

In case of four cities, you have four solutions 

A-B-C-D-A, 

A-B-D-C-A, 

A-D-B-C-A 

There will no be any other possibilities here 

So possibilities are given by (n-1)! / 2 

For 3 cities, 1 possibility , 4 cities 3!/2 = 3 possibilities  

 

 

Why it is computationally difficult ? 

B 

A C 

D B 

A C 

D B 

A C 

D 
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Our traveling salesman still awaits instruction.                                  
NP-completeness does not eliminate the need for an answer.  

 

We seek heuristic algorithms that find solutions close to 
optimal. Perhaps we can prove a guarantee about how far from 
the optimum the result may be. For example, we may be 
content to have a solution whose cost is at most twice the 
optimum, if we have an algorithm that can quickly generate 
such a solution. 

 

An approximation algorithm always generates a solution 
whose ratio to the optimum is bounded by a constant. 

 

Heuristics and Bounds 
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Nevertheless, the greedy algorithm works well on large graphs 
generated randomly.  

 

Next we consider simple heuristic for the TSP, where {v1,…,vn} 
are the vertices and wij denotes the weight (cost) of edge vivj. 
From an arbitrary starting vertex, it seems reasonable to move 
to a new vertex via the least-cost incident edge.  

 

We iteratively move to the closest unvisited neighbor of the 
current vertex. This is a “greedy” algorithm and runs quickly.           
It is the nearest-neighbor heuristic.  

Nearest-Neighbor Heuristic for TSP 
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Consider a TSP with weight 0 on a Hamiltonian path P, weight 
n2 on all other edges incident to the endpoints of P, and weight 
1 on all remaining edges.  

 

This example has many spanning cycles of weight n, but the 
nearest-neighbor heuristic yields a cycle of weight at least n2 

from any starting vertex.  

 

Thus the cost of the cycle produced by the algorithm is not 
bounded by a constant multiple of the optimal cost, and it is 
not an approximation algorithm. 

Example: Failure of the Nearest-Neighbor Heuristic 
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If there is a constant c ≥ 1 and a polynomial-time 
algorithm A such that A produces for each instance of the 
TSP a spanning cycle with cost at most c times the 
optimum, then P = NP.  

Theorem (Sahni-Gonzalez [1976]) 
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Example: Nearest-Neighbor Algorithm for TSP 

We have to have a starting point 

 

We will choose our 
second vertex by 
finding the “nearest 
neighbor” 
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Example: Nearest-Neighbor Algorithm for TSP 

Where do we go first? 

 

Choose the cheapest  
edge 
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Example: Nearest-Neighbor Algorithm for TSP 

Choose the cheapest edge 

 

In this case, we go 
from B to E (7) 
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Example: Nearest-Neighbor Algorithm for TSP 

Now where do we go? 

 

We can’t go back 
to B 
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Example: Nearest-Neighbor Algorithm for TSP 

Now where do we go? 

 

We can’t go back 
to B 

 

Again choose the 
cheapest edge 
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Example: Nearest-Neighbor Algorithm for TSP 

Now where do we go? 

 

We can’t go back 
to E, but we also 
can’t go to B 
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Example: Nearest-Neighbor Algorithm for TSP 

The rule is “nearest neighbor”: always choose 
the lowest cost edge,  
unless that would  
take you back to 
a vertex you have  
already been to 
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Example: Nearest-Neighbor Algorithm for TSP 

Now we only have one choice 

 

We can’t go back to 
A or E, and we can’t 
return to B because 
that would leave  
out C 
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Example: Nearest-Neighbor Algorithm for TSP 

Now we only have one choice 

 

We can’t go back to 
A or E, and we can’t 
return to B because 
that would leave  
out C 

 

So we must go to C 
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Example: Nearest-Neighbor Algorithm for TSP 

We have now visited all of the vertices, so we 
finally return to B 

 

This circuit has a total 
cost of 49 

 

Is it the best circuit? 
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Example: Nearest-Neighbor Algorithm for TSP 

It is not the best!  The solution on the left has a 
total cost of 47 
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Starting Vertex Path Total Cost 

A A-B-E-C-D-A 48 

B B-E-A-D-C-B 49 

C C-D-B-E-A-C 49 

D D-C-B-E-A-D 49 

E E-B-A-D-C-E 48 
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Example: Nearest-Neighbor Algorithm for TSP 

1. From the starting vertex, choose the edge with the 
smallest cost and use that as the first edge in your 
circuit.   

2. Continue in this manner, choosing among the edges 
that connect from the current vertex to vertices you 
have not yet visited.   

3. When you have visited every vertex, return to the 
starting vertex. 
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Your Turn: Nearest-Neighbor 

1. From the starting vertex, choose the 

edge with the smallest cost and use 

that as the first edge in your circuit.   

2. Continue in this manner, choosing 

among the edges that connect from 

the current vertex to vertices you 

have not yet visited.   

3. When you have visited every vertex, 

return to the starting vertex. 

For this example, 

start at C 
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Your Turn: Nearest-Neighbor 

The solution is shown here 

 

This circuit has a total cost of 
165 

 

If we had chosen a different 
starting point, we may have 
produced a different solution 
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Travelling Salesperson Lower Bound 
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Reducing from big problem (decision) to a little problem that 
will solve/ decide the big problem. 

Hamiltonian Cycle 

  -does not imply that the graph is complete 

         - does the graph contain a cycle that visits each vertex   
exactly once 

 

 

 

Traveling Salesman Problem (TSP) 

    -graph must be complete 

    - does the graph contain a cycle that visits 
  each vertex exactly once AND has total length ≤ k 

Reductions from Hamiltonian Cycle to the 
Traveling Salesman Problem (TSP) 
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Hamiltonian Cycle Problem 

Traveling Salesman Problem (TSP) 

          -Complete the graph 

       - how do we set the weights (lengths)? 

              (remember total length ≤ k) 

            - how do we pick number of k ? 

4 vertices, 4 edges 

5 vertices, 5 edges 

1 2 

3 4 
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Hamiltonian Cycle Problem – if you have n vertices, you need n 
edges. 

Traveling Salesman Problem (TSP) 

          -Complete the graph 

       - how do we set the weights (lengths)? 

              (remember total length ≤ k) 

            - how do we pick number of k ? 

n = 4 

Greedy heuristic 

k = 4 

1 

1 1 
1 

1 

1 

1 2 

3 4 
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Hamiltonian Cycle Problem – if you have n vertices, you need n 
edges. 

Traveling Salesman Problem (TSP) 

          -Complete the graph 

       - how do we set the weights (lengths)? 

              (remember total length ≤ k) 

            - how do we pick number of k ? 

Total length (want it to be ≤ 4) 

1+1+2+1 = 5  

Input- original graph G = (V,E) 

Output- graph corresponding to TSP 

              - k 

1 2 

3 4 

1 

1 

1 

2 2 2 

minimum k =n 

n = 4 

k = 4 
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NP-Completeness 
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We defined a good algorithm to be an algorithm that runs 
(correctly) in time bounded by a polynomial function of the 
input size.  

 

One algorithm for the TSP considers all spanning cycles and 
selects the cheapest one. This is not a good algorithm, because 
Kn has (n-1)!/2 spanning cycles, and this has grows faster than 
every polynomial function of n.  

 

The computation takes too long for graphs of any substantial 
size. Practical applications require solving TSPs on graphs with 
hundreds or thousands of vertices. 

Intractability 
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No one has found a good algorithm, and no one has proved that 
none exists. The TSP belongs to a large class of problems having 
the property that a good algorithm for any one of them will yield 
a good algorithm for every one of them. A good algorithm for B 
yields a good algorithm for A if we can “reduce ” problem A to 
problem B. 

As an easy example of this, we can use a good algorithm for the 
TSP (problem B) to recognize Hamiltonian graphs (problem A). 
From a graph G, form an instance of the TSP on vertex set V(G) by 
assigning weight 0 to vertex pairs that are edges of G and weight 
1 to pairs that are not. The graph G has a Hamiltonian cycle if and 
only if the optimal solution to this instance of the TSP has cost 0. 
The time for the transformation is polynomial in n(G), so a good 
algorithm for the TSP produces a good algorithm to test for 
spanning cycles. We conclude that the TSP is at least as hard as 
the Hamiltonian cycle problem. 

Intractability 
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In the formal discussion, we consider only decision problems, 
where the answer is YES on NO. This makes sense for recognizing 
Hamiltonian graphs, but the TSP is an optimization problem. 
When formulated as a decision problem (called MINIMUM 
SPANNING CYCLE), the input for the TSP is a weighted graph G 
and a number k, and the problem is to test whether G has a 
spanning cycle with weight at most k.  

 

Repeated applications of this decision problem (at most a 
polynomial number of applications) can be used to find the 
minimum weight of a spanning cycle. Similarly, MAXIMUM 
INDEPENDENT SET takes a graph G and an integer k as input and 
test (G) ≥ k. 

Decision Problem 
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A problem is NP-hard if a polynomial-time algorithm for it 
could be used to construct a polynomial-time algorithm for 
each problem in NP. 

 

It is NP-complete if it belongs to NP and is NP-hard. If some    
NP-complete problem belongs to P, then P=NP.  

 

No polynomial-time algorithm is known for any of the many 
NP-complete problems. This supports the prevailing belief that 
P  NP.  

 

Given one NP-complete problem, NP-completeness of other 
problems follows by reduction arguments as suggested earlier.  

NP-Hard, NP-Complete 

NP-Completeness      Advanced Graph Theory 



Vu Pham 

Examples NP-complete and  NP-hard problems 

NP-complete 

NP-hard 
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NP Completeness Proofs by Reduction 
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Clique 
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Clique is NP Complete 
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Vertex Cover 
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Vertex Cover is NP Complete 
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Hamiltonian Cycle (HAM-CYCLE) 
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Hamiltonian Cycle (HAM-CYCLE) 
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Traveling Salesperson Problem (TSP) 
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In this lecture, we have discussed the Hamiltonian Graphs, 
Traveling Salesman Problem (TSP), Intractability, Decision 
Problems, NP-Hard, NP-Complete Problems, NP 
Completeness Proofs by Reduction, Heuristics and 
Bounds, Nearest-Neighbor Algorithm for TSP and also 
discuss the Reductions from Hamiltonian Cycle to the 
Traveling Salesman Problem (TSP) 

Conclusion 
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