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Preface 

Recap of Previous Lecture: 
In previous lecture, we have discussed Matchings in 
General Graphs  i.e. Edmonds’ Blossom Algorithm and 
also discuss the concepts of flower, stem and blossom. 
 

 

Content of this Lecture: 

In this lecture, we will discuss Connectivity and Paths i.e.                            
Cuts and Connectivity 
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Connectivity of Graphs 
Motivating Question 

• How many vertices, or how many edges, can be deleted from a 
graph while keeping it connected? 

 

Applications (Vertex Connectivity) 

  Robustness of supercomputers to failures of processor nodes 

  Sensor networks’ resistance to individual sensor failure 

 

Applications (Edge Connectivity) 

  Robustness of supercomputers to failures of wires/fiber optics 

  Reliability of road networks with road closures/accidents 

  Communication networks’ resistance to link failure 
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A good communication network is hard to disrupt. 
We want the graph (or digraph) of possible 
transmissions to remain connected even when some 
vertices or edges fail. When communication links are 
expensive, we want to achieve these goals with few 
edges.  

 

Loops are irrelevant for connection, so in this lecture 
we assume that our graphs and digraphs have no 
loops, especially when considering degree conditions. 

Cuts and Connectivity 
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Connectivity 

How many vertices must be deleted to disconnect a graph? 

 

4.1.1. Definition.  A separating set or vertex cut of a graph G is 
a set SV(G) such that G–S has more than one component. The 
connectivity of G, written κ(G), is the minimum size of a vertex 
set S such that G–S is disconnected or has only one vertex.                
A graph G is k-connected if its connectivity is at least k. 

 

A graph other than a complete graph is k-connected if and only 
if every separating set has size at least k. We can view                     
“k-connected” as a structural condition, while “connectivity k” 
is the solution of an optimization problem.  
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Because a clique has no separating set, we need to adopt 
a convention for its connectivity. This explains the phrase 
“or has only one vertex” in Definition 4.1.1. We obtain        
κ(Kn) = n-1, while κ(G) ≤ n(G)-2 when G is not a complete 
graph. With this convention, most general results about 
connectivity remain valid on complete graphs. 

Consider a bipartition X, Y of Km,n . Every induced subgraph 
that has at least one vertex from X and from Y is 

connected. Hence every separating set of Km,n contains X 
or Y. Since X and Y themselves are separating sets (or leave 
only one vertex), we have κ(Km,n) = min{m,n}. The 
connectivity of K3,3 is 3; the graph is 1-connected,                    
2-connected, and  3-connected, but not 4-connected. 

Example: Connectivity of Kn and Km,n 
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Examples: Vertex Connectivity  

S 

2-connected 

S 
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Kn 
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Examples: Vertex Connectivity  

 
 

 

 

K1 K2 K3 K4 Kn  (n>3) C4 Cn (n>2) 

Connectivity κ  0 1 2 3 n-1 2 2 

1-connected? N Y Y Y Y Y Y 

2-connected? N N Y Y Y Y Y 

3-connected? N N N Y Y N N 
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Definition:  vertices v, w are k-edge connected if 
they remain connected whenever fewer than k 
edges are deleted. 

Example: 1-edge connected 

Edge Connectedness 
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2-edge connected 
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3-edge connected 
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Definition: A graph is k-edge connected iff 
every two vertices are k-edge connected. 

 

Connectivity measures fault tolerance of a 
network: how many connections can fail 
without cutting off communication? 

k-edge Connectedness 
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Examples: k-edge Connectedness 
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k-vertex connectedness defined similarly 

k-vertex connected 

   IMPLIES 

    k-edge connected not conversely:  

k-vertex Connectedness 
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 Definition: Edge-Connectivity 4.1.7 

A disconnecting set of edges is a set F  E(G) such that G – F has 
more than one component.  A graph is k-edge-connected if every 
disconnecting set has at least k edges.  The edge-connectivity of G, 
written κ’(G), is the minimum size of a disconnecting set 
(equivalently, the maximum k such that G is k-edge-connected). 

      Given S,T  V(G), we write [S,T] for the set of edges having one 
endpoint in S and the other in T.  An edge cut is an edge set of the 
form [S,S] where S is a nonempty proper subset of V(G) and S  

denotes V(G) - S. 
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Remark 4.1.8 

 

Disconnecting set vs. edge cut 

Every edge cut is a disconnecting set. Since G – [S, S] has no 
path from S to S . The converse is false, since a disconnecting 
set can have extra edges.  

Every minimal disconnecting set of edges is an edge cut                            
(when n(G) >1).  

If G-F has more than one component for some F  E(G), then 
for some component H of G-F we have deleted all edges with 
exactly one endpoint in H, Hence F contains the edge cut 
[V(H), V(H)], and F is not a minimal disconnecting set unless             
F = [V(H), V(H)] 
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Connectivity and Min Degree for Simple Graphs 

4.1.9 Theorem. (Whitney [1932a])  If G is a simple graph, then 

   κ(G)  κ’(G)  δ(G). 

Proof. 

Proof of κ’(G)  δ(G): The edges incident to a vertex of minimum degree are a 
disconnecting set. 

Proof of κ(G)  κ’(G): 

Let F be a minimum disconnecting set of G of size κ’(G), which is therefore 
equal to an edge cut [S,V(G)–S] by Remark 4.1.8. 

Case 1  Every vertex of S is adjacent to every vertex of V(G)–S. 

Then κ’(G) = |[S,V(G)–S]|  n–1, and n–1  κ(G) we already knew. 

Case 2  There exist vertices x  S and y  V(G)–S with xy  E(G). 

Define   T = ( N(x)  (V(G)–S) ) 

     

  {z  S–{x} : N(x)  (V(G)–S)  }.                
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Connectivity and Min Degree for Simple Graphs 

4.1.9 Theorem. (Whitney [1932a])  If G is a simple graph, then 

   κ(G)  κ’(G)  δ(G). 

Proof.  Proof of κ(G)  κ’(G): 

Case 2  There exist vertices x  S and y  V(G)–S with xy  E(G). 

Define  T = ( N(x)  (V(G)–S) )  {z  S–{x} : N(x)  (V(G)–S)  }. 

T is a vertex cut because all x,y-paths would 
would have to cross through T. 

The edges FT both incident to T and in the edge 
cut [S,V(G)–S] are a disconnecting set. 

Every vertex of T has at least one neighbor, so 
|[S,V(G)–S] |  |FT|  |T|. 

We have found a vertex cut T with size at most 

the size of a minimum edge cut [S,V(G)–S], 

and therefore κ(G)  κ’(G).   

                

S 

G 

V(G)–S 

x 

y 

T 

T 

T 

T 

T 

(|T| bold edges) 
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Example: Possibility of κ < κ’ < δ  4.1.10 

For graph G below,   

κ(G) = 1,  κ’(G) = 2, and δ(G) = 3. Note that no minimum 
edge cut isolates a vertex. 

Each inequality can be arbitrarily weak, When G = Km + Km, 
we have  κ(G)=κ’(G) = 0 but δ(G) = m-1. When G consists of 
two m-cliques sharing a single vertex, we have κ’(G)= δ(G) = 
m-1 but κ(G)= 1. 
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A bond is a minimal nonempty edge cut. 

Here “minimal” means that no proper nonempty 
subset is also an edge cut. We characterize bonds in 
connected graphs. 

Definition: Bond 
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Proof: Let F=[S, S] be an edge cut. Suppose first that G-F has exactly 
two components, and let F’ be a proper subset of F, The graph G-F’ 
contains the two components of G-F plus at least one edge between 
them, making it connected, Hence F is a minimal edge cut and is a 
bond. 

For the converse, suppose that G-F has more than two components. 
Since G-F is the disjoint union of G[S] and G[S], one of these has at 
least two components. Assume by symmetry that it is G[S]. We can 
thus write S=A U B, where no edges join A and B. Now the edge cuts 
[A,A] and [B, B] are proper subsets of F, so F is not a bond. 

Proposition. If G is a connected graph, then an edge cut F is a bond 
if and only if G-F has exactly two components. 4.1.15 
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A Block is a maximal nonseparable subgraph. 

 

 

 

 

 

 

                                  is nonseparable but not maximal  
   nonseparable. 

Block 

U1 

U2 

U3 

U6 

U4 

U5 

Blocks: 

U1 

U2 

U4 

U5 

U6 

U4 

U5 

U6 
Notice that 

U3 U3 
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If G is a graph with at least one cut-vertex, then 
at least 2 of the blocks of G contain exactly                 
1 cut-vertex. These are called end-blocks 

Theorem 
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A block of a graph G is a maximal connected subgraph of G that 
has no cut vertex. If G itself is connected and has no cut-vertex, 
then G is a block. 

A block is a maximal subgraph that cannot be disconnected by 
removing one vertex. 

Example: If H is a block of G, then H as a graph has no cut-vertex, 
but H may contain vertices that are cut-vertices of G, For example, 
the graph drawn below has five blocks; three copies of K2, one of 
K3, and one subgraph that is neither a cycle nor a complete graph.  

Definition: Block 4.1.16 
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Properties of Blocks: 
 

An edge of a cycle cannot itself be a block, since it is in a 
larger subgraph with no cut-vertex. Hence and edge is a 
block if and only if it is a cut-edge; the blocks of a tree are 
its edges.  

 

If a block has more than two vertices, then it is                        
2-connected. The blocks of a loopless graph are its 
isolated vertices, its cut-edges, and its maximal                        
2-connected subgraphs. 

Remark 4.1.18 
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Proof: We use contradiction, Suppose that blocks B1, B2 
have at least two common vertices, We show that B1 U B2 
is a connected subgraph with no cut-vertex, which 
contradicts the maximality of B1 and B2. 

 

When we delete one vertex from Bi, what remains is 
connected, Hence we retain a path in Bi, from every vertex 
that remains to every vertex of V(B1)  V(B2) that 
remains. Since the blocks have at least two common 
vertices, deleting a single vertex leaves a vertex in the 
intersection, We retain paths from all vertices to that 
vertex, so B1 U B2 cannot be disconnected by deleting one 
vertex. 

Proposition: Two blocks in a graph share at most one 
vertex. 4.1.19  
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The block-cutpoint graph of a graph G is a bipartite 
graph H in which one partite set consists of the cut-
vertices of G, and the other has a vertex bi for each 
block Bi of G. We include vbi as an edge of H if and 
only if vϵ Bi.  

Definition: Block-cutpoint graph 4.1.20 
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When G is connected, its block-cutpoint graph is a tree whose leaves 
are blocks of G, Thus a graph G that is not a single block has at least 
two blocks (leaf blocks) that each contain exactly one cut-vertex of G. 

Blocks can be found using a technique for searching graphs. In Depth-
First Search (DFS), we explore always from the most recently 
discovered vertex that has unexplored edges (also called 
backtracking). In contrast, Breadth-First Search explores from the 
oldest vertex, so the difference between DFS and BFS is that in DFS we 
maintain the list of vertices to be searched as a Last-In-First-Out 
“stack” rather than a queue. 

Contd… 
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In the graph below, one depth-first search from u finds the 
vertices in the order u, a, b, c, d, e, f, g. For both BFS and 
DFS, the order of discovery depends on the order of 
exploring edges from a searched vertex.  

Example: Depth-First Search 
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If T is a spanning tree of a connected graph G grown by 
DFS from u, then every edge of G not in T consists of two 
vertices v, w such that v lies on the path u, w-path in T. 

 

Proof:  

 

Let vw be an edge of G, with v encountered before w in 
the depth-first-search. Because vw be an edge, we cannot 
finish v before w is added to T, Hence w appears 
somewhere in the subtree formed before finishing v, and 
the path from w to u contains v. 

Lemma 4.1.22 
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Input: A connected graph G 

Idea: Build a depth-first search tree T of G, discarding portions of T as 
blocks are identified, Maintain one vertex called ACTIVE. 

Initialization: Pick a root x ϵ V(H); make x ACTIVE; set T={x}. 

Iteration: Let v denote the current active vertex. 

1) If v has an unexplored incident edge vw, then 

1A) If w V(T), then add vw to T, mark vw explored, make w ACTIVE. 

1B) If w ϵ V(T), then w is an ancestor of v; mark vw explored. 

2) If v has no more unexplored incident edges, then 

        2A) If v ≠ x, and w is the parent of v, make w ACTIVE, If no vertex in 
the current subtree T’ rooted at v has an explored edge to an 
ancestor above w, then V(T’) U {w} is the vertex set of a block; 
record this information  and delete V(T’) from T. 

        2B) If v=x, terminate. 

Algorithm: Computing the block of a graph 4.1.23 
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For the graph below, one depth-first traversal from x visits 
the other vertices in the order a, b, c, d, e, f, g, h, i, j. We 
find blocks in the order {a,b,c,d,}, {e, f, g, h}, {a, i}, {x, a, e}, 
{x, j}. After finding each block, we deleted the vertices 
other than the highest. 

Example: Finding blocks 
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In this lecture, we have discussed Cuts and 
Connectivity i.e. vertex connectivity, edge 
connectivity,  bond, blocks and also discuss the 
theorems based on the cuts and connectivity. 

 

In upcoming lecture, we will discuss the                
k-Connected Graphs. 

Conclusion 
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