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Preface 

Recap of Previous Lecture: 
In previous lecture, we have discussed k-coloring of a 
graph, optimal coloring, clique number, cartesian 
product, Upper bounds i.e. greedy coloring, register 
allocation and interval graphs. 
 
 

Content of this Lecture: 

In this lecture, we will discuss the Brooks’ Theorem and 
elementary properties of k-critical graphs. 
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The bound (G)  1 + (G)  holds with equality for 
complete graphs and odd cycles.  

By choosing the vertex ordering more carefully, we can 
show that these are essentially the only such graphs.  

This implies, for example, that the Petersen graph is 3-
colorable, without finding an explicit coloring. To avoid 
unimportant complications, we phrase the statement only 
for connected graphs.  

It extends to all graphs because the chromatic number of 
a graph is the maximum chromatic number of its 
components. Many proofs are known; we discuss a 
modification of the proof by Lovász [1975]. 

Brooks’ Theorem 
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If G is a connected graph other than a complete graph or an 
odd cycle, then (G)  (G). 

 

     Proof: 

Let G be a connected graph, and let k = (G). We may 
assume that k ≥ 3, since G is a complete graph when k ≤ 1, 
and G is an odd cycle or is bipartite when k = 2, in which 
case the bound holds. 

 

Our aim is to order the vertices so that each has at most k-1 
lower-indexed neighbors; greedy coloring for such an 
ordering yields the bound. 

 

Theorem (Brooks [1941])5.1.22 
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When G is not k-regular, choose a vertex of degree less than k as vn, 
Since G is connected, we can grow a spanning tree of G from vn, 
assigning indices in decreasing order as we reach vertices. Each vertex 
other than vn in the resulting ordering v1,….vn has a higher-indexed 
neighbor along the path to vn in the tree. Hence each vertex has at most 
k-1 lower-indexed neighbors, and the greedy coloring uses at most k 
colors. 

 

 

In the remaining case, G is k-regular, Suppose first that G has a cut-
vertex x, and let G’ be a subgraph consisting of a components of G-x 
together with its edges to x. The degree of x in G’ is less than k, so the 
method above provides a proper k-coloring of G’. By permuting the 
names of colors in the subgraphs resulting in this way from components 
of G-x, we can make the colorings agree on x to complete a proper k-
coloring of G. 

Theorem (Brook [1941]) continue 
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We may thus assume that G is 2-connected. In every vertex ordering, 
the last vertex has k earlier neighbors. The greedy coloring idea may still 
work if we arrange that two neighbors of vn get the same color. 

In particular, suppose that some vertex vn has neighbors v1, v2 such that 
v1 ↔v2 and G - {v1,v2} using 3,…,n such that labels increase along paths 
to the root vn. As before, each vertex before vn has at most k-1 lower 
indexed neighbors. The greedy coloring also uses at most k-1 colors on 
neighbors of vn, since v1 and v2 receive the same color. 

Theorem (Brook [1941]) continue 
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Hence it suffices to show that every 2-connected k-regular graph with         
k ≥ 3 has such a triple v1,v2,vn. Choose a vertex x. If κ (G-x) ≥ 2, let v1 be x 
and let v2 be a vertex with distance 2 from x. Such a vertex v2 exists 
because G is regular and is not a complete graph; let vn be a common 
neighbor of v1 and v2. 

If κ(G-x) = 1, let vn = x. Since G has no cut-vertex, x has a neighbor in 
every leaf block of G-x. Neighbors v1,v2 of x in two such blocks are 
nonadjacent. Also, G - {x, v1, v2] is connected, since blocks have no cut-
vertices. Since k ≥ 3, vertex x has another neighbor, and G - {v1,v2} is 
connected. 

Theorem (Brook [1941]) continue 
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The bound (G)  (G) can be improved when G has no large 
clique. Brooks’ Theorem implies that the complete graphs and odd 
cycles are the only k-1-regular k-critical graphs. Gallai [1963] 
strengthened this by proving that in the subgraph of a k-critical 
graph induced by the  vertices of degree k-1, every block is a 
clique or an odd cycle. 

Brooks’ Theorem states that (G)  (G) whenever 3  (G)  (G). 
Borodin and Kostochka [1977] conjectured that (G) < (G) 
implies (G) <  (G) if (G) ≥ 9 (example show that the condition 
(G) ≥ 9  is needed). Reed [1999] proved that this is true when 
(G) ≥ 1014. 

Reed [1998] also conjectured that the chromatic number is 
bounded by the average of the trivial upper and lower bounds; 
that is, (G) ≤  

Remark 5.1.23 
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Remark 5.2.12 

 

     A graph G with no isolated vertices is color-critical if and 
only if (G - e) < (G ) for every e ϵ E(G). 

 

     Hence when we prove that a connected graph is color-
critical, we need only compare it with subgraphs obtained 
by deleting a single edge. 

Color-Critical Graphs 
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Let G be a k-critical graph. 

a) For v ϵ V(G), there is a proper k-coloring of G in which the color on v 
appears nowhere else, and the other k-1 colors appear on N(v). 

b) For e ϵ E(G), every proper k -1- coloring of G-e gives the same color to 
the two endpoints of e. 

Proof:  

(a) Given a proper k-1-coloring f of G-v, adding color k on v alone 
completes a proper k-coloring of G. The other colors must all appear 
on N(v), since otherwise assigning a missing color to v would 
complete a proper k-1-coloring of G. 

(b) If some proper k-1-coloring of G-e gave distinct colors to the endpoints 
of e, then adding e would yield a proper k-1-coloring of G. 

       For any graph G, Proposition 5.2.13a holds for every v ϵ V(G) such that   
(G - v) < (G) = k, and Proposition 5.2.13b holds for every e ϵE(G) 
such that (G - e) < (G) = k 

Proposition 5.2.13 
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The graph C5   Ks of Example 5.1.8 is color critical.         
In general, the join of two color-critical graphs is 
always color-critical.  

This is easy to prove using Remark 5.2.12 and 
Proposition 5.2.13 by considering cases for the 
deletion of an edge; the deleted edge e may belong to 
G or H or have an endpoint in each. 

Example5.2.14 
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In this lecture, we have discussed the Brooks’ 
Theorem and elementary properties of k-critical 
graph. 

 

In upcoming lecture, we will discuss the Properties of 
the counting  function and further related topics. 

Conclusion 
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