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Preface 

Recap of Previous Lecture: 
In previous lecture, we have discussed Connectivity                
i.e. vertex connectivity, edge connectivity,  bond, blocks 
and also discuss the theorems based on the cuts and 
connectivity. 
 

Content of this Lecture: 

In this lecture, we will discuss the k-Connected Graphs. 
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A communication network is fault-tolerant if it has 
alternative paths between vertices: the more disjoint 
paths, the better. 

 

In this lecture, we will prove that this alternative 
measure of connection is essentially the same as                   
k-connectedness. When k=1, the definition already 
states that a graph G is 1-connected iff each pair of 
vertices is connected by a path. For larger k the 
equivalence is more subtle. 

k-Connected Graphs 
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Definition: Two paths from u to v are internally 
disjoint if they have no common internal 
vertex. 

 

Example: 2-Connected Graph 

 

2-Connected Graphs 
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(Whitney [1932]) A graph G having at least three vertices is 
2-connected if and only if for each pair u, v ϵ V(G) there exist 
internally disjoint u, v-paths in G. 

 

    Proof: Sufficiency: When G has internally disjoint u, v-paths, 
deletion of one vertex cannot separate u from v. Since this 
condition is given for every pair u, v, deletion of one vertex 
cannot make any vertex unreachable from any other.                 
We conclude that G is 2-connected. 

 

 

Theorem 4.2.2 
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Necessity: Suppose that G is 2-connected. We prove by induction on d(u,v) that G has 
internally disjoint u, v -paths. 

Basis step (d(u, v) = 1). When d(u,v)=1, the graph G-uv is connected, since κ’(G)≥ κ(G)≥2. 
A u,v-path in G-uv is internally disjoint in G from the u, v-path formed by the edge       
uv itself.     

Induction step (d(u,v) > 1). Let k=d(u,v). Let w be the vertex before v on a shortest               
u,v-path; we have d(u,w)=k-1. By the induction hypothesis, G has internally disjoint 
u,w-paths P and Q. If v ϵ  V(P) U V(Q), then we find the desired paths in the cycle            
P U Q. Suppose not. 

      Since G is 2-connected, G-w is connected and contains a u,v-path R. If R avoids P or 
Q, we are done, but R may share internal vertices with both P and Q. Let z be the last 
vertex of R (before v) belonging to P U Q. By symmetry, we may assume that z ϵ P. 
We combine the u, z-subpath of P with the z, v-subpath of R to obtain a u,v-path 
internally disjoint from Q U w v. 

Proof continue 
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If G is a k-connected graph, and G’ is obtained from G by 
adding a new vertex y with at least k neighbors in G, then 
G’ is k-connected. 

    Proof: We prove that a separating set S of G’ must have 
size at least k. If yϵ S, then S-{y} separates G, so |S|≥ k+1, 

If y  S and N(y)  S, then |S|≥ k. Otherwise, y and N(y)-S 
lie in a single component of G’-S. Thus again S must 
separate G and |S| ≥ k. 

Lemma (Expansion Lemma) 4.2.3 

     Advanced Graph Theory K-Connected Graphs 



Vu Pham 

     For a graph G with at least three vertices, the following 
conditions are equivalent (and characterize 2-connected 
graphs). 

 

A) G is connected and has no cut-vertex. 

B) For all x, yϵ V(G), there are internally disjoint x, y-paths. 

C) For all x, yϵ V(G), there is a cycle through x and y. 

D) δ(G) ≥ 1, and every pair of edges in G lies on a 
common cycle. 

Theorem4.2.4 
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Theorem 4.2.2 proves AB 

For B C, note that cycles containing x and y correspond to pairs of internally 
disjoint  x, y-paths. 

For D C, the condition δ(G) ≥ 1 implies that vertices x and y are not isolated; 
we then apply the last part of D to edges incident to x and y. If there is only one 
such edge, then we use it and any edge incident to a third vertex. 

To complete the proof, we assume that G satisfies the equivalent properties A 
and C and then derive D. Since G is connected, δ(G) ≥ 1. Now consider two edges 
uv and xy. Add to G the vertices w with neighborhood {u, v} and z with 
neighborhood {x, y}. Since G is 2-connected, the Expansion Lemma (Lemma 
4.2.3) implies that the resulting graph G’ is 2-connected. 

Hence condition C holds in G’, so w and z lie on a cycle C in G’. Since w, z each 
have degree 2, C must contain the paths u, w, v and x, z, y but not the edges uv 
or xy. Replacing the paths u, w, v and x, z, y in C with the edges uv and xy yields 
the desired cycle through uv and xy in G. 

 

Proof: 
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Def: Given x, y ϵ V(G), a set S  V(G) – {x, y} is an x,y-separator 
or x, y-cut if G-S has no x, y-path.  

Let κ(x, y) be the minimum size of an x, y-cut.  

Let λ (x, y) be the maximum size of a set of pairwise 
internally disjoint x, y-paths.  

For X, Y  V(G), an X, Y-path is a path having first vertex in X, 
last vertex in Y, and no other vertex in X U Y. 

An x,y-cut must contain an internal vertex of every                        
x,y-path, and no vertex can cut two internally disjoint x, y-paths. 
Therefore, always κ(x, y) ≥ λ(x, y).  

Thus the problem of finding the smallest cut and the largest set 
of paths are dual problems. 

k-Connected and k-Edge-Connected Graphs 
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In the graph G below, the set S = {b, c, z, d} is an x, y-cut of 
size 4; thus κ(x, y) ≤ 4. As shown on the left, G has four 
pairwise internally disjoint x, y-paths; thus λ(x, y) ≥ 4.                  

Since  κ(x, y) ≥ λ(x, y) always, we have κ(x, y) = λ(x, y) =4. 

 

 

Example4.2.16 
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Consider also the pair w, z. As shown on the right,                          

κ(w, z) = λ(w, z) =3, with {b, c, x} being a minimum w, z-cut. 
The graph G is 3-connected; for every pair u, v ϵ V(G), we can 
find three pairwise internally disjoint u, v-paths. 

From the equality for internally disjoint paths, we will obtain an 
analogous equality for edge-disjoint paths. Although κ(w, z)=3 
above, it takes four edges to break all w, z-paths, and there are 
four pairwise edge-disjoint w, z-paths. 

Example continue 
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    If x, y are vertices of a graph G and xy  E(G), then the 
minimum size of an x, y-cut equals the maximum number 
of pairwise internally disjoint x, y-paths. 

 

     Proof: An x, y-cut must contain an internal vertex from 
each path in a set of pairwise internally disjoint x, y-paths. 
These vertices must be distinct, so κ(x, y) ≥ λ(x, y). 

To prove equality, we use induction on n(G).                           
Basis step: n(G) = 2. Here xy  E(G) yields κ(x, y) = λ(x, y)=0. 

Induction step: n(G) > 2. Let k= κG(x, y). We construct k pairwise 
internally disjoint x, y-paths. Note that since N(x) and N(y) are           
x, y-cuts, no minimum cut properly contains N(x) or N(y).    

Theorem (Menger [1927]) 4.2.17 
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To obtain the k desired paths, we combine x, S-paths and S, y-paths 
obtained from the induction hypothesis (as formed by solid edges 
shown below). Let V1 be the set of vertices on x, S-paths, and let V2 be 

the set of vertices on S, y-paths. We claim that S = V1  V2. Since S is a 
minimal x, y-cut, every vertex of S lies on an x, y-path, and hence            

S  V1  V2. If v ϵ (V1  V2) – S, then following the x, v-portion of 

some x, S-path and then the v, y-portion of some S, y-path yields an      

x, y-path that avoids the x, y-cut S. This is impossible, so S= V1  V2.              
By the same argument, V1 omits N(y)-S and V2 omits N(x)-S. 

Case 1: G has a minimum x, y-cut S other than N(x) or N(y) 
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Form H1, by adding to G[V1] a vertex y’ with edges from S. From H2 
by adding to G[V2] a vertex x’ with edges to S. Every x, y-path in G 
starts with an x, S-path (contained in H1), so every x, y’-cut in H1 is 
an x, y-cut in G. Therefore, κH1(x, y’)=k, and similarly κH2(x’, y)=k. 

Since V1 omits N(y)-S and V2 omits N(x)-S, both H1 and H2 are 
smaller than G. Hence the induction hypothesis yields  λH1(x, y’)=k= 
λH2(x’, y). Since V1  V2=S, deleting y’ from the k paths in H1 and x’ 
from the k paths in H2 yields the desired x, S-paths and S, y-paths in 
G that combine to form k pairwise internally disjoint x, y-paths in G. 

Case1 continue 
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Again we construct the k desired paths. In this case, every vertex outside {x} U 
N(x) U N(y) U {y} is in no minimum x, y-cut. If G has such a vertex v, then              
κG-v(x, y)=k, and applying the induction hypothesis to G-v yields the desired         
x, y-paths in G. Also, if there exists u ϵ  N(x)  N(y), then u appears in every         
x, y-cut, and  κG-u(x, y)=k-1. Now applying the induction hypothesis to G-u 
yields k-1 paths to combine with the path x, u, y. 

We may thus assume that N(x) and N(y) partitions V(G) - {x, y}. Let G’ be the 
bipartite graph with bipartition N(x), N(y) and edge set [N(x), N(y)]. Every          
x, y-path in G uses some edge from N(x) to N(y), so the x, y-cuts in G are 
precisely the vertex covers of G’. Hence β(G’)=k. By the König-Egerváry 
Theorem, G’ has a matching of size k. These k edges yield k pairwise internally 
disjoint x, y-paths of length 3.  

Case 2: Every minimum x, y-cut is N(x) or N(y) 
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The line graph of a graph G, written L(G), is the graph 
whose vertices are the edges of G, with ef ϵ E(L(G)) when 
e=uv and f=vw in G. Substituting “digraph” for “graph” in 
this sentence yields the definition of line digraph.                  
For graphs, e and f share a vertex; for digraphs, the head 
of e must be the tail of f. 

Example: 

Definition: Line Graph 4.2.18 
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If x and y are distinct vertices of a graph or digraph G, then the 
minimum size of an x, y-disconnecting set of edges equals the 
maximum number of pairwise edge-disjoint x, y-paths. 

   Proof: Modify G to obtain G’ by adding two new vertices s,t and two new 
edges sx and yt. This does not change κ’(x, y) or λ’(x,y) , and we can think 
of each path as starting from the edge sx and ending with the edge yt.  
A set of edges disconnects y from x in G if and only if the corresponding 
vertices of L(G’) form an sx, yt-cut, Similarly, edge-disjoint x,y-paths in G 
become internally disjoint sx,yt-paths in L(G’), and vice versa, Since                 
x ≠ y, we have no edge from sx to yt in L(G’). Applying theorem 4.2.17 to 

L(G’) yields κ’G(x, y)= κL (G’)(sx, yt)= λL(G’)(sx, yt)= λ’G(x, y) 

 

Theorem 4.2.19 
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Proof: Since every separating set of G is a separating set of 
G-xy, we have κ(G-xy) ≤ κ(G). Equality holds unless G – xy 
has a separating set S that has size less than κ(G) and hence 
is not a separating set of G. Since G-S is connected, G-xy-S 
has two components G[X] and G[Y], with x ϵ X and y ϵ Y.            
In G-S, the only edge joining X and Y is xy.  

If |X| ≥ 2, then S U {x} is a separating set of G, and                      
κ(G) ≤ κ(G-xy)+1. If |Y| ≥ 2, then again the inequality holds. 
In the remaining case, |S| = n(G)-2. Since we have assumed 
that |S| < κ(G), |S| = n(G)-2 implies that κ(G) ≥ n(G)-1, 
which holds only for a complete graph, Thus κ(G-xy)=              
n(G)-2= κ(G)-1, as desired.  

Lemma: Deletion of an edge reduces connectivity by                
at most 1. 4.2.20 
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The connectivity of G equals the maximum k such that 

λ(x,y) ≥ k for all x, y ϵ V(G). The edge-connectivity of G 
equals the maximum k such that λ’(x,y) ≥ k for all x, y ϵ V(G).  

Proof: Since κ’(G) = minx,yϵV(G)κ’(x,y), Theorem 4.2.19 
immediately yields the claim for edge-connectivity. 

For connectivity, we have κ(x,y) = λ(x,y) for xy  E(G), and 
κ(G) is the minimum of these values. We need only show 

that λ(x,y) cannot be less than κ(G) when xy ϵ E(G). Certainly 
deletion of xy reduces λ(x,y) by 1, since xy itself is an               
x, y-path and cannot lie in any other x, y-path. With this, 
Theorem 4.2.17, and Lemma 4.2.20, we have 

     λG(x,y) = 1 + λG-xy(x,y) = 1 + κG-xy(x,y) ≥ 1 + κ(G-xy) ≥ κ(G) 

Theorem 4.2.21 

     Advanced Graph Theory K-Connected Graphs 



Vu Pham 

In this lecture we have discussed the                       
k-connected graphs, k-edge-connected graphs, 
Menger’s theorem and Line graph. 

 

Conclusion 
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