
Vu Pham 

Counting Proper Colorings 

Dr. Rajiv Misra 

Associate Professor 

Dept. of Computer Science & Engg. 

Indian Institute of Technology Patna 

rajivm@iitp.ac.in 

Counting Proper Colorings      Advanced Graph Theory 



Vu Pham 

Preface 

Recap of Previous Lecture: 
In previous lecture, we have discussed the Brooks’ 
Theorem and elementary properties of k-critical graphs. 
 
 

Content of this Lecture: 

In this lecture, we will discuss the properties of counting 
function, chromatic polynomial, chromatic recurrence, 
and further related topics. 
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The chromatic number (G) is the minimum k such that 
the count is positive; knowing the count for all k would tell 
us the chromatic number.  

 

Birkhoff [1912] introduced this counting problem as a 
possible way to attack the Four Color Problem. 

 

In this lecture, we will discuss properties of the counting 
function, classes where it is easy to compute, and further 
related topics. 

Enumerative Aspects of Coloring 
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Definition: 

• Given k  N and a graph G, the value (G ; k) is the number 
of proper colorings f : V(G) → [k].  

• The set of available colors is [k] = {1,….,k}; the k colors need 
not all be used in a coloring f. Changing the names of the 
colors that are used produces a different coloring.  

 

Counting Proper Colorings (G ; k)  
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(Kn; k) = kn and (Kn; k) = k(k-1) … (k-n+1). 

When coloring the vertices of Kn ,we can use any of the         
k colors at each vertex no matter what colors we have used 
at other vertices. Each of the kn

 functions from the vertex 
set to [k] is a proper coloring, and hence (Kn; k) = kn. 

When we color the vertices of Kn , the colors chosen earlier 
cannot be used on the ith vertex. There remain k-i+1 
choices for the color of the ith vertex no matter how the 
earlier colors were chosen. Hence (Kn; k) = k(k-1)…(k-n+1). 

 

Example 5.3.2 
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We can also count this as            by first choosing n distinct 
colors and then multiplying by n! to count the ways to 
assign the chosen colors to the vertices. For example, 
(K3;3)=6 and (K3;4)=24.  

The value of the product is 0 when k < n. This makes 
sense, since Kn has no proper k-colorings when k < n. 

 

Example continue 
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     Proof: 

Choose some vertex v of T as a root. We can color v in k ways.           
If we extend a proper coloring to new vertices as we grow the 
tree from v, at each step only the color of the parent is 
forbidden, and we have k-1 choices for the color of the new 
vertex. Furthermore, deleting a leaf shows inductively that every 
proper k-coloring arises in this way. Hence (T; k) =k(k-1)n-1. 

Proposition 5.3.3: If T is a tree with n vertices, then                          
(T ; k)  = k(k - 1)n-1. 
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Another way to count the colorings is to observe that the 
color classes of each proper coloring of G partition V(G) 
into independent sets. Grouping the colorings according 

to this partition leads to a formula for (G; k) that is a 
polynomial in k of degree n(G).  

 

Note that this holds for the answers in Example 5.3.2 
and Proposition 5.3.3. Since every graph has this 
property, (G; k) as a function of k is called the 
chromatic polynomial of G. 

Chromatic Polynomial (G; k)  
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Let x(r)=x(x-1)…(x-r+1). If pr(G) denotes the number of partitions 
of V(G) into r nonempty independent sets,  

   then (G;k) =      , which is a polynomial in k of 
degree n(G). 

     Proof:  

When r colors are actually used in a proper coloring, the color classes 
partition V(G) into exactly r independent sets, which can happen in 
pr(G) ways.  When k colors are available, there are exactly k(r) ways to 
choose colors and assign them to the classes. All the proper colorings 
arise in this way, so the formula for (G; k)  is correct. 

Since k(r) is a polynomial in k and pr(G) is a constant for each r, this 
formula implies that (G; k) is a polynomial function of k. When G 
has n vertices, there is exactly one partition of G into n independent 
sets and no partition using more sets, so the leading term is kn. 

 

Proposition 5.3.4 
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Always pn(G) =1, using independent sets of size 1. Also p1(G) = 0 
unless G has no edges, since only for Kn  is the entire vertex set 
an independent set. 

Consider G = C4. There is exactly one partition into two 
independent sets: opposite vertices must be in the same 
independent set, When r = 3, we put two opposite vertices 
together and leave the other two in sets by themselves; we can 
do this in two ways. Thus p2 = 1, p3 = 2, p4 = 1. 

 

         (C4; k) = 1k(k-1) + 2k(k-1)(k-2) + 1k(k-1)(k-2)(k-3)  

                        = k(k-1)(k2-3k+3) 

 

Example 5.3.5 
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Computing the chromatic polynomial in this way is not 
generally feasible, since there are too many partitions to 
consider. There is a recursive computation much like that 
used in Proposition 2.2.8 to count spanning trees,  

 

Again G·e denotes the graph obtained by contracting the 
edge e in G. Since the number of proper k-colorings is 
unaffected by multiple edges, we discard multiple copies 
of edges that arise from the contraction, keeping only 
one copy of each to form a simple graph 
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     Proof: 

Every proper k-coloring of G is a proper k-coloring of G-e. A proper 
k-coloring of G-e is a proper k-coloring of G if and only if it gives 
distinct colors to the endpoints u,v of e. Hence we can count the 
proper k-colorings of G by subtracting from (G-e; k) the number of 
proper k-colorings of G-e that give u and v the same color. 

Colorings of G-e in which u and v have the same color correspond 
directly to proper k-colorings of G·e, in which the color of the 
contracted vertex is the common color of u and v, Such a coloring 
properly colors all the edges of G·e if and only if it properly colors all 
the edges of G other than e. 

Theorem: (Chromatic recurrence) If G is a simple graph and             
e  E(G), then (G; k) = (G-e; k) - (Ge; k). 5.3.6 
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Deleting an edge of C4 produces P4, while contracting an edge 
produces K3. Since P4 is a tree and K3 is a complete graph, we 
have (P4; k) = k(k-1)3 and (K3; k) = k(k-1)(k-2). Using the 
chromatic recurrence, we obtain 
 

                      (C4 ;k) = (P3;k)- (K3;k) = k(k-1)(k2-3k+3) 
 

Because both G-e and G·e have fewer edges than G, we can use 
the chromatic recurrence inductively to compute (G ; k). We 
need initial conditions for graphs with no edges, which we have 
already computed: (Kn ; k)= kn 

Example: Proper k-colorings of C4 5.3.7 
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      Theorem: The chromatic polynomial (G; k) of a simple graph G 
has degree n(G), with integer coefficients alternating in sign and 
beginning 1,  -e(G) ,…. 

 

      Proof:  

     We use induction on e(G). The claims hold trivially when                 
e(G) = 0, where (Kn; k) = kn  . For the induction step, let G be an 
n-vertex graph with e(G) ≥ 1. Each of G-e and G·e has fewer 
edges than G, and G·e has n-1 vertices. By the induction 
hypothesis, there are nonnegative integers {ai} and {bi} such that 

                                                       and  

Theorem: (Whitney [1933]) 5.3.8 
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By the chromatic recurrence,  

 

(G - e; k):        kn- [e(G)-1]kn-1 + a2kn-2 -…+ (-1)i                aik
n-i… 

  (Ge; k):        (                  kn-1  - b1kn-2 +…+ (-1)i -1           bi-1kn-i…) 

 

= (G; k):         kn   - e(G)kn-1 +(a2+b1)kn-2 -…+ (-1)i (ai+bi-1)kn-i… 

 

    Hence (G; k) is a polynomial with leading coefficient a0 = 1 and 
next coefficient –(a1 + b0) = - e(G), and its coefficients alternate in 
sign. 

 

Theorem: (Whitney [1933]) continue 
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When adding an edge yields a graph whose chromatic 
polynomial is easy to compute, we can use the chromatic 
recurrence in a different way. Instead of                                              

(G; k) = (G-e; k) - (G·e; k). We can write (G-e; k) =                         

(G; k) + (G·e; k). Thus we may be able to compute (G-e; k) 
using (G; k). 

To compute (Kn - e; k), for example, we let G be Kn in this 
alternative formula and obtain 

 

Example 5.3.9 
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We close our general discussion of (G; k) with an explicit 
formula. It has exponentially many terms, so its uses are 
primarily theoretical.  

 

The formula summarizes what happens if we iterate the 
chromatic recurrence until we dispose of all the edges.     
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Let c(G) denote the number of components of a graph G. Given 
a set S  E(G) of edges in G, let G(S) denote the spanning 
subgraph of G with edge set S. Then the number (G; k) of 
proper k-colorings of G is given by: 

 

 

 

     Proof:  

In applying the chromatic recurrence, contraction may produce 
multiple edges. We have observed that dropping these does 
not affect (G; k). We claim that deleting extra copies of edges 
also does not change the claimed formula. 

Theorem (Whitney [1932]) 5.3.10 
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Let e and e’ be edges in G with the same endpoints. When e’ϵ S 
and e S, we gave c(G (S U {e})) = c(G(S)), since both endpoints 
of e are in the same component of G(S). However, |S U {e}| = 
|S| + 1. Thus the terms for S and S U {e} in the sum cancel. 
Therefore, omitting all terms for sets of edges containing e’ 
does not change the sum. This implies that we can keep or 
drop e’ from the graph without changing the formula.  

 

When computing the chromatic recurrence, we therefore 
obtain the same result if we do not discard multiple edges or 
loops and instead retain all edges for contraction or deletion. 
Iterating the recurrence now yields 2e(G) terms as we dispose of 
all edges; each in turn is deleted or contracted.  

Theorem (Whitney [1932]) continue 
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When all edges have been deleted or contracted, the graph 
that remains consists of isolated vertices. Let S be the set of 
edges that were contracted, The remaining vertices correspond 
to the components of G(S); each such component becomes one 
vertex when the edges of S are contracted and the other edges 
are deleted. The c(G(S)) isolated vertices at the end yield a 
term with kc(G(S)) colorings. Furthermore, the sign of the 
contribution changes for each contracted edge, so the 
contribution is positive if and only if |S| is even. 

 

Thus the contribution when S is the set of contracted edges is                                   

     (-1)|S| kc(G(S)) , and this accounts for all terms in the sum. 

Theorem (Whitney [1932]) continue 
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When G is a simple graph with n vertices, every spanning subgraph 
with 0, 1, or 2 edges has n, n-1, or n-2 components, respectively. 
When |S| = 3, the number of components is n-2 if and only if the 
three edges form a triangle; otherwise it is n-3. 

For example, when G is a kite (four vertices, five edges) there are 
ten sets of three edges. For two of these, G(S) consists of a triangle 
plus one isolated vertex. The other eight sets of three edges yield 
spanning subgraphs with one component. Both types of triple are 
counting negatively, since |S| = 3. All spanning subgraphs with four 
or five edges have only one component, Hence Theorem 5.3.10 
yields 

     (G; k)=k4 - 5k3 + 10k2 - (2k2+8k1) + 5k – k 

                 = k4 - 5k3 + 8k2 - 4k  

This agrees with (G; k) = k(k-1)(k-2)(k-2), computed by counting 
colorings directly or by using  (G;  k)= (C4; k) - (P3; k) 

Example: A chromatic polynomial 5.3.11 
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Whitney proved Theorem 5.3.10 using the inclusion-
exclusion principle of elementary counting, Among the 
universe of k-colorings, the proper colorings are those not 
assigning the same color to the endpoints of any edge. 

 

Letting Ai be the set of k-colorings assigning the same 
color to the endpoints of edge ei, we want to count the 
colorings that lie in none of A1,…..,Am. 
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In this lecture, we have discussed the properties of 
counting function, chromatic polynomial, chromatic 
recurrence, and theorems based on these. 

 

Conclusion 
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