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Preface 

Recap of Previous Lecture: 
In previous lecture, we have discussed the Network Flow 
Problems i.e. Maximum Network Flow, f-augmenting 
path, Ford-Fulkerson labeling algorithm and Max-Flow 
Min-cut Theorem. 
 
 

Content of this Lecture: 

In this lecture, we will discuss Graph Coloring i.e. Vertex 
Coloring and Upper Bounds. 
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The committee-scheduling example uses graph coloring to 
model avoidance of conflicts.  

Similarly, in a university we want to assign time slots for 
final examinations so that two courses with a common 
student have different slots. The number of slots needed 
is the chromatic number of the graph in which two 
courses are adjacent if they have a common student. 

Vertex Coloring and Upper Bounds 
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Map Region Coloring 

Coloring the regions of a map with different colors on 
regions with common boundaries is another example. 

The map on the left below has five regions, and four colors 
suffice. The graph on the right models the “common 
boundary” relation and the corresponding coloring. 
Labeling of vertices is our context for coloring problems. 
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Vertex coloring 5.1.1 

A k-coloring of a graph G is a labeling f: V(G) → S, 
where |S| = k (often we use S = [k]). The labels are 
colors; the vertices of one color form a color class.  

A k-coloring is proper if adjacent vertices have 
different labels.  

A graph is k-colorable if it has a proper k-coloring. The 
chromatic number (G) is the least k such that G is               
k-colorable. 

Vertex Coloring and Upper Bounds      Advanced Graph Theory 



Vu Pham 

In a proper coloring, each color class is an independent 
set, so G is k-colorable if and only if V(G) is the union of k 
independent sets.  

 

Thus “k-colorable” and “k-partite” have the same 
meaning. (The usage of the two terms is slightly different. 
Often “k-partite” is a structural hypothesis, while “k-
colorable” is the result of an optimization problem.) 

Remark 5.1.2 
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Since a graph is 2-colorable if and only if it is bipartite, 
C5 and  

The Peterson graph have chromatic number at least 3. 
Since they are 3-colorable, as shown below, they have 
chromatic number exactly 3. 

Example 2-Colorable and 3-colorable 
5.1.3 
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k-chromatic 5.1.4 

A graph G is k-chromatic if (G) =k.  

 

A proper k-coloring of a k-chromatic graph is an 
optimal coloring.  
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If (H)  < (G) = k for every proper subgraph H of G, then G is color-
critical or k-critical. 

Properly coloring a graph needs at least two colors if and only if 
the graph has an edge. Thus K2 is the only 2-critical graph 
(similarly, K1 is the only 1-critical graph). Since 2-colorable is the 
same as bipartite, the characterization of bipartite graphs implies 
that the 3-critical graphs are the odd cycles. 

We can test 2-colorability of a graph G by computing distances 
from a vertex x (in each component). Let X = {u ϵ V(G): d(u,x) is 
even} and let Y =  {u ϵ V(G): d(u,x) is odd}. The graph G is bipartite 
if and only if X,Y is a bipartition, meaning that G[X] and G[Y] are 
independent sets. 

No good characterization of 4-criticial graphs or test for               
3-colorability is known. 

k-critical graphs for small k 5.1.5 
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Clique number 5.1.6 

The clique number of a graph G, written ω(G), is the 
maximum size of a set of pairwise adjacent vertices 
(clique) in G. 

 

α(G) is used for the independence number of G;               
the usage of ω(G) is analogous.  
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Proposition 5.1.7 For every graph G, (G) ≥ ω(G) and            
χ(G) ≥ n(G)/α(G). 

Proof: The first bound holds because vertices of a clique 
require distinct colors. The second bound holds because 
each color class is an independent set and thus has at 
most α(G) vertices. 

 

• (G) : chromatic number 

• ω(G) : clique number 

• α(G): independence number 
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Example 5.1.8.  

(G) may exceed ω(G).  

For r ≥ 2, let G = C2r+1 ∨ Ks (the join of C2r+1 and Ks)                        
Since C2r+1 has no triangle, ω(G) = s+2. 

Properly coloring the induced cycle requires at least three 
colors. The s-clique needs s colors. Since every vertex of the 
induced cycle is adjacent to every vertex of the clique, these s 
colors must differ from the first three, and (G) ≥ s+3. We 
conclude that (G) > ω(G). 

C5 
Ks 
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The cartesian product of G and H, written G □ H, is 
the graph with vertex set V(G) x V(H) specified by 
putting (u,v) adjacent to (u’,v’) if and only if (1) u=u’ 
and vv’ϵ E(H), or (2) v = v’ and uu’ ϵ E(G).  

Definition: Cartesian Product 5.1.9 
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The cartesian product operation is symmetric; G □ H ≡ H □ G. 
Below we show C3 □ C4 .The hypercube is another familiar 
example: Qk = Qk-1 □ K2 when k ≥ 1. The m-by-n grid is the 
cartesian product Pm □ Pn.  

In general, G □ H decomposes into copies of H for each vertex of 
G and copies of G for each vertex of H. We use  □ instead of x to 
avoid confusion with other products, reserving x for the cartesian 
product of vertex sets. The symbol □, introduced by Nešetřil, 
evokes the identity  K2 □ K2 = C4. 

Example5.1.10 

Vertex Coloring and Upper Bounds      Advanced Graph Theory 



Vu Pham 

Proof: The cartesian product of G □ H contains copies of G and H as subgraphs, 
so (G □ H)  ≥ max{ (G),  (H)}  

Let k=max{ (G),  (H)}. To prove the upper bound, we produce a proper k-
coloring of G □ H using optimal colorings of G and H. Let g be a proper  (G)-
coloring of G, and let h be a proper  (H)-coloring of H. Define a coloring f of           
G □ H by letting f(u,v) be the congruence class of g(u)+h(v) modulo k. Thus             
f assigns colors to V(G □ H) from a set of size k. 

We claim that f properly colors G □ H . If (u,v) and (u’,v’) are adjacent in G □ H , 
then g(u) + h(v) and g(u’) + h(v’) agree in one summand and differ by between 
1 and k in the other. Since the difference of the two sums is between 1 and k, 
they lie in different congruence classes modulo k.  

Proposition : (Vizing [1963], Alberth [1964]) 5.1.11                           
(G □ H)= max{ (G),  (H)}  
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Most upper bounds on the chromatic number come 
from algorithms that produce colorings.  

For example, assigning distinct colors to the vertices yields                      
χ(G) ≤ n(G).  

This bound is best possible, since χ(Kn) = n, but it holds with 
equality only for complete graphs.  

We can improve a “best-possible” bound by obtaining another 
bound that is always at least as good.  

 For example  χ(G) ≤ n(G) uses nothing about the structure of 
G;  

we can do better by coloring the vertices in some order and 
always using the “least available ” color. 

Upper Bounds 
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Algorithm: Greedy Coloring 5.1.12 

The greedy coloring relative to a vertex ordering 
v1,…,vn of V(G) is obtained by coloring vertices in the 
order v1,…..,vn, assigning to vi the smallest-indexed 
color not already used on its lower-indexed neighbors. 
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Example of  Greedy Coloring Algorithm 
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Proposition:  (G)  (G) + 1 5.1.13 

  Proof:  

In a vertex ordering, each vertex has at most (G) 
earlier neighbors, so the greedy coloring cannot be 
forced to use more than (G) + 1 colors. This proves 
constructively that (G) ≤ (G) + 1. 

 

The bound (G) + 1 is the worst upper bound that greedy 
coloring could produce (although optimal for complete graphs 
and odd cycles). Choosing the vertex ordering carefully yields 
improvements. We can avoid the trouble caused by vertices of 
high degree by putting them at the beginning, where they 
won’t have many earlier neighbors. 
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If a graph G has degree sequence d1≥……≥dn, then      
(G)   1 + maxi min{di,i-1} 

 

    Proof: 

We apply greedy coloring to the vertices in 
nonincreasing order of degree. When we color the ith 
vertex vi, it has at most  min{di,i-1} earlier neighbors, 
so at most this many colors appear on its earlier 
neighbors. Hence the color we assign to vi is at most          
1 + min{di,i-1}. This holds for each vertex, so we 
maximize over i to obtain the upper bound on the 
maximum color used. 

Proposition: (Welsh-Powell [1967]) 5.1.14 
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The bound in Proposition 5.1.14 is always at most 1+(G), so 
this is always at least as good as Proposition 5.1.13. It gives the 
optimal upper bound in Example 5.1.8, while 1+(G) does not. 

 

In Proposition 5.1.14, we use greedy coloring with a well-
chosen ordering. In fact, every graph G has some vertex 
ordering for which the greedy algorithm uses only (G) colors. 
Usually it is hard to find such an ordering. 

 

Our next example introduces a class of graphs where such an 
ordering is easy to find. The ordering produces a coloring that 
achieves equality in the bound (G) ≥ ω(G). 

Remark 
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Example: Register allocation and interval graphs 1 
5.1.15 

• A computer program stores the values of its 
variables in memory. For arithmetic computations, 
the values must be entered in easily accessed 
locations called registers.  

• Registers are expensive, so we want to use them 
efficiently. If two variables are never used 
simultaneously, then we can allocate them to the 
same register.  

• For each variable, we compute the first and last 
time when it is used. A variable is active during the 
interval between these times. 

Example: Register allocation and interval graphs 
5.1.15 
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    Interval graph 

 

• We define a graph whose vertices are the 

variables.  

• Two vertices are adjacent if they are active at a 

common time.  

• The number of registers needed is the chromatic 

number of this graph.  

• The time when a variable is active is an interval, 

so we obtain a special type of representation for 

the graph. 

 

Example: Register allocation and interval graphs 
continue 
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An interval representation of a graph is a family of 

intervals assigned to the vertices  

so that vertices are adjacent if and only if the corresponding 

intervals intersect. 

 A graph having such a representation is an interval graph. 

 

Interval Representation and interval graphs continue 

A 

B 

C 

A 

B 

C 

Interval graph Interval  representation 
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a 

Example: Register allocation and interval graphs 
continue 

For the vertex ordering a, b, c, d, e, f, g, h of the interval 

graph below, greedy coloring assigns 1, 2, 1, 3, 2, 1, 2, 3, 
respectively, which is optimal. Greedy colorings 

relative to orderings starting a , d, … use four colors. 
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Proposition 5.1.16. If G is an interval graph, then (G) =ω(G) 

Proof:  

Order the vertices according to the left endpoints of the 
intervals in an interval representation.  

Apply greedy coloring, and suppose that x receives k, the 
maximum color assigned.  

Since x does not receive a smaller color, the left endpoint a 
of its interval belongs also to intervals that already have 
colors 1 through k-1.     

These intervals all share the point a, so we have a k-clique 
consisting of x and neighbors of x with colors 1 through k-1.  

Hence ω(G) ≥ k ≥ (G). Since (G) ≥ ω(G) always, this 
coloring is optimal.                                                            

Vertex Coloring and Upper Bounds      Advanced Graph Theory 



Vu Pham 

The greedy coloring algorithm runs rapidly. It is “on-line” 
in the sense that it produces a proper coloring even if it 
sees only one new vertex at each step and must color it 
with no option to change earlier colors. 

 

For a random vertex ordering in a random graph, greedy 
coloring almost always uses only about twice as many 
colors as the minimum, although with a bad ordering it 
may use many colors on a tree. 

Remark 5.1.17 
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In this lecture, we have discussed k-coloring of a 
graph, optimal coloring, clique number, cartesian 
product, Upper bounds i.e. greedy coloring, register 
allocation and interval graphs. 

 

In upcoming lecture, we will discuss the Brooks’ 
Theorem.  

Conclusion 
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