
LECTURE - 05

DLX

� DLX pronounced “D eluxe”
� Has the features of many recent

experimental and commercial machines
� [AMD 29K, DECstation 3100, HP 850, IBM

801, Intel i860, MIPS M/120A, MIPS M/1000,
Motorola 88K, RISC I, SGI 4D/60,
SPARCstation-1, Sun-4/110, Sun-4/260]/13
= 560 = DLX (Roman)

� Good architectural features (e.g. simplicity),
easy to understand

DLX Architecture: Registers and

Data Types
� Has 32 32-bit GPRs: R0...R31
� Also, FP registers

� 32 single precision: F0...F31
� Or, 16 double precision: F0, F2, ... F30

� Value of R0 is always ZERO!
� Data types:

� Integer: bytes, half-words, words
� FP: single/double precision

DLX Memory Addressing

� Uses 32-bit, big-endian mode
� Addressing modes:

� Only immediate and displacement, with 16-bit
fields

� Register deferred?
� Place zero in displacement field

� Absolute
� Use R0 for the register

DLX Instruction Format

Opcode
(6)

RS1
(5)

RD
(5)

Immediate
(16)

I-type instruction: loads, stores, all immediates,
conditional branch, jump register, jump and link register

Opcode
(6)

RS1
(5)

RS2
(5)

Func
(11)

RD
(5)

R-type instruction: register-register ALU operations

Opcode
(6)

Offset relative to PC
(26)

J-type instruction: jump, jump and link, trap and return

DLX Operations

� Four classes: Load/store, ALU, branch, FP
� ALU instructions are register-register
� R0 used to synthesize some operations:

� Examples: loading a constant, reg-reg move
� Compares “s et” a register
� Jump and link pushes next PC onto R31
� FP operations in single/double precision
� FP compares set a bit in a special status reg
� FP unit also used for integer multiply/divide!

DLX Performance: MIPS vs VAX

Spice Matrix Nasa7 Fpppp Tom
catv

Doduc Espres
so

Eqntott Li
0

0.5

1

1.5

2

2.5

3

3.5

4

Perf. ratio IC ratio CPI ratio

SPEC89 benchmarks

M
IP

S
/V

A
X

 r
at

io

Pipelining

� Its natural!
� Laundry example... (Randy Katz's slides)
� DLX has a simple architecture

� Easy to pipeline
� Pipelining speedup:

� Can be viewed as reduction in CPI
� Or, reduction in clock cycle

� Defining clock cycle as the amount of time between
two successive instruction completions

A Simple DLX Implementation

� Instruction Fetch (IF) cycle:

� IR <-- M[PC]
� NPC <-- PC + 4

� Instruction Decode (ID) cycle:

� Done in parallel with register read (fixed field
decode)

� Register/Immediate read:
� A <-- R[IR6..10]
� B <-- R[IR11..15]
� Imm <-- sign-extend(IR16..31)

A Simple DLX Implementation

(continued)
� Execution/effective address (EX) cycle:

� Memory reference:
� ALUOutput <-- A + Imm

� Register-register ALU instruction:
� ALUOutput <-- A func B

� Register-immediate ALU instruction:
� ALUOutput <-- A op Imm

� Branch:
� ALUOutput <-- NPC + Imm
� Cond <-- A op 0 [op is one of == or !=]

A Simple DLX Implementation

(continued)
� Memory access/branch completion (MEM)

cycle:

� Memory access:
� LMD <-- M[ALUOutput]
� Or, M[ALUOutput] <-- B

� Branch: PC = (cond) ? ALUOutput : NPC
� Write-back (WB) cycle:

� Reg-reg ALU opn: R[IR16..20] <-- ALUOutput
� Reg-imm ALU opn: R[IR11..15] <-- ALUOutput
� Load instruction: R[IR11..15] <-- LMD

The DLX Data-path

IF ID EX MEM WB

Instrn.
mem IR

NPC

PC

4

Add

A

B

Imm

Reg.
File

Sign
ext.

m
u
x

m
u
x

ALU
o/pALU

Zero? Cond

Data
mem

LMD

m
u
x

m
u
x

Further lectures...

� Pipelining this data-path
� Pipelining issues

	lec05.pdf
	lec05.pdf

