LECTURE - 19




Topics for Today

 Cache Performance
 Cache Misses: The Three C's
* Improving the Cache Miss Rate

* Scribe?




Cache Performance

* Miss rate is an important metric

- But not the only one

Avg. mem. access time =
Hit time+ Miss rate X Miss penalty

 Hit time, Miss penalty can be expressed

- In absolute terms,
- Or, in terms of number of clock cycles

* Miss rate decrease may imply reduced
performance

- Example: unified vs. split cache




CPU Performance, with Cache

CPU time=(CPU cycles + Mem. stall cycles)X Cycle time

Mem. stalls= Reads X Read miss rate X Read miss penalty
+ Writes X Write miss rate X Write miss penalty

CPU time=1C X Cycle time X

Mem.
(CPI + O, dCCenie? X Miss rate X Miss penalty)

insin.




Effect of Cache on Performance

* Some typical values:
-CPI=1
- Mem. per instn. = 1.35
— Miss rate = 2%
- Miss penalty = 50
 Mem. stalls comparable to CPI!

— Cache behaviour is an important component of
performance

- More important for lower CPI




Improving Cache Performance

Avg. mem. access time =
Hit time+ Miss rate X Miss penalty

* Three possibilities:

Red
Red

Red

uce miss rate
uce miss penalty
uce hit time

* Beware of slowing down the CPU!

* Example:

- Set associative ==> potentially higher cycle time




Cache Misses: The Three C's

* Compulsory: first access to a block
- Also called cold start, or first reference misses

» Capacity: misses due to cache being small

* Conflict: two memory blocks mapping onto
the same cache block

- Also called collision, or interference misses




Cache size Associativityl Compulsory | Capacity Conflict Total CorE;r)?JCIéory Cz;;?tf:ity CI(:)rnE]l‘ﬁ;:t
1KB 1-way 0.20% 8.00% 5.20% 13.40% 0.01 0.6 0.39
1KB 2-way 0.20% 8.00% 2.30% 10.50% 0.02 0.76 0.22
1KB 4-way 0.20% 8.00% 1.30% 9.50% 0.02 0.84 0.14
1KB 8-way 0.20% 8.00% 0.50% 8.70% 0.02 0.92 0.06
2KB 1-way 0.20% 4.40% 5.20% 9.80% 0.02 0.45 0.53
2KB 2-way 0.20% 4.40% 3.00% 7.60% 0.03 0.58 0.39
2KB 4-way 0.20% 4.40% 1.80% 6.40% 0.03 0.69 0.28
2KB 8-way 0.20% 4.40% 0.80% 5.40% 0.04 0.81 0.15
4KB 1-way 0.20% 3.10% 3.90% 7.20% 0.03 0.43 0.54
4KB 2-way 0.20% 3.10% 2.40% 5.70% 0.04 0.54 0.42
4KB 4-way 0.20% 3.10% 1.60% 4.90% 0.04 0.63 0.33
4KB 8-way 0.20% 3.10% 0.60% 3.90% 0.05 0.79 0.15
8KB 1-way 0.20% 2.30% 2.10% 4.60% 0.04 0.5 0.46
8KB 2-way 0.20% 2.30% 1.30% 3.80% 0.05 0.61 0.34
8KB 4-way 0.20% 2.30% 1.00% 3.50% 0.06 0.66 0.29
8KB 8-way 0.20% 2.30% 0.40% 2.90% 0.07 0.79 0.14
16KB 1-way 0.20% 1.50% 1.20% 2.90% 0.07 0.52 0.41
16KB 2-way 0.20% 1.50% 0.50% 2.20% 0.09 0.68 0.23
16KB 4-way 0.20% 1.50% 0.30% 2.00% 0.1 0.75 0.15
16KB 8-way 0.20% 1.50% 0.20% 1.90% 0.11 0.79 0.11
32KB 1-way 0.20% 1.00% 0.80% 2.00% 0.1 0.5 0.4
32KB 2-way 0.20% 1.00% 0.20% 1.40% 0.14 0.71 0.14
32KB 4-way 0.20% 1.00% 0.10% 1.30% 0.15 0.77 0.08
32KB 8-way 0.20% 1.00% 0.10% 1.30% 0.15 0.77 0.08
64KB 1-way 0.20% 0.70% 0.50% 1.40% 0.14 0.5 0.36
64KB 2-wav 0.20% 0.70% 0.10% 1.00% 0?2 0.7 01




Reducing Cache Misses

* Capacity: increase cache size

- Thrashing can happen otherwise
* Conflict: increase associativity

- But, greater complexity, slower hit time
* Compulsory: increase block size

- But, greater miss penalty!




Technique-1: Larger Blocks

* Reduces compulsory misses

- By improving spatial locality
* Increases miss penalty

* Also, may increase conflict/capacity misses

Cache size

1KB

4KB

16KB

04KB

256KB

Block size

16B

15.05%

8.57%

3.94%

2.04%

1.09%

32B

13.34%

7.24%

2.87%

1.35%

0.70%

64B

13.76%

/7.00%

2.64%

1.06%

0.51%

17Q2R

1R RAY/L

7 7R04

) 7704

1 NJOL

N AQo/




Larger Blocks (continued)

* Miss penalty depends on:
- Memory latency, memory bandwidth

* Assuming latency of 40 cycles, and
bandwidth of 16 bytes per 2 cycles, AMAT
values are:

Cache size 1KB 4KB 16KB 64KB 256KB
Block size zl(:;ZI ty

16B 42 7.32 4.6 266 1.86 1.46
32B 44 6.87 419 226 159 1.31
64B 48 7.61 436 227 151 1.25
128B 56 10.31 5.35 255 157 1.27




Technique-2: Higher
Associativity
Reduces conflict misses
But, increases hit time
8-way as good as fully associative
Rule of thumb:

- Direct mapped cache of size N has the same
miss rate as a 2-way cache of size N2




Technique-3: Victim Cache

 Small cache of “victim” blocks, which were
thrown out recently

- Fully associative
* Reduces conflict misses

* Does not affect cycle time, or miss penalty

* Study: 4-entry victim cache removed 20-95%
of conflict misses in a 4KB direct mapped
cache




Technique-4: Pseudo-

Associative Cache
Also called column associative

Hit proceeds just as in a direct-mapped cache
Miss ==> check in set (by flipping MSB of index)
May need to swap contents in the set

Miss rate = Miss rate

seudo way

Miss penalty = Miss penalty

pseudo 1-way

Hit time = Hit time |+ Alt. hit rate Xk

pseudo

Alt. hit rate= Miss rate — Miss rate
-way 2-way




Technique-5: Hardware
Prefetching

* Fetch more than required, on a miss

- Prefetch into cache, or another small buffer
(faster than memory)

Avg. mem. access time =
Hit time+ Miss rate X Prefetch hit rate X k
+ Miss rate X Prefetch miss rate X Miss penalty




Technique-6: Compiler
Controlled Prefetch

* Special instructions for prefetching data

- Non-faulting instructions are most useful

- CPU should be able to proceed in parallel with
cache

* Non-blocking cache

* Example:
for (i=0;i<3;i++) {
for(j =0; j <100; j++) {
alillj] = b[j1[0] * bj+1][0];
1




Technique-7: Compiler
Optimizations
* Merging arrays

int val[1000]; . struct merge { int val; int key; };
int key[1000]; struct merge M[1000];

- Improves spatial locality
* Loop interchange

for(j =0; j <100; j++) for(i=0;i<100; i++)
for(i=0;1<100; i++) " for(j =0; j <1005 j++)
x[i][j] = 0; x[i][j] = 05

- Improves spatial locality




Compiler Optimizations
(continued)

* Loop fusion

for(i=0;1i<100; i++)
for(j =0; j <1005 j++)
a[i][j]1 = bLillj] + clilljl;

4>

fori=0;1<100; i++)
for(j =05 j <1005 j++)
alillj] = blil[j] + c[illj];

for(i = 0; i < 100; i++) L[] = 2*alillil:

for(j=0; j <1005 j++)

d[i][j] = 2*a[i][j]; .
- Improves temporal locality

 Blocking: operate on small blocks of matrices

- Improves temporal locality




Miss-Rate Reduction: Summary

* Larger blocks

* Higher associativity

* Victim cache

* Pseudo-associativity

* Hardware prefetching

» Software controlled prefetching
* Code optimization by compiler




	lec19.pdf
	lec19.pdf

