LECTURE - 07

Recall: Data Hazards

* Have to be detected dynamically, and
pipeline stalled if necessary

* Instruction issue: process of moving the
instruction from ID stage to EX

* For DLX, all data hazards can be checked
before instruction issue

- Also, control for data forwarding can be
determined

— This is good since instruction is suspended
before any machine state is updated

Pipeline Interlock for “Load”

Opcode of ID/EX

(DEXJIRO.5) Opcode of IF/ID (IF/ID.IR0..5) Check for interlock
Loac Reg-Reg ALU ID/EX.IR11.15 == IF/ID.IR6..10
Loac Reg-Reg ALU ID/EX.IR11.15 == IF/ID.IR1L..15
Loac Load, store, ALU immediate, or branch ID/EX.IR11.15 == IF/ID.IR6..10

Control Logic for Data-
Forwarding
» Data forwarding always happens

- From ALU or data-memory output

- To ALU input, data-memory input, or zero-
detection unit

* Which registers to compare?

* Compare the destination register field in
EX/MEM and MEM/WB latches with the

source register fields of IR in ID/EX and
EX/MEM stages

Control Hazard

 Result of branch instruction not known until
end of MEM stage

* Naive solution: stall until result of branch

instruction is known

— That an instruction is a branch is known at the

end of its ID cycle

- Note: “IF” may have to be repeated

(1 (@ (3 (4 5 C Cc7 cad (A

Branch F D EX MEM WB
Branch succ IF STALL STALL | IF | ID EX MEM WB
Branch succ + 1 IF ID EX MEM

Reducing the Branch Delay

* Three clock cycles wasted for every branch
==> significantly bad performance

* Two things to speedup:

— Determine earlier, if branch is taken
- Compute PC earlier
* Both can be done one cycle earlier

* But, beware of data hazard

Branch Behaviour of Programs

* [nteger programs: 13% forward conditional,
3% backward conditional, 4% unconditional

* FP programs: 7%, 2%, and 1% respectively
* 67% of branches are taken

- 60% forward branches are taken
- 85% backward branches are taken

Handling Control Hazards

e Stall: Naive solution
 Predict untaken or Predict not-taken:

- Treat every branch as not taken
- Only slightly more complex

- Do not update machine state until branch
outcome is known

- Done by clearing the IF/ID register of the fetched
Instruction

Predict Untaken Scheme

CCl CC2 CC3 CC4 CGC5 CCo Cc7 ccecs
| Untaken . \h B MEM | wB
branch)
1+ 1 |F ID EX | MEM WB
1 + 2 IF ID EX MEM WB
1+ 3 |F ID EX MEM | WB
CCl CC2 CC3 CC4 CGC5 CCe cCc7 ccs
| Taken o' \p e MEM wB
branch)
1+1 IF | Noop | Noop | Noop Noop
Target I ID EX | MEM | WB
Target + 1 IF ID EX | MEM WB
Target +2 I 1D EX MEM

More Ways to Reduce Control
Hazard Delays

* Predict taken:

- Treat every branch as taken

- Not of any use in DLX since branch target is not
known before branch condition anyway

* May be of use in other architectures

* Delayed branch:

- Instruction(s) after branch are executed anyway!

- Sequential successors are called branch-delay-
slots

Delayed Branch

EITHER OR CCl1 CC2 CC3 CC4 CC5 CCe | Cc7 | ccs
| (Untaken | (Taken
branch) branch) IF ID | EX | MEM| WEB
| + 1 (Branch |l + 1 (Branch IE D EX MEM WB

delay) delay)
| +2 Target IF ID EX MEM | WB
| +3 Target + 1 |F ID EX MEM WB
| + 4 Target + 2 IF ID EX | MEM

 DLX has one delay-slot

 Note: another branch instruction cannot be
put in delay-slot

* Compiler has to fill the delay-slots

Filling the Delay-Slot:
Option 1 of 3

ADD RI1,R2,R3
if (R2 == 0) then

if (R2 == 0) then
ADD R1,R2,R3

Delay slot

* F1ll the slot from before the branch instruction

* Restriction: branch must not depend on result of the

filled 1instruction

* Improves performance: always

Filling the Delay-Slot:
Option 2 of 3

SUB R4,R5,R6™ | -

ADD RI1,R2,R3 » ADD RI1,R2,R3

if (R1 ==0)then if (R1 ==0)then
Delay slot SUB R4, R5,R6

* Fill the slot from the target of the branch instruction

* Restriction: should be OK to execute instruction

even 1f not taken

* Improves performance: when branch is taken

Filling the Delay-Slot:
Option 3 of 3

ADD RI1, R2,R3 ADD RI1, R2, R3
if (R1 ==0) then if (R1 ==0) then

SUB R4, R5,R6

Delay slot

SUB R4, R5,R6

* Fill the slot from fall through of the branch

* Restriction: should be OK to execute instruction

even 1f taken

* Improves performance: when branch is not taken

Helping the Compiler

* Encode the compiler prediction in the branch
Instruction

- CPU knows whether branch was predicted taken
or not taken by compiler

— Cancel or nullify if prediction incorrect
- Known as canceling or nullifying branch

» Options 2 and 3 can now be used without restrictions

Static Branch Prediction

* Predict-taken
* Predict-untaken

* Prediction based on direction
(forward/backward)

* Profile-based prediction

Misprediction rate

Static Misprediction Rates

22.50%

20.00%

17.50%

15.00%

12.50%

10.00% -

7.50% -

5.00% -

0.00% -
Com Eqn Espre Gcc Li MC"Jd Su?
press tott sSoO duc dr02d p cor

Benchmark

Some Remarks
* Delayed branches are architecturally visible
- Strength as well as weakness

- Advantage: better performance
- Disadvantage: what if implementation changes?

* Deeper pipeline ==> more branch delays ==>
delay-slots may no longer be useful

- More powerful dynamic branch prediction

 Note: need to remember extra PC while
taking exceptions/interrupts

* Slowdown due to mispredictions:
1+ Branch frequency X Misprediction rate X Penalty

Further Issues in Pipelining

* Exceptions
* |nstruction set issues
* Multi-cycle operations

	lec07.pdf
	lec07.pdf

