
LECTURE - 19



Topics for Today

� Cache Performance
� Cache Misses: The Three C's
� Improving the Cache Miss Rate
�

� Scribe?



Cache Performance

� Miss rate is an important metric
� But not the only one

� Hit time, Miss penalty can be expressed
� In absolute terms,
� Or, in terms of number of clock cycles

� Miss rate decrease may imply reduced 
performance
� Example: unified vs. split cache

Avg. mem. access time�
Hit time�Miss rate�Miss penalty



CPU Performance, with Cache

CPU time��CPU cycles + Mem. stall cycles��Cycle time

Mem. stalls�Reads�Read miss rate�Read miss penalty
�Writes�Write miss rate�Write miss penalty

CPU time�IC�Cycle time�

�CPI�Mem. accesses
instn.

�Miss rate�Miss penalty�



Effect of Cache on Performance

� Some typical values:
� CPI = 1
� Mem. per instn. = 1.35
� Miss rate = 2%
� Miss penalty = 50

� Mem. stalls comparable to CPI!
� Cache behaviour is an important component of 

performance
� More important for lower CPI



Improving Cache Performance

� Three possibilities:
� Reduce miss rate
� Reduce miss penalty
� Reduce hit time

� Beware of slowing down the CPU!
� Example:

� Set associative ==> potentially higher cycle time

Avg. mem. access time�
Hit time�Miss rate�Miss penalty



Cache Misses: The Three C's

� Compulsory: first access to a block
� Also called cold start, or first reference misses

� Capacity: misses due to cache being small
� Conflict: two memory blocks mapping onto 

the same cache block
� Also called collision, or interference misses



The Three C's
Cache size Associativity Compulsory Capacity Conflict Total

1KB 1-way 0.20% 8.00% 5.20% 13.40% 0.01 0.6 0.39

1KB 2-way 0.20% 8.00% 2.30% 10.50% 0.02 0.76 0.22

1KB 4-way 0.20% 8.00% 1.30% 9.50% 0.02 0.84 0.14

1KB 8-way 0.20% 8.00% 0.50% 8.70% 0.02 0.92 0.06

2KB 1-way 0.20% 4.40% 5.20% 9.80% 0.02 0.45 0.53

2KB 2-way 0.20% 4.40% 3.00% 7.60% 0.03 0.58 0.39

2KB 4-way 0.20% 4.40% 1.80% 6.40% 0.03 0.69 0.28

2KB 8-way 0.20% 4.40% 0.80% 5.40% 0.04 0.81 0.15

4KB 1-way 0.20% 3.10% 3.90% 7.20% 0.03 0.43 0.54

4KB 2-way 0.20% 3.10% 2.40% 5.70% 0.04 0.54 0.42

4KB 4-way 0.20% 3.10% 1.60% 4.90% 0.04 0.63 0.33

4KB 8-way 0.20% 3.10% 0.60% 3.90% 0.05 0.79 0.15

8KB 1-way 0.20% 2.30% 2.10% 4.60% 0.04 0.5 0.46

8KB 2-way 0.20% 2.30% 1.30% 3.80% 0.05 0.61 0.34

8KB 4-way 0.20% 2.30% 1.00% 3.50% 0.06 0.66 0.29

8KB 8-way 0.20% 2.30% 0.40% 2.90% 0.07 0.79 0.14

16KB 1-way 0.20% 1.50% 1.20% 2.90% 0.07 0.52 0.41

16KB 2-way 0.20% 1.50% 0.50% 2.20% 0.09 0.68 0.23

16KB 4-way 0.20% 1.50% 0.30% 2.00% 0.1 0.75 0.15

16KB 8-way 0.20% 1.50% 0.20% 1.90% 0.11 0.79 0.11

32KB 1-way 0.20% 1.00% 0.80% 2.00% 0.1 0.5 0.4

32KB 2-way 0.20% 1.00% 0.20% 1.40% 0.14 0.71 0.14

32KB 4-way 0.20% 1.00% 0.10% 1.30% 0.15 0.77 0.08

32KB 8-way 0.20% 1.00% 0.10% 1.30% 0.15 0.77 0.08

64KB 1-way 0.20% 0.70% 0.50% 1.40% 0.14 0.5 0.36

64KB 2-way 0.20% 0.70% 0.10% 1.00% 0.2 0.7 0.1

Frac. 
Compulsory

Frac. 
Capacity

Frac. 
Conflict



Reducing Cache Misses

� Capacity: increase cache size
� Thrashing can happen otherwise

� Conflict: increase associativity
� But, greater complexity, slower hit time

� Compulsory: increase block size
� But, greater miss penalty!



Technique-1: Larger Blocks

� Increases miss penalty
� Also, may increase conflict/capacity misses

� Reduces compulsory misses
� By improving spatial locality

Cache size 1KB 4KB 16KB 64KB 256KB

Block size

16B 15.05% 8.57% 3.94% 2.04% 1.09%

32B 13.34% 7.24% 2.87% 1.35% 0.70%

64B 13.76% 7.00% 2.64% 1.06% 0.51%

128B 16 64% 7 78% 2 77% 1 02% 0 49%



Larger Blocks (continued)

� Miss penalty depends on:
� Memory latency, memory bandwidth

� Assuming latency of 40 cycles, and 
bandwidth of 16 bytes per 2 cycles, AMAT 
values are:
Cache size 1KB 4KB 16KB 64KB 256KB

Block size

16B 42 7.32 4.6 2.66 1.86 1.46

32B 44 6.87 4.19 2.26 1.59 1.31

64B 48 7.61 4.36 2.27 1.51 1.25

128B 56 10.31 5.35 2.55 1.57 1.27

Miss 

penalty



Technique-2: Higher 

Associativity
� Reduces conflict misses
� But, increases hit time
� 8-way as good as fully associative
� Rule of thumb:

� Direct mapped cache of size N has the same 
miss rate as a 2-way cache of size N/2



Technique-3: Victim Cache

� Small cache of “victim” blocks, which were 
thrown out recently
� Fully associative

� Reduces conflict misses
� Does not affect cycle time, or miss penalty
� Study: 4-entry victim cache removed 20-95% 

of conflict misses in a 4KB direct mapped 
cache



Technique-4: Pseudo-

Associative Cache
� Also called column associative
� Hit proceeds just as in a direct-mapped cache
� Miss ==> check in set (by flipping MSB of index)
� May need to swap contents in the set

Miss ratepseudo�Miss rate2-way

Miss penaltypseudo�Miss penalty1-way

Hit timepseudo�Hit time1-way�Alt. hit rate�k

Alt. hit rate�Miss rate1-way	Miss rate2-way



Technique-5: Hardware 

Prefetching
� Fetch more than required, on a miss

� Prefetch into cache, or another small buffer 
(faster than memory)

Avg. mem. access time�
Hit time�Miss rate�Prefetch hit rate�k
�Miss rate�Prefetch miss rate�Miss penalty



Technique-6: Compiler 

Controlled Prefetch
� Special instructions for prefetching data

� Non-faulting instructions are most useful
� CPU should be able to proceed in parallel with 

cache
� Non-blocking cache

� Example:
for (i = 0; i < 3; i++) {

for(j = 0; j < 100; j++) {
a[i][j] = b[j][0] * b[j+1][0];

}
}



Technique-7: Compiler 

Optimizations
� Merging arrays

int val[1000];
int key[1000];

struct merge { int val; int key; };
struct merge M[1000];

� Improves spatial locality
� Loop interchange

for(j = 0; j < 100; j++)
for(i = 0; i < 100; i++)

x[i][j] = 0;

for(i = 0; i < 100; i++)
for(j = 0; j < 100; j++)

x[i][j] = 0;
� Improves spatial locality



Compiler Optimizations 

(continued)
� Loop fusion

for(i = 0; i < 100; i++)
for(j = 0; j < 100; j++)

a[i][j] = b[i][j] + c[i][j];

for(i = 0; i < 100; i++)
for(j = 0; j < 100; j++)

d[i][j] = 2*a[i][j];

for(i = 0; i < 100; i++)
for(j = 0; j < 100; j++)

a[i][j] = b[i][j] + c[i][j];
d[i][j] = 2*a[i][j];

� Improves temporal locality
� Blocking: operate on small blocks of matrices

� Improves temporal locality



Miss-Rate Reduction: Summary

� Larger blocks
� Higher associativity
� Victim cache
� Pseudo-associativity
� Hardware prefetching
� Software controlled prefetching
� Code optimization by compiler


	lec19.pdf
	lec19.pdf

