LECTURE - 11

Instruction Level Parallelism

* Pipelining achieves Instruction Level
Parallelism (ILP)

— Multiple instructions in parallel
* But, problems with pipeline hazards

— CPI = Ideal CPI + stalls/instruction

— Stalls = Structural + Data (RAW/WAW/WAR) +
Control

e How to reduce stalls?

- That is, how to increase ILP?

Techniques for Improving ILP

Loop unrolling
Basic pipeline scheduling

Dynamic scheduling, scoreboarding, register
renaming

Dynamic memory disambiguation
Dynamic branch prediction
Multiple instruction issue per cycle

- Software and hardware techniques

Loop-Level Parallelism

* Basic block: straight-line code w/o branches

* Fraction of branches: 0.15

* ILP is limited!
— Average basic-block size is 6-7 instructions

- And, these may be dependent

* Hence, look for parallelism beyond a basic
block

* [oop-level parallelism is a simple example of

this

Loop-Level Parallelism: An
Example

* Consider the loop:

for(inti=1000;i>=1;i=i-1) {
x[i] = x[i] + C; // FP

}
- Each iteration of the loop is independent of other

iterations
- Loop-level parallelism

* To convert it into ILP:

- Loop unrolling (static, dynamic)
- Vector instructions

The Loop, in DLX

* In DLX, the loop looks like:

Loop: LD FO0, O(R1) // F0 is array element
ADDD F4, F0, F2// F2 has the scalar 'C'
SD 0(R1), F4 // Stored result

SUBI R1, R1, 8 // For next iteration

BNEZ R1, Loop // More iterations?
* Assume:

- R1 is the initial address
- F2 has the scalar value 'C’

- Lowest address in array is '8

How Many Cycles per Loop??

CC1l Loop: LD K0, O(R1)
CC2 stall

CC3 ADDD F4, F0, F2
CC4 stall

CCS stall

CC6 SD 0(R1), F4
CC7 SUBI R1,R1, 8
CC8 stall

CcC9 BNEZ RI1, Loop

CC10 stall

Reducing Stalls by Scheduling

CC1l Loop: LD

CC2
CC3
CC4
CC5
CCo

SUBI
ADDD
stall
BNEZ
SD

F0, O(R1)
R1,R1, 8
F4, FO, F2

R1, Loop
3(R1), F4

» Realizing that SUBI and SD can be swapped

is non-triviall

 Overhead versus actual work:

- 3 cycles of work, 3 cycles of overhead

Unrolling the Loop

Loop: LD
ADDD
SD
LD
ADDD
SD
LD
ADDD
SD
LD
ADDD
SD

SUBL—R1.R1.32

FO0, O(R1)

F4, FO, F2

0(R1), F4 // No SUBI, BNEZ

F6, -8(R1) // Note diff FP reg, new offset
F8, F6, F2

-8(R1), F8

F10, -16(R1) // Note diff FP reg, new offset
F12, K10, F2

-16(R1), F8

F14, -24(R1) // Note diff FP reg, new offset
F16, K14, F2

-24(R1), F16

How Many Cycles per Loop??

Loop: LD
ADDD
SD
LD
ADDD
SD
LD
ADDD
SD
LD
ADDD
SD
SUBI

K0, O(R1) /] 1 stall
F4, F0, F2 // 2 stalls
0(R1), F4

Fo6, -8(R1) //1 stall
K8, F6, F2 /] 2 stalls
-8(R1), F8

F10, -16(R1) // 1 stall
K12, F10, F2 // 2 stalls
-16(R1), F8

F14, -24(R1) // 1 stall
K16, K14, F2 // 2 stalls
-24(R1), F16

R1, R1, 32// 1 stall

28 cycles per
unrolled loop

7 cycles per
original loop

Scheduling the Unrolled Loop

Loop: LD F0, O(R1)
LD Fo, -8(R1)
LD F10, -16(R1)
LD F14, -24(R1)

14 cycles per
ADDD F4,F0, F2

ADDD FS, F6, F2
ADDD F12, F10, F2
ADDD F16, F14, F2

unrolled loop

3.5 cycles per
original loop

SD 0(R1), F4

SD .8(R1), F$
SUBI RLRI,32
SD 16(R1), F$

BNEZ Rl1, Loop

Observations and Requirements

» Gain from scheduling is even higher for
unrolled loop!

— More parallelism is exposed on unrolling
* Need to know that 1000 is a multiple of 4

* Requirements:

— Determine that loop can be unrolled
- Use different registers to avoid conflicts

- Determine that SD can be moved after SUBI,
and find the offset adjustment

* Understand dependences

Dependences

* Dependent instructions ==> cannot be in
parallel

* Three kinds of dependences:

- Data dependence (RAW)
- Name dependence (WAW and WAR)
— Control dependence

Dependences (continued)

* Dependences are properties of programs
 Stalls are properties of the pipeline
* Two possibilities:

- Maintain dependence, but avoid stalls

- Eliminate dependence by code transformation

Data Dependence
* Data dependence represents data flow from
one instruction to another

— One instruction uses the result of another
- Take transitive closure

* In our example: Loop: LD K(Rl)
Note: dependenoe n AT 0 -
memory 1s hard to detect

100(R4) and 80(R6) may be SD O(R1), F4

the same

ZO(RI) and 20(R1) may be SUBI 141, R1, 8
different at different times

Name Dependence

 Two instructions use the same
register/memory (name), but there is no flow
of data

— Anti-dependence: WAR hazard
— Output dependence: WAW hazard

* Can do register renaming s tatically, or
dynamically

Name Dependence in our Example

Loop: LD
ADDD
SD
LD
ADDD
SD
LD
ADDD
SD
LD
ADDD
SD
SUBI

F0, O(R1)
, 0O, F2

-8(R1)
L
51/)/ F4

,-16(R1)

0, F2
-1 u()F F4
FO, -24(R1)
F4, FO, F2
-24(R1), F4

R1, R1, 32

Loop: LD

>

Register
renaming

ADDD
SD

LD
ADDD
SD

LD
ADDD
SD

LD
ADDD
SD
SUBI

F0, O(R1)
F4, FO, F2
0(R1), F4
F6, -8(R1)
F8, F6, F2
-8(R1), F$
F10, -16(R1)
F12, F10, F2
-16(R1), F$
F14, -24(R1)
F16, F14, F2
24(R1), F16
R1, R1, 32

Control Dependence

* An example:
T1;
if p1 {
S1;
}
» Statement S1 is control-dependent on p1, but

T1 is not
 What this means for execution

- S1 cannot be moved before p1
- T1 cannot be moved after p1

Loop: LD

F0O, O(R1)

ADDD F4, F0, F2
SD 0(R1), F4
SUBI RLRILS

BEQZ il |dxit
LD Fﬁﬂ(RI)
ADDD F8,H6, F2
SD O(RH, F8
SUBI 1,8
BEQZ Rl jeit

// Two more

¢h...

SUBI R1, 1;1, 8
BNEZ R1, Loop

Loop: LD

ADDD
SD

LD
ADDD
SD

LD
ADDD
SD

LD
ADDD
SD
SUBI

Control Dependence in our Example

F0, O(R1)
F4, FO, F2
0(R1), F4
F6, -8(R1)
FS8, F6, F2
.8(R1), F$
F10, -16(R1)
F12, F10, F2
-16(R1), F$
F14, -24(R1)
F16, F14, F2
.24(R1), F16
R1, R1, 32

	lec11.pdf
	lec11.pdf

