
LECTURE - 32



Lecture Outline

� Log-Structured File System (LFS) [RO91]
� RAID
�

� Scribe for today?



Log-Structured File System

� Technological under-pinnings:
� Disk I/O becoming bottleneck since CPUs are 

getting faster
� Disk I/O dominated by writes, since reads mostly 

served by main memory caching
� Characteristics of application workloads:

� Lots of accesses to small files
� Random disk I/Os
� Synchronous meta-data update in FFS => slow
� FFS could use only about 5% disk bandwidth



The Log as the Structure

� Large asynchronous writes (0.5-1MB) to the 
end of the log

� How to retrieve information from the log?
� Sequential search would be too slow

� I-node structure is same as in FFS
� Getting to i-node given the i-node number 

uses i-node map (level of indirection)
� I-node map is small enough to be in memory



Free Space Management

� What if log fills up disk?
� Threading vs. copying

� Intermediate solution: segments
� Thread across segments
� Copy within segments

� Segment cleaning: copy live-data out of 
segment, to create free segments
� Segment with long-lived copy ==> can ignore 

while cleaning



Segment Cleaning

� Read a set of segments
� Copy live data to new segments, create free 

segments
� Need to identify:

� Which blocks are live
� Which block belongs to which file
� Segment summary information
� Notion of file/inode version



Segment Cleaning Policies

� When should the cleaning be done?
� Periodically; after threshold disk utilization

� How many segments to clean at a time?
� Fixed; until achieving some number of clean 

segments
� Which segments to clean?

� Most fragmented; having the least utilization
� How should the blocks be grouped when 

writing out?
� All files in a dir in one place; age sort



Crash Recovery

� Checkpoint
� Checkpoint region is fixed!

� What to checkpoint?
� I-node map blocks, segment usage table, pointer 

to last segment written
� Roll-forward

� Read from last segment onwards
� Update i-node map, segment usage table
� Directory operation log, for consistency between 

directory entries and i-nodes



RAID

� Raid-1: Mirroring
� Raid-2: Hamming code ECC
� Raid-3: Bit-level parity
� Raid-4: Block-level parity
� Raid-5: Block-level distributed parity


	lec32.pdf
	lec32.pdf

