
LECTURE - 21



Topics for Today

� Hit-time reduction techniques
� Virtual memory
�

� Scribe for today?



Small and Simple Caches

� Keep the cache small
� Faster
� Can fit inside processor
� Trade-off: tags within processor, data outside

� Keep the cache simple
� Direct-mapped ==> tag comparison can be in 

parallel with data transmission



Other Techniques

� Faster writes: pipeline writes
� Split the tag and data storage in cache
� Pipeline stage-1: tag access and comparison
� Pipeline stage-2: write data

� Dealing with virtual address --> physical 
address translation
� Avoid it (virtually addressed caches)
� In parallel with cache access (virtually indexed, 

physically tagged cache)



Virtual Memory

� Another level in the hierarchy
� Uses of virtual memory:

� Level of indirection
� No program overlays required
� Easy relocation

� Sharing and protection



Just like Memory-->Cache in 

Functionality...

� Cache line
� Cache miss
� Memory --> cache 

mapping

� Page or segment
� Page fault
� VA --> PA mapping 

(address translation)



But Quite Different Quantitatively...

� Page faults handled in software
� Be very careful about what you discard
� Lots of time anyway

� VM size determined by ISA
� VM is not quite the hard-disk...

Parameter Memory --> Cache VM --> Ph. Memory

Hit time 1-2 Cycles 40-100 Cycles

Miss penalty 8-100 Cycles O(10ms-100ms)

Miss rate 0.5-10% 0.00001-0.001%

Block/Page size 16-128 Bytes 4-64KB

Upper level size 16KB-1MB O(1GB)



Paging versus Segmentation

� Other possibilities:
� Paged segments
� Choices for page size

Criterion Paging Segmentation

Block size Uniform (4 to 64KB)

Words per address One Two

Programmer visible? No Perhaps

Block replacement Easy

Internal fragmentation External fragmentation

Efficient disk traffic? Not for small segments

Variable (max: 2^16-2^32, 
min: 1byte)

Need to find contiguous 
memory

Memory use 
inefficiency

Usually yes (for 
appropriate page size)



The Four Memory Hierarchy 

Questions
� Where to place a block?

� Fully associative
� How to find a block in main memory?

� Page table, or inverted table; cached in TLB
� Which block to replace?

� LRU, with the help of a use/reference bit
� What happens on write?

� Write-back, write-allocate



Trade-Offs in Page-Size

� Large page size 
good for:
� Smaller page tables
� Lesser TLB miss 

rate
� Efficient disk or 

network transfer
� Faster cache hits 

(how?)

� Smaller page size 
good for:
� Efficient use of 

memory (lesser 
fragmentation)

� Faster process 
startup time



Fast Translation

� Translation Look-aside Buffer (TLB)
� Small table in hardware
� Fully associative
� Fields:

� The translation, valid bit, use bit, dirty bit, protection 
bits

� TLB access can be in critical path
� Pipeline TLB access
� Overlap cache tag access with translation!



Overlapping Tag Access with 

Translation

Cache index
Block

offset

Page number Page offset

Cache index is virtual, but tags are physical

Tag access through index is independent of translation

This limits cache size potentially

Solutions possible:

Higher associativity

Page colouring (set associativity)

Small guessing hardware



Alternate Strategy: Avoid 

Translation!
� Virtually addressed caches:

� Cache is accessed using the virtual address
� Advantage: faster hit time
� Disadvantages:

� Cache has to be flushed on process switch
� What if two different VAs for the same PA?

� Synonyms/aliases

� I/O usually uses PA to access memory/cache



Dealing with Virtually 

Addressed Caches
� Avoiding cache flush:

� Include a PID field in cache tag
� Anti-aliasing

� Page colouring (set associativity)
� Create “enough”  colours (sets) to ensure that 

cache size <= block-size x number of sets
� Cache has to be direct-mapped


	lec21.pdf
	lec21.pdf

