
LECTURE - 27



Lecture Outline

� Synchronization mechanisms, and 
consistency models

�

� Scribe for today?



Synchronization

� Required since communication is through 
shared memory

� Synchronization primitives
� Involve atomic read-and-write of a memory 

location
� Atomic exchange (with a register)
� Test-and-set
� Fetch-and-increment



Synchronization and Coherence
� Atomic read-and-write causes problems with 

coherence
� Additional complexity

� Solution: push complexity to software!
� Pair of instructions
� Hardware support to tell if the two were executed 

atomically
� Load-linked and store-conditional
� Store fails if any intervening process switch, or 

coherence control operation



Load-Linked/Store-Conditional
� Can implement atomic-exchange, fetch-and-

increment
� Implementation issues:

� Use a link register to store address in previous 
load-linked instruction

� Process switch, or coherence control operation 
will clear the link register

� Store-conditional succeeds iff the address in it 
matches that in the link register

� Beware of what (and how many) instructions 
between the pair



Using Atomic Exchange for 
Spin-Locks

� Processor spins until it gets access to lock
� Useful to test if lock is already held, before 

trying to lock
� Even then, performance problems when 

multiple processors are trying to grab the 
lock
� Read/write misses generated by all processors
� Misses satisfied sequentially



Barrier Locks
� Barrier is a synchronization primitive

� Can be used in programs
� Forces all processors to wait until the last one 

reaches the barrier
� Can be implemented with two spin-locks

� One to increment a counter
� One to hold the processors until barrier

� Can cause deadlock!
� Use count-down, or sense-reversing barrier



Performance Optimizations

� Exponential back-off
� Queuing locks


	lec27.pdf
	lec27.pdf

