
LECTURE - 06



DLX Unpipelined Implementation

� Five cycles: IF, ID, EX, MEM, WB
� Branch and store instructions: 4 cycles only
� What is the CPI?

Fbranch�0.12, Fstore�0.05

� Further reduction in CPI (without pipelining)
� ALU instructions can finish in 4 cycles too

F ALU�0.47 CPI��4.83�0.47��4.36
Speedup�4.83�4.36�1.1

CPI�0.17	4
0.83	5��5�0.17��4.83



Some Remarks

� Any further reduction in CPI will likely increase 
cycle time

� Some hardware redundancies can be 
eliminated
� Use ALU for (PC+4) addition also
� Same I-cache and D-cache

� These are minor improvements...

� An alternative single-cycle implementation:
� Variation in amount of work ==> higher cycle time
� Hardware unit reuse is not possible



The Basic Pipeline for DLX

� That is it?
� Complications:

� Resource conflicts, Register conflicts, Branch 
instructions

� Exceptions, Instruction set issues

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

I IF ID EX MEM WB

I+1 IF ID EX MEM WB

I+2 IF ID EX MEM WB

I+3 IF ID EX MEM WB

I+4 IF ID EX MEM WB



The Pipelined Data-path

ID/EX MEM/WB

Instrn.
mem

PC

4

Add

m
u
x

Reg.
File

Sign
ext.

m
u
x

m
u
x

ALU

Data
mem

m
u
x

Zero?
IF/ID EX/MEM

Pipeline registers, or pipeline latches to carry values 
from one pipe stage to the next



Speedup from multi-cycle implementation�45
11

�4.09

Some Performance Numerics...

Unpipeline clock cycle�10ns
CPI ALU�CPI Branch�4,CPIOther�5

F ALU�0.4, FBranch�0.2, FOther�0.4
Pipelined clock cycle�11ns

For a single-cycle impl.T IF�10ns ,T ID�8ns

T EX�10ns ,T MEM�10ns ,T WB�7ns

Speedup��10	�5�0.6��
�11	1�

�4



Pipeline Hazards

� Structural Hazards: resource conflict
� Example: same cache/memory for instruction 

and data
� Data Hazards: same data item being 

accessed/written in nearby instructions
� Example:

� ADD R1, R2, R3
� SUB R4, R1, R5

� Control Hazards: branch instructions



Structural Hazards

� Usually happen when a unit is not fully 
pipelined
� That unit cannot churn out one instruction per 

cycle
� Or, when a resource has not been duplicated 

enough
� Example: same I-cache and D-cache
� Example: single write-port for register-file

� Usual solution: stall

� Also called pipeline bubble, or simply bubble



Stalling the Pipeline

� What is the slowdown due to stalls caused by
such load instructions?

CPI without stalls�1
CPI with stalls�1
Fload

Slowdown�1
Fload

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10

Load IF ID EX MEM WB

I+1 IF ID EX MEM WB

I+2 IF ID EX MEM WB

I+3 STALL IF ID EX MEM WB

I+4 IF ID EX MEM WB



Why Allow Structural Hazards?

� Lower Cost:
� Lesser hardware ==> lesser cost

� Shorter latency of unpipelined unit
� May have other performance benefits
� Data hazards may introduce stalls anyway!

� Suppose the FP unit is unpipelined, and the 
other instructions have a 5-stage pipeline. 
What percentage of instructions can be FP, 
so that the CPI does not increase?
20% can be FP, assuming no clustering of FP instructions

Even if clustered, data hazards may introduce stalls anyway



Data Hazards

� Example:
� ADD R1, R2, R3
� SUB R4, R1, R5
� AND R6, R1, R7
� OR R8, R1, R9
� XOR R10,R1, R11

� All instructions after ADD depend on R1
� Stalling is a possibility

� Can we do better?



Register File: Reads after Writes

IM Reg ALU DM Regeg ReADDR1, R2, R3

IM Reg ALU DM Regeg Re

IM Reg ALU DM Regeg Re

IM Reg ALU DMeg

SUB R4, R1, R5

ANDR6, R1, R7

OR R8, R1, R9



Minimizing Stalls via Forwarding

IM Reg ALU DM Regeg ReADDR1, R2, R3

IM Reg ALU DM Regeg Re

IM Reg ALU DM Regeg Re

IM Reg ALU DMeg

SUB R4, R1, R5

ANDR6, R1, R7

OR R8, R1, R9



Data Forwarding for Stores

IM Reg ALU DM Regeg ReADDR1, R2, R3

IM Reg ALU DM Regeg Re

IM Reg ALU DM Regeg Re

LW R4, 0(R1)

SW 12(R1), R4

Note: no data hazards on memory locations in DLX, since 
memory references are always in order



Data Hazard Classification
� Read after Write (RAW): use data 

forwarding to overcome
� Write after Write (WAW): arises only when 

writes can happen in different pipeline stages
�

�

�

� Has other problems as well: structural hazards
� Write after Read (WAR): rare

CC1 CC2 CC3 CC4 CC5 CC6

LW R1, 0(R2) IF ID EX MEM1 MEM2 WB

ADD R1, R2, R3 IF ID EX WB

CC1 CC2 CC3 CC4 CC5 CC6

SW 0(R1), R2 IF ID EX MEM1 MEM2 WB

ADD R2, R3, R4 IF ID EX WB



Stalls due to Data Hazard

IM Reg ALU DM Regeg ReLW R1, 0(R2)

IM Reg ALU DM Regeg Re

IM Reg ALU DM Regeg Re

IM Reg ALU DMeg

SUB R4, R1, R5

ANDR6, R1, R7

OR R8, R1, R9

Pipeline interlock is required: to detect hazard and stall



Avoiding such Stalls

� Compiler scheduling:
� Example: a = b + c; d = e + f;

� LW R1, b
� LW R2, c
� LW R10, e
� ADD R4, R1, R2
� LW R11, f
� SW a, R4
� ADD R12, R10, R11
� SW d, R12

Without such scheduling,
what is the slow-down?

1
Floads causing stalls



Topics for Next Lecture

� Control hazards
� Exceptions during a pipeline

� More difficult to deal with
� Cause more damage


	lec06.pdf
	lec06.pdf

