
LECTURE - 12



ILP: Recall

� Improving ILP == reducing stalls
� Loop unrolling enlarges the basic block

� More parallelism
� More opportunity for better scheduling

� Dependences:
� Data dependence
� Name dependence
� Control dependence



Handling Control Dependence

� Control dependence need not be maintained
� We need to maintain:

� Exception behaviour – do not caus e new 
exceptions

� Data flow – ensur e the right data item is used
� Speculation and conditional instructions are 

techniques to get around control dependence



Loop Unrolling: a Relook
� Our example:

for(int i = 1000; i >= 1; i = i-1) {
x[i] = x[i] + C; // FP

}
� Consider:

for(int i = 1000; i >= 1; i = i-1) {
A[i-1] = A[i] + C[i]; // S1
B[i-1] = B[i] + A[i-1]; // S2

}
� S2 is dependent on S1
� S1 is dependent on its previous iteration; same 

case with S2
� Loop-carried dependence ==> loop iterations have to 

be in-order



Removing Loop-Carried 

Dependence
� Another example:

for(int i = 1000; i >= 1; i = i-1) {
A[i] = A[i] + B[i]; // S1
B[i-1] = C[i] + D[i]; // S2

}
� S1 depends on the prior iteration of S2

� Can be removed (no cyclic dependence)
A[1000] = A[1000] + B[1000];
for(int i = 1000; i >= 2; i = i-1) {

B[i-1] = C[i] + D[i]; // S2
A[i-1] = A[i-1] + B[i-1]; // S1

}
B[0] = C[1] + D[1];



Static vs. Dynamic Scheduling

� Static scheduling: limitations
� Dependences may not be known at compile time
� Even if known, compiler becomes complex
� Compiler has to have knowledge of pipeline

� Dynamic scheduling
� Handle dynamic dependences
� Simpler compiler
� Efficient even if code compiled for a different 

pipeline



Dynamic Scheduling

� For now, we will focus on overcoming data 
hazards

� The idea:
� DIVD F0, F2, F4
� ADDD F10, F0, F8
� SUBD F12, F8, F14

� SUBD can proceed without waiting for DIVD



CDC 6600: A Case Study

� IF stage: fetch instructions onto a queue
� ID stage is split into two stages:

� Issue: decode and check for structural hazards
� Read operands: check for data hazards

� Execution may begin, and may complete out-
of-order
� Complications in exception handling
� Ignore for now

� What is the logic for data hazard checks?



The CDC Scoreboard

� Out-of-order completion ==> WAR and WAW 
hazards possible

� Scoreboard: a data-structure for all hazard 
detection in the presence of out-of-order 
execution/completion

� All instructions “cons ult” the scoreboard to 
detect hazards



The Scoreboard Solution

� Three components:
� Stages of the pipeline:

� Issue (ID1), Read-operands (ID2), EX, WB

� Data structure (in hardware)
� Logic for hazard detection, stalling



Scoreboard Control & the 

Pipeline Stages
� Issue (ID1): decode, check if functional unit is 

free, and if a previous instruction has the same 
destination register
� No such hazard ==> scoreboard issues to the 

appropriate functional unit
� Note: structural/WAW hazards prevented by stalling here
� Note: stall here ==> IF queue will grow

� Read operands (ID2): 
� Operand is available if no earlier instruction is going 

to write it, or if the register is being written currently
� RAW hazards are resolved here



Scoreboard Control & the 

Pipeline Stages (continued)

� Execute (EX): 
� Functional units perform execution
� Scoreboard is notified on completion

� Write-Back (WB): 
� Check for WAR hazards

� Stall on detection
� Write-back otherwise



Some Remarks

� WAW causes stall in ID1, WAR causes stall 
in WB

� No forwarding logic
� Output written as soon as it is available (and no 

WAR hazard)
� Structural hazard possible in register 

read/write
� CDC has 16 functional units, and 4 buses



The Scoreboard Data-Structures

� Instruction status
� Functional unit status
� Register result status
�

� Randy Katz's CS252 slides... (Lecture 10, 
Spring 1996)
� Scoreboard pipeline control
� A detailed example



Limitations of the Scoreboard

� Speedup of 1.7 for (compiled) FORTRAN, 
speedup of 2.5 for hand-coded assembly

� Scoreboard only in basic-block!
� Some hazards still cause stalls:

� Structural
� WAR, WAW


	lec12.pdf
	Binder14.pdf

