
LECTURE - 07



Recall: Data Hazards

� Have to be detected dynamically, and 
pipeline stalled if necessary

� Instruction issue: process of moving the 
instruction from ID stage to EX

� For DLX, all data hazards can be checked 
before instruction issue
� Also, control for data forwarding can be 

determined
� This is good since instruction is suspended 

before any machine state is updated



Pipeline Interlock for “Load”

Opcode of IF/ID (IF/ID.IR0..5) Check for interlock

Load Reg-Reg ALU ID/EX.IR11.15 == IF/ID.IR6..10

Load Reg-Reg ALU ID/EX.IR11.15 == IF/ID.IR11..15

Load Load, store, ALU immediate, or branch ID/EX.IR11.15 == IF/ID.IR6..10

Opcode of ID/EX 

(ID/EX.IR0..5)



Control Logic for Data-

Forwarding
� Data forwarding always happens

� From ALU or data-memory output
� To ALU input, data-memory input, or zero-

detection unit
� Which registers to compare?

� Compare the destination register field in 
EX/MEM and MEM/WB latches with the 
source register fields of IR in ID/EX and 
EX/MEM stages



Control Hazard
� Result of branch instruction not known until 

end of MEM stage
� Naïve solution: stall until result of branch 

instruction is known
� That an instruction is a branch is known at the 

end of its ID cycle
� Note: “IF” may have to be repeated

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

Branch IF ID EX MEM WB

Branch succ IF STALL STALL IF ID EX MEM WB

Branch succ + 1 IF ID EX MEM



Reducing the Branch Delay

� Three clock cycles wasted for every branch 
==> significantly bad performance

� Two things to speedup:
� Determine earlier, if branch is taken
� Compute PC earlier

� Both can be done one cycle earlier
� But, beware of data hazard



Branch Behaviour of Programs

� Integer programs: 13% forward conditional, 
3% backward conditional, 4% unconditional

� FP programs: 7%, 2%, and 1% respectively
� 67% of branches are taken

� 60% forward branches are taken
� 85% backward branches are taken



Handling Control Hazards

� Stall: Naïve solution
� Predict untaken or Predict not-taken:

� Treat every branch as not taken
� Only slightly more complex
� Do not update machine state until branch 

outcome is known
� Done by clearing the IF/ID register of the fetched 

instruction



Predict Untaken Scheme

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

IF ID EX MEM WB

I + 1 IF ID EX MEM WB

I + 2 IF ID EX MEM WB

I + 3 IF ID EX MEM WB

I (Untaken 

branch)

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

IF ID EX MEM WB

I + 1 IF Noop Noop Noop Noop

Target IF ID EX MEM WB

Target + 1 IF ID EX MEM WB

Target +2 IF ID EX MEM

I (Taken 

branch)



More Ways to Reduce Control 

Hazard Delays
� Predict taken:

� Treat every branch as taken
� Not of any use in DLX since branch target is not 

known before branch condition anyway
� May be of use in other architectures

� Delayed branch:

� Instruction(s) after branch are executed anyway!
� Sequential successors are called branch-delay-

slots



Delayed Branch

� DLX has one delay-slot
� Note: another branch instruction cannot be 

put in delay-slot
� Compiler has to fill the delay-slots

EITHER OR CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

IF ID EX MEM WB

IF ID EX MEM WB

I + 2 Target IF ID EX MEM WB

I + 3 Target + 1 IF ID EX MEM WB

I + 4 Target + 2 IF ID EX MEM

I (Untaken 

branch)

I (Taken 

branch)

I + 1 (Branch 

delay)

I + 1 (Branch 

delay)



Filling the Delay-Slot:

Option 1 of 3

ADD R1, R2, R3
if (R2 == 0) then

Delay slot

if (R2 == 0) then

ADD R1, R2, R3

� Fill the slot from before the branch instruction
� Restriction: branch must not depend on result of the 

filled instruction
� Improves performance: always



Filling the Delay-Slot:

Option 2 of 3

ADD R1, R2, R3
if (R1 == 0) then

Delay slot

SUB R4, R5, R6

� Fill the slot from the target of the branch instruction
� Restriction: should be OK to execute instruction 

even if not taken
� Improves performance: when branch is taken

ADD R1, R2, R3
if (R1 == 0) then

SUB R4, R5, R6



Filling the Delay-Slot:

Option 3 of 3

ADD R1, R2, R3
if (R1 == 0) then

Delay slot

SUB R4, R5, R6

� Fill the slot from fall through of the branch
� Restriction: should be OK to execute instruction 

even if taken
� Improves performance: when branch is not taken

ADD R1, R2, R3
if (R1 == 0) then

SUB R4, R5, R6



Helping the Compiler

� Encode the compiler prediction in the branch 
instruction
� CPU knows whether branch was predicted taken 

or not taken by compiler
� Cancel or nullify if prediction incorrect
� Known as canceling or nullifying branch

� Options 2 and 3 can now be used without restrictions



Static Branch Prediction

� Predict-taken
� Predict-untaken
� Prediction based on direction 

(forward/backward)
� Profile-based prediction



Static Misprediction Rates

Com
press

Eqn-
tott

Espre
sso

Gcc Li Do
duc

Ear Hy-
dro2d

Mdljd
p

Su2
cor

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

22.50%

Benchmark

M
is

pr
ed

ic
tio

n 
ra

te



Some Remarks
� Delayed branches are architecturally visible

� Strength as well as weakness
� Advantage: better performance
� Disadvantage: what if implementation changes?

� Deeper pipeline ==> more branch delays ==> 
delay-slots may no longer be useful
� More powerful dynamic branch prediction

� Note: need to remember extra PC while 
taking exceptions/interrupts

� Slowdown due to mispredictions:
1�Branch frequency�Misprediction rate�Penalty



Further Issues in Pipelining

� Exceptions
� Instruction set issues
� Multi-cycle operations


	lec07.pdf
	lec07.pdf

