
LECTURE - 04



Announcements

� Course web-page is up 
http://web.cse.iitk.ac.in/~cs422/index.html

� Lecture scribe notes:
� HTML please
� lec-notesXY-1.html or lec-notesXY-2.html
� Images in directory “images/”

� lecXY-1-anything.ext or lecXY-2-anything.ext

� Please email to one of the TAs
� Extra classes?



Topics so far...

� Quantifying computer performance
� Amdahl's law
� Performance equation, CPI
� Effect of cache misses on CPI
� This week:

� Instruction Set Architecture (ISA)
� Pipelining: concept and issues



Instruction Set

� Instruction set is the interface 
between hardware and software

� Interface design
� Central part of any system design
� Allows abstraction/independence
� Challenges:

� Should be easy to use by the layer 
above

� Should allow efficient implementation 
by the layer below

Software

Hardware

Interface

(Instruction set)



Instruction Set Architecture 

(ISA)

� Main focus of early designs (1970s, 1980s)
� Mutual dependence between ISA design 

and:
� Machine organization� Example: caches

� Higher level languages and compilers (what 
instructions do they want?)

� Operating systems
� Example: atomic instructions, paging...



The Design Space

Instruction
Operand(s) Result operand

What operations?

e.g. add, sub, and

1
How many

explicit operands?

e.g. 0, 1, 2, 3

2

Non-memory

operands from where?

e.g. stack, register

3

Memory-operand

access modes

e.g. direct, indexed

4

Type and

size of operand

e.g. word, decimal

5

Other design choices: determining branch conditions, instruction encoding



Classes of ISAs

Stack

Push A

Push B

Add

Pop C

Accumulator

Load A

Add B

Store C

Register-
memory

Load R1, A

Add R1, B

Store C, R1

Register-
register

Load R1, A

Load R2, B

Add R3, R1, R2

Store C, R3

Memory-
memory

Add C, A, B

� Those which use registers are also called 

General-Purpose Register (GPR) architectures

� Register-register also called load-store



GPR Advantages

� Registers faster than memory
� Code density improves
� Easier for compiler to use

� Hold variables
� Expression evaluation
� Passing arguments



Spectrum of GPR Choices

� Choices based on
� How many memory operands allowed
� How many total operands

Examples

0 3 SPARC, MIPS, PowerPC

1 2 80x86, Motorola

2 2 VAX

Number of memory 
addresses

Maximum number of 
operands allowed



Memory Addressing

� Little-endian versus 
Big-endian

� Aligned versus non-
aligned access of 
memory units > 1 byte
� Misaligned ==> more 

memory cycles for 
access

MSB

LSB

LSB

MSB

0x00...0

0xff...f

Big Endian

Little Endian



Addressing Modes

Addressing mode Example Meaning

Immediate Add R4, #3 R4 <-- R4 + 3

Register Add R4, R3 R4 <-- R4 + R3

Direct or absolute Add R1, (1001) R1 <-- R1 + M[1001]

Add R4, (R1) R4 <-- R4 + M[R1]

Displacement Add R4, 100(R1) R4 <-- R4 + M[100+R1]

Indexed Add R3, (R1+R2) R3 <-- R3 + M[R1+R2]

Auto-increment Add R1, (R2)+ R1 <-- R1 + M[R2]; R2 <-- R2 + d; 

Auto-decrement Add R1, –(R2) R2 <-- R2 – d; R1 <-- R1 + M[R2]

Scaled Add R1, 100(R2)[R3] R1 <-- R1 + M[100+R2+R3*d]

Register deferred or 
indirect



Usage of Addressing Modes

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

F
re

q
u
en

cy
 o

f 
ad

d
re

ss
in

g
 m

o
d
e

TeX

Spice

Gcc

Memory 

indirect
Scaled

Register 

deferred
Immediate Displacement



How many Bits for Displacement?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

22.50%

25.00%

27.50%

Integer average

Floating-point av-
erage

Num. bits needed for displacement value

P
er

ce
nt

ag
e 

of
 c

as
es



How many Bits for Immediate?

0 5 10 15 20 25 30 35
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

TeX

spice

gcc

Number of bits needed for immediate

P
er

ce
nt

ag
e 

of
 c

as
es



Type and Size of Operands

Byte

Half 
word

Word

Double 
word

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

Integer average Floating point 
average

Frequency of reference



Summary so far

� GPR is better than stack/accumulator
� Immediate and displacement most used 

memory addressing modes
� Number of bits for displacement: 12-16 bits
� Number of bits for immediate: 8-16 bits
�

� Next: what operations in instruction set?



Deciding the Set of Operations

Simple instructions are used most!

Load 22.00%

20.00%

Compare 16.00%

Store 12.00%

Add 8.00%

AND 6.00%

Sub 5.00%

Move reg-reg 4.00%

Call 1.00%

80x86 

instruction

Integer 

average

Conditional 
branch



Instructions for Control Flow

Conditional 
branch

Jump

Call/return

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Integer average Floating-point 
average

Frequency of control flow instructions



Design Issues for Control Flow 

Instructions
� PC-relative addressing

� Useful since most jumps/branches are nearby
� Gives position independence (dynamic linking)

� Register indirect jumps
� Useful for many programming language features
� Case statements, virtual functions, dynamic 

libraries
� How many bits for PC displacement?

� 8-10 bits are enough



What is the Nature of Compares?

"==, !=”

“>, <=”

“<, >=”

0.00% 20.00% 40.00% 60.00% 80.00% 100.00

Integer average Floating-point av-
erage

Frequency of type of compare

50% of integer 
comparisons are with 
ZERO!



Compare and Branch: Single 

Instruction or Two?
� Condition Code: set by ALU

� Advantage: simple, may be free
� Disadvantage: extra state across instructions

� Condition register: test any register with 
result of comparison
� Advantage: simple
� Disadvantage: uses up a register

� Compare and branch:
� Advantage: lesser instructions
� Disadvantage: too much work in an instruction



Managing Register State during 

Call/Return
� Caller save, or callee save?

� Combination of the two is possible
� Beware of global variables in registers!



Instruction Encoding Issues

� Need to encode: operation, and addressing 
mode of each operand
� Opcode is used for encoding operation
� Simple set of addressing modes ==> can encode 

addressing mode also in opcode
� Else, need address specifier per operand!

� Challenges in encoding:
� Many registers and addressing modes
� But, also minimize average instruction size
� Encoding should be easy to handle in 

implementation (e.g. multiple of bytes)



Styles of Encoding

Opcode Address-1 Address-2 Address-3

Fixed (e.g. DLX, MIPS, PowerPC)

Opcode,

#operands

Addr.

Spec-1
Address-1

Addr.

Spec-2
Address-2 ...

Variable (e.g. VAX)

Fixed:

(+) ease of decoding

(--) more instructions

Variable:

(+) lesser number of instructions

(--) variance in amount of work per instruction

Hybrid approach: reduce 

variability in size, but provide 

multiple encoding lengths

Examples: Intel 80x86



The Role of the Compiler

� Compilers are central to ISA design

Front-end

High-level optimizations

Global optimizer

Code generator

Language independence
Machine dependence



ISA Design to Help the Compiler

� Regularity: operations, data-types, and 
addressing modes should be orthogonal; no 
special registers/operands for some 
instructions

� Provide simple primitives: do not optimize 
for a particular compiler of a particular 
language

� Clear trade-offs among alternatives: how 
to allocate registers, when to unroll a loop...



What lies ahead...

� The DLX architecture
� DLX: simple data-path
� DLX: pipelined data-path
� Pipelining hazards, and how to handle them


	lec04.pdf
	lec04.pdf

