
LECTURE - 13



Dynamic Scheduling

� Better than static scheduling
� Scoreboarding:

� Used by the CDC 6600
� Useful only within basic block
� WAW and WAR stalls

� Tomasulo algorithm:
� Used in IBM 360/91 for the FP unit
� Main additional feature: register renaming to 

avoid WAR and WAW stalls



Register Renaming: Basic Idea

� Compiler maps memory --> registers 
statically

� Register renaming maps registers --> virtual 
registers in hardware, dynamically

� Should keep track of this mapping
� Make sure to read the current value

� Num. virtual registers > Num. ISA registers 
usually

� Virtual registers are known as reservation 
stations in the IBM 360/91



Tomasulo: Main Architectural 

Features

� Reservation stations: fetch and buffer 
operand as soon as it is available

� Load/store buffers: have the address (and 
data for store) to be loaded/stored

� Distributed hazard detection and execution 
control

� Common Data Bus (CDB): results passed 
from where generated to where needed

� Note: IBM 360/91 also had reg-mem instns.



The Tomasulo Architecture

Load Buffers
FP Opn Queue

FP Regs

Store Buffers

Resvn. Stns.

Resvn. Stns.

FP ADD/SUB

FP MUL/DIV

Opn. Bus

Opnd. Bus

From mem.

To mem.

From instn. unit

Common Data Bus



Pipeline Stages
� Issue:

� Wait for free Reservation Station (RS) or 
load/store buffer, and place instruction there

� Rename registers in the process (WAR and 
WAW handled here)

� Execute (EX):
� Monitor CDB for required operand
� Checks for RAW hazard in this process

� Write Result (WB):
� Write to CDB
� Picked up by any RS, store buffer, or register



Register Renaming

� In RS, operands referred to by a tag (if 
operand not already in a register)

� The tag refers to the RS (which contains the 
instruction) which will produce the required 
operand

� Thus each RS acts as a virtual register



The Data Structure

� Three parts, like in the scoreboard:
� Instruction status
� Reservation stations, Load/Store buffers, 

Register file
� Register status: which unit is going to produce 

the register value
� This is the register --> virtual register mapping



Components of RS, Reg. File, 

Load/Store Buffers
� Each RS has:

� Op: the operation (+, -, x, /)
� Vj, Vk: the operands (if available)
� Qj, Qk: the RS tag producing Vj/Vk (0 if Vj/Vk known)
� Busy: is RS busy?

� Each reg. in reg. file and store buffer has:
� Qi: tag of RS whose result should go to the reg. or 

the mem. locn. (blank ==> no such active RS)
� Load and store buffers have:

� Busy field, store buffer has value V to be stored



Maintaining the Data Structure
� Issue:

� Wait until: RS or buffer empty
� Updates: Qj, Qk, Vj, Vk, Busy of RS/buffer; 

Maintain register mapping (register status)
� Execute:

� Wait until: Qj=0 and Qk=0 (operands available)
� Write result:

� CDB result picked up by RS (update Qj, Qk, Vj, 
Vk), store buffers (update Qi, V), register file 
(update register status)

� Update Busy of the RS which finished



Some Examples

� Randy Katz's CS252 slides... (Lecture 11, 
Spring 1996)

� Dynamic loop unrolling example from text



Dynamic Loop Unrolling

� Assume branch predicted to be taken
� Denote: load buffers as L1, L2..., ADDD RSs 

as A1, A2...
� First loop: F0 --> L1, F4 --> A1
� Second loop: F0 --> L2, F4 --> A2

Loop: LD F0, 0(R1) // F0 is array element
ADDD F4, F0, F2// F2 has the scalar 'C'
SD 0(R1), F4 // Stored result
SUBI R1, R1, 8 // For next iteration
BNEZ R1, Loop // More iterations?



Summary Remarks

� Memory disambiguation required
� Drawbacks of Tomasulo:

� Large amount of hardware
� Complex control logic
� CDB is performance bottleneck

� But:
� Required if designing for an old ISA
� Multiple issue ==> register renaming and 

dynamic scheduling required
� Next class: branch prediction


	lec13.pdf
	lec13.pdf

