
LECTURE - 11



Instruction Level Parallelism

� Pipelining achieves Instruction Level 
Parallelism (ILP)
� Multiple instructions in parallel

� But, problems with pipeline hazards
� CPI = Ideal CPI + stalls/instruction
� Stalls = Structural + Data (RAW/WAW/WAR) + 

Control
� How to reduce stalls?

� That is, how to increase ILP?



Techniques for Improving ILP

� Loop unrolling
� Basic pipeline scheduling
� Dynamic scheduling, scoreboarding, register 

renaming
� Dynamic memory disambiguation
� Dynamic branch prediction
� Multiple instruction issue per cycle

� Software and hardware techniques



Loop-Level Parallelism

� Basic block: straight-line code w/o branches
� Fraction of branches: 0.15
� ILP is limited!

� Average basic-block size is 6-7 instructions
� And, these may be dependent

� Hence, look for parallelism beyond a basic 
block

� Loop-level parallelism is a simple example of 
this



Loop-Level Parallelism: An 

Example
� Consider the loop:

for(int i = 1000; i >= 1; i = i-1) {
x[i] = x[i] + C; // FP

}
� Each iteration of the loop is independent of other 

iterations
� Loop-level parallelism

� To convert it into ILP:
� Loop unrolling (static, dynamic)
� Vector instructions



The Loop, in DLX

� In DLX, the loop looks like:

Loop: LD F0, 0(R1) // F0 is array element
ADDD F4, F0, F2// F2 has the scalar 'C'
SD 0(R1), F4 // Stored result
SUBI R1, R1, 8 // For next iteration
BNEZ R1, Loop // More iterations?

� Assume:
� R1 is the initial address
� F2 has the scalar value 'C'
� Lowest address in array is '8'



How Many Cycles per Loop?

CC1 Loop: LD F0, 0(R1)
CC2 stall
CC3 ADDD F4, F0, F2
CC4 stall
CC5 stall
CC6 SD 0(R1), F4
CC7 SUBI R1, R1, 8
CC8 stall
CC9 BNEZ R1, Loop
CC10 stall



Reducing Stalls by Scheduling

CC1 Loop: LD F0, 0(R1)
CC2 SUBI R1, R1, 8
CC3 ADDD F4, F0, F2
CC4 stall
CC5 BNEZ R1, Loop
CC6 SD 8(R1), F4

� Realizing that SUBI and SD can be swapped 
is non-trivial!

� Overhead versus actual work:
� 3 cycles of work, 3 cycles of overhead



Unrolling the Loop

Loop: LD F0, 0(R1)
ADDD F4, F0, F2
SD 0(R1), F4 // No SUBI, BNEZ
LD F6, -8(R1) // Note diff FP reg, new offset
ADDD F8, F6, F2
SD -8(R1), F8
LD F10, -16(R1) // Note diff FP reg, new offset
ADDD F12, F10, F2
SD -16(R1), F8
LD F14, -24(R1) // Note diff FP reg, new offset
ADDD F16, F14, F2
SD -24(R1), F16
SUBI R1, R1, 32



How Many Cycles per Loop?

Loop: LD F0, 0(R1) // 1 stall
ADDD F4, F0, F2 // 2 stalls
SD 0(R1), F4
LD F6, -8(R1) // 1 stall
ADDD F8, F6, F2 // 2 stalls
SD -8(R1), F8
LD F10, -16(R1) // 1 stall
ADDD F12, F10, F2 // 2 stalls
SD -16(R1), F8
LD F14, -24(R1) // 1 stall
ADDD F16, F14, F2 // 2 stalls
SD -24(R1), F16
SUBI R1, R1, 32// 1 stall

28 cycles per 
unrolled loop

==
7 cycles per 
original loop



Scheduling the Unrolled Loop

Loop: LD F0, 0(R1)
LD F6, -8(R1)
LD F10, -16(R1)
LD F14, -24(R1)
ADDD F4, F0, F2
ADDD F8, F6, F2
ADDD F12, F10, F2
ADDD F16, F14, F2
SD 0(R1), F4
SD -8(R1), F8
SUBI R1, R1, 32
SD 16(R1), F8
BNEZ R1, Loop

14 cycles per 
unrolled loop

==
3.5 cycles per 
original loop



Observations and Requirements

� Gain from scheduling is even higher for 
unrolled loop!
� More parallelism is exposed on unrolling

� Need to know that 1000 is a multiple of 4
� Requirements:

� Determine that loop can be unrolled
� Use different registers to avoid conflicts
� Determine that SD can be moved after SUBI, 

and find the offset adjustment
� Understand dependences



Dependences

� Dependent instructions ==> cannot be in 
parallel

� Three kinds of dependences:
� Data dependence (RAW)
� Name dependence (WAW and WAR)
� Control dependence



Dependences (continued)

� Dependences are properties of programs
� Stalls are properties of the pipeline
� Two possibilities:

� Maintain dependence, but avoid stalls
� Eliminate dependence by code transformation



Data Dependence

� Data dependence represents data flow from 
one instruction to another
� One instruction uses the result of another
� Take transitive closure

� In our example: Loop: LD F0, 0(R1)

ADDD F4, F0, F2

SD 0(R1), F4

SUBI R1, R1, 8

1

Note: dependence in 
memory is hard to detect
100(R4) and 80(R6) may be 
the same
20(R1) and 20(R1) may be 
different at different times



Name Dependence

� Two instructions use the same 
register/memory (name), but there is no flow 
of data
� Anti-dependence: WAR hazard
� Output dependence: WAW hazard

� Can do register renaming – s tatically, or 
dynamically



Name Dependence in our Example

Loop: LD F0, 0(R1)
ADDD F4, F0, F2
SD 0(R1), F4
LD F0, -8(R1)
ADDD F4, F0, F2
SD -8(R1), F4
LD F0, -16(R1)
ADDD F4, F0, F2
SD -16(R1), F4
LD F0, -24(R1)
ADDD F4, F0, F2
SD -24(R1), F4
SUBI R1, R1, 32

Loop: LD F0, 0(R1)
ADDD F4, F0, F2
SD 0(R1), F4
LD F6, -8(R1)
ADDD F8, F6, F2
SD -8(R1), F8
LD F10, -16(R1)
ADDD F12, F10, F2
SD -16(R1), F8
LD F14, -24(R1)
ADDD F16, F14, F2
SD -24(R1), F16
SUBI R1, R1, 32

Register 
renaming



Control Dependence

� An example:
T1;
if p1 {

S1;
}

� Statement S1 is control-dependent on p1, but 
T1 is not

� What this means for execution
� S1 cannot be moved before p1
� T1 cannot be moved after p1



Control Dependence in our Example

Loop: LD F0, 0(R1)
ADDD F4, F0, F2
SD 0(R1), F4
SUBI R1, R1, 8
BEQZ R1, exit
LD F6, 0(R1)
ADDD F8, F6, F2
SD 0(R1), F8
SUBI R1, R1, 8
BEQZ R1, exit
// Two more such...
SUBI R1, R1, 8
BNEZ R1, Loop

Loop: LD F0, 0(R1)
ADDD F4, F0, F2
SD 0(R1), F4
LD F6, -8(R1)
ADDD F8, F6, F2
SD -8(R1), F8
LD F10, -16(R1)
ADDD F12, F10, F2
SD -16(R1), F8
LD F14, -24(R1)
ADDD F16, F14, F2
SD -24(R1), F16
SUBI R1, R1, 32


	lec11.pdf
	lec11.pdf

