LECTURE - 15

Further Topics in ILP

* Multiple issue
» Software support
* Hardware support

Increasing ILP through
Multiple Issue

* With at most one issue per cycle, min CPI
possible is 1

- But there are multiple functional units
- Hence use multiple issue

* Two ways to do multiple issue

- Superscalar processor

* [ssue varying number of instructions per cycle
« Static or dynamic scheduling

- Very Large Instruction Word (VLIW)

* [ssue a fixed number of instructions

Superscalar DLX

* Simple version: two instructions issued per
cycle

- One integer (load, store, branch, integer ALU)
and one FP

— Instructions paired and aligned on 64-bit
boundaries -nt fi rst, FP next

CCl1 CC2 CC3 CC4 CGC5 Cce
Integer |IF ID EX MEM WB
FP IF ID EX MEM WB
Integer |F ID EX MEM WB
FP IF ID EX MEM WB

Superscalar DLX (continued)

* No conflicts, almost...
- Assuming separate register sets, only FP load,
store, move cause problems

* Structural hazard on register port
* New RAW hazard between a pair of instructions

— Structural hazard:

* Detect, and do not issue the FP operation
 Or, provide additional register ports

- RAW hazard:

 Detect, and do not issue the FP operation

* Also, result of LD cannot be used for 3
Instns.

Static Scheduling in the
Superscalar DLX: An Example

Loop: LD
ADDD
SD
SUBI

BNEZ
Loop: LD

LD
LD
LD
LD
SD
SD
SD
SUBI
SD
N

F0, O(R1)
F4, FO, F2
0(R1), F4
R1,R1, 8

R1. L
0, ORT)Y

F6, -S(R1)
F10, -8(R1)
F14, -8(R1)
F18, -8(R1)
0(R1), F4
-8(R1), F$
-16(R1), F12
R1, R1, #40
-24(R1), F16

R1 Loon

// FO is array element
// F2 has the scalar 'C'
// Stored result

// For next iteration

// More iterations?

ADDD F4, F0, F2
ADDD FS, F6, F2

ADDD F12, F10, F2
ADDD F16, F14, F2
ADDD F20, F18, F2

Dynamic Scheduling in the
Superscalar DLX
* Scoreboard or Tomasulo can be applied
* Should preserve in-order issue!
- Use separate data structures for Int and FP

* When the instruction pair has a dependence

- We wish to issue both in the same cycle
- Two approaches:

* Pipeline the issue stage, so that it runs twice as fast
* Exclude load/store buffers from the set of RSs

Multiple Issue using VLIW

* Superscalar ==> too much hardware
- For hazard detection, scheduling
 Alternative: let compiler do all the scheduling

- VLIW (Very Large Instruction Word)

- E.g., an VLIW may include 2 Int, 2 FP, 2 mem,
and a branch

Limitations to Multiple Issue

 Why not 10 issues per cycle? Why not 207
* Three limitations:

— Inherent ILP limitations in programs

- Hardware costs (even for VLIW)
* Memory/register bandwidth
- Implementation issues:

» Superscalar: complexity of hardware logic

* VLIW: increased code size, binary compatibility
problems

Support for ILP

» Software (compiler) support
* Hardware support
* Combination of both

Compiler Support for ILP

* Loop unrolling:
- Dependence analysis is a major component

— Analysis is simple when array indices are linear
in the loop variable (called affine indices)

 Limitations to dependence analysis:
- Pointers

- Indirect indexing
— Analysis has to consider corner cases too

Compiler Support for ILP
(continued)
* Two important techniques:

- Software pipelining
- Trace scheduling

» Software pipelining: reorganize a loop such
that each iteration is made from instructions
chosen from different iterations of the original
loop

Software Pipelining

Iteration O
Iteration 1

Iteration 2
Iteration 3

Iteration 4

Software '

pipelined

iteration =~ ——— A J _| _|

Software Pipelining in Our

Example
Loop: LD F0, 0(R1) // FO0is array element
ADDD F4, F0, ¥2 // F2 has the scalar 'C'
SD O0(R1),F4 // Stored result
SUBI R1,R1,8 // For next iteration
BNEZ R1, Loop // More iterations?
Iteri: LD FO, O(R1)
ADDD F4, FO, F2 Software Pipelined Loop
SD 0(R1), F4 Loop: SD 16(R1), F4
Iteri+1: LD FO, O(R1) ADDD F4, 0, F2
ADDD F4, F0, F2 LD k0, O(R1)
SD 0(R1), F4 SUBI R1,R1,8
Iteri+2: LD F0, 0(R1) BNEZ R1, Loop
ADDD F4, F0, F2
SD OR1D, F4

Trace Scheduling

* Compiler picks a program S
trace which it considers Ali] = Ali] + BIi]
most likely

\

T

- Schedule instructions from Alil=07, ©
the trace Y / v

- And branches into and out
of the trace

- Also need bookkeeping
instructions in case the e
trace is not taken during Cli] =...
execution |

B[] =... X=..

	lec15.pdf
	lec15.pdf

