
LECTURE - 24



Topic for Today's Lecture

� Multiprocessing
� Parallel applications
� Cache coherence
�

� Scribe for today?



Multiprocessing: Classification

Multiprocessing

SIMD MIMD

Centralized 
shared memory

Physically 
distributed memory

Distributed shared 
memory (DSM)

Message passing 
machines



DSM vs. Message Passing
Shared Memory
Well understood 
mechanisms for 
programming

Program independent of 
communication pattern

Low overhead for 
communicating small 
items

Hardware controlled 
caching

Message Passing
Hardware simplicity

Communication is 
explicit – forces 
programmer to pay 
attention to what is 
expensive



Achieving the Desired 

Communication Model
Message Passing on top of Shared Memory

Considerable easier

Difficulty arises in dealing with arbitrary 
message lengths

Shared Memory on top of Message Passing

Harder since every load/store has to be faked

Every memory reference may involve OS

One promising direction: use of VM to share 
objects at page level: shared VM



Challenges in Parallel 

Processing
� Limited parallelism available in programs

� 90% parallelizable ==> max speed possible?
� Exception: super-linear speedup

� Increased memory/cache available
� Usually not very great however

� Large latency of communication
� 50-10000 clock cycles
� 0.5% instructions access remote memory ==> 

what is the increase in CPI?



Addressing the Challenges

� Limited parallelism
� Tackled mainly by redesigning the algorithm or 

software
� Avoiding large latency

� Hardware mechanism: caching
� Software mechanism: restructure to make more 

accesses local



Some Example Applications

� Two classes
� Parallel programs or program kernels
� Multi-programmed OS

� Spatial and temporal data access patterns 
are important

� Computation to communication ratio is 
important



Parallel Application Kernels

� The FFT kernel
� Used in spectral methods
� Data represented as array
� Computation involves

� 1D FFT on each row
� Transpose
� 1D FFT on each row again

� Each processor gets a few rows of data
� Main communication step is the transpose (all to 

all communication)



Parallel Application Kernels 

(continued)
� The LU kernel

� LU factorization of a matrix
� Blocking is used
� Computation (dense matrix multiply) is 

performed by processor which owns the 
destination block

� Communication happens at regular intervals



Parallel Applications

� Barnes application
� N-body problem
� Octree representation
� Each processor is allocated a subtree
� Tree expansion as required (communication in 

this process)



Parallel Applications 

(continued)
� Ocean application

� Influence of eddy and boundary currents on 
ocean flows

� Involves solving PDEs
� Ocean divided into hierarchy of grids (finer grid 

for more accuracy)
� Each processor gets a set of grids
� Communication to exchange boundary 

conditions, at each step of the process



Computation to Communication 

Ratios

Application

FFT nlogn/p n/p Logn

LU n/p sqrt(n/p) sqrt(n/p)

Barnes nlogn/p logn*sqrt(n/p) sqrt(n/p)

Ocean n/p sqrt(n/p) sqrt(n/p)

Computation 

scaling

Communication 

scaling

Scaling of 

computation to 

communication



Multiprogrammed OS workload

� Workload used here is:
� Two independent copies of the compilation of the 

Andrew benchmark
� Three steps:

� Compilation: compute intensive
� Installing object files in a library: I/O intensive
� Removing the object files: I/O intensive


	lec24.pdf
	lec24.pdf

