LECTURE - 20

LECTURE - 20

Topic for Today

* Reducing Cache Miss Penalty

* Scribe?

Technique-1: Prioritize Read

Misses over Writes
* Write-through cache ==> write-buffer

- Beware of consistency

- Example: store x, load y, load x x and y in the
same block

* Possible solution: wait for write-buffer to clear
before processing any read miss

» Better (but more complex) solution: check
write buffer, and process read miss first

» Write-back cache: write-back dirty block after
processing read miss

Technique-2: Sub-Block Placement

* Sub-block: units smaller than the full block

- Valid bits added to sub-blocks
- Only a sub-block read on cache miss

1001 1 0 0
200 1 1 1 0
1640 0 0 1
270 1 0 1 0
T "
Tag Valid bits

* How is this different from just using a smaller

block size?

- Tag length is reduced (good for on-chip cache)

Technique-3: Restart CPU ASAP

* Early restart: CPU can proceed as soon as
the requested word is loaded onto cache

* Critical word first: The requested word is
fetched first

- A.k.a wrapped fetch, or requested word first
* These are good for caches with large blocks

 What if another access to same block, before
it is fully loaded?

- Stall if that portion of block not yet loaded

Technique-4: Non-blocking Cache

* For OOO CPUs (e.g. Tomasulo)

— No point in stalling the CPU on a miss

— Hit-under-miss allows hits while the cache is
processing a miss

- Hit-under-multiple-miss can benefit more

— Miss-under-miss makes sense if main memory
can handle more than one request in parallel

* This significantly increases complexity of
cache controller

Non-Block Cache Performance

@ Hit under 1miss ¢ Hitunder 2 misses Vv Hit under 64 misses
100.00% M
90.00% = -
80.00% ; - ;/” g
70.00% = == = 2

60.00% = ™ // v
50.00% . S

Miss penalty (% of that of blocking cache)

//’/
40.00% e
30.00% - :
20.00% v
10.00% .
0.00% | | \ : \ \
o)$ (@/ QQQQ ‘2* &o %lb ’g\ @’b' éj) ®6\6Q (OQ\Q'}, ~\;\\‘9 (/o@Q
< Q D ° S ¥, e o '

Benchmarks

Technique-5: Second-Level Caches

* L1 cache can be small and fast

* L2 cache can be larger, but faster than main
memory

Avg. mem. access time—

Hit time , ,+ Miss rate, X Miss penallyu

Miss penalty, =

Hit time , .+ Miss rate , ;X Miss penalty

* [ocal miss rate: misses w.r.t. memory
accesses to this cache

* Global miss rate: misses w.r.t. memory
access by CPU

Miss rate

Local and Global Miss Rates

@ Local miss rate

¢ Single cache miss v Global miss rate

rate
_ O
]
O
O
=
(] -) D
1 O . 0 O % L S
— T
T
v V v =
! TS
1.00% Nv
V v v v
O . 1 O % ‘ | I I I I I I |
4 8 16 32 64 128 256 512 1024 2048 4096

Cache size (KB)

Second Level Cache Design

* L2 can be larger

- Big enough to virtually eliminate capacity misses
» Higher associativity does not hurt

- CPU clock cycle time is not affected

 Larger block size to further reduce misses

* Multi-level inclusion property: L2 contains all
data that L1 contains

- More work on a second-level miss

	lec20.pdf
	lec20.pdf
	lec20.pdf
	lec20.pdf

