
LECTURE - 14



Dealing with Control Hazards

� Software techniques:
� Branch delay slots
� Software branch prediction

� Canceling or nullifying branches

� Misprediction rates can be high
� Worse if multiple issue per cycle

� Hence, hardware/dynamic branch prediction



Branch Prediction Buffer

� PC --> Taken/Not-Taken (T/NT) mapping
� Can use just the last few bits of PC

� Prediction may be that of some other branch
� Ok since correctness is not affected

� Shortcoming of this prediction scheme:
� Branch mispredicted twice for each execution of 

a loop
� Bad if loop is small
for(int i = 0; i < 10; i++) {

x[i] = x[i] + C;
}



Two-Bit Predictor

� Have to mispredict twice before changing 
prediction
� Built in hysteresis

� General case is an n-bit predictor
� 0 to (2^n)-1 saturating counter
� 0 to (2^[n-1])-1 predict as taken
� 2^[n-1] to (2^n)-1 predict as not-taken

� Experimental studies: 2-bit as good as n-bit



Implementing Branch Prediction 

Buffers
� Implementing branch prediction buffers

� Small cache accessed along with the instruction 
in IF

� Or, additional 2 bits in instruction cache
� Note: branch prediction buffer not useful for 

DLX pipeline
� Branch target not known earlier than branch 

condition



Prediction Performance

� 4096 entries in the prediction buffer
� SPEC89, IBM Power architecture

Nasa7 Ma-
trix30
0

Tom
catv

Doduc Spice Fpppp Gcc Espre
sso

Eqn-
tott

Li
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%
M

is
pr

ed
ic

tio
n 

ra
te



Improving Branch Prediction

� Two ways: increase buffer size, improve 
accuracy

Nasa
7

Ma-
trix30
0

Tom
catv

Do
duc

Spice Fppp
p

Gcc Espr
esso

Eqn-
tott

Li
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

4096 entries

Inf. entries

M
is

pr
ed

ic
tio

n 
ra

te



Improving Prediction Accuracy

� Predict branches based on outcomes of 
recent other branches
if(aa == 2) {

aa = 0;
}
if(bb == 2) {

bb = 0;
}
if(aa == bb) {

// Do something
}� Correlating, or two-level predictor



Two-Level Predictor

� There are effectively two predictors for each 
branch:
� Depending on whether previous branch is T/NT

NT/NT NT NT

NT/T NT T

T/NT T NT

T/T T T

Prediction 

bits

Prediction if 

last branch 

NT

Prediction if 

last branch T



Two-Level Predictor (continued)

� Last predictor was a (1,1) predictor
� One bit each of history, and prediction

� General case is (m,n) predictor
� m bits of history, n bits of prediction

� How to implement?
� Have an m-bit shift register



Cost of Two-Level Predictor

� Number of bits required:
� Num. branch entries x 2^m x n

� How many bits in 4096 (0,2) predictor?
� 8K

� How many branch entries for an 8K (2,2) 
predictor?
� 1K



Performance of (2,2) Predictor

Nasa7 Ma-
trix30
0

Tom
catv

Doduc Spice Fpppp Gcc Espre
sso

Eqn-
tott

Li
0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

4096 entries; (0,2) Inf. entries; (0,2) 1K entries; (2,2)

M
is

pr
ed

ic
tio

n 
ra

te



Branch Target Buffer

� Branch prediction buffer is not useful for DLX
� Need to know target address by the end of IF

� Store branch target address also
� Branch target buffer, or cache

� Access branch target buffer in IF cycle
� Hit ==> predicted branch target known at the end 

of IF
� We also need to know if the branch is predicted 

T/NT



Branch Target Buffer 

(continued)

� No entry found ==> (Target = PC+4)
� Exact match of PC is important

� Since we are predicting even before knowing 
that it is a branch instruction

� Hardware is similar to a cache
� Need to store predicted PC only for taken 

predictions

Lookup based on PC
Predicted target



Steps in Using a Target Buffer

IF ID EX

Access
Instn. Cache

and
target buffer

Entry
found?

A taken
branch?

Use
predicted

PC

A taken
branch?

Mispredicted
branch; restart
fetch; delete
buffer entry

Correct
prediction,

proceed

Make new
target buffer

entry
Normal

execution

Yes

No

Yes

No

No

Yes



Penalties in Branch Prediction

� Given a prediction accuracy of p, a buffer hit-
rate of h, and a taken branch frequency of f, 
what is the branch penalty?
� h x (1-p) x 2 + (1-h) x f x 2

Buffer hit? Branch taken? Penalty

Yes Yes 0

Yes No 2

No - 2



Storing Target Instructions

� Directly store instructions instead of target 
address
� Target buffer access is now allowed to take 

longer
� Or, branch folding can be achieved

� Replace fetched instruction with that found in the 
target buffer entry

� Zero cycle unconditional branch; may be conditional 
as well


	lec14.pdf
	lec14.pdf

