LECTURE - 21




Topics for Today

* Hit-time reduction techniques
* Virtual memory

* Scribe for today?




Small and Simple Caches

* Keep the cache small

- Faster
- Can fit inside processor
- Trade-off: tags within processor, data outside

* Keep the cache simple

- Direct-mapped ==> tag comparison can be in
parallel with data transmission




Other Techniques

* Faster writes: pipeline writes

- Split the tag and data storage in cache
- Pipeline stage-1: tag access and comparison
- Pipeline stage-2: write data

* Dealing with virtual address --> physical
address translation

— Avoid it (virtually addressed caches)

- |In parallel with cache access (virtually indexed,
physically tagged cache)




Virtual Memory

* Another level in the hierarchy
* Uses of virtual memory:

- Level of indirection

* No program overlays required
* Easy relocation

- Sharing and protection




Just like Memory-->Cache in

Functionality...
* Cache line * Page or segment
* Cache miss » Page fault

* Memory --> cache * VA --> PA mapping
mapping (address translation)




But Quite Different Quantitatively...

Parameter Memory --> Cache VM --> Ph. Memory
Hit time 1-2 Cycles 40-100 Cycles

Miss penalty 8-100 Cycles O(10ms-100ms)
Miss rate 0.5-10% 0.00001-0.001%
Block/Page size 16-128 Bytes 4-64KB

Upper level size | 16KB-1MB O(1GB)

* Page faults handled in software

- Be very careful about what you discard
- Lots of time anyway

* VM size determined by ISA
* VM is not quite the hard-disk...




Paging versus Segmentation

Criterion Paging Segmentation
. . Variable (max: 2A16-2A32,
Block size Uniform (4 to 64KB) min: 1byte)
Words per address | One Two
Programmer visible? |No Perhaps

Need to find contiguous

Block replacement |[Easy memory

Memory use

PP Internal fragmentation | External fragmentation
inefficiency

Usually yes (for

Efficient disk traffic? . .
appropriate page size)

Not for small segments

» Other possibilities:
- Paged segments
- Choices for page size




The Four Memory Hierarchy
Questions
 Where to place a block?

- Fully associative
* How to find a block in main memory?

- Page table, or inverted table; cached in TLB
* Which block to replace?

- LRU, with the help of a use/reference bit
* What happens on write?

- Write-back, write-allocate




Trade-Offs in Page-Size

* Large page size * Smaller page size
good for: good for:
- Smaller page tables - Efficient use of
- Lesser TLB miss memory (lesser
e fragmentation)
- Efficient disk or - Faster process

network transfer startup time

- Faster cache hits
(how?)




Fast Translation

* Translation Look-aside Buffer (TLB)

- Small table in hardware
- Fully associative
- Fields:

* The translation, valid bit, use bit, dirty bit, protection
bits

* TLB access can be in critical path
- Pipeline TLB access
- Overlap cache tag access with translation!




Overlapping Tag Access with
Translation

- > « >

Page number Page offset
Tag access through index 1s independent of translation
Cache 1ndex 1s virtual, but tags are physical
This limits cache size potentially
Solutions possible:
Higher associativity

Page colouring (set associativity)

Small guessing hardware




Alternate Strategy: Avoid
Translation!

* Virtually addressed caches:

— Cache is accessed using the virtual address

* Advantage: faster hit time

* Disadvantages:

- Cache has to be flushed on process switch
- What if two different VAs for the same PA?
* Synonyms/aliases
- |/O usually uses PA to access memory/cache




Dealing with Virtually
Addressed Caches

* Avoiding cache flush:
- Include a PID field in cache tag
* Anti-aliasing
- Page colouring (set associativity)

- Create enough” colours (sets) to ensure that
cache size <= block-size x number of sets

— Cache has to be direct-mapped




	lec21.pdf
	lec21.pdf

