LECTURE - 17

LECTURE - 17

Speculation

 Wish to move instructions across branches

- To eliminate possible stalls
- For better scheduling

— Appropriate conditional instructions may not
always exist

* Example:
if (N==0){
A = *X;
} else {
A++;

Speculation: An Example

LW R1,0(R2) //Load N
BNEZ R1,L1 // Test N
LW R3,0(R4) //Load X
LW R5,0R3) //Load*X —™
JMP L2 // SKkip else
L1: LW RS5,0(R6) //Load A
ADDI RS5,RS5,#1 //Incrmt.
L2:S 0(R6), R3 // Store A

LW R1,0(R2)
LW R3,0(R4)
LW RS, 0(R3)
BEQZ R1,L3
LW RS, 0(R6)
ADDI RS5, RS, #1
L2: SW O(R6), RS

// Load N
// Load X
/l Load *X
// Test N

// Load A
// Incrmt.
// Store A

. Compller predicts that the the n” clause is

most likely

* Speculatively schedules the th en” clause

- Eliminates 2 stalls, and the JMP instruction

Exception Behaviour

LW R1, 0(R2) //Load N
LW R3,0(R4) // Load X
LW RS, 0(R3) //Load *X
BEQZ R1,L3 // Test N
LW RS, 0(R6) // Load A
ADDI RS5,RS5,#1 // Incrmt.

L2: SW O(R6), RS //Store A : _ _
¢ Termlnatlng VS. non—termlnatlng EXCED'[IOI’IS

* While doing such scheduling:

— Correct program ==> no extra terminating
exceptions

- Incorrect program ==> should preserve any
terminating exceptions

Preserving Exception Behaviour

* Approach 1: ignore terminating exceptions
for speculated instructions

- Incorrect programs may not be terminated

LW R1,0(R2) //Load N
LW#* R3,0(R4) //Load X, speculated
LW#* RS5,0(R3) //Load *X, speculated
BEQZ R1,L3 // Test N
LW RS, 0(R6) // Load A
ADDI R5,RS5,#1 // Incrmt.

L2: SW 0(R6), R5 // Store A

Preserving Exception Behaviour
(continued)

* Approach 2: poison bits

- Set poison bit in result register of conditional
instruction, if exception occurs

- Raise exception if any other instruction uses that
register

LW R1,0(R2) //Load N
LW#* R3,0(R4) //Load X, set poison bit on exception
LW* RS, 0(R3) //Load *X, set poison bit on exception
BEQZ R1,L3 // Test N
LW RS5,0(R6) //Load A
ADDI RS, R5,#1 // Incrmt.

L2: SW 0(R6), R5 // Store A

Preserving Exception Behaviour

(continued)
LW R1,0(R2) //Load N
if (N==0) { LW* R3,0(R4) //Load X, speculative
A =*X; ADDI* R10, R1, #1 // N++, speculative
N++; LW#* R5,0(R3) //Load *X, speculative
} else { BEQZ R1,L3 // Test N
A++; LW R5,0(R6) //LoadA
} ADDI R5,RS5,#1 // Incrmt.

MOV R10,R1 // So that R10 has N
L2: SW 0(R6), RS // Store A

» Extra register R10 gets used up
* Extra instruction in e Ise’c lause

Preserving Exception Behaviour
(continued)
* Approach 3: buffer results

- Instructions boosted past branches, flagged as
noosted (in opcode)

- Results of boosted instructions forwarded and
used, like in Tomasulo

- When branch is reached, result of speculation is
checked

» Result committed if prediction correct
* Result discarded otherwise

— Solution close to fully hardware-based speculation

Boosted Instructions: An

Example
LW R1,0(R2) //Load N
if (N ==0) { LW+ R3,0(R4) //Load X, boosted
A = ¥X;
. ADDI+ R1, R1, #1 // N++, boosted
N++; LW+ R5,0(R3) //Load *X, boosted
} else { BEQZ R1,L3 // Test N
At++; LW R5,0(R6) //LoadA
} ADDI RS5,R5,#1 // Incrmt.
L.2: S 0(R6) Cr{ // Store A
e The 4+'d enotes a ooste Instruction, and is

boosted across the next branch, which is
predicted taken

Hardware-Based Speculation

* Combination of branch prediction,
speculation, and dynamic scheduling

* Data flow execution: instruction executes as
soon as the data it requires is ready

* Advantages over software approach:

- Memory disambiguation is better
- Better branch prediction

- Precise exception model

- No book-keeping code

- Works for 6ld "so ftware too

. Disad hard I oxd

Speculation in Tomasulo

* Speculate using branch prediction
* Go ahead and execute based on speculation

» Use results of speculated instructions for
other instructions, just as in Tomasulo

* But, commit result only after knowing if
speculation was correct

- In-order commit
- Using reorder buffer
- Also achieves precise exceptions

The Reorder Buffer

* Similar to the store buffer in functionality
» Replaces the store and load buffers
* Virtual registers are the reorder buffer entries

- The reservation stations are not virtual registers
anymore

 Reorder Buffer Data Structure

- Instruction type: branch, store, or ALU/load
— Destination: register or memory location
— Value: which has to be committed

Tomasulo Using the Reorder Buffer

From 1nstn. unit ¢

Reorder Buffer

LLoad results ¢ e
pn Queue

from mem.

To mem.¢ 1

Opn. Bus

FP Regs

l Opnd. Bus
y

Yy
Resvn. Stns.

Resvn. Stns.

FP MUL/DIV

FP ADD/SUB
I Common Data Bus

Pipeline Stages

e |[ssue, EX, WB, Commit
* [ssue allocates a reorder buffer entry

- Entries allocated in circular fashion
e Commit writes result back to destination

- Frees up the reorder buffer entry
— For branch instruction

* Prediction correct ==> commit
 Else, flush reorder buffer

Summary of ILP Techniques

» Software techniques

- Compiler scheduling, Loop unrolling, Software
pipelining, Trace scheduling (VLIW), Static
branch prediction, Speculation

* Hardware support for software
— Conditional instructions, poison bits
* Hardware techniques

- Hardware scheduling, Dynamic branch
prediction, Hardware speculation

* Which hardware technique(s) to use?

How Much ILP is Available?

 Assume infinite hardware resources

nfinite virtual registers
Perfect branch prediction, jump prediction

Perfect memory disambiguation

* Every instruction is scheduled as early as
possible

- Restricted only by data flow

SPEC benchmar

Available ILP in Programs

.

Fpppp

Doduc

Tom
catv

0 25 50 75 100 125 150

Issues/Cycle

175

Window Size Limitation

[Infinite @512 | J128 | [32 L E 4

Issues/Cycle

160

140

120

=
-
o

80

60

40

20-

. e . . .

-

Gcc Espresso Li Fpppp Doduc
Benchmark

Tomcatv

Effect of Imperfect Branch

Predictions

| Perfect [Selector| | 2-bit | | Static |l None

™ .

i.

—

Gcc Espresso Li Fpppp
Benchmark

Doduc

Tomcatv

Effect of Finite Virtual Reglster

Issues/Cycle
N W & LN

o

—_ = N
UuT © U1 O Ul O

Set

[Infinite [l 256

128

|64

M 32

| None

3

I

b

[

Gcc

Espresso

Li

Fpppp

Benchmark

Doduc

Tomcatv

A Realizable Processor

Up to 64 instruction issues per cycle

Selective predictor with 1K entries, and a 16-
entry return predictor

Perfect memory disambiguation

Register renaming with 64 integer virtual
registers, and 64 FP virtual registers

ILP for a Realizable Processor

0 25

[Infinte M 256 |]128 | |64

M 32

1 s

14

™M

[

L

Gcc Espresso

Li

kL

A

Fpppp

Benchmark

Doduc

Tomcatv

	lec17.pdf
	lec17.pdf
	lec17.pdf
	lec17.pdf

