
Memory Hierarchy

� Two principles:
� Smaller is faster
� Principle of locality

� Processor speed grows much faster than
memory speed

� Registers – Cac he – Memory – Disk
� Upper level vs. lower level

� Cache design

Cache Design Questions

� Cache is arranged in terms of blocks
� To take advantage of spatial locality

� Design choices:
� Q1: block placement – w here to place a block

in upper level?
� Q2: block identification – how to find a block in

upper level?
� Q3: block replacement – which bl ock to replace

on a miss?
� Q4: write strategy – wh at happens on a write?

Block Placement: Fully

Associative
0

8

16

24

11 Block 11 can

go anywhere

Memory

Cache

Block Placement: Direct

0

8

16

24

11
Block 11 can

go only in

block number

11 mod 8

Memory

Cache

Block Placement: Set

Associative
0

8

16

24

11
Block 11 can

go in set

number

11 mod 4

Memory

Cache

Continuum of Choices

� Memory has n blocks, cache has m blocks
� Fully associative is the same as set

associative with one set (m-way set
associative)

� Direct placement is the same as 1-way set
associative (with m sets)

� Most processors use direct, 2-way/4-way set
associative

Block Identification

� How many different blocks of memory can be
mapped (at different times) to a cache block?

� Fully associative: n
� Direct: n/m
� k-way set associative: k*n/m
� Each cache block has a tag saying which

block of memory is currently present in it
� A valid bit is set to 0 if no memory block is in the

cache block currently

Block Identification (continued)

� How many bits for the tag?

log
2
�k�n �m�

� How many sets in cache?

m �k

� How many bits to identify the correct set?
log

2
�m �k �

Block Identification (continued)

� How many blocks in memory?
n , log

2
�n� to represent block number in memory

Tag Index Block offset

� Given a memory address:

log
2
�k ��log

2
�n�	log

2
�m�

log
2
�m�	log

2
�k�

log
2
�block-size�

� Select set using index, block from set using tag
� Select location from block using block offset
� tag + index = block address

Block Replacement Policy

� Cache miss ==> bring block onto cache
� What if no free block in set?
� Need to replace a block

� Possible policies:
� Random
� Least-Recently Used (LRU)

� Lesser miss-rate, but harder to implement

Replacement Policy Performance

256KB

64KB

16KB

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00%

2-way LRU 2-way Random 4-way LRU 4-way Random 8-way LRU

8-way Random

C
ac

he
 s

iz
e

Cache miss rate

Write Strategy

� Reads are dominant
� All instructions are read
� Even for data, loads dominate over stores

� Reads can be fast
� Can read from multiple blocks while performing

tag comparison
� Cannot do the same with writes

� Should pay attention to write performance
too!

When do Writes go to Memory?
� Write through: each write is mirrored to

memory also
� Easier to implement

� Write back: write to memory only when
block is replaced
� Faster writes
� Some writes do not go to memory at all!
� But, read miss may cause more delay

� Block being replaced has to be written back
� Optimize using dirty bit

� Also, bad for multiprocessors and I/O

Write Stalls

� In write through, may have to stall waiting for
write to complete
� Called a write stall

� Can employ a write buffer to enable the
processor to proceed during the write-through

What to do on a Write Miss?

� Write-allocate (or, fetch on write): load block
on a cache miss during a write

� No-write allocate (or, write around): just
write directly to main memory

� Write-allocate usually goes with write-back,
and no-write allocate goes with write-through

The Alpha AXP 21064 Cache

� 34-bit physical address
� 29 bits for block address
� 5 bits for block offset

� 8 KB cache, direct-mapped
� 8 bits for index
� 29 – 8 = 21 bits for tag

Steps in Memory Read

� Four steps:
� Step-1: CPU puts out the address
� Step-2: Index selection
� Step-3: Tag comparison, read from data
� Step-4: Data returned to CPU (assuming hit)

� This takes two cycles

Steps in Memory Write

� Write-through policy is used
� Write buffer with four entries

� Each entry can have up to 4 words from the
same block

� Write merging: successive writes to the same
block use the same write-buffer entry

Some More Details

� What happens on a miss?
� Cache sends signal to CPU asking it to wait
� No replacement policy required (direct mapped)
� Write miss ==> write-around

� 8KB separate instruction cache

Separate versus Unified Cache

� Direct-mapped
cache, 32-byte
blocks, SPEC92,
on DECstation
5000

� Unified cache has
twice the size of I-
cache or D-cache

� 75% instruction
references

I-Cache D-Cache U-Cache

1KB 3.06% 24.61% 13.34%

2KB 2.26% 20.57% 9.78%

4KB 1.78% 15.94% 7.24%

8KB 1.10% 10.19% 4.57%

16KB 0.64% 6.47% 2.87%

32KB 0.39% 4.82% 1.99%

64KB 0.15% 3.77% 1.35%

128KB 0.02% 2.88% 0.95%

Miss-rates

