
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_1.htm[6/14/2012 12:03:38 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

The Lecture Contains:

The “omp sections” Directive

The “single” Directive

Work-Sharing Constructs: WORKSHARE Directive

Combined Parallel Work-sharing Constructs

Synchronization

Synchronization Construct: “critical” Directive

Synchronization Constructs: “atomic” Clause

Barrier

Synchronization Constructs: “barrier” Directive

Synchronization Constructs: “ordered” Directive

Synchronization Constructs: “flush” Directive

Data Environment:

Changing Storage Attributes

Data Scope Attribute Clauses

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_10.htm

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_1a.htm[6/14/2012 12:03:38 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

The “omp sections” Directive

Clauses Supported: “sections” Directive
Private(list)
Lastprivate(list)
Firstprivate(list)
Reduction(operator:list)
Nowait

Questions
What happens if the number of threads and the number of sections are different? More threads than
sections?

Example 1

A Parallel Section Example
#pragma omp parallel shared(n,a,b,c,d) private(i)
{
#pragma omp sections nowait
{
#pragma omp section
for (i = 0; i < n-1; i++)
b[i] = (a[i] + a[i+1])/2;
#pragma omp section
for (i = 0; i < n; i++)
d[i] = 1.0/c[i];
} /*– End of sections –*/
} /*– End of parallel region –*/

By default, there is a barrier at the end of the “omp sections”. Use of “nowait” clause turns off
the barrier

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_2.htm[6/14/2012 12:03:38 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

The “single” Directive

The single directive specifies that the enclosed section is to be executed by only one thread in
team

Format
#pragma omp single [clause[[,] clause] ...]
{
< code - block >
}
Clauses Supported: Single Directive

Private(list)
Firstprivate(list)
Nowait

There is no implied barrier on entry or exit

Work-Sharing Constructs: WORKSHARE Directive

FORTRAN only
This directive divides the execution of the enclosed structured block into separate units of
work, each of which is executed
only once.

Format
The structured block must consist of only the following:
Array assignments
Scalar assignment
FORALL statement
FORALL constructs

WHERE statements
WHERE constructs
Atomic constructs
Critical constructs
Parallel constructs

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_3.htm[6/14/2012 12:03:39 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

Combined Parallel Work-sharing Constructs

OpenMP provides combined Parallel Worksharing directive that are merely shortcuts:
PARALLEL DO/parallel for
Parallel SECTIONS

These directives behave same as an individual PARALLEL directive being immediately followed
by a separate
work-sharing directive.
Most of the rules and clauses that apply to both directives are in effect

#pragma omp parallel
#pragma omp for
for (...)

#pragma omp parallel for
for (....)

#pragma omp parallel
#pragma omp sections
{...}

#pragma omp parallel sections
{.... }

Synchronization

Consider a simple example where two threads on two different processors are both trying to
increment a variable x at the same time (assume x is initially 0):

THREAD 1
increment(x){
x = x+1;
}
THREAD 1
10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

THREAD 2
increment(x){
x = x+1;
}
THREAD 2
10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

What are the possible outputs?

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_4.htm[6/14/2012 12:03:39 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

Synchronization

Consider a simple example where two threads on two different processors are both trying to
increment a variable x at the
same time (assume x is initially 0):

THREAD 1
increment(x){
x = x+1;
}
THREAD 1
10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

THREAD 2
increment(x){
x = x+1;
}
THREAD 2
10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

What are the possible outputs? After exuction of both threads resultant value of x may be 1 for
some execution sequence
To avoid situations like this the incrementation of x must be synchronized between the two
threads

Synchronization is used to impose order constraints and to protect access to shared data

High Level Synchronization
Critical
Atomic
Barrier
Ordered

Low Level Synchronization
Flush
Locks

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_5.htm[6/14/2012 12:03:39 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

Synchronization Construct: “critical” Directive

Format
#pragma omp critical [name]

“critical” directive ensures mutual exclusion: Only one thread at a time can enter a critical
region
The optional name enables multiple different CRITICAL regions to exist:

Different CRITICAL regions with the same name are treated as the same region.
All CRITICAL sections which are unnamed, are treated as the same section.
If sum is a shared variable, this loop can not run in parallel

for (i = 0; i < N; i++){
.....
sum += a[i];
.....
}

If sum is a shared variable, this loop can not run in parallel

for (i = 0; i < N; i++){
.....
sum += a[i];
.....
}

Use of critical section to parallelize the loop

Example
for (i = 0; i < N; i++){
.....
#pragma omp critical
sum += a[i];
.....
}

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_6.htm[6/14/2012 12:03:39 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

Synchronization Constructs: “atomic” Clause

Format: atomic
#pragma omp atomic
statement expression

The atomic directive specifies that a specific memory location must be updated atomically,
rather than letting multiple threads attempt to write to it

Barrier

Why barriers?

Suppose we run each of these two loops in parallel

for(i = 0; i < N; i++)
a[i] = b[i] + c[i];

for(i = 0; i < N; i++)
d[i] = a[i] + b[i];

This may give us wrong result
WHY ?

Barrier

We should have updated all a[]’s before using them

for(i = 0; i < N; i++)
a[i] = b[i] + c[i];

All threads should wait here for other threads to complete so we need a barrier here

for(i = 0; i < N; i++)
d[i] = a[i] + b[i];

All threads wait at the barrier point and only continue when all threads have reached the
barrier point
If there is the guarantee that the mapping of iterations onto threads is identical for both loops,
there will not be a data race in this case

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_7.htm[6/14/2012 12:03:39 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

Synchronization Constructs: “barrier” Directive

Format: barrier
#pragma omp barrier

A thread will wait at barrier until all other threads have reached that barrier. All threads then
resume executing in parallel the code that follows the barrier

Synchronization Constructs: “ordered” directive

Used within a DO/for loop with and ordered clause
The ordered directive specifies that iterations of the enclosed loop will be executed in the same
order as if they were executed on a serial processor.

Format
#pragma omp ordered
structured block

Example
#pragma omp parallel for ordered
for(I = 0 ; I < N ; I++){
tmp = NEAT STUFF(I);
#pragma omp ordered
res += consume(tmp);
}

Synchronization Constructs: “flush” Directive

Format
pragma omp flush (list)

Defines a sequence point at which a thread is guaranteed to see a consistent view of memory
with respect to the “flush
set”
The flush set is :

List of variables
In absence of list all thread visible variable are in list

Flush forces data to be updated in memory so other threads see the most recent value

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_8.htm[6/14/2012 12:03:39 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

Data Environment:

Default storage attributes:

Shared Memory programming model:
Most variables are shared by default

Global variables are shared among threads
Fortran: COMMON blocks, SAVE variables, MODULE variables
C: File scope variables, static
Both: Dynamically allocated memory (ALLOCATE, malloc, new)

But not everything is shared...
Stack variables in subprograms(Fortran) or functions(C) called from parallel regions are
private
Automatic variables within a statement block are private

Example: Data Sharing

double A[10];
int main() {
int index [10] ;
#pragma omp parallel
work(index);
printf(“%d”, index[0]);
}

extern double A [10];
void work(int index) {
double temp[10];
static int count;
...
}

Which variables are “shared” and “private” ?
Which variables are “shared” and “private” ?
A index and count are shared by all threads
Variable temp is local to each thread

Changing Storage Attributes

It is possible to change storage attribute of data for constructs using OpenMP clauses

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_9.htm[6/14/2012 12:03:39 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

Data Scope Attribute Clauses

The Data Scope Attribute Clauses are used to explicitly define how variables
should be scoped.They include :

Private
Firstprivate
Lastprivate
Shared
Default
Reduction
Copyin

“private” Clause

Purpose: The private clause declares variables in its list to be private to each thread
Format: private (list)

A new object of the same type is declared for each thread in the team
Private(var) creates a new local copy of var for each thread

Example: “private” Clause

void wrong() {
int tmp = 0;
#pragma omp parallel for private(tmp)
for (int j = 0; j < 1000; ++j)
tmp += j;
printf(“%d”, tmp);
}

What is wrong with the code ?
Value of tmp was not initialized at line 5
What value of tmp it will be printed in second last line ?
In OpenMP 2.5 the value of the shared variable is undefined after the region So tmp is
unspecified for OpenMP 2.5 while 0 in OpenMP 3.0

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_10.htm[6/14/2012 12:03:40 PM]

 Module 10: Open Multi-Processing
 Lecture 20: The “omp sections” Directive

Data Scope Attribute Clauses

“firstprivate” Clause

Purpose: The firstprivate clause combines the behavior of the private clause with automatic
initialization of the variables in the list
Format: firstprivate (list)

Special case of private clause
Initializes each private copy with the corresponding value from the master thread prior to entry
into the parallel or work-sharing construct

The “firstprivate” Clause

Example: “firstprivate” Clause

void useless() {
int tmp = 0;
#pragma omp parallel for firstprivate(tmp)
for (int j = 0; j ¡ 1000; ++j)
tmp += j;
printf(“%d”, tmp);
}

Each thread gets its own code with initial value 0.Is there something still wrong with the code ?
What value of tmp it will be printed in second last line ?
Tmp is unspecified for OpenMP 2.5 while 0 in OpenMP 3.0

“lastprivate” Clause

Purpose: The lastprivate clause combines the behavior of the private clause with a copy from the
last loop iteration or section to the original variable object.
Format: lastprivate (list)

The value copied back into the original variable object is obtained from the last (sequentially)
iteration or section of the enclosing construct.

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_1.htm

	20_1
	Local Disk
	Objectives_template

	20_1a
	Local Disk
	Objectives_template

	20_2
	Local Disk
	Objectives_template

	20_3
	Local Disk
	Objectives_template

	20_4
	Local Disk
	Objectives_template

	20_5
	Local Disk
	Objectives_template

	20_6
	Local Disk
	Objectives_template

	20_7
	Local Disk
	Objectives_template

	20_8
	Local Disk
	Objectives_template

	20_9
	Local Disk
	Objectives_template

	20_10
	Local Disk
	Objectives_template

