
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_1.htm[6/14/2012 12:12:17 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

The Lecture Contains:

Symbolic Analysis

Example:

Triangular Lower Limits

Multiple Loop Limits

Exit in The Middle of a Loop

Dependence System Solvers

Single Equation

Simple Test

GCD Test

Extreme Value Test

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2033/33_7.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_2.htm[6/14/2012 12:12:17 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

 Lower bound of each unknown is zero
Trip count for outer loop is 99
Therefore, upper bound of , are 98
Trip count for inner loop is

Therefore upper bound for inner loop is

Symbolic Analysis

User variables may occur in subscript expressions
Treat each user variable as another unknown
If coefficient of user variable is zero, it is eliminated

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_3.htm[6/14/2012 12:12:17 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

Example:

for i = 1 to n-1
for j = 1 to n-i+1
B[i,j] = B[i,n-1]
endfor
endfor

Triangular Lower Limits

Compiler may use semi-normalized space
Same iteration space shape must be used
Existence of integer solution is the same
Dependence distance/direction can be different

for i = 2 to n
for j = i+1 to n+i+1
B[i,,j] = B[i-1,,j-1] + C[i]
endfor
endfor

The normalized statement is:

B[2 + i1, 3 + i1 + i2] = B[i1 + 1, i1 + i2 + 2]+ · · ·

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_4.htm[6/14/2012 12:12:18 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

The dependence equations are:

and the constraints are:

Original loop limits for the inner loop are linear in the outer loop
Retain shape of the iteration space using semi-normalized loops
Use new iteration variable for the inner loop

The dependence equations are:

and the constraints are:

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_5.htm[6/14/2012 12:12:18 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

Multiple Loop Limits

Lower limit is the maximum of several expressions
Upper limit is the minimum of several expressions

for i = 1 to 8
for j = max(i-3,1), min(i,5)
A[i+1,,j+1] = A[i,,j] + B[i,,j]
endfor
endfor

Normalization gives:

end for
endfor
with dependence equations:

Exit in The Middle of a Loop

Some statements may execute more number of times than others

1.
2.
3.
4.
5.
6.
7.

j = 0
loop
j = j + 1
A[j] =···
if j > 10 then exit
= A[j+1]
endloop

line number 4 executes eleven times, therefore,

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_6.htm[6/14/2012 12:12:18 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

Dependence System Solvers

Integer programming problem
Exact solvers very expensive (exponential or worse)
Dependence systems trade-off between

Efficiency, speed of solver
Precision, reducing, number of ‘false positives’

All systems are conservative
Never return ‘no soln’ when there is a solution
May return ‘possible soln’ where there is no solution

Three possible results from a solver
‘no soln’ means there is no integer solution
‘has soln’ means there is an integer solution. Some solvers may enumerate solution
‘possible soln’ means result is inexact.
Solver cannot prove that there is no solution or a soln

Characteristics of solvers:
Cost
Applicability
Imprecision

Single Equation

A single dependence eqn can be written as:

Where n: Number of unknowns
: coefficients

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_7.htm[6/14/2012 12:12:18 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

Simple Test

Simplest test when a single loop (2 unknowns) and a single dimension with linear subscript
expression.

Definition
Use
And assume same coefficient

This has integer solution if gcd of coefficients divides rhs
In this case gcd(a, a) = a
Therefore, if a divides then there is a dependence

Example

For I = 2 to 10 do

Endfor

Using normalized loop,

Therefore,

Therefore,

Now determine actual dependence solution
Either a flow dependence with distance Therefore,
Or, anti-dependence with distance Therefore,
Therefore, or

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_8.htm[6/14/2012 12:12:18 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

GCD Test

There is an integer solution to the dependence eqn. when divides c
If not, then there are no integer solutions regardless of the bounds.
Applies to Single Dependence eqn.
Inexpensive test; finding gcd is very efficient

Extreme Value Test

Find the extreme values of the expression in dependence eqn.

The region of is bounded by loop limits and other constraints
Method finds lower and upper bounds of the function
Value of c must lie between lower and upper bounds
Efficient but inexact test
Does not enforce restriction to integer soln.

Example

If M>0 then
For I=1 to 10 do

Endfor
Endif

Therefore,
The constraints are:

Modify

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_9.htm[6/14/2012 12:12:18 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

Step Lower Bound Upper Bound
original eqn
eliminate
eliminate
eliminate M 8

Since 0 lies in between and 8, extreme value test assumes there is a dependency.

To determine kind and direction of dependence, apply direction vector constraint
First apply constraint.
In integer domain , this becomes
Also,
Therefore,

Extreme value method can use only one bound
Only one of the upper bounds of and lower bound of can be used

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_10.htm[6/14/2012 12:12:19 PM]

 Module 17: Loops
 Lecture 34: Symbolic Analysis

Step Lower Bound Upper Bound
original eqn
eliminate
eliminate
eliminate M
No dependence when

Step Lower Bound Upper Bound
original eqn
eliminate
eliminate
eliminate M 8

Therefore, there is a dependence

Extreme values of M are and 1
Therefore, dependence with cannot exist

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_1.htm

	34_1
	Local Disk
	Objectives_template

	34_2
	Local Disk
	Objectives_template

	34_3
	Local Disk
	Objectives_template

	34_4
	Local Disk
	Objectives_template

	34_5
	Local Disk
	Objectives_template

	34_6
	Local Disk
	Objectives_template

	34_7
	Local Disk
	Objectives_template

	34_8
	Local Disk
	Objectives_template

	34_9
	Local Disk
	Objectives_template

	34_10
	Local Disk
	Objectives_template

