
Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_1.htm[6/14/2012 11:37:48 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 

The Lecture Contains:

Agenda

Communication Architecture

Layered Architecture

Shared Address

Message Passing

Convergence

A Generic Architecture

Design Issues

Naming

Operations

Ordering

Replication

Communication Cost

ILP vs. TLP

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture4/4_7.htm


Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_1a.htm[6/14/2012 11:37:48 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 
Fundamentals of Parallel Computers

Agenda

Convergence of parallel architectures
Fundamental design issues
ILP vs. TLP

Communication Architecture

Historically, parallel architectures are tied to programming models
Diverse designs made it impossible to write portable parallel software
But the driving force was the same: need for fast processing

Today parallel architecture is seen as an extension of microprocessor architecture with a
communication architecture

Defines the basic communication and synchronization operations and provides hw/ sw
implementation of those

Layered Architecture

A parallel architecture can be divided into several layers
Parallel applications
Programming models: shared address, message passing, multiprogramming, data
parallel, dataflow etc
Compiler + libraries
Operating systems support
Communication hardware
Physical communication medium

Communication architecture = user/system interface + hw implementation (roughly defined by
the last four layers)

Compiler and OS provide the user interface to communicate between and synchronize
threads

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_1b.htm[6/14/2012 11:37:48 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 
Shared Address

Communication takes place through a logically shared portion of memory
User interface is normal load/store instructions
Load/store instructions generate virtual addresses
The VAs are translated to PAs by TLB or page table
The memory controller then decides where to find this PA
Actual communication is hidden from the programmer

The general communication hw consists of multiple processors connected over some medium
so that they can talk to memory banks and I/O devices

The architecture of the interconnect may vary depending on projected cost and target
performance

Communication medium

Interconnect could be a crossbar switch so that any processor can talk to any memory
bank in one “hop” (provides latency and bandwidth advantages)
Scaling a crossbar becomes a problem: cost is proportional to square of the
size
Instead, could use a scalable switch-based network; latency increases and bandwidth
decreases because now multiple processors contend for switch ports

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_2.htm[6/14/2012 11:37:49 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 
Shared Address

Communication medium
From mid 80s shared bus became popular leading to the design of SMPs
Pentium Pro Quad was the first commodity SMP
Sun Enterprise server provided a highly pipelined wide shared bus for scalability
reasons; it also distributed the memory to each processor, but there was no local bus on
the boards i.e. the memory was still “symmetric” (must use the shared bus)
NUMA or DSM architectures provide a better solution to the scalability problem; the
symmetric view is replaced by local and remote memory and each node (containing
processor(s) with caches, memory controller and router) gets connected via a scalable
network (mesh, ring etc.); Examples include Cray/SGI T3E, SGI Origin 2000, Alpha
GS320, Alpha/HP GS1280 etc.

Message Passing

Very popular for large-scale computing
The system architecture looks exactly same as DSM, but there is no shared memory
The user interface is via send/receive calls to the message layer
The message layer is integrated to the I/O system instead of the memory system
Send specifies a local data buffer that needs to be transmitted; send also specifies a tag
A matching receive at dest . node with the same tag reads in the data from kernel space buffer
to user memory
Effectively, provides a memory-to-memory copy

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_3.htm[6/14/2012 11:37:49 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 
Message Passing

Actual implementation of message layer
Initially it was very topology dependent
A node could talk only to its neighbors through FIFO buffers
These buffers were small in size and therefore while sending a message send would
occasionally block waiting for the receive to start reading the buffer (synchronous
message passing )
Soon the FIFO buffers got replaced by DMA (direct memory access) transfers so that a
send can initiate a transfer from memory to I/O buffers and finish immediately (DMA
happens in background); same applies to the receiving end also
The parallel algorithms were designed specifically for certain topologies: a big problem

To improve usability of machines, the message layer started providing support for arbitrary
source and destination (not just nearest neighbors)

Essentially involved storing a message in intermediate “hops” and forwarding it to the
next node on the route
Later this store-and-forward routing got moved to hardware where a switch could
handle all the routing activities
Further improved to do pipelined wormhole routing so that the time taken to traverse the
intermediate hops became small compared to the time it takes to push the message
from processor to network (limited by node-to-network bandwidth )
Examples include IBM SP2, Intel Paragon
Each node of Paragon had two i860 processors, one of which was dedicated to
servicing the network (send/ recv . etc.)

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_4.htm[6/14/2012 11:37:49 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 
Convergence

Shared address and message passing are two distinct programming models, but the
architectures look very similar

Both have a communication assist or network interface to initiate messages or
transactions
In shared memory this assist is integrated with the memory controller
In message passing this assist normally used to be integrated with the I/O, but the trend
is changing
There are message passing machines where the assist sits on the memory bus or
machines where DMA over network is supported (direct transfer from source memory to
destination memory)
Finally, it is possible to emulate send/ recv . on shared memory through shared buffers,
flags and locks
Possible to emulate a shared virtual mem. on message passing machines through
modified page fault handlers

A Generic Architecture

In all the architectures we have discussed thus far a node essentially contains processor(s) +
caches, memory and a communication assist (CA)

CA = network interface (NI) + communication controller
The nodes are connected over a scalable network
The main difference remains in the architecture of the CA

And even under a particular programming model (e.g., shared memory) there is a lot of
choices in the design of the CA
Most innovations in parallel architecture takes place in the communication assist (also
called communication controller or node controller)

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_5.htm[6/14/2012 11:37:49 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 
Design Issues

Need to understand architectural components that affect software
Compiler , library, program
User/system interface and hw/ sw interface
How programming models efficiently talk to the communication architecture?
How to implement efficient primitives in the communication layer?
In a nutshell, what issues of a parallel machine will affect the performance of the parallel
applications?

Naming, Operations, Ordering, Replication, Communication cost

Naming

How are the data in a program referenced?
In sequential programs a thread can access any variable in its virtual address space
In shared memory programs a thread can access any private or shared variable (same
load/store model of sequential programs)
In message passing programs a thread can access local data directly

Clearly, naming requires some support from hw and OS
Need to make sure that the accessed virtual address gets translated to the correct
physical address

Operations

What operations are supported to access data?
For sequential and shared memory models load/store are sufficient
For message passing models send/receive are needed to access remote data
For shared memory, hw (essentially the CA) needs to make sure that a load/store
operation gets correctly translated to a message if the address is remote
For message passing, CA or the message layer needs to copy data from local memory
and initiate send, or copy data from receive buffer to local memory

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_6.htm[6/14/2012 11:37:49 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 
Ordering

How are the accesses to the same data ordered?
For sequential model, it is the program order: true dependence order
For shared memory, within a thread it is the program order, across threads some “valid
interleaving” of accesses as expected by the programmer and enforced by
synchronization operations (locks, point-to-point synchronization through flags, global
synchronization through barriers)
Ordering issues are very subtle and important in shared memory model (some
microprocessor re-ordering tricks may easily violate correctness when used in shared
memory context)
For message passing, ordering across threads is implied through point-to-point
send/receive pairs (producer-consumer relationship) and mutual exclusion is inherent
(no shared variable)

Replication

How is the shared data locally replicated?
This is very important for reducing communication traffic
In microprocessors data is replicated in the cache to reduce memory accesses
In message passing, replication is explicit in the program and happens through receive
(a private copy is created)
In shared memory a load brings in the data to the cache hierarchy so that subsequent
accesses can be fast; this is totally hidden from the program and therefore the hardware
must provide a layer that keeps track of the most recent copies of the data (this layer is
central to the performance of shared memory multiprocessors and is called the cache
coherence protocol )

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_7.htm[6/14/2012 11:37:49 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 
Communication Cost

Three major components of the communication architecture that affect performance
Latency: time to do an operation (e.g., load/store or send/ recv .)
Bandwidth: rate of performing an operation
Overhead or occupancy: how long is the communication layer occupied doing an
operation

Latency
Already a big problem for microprocessors
Even bigger problem for multiprocessors due to remote operations
Must optimize application or hardware to hide or lower latency (algorithmic optimizations
or prefetching or overlapping computation with communication)

Bandwidth
How many ops in unit time e.g. how many bytes transferred per second
Local BW is provided by heavily banked memory or faster and wider system bus
Communication BW has two components: 1. node-to-network BW (also called
network link BW) measures how fast bytes can be pushed into the router from the CA,
2. within-network bandwidth: affected by scalability of the network and architecture of
the switch or router

Linear cost model: Transfer time = T0 + n/B where T0 is start-up overhead, n is number of
bytes transferred and B is BW

Not sufficient since overlap of comp. and comm. is not considered; also does not count
how the transfer is done (pipelined or not)

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_8.htm[6/14/2012 11:37:49 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 5: Communication Architectures and Communication Costs

 
Communication Cost

Better model:
Communication time for n bytes = Overhead + CA occupancy + Network latency +
Size/BW + Contention
T(n) = Ov + Oc + L + n/B + Tc
Overhead and occupancy may be functions of n
Contention depends on the queuing delay at various components along the
communication path e.g. waiting time at the communication assist or controller, waiting
time at the router etc.
Overall communication cost = frequency of communication x (communication time –
overlap with useful computation)
Frequency of communication depends on various factors such as how the program is
written or the granularity of communication supported by the underlying hardware

ILP vs. TLP

Microprocessors enhance performance of a sequential program by extracting parallelism from
an instruction stream (called instruction-level parallelism)
Multiprocessors enhance performance of an explicitly parallel program by running multiple
threads in parallel (called thread-level parallelism)
TLP provides parallelism at a much larger granularity compared to ILP
In multiprocessors ILP and TLP work together

Within a thread ILP provides performance boost
Across threads TLP provides speedup over a sequential version of the parallel program

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_1.htm

	5_1
	Local Disk
	Objectives_template


	5_1a
	Local Disk
	Objectives_template


	5_1b
	Local Disk
	Objectives_template


	5_2
	Local Disk
	Objectives_template


	5_3
	Local Disk
	Objectives_template


	5_4
	Local Disk
	Objectives_template


	5_5
	Local Disk
	Objectives_template


	5_6
	Local Disk
	Objectives_template


	5_7
	Local Disk
	Objectives_template


	5_8
	Local Disk
	Objectives_template



