
Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_1.htm[6/14/2012 11:57:33 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 12: Cache Coherence Protocols

 

The Lecture Contains:

Stores

Invalidation vs. Update

Which One is Better?

MSI Protocol

State Transition

M to S, or M to I?

MSI Example

MESI Protocol

MESI Example

MOESI Protocol

MOSI Protocol 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_9.htm


Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_2.htm[6/14/2012 11:57:33 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 12: Cache Coherence Protocols

 
Stores

Look at stores a little more closely
There are three situations at the time a store issues: the line is not in the cache, the
line is in the cache in S state, the line is in the cache in one of M, E and O states
If the line is in I state, the store generates a read-exclusive request on the bus and gets
the line in M state
If the line is in S or O state, that means the processor only has read permission for that
line; the store generates an upgrade request on the bus and the upgrade
acknowledgment gives it the write permission (this is a data-less transaction)
If the line is in M or E state, no bus transaction is generated; the cache already has
write permission for the line (this is the case of a write hit; previous two are write
misses)

Invalidation vs. Update

Two main classes of protocols:
Invalidation-based and update-based
Dictates what action should be taken on a write
Invalidation-based protocols invalidate sharers when a write miss (upgrade or readX )
appears on the bus
Update-based protocols update the sharer caches with new value on a write: requires
write transactions (carrying just the modified bytes) on the bus even on write hits (not
very attractive with writeback caches)
Advantage of update-based protocols: sharers continue to hit in the cache while in
invalidation-based protocols sharers will miss next time they try to access the line
Advantage of invalidation-based protocols: only write misses go on bus (suited for
writeback caches) and subsequent stores to the same line are cache hits

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_3.htm[6/14/2012 11:57:33 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 12: Cache Coherence Protocols

 
Which One is Better?

Difficult to answer
Depends on program behavior and hardware cost

When is update-based protocol good?
What sharing pattern? (large-scale producer/consumer)
Otherwise it would just waste bus bandwidth doing useless updates

When is invalidation-protocol good?
Sequence of multiple writes to a cache line
Saves intermediate write transactions

Also think about the overhead of initiating small updates for every write in update protocols
Invalidation-based protocols are much more popular
Some systems support both or maybe some hybrid based on dynamic sharing pattern of
a cache line

MSI Protocol

Forms the foundation of invalidation-based writeback protocols
Assumes only three supported cache line states: I, S, and M
There may be multiple processors caching a line in S state
There must be exactly one processor caching a line in M state and it is the owner of the
line
If none of the caches have the line, memory must have the most up-to-date copy of the
line

Processor requests to cache: PrRd , PrWr
Bus transactions: BusRd , BusRdX , BusUpgr , BusWB

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_4.htm[6/14/2012 11:57:33 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 12: Cache Coherence Protocols

 
State Transition

MSI Protocol

Few things to note
Flush operation essentially launches the line on the bus
Processor with the cache line in M state is responsible for flushing the line on bus
whenever there is a BusRd or BusRdX transaction generated by some other processor
On BusRd the line transitions from M to S, but not M to I. Why? Also at this point both
the requester and memory pick up the line from the bus; the requester puts the line in
its cache in S state while memory writes the line back. Why does memory need to write
back?
On BusRdX the line transitions from M to I and this time memory does not need to pick
up the line from bus. Only the requester picks up the line and puts it in M state in its
cache. Why?

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_5.htm[6/14/2012 11:57:33 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 12: Cache Coherence Protocols

 
M to S, or M to I?

BusRd takes a cache line in M state to S state
The assumption here is that the processor will read it soon, so save a cache miss by
going to S
May not be good if the sharing pattern is migratory : P0 reads and writes
cache line A, then P1 reads and writes cache line A, then P2…
For migratory patterns it makes sense to go to I state so that a future invalidation is
saved
But for bus-based SMPs it does not matter much because an upgrade transaction will
be launched anyway by the next writer, unless there is special hardware support to
avoid that: how?
The big problem is that the sharing pattern for a cache line may change dynamically:
adaptive protocols are good and are supported by Sequent Symmetry and MIT Alewife

MSI Example

Take the following example
P0 reads x, P1 reads x, P1 writes x, P0 reads x, P2 reads x, P3 writes x
Assume the state of the cache line containing the address of x is I in all processors

P0 generates BusRd , memory provides line, P0 puts line in S state
P1 generates BusRd , memory provides line, P1 puts line in S state
P1 generates BusUpgr , P0 snoops and invalidates line, memory does not respond, P1 sets
state of line to M
P0 generates BusRd , P1 flushes line and goes to S state, P0 puts line in S state, memory
writes back
P2 generates BusRd , memory provides line, P2 puts line in S state
P3 generates BusRdX , P0, P1, P2 snoop and invalidate, memory provides line, P3 puts line in
cache in M state

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_6.htm[6/14/2012 11:57:33 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 12: Cache Coherence Protocols

 
MESI Protocol

The most popular invalidation-based protocol e.g., appears in Intel Xeon MP
Why need E state?

The MSI protocol requires two transactions to go from I to M even if there is no
intervening requests for the line: BusRd followed by BusUpgr
We can save one transaction by having memory controller respond to the first BusRd
with E state if there is no other sharer in the system
How to know if there is no other sharer? Needs a dedicated control wire that gets
asserted by a sharer (wired OR)
Processor can write to a line in E state silently and take it to M state

State Transition

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_7.htm[6/14/2012 11:57:33 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 12: Cache Coherence Protocols

 
MESI Protocol

If a cache line is in M state definitely the processor with the line is responsible for flushing it
on the next BusRd or BusRdX transaction
If a line is not in M state who is responsible?

Memory or other caches in S or E state?
Original Illinois MESI protocol assumed cache-to-cache transfer i.e. any processor in E
or S state is responsible for flushing the line
However, it requires some expensive hardware, namely, if multiple processors are
caching the line in S state who flushes it? Also, memory needs to wait to know if it
should source the line
Without cache-to-cache sharing memory always sources the line unless it is in M state

MESI Example

Take the following example
P0 reads x, P0 writes x, P1 reads x, P1 writes x, …

P0 generates BusRd , memory provides line, P0 puts line in cache in E state
P0 does write silently, goes to M state
P1 generates BusRd , P0 provides line, P1 puts line in cache in S state, P0 transitions
to S state
Rest is identical to MSI

Consider this example: P0 reads x, P1 reads x, …

P0 generates BusRd , memory provides line, P0 puts line in cache in E state
P1 generates BusRd , memory provides line, P1 puts line in cache in S state, P0
transitions to S state (no cache-to-cache sharing)
Rest is same as MSI

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_8.htm[6/14/2012 11:57:33 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 12: Cache Coherence Protocols

 
MOESI Protocol

Some SMPs implement MOESI today e.g., AMD Athlon MP and the IBM servers
Why is the O state needed?

O state is very similar to E state with four differences: 1. If a cache line is in O state in
some cache, that cache is responsible for sourcing the line to the next requester; 2. The
memory may not have the most up-to-date copy of the line (this implies 1); 3. Eviction
of a line in O state generates a BusWB ; 4. Write to a line in O state must generate a
bus transaction
When a line transitions from M to S it is necessary to write the line back to memory
For a migratory sharing pattern (frequent in database workloads) this leads to a series
of writebacks to memory
These writebacks just keep the memory banks busy and consumes memory bandwidth

Take the following example
P0 reads x, P0 writes x, P1 reads x, P1 writes x, P2 reads x, P2 writes x, …
Thus at the time of a BusRd response the memory will write the line back: one
writeback per processor handover
O state aims at eliminating all these writebacks by transitioning from M to O instead of
M to S on a BusRd /Flush
Subsequent BusRd requests are replied by the owner holding the line in O state
The line is written back only when the owner evicts it: one single writeback

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_9.htm[6/14/2012 11:57:34 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 12: Cache Coherence Protocols

 
MOESI Protocol

State transitions pertaining to O state
I to O: not possible (or maybe; see below)
E to O or S to O: not possible
M to O: on a BusRd /Flush (but no memory writeback )
O to I: on CacheEvict / BusWB or { BusRdX,BusUpgr }/Flush
O to S: not possible (or maybe; next slide)
O to E: not possible (or maybe if silent eviction not allowed) '
O to M: on PrWr / BusUpgr

At most one cache can have a line in O state at any point in time
Two main design choices for MOESI

Consider the example P0 reads x, P0 writes x, P1 reads x, P2 reads x, P3 reads x, …
When P1 launches BusRd , P0 sources the line and now the protocol has two options:
1. The line in P0 goes to O and the line in P1 is filled in state S; 2. The line in P0 goes
to S and the line in P1 is filled in state O i.e. P1 inherits ownership from P0
For bus-based SMPs the two choices will yield roughly the same performance
For DSM multiprocessors we will revisit this issue if time permits
According to the second choice, when P2 generates a BusRd request, P1 sources the
line and transitions from O to S; P2 becomes the new owner

MOSI Protocol

Some SMPs do not support the E state
In many cases it is not helpful, only complicates the protocol
MOSI allows a compact state encoding in 2 bits
Sun WildFire uses MOSI protocol

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_1.htm

	12_1
	Local Disk
	Objectives_template


	12_2
	Local Disk
	Objectives_template


	12_3
	Local Disk
	Objectives_template


	12_4
	Local Disk
	Objectives_template


	12_5
	Local Disk
	Objectives_template


	12_6
	Local Disk
	Objectives_template


	12_7
	Local Disk
	Objectives_template


	12_8
	Local Disk
	Objectives_template


	12_9
	Local Disk
	Objectives_template



