Objectives_template

Module 7: Synchronization

Lecture 14: Scalable Locks and Barriers

The Lecture Contains:

Ticket Lock
Array-based Lock
RISC Processors
LL/SC

Locks With LL/SC
Fetch & op With LL/SC
Point-to-point Synch.
Barrier

Centralized Barrier

Sense Reversal

Tree Barrier

4|l Previous Next||p

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_1.htm[6/14/2012 11:59:30 AM]


file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_9.htm

Objectives_template

Module 7: Synchronization

Lecture 14: Scalable Locks and Barriers

Ticket Lock

« Similar to Bakery algorithm but simpler
¢ A nice application of fetch & inc
* Basic idea is to come and hold a unique ticket and wait until your turn comes
o Bakery algorithm failed to offer this uniqueness thereby increasing complexity

Shared: ticket = 0, release_count = 0;

Lock: fetch & inc regl, ticket_addr

Wait: Iw reg2, release_count_addr /* while ( release_count != ticket); */
sub reg3, reg2, regl

bnez reg3, Wait

Unlock: addi reg2, reg2, Ox1 /* release_count ++ */
Sw reg2, release_count_addr

« Initial fetch & inc generates O(P) traffic on bus-based machines (may be worse in DSM
depending on implementation of fetch & inc)
¢ But the waiting algorithm still suffers from 0.5P 2 messages asymptotically
o Researchers have proposed proportional backoff i.e. in the wait loop put a delay
proportional to the difference between ticket value and last read release_count
* Latency and storage-wise better than Bakery
» Traffic-wise better than TTS and Bakery (I leave it to you to analyze the traffic of Bakery)
* Guaranteed fairness: the ticket value induces a FIFO queue

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel4/14_2.htm[6/14/2012 11:59:30 AM]



Objectives_template

Module 7: Synchronization

Lecture 14: Scalable Locks and Barriers

Array-based Lock

Solves the O(P 2) traffic problem
The idea is to have a bit vector (essentially a character array if boolean type is not supported)
Each processor comes and takes the next free index into the array via fetch & inc
Then each processor loops on its index location until it becomes set
On unlock a processor is responsible to set the next index location if someone is waiting
Initial fetch & inc still needs O(P) traffic, but the wait loop now needs O(1) traffic
Disadvantage: storage overhead is O(P)
Performance concerns
o Avoid false sharing: allocate each array location on a different cache line
o Assume a cache line size of 128 bytes and a character array: allocate an array of size
128P bytes and use every 128 the position in the array
o For distributed shared memory the location a processor loops on may not be in its local
memory: on acquire it must take a remote miss; allocate P pages and let each
processor loop on one bit in a page? Too much wastage; better solution: MCS lock
(Mellor- Crummey & Scott)
« Correctness concerns
o Make sure to handle corner cases such as determining if someone is waiting on the
next location (this must be an atomic operation) while unlocking
o Remember to reset your index location to zero while unlocking

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel4/14_3.htm[6/14/2012 11:59:31 AM]



Objectives_template

Module 7: Synchronization

Lecture 14: Scalable Locks and Barriers

RISC Processors

« All these atomic instructions deviate from the RISC line
o Instruction needs a load as well as a store
« Also, it would be great if we can offer a few simple instructions with which we can build most of
the atomic primitives
o Note that it is impossible to build atomic fetch & inc with xchg instruction
« MIPS, Alpha and IBM processors support a pair of instructions: LL and SC
o Load linked and store conditional

LL/SC

¢ Load linked behaves just like a normal load with some extra tricks
o Puts the loaded value in destination register as usual
o Sets a load_linked bit residing in cache controller to 1
o Puts the address in a special lock_address register residing in the cache controller
o Store conditional is a special store
o SC reg , addr stores value in reg to addr only if load_linked bit is set; also it copies the
value in load_linked bit to reg and resets load_linked bit
¢ Any intervening “operation” (e.g., bus transaction or cache replacement) to the cache line
containing the address in lock_address register clears the load_linked bit so that subsequent
sc fails

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel4/14_4.htm[6/14/2012 11:59:31 AM]



Objectives_template

Module 7: Synchronization

Lecture 14: Scalable Locks and Barriers

Locks With LL/SC

e Test & set
Lock: LLrl, lock_addr /* Normal read miss/ BusRead */
addi r2, r0, Ox1
SC r2, lock_addr [* Possibly upgrade miss */
begz r2, Lock /* Check if SC succeeded */
bnez r1, Lock [* Check if someone is in CS */

e LL/SC is best-suited for test & test & set locks

Lock: LL r1, lock_addr
bnez r1, Lock
addi r1, r0, Ox1
SC rl, lock_addr
beqz r1, Lock

Fetch & op with LL/SC
e Fetch & inc

Try: LL rl1, addr
addi r1, r1, Ox1
SC rl, addr
beqz r1, Try

« Compare & swap: Compare with rl, swap r2 and memory location (here we keep on trying until
comparison passes)

Try: LL r3, addr
subr4, r3, rl
bnez r4, Try
add r4, r2, rO
SC r4, addr
beqz r4, Try
add r2, r3, r0
[l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel4/14_5.htm[6/14/2012 11:59:31 AM]



Objectives_template

Module 7: Synchronization

Lecture 14: Scalable Locks and Barriers

Point-to-point Synch.
« Normally done in software with flags

PO: A =1; flag = 1;
P1: while (Iflag); print A;

¢ Some old machines supported full/empty bits in memory
o Each memory location is augmented with a full/empty bit
o Producer writes the location only if bit is reset
o Consumer reads location if bit is set and resets it
o Lot less flexible: one producer-one consumer sharing only (one producer-many
consumers is very popular); all accesses to a memory location become synchronized
(unless compiler flags some accesses as special)
o Possible optimization for shared memory
o Allocate flag and data structures (if small) guarded by flag in same cache line e.g., flag
and A in above example

Barrier

« High-level classification of barriers
o Hardware and software barriers
« Will focus on two types of software barriers
o Centralized barrier: every processor polls a single count
o Distributed tree barrier: shows much better scalability
« Performance goals of a barrier implementation
o Low latency: After all processors have arrived at the barrier, they should be able to
leave quickly
o Low traffic: Minimize bus transaction and contention
o Scalability: Latency and traffic should scale slowly with the number of processors
o Low storage: Barrier state should not be big
o Fairness: Preserve some strict order of barrier exit (could be FIFO according to arrival
order); a particular processor should not always be the last one to exit

|| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel4/14_6.htm[6/14/2012 11:59:31 AM]



Objectives_template

Module 7: Synchronization

Lecture 14: Scalable Locks and Barriers

Centralized Barrier

struct bar_type { BARRIER ( bar_name , P) {

int counter; int my_count ;

struct lock_type lock; LOCK ( bar_name.lock );

int flag = 0O; if (! bar_name.counter ) {

} bar_name ; bar_name.flag = 0O; /* first one */
BARINIT ( bar_name ) { }

LOCKINIT( bar_name.lock ); my_count = ++ bar_name.counter ;
bar_name.counter = 0; UNLOCK ( bar_name.lock );

} if ( my_count == P) {

bar_name.counter = 0;
bar_name.flag = 1; /* last one */
}

else {

while (! bar_name.flag );

}

}

Sense Reversal

e« The last implementation fails to work for two BARRIER ( bar_name, P){
consecutive barrier invocations local sense = ! local_sense ; /* this is private
o Need to prevent a process from entering a per processor */
barrier instance until all have left the LOCK ( bar_name.lock );
previous instance bar_name.counter ++;
o Reverse the sense of a barrier i.e. every if ( bar_name.counter == P) {
other barrier will have the same sense: UNLOCK ( bar_name.lock );
basically attach parity or sense to a barrier  bar_name.counter = 0;
bar_name.flag = local_sense ;
}
else {
UNLOCK ( bar_name.lock );
while ( bar_name.flag != local_sense );
}
}
|| Previous MNext||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel4/14_7.htm[6/14/2012 11:59:31 AM]



Objectives_template

Module 7: Synchronization

Lecture 14: Scalable Locks and Barriers

Centralized Barrier

e How fastis it?

o Assume that the program is perfectly balanced and hence all processors arrive at the
barrier at the same time

o Latency is proportional to P due to the critical section (assume that the lock algorithm
exhibits at most O(P) latency)

o The amount of traffic of acquire section (the CS) depends on the lock algorithm; after
everyone has settled in the waiting loop the last processor will generate a BusRdX
during release (flag write) and others will subsequently generate BusRd before
releasing: O(P)

o Scalability turns out to be low partly due to the critical section and partly due to O(P)
traffic of release

o No fairness in terms of who exits first

Tree Barrier

« Does not need a lock, only uses flags

o Arrange the processors logically in a binary tree (higher degree also possible)

o Two siblings tell each other of arrival via simple flags (i.e. one waits on a flag while the
other sets it on arrival)

o One of them moves up the tree to participate in the next level of the barrier

o Introduces concurrency in the barrier algorithm since independent subtrees can proceed
in parallel

o Takes log(P) steps to complete the acquire

o A fixed processor starts a downward pass of release waking up other processors that in
turn set other flags

o Shows much better scalability compared to centralized barriers in DSM multiprocessors;
the advantage in small bus-based systems is not much, since all transactions are any
way serialized on the bus; in fact the additional log (P) delay may hurt performance in
bus-based SMPs

|| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel4/14_8.htm[6/14/2012 11:59:31 AM]



Objectives_template

Module 7: Synchronization

Lecture 14: Scalable Locks and Barriers

Tree Barrier

TreeBarrier ( pid , P) {
unsigned int i , mask;

for (i=0, mask = 1; (mask &
pid ) != 0; ++ i, mask <<= 1) {
while (Mflag[ pid ][ i ]);

flag{ pid J[i] = 0;

}

if (pid< (P-1)){

flag[ pid + mask][i] =1,

while (!flag[ pid J[MAX- 1]);
flag[ pid J[MAX - 1] = 0;

}

for (mask >>= 1; mask > 0; mask >>= 1) {
flag[ pid - mask][MAX-1] = 1,

}

e Convince yourself that this works

o Take 8 processors and arrange them on leaves of
a tree of depth 3

e You will find that only odd nodes move up at
every level during acquire (implemented in the
first for loop)

e The even nodes just set the flags (the first
statement in the if condition): they bail out of the
first loop with mask=1

e The release is initiated by the last processor in
the last for loop; only odd nodes execute this
loop (7 wakes up 3, 5, 6; 5 wakes up 4; 3 wakes
up 1, 2; 1 wakes up 0)

o Each processor will need at most log (P) + 1 flags
« Avoid false sharing: allocate each processor's flags on a separate chunk of cache lines
« With some memory wastage (possibly worth it) allocate each processor's flags on a separate
page and map that page locally in that processor's physical memory
o Avoid remote misses in DSM multiprocessor
o Does not matter in bus-based SMPs

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel4/14_9.htm[6/14/2012 11:59:31 AM]


file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture15/15_1.htm

	14_1
	Local Disk
	Objectives_template


	14_2
	Local Disk
	Objectives_template


	14_3
	Local Disk
	Objectives_template


	14_4
	Local Disk
	Objectives_template


	14_5
	Local Disk
	Objectives_template


	14_6
	Local Disk
	Objectives_template


	14_7
	Local Disk
	Objectives_template


	14_8
	Local Disk
	Objectives_template


	14_9
	Local Disk
	Objectives_template



