Objectives_template

Module 21: Problem and Solution

Lecture 41: Solution to Critical Section Problem

The Lecture Contains:

Solution to Critical Section Problem
Mutual Exclusion

Progress

Bounded Wait

Solution Issues

Two Process Critical Section Solution
Solution to Critical Section Problem
Synchronization Support in OS/ISA
Support in ISA

Implementing Locks Using Swap
Other Supports From ISA

Support From The OS
Multiprocessor Issues

Semaphores

Mutual Exclusion Using Semaphore

4| Previous Next||p

file://ID|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_1.htm[6/14/2012 12:15:49 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_7.htm

Objectives_template

Module 21: Problem and Solution

Lecture 41: Solution to Critical Section Problem

Solution to Critical Section Problem

« Requirements
o Mutual Exclusion
o Progress
o Bounded Wait
« We can make no assumptions on
o Processor speed
o Relative speeds of processes
o Time to execute any critical/remainder section
o Time to execute any entry/exit code

Mutual Exclusion

o Statement of obvious
o If a process F; is in critical section at some point in time, no other process should be
permitted to enter its critical section.
e This is clearly the most basic requirement for the solution.

4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2041/41_2.htm[6/14/2012 12:15:49 PM]

Objectives_template

Module 21: Problem and Solution

Lecture 41: Solution to Critical Section Problem

Progress

e Given:There is no process in the critical section
o And one or more processes want to enter the critical sections
o Then one of them must be permitted to enter the critical section.

« One those processes waiting to enter the critical section must take part in the arbitration.
o This arbitration must be done in a finite amount of time.

Bounded Wait

¢ A scheme of fairness and ensuring no starvation.
e There is an upper bound on the number of times that other processes are allowed to enter
their critical sections between a process making its request and here quest getting granted.

4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2041/41_3.htm[6/14/2012 12:15:49 PM]

Objectives_template

Module 21: Problem and Solution

Lecture 41: Solution to Critical Section Problem

Solution Issues

o Preemptive kernel
o A process may be preempted when in kernel mode
« Non-preemptive kernel
o A process may not be preempted when in kernel mode
« Preemptive kernels are difficult
o Especially for SMP machines.
o Threads on multi-processors face independent OS.
« Preemptive kernels are essential
o In embedded systems with RT guarantees
« Windows 2000, XP are non-preemptive
e Linux kernel became preemptive since Linux 2.6

Two Process Critical Section Solution

e Processes are PO and P1.
e Processes share a common variable turn(=0 or 1).
o If turn=1i, Pi is permitted to enter the critical section.

while (1) {
While (turn !=i);
Critical section

Mutual Exclusion: «
Progress: X

turn = 1-i;

. . Bounded Wait: X
Remainder section
}

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonal/M ulti-core_Architecture/lecture%2041/41_4.htm[6/14/2012 12:15:49 PM]

Objectives_template

Module 21: Problem and Solution

Lecture 41: Solution to Critical Section Problem

Solution to Critical Section Problem

o Consider two processes PO and P1.
o Shared variables (for solution to CSP)
o int turn; boolean flag[2];
o flagli] is true when Piis ready to enter its critical section.

while (1) {

flag[i] = TRUE; turn = j;

while (flag[j] && turn == j); Mutual Exclusion: «
Critical section Progress: «

flag[i] = FALSE; Bounded Wait: «
Remainder section

}

Synchronization Support in OS/ISA

« Synchronization code can be written using locks
while (1) {
Non critical code
Acquire Lock
Critical Section Code
Release Lock
}
o Implementation of Lock require support from the ISA
o TestAndSet instruction, Swap instruction.

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2041/41_5.htm[6/14/2012 12:15:49 PM]

Objectives_template

Module 21: Problem and Solution

Lecture 41: Solution to Critical Section Problem

Support in ISA

o Recall: All instructions in a processor execute uninterrupted.
« Within a single processor, instructions are atomic.
¢ Pentium ISA provide xchg instruction. (Swap instruction)
xchg(register r, memory_address a) {
t=rr="*a *a=t
}

o One Read and One write in memory and register each.

Implementing Locks Using Swap

e« Acquire Lock:
Register AX = TRUE;
While (AX=TRUE) xchg(AX, &lock);
¢ Release Lock:
o Lock = false;

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2041/41_6.htm[6/14/2012 12:15:49 PM]

Objectives_template

Module 21: Problem and Solution

Lecture 41: Solution to Critical Section Problem

Other Supports from ISA

e Some processors support TestAndSet instruction.
boolean TestAndSet(boolean *mem) {
boolean ret = *mem;

*mem = TRUE;
return ret;
}

¢ Acquire Lock:

while TestAndSet(&lock) ;
¢ Release Lock:

lock = false;

Support From The OS

¢ If OS is non-preemptive
o System calls can be provided for
= Acquire Lock and Release Lock.
o Process can not be preempted while acquiring and releasing locks.
o If OS is preemptive.
o System calls are tricky to support but not impossible.

4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2041/41_7.htm[6/14/2012 12:15:50 PM]

Objectives_template

Module 21: Problem and Solution

Lecture 41: Solution to Critical Section Problem

Synchronization Support in OS/ISA

« Synchronization code can be written using locks
while (1) {
Non critical code
Acquire Lock
Critical Section Code
Release Lock
}
o Implementation of Lock require support from the ISA
o TestAndSet instruction, Swap instruction
¢ OS may provide system calls to
o Acquire lock or release lock.
o For preemptive OS kernels, hard to implement these calls

Solutions for Multi-processes

boolean waiting[n], lock;

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && key) key = TestAndSet(&lock);
waiting[i] = FALSE;

/I Critical Section

j = (i+1)%n;

while ((j != i) && waiting[j]==FALSE) j = (j+1)%n;
if (j==i) lock=FALSE; else waiting[j] = FALSE;

/I Remainder Section

Multiprocessor Issues

« Multiple processors share a single bus.
o Arbitration is for bus cycles
o Atomicity across processors is at the granularity of bus cycle.
o TestAndSet or Swap instructions require
o At least one read and one write cycle
o Bus arbitration logic has to be instructed to give bus for two cycles.
o Lock instruction prefix in Pentium
o For example lock xchg %ax, mem16
¢ Lock instruction causes an arbitration sequence to be done for the entire instruction.
o Atomic instruction execution across multiple processors

4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2041/41_8.htm[6/14/2012 12:15:50 PM]

Objectives template

Module 21: Problem and Solution

Lecture 41: Solution to Critical Section Problem

Semaphores

« A data structure abstraction for lock

class semaphore {
private: int s;
public:

void wait(void) {while (s < 0) ; wait and signal are

S--; Atomic Methods.
} Also known as P and V.
Alzo known as down and up.

void signal(void) {

Mutual Exclusion Using Semaphore

semaphore mutex;
mutex.wait();
/I Critical Section

mutex.signal();
/I Remainder Section

dllPrevious Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2041/41_9.htm[6/14/2012 12:15:50 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_1.htm

	41_1
	Local Disk
	Objectives_template

	41_2
	Local Disk
	Objectives_template

	41_3
	Local Disk
	Objectives_template

	41_4
	Local Disk
	Objectives_template

	41_5
	Local Disk
	Objectives_template

	41_6
	Local Disk
	Objectives_template

	41_7
	Local Disk
	Objectives_template

	41_8
	Local Disk
	Objectives_template

	41_9
	Local Disk
	Objectives_template

