
Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_1.htm[6/14/2012 11:43:12 AM]

 Module 4: Parallel Programming: Shared Memory and Message Passing
 Lecture 7: Examples of Shared Memory and Message Passing Programming

The Lecture Contains:

Shared Memory Version

Mutual Exclusion

LOCK Optimization

More Synchronization

Message Passing

Major Changes

MPI-like Environment

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_8.htm

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_1a.htm[6/14/2012 11:43:12 AM]

 Module 4: Parallel Programming: Shared Memory and Message Passing
 Lecture 7: Examples of Shared Memory and Message Passing Programming

Shared Memory Version

/* include files */
MAIN_ENV;
int P, n;
void Solve ();
struct gm_t {
LOCKDEC (diff_lock);
BARDEC (barrier);
float **A, diff;
} *gm;
int main (char ** argv , int argc)
{
int i ;
MAIN_INITENV;
gm = (struct gm_t *) G_MALLOC (sizeof (struct
gm_t));
LOCKINIT (gm-> diff_lock);

BARINIT (gm->barrier);
n = atoi (argv [1]);
P = atoi (argv [2]);
gm->A = (float**) G_MALLOC ((n+2)* sizeof
(float*));
for (i = 0; i < n+2; i ++) {
gm->A[i] = (float*) G_MALLOC ((n+2)* sizeof
(float));
}
Initialize (gm->A);
for (i = 1; i < P; i ++) { /* starts at 1 */
CREATE (Solve);
}
Solve ();
WAIT_FOR_END (P-1);
MAIN_END;
}

void Solve (void)
{
int i , j, pid , done = 0;
float temp, local_diff ;
GET_PID (pid);
while (!done) {
local_diff = 0.0;
if (! pid) gm->diff = 0.0;
BARRIER (gm->barrier, P);/*why?*/
for (i = pid *(n/P); i < (pid+1)*(n/P); i ++) {
for (j = 0; j < n; j++) {
temp = gm->A[i] [j];
gm->A[i] [j] = 0.2*(gm->A[i] [j] + gm->A[i] [j-1]) +
gm->A[i] [j+1] + gm->A[i+1] [j] + gm->A[i-1] [j];

local_diff += fabs (gm->A[i] [j] – temp);

} /* end for */

} /* end for */
LOCK (gm-> diff_lock);
gm->diff += local_diff ;
UNLOCK (gm-> diff_lock);
BARRIER (gm->barrier, P);
if (gm->diff/(n*n) < TOL) done = 1;
BARRIER (gm->barrier, P); /* why? */
} /* end while */
}

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_1b.htm[6/14/2012 11:43:12 AM]

 Module 4: Parallel Programming: Shared Memory and Message Passing
 Lecture 7: Examples of Shared Memory and Message Passing Programming

Mutual Exclusion

Use LOCK/UNLOCK around critical sections
Updates to shared variable diff must be sequential
Heavily contended locks may degrade performance
Try to minimize the use of critical sections: they are sequential anyway and
will limit speedup
This is the reason for using a local_diff instead of accessing gm->diff every time
Also, minimize the size of critical section because the longer you hold the lock, longer
will be the waiting time for other processors at lock acquire

LOCK Optimization

LOCK (gm-> cost_lock);
if (my_cost < gm->cost) {
gm->cost = my_cost ;
}
UNLOCK (gm-> cost_lock);
/* May lead to heavy lock
contention if everyone
tries to update at the

if (my_cost < gm->cost) {
LOCK (gm-> cost_lock);
if (my_cost < gm->cost) { /* make sure*/
gm->cost = my_cost ;
}
UNLOCK (gm-> cost_lock);
| } /* this works because gm->cost is
monotonically decreasing */
same time */

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_2.htm[6/14/2012 11:43:13 AM]

 Module 4: Parallel Programming: Shared Memory and Message Passing
 Lecture 7: Examples of Shared Memory and Message Passing Programming

More Synchronization

Global synchronization
Through barriers
Often used to separate computation phases

Point-to-point synchronization
A process directly notifies another about a certain event on which the latter was waiting
Producer-consumer communication pattern
Semaphores are used for concurrent programming on uniprocessor through P and V
functions
Normally implemented through flags on shared memory multiprocessors (busy wait or
spin)

P 0 : A = 1; flag = 1;
P 1 : while (!flag); use (A);

Message Passing

What is different from shared memory?
No shared variable: expose communication through send/receive
No lock or barrier primitive
Must implement synchronization through send/receive

Grid solver example
P 0 allocates and initializes matrix A in its local memory
Then it sends the block rows, n, P to each processor i.e. P 1 waits to receive rows n/P
to 2n/P-1 etc. (this is one-time)
Within the while loop the first thing that every processor does is to send its first and last
rows to the upper and the lower processors (corner cases need to be handled)
Then each processor waits to receive the neighboring two rows from the upper and the
lower processors

At the end of the loop each processor sends its local_diff to P 0 and P 0 sends back the
accumulated diff so that each processor can locally compute the done flag

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_3.htm[6/14/2012 11:43:13 AM]

 Module 4: Parallel Programming: Shared Memory and Message Passing
 Lecture 7: Examples of Shared Memory and Message Passing Programming

Major Changes

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_4.htm[6/14/2012 11:43:13 AM]

 Module 4: Parallel Programming: Shared Memory and Message Passing
 Lecture 7: Examples of Shared Memory and Message Passing Programming

Major Changes

Message Passing

This algorithm is deterministic
May converge to a different solution compared to the shared memory version if there are
multiple solutions: why?

There is a fixed specific point in the program (at the beginning of each iteration) when
the neighboring rows are communicated
This is not true for shared memory

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_5.htm[6/14/2012 11:43:13 AM]

 Module 4: Parallel Programming: Shared Memory and Message Passing
 Lecture 7: Examples of Shared Memory and Message Passing Programming

Message Passing Grid Solver

MPI-like Environment

MPI stands for Message Passing Interface
A C library that provides a set of message passing primitives (e.g., send, receive, broadcast etc.) to the
user

PVM (Parallel Virtual Machine) is another well-known platform for message passing programming
Background in MPI is not necessary for understanding this lecture
Only need to know

When you start an MPI program every thread runs the same main function
We will assume that we pin one thread to one processor just as we did in shared memory

Instead of using the exact MPI syntax we will use some macros that call the MPI functions

MAIN_ENV;
/* define message tags */
#define ROW 99
#define DIFF 98
#define DONE 97
int main(int argc , char ** argv)
{
int pid , P, done, i , j, N;
float tempdiff , local_diff , temp, **A;

MAIN_INITENV;
GET_PID(pid);
GET_NUMPROCS(P);
N = atoi (argv [1]);
tempdiff = 0.0;
done = 0;
A = (double **) malloc ((N/P+2) * sizeof (float *));
for (i =0; i < N/P+2; i ++) {
A[i] = (float *) malloc (sizeof (float) * (N+2));
}
initialize(A);

while (!done) {
local_diff = 0.0;
/* MPI_CHAR means raw byte format */
if (pid) { /* send my first row up */
SEND(&A[1][1], N* sizeof (float), MPI_CHAR, pid-1, ROW);
}
if (pid != P-1) { /* recv last row */
RECV(&A[N/P+1][1], N* sizeof (float), MPI_CHAR, pid+1, ROW);
}
if (pid != P-1) { /* send last row down */
SEND(&A[N/P][1], N* sizeof (float), MPI_CHAR, pid+1, ROW);
}
if (pid) { /* recv first row from above */
RECV(&A[0][1], N* sizeof (float), MPI_CHAR, pid-1, ROW);
}
for (i =1; i <= N/P; i ++) for (j=1; j <= N; j++) {
temp = A[i][j];
A[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i-1][j] + A[i][j+1] + A[i+1][j]);
local_diff += fabs (A[i][j] - temp);
}

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture8/8_1.htm

	7_1
	Local Disk
	Objectives_template

	7_1a
	Local Disk
	Objectives_template

	7_1b
	Local Disk
	Objectives_template

	7_2
	Local Disk
	Objectives_template

	7_3
	Local Disk
	Objectives_template

	7_4
	Local Disk
	Objectives_template

	7_5
	Local Disk
	Objectives_template

