
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_1.htm[6/14/2012 12:14:55 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 39: Multi-processor Scheduling

The Lecture Contains:

User Control

Reliability

Requirements of RT

Multi-processor Scheduling

Introduction

Issues With Multi-processor Computations

Granularity

Fine Grain Parallelism

Design Issues

A Possible Scenario

Where Does The OS Run?

Mapping Processes to Processors

Multiprogramming at Each Processor

Multiprogramming

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2038/38_8.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_2.htm[6/14/2012 12:14:56 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 39: Multi-processor Scheduling

User Control

User Control : User has broader control on process characteristics specs in an RTOS
Priority
Deadlines: Hard or soft.

Memory Management: paging or swapping
Name the processes to be resident in memory
Scheduling policies

Reliability

Reliability: A processor failure in a non-RT may result in reduced level of service. But in an
RT it may be catastrophic : life and death, financial loss, equipment damage.
Fail-soft Operation: Ability of the system to fail in such a way preserve as much capability
and data as possible.
In the event of a failure, immediate detection and correction is important.
Notify user processes to rollback.
Apply compensation.
Check-pointing and rollback states.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_3.htm[6/14/2012 12:14:56 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 39: Multi-processor Scheduling

Requirements of RT

Fast context switch
Minimal functionality (small size)
Ability to respond to interrupts quickly (Special interrupts handlers)
Multitasking with signals and alarms
Special storage to accumulate data fast
Preemptive scheduling

Requirements of RT (contd.)

Priority levels
Minimizing “interrupt disabled” state
Short-term scheduler (“omni-potent”)
Time monitor
Goal: Complete all hard real-time tasks by dead-line. Complete as many soft real-time tasks
as possible by their deadline.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_4.htm[6/14/2012 12:14:56 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 39: Multi-processor Scheduling

Multi-processor Scheduling

Load sharing
Each processor runs one process.
A single ready queue is maintained (in a shared memory).
Each processor makes scheduling decisions independently.
Speed up of an application
Processor assignment (within threads of the process): Dynamic or fixed
Scheduling: Gang scheduling or independent scheduling

Multi-core Computing Multi-processor Scheduling

Introduction

Design issues in system with multiple processors
Tightly coupled or loosely coupled.
Message passing, shared memory or both.

Several new issues are introduced into the design of scheduling functions.
Loosely coupled systems are easier to handle.

Not an OS issue but an application issue
Several message passing systems are available (such as MPI)

We will examine these issues and the details of scheduling algorithms for tightly coupled multi-
processor systems.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_5.htm[6/14/2012 12:14:56 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 39: Multi-processor Scheduling

Issues With Multi-processor Computations.

Granularity of computation
Fine grain
Coarse grain

Various shades of coarseness.
Design issues

Assignment of processes to processors
Multiprogramming on individual processors
Actual dispatching of a process

Granularity

The main purpose of having multiple processors is to realize ????.
Applications exhibit parallelism at various levels with varying degree of granularity.
Fine grain parallelism: Inherent parallelism within a single instruction stream.

High data dependency high frequency of synchronizations required between
processes.
Dynamic Scheduling/Superscalar architectures exploit this kind of parallelism.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_6.htm[6/14/2012 12:14:56 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 39: Multi-processor Scheduling

Fine Grain Parallelism

Given a sequence of instructions the issue logic will look at the dependencies between multiple
instructions in a window.

Dependencies: Data or Control dependency.
Dependencies: False or true.
Consider add R1, R2 followed by add R3, R4.
Consider div R1, R2 followed by div R3, R4
Consider load X followed by load Y

Independent instructions can be executed in parallel if structural resources are available.

Granularity

Medium Grain Parallelism: Parallelism of an application can be implemented by multiple
threads in a single process.
Usually programmers have to “use” threads in the design.
Threads are scheduled by user (e.g. pthreads) or by OS (kernel threading).
Coarse Grain Parallelism: Parallelism in a system by virtue of several concurrent
processes
Need to synchronize using semaphore or other synchronization objects.
Example: Server side threads for web servers. FTP servers etc.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_7.htm[6/14/2012 12:14:56 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 39: Multi-processor Scheduling

Granularity

Very Coarse Grain: When synchronization needs are not high among parallel processes.
Processes can even be distributed across network.

Example: CORBA standard for distributed system.
Independent parallelism: Multiple unrelated processes.

All independent processes can run in parallel.

Design Issues

Where does the OS run?
Mapping processes to processors.

Static or dynamic
Use of multiprogramming on individual processors.
Actual dispatching of a process.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_8.htm[6/14/2012 12:14:56 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 39: Multi-processor Scheduling

Where Does The OS Run?

Master/slave Assignment: Kernel functions always run on a particular processor. Other
processors execute user processes.
Advantage: Resource conflict resolution simplified since single processor has control.
Single point of failure (Master).
Peer Assignment: OS executes on all processors. Each processor does its own scheduling
from the pool of available processes. Most OSes implement this in an SMP environment.

Mapping Processes to Processors

Largely an application issue.
Applications may be written for a particular configuration of the machine.
Application create threads of computations and channel of communication between these
threads assuming a particular machine configuration.
Applications may be generic in nature
Create n threads of computations. These threads can execute on machines with 1, <n, n or >n
processors.
OS may assign any number of processors (1 to n) to this application.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_9.htm[6/14/2012 12:14:57 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 39: Multi-processor Scheduling

Multiprogramming at Each Processor

In a multi-processor system, CPU utilization is not all that important
As long as some computation is being carried out, it is fine.

Application efficiency are more important
Turn around time
application-related performance metrics.

Assigning all threads to different processors may not always yield high performance.

Multiprogramming

A multi-threaded application may require all its threads be assigned to different processors for
good performance.

If there are n threads and m processors (m > n), m-n processors may not have any
thing to execute.

If threads are dependent on each other and require heavy synchronization, assigning all to
same processor may be beneficial
Process allocation can be Static or dynamic.

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_1.htm

	39_1
	Local Disk
	Objectives_template

	39_2
	Local Disk
	Objectives_template

	39_3
	Local Disk
	Objectives_template

	39_4
	Local Disk
	Objectives_template

	39_5
	Local Disk
	Objectives_template

	39_6
	Local Disk
	Objectives_template

	39_7
	Local Disk
	Objectives_template

	39_8
	Local Disk
	Objectives_template

	39_9
	Local Disk
	Objectives_template

