Objectives_template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

The Lecture Contains:

Loop Unswitching

Supercomputing Applications
Programming Paradigms

Important Problems

Scheduling

Sources and Types of Parallelism
Model of Compiler

Code Optimization

Data Dependence Analysis

Program Restructurer

Technique to Improve Detection of Parallelism: Interactive Compilation
Scalar Processors

Matrix Multiplication

Code for Scalar Processor

Spatial Locality

Improve Spatial Locality

Temporal Locality

Improve Temporal Locality

Matrix Multiplication on Vector Machine

Strip-mining

Shared Memory Model

4| Previous Next||p

file://ID|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_1.htm[6/14/2012 12:07:57 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_10.htm

Objectives template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

Similarly

For | =1 to 10 do
For] =1to 10 do

A(lJ) = 0;
For | =1 to 10 do
A(Ll) = 1;

Can be replaced by

Forl =1to 10 do
For J =110 10 do
A1) = O;
A(Ll) = 1;
Loop Unswitching

A loop may be split into two loops. For example the following loop

For | = 1 to 100 do

if Bexpr
then
X = All) + B[l
else
Al = Afll - B[1]
Endif
Endfor

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2025/25_2.htm[6/14/2012 12:07:57 PM]

Objectives_template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

May be replaced by

If Bexpr
then
For | = 1 to 100 do
X[= All] + B[I]
Endfor
else
For | = 1 to 100 do
X[I] = Al - B[]
Endfor
Endif

INTRODUCTION TO COMPILERS FOR
HIGH PERFORMANCE COMPUTERS

Supercomputing Applications

e Used in scientific computing requiring very large compute time

« Weather prediction: For a days prediction at 109 fpo/sec requires 3 hours

« Used in biology, genetic engineering, astrophysics, aerospace, nuclear and particle physics,
medicine, tomography ...

Power of supercomputers comes from

« Hardware technology: Faster machines

« Multilevel architectural parallelism
Vector handles arrays with a single instruction
Parallel lot of processors each capable of executing an independent instruction stream
VLIW handles many instructions in a single cycle

Programming Paradigms

Vector Machines very close to sequential machines. Different in use of arrays
Parallel Machines deal with a system of processes. Has individual threads execution.
Synchronization is a very important issue.

« Important things to remeber are
o Aavoid deadlocks
o Prevent race conditions
o Avoid too many parallel threads
o Performance evaluation criterion
o Speed up vs number of processors
o Synchronization over heads
o Number of processors which can be kept busy

4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/l ecture%2025/25_3.htm[6/14/2012 12:07:58 PM]

Objectives_template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

o Current software technology is unable to handle all these issues
o Book keeping is still done by the users
« Main directions of research
o Design of concurrent algorithms
o Design of concurrent languages
o Construction of tools to do software development
= Sequential compilers and book keeping tools
= Parallelizing and vectoring compilers
= Message passing libraries
o Development of mathematical libraries
« Languages Fortran, C, Java, X10 etc.
o Dusty decks problem
o Conversion of large body of existing sequential programs developed over last 40 years
o Several billions lines of code and manual conversion is not possible
o Restructuring compilers are required

Important Problems

Restructuring

o Identify parts of program to take advantage of characteristics of machine
e Manual coding is not possible
o Compilers are more efficient

Scheduling

« Exploit parallelism on a given machine
« Static scheduling: done at compile time
¢ Dynamic scheduling: done at run time
o High overhead
o Implemented through low level calls without involving OS (auto scheduling compilers)
¢ Auto scheduling compilers
o Offer new environments for executing parallel programs
o Small overhead
o Parallel execution of fine grain granularity is possible
¢ Loop scheduling: Singly nested vs multiple nested
¢ Runtime overheads: Scheduling, synchronization, inter processor communication

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2025/25_4.htm[6/14/2012 12:07:58 PM]

Objectives_template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

Sources and Types of Parallelism

e Structured: Identical tasks on different data sets
e Unstructured: Different data streams and different instructions
¢ Algorithm level: Appropriate algorithms and data structures
e Programming:
o Specify parallelism in parallel languages
o Write sequential code and use compilers
o Use course grain parallelism: independent modules
o Use medium grain parallelism: loop level
o Use fine grain parallelism: basic block or statement
e Expressing parallelism in programs
o No good languages
o Programmers are unable to exploit whatever little is available

Model of Compiler

FPHASE 1 PHASE 2 PHASE 3 FHASE 4
e ' b ! :
' |Front-end | ' [F Analysis P . ! i
: HE n Optimization . ;
i il ,L s Scheduling ——™Translation| |
: I ik :| i |Data Placement| . !
. |Optimizer |~ | Restructurer =, | * :
, . ‘L o X . | [Code ;
: C o | | |Generation| '
: '\ | Back-end1| | Back-snd2 : :
5 i 5 :
' v Tools for bl el EEEE R Bk
; o Interactive :
: v | Compilation | . USER Machine Code

CODE OPTIMIZATION
High Level Analysis for optimization

e« Common subexpression elimination
« Copy propagation

o Dead code elimination

e Code motion

¢ Strength reduction

« Constant folding

e Loop unrolling

« Induction variable simplification

|| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oonalM ulti-core_Architecture/lecture%2025/25_5.htm[6/14/2012 12:07:58 PM]

Objectives_template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

Data Dependence Analysis

e Check whether program can be restructured
o GCD test

o Banerjee’s Test

o |-test

o Omega test

o Architectural specific tests

Program Restructurer

o Loop restructuring

« Statement reordering

o Loop (distribution) fission

« Breaking dependence cycle: Node splitting
¢ Loop interchanging

o Loop skewing

o Loop jamming

« Handling while loops

Technique to Improve Detection of Parallelism: Interactive Compilation

« Back-end to user
o Compiler directives
o Force Parallel
o No Parallel
o Max-trips count
o Task identification
o No side effects
¢ Incremental Analysis

Scalar Processors

¢ Machines use standard CPUs

e Main memory is in hierarchy: RAM and cache

Most programs exhibit locality of reference
o Same items are referred very close in time (temporal)
o Nearby locations are referred frequently (spatial)

« Programmers do not have control over memory

« Programmers can take advantage of cache

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2025/25_6.htm[6/14/2012 12:07:58 PM]

Objectives_template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

Matrix Multiplication

fori:=1tondo
forj:=1tondo
fork:=1tondo

cfijl = cfi,j] + afi,k] * b[k,]]
endfor

endfor

endfor

[]

Code for Scalar Processor

loop: Code for Scalar Processor
;f1 holds value of Cli,j]
;r1 holds value of n
;r2 holds address of A[i,1]
;r3 holds address of B[1,j]
;r13 holds size of row of B
;4 is the size of an element of A

;loop label
loadf 2, (r2) ;load A[iK]
loadf f3, (r3) ;load BK,j]
mpyf f4, 2, {3 JA[LK] * BIK,j]
addf f1, f1, f4 C=C+A*B
addi r2, r2, #4 ;incr pointer to A[i,k+1]
add r3, r3, r13 ;incr pointer to B[k+1,]]
subi rl, rl, #1 ;decrrl by 1
bnz rl, loop ;branch to loop if r1 6= 0

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2025/25_7.htm[6/14/2012 12:07:58 PM]

Objectives_template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

Spatial Locality

¢ Instruction count can be decremented but is not the only issue
« Performance is related to memory access

¢ Use cache to improve performance

« Matrices are stored row major

o Fetch AJi,k] shows good spatial locality

o Fetch B[k,j] is slow

¢ Re-order loops

Improve Spatial Locality

fori:=1tondo
fork:=1tondo
forj:=1tondo

cfijl = cfi,j] + afi,k] * b[k,]]
endfor

endfor

endfor

I -] x [

Temporal Locality

« Previous program has no temporal locality for large matrices

o Entire matrix B is fetched for each i

If row of B or C are large it does not benefit from temporal locality
o Use sub-matrix multiplication

Improve Temporal Locality

forit:= 1ton bysdo

for kt ;== 1 ton by s do
forjt:= 1tonbysdo

for i = it to min(it+s-1, n) do
for k = kt to min(kt+s-1, n) do
for j = jt to min(jt+s-1, n) do
cfi,j] = cfi.j] + afi,k] * blk,j]
endfor

endfor

endfor

endfor

endfor

endfor

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2025/25_8.htm[6/14/2012 12:07:58 PM]

Objectives template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

T T T
i i
' ' ¥
i SR S
! 1
i 1
i i
e ——
i i ¥
1 '
ST (" p—
i '
i i
' |
SR
' '
i i
- -
i i
] 1 1
sdasska=k
i 1 ¥
i i ¥
] ' v
e e
' ' v
i i i

T T T T T T T

[] i i i i i i

[] 1 1 1 1 1 '
___________ i R S ST B S S S

[] 1 1 1 1 1 1

¥ . i i i i P P

]

e S R !

[] 1 1 1 1 1 1

[] i | i i i P
el Ll PRt CEE Rt TR L E L bt O]

¥ . 1 1 i 1 1 1

[] 1 1 1 ' 1 '
S - R RSP S S (S S

[] — 1 v ' 1 v [

[] = i i i i i i

¥ 1 ! L L ! L L
afumade Y ELT T T EEPE

[] 1 1 1 1 1 '

[] i | | | ' P
sgsmamas e e e e e
¥ 1 1 1 1 1 1
[1 1 1 1 1 '
sdsschkas ssdesskssbossdescsaskaska
[] 1] T 1 1 [
¥ i i i i i P
v ' ' 1 ' ' '
sqe=apes S=qesspsspesqesspespe
[1 1 1 1 1 '

[i i i i i i

Matrix Multiplication on Vector Machine

fori:=1tondo

for k := 1 ton do

c[i,1:n] = c[i,1:n] + a[i,k] * blk,1:n]

endfor
endfor

fori=1ton do
fork =1tondo

setvl rl

loadf 12, (r2)
loadv v3, (r3)
mpyvs v3, v3, f2
loadv v4, (r4)
addvv v4, v4, v3
strorev v4, (r4)
addi r2, r2, #4
add r3, r3, r13
endfor

add r4, r4, r13

endfor

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oonalM ulti-core_Architecture/lecture%2025/25_9.htm[6/14/2012 12:07:58 PM]

1
._E.
1
-
1
= nln
"
i
X
H
-
1
ke
1
i
'
e
1
i

;r1 holds n and r13 holds row sizes of B and C
;r2 holds address of AJi,k]
;r3 holds address of B[k,1]
;r4 holds address of c[i,1]
;set vactor length to n

;load A[iK]

;load B[k,1:n]
;A[LK*B[K, 1:n]
;load CJ[i,1:n]
;update CJ[i,1:n]
;store CJ[i,1:n]
;point to A[i,k+1]
;point to B[k+1,1]

;point to C[i+1,1]

4l Previous

Next [[p

Objectives_template

Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS

Lecture 25: Supercomputing Applications

Load and store can be floated out of k loop

fori=1ton do

setvl rl ;set vactor length to n
loadv v4, (r4) ;load CJi,1:n]

for k =1 ton do

loadf 12, (r2) ;load AliK]

loadv v3, (r3) ;load B[k,1:n]
mpyvs v3, v3, f2 ;A[LK*B[K,1:n]
addvv v4, v4, v3 ;update CJ[i,1:n]
addi r2, r2, #4 ;point to A[i,k+1]
add r3, r3, r13 ;point to B[k+1,1]
endfor

strorev v4, (r4) ;store CJ[i,1:n]
add r4, r4, r13 ;point to C[i+1,1]
endfor

Strip-mining

If n is larger than vector size, the code will not work.
To handle the general case the vector must be divided into strips of size m where m is no longer
than a vector register. Assuming m=64

fori:=1tondo
fork:=1tondo

for js := 0 to n-1 by 64 do

vl := min(n-js, 64)
c[i,js+1:js+vl] = c[i,js+1:js+vl] +
afi,k] * b[k,js+1:js+Vvl]

endfor

endfor

endfor

Shared Memory Model

o Discover iterations which can be executed in parallel
« Master processor executes task upto the parallel loop
o Fork tasks for each of processor
o Synchronize at the end of the loop

One way to parallelize matrix multiplication is:

fori:=1tondo
fork :=1tondo
doall j:=1tondo
cfijl = cfi,j] + afi,k] * b[k,]]
endall
endfor
endfor
4|l Previous Next||p

file:/lIDJ/...ry,%20Dr.%20Sanjeev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture%2025/25_10.htm[6/14/2012 12:07:58 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_1.htm

	25_1
	Local Disk
	Objectives_template

	25_2
	Local Disk
	Objectives_template

	25_3
	Local Disk
	Objectives_template

	25_4
	Local Disk
	Objectives_template

	25_5
	Local Disk
	Objectives_template

	25_6
	Local Disk
	Objectives_template

	25_7
	Local Disk
	Objectives_template

	25_8
	Local Disk
	Objectives_template

	25_9
	Local Disk
	Objectives_template

	25_10
	Local Disk
	Objectives_template

