
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_1.htm[6/14/2012 12:15:49 PM]

 Module 21: Problem and Solution
 Lecture 41: Solution to Critical Section Problem

The Lecture Contains:

Solution to Critical Section Problem

Mutual Exclusion

Progress

Bounded Wait

Solution Issues

Two Process Critical Section Solution

Solution to Critical Section Problem

Synchronization Support in OS/ISA

Support in ISA

Implementing Locks Using Swap

Other Supports From ISA

Support From The OS

Multiprocessor Issues

Semaphores

Mutual Exclusion Using Semaphore

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_7.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_2.htm[6/14/2012 12:15:49 PM]

 Module 21: Problem and Solution
 Lecture 41: Solution to Critical Section Problem

Solution to Critical Section Problem

Requirements
Mutual Exclusion
Progress
Bounded Wait

We can make no assumptions on
Processor speed
Relative speeds of processes
Time to execute any critical/remainder section
Time to execute any entry/exit code

Mutual Exclusion

Statement of obvious
If a process is in critical section at some point in time, no other process should be
permitted to enter its critical section.

This is clearly the most basic requirement for the solution.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_3.htm[6/14/2012 12:15:49 PM]

 Module 21: Problem and Solution
 Lecture 41: Solution to Critical Section Problem

Progress

Given:There is no process in the critical section
And one or more processes want to enter the critical sections
Then one of them must be permitted to enter the critical section.

One those processes waiting to enter the critical section must take part in the arbitration.
This arbitration must be done in a finite amount of time.

Bounded Wait

A scheme of fairness and ensuring no starvation.
There is an upper bound on the number of times that other processes are allowed to enter
their critical sections between a process making its request and here quest getting granted.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_4.htm[6/14/2012 12:15:49 PM]

 Module 21: Problem and Solution
 Lecture 41: Solution to Critical Section Problem

Solution Issues

Preemptive kernel
A process may be preempted when in kernel mode

Non-preemptive kernel
A process may not be preempted when in kernel mode

Preemptive kernels are difficult
Especially for SMP machines.

Threads on multi-processors face independent OS.
Preemptive kernels are essential

In embedded systems with RT guarantees
Windows 2000, XP are non-preemptive
Linux kernel became preemptive since Linux 2.6

Two Process Critical Section Solution

Processes are P0 and P1.
Processes share a common variable turn(=0 or 1).
If turn= i, Pi is permitted to enter the critical section.

while (1) {
While (turn != i);
Critical section
turn = 1-i;
Remainder section
}

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_5.htm[6/14/2012 12:15:49 PM]

 Module 21: Problem and Solution
 Lecture 41: Solution to Critical Section Problem

Solution to Critical Section Problem

Consider two processes P0 and P1.
Shared variables (for solution to CSP)

int turn; boolean flag[2];
flag[i] is true when Piis ready to enter its critical section.

while (1) {
flag[i] = TRUE; turn = j;
while (flag[j] && turn == j);
Critical section
flag[i] = FALSE;
Remainder section
}

Synchronization Support in OS/ISA

Synchronization code can be written using locks
while (1) {
Non critical code
Acquire Lock
Critical Section Code
Release Lock
}
Implementation of Lock require support from the ISA

TestAndSet instruction, Swap instruction.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_6.htm[6/14/2012 12:15:49 PM]

 Module 21: Problem and Solution
 Lecture 41: Solution to Critical Section Problem

Support in ISA

Recall: All instructions in a processor execute uninterrupted.
Within a single processor, instructions are atomic.
Pentium ISA provide xchg instruction. (Swap instruction)
xchg(register r, memory_address a) {
t = r; r = *a; *a = t;
}

One Read and One write in memory and register each.

Implementing Locks Using Swap

Acquire Lock:
Register AX = TRUE;
While (AX=TRUE) xchg(AX, &lock);
Release Lock:

Lock = false;

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_7.htm[6/14/2012 12:15:50 PM]

 Module 21: Problem and Solution
 Lecture 41: Solution to Critical Section Problem

Other Supports from ISA

Some processors support TestAndSet instruction.
boolean TestAndSet(boolean *mem) {
boolean ret = *mem;
*mem = TRUE;
return ret;
}
Acquire Lock:
while TestAndSet(&lock) ;
Release Lock:
lock = false;

Support From The OS

If OS is non-preemptive
System calls can be provided for

Acquire Lock and Release Lock.
Process can not be preempted while acquiring and releasing locks.

If OS is preemptive.
System calls are tricky to support but not impossible.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_8.htm[6/14/2012 12:15:50 PM]

 Module 21: Problem and Solution
 Lecture 41: Solution to Critical Section Problem

Synchronization Support in OS/ISA

Synchronization code can be written using locks
while (1) {
Non critical code
Acquire Lock
Critical Section Code
Release Lock
}
Implementation of Lock require support from the ISA

TestAndSet instruction, Swap instruction
OS may provide system calls to

Acquire lock or release lock.
For preemptive OS kernels, hard to implement these calls

Solutions for Multi-processes

boolean waiting[n], lock;
waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key) key = TestAndSet(&lock);
waiting[i] = FALSE;
// Critical Section
j = (i+1)%n;
while ((j != i) && waiting[j]==FALSE) j = (j+1)%n;
if (j==i) lock=FALSE; else waiting[j] = FALSE;
// Remainder Section

Multiprocessor Issues

Multiple processors share a single bus.
Arbitration is for bus cycles
Atomicity across processors is at the granularity of bus cycle.

TestAndSet or Swap instructions require
At least one read and one write cycle

Bus arbitration logic has to be instructed to give bus for two cycles.
Lock instruction prefix in Pentium
For example lock xchg %ax, mem16

Lock instruction causes an arbitration sequence to be done for the entire instruction.
Atomic instruction execution across multiple processors

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_9.htm[6/14/2012 12:15:50 PM]

 Module 21: Problem and Solution
 Lecture 41: Solution to Critical Section Problem

Semaphores

A data structure abstraction for lock

class semaphore {
private: int s;
public:
void wait(void) {while (s < 0) ;
s--;
}
void signal(void) {
s++;
}
}

Mutual Exclusion Using Semaphore

semaphore mutex;
:
mutex.wait();
// Critical Section
mutex.signal();
// Remainder Section
:

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_1.htm

	41_1
	Local Disk
	Objectives_template

	41_2
	Local Disk
	Objectives_template

	41_3
	Local Disk
	Objectives_template

	41_4
	Local Disk
	Objectives_template

	41_5
	Local Disk
	Objectives_template

	41_6
	Local Disk
	Objectives_template

	41_7
	Local Disk
	Objectives_template

	41_8
	Local Disk
	Objectives_template

	41_9
	Local Disk
	Objectives_template

