
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_1.htm[6/14/2012 12:07:57 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

The Lecture Contains:

Loop Unswitching

Supercomputing Applications

Programming Paradigms

Important Problems

Scheduling

Sources and Types of Parallelism

Model of Compiler

Code Optimization

Data Dependence Analysis

Program Restructurer

Technique to Improve Detection of Parallelism: Interactive Compilation

Scalar Processors

Matrix Multiplication

Code for Scalar Processor

Spatial Locality

Improve Spatial Locality

Temporal Locality

Improve Temporal Locality

Matrix Multiplication on Vector Machine

Strip-mining

Shared Memory Model

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_10.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_2.htm[6/14/2012 12:07:57 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

Similarly

Can be replaced by

Loop Unswitching

A loop may be split into two loops. For example the following loop

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_3.htm[6/14/2012 12:07:58 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

May be replaced by

INTRODUCTION TO COMPILERS FOR
HIGH PERFORMANCE COMPUTERS

Supercomputing Applications

Used in scientific computing requiring very large compute time
Weather prediction: For a days prediction at 109 fpo/sec requires 3 hours
Used in biology, genetic engineering, astrophysics, aerospace, nuclear and particle physics,
medicine, tomography ...

Power of supercomputers comes from

Hardware technology: Faster machines
Multilevel architectural parallelism
Vector handles arrays with a single instruction
Parallel lot of processors each capable of executing an independent instruction stream
VLIW handles many instructions in a single cycle

Programming Paradigms

Vector Machines very close to sequential machines. Different in use of arrays
Parallel Machines deal with a system of processes. Has individual threads execution.
Synchronization is a very important issue.

Important things to remeber are
Aavoid deadlocks
Prevent race conditions
Avoid too many parallel threads

Performance evaluation criterion
Speed up vs number of processors
Synchronization over heads
Number of processors which can be kept busy

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_4.htm[6/14/2012 12:07:58 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

 Current software technology is unable to handle all these issues
Book keeping is still done by the users
Main directions of research

Design of concurrent algorithms
Design of concurrent languages
Construction of tools to do software development

Sequential compilers and book keeping tools
Parallelizing and vectoring compilers
Message passing libraries

Development of mathematical libraries
Languages Fortran, C, Java, X10 etc.
Dusty decks problem

Conversion of large body of existing sequential programs developed over last 40 years
Several billions lines of code and manual conversion is not possible
Restructuring compilers are required

Important Problems

Restructuring

Identify parts of program to take advantage of characteristics of machine
Manual coding is not possible
Compilers are more efficient

Scheduling

Exploit parallelism on a given machine
Static scheduling: done at compile time
Dynamic scheduling: done at run time

High overhead
Implemented through low level calls without involving OS (auto scheduling compilers)

Auto scheduling compilers
Offer new environments for executing parallel programs
Small overhead
Parallel execution of fine grain granularity is possible

Loop scheduling: Singly nested vs multiple nested
Runtime overheads: Scheduling, synchronization, inter processor communication

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_5.htm[6/14/2012 12:07:58 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

Sources and Types of Parallelism

Structured: Identical tasks on different data sets
Unstructured: Different data streams and different instructions
Algorithm level: Appropriate algorithms and data structures
Programming:

Specify parallelism in parallel languages
Write sequential code and use compilers
Use course grain parallelism: independent modules
Use medium grain parallelism: loop level
Use fine grain parallelism: basic block or statement

Expressing parallelism in programs
No good languages
Programmers are unable to exploit whatever little is available

Model of Compiler

CODE OPTIMIZATION

High Level Analysis for optimization

Common subexpression elimination
Copy propagation
Dead code elimination
Code motion
Strength reduction
Constant folding
Loop unrolling
Induction variable simplification

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_6.htm[6/14/2012 12:07:58 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

Data Dependence Analysis

Check whether program can be restructured
GCD test
Banerjee’s Test
I-test
Omega test
Architectural specific tests

Program Restructurer

Loop restructuring
Statement reordering
Loop (distribution) fission
Breaking dependence cycle: Node splitting
Loop interchanging
Loop skewing
Loop jamming
Handling while loops

Technique to Improve Detection of Parallelism: Interactive Compilation

Back-end to user
Compiler directives

Force Parallel
No Parallel
Max-trips count
Task identification
No side effects

Incremental Analysis

Scalar Processors

Machines use standard CPUs
Main memory is in hierarchy: RAM and cache
Most programs exhibit locality of reference

Same items are referred very close in time (temporal)
Nearby locations are referred frequently (spatial)

Programmers do not have control over memory
Programmers can take advantage of cache

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_7.htm[6/14/2012 12:07:58 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

Matrix Multiplication

for i := 1 to n do
for j := 1 to n do
for k := 1 to n do
c[i,j] = c[i,j] + a[i,k] * b[k,j]
endfor
endfor
endfor

Code for Scalar Processor

loop: Code for Scalar Processor

loadf f2, (r2)
loadf f3, (r3)
mpyf f4, f2, f3
addf f1, f1, f4
addi r2, r2, #4
add r3, r3, r13
subi r1, r1, #1
bnz r1, loop

;f1 holds value of C[i,j]
;r1 holds value of n
;r2 holds address of A[i,1]
;r3 holds address of B[1,j]
;r13 holds size of row of B
;4 is the size of an element of A
;loop label
;load A[i,k]
;load B[k,j]
;A[i,k] * B[k,j]
;C = C + A * B
;incr pointer to A[i,k+1]
;incr pointer to B[k+1,j]
;decr r1 by 1
;branch to loop if r1 6= 0

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_8.htm[6/14/2012 12:07:58 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

Spatial Locality

Instruction count can be decremented but is not the only issue
Performance is related to memory access
Use cache to improve performance
Matrices are stored row major
Fetch A[i,k] shows good spatial locality
Fetch B[k,j] is slow
Re-order loops

Improve Spatial Locality

for i := 1 to n do
for k := 1 to n do
for j := 1 to n do
c[i,j] = c[i,j] + a[i,k] * b[k,j]
endfor
endfor
endfor

Temporal Locality

Previous program has no temporal locality for large matrices
Entire matrix B is fetched for each i
If row of B or C are large it does not benefit from temporal locality
Use sub-matrix multiplication

Improve Temporal Locality

for it := 1 to n by s do
for kt := 1 to n by s do
for jt := 1 to n by s do
for i = it to min(it+s-1, n) do
for k = kt to min(kt+s-1, n) do
for j = jt to min(jt+s-1, n) do
c[i,j] = c[i,j] + a[i,k] * b[k,j]
endfor
endfor
endfor
endfor
endfor
endfor

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_9.htm[6/14/2012 12:07:58 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

Matrix Multiplication on Vector Machine

for i := 1 to n do
for k := 1 to n do
c[i,1:n] = c[i,1:n] + a[i,k] * b[k,1:n]
endfor
endfor

for i = 1 to n do
for k = 1 to n do

setvl r1
loadf f2, (r2)
loadv v3, (r3)
mpyvs v3, v3, f2
loadv v4, (r4)
addvv v4, v4, v3
strorev v4, (r4)
addi r2, r2, #4
add r3, r3, r13
endfor
add r4, r4, r13

endfor

;r1 holds n and r13 holds row sizes of B and C
;r2 holds address of A[i,k]
;r3 holds address of B[k,1]
;r4 holds address of c[i,1]
;set vactor length to n
;load A[i,k]
;load B[k,1:n]
;A[i,k]*B[k,1:n]
;load C[i,1:n]
;update C[i,1:n]
;store C[i,1:n]
;point to A[i,k+1]
;point to B[k+1,1]

;point to C[i+1,1]

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_10.htm[6/14/2012 12:07:58 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 25: Supercomputing Applications

Load and store can be floated out of k loop

for i = 1 to n do
setvl r1
loadv v4, (r4)
for k = 1 to n do
loadf f2, (r2)
loadv v3, (r3)
mpyvs v3, v3, f2
addvv v4, v4, v3
addi r2, r2, #4
add r3, r3, r13
endfor
strorev v4, (r4)
add r4, r4, r13
endfor

;set vactor length to n
;load C[i,1:n]

;load A[i,k]
;load B[k,1:n]
;A[i,k]*B[k,1:n]
;update C[i,1:n]
;point to A[i,k+1]
;point to B[k+1,1]

;store C[i,1:n]
;point to C[i+1,1]

Strip-mining

If n is larger than vector size, the code will not work.
To handle the general case the vector must be divided into strips of size m where m is no longer
than a vector register. Assuming m=64

for i := 1 to n do
for k := 1 to n do
for js := 0 to n-1 by 64 do
vl := min(n-js, 64)
c[i,js+1:js+vl] = c[i,js+1:js+vl] +
a[i,k] * b[k,js+1:js+vl]
endfor
endfor
endfor

Shared Memory Model

Discover iterations which can be executed in parallel
Master processor executes task upto the parallel loop

Fork tasks for each of processor
Synchronize at the end of the loop

One way to parallelize matrix multiplication is:

for i := 1 to n do
for k := 1 to n do
doall j := 1 to n do
c[i,j] = c[i,j] + a[i,k] * b[k,j]
endall
endfor
endfor

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_1.htm

	25_1
	Local Disk
	Objectives_template

	25_2
	Local Disk
	Objectives_template

	25_3
	Local Disk
	Objectives_template

	25_4
	Local Disk
	Objectives_template

	25_5
	Local Disk
	Objectives_template

	25_6
	Local Disk
	Objectives_template

	25_7
	Local Disk
	Objectives_template

	25_8
	Local Disk
	Objectives_template

	25_9
	Local Disk
	Objectives_template

	25_10
	Local Disk
	Objectives_template

