Objectives_template

Module 9: Addendum to Module 6: Shared Memory Multiprocessors

Lecture 17: Multiprocessor Organizations and Cache Coherence

The Lecture Contains:

Shared Memory Multiprocessors
Shared Cache

Private Cache/Dancehall
Distributed Shared Memory
Shared vs. Private in CMPs
Cache Coherence

Cache Coherence: Example

What Went Wrong?

Implementations

4| Previous Next||p

file:///D|/...audhary,%20Dr.%20Sanjeev%20K %20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture17/17_1.htm[6/14/2012 12:01:32 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture16/16_9.htm

Objectives template

Module 9: Addendum to Module 6: Shared Memory Multiprocessors

Lecture 17: Multiprocessor Organizations and Cache Coherence

Shared Memory Multiprocessors

* What do they look like?
o We will assume that each processor has a hierarchy of caches (possibly shared)
o We will not discuss shared memory in a time-shared single-thread computer

* A degenerate case of the following

Shared cache (popular in CMPs)

Private cache (popular in CMPs and SMPs)

Dancehall (popular in old computers)

Distributed shared memory (popular in medium to large-scale servers)

[e]

[e]

[e]

[e]

Shared Cache

T T, S T et e -

™ P ™, 3 " B
/ Y { 1 i y i)
f i f | f

——-h

INTERCONMECT

e

q||Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %6208 %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel7/17_2.htm[6/14/2012 12:01:33 PM]

Objectives template

Module 9: Addendum to Module 6: Shared Memory Multiprocessors
Lecture 17: Multiprocessor Organizations and Cache Coherence

Private Cache/Dancehall

-

INTERCONNECT

Distributed Shared Memory

@) @ & G

CACHE CACHE CACHE CACHE
INTERCONMECT J

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel7/17_3.htm[6/14/2012 12:01:33 PM]

Objectives_template

Module 9: Addendum to Module 6: Shared Memory Multiprocessors

Lecture 17: Multiprocessor Organizations and Cache Coherence

Shared vs. Private in CMPs

e Shared caches are often very large in the CMPs
o They are banked to avoid worst-case wire delay
o The banks are usually distributed across the floor of the chip on an interconnect

¢ In shared caches, getting a block from a remote bank takes time proportional to the physical
distance between the requester and the bank
o Non-uniform cache architecture (NUCA)
o This is same for private caches, if the data resides in a remote cache
o Shared cache may have higher average hit latency than the private cache
o Hopefully most hits in the latter will be local
« Shared caches are most likely to have less misses than private caches
o Latter wastes space due to replication

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel7/17_4.htm[6/14/2012 12:01:33 PM]

Objectives_template

Module 9: Addendum to Module 6: Shared Memory Multiprocessors

Lecture 17: Multiprocessor Organizations and Cache Coherence

Cache Coherence

« Nothing unique to multiprocessors

o Even uniprocessor computers need to worry about cache coherence

o For sequential programs we expect a memory location to return the latest value written

o For concurrent programs running on multiple threads or processes on a single processor
we expect the same model to hold because all threads see the same cache hierarchy
(same as shared L1 cache)

o For multiprocessors there remains a danger of using a stale value: hardware must
ensure that cached values are coherent across the system and they satisfy
programmers' intuitive memory model

Cache Coherence: Example

o Assume a write-through cache
= PO: reads x from memory, puts it in its cache, and gets the value 5
= P1: reads x from memory, puts it in its cache, and gets the value 5
= P1: writes x=7, updates its cached value and memory value
= PO: reads x from its cache and gets the value 5
= P2: reads x from memory, puts it in its cache, and gets the value 7 (now the
system is completely incoherent)
= P2: writes x=10, updates its cached value and memory value

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel7/17_5.htm[6/14/2012 12:01:33 PM]

Objectives_template

Module 9: Addendum to Module 6: Shared Memory Multiprocessors

Lecture 17: Multiprocessor Organizations and Cache Coherence

Cache Coherence: Example

o Consider the same example with a writeback cache

o PO has a cached value 5, P1 has 7, P2 has 10, memory has 5 (since caches are not
write through)

o The state of the line in P1 and P2 is M while the line in PO is clean

o Eviction of the line from P1 and P2 will issue writebacks while eviction of the line from
PO will not issue a writeback (clean lines do not need writeback)

o Suppose P2 evicts the line first, and then P1

o Final memory value is 7: we lost the store x=10 from P2

What Went Wrong?

o For write through cache
o The memory value may be correct if the writes are correctly ordered
o But the system allowed a store to proceed when there is already a cached copy
o Lesson learned: must invalidate all cached copies before allowing a store to proceed
o Writeback cache
o Problem is even more complicated: stores are no longer visible to memory immediately
o Writeback order is important Lesson learned: do not allow more than one

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %6208 %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel7/17_6.htm[6/14/2012 12:01:33 PM]

Objectives_template

Module 9: Addendum to Module 6: Shared Memory Multiprocessors

Lecture 17: Multiprocessor Organizations and Cache Coherence

Implementations

« Must invalidate all cached copies before allowing a store to proceed
o Need to know where the cached copies are
o Solutionl: Never mind! Just tell everyone that you are going to do a store
= Leads to broadcast snoopy protocols
= Popular with small-scale bus-based CMPs and SMPs
= AMD Opteron implements it on a distributed network (the Hammer protocol)
o Solution2: Keep track of the sharers and invalidate them when needed
= Where and how is this information stored?
= Leads to directory-based scalable protocols
« Directory-based protocols
o Maintain one directory entry per memory block
o Each directory entry contains a sharer bitvector and state bits
Concept of home node in distributed shared memory multiprocessors
Concept of sparse directory for on-chip coherence in CMPs

[e]

[e]

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %6208 %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel7/17_7.htm[6/14/2012 12:01:33 PM]

Objectives_template

Module 9: Addendum to Module 6: Shared Memory Multiprocessors

Lecture 17: Multiprocessor Organizations and Cache Coherence

Implementations

« Do not allow more than one copy of a cache line in M state
o Need some form of access control mechanism
o Before a processor does a store it must take “permission” from the current “owner” (if
any)
o Need to know who the current owner is
« Either a processor or main memory
o Solutionl and Solution2 apply here also
o Latest value must be propagated to the requester
o Notion of “latest” is very fuzzy
o Once we know the owner, this is easy
o Solutionl and Solution2 apply here also
« Invariant: if a cache block is not in M state in any processor, memory must provide the block to
the requester
o Memory must be updated when a block transitions from M state to S state
o Note that a transition from M to | always updates memory in systems with writeback
caches (these are normal writeback operations)
* Most of the implementations of a coherence protocol deals with uncommon cases and races

|| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel7/17_8.htm[6/14/2012 12:01:33 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_1.htm

	17_1
	Local Disk
	Objectives_template

	17_2
	Local Disk
	Objectives_template

	17_3
	Local Disk
	Objectives_template

	17_4
	Local Disk
	Objectives_template

	17_5
	Local Disk
	Objectives_template

	17_6
	Local Disk
	Objectives_template

	17_7
	Local Disk
	Objectives_template

	17_8
	Local Disk
	Objectives_template

