Objectives_template

Module 6: Shared Memory Multiprocessors: Consistency and Coherence

Lecture 12: Cache Coherence Protocols

The Lecture Contains:

Stores

Invalidation vs. Update
Which One is Better?
MSI Protocol

State Transition

Mto S, or Mto I?

MSI Example

MESI Protocol
MESI Example
MOESI Protocol

MOSI Protocol

4|l Previous Next||p

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_1.htm[6/14/2012 11:57:33 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_9.htm

Objectives_template

Module 6: Shared Memory Multiprocessors: Consistency and Coherence

Lecture 12: Cache Coherence Protocols

Stores

o Look at stores a little more closely

o There are three situations at the time a store issues: the line is not in the cache, the
line is in the cache in S state, the line is in the cache in one of M, E and O states

o If the line is in | state, the store generates a read-exclusive request on the bus and gets
the line in M state

o If the line is in S or O state, that means the processor only has read permission for that
line; the store generates an upgrade request on the bus and the upgrade
acknowledgment gives it the write permission (this is a data-less transaction)

o If the line is in M or E state, no bus transaction is generated; the cache already has
write permission for the line (this is the case of a write hit; previous two are write
misses)

Invalidation vs. Update

« Two main classes of protocols:

o Invalidation-based and update-based

o Dictates what action should be taken on a write

o Invalidation-based protocols invalidate sharers when a write miss (upgrade or readX)
appears on the bus

o Update-based protocols update the sharer caches with new value on a write: requires
write transactions (carrying just the modified bytes) on the bus even on write hits (not
very attractive with writeback caches)

o Advantage of update-based protocols: sharers continue to hit in the cache while in
invalidation-based protocols sharers will miss next time they try to access the line

o Advantage of invalidation-based protocols: only write misses go on bus (suited for
writeback caches) and subsequent stores to the same line are cache hits

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel2/12_2.htm[6/14/2012 11:57:33 AM]

Objectives_template

Module 6: Shared Memory Multiprocessors: Consistency and Coherence

Lecture 12: Cache Coherence Protocols

Which One is Better?

« Difficult to answer
o Depends on program behavior and hardware cost
¢ When is update-based protocol good?
o What sharing pattern? (large-scale producer/consumer)
o Otherwise it would just waste bus bandwidth doing useless updates
e When is invalidation-protocol good?
o Sequence of multiple writes to a cache line
o Saves intermediate write transactions
¢ Also think about the overhead of initiating small updates for every write in update protocols
o Invalidation-based protocols are much more popular
o Some systems support both or maybe some hybrid based on dynamic sharing pattern of
a cache line

MSI Protocol

« Forms the foundation of invalidation-based writeback protocols
o Assumes only three supported cache line states: I, S, and M
o There may be multiple processors caching a line in S state
o There must be exactly one processor caching a line in M state and it is the owner of the
line
o If none of the caches have the line, memory must have the most up-to-date copy of the
line
o Processor requests to cache: PrRd , Prwr
¢ Bus transactions: BusRd , BusRdX , BusUpgr , BuswB

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel2/12_3.htm[6/14/2012 11:57:33 AM]

Objectives_template

Module 6: Shared Memory Multiprocessors: Consistency and Coherence

Lecture 12: Cache Coherence Protocols

State Transition

T PrWrBusRdX

S -~ PrivrBusUpgr ™. |

e PRABusR oy AT

I PriRdi- ;"'_T s | [M '
- o M e S —
o e N PrRa-
i - BusRdFlush Prvr-

o ./.. g
. {Eusﬁd? iiusLlpgr}I- .
e CacheEvict'-
— — BusRdX/Flush
T CacheEvictBus\Wa

MSI Protocol

« Few things to note

o Flush operation essentially launches the line on the bus

o Processor with the cache line in M state is responsible for flushing the line on bus
whenever there is a BusRd or BusRdX transaction generated by some other processor

o On BusRd the line transitions from M to S, but not M to I. Why? Also at this point both
the requester and memory pick up the line from the bus; the requester puts the line in
its cache in S state while memory writes the line back. Why does memory need to write
back?

o On BusRdX the line transitions from M to | and this time memory does not need to pick
up the line from bus. Only the requester picks up the line and puts it in M state in its
cache. Why?

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel2/12_4.htm[6/14/2012 11:57:33 AM]

Objectives_template

Module 6: Shared Memory Multiprocessors: Consistency and Coherence

Lecture 12: Cache Coherence Protocols

Mto S, or Mto I?

o BusRd takes a cache line in M state to S state

o The assumption here is that the processor will read it soon, so save a cache miss by
going to S

o May not be good if the sharing pattern is migratory : PO reads and writes
cache line A, then P1 reads and writes cache line A, then P2...

o For migratory patterns it makes sense to go to | state so that a future invalidation is
saved

o But for bus-based SMPs it does not matter much because an upgrade transaction will
be launched anyway by the next writer, unless there is special hardware support to
avoid that: how?

o The big problem is that the sharing pattern for a cache line may change dynamically:
adaptive protocols are good and are supported by Sequent Symmetry and MIT Alewife

MSI Example

e Take the following example
o PO reads x, P1 reads x, P1 writes x, PO reads x, P2 reads x, P3 writes x
o Assume the state of the cache line containing the address of x is | in all processors

PO generates BusRd , memory provides line, PO puts line in S state

P1 generates BusRd , memory provides line, P1 puts line in S state

P1 generates BusUpgr , PO snoops and invalidates line, memory does not respond, P1 sets
state of line to M

PO generates BusRd , P1 flushes line and goes to S state, PO puts line in S state, memory
writes back

P2 generates BusRd , memory provides line, P2 puts line in S state

P3 generates BusRdX , PO, P1, P2 snoop and invalidate, memory provides line, P3 puts line in
cache in M state

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel2/12_5.htm[6/14/2012 11:57:33 AM]

Objectives_template

Module 6: Shared Memory Multiprocessors: Consistency and Coherence

Lecture 12: Cache Coherence Protocols

MESI Protocol

« The most popular invalidation-based protocol e.g., appears in Intel Xeon MP
« Why need E state?
o The MSI protocol requires two transactions to go from | to M even if there is no
intervening requests for the line: BusRd followed by BusUpgr
o We can save one transaction by having memory controller respond to the first BusRd
with E state if there is no other sharer in the system
o How to know if there is no other sharer? Needs a dedicated control wire that gets
asserted by a sharer (wired OR)
o Processor can write to a line in E state silently and take it to M state

State Transition

Prid/BusRd(S) PrRdl-
— BusRd/Flush
" {BusRdX BusUpgryFlush —a " |
P SacheEvict- e
L1 e HuRdarsh_ LS
A _{F" CacheEvictBusiva_ BusRd/Flush
-, ™ ’
\\Busﬁﬁmem
PRdBusRA(S) | W PrrBusUpgr
| BusRdX/Flush
', CacheEvigti- PrWHBUERAX .
W T/ -) T
| 1 rl- | | -.-.I
\ E } 7 » M /.-'* PriRd-
— Y '-—q: PI:'!"!'U’-
. I e
PrRdl-

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel2/12_6.htm[6/14/2012 11:57:33 AM]

Objectives_template

Module 6: Shared Memory Multiprocessors: Consistency and Coherence

Lecture 12: Cache Coherence Protocols

MESI Protocol

« If a cache line is in M state definitely the processor with the line is responsible for flushing it
on the next BusRd or BusRdX transaction
o If a line is not in M state who is responsible?
o Memory or other caches in S or E state?
o Original lllinois MESI protocol assumed cache-to-cache transfer i.e. any processor in E
or S state is responsible for flushing the line
o However, it requires some expensive hardware, namely, if multiple processors are
caching the line in S state who flushes it? Also, memory needs to wait to know if it
should source the line
o Without cache-to-cache sharing memory always sources the line unless it is in M state

MESI Example

* Take the following example
o PO reads x, PO writes X, P1 reads x, P1 writes X, ...

PO generates BusRd , memory provides line, PO puts line in cache in E state

PO does write silently, goes to M state

P1 generates BusRd , PO provides line, P1 puts line in cache in S state, PO transitions
to S state

Rest is identical to MSI

¢ Consider this example: PO reads x, P1 reads x, ...

PO generates BusRd , memory provides line, PO puts line in cache in E state

P1 generates BusRd , memory provides line, P1 puts line in cache in S state, PO
transitions to S state (no cache-to-cache sharing)

Rest is same as MSI

|| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel2/12_7.htm[6/14/2012 11:57:33 AM]

Objectives_template

Module 6: Shared Memory Multiprocessors: Consistency and Coherence

Lecture 12: Cache Coherence Protocols

MOESI Protocol

¢ Some SMPs implement MOESI today e.g., AMD Athlon MP and the IBM servers
« Why is the O state needed?

o O state is very similar to E state with four differences: 1. If a cache line is in O state in
some cache, that cache is responsible for sourcing the line to the next requester; 2. The
memory may not have the most up-to-date copy of the line (this implies 1); 3. Eviction
of a line in O state generates a BusWB ; 4. Write to a line in O state must generate a
bus transaction

o When a line transitions from M to S it is necessary to write the line back to memory

o For a migratory sharing pattern (frequent in database workloads) this leads to a series
of writebacks to memory

o These writebacks just keep the memory banks busy and consumes memory bandwidth

o Take the following example

o PO reads x, PO writes X, P1 reads x, P1 writes x, P2 reads x, P2 writes X, ...

o Thus at the time of a BusRd response the memory will write the line back: one
writeback per processor handover

o O state aims at eliminating all these writebacks by transitioning from M to O instead of
M to S on a BusRd /Flush

o Subsequent BusRd requests are replied by the owner holding the line in O state

o The line is written back only when the owner evicts it: one single writeback

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel2/12_8.htm[6/14/2012 11:57:33 AM]

Objectives_template

Module 6: Shared Memory Multiprocessors: Consistency and Coherence

Lecture 12: Cache Coherence Protocols

MOESI Protocol

o State transitions pertaining to O state
o | to O: not possible (or maybe; see below)
o Eto O or S to O: not possible
o M to O: on a BusRd /Flush (but no memory writeback)
o O to I: on CacheEvict / BusWB or { BusRdX,BusUpgr }/Flush
o O to S: not possible (or maybe; next slide)
o O to E: not possible (or maybe if silent eviction not allowed) '
o O to M: on PrWr / BusUpgr
« At most one cache can have a line in O state at any point in time
« Two main design choices for MOESI
o Consider the example PO reads x, PO writes X, P1 reads x, P2 reads x, P3 reads x, ...
o When P1 launches BusRd , PO sources the line and now the protocol has two options:
1. The line in PO goes to O and the line in P1 is filled in state S; 2. The line in PO goes
to S and the line in P1 is filled in state O i.e. P1 inherits ownership from PO
o For bus-based SMPs the two choices will yield roughly the same performance
o For DSM multiprocessors we will revisit this issue if time permits
o According to the second choice, when P2 generates a BusRd request, P1 sources the
line and transitions from O to S; P2 becomes the new owner

MOSI Protocol

¢ Some SMPs do not support the E state
o In many cases it is not helpful, only complicates the protocol
o MOSI allows a compact state encoding in 2 bits
o Sun WildFire uses MOSI protocol

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel2/12_9.htm[6/14/2012 11:57:34 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_1.htm

	12_1
	Local Disk
	Objectives_template

	12_2
	Local Disk
	Objectives_template

	12_3
	Local Disk
	Objectives_template

	12_4
	Local Disk
	Objectives_template

	12_5
	Local Disk
	Objectives_template

	12_6
	Local Disk
	Objectives_template

	12_7
	Local Disk
	Objectives_template

	12_8
	Local Disk
	Objectives_template

	12_9
	Local Disk
	Objectives_template

