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Why CMP?
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Memory Consistency Models

Memory Consistency

« Coherence protocol is not enough to completely specify the output(s) of a parallel program

o Coherence protocol only provides the foundation to reason about legal outcome of
accesses to the same memory location

o Consistency model tells us the possible outcomes arising from legal ordering of
accesses to all memory locations

o A shared memory machine advertises the supported consistency model; it is a “contract”
with the writers of parallel software and the writers of parallelizing compilers

o Implementing memory consistency model is really a hardware-software tradeoff: a strict
sequential model (SC) offers execution that is intuitive, but may suffer in terms of
performance; relaxed models (RC) make program reasoning difficult, but may offer
better performance

SC

¢ Recall that an execution is SC if the memory operations form a valid total order i.e. it is an
interleaving of the partial program orders

o Sufficient conditions require that a new memory operation cannot issue until the
previous one is completed

o This is too restrictive and essentially disallows compiler as well as hardware re-ordering
of instructions

o No microprocessor that supports SC implements sufficient conditions

o Instead, all out-of-order execution is allowed, and a proper recovery mechanism is
implemented in case of a memory order violation

o Let's discuss the MIPS R10000 implementation
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SC in MIPS R10000

¢ Issues instructions out of program order, but commits in order
o The problem is with speculatively executed loads: a load may execute and use a value
long before it finally commits
o In the meantime, some other processor may modify that value through a store and the
store may commit (i.e. become globally visible) before the load commits: may violate SC
(why?)
o How do you detect such a violation?
o How do you recover and guarantee an SC execution?
o Any special consideration for prefetches ? Binding and non-binding prefetches
« In MIPS R10000 a store remains at the head of the active list until it is completed in cache
o Can we just remove it as soon as it issues and let the other instructions commit (the
store can complete from store buffer at a later point)? How far can we go and still
guarantee SC?
« The Stanford DASH multiprocessor, on receiving a read reply that is already invalidated, forces
the processor to retry that load
o Why can't it use the value in the cache line and then discard the line?
o Does the cache controller need to take any special action when a line is replaced from the
cache?

Relaxed Models

« Implementing SC requires complex hardware
o Is there an example that clearly shows the disaster of not implementing all these?
« Observe that cache coherence protocol is orthogonal
o But such violations are rare
o Does it make sense to invest so much time (for verification) and hardware (associative
lookup logic in load queue)?
o Many processors today relax the consistency model to get rid of complex hardware and
achieve some extra performance at the cost of making program reasoning complex
o PO: A=1; B=1; flag=1; P1: while (!flag); print A; print B;
o SC is too restrictive; relaxing it does not always violate programmers' intuition

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel5/15_3.htm[6/14/2012 12:00:11 PM]



Objectives_template

Module 8: Memory Consistency Models and Case Studies of Multi-core

Lecture 15: Memory Consistency Models and Case Studies of Multi-core

Case Studies
CMP

¢ CMP is the mantra of today's microprocessor industry

o Intel's dual-core Pentium 4: each core is still hyperthreaded (just uses existing cores)

o Intel's quad-core Whitefield is coming up in a year or so

o For the server market Intel has announced a dual-core Itanium 2 (code named
Montecito); again each core is 2-way threaded

o AMD has released dual-core Opteron in 2005

o IBM released their first dual-core processor POWER4 circa 2001; next-generation
POWERS5 also uses two cores but each core is also 2-way threaded

o Sun's UltraSPARC IV (released in early 2004) is a dual-core processor and integrates
two UltraSPARC Il cores

Why CMP?

o Today microprocessor designers can afford to have a lot of transistors on the die

o Ever-shrinking feature size leads to dense packing

o What would you do with so many transistors?

o Can invest some to cache, but beyond a certain point it doesn't help

o Natural choice was to think about greater level of integration

o Few chip designers decided to bring the memory and coherence controllers along with
the router on the die

o The next obvious choice was to replicate the entire core; it is fairly simple: just use the
existing cores and connect them through a coherent interconnect
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Moore's Law

e The number of transistors on a die doubles every 18-24 months
o Exponential growth in available transistor count
o If transistor utilization is constant, this would lead to exponential performance growth;
but life is slightly more complicated
o Wires don't scale with transistor technology: wire delay becomes the bottleneck
o Short wires are good: dictates localized logic design
o But superscalar processors exercise a “centralized” control requiring long wires (or
pipelined long wires)
o However, to utilize the transistors well, we need to overcome the memory wall problem
o To hide memory latency we need to extract more independent instructions i.e. more ILP
« Extracting more ILP directly requires more available in-flight instructions
o But for that we need bigger ROB which in turn requires a bigger register file
o Also we need to have bigger issue queues to be able to find more parallelism
o None of these structures scale well: main problem is wiring
o So the best solution to utilize these transistors effectively with a low cost must not
require long wires and must be able to leverage existing technology: CMP satisfies
these goals exactly (use existing processors and invest transistors to have more of
these on-chip instead of trying to scale the existing processor for more ILP)
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Power Consumption?

¢ Hey, didn't | just make my power consumption roughly N-fold by putting N cores on the die?
o Yes, if you do not scale down voltage or frequency
o Usually CMPs are clocked at a lower frequency
¢ Oops! My games run slower!
o Voltage scaling happens due to smaller process technology
o Overall, roughly cubic dependence of power on voltage or frequency
o Need to talk about different metrics
o Performance/Watt (same as reciprocal of energy)
« More general, Performance k+1 /Watt (k > 0)
o Need smarter techniques to further improve these metrics Online voltage/frequency
scaling

ABCs of CMP

« Where to put the interconnect?

o Do not want to access the interconnect too frequently because these wires are slow

o It probably does not make much sense to have the L1 cache shared among the cores:
requires very high bandwidth and may necessitate a redesign of the L1 cache and
surrounding load/store unit which we do not want to do; so settle for private L1 caches,
one per core

o Makes more sense to share the L2 or L3 caches

o Need a coherence protocol at L2 interface to keep private L1 caches coherent: may use
a high-speed custom designed snoopy bus connecting the L1 controllers or may use a
simple directory protocol

o An entirely different design choice is not to share the cache hierarchy at all (dual-core
AMD and Intel): rids you of the on-chip coherence protocol, but no gain in
communication latency
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32-way: Ring Bus

POWER4

POWER4 Caches

e Private L1 instruction and data caches (on chip)
o L1 icache : 64 KB/direct mapped/128 bytes line
o L1 dcache : 32 KB/2-way associative/128 bytes line/LRU
o No M state in L1 data cache (write through)
e On-chip shared L2 (on-chip coherence point)
o 1.5 MB/8-way associative/128 bytes line/pseudo LRU
o For on-chip coherence, L2 tag is augmented with a two-bit sharer vector; used to invalidate L1 on other
core's write
o Three L2 controllers and each L2 controller has four local coherence units; each L2 controller handles
roughly 512 KB of data divided into four SRAM partitions
o For off-chip coherence, each L2 controller has four snoop engines; executes enhanced MESI with seven
states
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