
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_1.htm[6/14/2012 12:10:49 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis

 

The Lecture Contains:

Interprocedural Dataflow Analysis

Alias Computation

Example

Data Flow Analysis in Presence of Procedure Calls

Data Dependence Analysis

Data Dependence

Data Dependence Graph

Basic Block Dependence

Data Dependence in Loops

Unroll the Loop

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_9.htm


Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_2.htm[6/14/2012 12:10:49 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis

 
We can relate in, out and transfer as follows

Consider following control flow graph

Suppose a is an array, c is and integer, and p and q are pointer.

Initially 

Out 

In 

out 

In 

out 

in 

in 

out 

 ={(P,a),(q,a),(q,c)

in 

out 

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_3.htm[6/14/2012 12:10:49 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis

 
Interprocedural dataflow analysis

Aliases : If two variables denote the same memory location

s1 : a := b+x
s2 : y := c
s3 : d := b+x

is b+x available at s3?
Yes, provided x and y are not aliases

language :

Permits recursive procedures
May refer to both global & local definitions
Data variables consist of globals and its own locals (no block structuring)
Parameters by reference
Single return node

Alias Computation

1. Rename variables so that no two procedures use the same formal parameters or local
identifiers

2. If there is a procedure  and an invocation  , set 
3. Take reflexive and transitive closure by adding

X = Y whenever Y = X
X = Z whenever X = Y and Y = Z

Example

global g,h
zero();
local i;
g := · · ·
one(h, i); h = w i = x
end zero;
one(w, x)
x := · · ·
two(w, w); w = y w = z
two(g, x); g = y x = z
end one;
two(y, z)
local k;
h := · · ·
one(k, y) k = w y = x
end two;
Therefore, h = w = y = z = k = x = i = g

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_4.htm[6/14/2012 12:10:50 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis
 
Data Flow Analysis in Presence of Procedure Calls

Change[p ] set of global variables and formal parameters of p that might be changed during an execution of
p.
Def[p ] set of formal parameters and global variables having explicit definition within p.
A: { a | a is a global variable or formal of p, such that for some procedure q and integer i, p calls q with a as
the ith actual parameter and ith formal of q is in change[q] }
G: { g | g is a global in change[q] and p calls q }

Data Dependence Analysis

Used for instruction scheduling
Used for data cache optimization
Determines ordering relationship; a dependence between two statements constraints their execution
order
Control dependence: arises from control flow

S1: a = b+c
S2: if a > 10 goto L1
S3: d = b*e
S4: e = d+1
S5: L1: d = e/2

Data Dependence

Arises from flow of data between two statements
Compiler must analyze programs to find constraints preventing the reordering of operations.

Consider:
A = 0 
B = A 
C = A + D 
D = 2

(1)
(2)
(3)
(4)

Moving (2) above (1):: Value of A in (2) changes
Moving (4) above (3):: results in wrong value of D in (3)

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_5.htm[6/14/2012 12:10:50 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis

 
Three types of constraints:

Flow or True Dependence: When a variable is assigned or defined in one statement and
used in subsequent statement
Anti Dependence: When a variable is used in one statement and reassigned in
subsequently executed statement
Output Dependence: When a variable is assigned in one statement and reassigned in
subsequent statement

Anti dependence and Output dependence arise from reuse of variable and are also called False
dependence.

Flow dependence is inherent in computation and cannot be eliminated by renaming. Therefore it is
also called True dependence.

Data Dependence Graph

Data structure used to depict dependency between statements.

Each statement represents a node in the graph
Nodes are connected by directed edges

1. When S2 is flow dependent on S1, it is denoted by S1  S2 or S1  S2 and represented by
S1 → S2

2. When there is an anti-dependence from S1 to S2, it is denoted by S1  S2 or S1  S2 and

represented by
S1 → S2

3. When there is an output-dependence from S1 to S2, it is denoted by S1  S2 and
represented by
S1 → S2

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_6.htm[6/14/2012 12:10:50 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis

 
Approaches to data dependence relations:

Address Based: Dependences which use the same address
Value Based: Dependences which use the same value

Consider A = 0
B = A
A = B + 1
C = A

Address-based approach Value-Based Approach
There is a flow dependence
between S1 and S4
S1 → S4
because S4 uses A

In (4) value of A used is
defined in (3) and not in (1)
thus, there is no data dependence

Value based dependence is a subset of Address based dependence.

For Address-based dependence:

 then ?

This is written as  and is used for cache optimizations

Basic Block Dependence

Construct dependence graph for the instructions
I1 and I2 may have flow, anti or output dependence

Can not determine whether I1 can be moved beyond I2
Suppose an instruction reads from [r11](4) and the next instruction writes to [r12+12](4)

Unless we know r11 and r12+12 point to different locations assume a flow dependence

I1 is a predecessor of I2 if I2 must not execute before some cycles of I1
Type of dependency is not important

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_7.htm[6/14/2012 12:10:50 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis

 
Latency: delay required between initiation times of I1 and I2 minus execution time required for I1
before another instruction can start. For example, if two cycles must elapse between I1 and I2 then

latency is 1.
r2 ← [r1](4)
r3 ← [r1+4](4)
r4 ← r2 + r3
r5 ← r2 - 1

assume load has latency of 1; requires 2 cycles to finish.

Data Dependence in Loops

Each statement executed many times
Dependence can flow from one statement to any other
Dependence can flow to the same statement

for i = 2, 9 do
x(i) = y(i) + z(i) S1

a(i) = x(i-1) + 1 S2

endfor
S1 → S2

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_8.htm[6/14/2012 12:10:50 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis

 
do i = 1, N
a(i) = b(i)
c(i) = a(i) + b(i)
e(i) = c(i+1)
enddo

Unroll The Loop

do I = 1, N
A = B(I)
C(I) = A + B(I)
E(I) = C(I+1)
enddo

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_9.htm[6/14/2012 12:10:50 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis

 
A data dependence is loop independent if dependence is between instances in the same iteration
Consider a loop

do i = 1, N
X( f(i) ) = ..... 
...... = X( g(i) ) 
enddo

S1

S2

there is a loop independent dependence from S1 to S2 if there is an integer i such that

1 = i = N and f(i) = g(i)

OR

there is an iteration in which S1 writes into X and S2 reads from the same element of X.

A data dependence is loop dependent if dependence is between different iterations.

there is a loop dependent dependence from S1 to S2 if there exist integers i1 and i2 such that

1 = i1 < i2 = N and f(i1) = g(i2)

OR

S1 writes into X in iteration i1 and S2 reads from the same location in a later iteration i2.

Therefore, to find out data dependence from S1 to S2, one has to solve

f(i1) = g(i2)

such that 1 = i1 = i2 = N holds.

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_10.htm[6/14/2012 12:10:50 PM]

 Module 16: Data Flow Analysis in Presence of Procedure Calls
 Lecture 31: Data Dependence Analysis

 
Example:

do I = 1, 100
X( 2I+1 ) = .... 
...... = X( 2I+4 ) 
enddo

S1

S2

Is there a dependence from S1 to S2 ?

Coarse grain analysis: S1 writes into X and S2 reads from X. Therefore,

S1 → S2 or S1  S2

Fine grain analysis:
Eqn: 2i1 + 1 = 2i2 + 4

has no integer solution
Therefore, no dependence from S1 to S2

DO I = 1, 50
X(I) = ....
.... = X(I+50)
ENDDO

Fine grain analysis:
Eqn. i1 = i2 + 50 has integer solution.

However, no integer solution in the range
1 = i1 = i2 = 50

therefore, no dependence from S1 to S2

If are general functions, then the problem is intractable.
If  are linear functions of loop index, then to test dependence we need to find values
of two integers  such that

 
 

which can be rewritten as
 

 
These are called Linear Diophantine Equations.

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2032/32_1.htm

	31_1
	Local Disk
	Objectives_template


	31_2
	Local Disk
	Objectives_template


	31_3
	Local Disk
	Objectives_template


	31_4
	Local Disk
	Objectives_template


	31_5
	Local Disk
	Objectives_template


	31_6
	Local Disk
	Objectives_template


	31_7
	Local Disk
	Objectives_template


	31_8
	Local Disk
	Objectives_template


	31_9
	Local Disk
	Objectives_template


	31_10
	Local Disk
	Objectives_template



