
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_1.htm[6/14/2012 12:10:21 PM]

 Module 15: Reaching Definition
 Lecture 30: Analysis

The Lecture Contains:

Interval Analysis

Backward Analysis

Available Expression

Live Variable Analysis

Very Busy Expression

Common Sub-expression Elimination

Copy Propagation

Loop Invariant Computations

Performing Code Motion

Elimination of Induction Variable

Detection of Induction Variables

Strength Reduction

Pointers

A Simple Pointer Language

Transfer Function

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2029/29_10.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_2.htm[6/14/2012 12:10:21 PM]

 Module 15: Reaching Definition
 Lecture 30: Analysis

For block

For the while loop

Interval Analysis

Interval analysis is trivial; it is identical to structural analysis.
Only three kinds of regions appear: general acyclic, proper, and improper.

Backward Analysis

Harder to model as single exit is not guaranteed in programs
For constructs with single exit we can ’turn the equations around’

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_3.htm[6/14/2012 12:10:21 PM]

 Module 15: Reaching Definition
 Lecture 30: Analysis

Bottom up equation:

Top down equation:
Out (then) = out (if –then –else)
Out (else) = out (if-then-else)

Out (if) =

Available Expression

Used in detecting common subexpressions

Expression 4*i in B3 is a common subexpression if 4*i is available the entry point of B3

It will be available if i is not assigned a value in B2 or 4*i is re-computed after i is assigned in

B2

How to compute set of generated expressions:
At a point prior to block no expressions are available
If at a point p set A of expressions is available and q is a point after p with statement
x:=y+z then set of expressions available at q is:

Add to A expression y+z
Delete from A any expression involving x

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_4.htm[6/14/2012 12:10:21 PM]

 Module 15: Reaching Definition
 Lecture 30: Analysis

Example

U is the universal set of all expressions appearing in a program
In[B] and out[B] are sets of expressions available at the beginning/end of B
E-gen[B] and e-kill[B] are sets of expressions generated and killed in B
Out[B] = in[B] - e-kill[B] e-gen[B]
In[B] = out[P] for B not initial

In[B] = where B0 is the initial block

Initialization:

In[B0] =

Out[B0] = e-gen[B0]

Out[B] = U - e-kill[B] if B is not an entry block

Live Variable Analysis

Used for dead code elimination
In[B] and out[B] are sets of live variables at entry and exit
Def[B] set of variables assigned value in B prior to use in B
Use[B] set of variables whose value may be used before definition in B
In[B] = use[B] S (out[B] - def[B])
Out[B] = S in[S] where S is successor of B
A variable is live coming into a block if EITHER is it used in the block before re-definition OR it
is live coming out and not re-defined
A variable is live coming out of a block if it is live coming into one of its successors
Initialization:

in[B]= for all B

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_5.htm[6/14/2012 12:10:21 PM]

 Module 15: Reaching Definition
 Lecture 30: Analysis

Very Busy Expression

In[B] and Out[B] are sets of VBE at the beginning and end of B
Use[B] set of expressions b+c computed in B with no prior definition of b or c
Def[B] set of expression b+c for which either b or c is defined in block B prior to computation
of b+c

In[B] = out[B] - def[B] use[B]

out[B] = in[S] where S is successor of B

An expression is VBE coming into a block if either it is used in B or it is live coming out and
not defined in B
An expression is VBE coming out of a block if it is live going into all the successors of B
Initialization:
in[B] = U for all B

Common Sub-expression Elimination

For every statement s of the form x=y+z such that y+z is available at the beginning of the block and y
and z are not re-defined
prior to s

1. Find all definitions which have y+z that reach s’ block
2. Create a new variable u
3. Replace each w=y+z found in (1) by

u=y+z; w=u
4. Replace statement s by x=u

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_6.htm[6/14/2012 12:10:21 PM]

 Module 15: Reaching Definition
 Lecture 30: Analysis

Copy Propagation

Assignment s:x=y may be eliminated if at all the places where x is used we replace x by y

Statement s must be the only definition of x reaching where substitution is to be made
On every path from s to target there are no assignments to y (additional data flow analysis
needs to be done)

Algorithm: for each copy s:x=y do the following:

1. Determine those uses of x that are reached by this definition
2. Determine whether it is the only definition of x reaching and there is no definition of y on the

path
3. If s meets the above conditions then remove s and replace all uses of x found in (1) by y

Loop Invariant Computations

If for an assignment x=y+z all the definitions of y and z are outside loop then x=y+z is invariant of
loop.
Input: A loop L with basic blocks. Assume that ud chains are available for individual statements.

1. Mark invariant statements whose operands are all either constants or or have their reaching
definitions outside L

2. Repeat step (3) until no new statements are marked invariant
3. Mark invariant whose operands either are constant, have all their reaching definitions outside L,

or have exactly one reaching definition and that definition is a statement in L marked invariant

Performing Code Motion

Move an invariant statement s to pre-header if following conditions are met:
1. The block containing s dominates all exit nodes of the nodes
2. There is no other statement in the loop that assign to x
3. No use of x in the loop is reached by any definition of x other than s

Maintaining dataflow information
1. Ud chains: does not change by code motion
2. Dominator information: changes by code motion; it needs to be recomputed.

More general code motion:
If none of the three conditions are satisfied then for a loop invariant statement
A=B+C define T=B+C in the pre header and replace A=B+C by A=T

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_7.htm[6/14/2012 12:10:21 PM]

 Module 15: Reaching Definition
 Lecture 30: Analysis

Elimination of Induction Variable

A variable X is called induction variable of a loop if in every iteration value of X is changed by
a constant value.
Basic induction variables: as defined i=i ± c
Secondary induction variable: a basic function of basic induction variable

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_8.htm[6/14/2012 12:10:22 PM]

 Module 15: Reaching Definition
 Lecture 30: Analysis

Detection of Induction Variables

Input: A loop L with reaching definition information and loop invariant computation information
Output: A set of induction variables. Associated with each induction variable j is a triple (i, c, d) such
that j=c*i+d. i is assumed to be basic induction variable, and j is said to belong to family of i.

1. Find all basic induction variables of L (using loop invariant information). Each basic induction
variable has a triple (i, 1, 0).

2. Search for variable k with single assignment to k within L having one of the following forms:
k=j*const, k=j/const, k=j ± const
where j is an induction variable.

1. If j is basic induction variable then k is in family of j. if j is not basic and is in family of i then
There is no assignment to i between j and k
No definition of j outside L reaches k

2. Modify instructions computing induction variable such that ± are used rather than multiplication
(strength reduction).

Strength Reduction

Consider each basic induction variable. For every induction variable j in family of i with triple (i, c, d)

1. Create a new variable s
2. Replace all assignments to j by j=s
3. Immediately after each assignment i=i+n append s=s+c*n

Place s in the family of i with triple (i,c,d)
4. Initialize s to s=c*i+d in the pre-header

Eliminate induction variables

Pointers

A := B + C
*P := D
F := *P
E := B+C

No definitions of B or C.
Is B+C available at E := B+C
depends whether *P changes B or C

Safe Assumption : Indirect assignment can change any variable, indirect use can use any name
Therefore,

More live variable and reaching definitions than realistic.
Fewer available expressions than realistic

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_9.htm[6/14/2012 12:10:22 PM]

 Module 15: Reaching Definition
 Lecture 30: Analysis

A Simple Pointer Language

The language consists of

Elementary data types (integers and reals) requiring one word each
Array of these types
Pointer is used as cursor to run through an array
Pointer p points to an element of an array
Variables that could be used as pointers are those declared to be pointers and temporaries
that received a value that is pointer plus or minus a constant
If there is a statement s: p:=&a then after s, p points to a
If there is a statement s: p:= q ± c where c is an integer, and p and q are pointers then after
s, p points to an array that q could point to before s
If there is a statement s: p:=q then after s, p points to whatever q could point to before s
In[B] is a set of pairs (p,a) where p is a pointer and a is a variable
Out[B] is defined in a similar manner for set of values after a block B

Transfer Function

If s is p : =

If s is p:

 Array variable}

If s is p: = q then

If s assign to pointer p any other expression then

If s is not an assignment to a pointer then

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2031/31_1.htm

	30_1
	Local Disk
	Objectives_template

	30_2
	Local Disk
	Objectives_template

	30_3
	Local Disk
	Objectives_template

	30_4
	Local Disk
	Objectives_template

	30_5
	Local Disk
	Objectives_template

	30_6
	Local Disk
	Objectives_template

	30_7
	Local Disk
	Objectives_template

	30_8
	Local Disk
	Objectives_template

	30_9
	Local Disk
	Objectives_template

