
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_1.htm[6/14/2012 12:15:18 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 40: Multi-core Computing Synchronization

The Lecture Contains:

Process Dispatching

Process Scheduling

Thread Scheduling

Anatomy of Downloading Window

The Producer-Consumer Problem

What is Wrong?

A Possible Scenario

Race Conditions

Critical Section Problem

Problem Abstraction

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2039/39_9.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_2.htm[6/14/2012 12:15:18 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 40: Multi-core Computing Synchronization

Process Dispatching

After assignment, deciding who is selected from among the pool of waiting processes
Process dispatching.

Single processor multiprogramming strategies may be counter-productive here.
Priorities and process history may not be sufficient.

Process Scheduling

Single queue of processes or if multiple priority is used, multiple priority queues, all feeding
into a common pool of processors.
Multi-server queuing model: multiple-queue/single queue, multiple server system.

Inference: Specific scheduling policy does not have much effect as the number of
processors increase.

Conclusion: Use FCFS with priority levels.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_3.htm[6/14/2012 12:15:18 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 40: Multi-core Computing Synchronization

Thread Scheduling

An application can be implemented as a set of threads that cooperate and execute concurrently
in the same address space.
Load Sharing: pool of threads, pool of processors.
Gang scheduling: Bunch of related threads scheduled together.
Dedicated processor assignment: Each program gets as many processors as there are
parallel threads.
Dynamic scheduling: More like demand scheduling.

Multi-core Computing Synchronization

Problem

Multiple concurrent processes or threads using shared memory to communicate.
Concurrent access to the same data may lead to inconsistencies.

An innocent looking code may not work when concurrency is involved.
Remember Producer-Consumer code.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_4.htm[6/14/2012 12:15:18 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 40: Multi-core Computing Synchronization

Anatomy of Downloading Window

The Producer-Consumer Problem

Produce(item_t item) {
while (count==bufsz);
buffer[in]=item;
in=(in+1)%bufsz;
count=count+1;
}

Consume(item_t *item) {
while(count==0);
*item=buffer[out];
out=(out+1)%bufsz;
count=count-1;
}

Shared Variables

 buffer, count

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_5.htm[6/14/2012 12:15:18 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 40: Multi-core Computing Synchronization

What is Wrong?

Variable count is shared.
Both process read and modify this variable
The assembly code for these two statement may be something like following:

//count=count+1 //count=count-1

P1: load R1,count C1: load R1,count

P2: add R1,1 C2: sub R1,1

P3: store count,R1 C3: store count,R1

Two processes run concurrently (Single or multiple CPUs)

A Possible Scenario

The producer and consumer processes may be scheduled in any order and may be
preempted.
Consider the following sequence of statements

P1, CSwitch, C1, C2, C3, CSwitch, P2, P3.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_6.htm[6/14/2012 12:15:18 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 40: Multi-core Computing Synchronization

A Possible Scenario

The producer and consumer processes may be scheduled in any order and may be
preempted.
Consider the following sequence of statements

P1, CSwitch, C1, C2, C3, CSwitch, P2, P3.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2040/40_7.htm[6/14/2012 12:15:19 PM]

 Module 20: Multi-core Computing Multi-processor Scheduling
 Lecture 40: Multi-core Computing Synchronization

Race Conditions

Situation when several concurrent processes operate on the same variable and the result of
the computation depends upon the order in which they execut.
In the preceding example, the value of count could be 4, 5 or 6.

C1,P1,P2,P3,C2,C3 final value 4
C1,C2,C3,P1,P2,P3 final value 5
P1,C1,C2,C3,P2,P3 final value 6

Critical Section Problem

We model the problem using the notion of Critical Sections.
Critical sections are with respect to the shared data.

There are n processes, each sharing some common resource.
Each wants to modify the common resource.

For each process, define the region of code where it accesses a shared piece of data as a
critical section.
In a correct system of multiple cooperating processes,

Only one process must be inside its critical section.

Problem Abstraction

Processes execute code similar to the following.

while (1) {
Non critical code
Entry code
Critical Section Code
Exit Code
Non Critical Code
}

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_1.htm

	40_1
	Local Disk
	Objectives_template

	40_2
	Local Disk
	Objectives_template

	40_3
	Local Disk
	Objectives_template

	40_4
	Local Disk
	Objectives_template

	40_5
	Local Disk
	Objectives_template

	40_6
	Local Disk
	Objectives_template

	40_7
	Local Disk
	Objectives_template

