Objectives_template

Module 5: Performance Issues in Shared Memory and Introduction to Coherence

Lecture 9: Performance Issues in Shared Memory

The Lecture Contains:

Data Access and Communication
Data Access
Artifactual Comm.
Capacity Problem
Temporal Locality
Spatial Locality

2D to 4D Conversion
Transfer Granularity
Worse: False Sharing
Contention

Hot-spots

Overlap

Summary

4| Previous Next||p

file:///D|/...naudhary,%20Dr.%20Sanjeev%20K %20Aggrwal %20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture9/9_1.htm[6/14/2012 11:56:22 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture8/8_3.htm

Objectives_template

Module 5: Performance Issues in Shared Memory and Introduction to Coherence

Lecture 9: Performance Issues in Shared Memory

Data Access and Communication

* The memory hierarchy (caches and main memory) plays a significant role in determining
communication cost
o May easily dominate the inherent communication of the algorithm
* For uniprocessor , the execution time of a program is given by useful work time + data access
time
o Useful work time is normally called the busy time or busy cycles
o Data access time can be reduced either by architectural techniques (e.g., large caches)
or by cache-aware algorithm design that exploits spatial and temporal locality

Data Access

¢ In multiprocessors

o Every processor wants to see the memory interface as its own local cache and the main
memory

o In reality it is much more complicated

o If the system has a centralized memory (e.g., SMPs), there are still caches of other
processors; if the memory is distributed then some part of it is local and some is remote

o For shared memory, data movement from local or remote memory to cache is
transparent while for message passing it is explicit

o View a multiprocessor as an extended memory hierarchy where the extension includes
caches of other processors, remote memory modules and the network topology

4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture9/9_2.htm[6/14/2012 11:56:23 AM]

Objectives_template

Module 5: Performance Issues in Shared Memory and Introduction to Coherence

Lecture 9: Performance Issues in Shared Memory

Artifactual Comm.

« Communication caused by artifacts of extended memory hierarchy
o Data accesses not satisfied in the cache or local memory cause communication
o |Inherent communication is caused by data transfers determined by the program
o Artifactual communication is caused by poor allocation of data across distributed
memories, unnecessary data in a transfer, unnecessary transfers due to system-
dependent transfer granularity, redundant communication of data, finite replication
capacity (in cache or memory)
« Inherent communication assumes infinite capacity and perfect knowledge of what should be
transferred

Capacity Problem

* Most probable reason for artifactual communication

o Due to finite capacity of cache, local memory or remote memory

o May view a multiprocessor as a three-level memory hierarchy for this
purpose: local cache, local memory, remote memory

o Communication due to cold or compulsory misses and inherent communication are
independent of capacity

o Capacity and conflict misses generate communication resulting from finite capacity

o Generated traffic may be local or remote depending on the allocation of pages

o General technique: exploit spatial and temporal locality to use the cache properly

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture9/9_3.htm[6/14/2012 11:56:23 AM]

Objectives template

Module 5: Performance Issues in Shared Memory and Introduction to Coherence

Lecture 9: Performance Issues in Shared Memory

Temporal Locality

« Maximize reuse of data
o Schedule tasks that access same data in close succession

o Many linear algebra kernels use blocking of matrices to improve temporal (and spatial) locality
o Example: Transpose phase in Fast Fourier Transform (FFT); to improve locality, the
algorithm carries out blocked transpose i.e. transposes a block of data at a time

v

Block Transpose N TR

— L,

T

Spatial Locality

« Consider a square block decomposition of grid solver and a C-like row major layout i.e. A[i][j] and A[
i][+1] have contiguous memory locations

B The same page is local
= to a processor while
¥ Memory remote to others; same
allocation applies to straddling
;;4— Page cache lines. Ideally, |
s want to have all pages
!_.-* I_h_ld— Cache line within a partition local

/

_ to a single processor.
N Ly s
7 ; Standard trick is to
Page straddles Cache line rt the 2D 6
partition boundary across partition :T;E @ £ afray'ie

4l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture9/9_4.htm[6/14/2012 11:56:23 AM]

Objectives_template

Module 5: Performance Issues in Shared Memory and Introduction to Coherence

Lecture 9: Performance Issues in Shared Memory

2D to 4D Conversion

* Essentially you need to change the way memory is allocated

o The matrix A needs to be allocated in such a way that the elements falling within a
partition are contiguous

o The first two dimensions of the new 4D matrix are block row and column indices i.e. for
the partition assigned to processor P 6 these are 1 and 2 respectively (assuming 16
processors)

o The next two dimensions hold the data elements within that partition

o Thus the 4D array may be declared as float B[vP][vP][N/VP][N/vP]

o The element B[3][2][5][10] corresponds to the element in 10 th column, 5 th row of the
partition of P 14

o Now all elements within a partition have contiguous addresses

Transfer Granularity

e« How much data do you transfer in one communication?
o For message passing it is explicit in the program
o For shared memory this is really under the control of the cache coherence protocol:
there is a fixed size for which transactions are defined (normally the block size of the
outermost level of cache hierarchy)
¢ In shared memory you have to be careful
o Since the minimum transfer size is a cache line you may end up transferring extra data
e.g., in grid solver the elements of the left and right neighbors for a square block
decomposition (you need only one element, but must transfer the whole cache line): no
good solution

|| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture9/9_5.htm[6/14/2012 11:56:23 AM]

Objectives_template

Module 5: Performance Issues in Shared Memory and Introduction to Coherence

Lecture 9: Performance Issues in Shared Memory

Worse: False Sharing

o If the algorithm is designed so poorly that

o Two processors write to two different words within a cache line at the same time

o The cache line keeps on moving between two processors

o The processors are not really accessing or updating the same element, but whatever
they are updating happen to fall within a cache line: not a true sharing, but false sharing

o For shared memory programs false sharing can easily degrade performance by a lot

o Easy to avoid: just pad up to the end of the cache line before starting the allocation
of the data for the next processor (wastes memory, but improves performance)

Contention

« It is very easy to ignore contention effects when designing algorithms
o Can severely degrade performance by creating hot-spots
e Location hot-spot:
o Consider accumulating a global variable; the accumulation takes place on a single node

i.e. all nodes access the variable allocated on that particular node whenever it tries to
increment it

+— CA on this node Fa
¥, . becomes a pottlensck T e .

o et — . A i
| | |) | E :
-

} - : / .,
S M Mo i M i, 2

Scalable tree accurmulation

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture9/9_6.htm[6/14/2012 11:56:23 AM]

Objectives_template

Module 5: Performance Issues in Shared Memory and Introduction to Coherence

Lecture 9: Performance Issues in Shared Memory
Hot-spots

¢ Avoid location hot-spot by either staggering accesses to the same location or by designing the
algorithm to exploit a tree structured communication
¢ Module hot-spot
o Normally happens when a particular node saturates handling too many messages (need
not be to same memory location) within a short amount of time
o Normal solution again is to design the algorithm in such a way that these messages are
staggered over time
¢ Rule of thumb: design communication pattern such that it is not bursty ; want to distribute it
uniformly over time

Overlap

« Increase overlap between communication and computation
o Not much to do at algorithm level unless the programming model and/or OS provide
some primitives to carry out prefetching , block data transfer, non-blocking receive etc.
o Normally, these techniques increase bandwidth demand because you end up
communicating the same amount of data, but in a shorter amount of time (execution
time hopefully goes down if you can exploit overlap)

Summary

« Parallel programs introduce three overhead terms: busy overhead (extra work),
remote data access time, and synchronization time
o Goal of a good parallel program is to minimize these three terms
o Goal of a good parallel computer architecture is to provide sufficient support to let
programmers optimize these three terms (and this is the focus of the rest of the course)

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture9/9_7.htm[6/14/2012 11:56:23 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture10/10_1.htm

	9_1
	Local Disk
	Objectives_template

	9_2
	Local Disk
	Objectives_template

	9_3
	Local Disk
	Objectives_template

	9_4
	Local Disk
	Objectives_template

	9_5
	Local Disk
	Objectives_template

	9_6
	Local Disk
	Objectives_template

	9_7
	Local Disk
	Objectives_template

