
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_1.htm[6/14/2012 12:13:24 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking

 

The Lecture Contains:

Cycle Shrinking …

Cycle Shrinking in Distance Varying Loops

Loop Peeling

Index Set Splitting

Loop Fusion

Loop Fission

Loop Reversal

Loop Skewing

Iteration Space of The Loop

Example

The Final Code After Skewing is

Loop Blocking or Strip Mining

Loop Tiling

The Tiled Iteration Space

Circular Loop Skewing

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_11.htm


Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_2.htm[6/14/2012 12:13:24 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking

 
Cycle Shrinking …

Dependence cycle with distance > 1
Transform a serial loop into two nested loops (outer serial and inner parallel)
Consider the loop

for I = 1,n
A[i+k] = B[i] –1
B[i+k] = A[i] + C[i]
endfor

for i=1, n, k
forall j=1, i+k-1
A[j+k]=B[j]-1
B[j+k]=A[j]+C[j]
endforall
endfor

  
For I = 3,n
A[i]=B[i-2]-1
B[i]=A[i-3]*k
Endfor

For j =3, n, 2
forall I = j, j+1
A[i]=B[i-2]-1
B[i]=A[i-3]*k
endforall
Endfor

A3 = B1 -1
B3 = A0 * k
A4 = B2 -1 
B4 = A1 * k
A5 = B3 -1
B5 = A2 * k
A6 = B4 -1
B6 = A3 * k 
A7 = B5 -1
B7 = A4 * k 
A8 = B6 -1
B8 = A5 * k

Cycle Shrinking in Distance Varying Loops

The distance may not be constant
Cycle may be reduced by the minimum distance

For I = 1,n
X[i]=Y[i]+Z[i]
Y[i+3]=X[i-4]*W[i]
Endfor

for j=1, n, 3
forall I = j, j+2
X[i]=Y[i]+Z[i]
Y[i+3]=X[i-4]*W[i]
endforall
endfor

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_3.htm[6/14/2012 12:13:24 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking

 
Loop Un-switching

Removes loop independent conditionals from a loop
Reduces frequency of execution of conditional statements
Makes loop structure more complex

For I = 1, n
for j = 2, n
if T[i] > 0 then 
A[i,j]=A[i,j-1]*T[i]+B[j]
else
A[I,j] = 0.0
endif
endfor
Endfor

for I = 1, n
if T[i]>0 then
for j=2,n
A[i,j]=A[i,j-1]*T[i]+B[j]
endfor
else
for j=2,n
A[I,j]=0.0
endfor
endif
endfor

Loop Peeling

Used to handle wrap around variables
Removes first or the last iteration of the loop into separate code
Peeling can also be used to remove loop invariant code by executing it only in the first iteration
(assuming n = 1)

for I = 1,n
A[i]=(x+y)*B[i]
endfor

A[1] = (t=x+y)*B[1]
for I = 2,n
A[i]=t*B[i]
endfor

Index Set Splitting

Generalization of loop peeling
Used to remove conditionals from the loops

For I = 1, 100
A[i]=B[i]+C[i]
if i>10 then
D[i]=A[i]+A[i-10]
endif
Endfor

for I = 1,10
A[i]=B[i]+C[i]
endfor
for I = 11 to 100
A[i]=B[i]+C[i]
D[i]=A[i]+A[i-10]
endfor

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_4.htm[6/14/2012 12:13:24 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking

 
Loop Fusion

When two adjacent countable loops have the same loop limits they can sometimes be fused
Reduces cost of test and branch
Fusing loops which refer to the same data enhances temporal locality

It has significant impact on cache and virtual memory performance
Loop fusion may increase size of the loop which can reduce instruction locality (noticeable with
very small cache memories)
Fusion is legal if all the dependence relations are preserved
Before fusion all relations must flow from body1 to body2 (unless carried by an outer loop)

For I = 1,n
A[i]=B[i]+1
Endfor
For I = 1,n
C[i]=A[i]/2
Endfor
For I = 1,n
D[i]=1/C[i+1]
Endfor
S2 S5
S5 S8

For I = 1,n
A[i]=B[i]+1
C[i]=A[i]/2
D[i]=1/C[i+1]
Endfor

after fusion 
the second 
dependence
is violated

For I = 1,n
A[i]=B[i]+1
C[i]=A[i]/2
Endfor
For I = 1,n
D[i]=1/C[i+1]
Endfor

   

for I = 1,99
A[i]=B[i]+1
Endfor
for I = 1,98
C[i]=A[i+1]*2
Endfor

A[1]=B[1]+1
for I = 2,99
A[i]=B[i]+1
Endfor
for I = 1,98
C[i]=A[i+1]* 2
Endfor

A[1]=B[1]+1
for j = 0,97
A[j+2]=B[j+2]+1
C[j+1]=A[j+2]*2
Endfor

Loop Fission

A single loop may be broken into smaller loops (inverse of loop fusion)
Used on machines which have very small instruction cache
Improves memory locality
Construct a statement level dependence graph of the body of the loop

Dependence relations carried by outer loop need not be preserved
Inner loops are treated as single nodes
If there are no cycles then loop fission can divide the loop into separate loops around
each node
The loops are ordered in topological order of the dependence graph

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_5.htm[6/14/2012 12:13:24 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking

 

For I = 1,n
A[i] = A[i] + B[i-1]
B[i] = C[i-1]*x + y
C[i] = 1/B[i]
D[i] = sqrt(C[i])
endfor

For ib = 0,n-1
B[ib+1] = C[ib]*x + y
C[ib+1] = 1/B[ib+1]
Endfor
For ib = 0,n-1
A[ib+1] = A[ib+1] + B[ib]
Endfor
For ib = 0,n-1
D[ib+1] = sqrt(C[i])
Endfor
I = n+1

Loop Reversal

Compiler can decide to run a loop backward
Always legal for parallel loops
Illegal for sequential loop if it has loop carried dependence
Allows loop fusion to proceed where it might otherwise fail

for I = 1,n
A[i]=B[i]+1
C[i]=A[i]/2
endfor
for i=1,n
D[i]=1/C[i+1]
endfor

for i=n downto 1
A[i]=B[i]+1
C[i]=A[i]/2
D[i]=1/C[i+1]
endfor

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_6.htm[6/14/2012 12:13:24 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking

 
Loop Skewing

Normalization can change the shape of the iteration space
It may affect the ability to interchange loops
Consider following code
for I = 2, n
for j = I, n
A[I,j] = 0.5 *(A[I,j-1]+A[i-1,j])
endfor
endfor
Using un-normalized iteration vector the dependence distances are (0,1) and (1,0)

Iteration Space of The Loop

After interchange the code is
for j = 2, n
for i = 2, j
A[I,,j] = 0.5 *(A[I,,j-1]+A[i-1,,j])
endfor
endfor

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_7.htm[6/14/2012 12:13:25 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking

 Using normalized iteration vectors the shape of the iteration space changes as shown below

The dependence distance are (0,1) and (1,-1)
This dependence prevents loop interchange

If normalization can prevent interchange then un-normalization can enable loop interchange
This is called loop skewing
Skewing changes the iteration vector of each iteration by adding the outer loop index value to the
inner loop index

(I,j) becomes (I, j+i)
A dependence relation from (i1, j1) to (i2, j2) will have distance (i1, j1) –(i2-j2) = (d1, d2)
After skewing the distance will change to (i1, j1+i1) –(i2, j2+i2) = (d1, d2+d1)

In general loops can be skewed by a factor changing iteration label from (I,j) to (I, j+fi)
This changes distance from (d1, d2) to (d1, d2+fd1)
F can also be negative

Choosing whether to skew and the factor by which to skew depends upon the goal to enable other
transformations

Example

Interchange following loop using skewing
for I = 2, n
for j = 2, m
A[I,j] = 0.5 * (A[i-1, j-1]+A[i-1, j+1])
endfor
Endfor
The two dependence distances are (1,1) and (1,-1)
The second one prevents the interchange
Skewing the loop would change the dependence distance to (1,2) and (1,0) allowing the
interchange
The compiler must generate the correct limits using FM method

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_8.htm[6/14/2012 12:13:25 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking

 
The Final Code After Skewing is

For js = 2, n+m-2
for is = max(0, js-m+2), min(n-2, js)
I = is+2
j = js-is+2
A[I,j] = 0.5 * (A[i-1, j-1] + A[i-1, j+1])
endfor
endfor

Loop Blocking or Strip Mining

Creates doubly nested loops out of single loops
Organizes computation into chunks of approximately equal sizes
Used to overcome size limitations of caches and local memory

for I = 1,n
A[i] = B[i] + C[i]
endfor 

for j = 1, n, k
for I = j, min(j+k, n)
A[i]=B[i]+C[i]
endfor
endfor

Example

for I = 1, 16
A[i+3]=A[i]+B[i]
endfor

for It = 1, 16, 5
for i=it, min(16, it+4)
A[i+3]=A[i]+B[i]
endfor
endfor

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_9.htm[6/14/2012 12:13:25 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking

 
Loop Tiling

Similar to strip mining (Strip mining works for single loops)
Loop tiling is used for nested loops
Tiling boundaries are parallel to the iteration space axes and not to iteration space boundaries
The eventual goal is to interchange tile loops outward and element loops inward
Tiling is characterized by tile size ts and a tile offset to (0 = to < ts)
Each tile starts an iteration i such that i mod ts = to
Each tile iterates from tn-ts+to to (tn+1)-ts+to-1 where tn is tile number
The compiler must determine the minimum and maximum tile numbers
The compiler must ensure that element loop does not execute outside its original iteration
space
The general formula for tiling for a loop such as
for I = lo, hi
is
for it = floor((lo-to)/ts)*ts+to, floor((hi-to)/ts)*ts+to, ts
for I = max(lo,it), min(hi,it+ts-1)

Tile following loops with a tile 
size of 20 and an offset of 5
For I = 1, 50
for j = i, 60
A[I,j] = A[I,j]+1
endfor
endfor

just applying the formula produces following loop
For It = -15, 45, 20
for i = max(1,it), min(50,it+19)
for jt=floor((i-5)/20)*20+5, 45, 20
for j=max(I,jt), min(60, jt+19)
A[I,j] = A[I,j]+1
endfor
endfor
endfor
endfor

The Tiled Iteration Space

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_9.htm[6/14/2012 12:13:25 PM]



Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_10.htm[6/14/2012 12:13:25 PM]

 Module 18: Loop Optimizations
 Lecture 36: Cycle Shrinking
 Interchange jt loop with I loop

Compiler finds the new lower limits for jt
For It = -15, 45, 20
for jt = max(-15,it), 45, 20
for i = max(I,it), min(50,it+19)
for j=max(I,jt), min(60, jt+19)
A[I,j] = A[I,j]+1
endfor
endfor
endfor
endfor

Circular Loop skewing

A variation of loop skewing
Skew the inner loop iterations such that they wrap around a cylinder
The shape of the iteration space does not change but the relative positions change
Backward dependencies with large distances make tiling unprofitable
Circular loop skewing shortens backward dependencies

For I = 0, n-1
for j = 0, n-1
A[i] = A[i] + B[i] * C[i]
endfor
endfor

The circular loop skewing does not change the shape
of the iteration space. It changes the iterations
computed at each point.

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_10.htm[6/14/2012 12:13:25 PM]

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2037/37_1.htm

	36_1
	Local Disk
	Objectives_template


	36_2
	Local Disk
	Objectives_template


	36_3
	Local Disk
	Objectives_template


	36_4
	Local Disk
	Objectives_template


	36_5
	Local Disk
	Objectives_template


	36_6
	Local Disk
	Objectives_template


	36_7
	Local Disk
	Objectives_template


	36_8
	Local Disk
	Objectives_template


	36_9
	Local Disk
	Objectives_template


	36_10
	Local Disk
	Objectives_template



