
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_1.htm[6/14/2012 12:08:58 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

The Lecture Contains:

Algorithm to Find Dominators

Loop Detection

Algorithm to Detect Loops

Extended Basic Block

Pre-Header

Loops With Common eaders

Reducible Flow Graphs

Node Splitting

Interval Analysis

Intervals

Interval Partition

Interval Graphs

Control Tree

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_9.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_2.htm[6/14/2012 12:08:58 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

Algorithm to Find Dominators

D(n0) := {n0};
for n in N-{n0} do D(n) := N;
while changes to any D(n) occur do
for n in N-{n0} do
D(n) := {n} n D(p);

Loop Detection

Search for a back-edge such that a → b is an edge and b dom a.
Given a back edge a → b

Find set of nodes that can reach node a without going through node b
And node b

These nodes form a natural loop with b as header.
Given back edge a → b natural loop is a sub graph which contains a, b and all the nodes
which can reach a without passing through b

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_3.htm[6/14/2012 12:08:59 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

Algorithm to Detect Loops

stack := empty;
loop := {b};
insert(a);
while stack is not empty do begin
pop m of the stack;
for each predecessor p of m do insert(p)
end;
procedure insert(m);
if m is not in loop then begin
loop := loop {m};
push m onto stack
end;

Approaches to Control Flow Analysis

Approach 1; Use dominators to discover loops use loops in optimization do iterative data
flow analysis
Approach 2: Use interval analysis analyze overall structure of the program decompose it into
nested regions
the nesting structure forms a control tree
Approach 3: Use structural analysis speeds up dataflow analysis also called elimination
method
Most compilers use the first approach
It is easy to implement and provides most of the information for optimization
It is inferior to the other two approaches
Interval based approaches are faster
Interval based approach can be used in incremental analysis
Structural analysis makes control flow transformations easy

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_4.htm[6/14/2012 12:08:59 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

Extended Basic Block

Maximal sequence of instructions begining with a header and no other join nodes
Single entry multiple exits block

Depth first traversal contains (i) all the nodes and (ii) edges which make depth first order. This
is called depth first spanning tree.
Forward edges: from a node to descendent
Back edges: go from node to ancestor
Cross edges: connects nodes such that neither is an ancestor in dfs

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_5.htm[6/14/2012 12:08:59 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

Pre-Header

Many optimizations require code movement from inside a loop to just before it.
Pre-header is a new empty block just before header.

All edges from outside to header go to pre-header
A new edge goes from pre-header to header

Loops With Common Headers

Two loops with different headers are either disjoint or nested
Two loops with the same header

Not clear if they are nested
Or are one loop
Can not be decided without looking at the source code

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_6.htm[6/14/2012 12:08:59 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

 A ntaural loop is a strongly connected region
Each strongly connected region is not a loop

Reducible Flow Graphs

A graph is reducible if applying a sequence of transformations reduce it to a single node
A flow graph G=(N,E) is reducible if E can be partitioned into two disjoint groups Eb and Ef
such that:

(N,Ef) forms an acyclic graph in which every node can be reached from entry
Eb are the backw edges, edges whose heads dominate their tails.

Example of a Non Reducible Flow Graph

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_7.htm[6/14/2012 12:08:59 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

 In a reducible graph
All the loops are natural loops
There are no jumps in the middle of a loop

Improper regions are multiple entry strongly connected regions

Programming languages do not allow irreducible flow graphs
Fortran with loops of if and gotos construct irreducible flow graphs
Most of the optimizations do not work for irreducible flow graphs
Node splitting is a possible solution

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_8.htm[6/14/2012 12:08:59 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

Node Splitting

Transformation used for converting non-reducible flow graphs to reducible flow graphs. If there is a
node n with k predecessors:

Split n into k nodes generating nodes n1, n2, ..., nk
The ith predecessor of n becomes the predecessors of ni
All the successors of n become successors of all of the ni’s

Interval Analysis

Divides flow graph into various regions
Consolidate each region into a (abstract) node
Resulting flow graph is an abstract flow graph
Result of transformations produce control tree

Root represents the original graph
Leaf of control tree are basic blocks
Internal nodes are abstract nodes
Edges represent relationship between abstract nodes

Intervals

Each interval has a header node that dominates all the nodes in the interval.
Given a flow graph with initial node n0, the interval with header n is denoted by I(n) and is
defined as:

N is in I(n)
If all the predecessors of a node m are in I(n) then m is in I(n)
No other node is in I(n)

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_9.htm[6/14/2012 12:08:59 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

Interval Partition

Construct I(n0);
while there is a node m not yet selected
but with a selected predecessor do
construct I(m);

Construct I(n);
I(n) := {n};
while there exists a node m 6= n0
all of whose predecessors are in I(n) do
I(n) := I(n) {m}

I(1) = 1, 2
I(3) = 3
I(4) = 4, 5, 6
I(7) = 7, 8, 9, 10

Interval Graphs

From the interval graph construct a new graph I(G)

Nodes of the new graph correspond to interval partitions.
Initial node is the node containing initial node of G.
There is an edge from node I to node J if there is some edge from element of I to the header of
J.

Interval partition can be repeatedly applied to the new Interval graph.

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_10.htm[6/14/2012 12:08:59 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 27: Algorithm and Interval

If the limit flow graph is a single node then the graph is reducible.

Control Tree

The result of applying a sequence of such transformations produces a control tree. It is defined as
follows:

The root is sn abstract graph representing the original flowgraph
The leaves are individual basic blocks
The internal nodes are abstract nodes representing regions of the flowgraph
The edges of the tree represent the relationship between each abstract node and the regions
that are its descendants

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_1.htm

	27_1
	Local Disk
	Objectives_template

	27_2
	Local Disk
	Objectives_template

	27_3
	Local Disk
	Objectives_template

	27_4
	Local Disk
	Objectives_template

	27_5
	Local Disk
	Objectives_template

	27_6
	Local Disk
	Objectives_template

	27_7
	Local Disk
	Objectives_template

	27_8
	Local Disk
	Objectives_template

	27_9
	Local Disk
	Objectives_template

	27_10
	Local Disk
	Objectives_template

