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Module 2: Virtual Memory and Caches

Lecture 4: Cache Hierarchy and Memory-level Parallelism

The Lecture Contains:

Cache Hierarchy
States of a Cache Line
Inclusion Policy

The First Instruction
TLB Access

Memory op Latency
MLP

Out-of-order Loads

Load/store Ordering

MLP and Memory Wall
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Module 2: Virtual Memory and Caches

Lecture 4: Cache Hierarchy and Memory-level Parallelism

Cache Hierarchy

« |deally want to hold everything in a fast cache
o Never want to go to the memory
« But, with increasing size the access time increases
¢ A large cache will slow down every access
e S0, put increasingly bigger and slower caches between the processor and the memory
« Keep the most recently used data in the nearest cache: register file (RF)
« Next level of cache: level 1 or L1 (same speed or slightly slower than RF, but much
bigger)
e Then L2: way bigger than L1 and much slower
o Example: Intel Pentium 4 ( Netburst )
o 128 registers accessible in 2 cycles
o L1 date cache: 8 KB, 4-way set associative, 64 bytes line size, accessible in 2
cycles for integer loads
o L2 cache: 256 KB, 8-way set associative, 128 bytes line size, accessible in 7 cycles

« Example: Intel Itanium 2 (code name Madison)

o 128 registers accessible in 1 cycle

o L1 instruction and data caches: each 16 KB, 4-way set associative, 64 bytes line size,
accessible in 1 cycle

o Unified L2 cache: 256 KB, 8-way set associative, 128 bytes line size, accessible in
5 cycles

o Unified L3 cache: 6 MB, 24-way set associative, 128 bytes line size, accessible in
14 cycles
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Module 2: Virtual Memory and Caches

Lecture 4: Cache Hierarchy and Memory-level Parallelism

States of a Cache Line

« The life of a cache line starts off in invalid state (l)

o An access to that line takes a cache miss and fetches the line from main memory

o If it was a read miss the line is filled in shared state (S) [we will discuss it later; for now just
assume that this is equivalent to a valid state]

e In case of a store miss the line is filled in modified state (M); instruction cache lines do not
normally enter the M state (no store to Icache )

e The eviction of a line in M state must write the line back to the memory (this is called a
writeback cache); otherwise the effect of the store would be lost

Inclusion Policy

¢ A cache hierarchy implements inclusion if the contents of level n cache (exclude the register
file) is a subset of the contents of level n+1 cache

o Eviction of a line from L2 must ask L1 caches (both instruction and data) to invalidate
that line if present

o A store miss fills the L2 cache line in M state, but the store really happens in L1 data
cache; so L2 cache does not have the most up-to-date copy of the line

o Eviction of an L1 line in M state writes back the line to L2

o Eviction of an L2 line in M state first asks the L1 data cache to send the most up-to-
date copy (if any), then it writes the line back to the next higher level (L3 or main
memory)

o Inclusion simplifies the on-chip coherence protocol
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Module 2: Virtual Memory and Caches
Lecture 4: Cache Hierarchy and Memory-level Parallelism

The First Instruction

o Accessing the first instruction
o Take the starting PC
o Access iTLB with the VPN extracted from PC: iTLB miss
o Invoke iTLB miss handler
o Calculate PTE address
o If PTEs are cached in L1 data and L2 caches, look them up with PTE address: you will
miss there also
o Access page table in main memory: PTE is invalid: page fault
o Invoke page fault handler
o Allocate page frame, read page from disk, update PTE, load PTE in iTLB , restart fetch

« Now you have the physical address

o Access Icache : miss

o Send refill request to higher levels: you miss everywhere

o Send request to memory controller (north bridge)

o Access main memory

o Read cache line

o Refill all levels of cache as the cache line returns to the processor

o Extract the appropriate instruction from the cache line with the block offset
o This is the longest possible latency in an instruction/data access
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Module 2: Virtual Memory and Caches

Lecture 4: Cache Hierarchy and Memory-level Parallelism

TLB Access

o For every cache access (instruction or data) you need to access the TLB first
o Puts the TLB in the critical path
« Want to start indexing into cache and read the tags while TLB lookup takes place
o Virtually indexed physically tagged cache
o Extract index from the VA, start reading tag while looking up TLB
o Once the PA is available do tag comparison
o Overlaps TLB reading and tag reading

Memory op Latency

e L1 hit: ~1 ns

e L2 hit: ~5ns

e L3 hit: ~10-15 ns

« Main memory: ~70 ns DRAM access time + bus transfer etc. = ~110-120 ns

o If a load misses in all caches it will eventually come to the head of the ROB and block
instruction retirement (in-order retirement is a must)

o Gradually, the pipeline backs up, processor runs out of resources such as ROB entries and
physical registers

« Ultimately, the fetcher stalls: severely limits ILP
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Module 2: Virtual Memory and Caches
Lecture 4: Cache Hierarchy and Memory-level Parallelism

MLP

« Need memory-level parallelism (MLP)
o Simply speaking, need to mutually overlap several memory operations
e Step 1: Non-blocking cache
o Allow multiple outstanding cache misses
o Mutually overlap multiple cache misses
o Supported by all microprocessors today (Alpha 21364 supported 16 outstanding cache
misses)
e Step 2: Out-of-order load issue
o Issue loads out of program order (address is not known at the time of issue)
o How do you know the load didn't issue before a store to the same address? Issuing
stores must check for this memory-order violation

Out-of-order Loads

sw 0(r7), r6
... I* other instructions */
Iw r2, 80(r20)

« Assume that the load issues before the store because r20 gets ready before r6 or r7

« The load accesses the store buffer (used for holding already executed store values before they
are committed to the cache at retirement)

o If it misses in the store buffer it looks up the caches and, say, gets the value somewhere

o After several cycles the store issues and it turns out that 0(r7)==80(r20) or they overlap; now
what?
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Module 2: Virtual Memory and Caches

Lecture 4: Cache Hierarchy and Memory-level Parallelism

Load/store Ordering

o Out-of-order load issue relies on speculative memory disambiguation

o Assumes that there will be no conflicting store

o If the speculation is correct, you have issued the load much earlier and you have
allowed the dependents to also execute much earlier

o If there is a conflicting store, you have to squash the load and all the dependents that
have consumed the load value and re-execute them systematically

o Turns out that the speculation is correct most of the time

o To further minimize the load squash, microprocessors use simple memory dependence
predictors (predicts if a load is going to conflict with a pending store based on that
load's or load/store pairs' past behavior)

MLP and Memory Wall

Today microprocessors try to hide cache misses by initiating early prefetches :
o Hardware prefetchers try to predict next several load addresses and initiate cache line
prefetch if they are not already in the cache
o All processors today also support prefetch instructions; so you can specify in your
program when to prefetch what: this gives much better control compared to a hardware
prefetcher
« Researchers are working on load value prediction
« Even after doing all these, memory latency remains the biggest bottleneck
o Today microprocessors are trying to overcome one single wall: the memory wall
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