Objectives_template

Module 12: View

Lecture 24: Code Optimization

The Lecture Contains:

Code Optimization

Most Important Optimizations

Low Level Model of Optimization
Mixed Model of Optimization
Placement of Optimizations
Placement of Optimizations: Continued
Common Subexpression Elimination
Copy Propagation

Dead Code Elimination

Algebraic Transformation

Loop Optimizations

Loop-unrolling

Induction Variable Simplification

Loop Jamming

4|l Previous Next||p

file://ID|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_1.htm[6/14/2012 12:07:21 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2023/23_12.htm

Objectives_template

Module 12: View

Lecture 24: Code Optimization

Code Optimization

int a,b,c,d ldw a,rl add r1,r2,r3
c=atb ldw b,r2 add r3,1,r4
d=c+l add r1,r2,r3
stw r3,c
ldw c,r3
add r3,1,r4
stw r4,d
source code naive sparc code optimized code
10 cycles 2 cycles

Most Important Optimizations

Loop Optimizations

o Moving loop invariant computations

o Simplifying or eliminating computations on induction variables
« Global register allocation
¢ Instruction scheduling

Some optimizations may be relevant to a particular program and may vary according to the
structure and details of the programs
o A highly recursive program may benefit from tail call optimization
o A program with few loops and large basic blocks may benefit from loop distribution
o In-lining may decrease call over heads; in-lining may increase the code size and may
have negative effect on performance by increasing cache misses

4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2024/24_2.htm[6/14/2012 12:07:22 PM]

Objectives template

Module 12: View

Lecture 24: Code Optimization

l String of characters l String of characters
lexical lexical
analyzer analyzer
Parser Parser
Sematic Sematic
analyzer analyzer
Parse tree l Parse tree
- lat intermediate
ransiator code generator
Low level intermediate code Medium level intermediate code
h L d
Optimizer Optimizer
Low level intermediate code l Medium level intermediate code
F
Final code
Assembly generator
l Relocateable object code or l Medium level intermediate code
execulable machine code
Post pass
oplimizer

l Relocateable object code or
executable machine code

Choice is largely one of investment and development focus.
Low Level Model of Optimization

« Difficult to port unless second architecture is close to the first one
e Used in IBM Power-PC and HP PA-RISC

o Easier to avoid phase ordering problem

o Exposes all addresses to the optimizer

« Recommended for similar architectures

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2024/24._3.htm[6/14/2012 12:07:22 PM]

Objectives template

Module 12: View

Lecture 24: Code Optimization

Mixed Model of Optimization

« More easily to be adapted to new architectures

« May be more efficient at compile time

¢ Used in Sun Sparc, Digital Alpha, Intel, SGI MIPS

« More appropriate for same language and many architectures

Placement of Optimizations

Scalar replacement of array references
A | Data cache optimizations

r

Procedure integration

Tail call optimization

Tail recursion elimination

g | Scalar replacement of aggregates
Sparse conditional constant propagation ,
Interprocedural constant propagation ;
Procedure specialization and closing

A4 v
Global value numbering Algebraic
Local and global copy propagation | » Cconstant Simplifications
C1 Sparse conditional constant propagation folding including
Dead lock elimination re-association
A & A ry
L oo i """""""" ' , f :
Local and global common 3 ;
c2 sub expression elimination Partial redundancy elimination| . :
Loop invarient code motion '
 from D
l ¥ from C4
to C4 to C4

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2024/24_4.htm[6/14/2012 12:07:22 PM]

Objectives template

Module 12: View

Lecture 24: Code Optimization

Placement of Optimizations: Cont’'d

v v

to constant folding, algebraic

Dead code elimination simplification and
code hoisting re-association
induction variable-strength reduction A 4

4 Linear function test replacement = |--------o-o- - !
induction variable removal)
Unnecessary bounds checking elimination '
Control flow optimization !

v

In line expansion

Leaf routine optimization

Shrink wrapping

Machine idioms

Tail merging

Branch optimization and condition moves

Dead code elimination

o Software pipelining with loop unrolling,
vanable expansion, register renaming
and hierarchical reduction

Basic block and branch scheduling

Register allocation by graph coloring

Interprocedural l-cache optimization

Instruction and data prefetching

Branch prediction

v

Interprocedural register allocation
E Aggregates of global references
Interprocedural l-cache optimization

Code Optimization

Criteria for Code Improving Transformation

« Preserve the meaning

e Must speed up the program
e Must be worth the effort

e The analysis must be fast

Local transformation : Within basic blocks
Global transformation : Across basic blocks

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2024/24._5.htm[6/14/2012 12:07:22 PM]

Objectives template

Module 12: View

Lecture 24: Code Optimization

Common Subexpression Elimination

X:=a+b X:=a+b

Yi=a+b 7 Yi=X

t6:=4 «i te:=4 +i

X:= E[tﬁ] X = ﬂ[tﬁ]

tri=4+i

ta:=4+j C5E gz 4.

ta := a[ts] = ta:= alts]

alt7] :=to (local) a[te] :=to
to:=4+]j

aftin] := X afte] := X

goto L gotoL

t6:=4 «i te:=4 =i
X := alte] X := a[te]
ta:=4 *j t4:=4 =] already []
to:= a[ts = to ;= alta
alts] :=[tl computed g[te] := to
a[ts] := X afta] := X
gotoL goto L
te:=4 =i t6:=4+i

X = a[te] X := a[ts]

to := alta] l9 mn:'fules

a[te] := to afjj alte]:=ts

aftsa] := X afta] .= X

gotolL gotoL

4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2024/24_6.htm[6/14/2012 12:07:22 PM]

Objectives template

Module 12: View
Lecture 24: Code Optimization

te:=4 |
A= a[tﬁ‘] valueXcontains ali] X = {3
alte] :=ts =4 alt2] := ts
aft)] =X usets a{m% = X
goto L goto L
Copy Propagation
Use g for f after assignment f = g
X=tfa X =t

atz] :=ts . aftz] =ts
afts] = X afts] .=t
goto L gotol

X=Y N X=Y
if X > n gotoL if Y > n gotoL
Dead Code Elimination

Dead Operation : Unreachable by any path produces a value not used

¢ If whose true and false arcs are same
e If whose B expr known at compile time
loop not to be executed
procedure not to be called

debug := false

i?(debug) {

}
X=ts __
altz] == ts afte] :=ts
a[ta] :=ta = ate] =13
goto L gotolL

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2024/24_7.htm[6/14/2012 12:07:23 PM]

Objectives_template

Module 12: View

Lecture 24: Code Optimization

Renaming Temporary Variable Rename temporary variable t to u and replace all the
occurrences of

t by u.

This transformation increases parallelism.

Interchange Statements Two statements may be interchanged if value of the block is not

affected.
tl=b+c t2=X+Y
t2=X+Y tl=b+c

Constant folding Evaluate constant expressions at compile time.

X=3+5 X=8
Y=X*2 Y =16

Algebraic Transformation

¢ Eliminate addition/subtraction with 0 X = X = 0 should be eliminated.
« Eliminate multiplication/division by 1 X = X * 1 or X = X/1 should be eliminated.
« Eliminate multiplication by 0 X = X * 0 should be replaced with X = 0

Strength reduction Costly operators should be replaced by cheaper operators

e Replace T=X***2 py T=X*X
e Replace T=X*4 by T =Is(X, 2)
e Replace 2 * X by X + X
¢ Replace X * 0.5 by X/2
¢ Replace X/2 by rs(X, 1)

Loop Optimizations
Code Motion: Expression not evaluated in the code must be moved out of loop

while(i <= limit - 2) {
* statement not changing limit *\

}
T
t:=limit - 2

while(i <=t) { statement }

Xi=13 .
a[te] = ts a[te] =t
afts] :=ta = atg] =ts
goto L gotolL

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2024/24_8.htm[6/14/2012 12:07:23 PM]

Objectives template

Module 12: View

Lecture 24: Code Optimization

Loop-unrolling

=1 =1

loop loop
if i = n then exitloop if i = n then exitloop
bady = bodyvg

exit if i = n then exitloop

bodyy

if i = n then exitloop

body,_,
exit
DO =1 to 100 by 1 DO I =1to 100 by 2
Al = Al + B(I) = A(l) = A(l) + B(I)
END A(l4+1) = A{l+1) + B(I+1)
END
Induction Variable Simplification
B_1 B_1
I=m-1
j=n
L1=4"n
=aft1] | e
L4=4"]
1' vB 2
* v B3 B 3
=1 =11
td=4" Ld=t 4.4
t_5=alt_4] t_5 =alt_4]
ift 5>bgotoB_3 ft 5>bgotoB 3

B 4

ifi==jgola B_6

IMI/ ~a B.6

4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oonalM ulti-core_Architecture/lecture%2024/24._9.htm[6/14/2012 12:07:23 PM]

Objectives template

Module 12: View
Lecture 24: Code Optimization

Induction Variable Simplification

B_1
Prod=0
1=1 Bl
—
T_1=0
4 B_3
2 = addr(A)—4 1 B2
T_4 = addr(b) - 4)
T1=T_1+4
— | _— T 3=T_2[T_1]
Ti=sv1 T 5=T_4[T_1]
T 3=T 2T 1] L6=TA%LS
T 5=T_4[T_1] Prod = Prod + T_é
T6=T3*T_5 if T_1 == 76 goto B_2
Prod = Prod ~ T_6
I=1+1 |
if I ==20goto B_2

Loop Jamming

Two adjacent loops may me merged into a single loop

For |l =1 to 100
Ally =0

Endfor

For | =1 to 100
Bily=X()+ Y

Endfor

can be replaced by

For | =1 to 100
A(l) =0
B(l) =X(I) + ¥

Endfor

|| Previous Next||p

file:/lIDJ/...ry,%20Dr.%20Sanjeev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture%2024/24_10.htm[6/14/2012 12:07:23 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_1.htm

	24_1
	Local Disk
	Objectives_template

	24_2
	Local Disk
	Objectives_template

	24_3
	Local Disk
	Objectives_template

	24_4
	Local Disk
	Objectives_template

	24_5
	Local Disk
	Objectives_template

	24_6
	Local Disk
	Objectives_template

	24_7
	Local Disk
	Objectives_template

	24_8
	Local Disk
	Objectives_template

	24_9
	Local Disk
	Objectives_template

	24_10
	Local Disk
	Objectives_template

