
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_1.htm[6/14/2012 12:09:24 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 28: Structural Analysis

The Lecture Contains:

T1- T2 Analysis

Structural Analysis

Dataflow Analysis

Typical Equation

Reaching Definitions

Analysis of Structured Programs

Reaching Definition Analysis

Constant Folding

Example

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_10.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_2.htm[6/14/2012 12:09:24 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 28: Structural Analysis

T1- T2 Analysis

T1 transformation collapses one node self loop to a node
T2 transformation collapses sequence of two nodes into one if the second node has only one
predecessor

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_3.htm[6/14/2012 12:09:24 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 28: Structural Analysis

Structural Analysis

It is a more refined form of interval analysis
It uses syntax directed method of dataflow analysis
For each structure in the source it gives a formula
It is more efficient than iterative method
It has a construct for each type of region
Control tree is larger than the one generated by interval analysis
Each region is simple and small
Every region has exectly one entry point

Some types of cyclic regions used in structural analysis

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_4.htm[6/14/2012 12:09:24 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 28: Structural Analysis

An acyclic region that does not fit any of the simple categories and so is identified as a proper interval

Structural Analysis of a flow graph

Control tree of the flow graph analyzed in the previous slide

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_4.htm[6/14/2012 12:09:24 PM]

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_5.htm[6/14/2012 12:09:24 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 28: Structural Analysis

Improper Intervals

Dataflow Analysis

Provide info about how a program segment manipulates data
Analysis must be conservative and aggressive
Collect information for optimization

Reaching definition
Available expression
Live variable
Busy expression

Reaching Definition : A definition d reaches a point p if there is a path from d to p and d is not
killed on the path
Available Expression : An expression X+Y is available at point p if every path to p evaluates X+Y
and after the last such evaluation no assignment to X or Y
Live Variable : For a variable X and point p whether value of X at p can be used along some path
starting from p. If yes X is live at p else X is dead at p
Busy Expression : An expression B op C is busy at point p if along every path from p we come to
computation B op C before any definition of B or C

Typical Equation

out(S) = gen(S) [in(S) - kill(S)
Gen : definitions generated
Kill : definitions killed
In : input definitions
Out : output definitions

Reaching Definitions

Unambiguous Definitions
:

Assignments

Ambiguous Definitions : –procedure call with
X as var parameter
–procedure that can

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_5.htm[6/14/2012 12:09:24 PM]

access X
–pointer *q = y

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_6.htm[6/14/2012 12:09:25 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 28: Structural Analysis

Analysis of Structured Programs

gen(S) = {d}
kill(S) = Da - {d}
out(S) = gen(S) S in(S) - kill(S)

gen(S) = gen(S2) S gen(S1) - kill(S2)
kill(S) = kill(S2) S kill(S1) - gen(S2)
in(S1) = in(S)
in(S2) = out(S1)
out(S) = out(S2)

gen(S) = gen(S1) S gen(S2)
kill(S) = kill(S1) T kill(S2)
out(S) = out(S1) S out(S2)

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_7.htm[6/14/2012 12:09:25 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 28: Structural Analysis

gen(S) = gen(S1)
kill(S) = kill(S1)
out(S) = out(S1)
in(S1) = in(S) S gen(S1)

Assumptions : All paths in the flow graph are possible

Suppose E is true and it never goes to S2
gen(S) = gen(S1)
kill(S) = kill(S1)
out(S) = out(S1)

Therefore

true gen(S) gen(S)
true kill(S) kill(S)

True is what is computed during execution therefore, this is safe estimate

Prevents optimization
No wrong optimization

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_8.htm[6/14/2012 12:09:25 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 28: Structural Analysis

Reaching Definition Analysis

A definition d reaches end of a block iff either

It is generated in the block
It reaches block and not killed

Kill & gen known for each block. A program with N blocks has 2N equations with 2N unknowns and
therefore, solution is possible.

Use iterative forward bit vector approach

for each block B do
in(B) = ;
out(B) = gen(B)
endfor;
change = true;
while change do
change = false;
for each block B do
newin = S out(P)
if newin 6= in(B) then {
change = true;
in(B) = newin;
out(B) = in(B) - kill(B) S gen(B);
}
endfor
endwhile

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_8.htm[6/14/2012 12:09:25 PM]

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_9.htm[6/14/2012 12:09:25 PM]

 Module 14: Approaches to Control Flow Analysis
 Lecture 28: Structural Analysis

ud(I,d2) = d1
ud(J,d4) = d2d4d5
ud(J,d5) = d4
ud(I,B5) = d3

Constant Folding

While changes occur do
for all the stmts S of the program do
for each operand B of S do
if there is a unique definition of B
that reaches S and is a constant C
then replace B by C in S;
if all the operands of S are constant
then replace rhs by eval(rhs);
endfor
endfor
endwhile

Example

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_9.htm[6/14/2012 12:09:25 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2029/29_1.htm

	28_1
	Local Disk
	Objectives_template

	28_2
	Local Disk
	Objectives_template

	28_3
	Local Disk
	Objectives_template

	28_4
	Local Disk
	Objectives_template

	28_5
	Local Disk
	Objectives_template

	28_6
	Local Disk
	Objectives_template

	28_7
	Local Disk
	Objectives_template

	28_8
	Local Disk
	Objectives_template

	28_9
	Local Disk
	Objectives_template

