
Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_1.htm[6/14/2012 12:02:54 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

The Lecture Contains:

What is Parallelization?

Perfectly Load-Balanced Program

Amdahl's Law

About Data

What is Data Race ?

Overview to OpenMP

Components of OpenMP

OpenMP Programming Model

OpenMP Directives

OpenMP Format

A Multi-threaded “Hello World” Program

OpenMP:Terminology and Behavior

The “omp for” Directive

The “sections” Directive

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_9.htm

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_2.htm[6/14/2012 12:02:54 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

Open Multi-Processing

What is Parallelization?

Parallelization

Simultaneous use of more than one processor to complete some work is parallelization of the work.

This work can be:
A collection of program statements
An algorithm
A part of program
The problem you are trying to solve

Parallel Overhead

Overhead is introduced during parallelization due to :
Creation of threads(fork())
Joining of threads (join())
Thread synchronization and communication e.g. critical
sections
False sharing
Overhead is introduced during parallelization due to :

Creation of threads(fork())
Joining of threads (join())
Thread synchronization and communication e.g. critical
sections
False sharing
Overhead increases with number of threads
Efficient parallelization is minimizing this overheads

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_3.htm[6/14/2012 12:02:54 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

Load Balancing

Perfectly Load-Balanced Program

In a perfectly balanced parallel program no set of processors is idle while other set of processors is doing
some computation

Amdahl’s Law

Assume that code has serial fraction
Let T(1) be the execution time in one processor
T(P) is execution time on P processors

Then speed up on P processors is given by

About Data

In a shared memory parallel program variables are either “shared” or “private”

“private” Variables

Visible to one thread only
Changes made to these variable are not visible to other threads
Example : Local variables in a function that is executed in parallel

“shared” Variables

Visible to all threads
Changes made to these variable by one thread are visible to other threads
Example : Global data

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_4.htm[6/14/2012 12:02:54 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

What is Data Race ?

When two or more different threads in a multithreaded shared memory model access the same
memory location the program
may produce unexpected results
Data race occurs under following conditions:

There are two or more different threads accessing the same memory location
concurrently
They don’t host any locks
At least one access is write

A “for” Loop

“for” Loop

for(int i = 0 ; i < 8 ; i++)
a[i] = a[i] + b[i];

Execution in Parallel With 2 Threads

Thread 1
a[0] = a[0] + b[0]
a[1] = a[1] + b[1]
a[2] = a[2] + b[2]
a[3] = a[3] + b[3]

Thread 2
a[4] = a[4] + b[4]
a[5] = a[5] + b[5]
a[6] = a[6] + b[6]
a[7] = a[7] + b[7]

Overview to OpenMP

What is OpenMP ?

An API that may be used to explicitly direct multi-threaded, shared memory parallelism.

When to Use OpenMP For Parallelism ?

A loop is not parallelized
The data dependence analysis is not able to determine whether it is safe to parallelize or not
The Granularity is not enough
The compiler lacks information to parallelize at highest possible level

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_5.htm[6/14/2012 12:02:55 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

Why OpenMP ?

OpenMP is :

Portable
The API is specified for C/C++ and FORTRAN
Supported in Most major platforms e.g. Unix and
Windows

Standardized
Lean and Mean
Easy in use

We should parallelize only when the overhead due to parallelization is less than the speed-up
obtained.

Components of OpenMP

OpenMP consists of a set of compiler directives, library routines, and environment variables that
influence run-time behavior

Directives Environment Variables Runtime Environment

Parallel Regions
Work Sharing
Synchronization
Data Sharing
Attributes
Orphaning

Number of
Threads
Scheduling Type
Dynamic Thread
Adjustment
Nested Parallelism

Number of Threads
Thread ID
Dynamic Thread
Adjustment
Nested Parallelism
Timers
API for Locking

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_6.htm[6/14/2012 12:02:55 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

OpenMP Programming Model

Shared Memory, Thread Based Parallelism
Explicit Parallelism
Fork Join Model

Compiler Directive Based
Nested Parallelism Support
Dynamic Threads

OpenMP Directives

Fortran Directive Format

Format Sentinel directive [clause....]
Sentinel $OMP or C$OMP or $OMP
Example $OMP PARALLEL DEFAULT(SHARED)
PRIVATE(BETA,PI)
General Rules

Comments can not appear on the same line as a directive
Several Fortran OpenMP directives come in pair and have the
form shown below
$OMP directive
[Structured block of code]
$OMP end directive

OpenMP Format

C/C++ Directive Format

Format #pragma omp directive-name [clause....] newline
Example #pragma omp parallel default(shared) private(beta,pi)
General Rules

Case sensitive
Each directive applies to at most one succeeding segment, which must be a structured
block

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_7.htm[6/14/2012 12:02:55 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

OpenMP Directives

Parallel Region Construct

A parallel region is a block of code executed by multiple threads simultaneously
#pragma omp parallel [clause[[,] clause] ...]
{
“this is executed in parallel”
} (implied barrier)

Clauses Supported

if (scalar expression)
private (list) firstprivate (list) shared (list)
default (shared|none)
reduction (operator: list)
copyin (list)
num threads (integer-expression)

Example 1

A Multi-threaded “Hello World” Program

Example Code

#include “omp.h”
void main(){
#pragma omp parallel
{
int id = omp get thread num();
printf(“hello(%d)”,ID);
}
}

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_8.htm[6/14/2012 12:02:55 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

Example 1

A Multi-threaded “Hello World” Program

Example Code Sample Output
#include “omp.h”
void main(){
#pragma omp parallel
{
int id = omp get thread num();
printf(“hello(%d)”,ID);
}
}

hello(0) hello(3) hello(1)
hello(2)
hello(1) hello(2) hello(0)
hello(3)

“IF” Clause

If an “if” clause is present it must evaluate to .TRUE. (Fortran) or non-zero (C/C++) in order to create
a team of threads. Otherwise, the region is executed serially by master thread.

Example 2

A Multi-threaded “Hello World” Program With Clauses

#include “omp.h”
void main(){
int x = 10;
#pragma omp parallel if(x > 10) num threads(4)
{
int id = omp get thread num();
printf(“hello(%d)”,ID);
}
}

Num threads clause to request certain no of threads
Omp get thread num() runtime function to return thread ID

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_9.htm[6/14/2012 12:02:55 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

OpenMP:Terminology and Behavior

How Does It Work ?

When a thread reaches a parallel directive, it creates a team of threads and becomes the
master of the team.
The master thread always have ID 0 and it is the part of team
There is an implied barrier at the end of parallel section.
Thread adjustment (if enabled) is only done before entering a parallel region
Parallel regions can be nested depends on implementation.
An ”if” clause can be used to guard the parallel region
It is illegal to branch in or out of parallel region
Only a single IF or NUM THREADS clause is permitted

Work Sharing Constructs

A work sharing construct divides the execution of enclosed code region among the members of
team
They don’t launch new threads
Must be enclosed in a parallel region
No implied barrier on entry; implied barrier on exit(unless nowait is specified)
Must be encountered by all threads in team or none at all

#pragma omp for
{
....
}
$OMP DO
....
$OMP END DO

#pragma omp sections
{
....
}
$OMP SECTIONS
....
$OMP END SECTIONS

#pragma omp single
{
....
}
$OMP SINGLE
....
$OMP END SINGLE

The “omp for” Directive

The iterations of loop are distributed over the members of the team.
This assumes a parallel region has already been initiated, otherwise it executes in serial on a
single processor.

Format
#pragma omp for [clause [[,] clause] ...]
for loop

There is and implied barrier at exit unless “nowait” clause is specified

Objectives_template

file:///D|/...udhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_10.htm[6/14/2012 12:02:55 PM]

 Module 10: Open Multi-Processing
 Lecture 19: What is Parallelization?

The “omp for” Directive

Clauses Supported

Schedule(type[,chunk])
Private(list)
Lastprivate(list)
Collapse\
Ordered
Firstprivate(list)
Shared(list)
Reduction(operator:list)
Nowait

Example 1

A Parallel For Loop Example

#pragma omp parallel
{
#pragma omp for
for(int i = 0; i < N; i++){
do some work(i);
}
}

The variable i is made private to each thread by default you could do it explicitly by private(i)
clause.

The “sections” Directive

It specifies that the enclosed section(s) of codes are to be divided among the threads in the
team

#pragma omp sections [clause(s)]
{
#pragma omp section
< codeblock1 >
#pragma omp section
< codeblock2 >
#pragma omp section
:
}

Independent section directives are nested within a sections directive.Each section is executed
once by a thread in the team.

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_1.htm

	19_1
	Local Disk
	Objectives_template

	19_2
	Local Disk
	Objectives_template

	19_3
	Local Disk
	Objectives_template

	19_4
	Local Disk
	Objectives_template

	19_5
	Local Disk
	Objectives_template

	19_6
	Local Disk
	Objectives_template

	19_7
	Local Disk
	Objectives_template

	19_8
	Local Disk
	Objectives_template

	19_9
	Local Disk
	Objectives_template

	19_10
	Local Disk
	Objectives_template

