
Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_1.htm[6/14/2012 11:57:04 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 11: Introduction to Snoopy Coherence

 

The Lecture Contains:

Snoopy Protocols

Write Through Caches

State Transition

Ordering Memory op

Write Through is Bad

Memory Consistency

Consistency Model

Sequential Consistency

What is Program Order?

OOO and SC

SC Example

Implementing SC

Write Atomicity

Summary of SC

Back to Shared Bus 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture10/10_9.htm


Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_2.htm[6/14/2012 11:57:04 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 11: Introduction to Snoopy Coherence

 
Snoopy Protocols

Cache coherence protocols implemented in bus-based machines are called snoopy protocols
The processors snoop or monitor the bus and take appropriate protocol actions based
on snoop results
Cache controller now receives requests both from processor and bus
Since cache state is maintained on a per line basis that also dictates the coherence
granularity
Cannot normally take a coherence action on parts of a cache line
The coherence protocol is implemented as a finite state machine on a per cache line
basis
The snoop logic in each processor grabs the address from the bus and decides if any
action should be taken on the cache line containing that address (only if the line is in
cache)

Write Through Caches

There are only two cache line states
Invalid (I): not in cache
Valid (V): present in cache, may be present in other caches also

Read access to a cache line in I state generates a BusRd request on the bus
Memory controller responds to the request and after reading from memory launches the
line on the bus
Requester matches the address and picks up the line from the bus and fills the cache in
V state
A store to a line always generates a BusWr transaction on the bus (since write through);
other sharers either invalidate the line in their caches or update the line with new value

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_3.htm[6/14/2012 11:57:05 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 11: Introduction to Snoopy Coherence

 
State Transition

The finite state machine for each cache line:

 

On a write miss no line is allocated
The state remains at I: called write through write no-allocated

A/B means: A is generated by processor, B is the resulting bus transaction (if any)
Changes for write through write allocate?

Ordering Memory op

Assume that the bus is atomic
It takes up the next transaction only after finishing the previous one

Read misses and writes appear on the bus and hence are visible to all processors
What about read hits?

They take place transparently in the cache
But they are correct as long as they are correctly ordered with respect to writes
And all writes appear on the bus and hence are visible immediately in the presence of
an atomic bus

In general, in between writes reads can happen in any order without violating coherence
Writes establish a partial order

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_4.htm[6/14/2012 11:57:05 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 11: Introduction to Snoopy Coherence

 
Write Through is Bad

High bandwidth requirement
Every write appears on the bus
Assume a 3 GHz processor running application with 10% store instructions, assume CPI
of 1
If the application runs for 100 cycles it generates 10 stores; assume each store is 4
bytes; 40 bytes are generated per 100/3 ns i.e. BW of 1.2 GB/s
A 1 GB/s bus cannot even support one processor
There are multiple processors and also there are read misses

Writeback caches absorb most of the write traffic
Writes that hit in cache do not go on bus (not visible to others)
Complicated coherence protocol with many choices

Memory Consistency

Need a more formal description of memory ordering
How to establish the order between reads and writes from different processors?

The most clear way is to use synchronization

P0: A=1; flag=1
P1: while (!flag); print A;

Another example (assume A=0, B=0 initially)

P0: A=1; print B;
P1: B=1; print A;

What do you expect?
Memory consistency model is a contract between programmer and hardware regarding memory
ordering

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_5.htm[6/14/2012 11:57:05 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 11: Introduction to Snoopy Coherence

 
Consistency Model

A multiprocessor normally advertises the supported memory consistency model
This essentially tells the programmer what the possible correct outcome of a program
could be when run on that machine
Cache coherence deals with memory operations to the same location, but not different
locations
Without a formally defined order across all memory operations it often becomes
impossible to argue about what is correct and what is wrong in shared memory

Various memory consistency models
Sequential consistency (SC) is the most intuitive one and we will focus on it now (more
consistency models later)

Sequential Consistency

Total order achieved by interleaving accesses from different processors
The accesses from the same processor are presented to the memory system in program order
Essentially, behaves like a randomly moving switch connecting the processors to memory

Picks the next access from a randomly chosen processor
Lamport's definition of SC

A multiprocessor is sequentially consistent if the result of any execution is the same as if
the operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order specified
by its program

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_6.htm[6/14/2012 11:57:05 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 11: Introduction to Snoopy Coherence

 
What is Program Order?

Any legal re-ordering is allowed
The program order is the order of instructions from a sequential piece of code where
programmer's intuition is preserved

The order must produce the result a programmer expects
Can out-of-order execution violate program order?

No. All microprocessors commit instructions in-order and that is where the state
becomes visible
For modern microprocessors the program order is really the commit order

Can out-of-order (OOO) execution violate SC?
Yes. Need extra logic to support SC on top of OOO

OOO and SC

Consider a simple example (all are zero initially)

P0: x=w+1; r=y+1;
P1: y=2; w=y+1;

Suppose the load that reads w takes a miss and so w is not ready for a
long time; therefore, x=w+1 cannot complete immediately; eventually w
returns with value 3
Inside the microprocessor r=y+1 completes (but does not commit) before
x=w+1 and gets the old value of y (possibly from cache); eventually
instructions commit in order with x=4, r=1 , y=2, w=3 – So we have the
following partial orders

P0: x=w+1 < r=y+1 and P1: y=2 < w=y+1
Cross-thread: w=y+1 < x=w+1 and r=y+1 < y=2

Combine these to get a contradictory total order

What went wrong? We will discuss it in detail later

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_7.htm[6/14/2012 11:57:05 AM]

(A, B) = (0,1); interleaving: B=1; print A; A=1; print
B

(A, B) = (1,0); interleaving: A=1; print B; B=1; print
A

(A, B) = (1,1); interleaving: A=1; B=1; print A; print
B

A=1; B=1; print B; print A

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 11: Introduction to Snoopy Coherence

 
SC Example

Consider the following example

P0: A=1; print B;
P1: B=1; print A;

Possible outcomes for an SC machine

 

 

 

(A, B) = (0,0) is impossible: read of
A must occur before write of A and read of B must occur before write of B i.e. print A <
A=1 and print B < B=1, but A=1 < print B and B=1 < print A; thus print B < B=1 < print
A < A=1 < print B which implies print B < print B, a contradiction

Implementing SC

Two basic requirements
Memory operations issued by a processor must become visible to others in program
order
Need to make sure that all processors see the same total order of memory operations:
in the previous example for the (0,1) case both P0 and P1 should see the same
interleaving: B=1; print A; A=1; print B

The tricky part is to make sure that writes become visible in the same order to all processors
Write atomicity : as if each write is an atomic operation
Otherwise, two processors may end up using different values (which may still be correct
from the viewpoint of cache coherence, but will violate SC)

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_8.htm[6/14/2012 11:57:05 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 11: Introduction to Snoopy Coherence

 
Write Atomicity

Example (A=0, B=0 initially)

P0: A=1;
P1: while (!A); B=1;
P2: while (!B); print A;

A correct execution on an SC machine should print A=1
A=0 will be printed only if write to A is not visible to P2, but clearly it is visible to P1
since it came out of the loop
Thus A=0 is possible if P1 sees the order A=1 < B=1 and P2 sees the order B=1 < A=1
i.e. from the viewpoint of the whole system the write A=1 was not “atomic”
Without write atomicity P2 may proceed to print 0 with a stale value from its cache

Summary of SC

Program order from each processor creates a partial order among memory operations
Interleaving of these partial orders defines a total order
Sequential consistency: one of many total orders
A multiprocessor is said to be SC if any execution on this machine is SC compliant
Sufficient but not necessary conditions for SC

Issue memory operation in program order
Every processor waits for write to complete before issuing the next operation
Every processor waits for read to complete and the write that affects the returned value
to complete before issuing the next operation (important for write atomicity)

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture11/11_9.htm[6/14/2012 11:57:05 AM]

 Module 6: Shared Memory Multiprocessors: Consistency and Coherence
 Lecture 11: Introduction to Snoopy Coherence

 
Back to Shared Bus

Centralized shared bus makes it easy to support SC
Writes and reads are all serialized in a total order through the bus transaction ordering
If a read gets a value of a previous write, that write is guaranteed to be complete
because that bus transaction is complete
The write order seen by all processors is the same in a write through system because
every write causes a transaction and hence is visible to all in the same order
In a nutshell, every processor sees the same total bus order for all memory operations
and therefore any bus-based SMP with write through caches is SC

What about a multiprocessor with writeback cache?
No SMP uses write through protocol due to high BW

Snoopy Protocols

No change to processor or cache
Just extend the cache controller with snoop logic and exploit the bus

We will focus on writeback caches only
Possible states of a cache line: Invalid (I), Shared (S), Modified or dirty (M), Clean
exclusive (E), Owned (O); every processor does not support all five states
E state is equivalent to M in the sense that the line has permission to write, but in E
state the line is not yet modified and the copy in memory is the same as in cache; if
someone else requests the line the memory will provide the line
O state is exactly same as E state but in this case memory is not responsible for
servicing requests to the line; the owner must supply the line (just as in M state)
Stores really read the memory (as opposed to write)

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_1.htm

	11_1
	Local Disk
	Objectives_template


	11_2
	Local Disk
	Objectives_template


	11_3
	Local Disk
	Objectives_template


	11_4
	Local Disk
	Objectives_template


	11_5
	Local Disk
	Objectives_template


	11_6
	Local Disk
	Objectives_template


	11_7
	Local Disk
	Objectives_template


	11_8
	Local Disk
	Objectives_template


	11_9
	Local Disk
	Objectives_template



