
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_1.htm[6/14/2012 12:12:53 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

The Lecture Contains:

Amdahl’s Law

Induction Variable Substitution

Index Recurrence

Loop Unrolling

Constant Propagation And Expression Evaluation

Loop Vectorization

Partial Loop Vectorization

Nested Loops

Loop Interchange

Loop Limits in Loop Interchange

Removal of Pseudo Dependencies

Example

Life Time Range Splitting

Expansion of All Scalar Variables

Node Splitting

Node Splitting …

Cycle Shrinking

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2034/34_10.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_2.htm[6/14/2012 12:12:53 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

Loop Optimizations

Amdahl’s Law

Determines speed up
a: fraction of code is scalar
1-a: fraction of code which is parallelizable
1 operation per unit time is scalar unit
ζoperations per unit time in parallel units

where 0 = a= 1, and ζ=1

a
0
0.1
0.25
0.5
1

ζ=10
10
5.26
3.08
1.82
1

ζ=20
20
6.9
3.48
1.90
1

To achieve any significant speedup, parallel code must be greater then 90%
Most of the execution time is spent in small sections of code. So concentrate on critical
sections (loops)
Loop parallelization is beneficial
Inner most loop parallelization is the most beneficial
Sscalar component of the code is the limiting factor

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_3.htm[6/14/2012 12:12:53 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

 A variable whose values form an arithmetic progression
Variables are usually expressed as function of loop index
Elimination reduces number of operations inside the loop
Increases parallelization by reducing dependence cycles

for i =1,n
j = 2 * i + 1
A[i] = (A[i] + B[j])/2
endfor

for I = 1,n
A[i] = (A[i] + B[2*i+1])/2
endfor

Induction variable form a series except first or the last term
Parial loop unrolling may be required

j = n
for I = 1,n
A[i] = (B[i]+B[j]))/2
j = I
endfor
A[1] = (B[1]+B[n])/2
for I = 2,n
A[i] = (B[i] + B[i-1])/2
endfor

Index Recurrence

Loop defined index variables are used to index array elements
Their values do not form a progression

for I = 1,n
j = j +I
A[i] = A[i] + B[j]
endfor

for I = 1,n
A[i]=A[i]+B[i*(i+1)/2]
endfor

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_4.htm[6/14/2012 12:12:54 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

Loop Unrolling

Change the loop stride (most common)
Peel of one or more iterations at the beginning or at the end

for j = 1, n, k
for I = j, min(j+k, n)
A[i] = B[i] + C[i]
endfor
endfor

N1 = trunc(N/K)
N2 = N1 * K
N3 = N –N2
For j = 1, N2, K
for I = j, j+k
A[i] = B[i] + C[i]
endfor
Endfor
For I = N3+1, N
A[i] = B[i] + C[i]
endfor

Constant Propagation And Expression Evaluation

Most common optimization

for I = 1,n
pi = 3.14
pd = 2*pi
D[i] = pd*R[i]
endfor

pi = 3.14
pd = 6.28
for I = 1, n
D[i] = 6.28*R[i]
endfor

Replace constant in array index expressions with their values

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_5.htm[6/14/2012 12:12:54 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

Loop Vectorization

Generate vector instructions out of the loop
Check for all dependencies in the loop

for I = 1,n
A[i] = B[i] + C[i]
D[i] = B[i] * k
endfor
A[1..n] = B[1..n] + C[1..n]
D[1..n] = k * B[1..n]

Partial Loop Vectorization

For I = 1,n
A[i+1] = B[I-1] + C[i]
B[i] = A[i] * k
C[i] = B[i] -1
endfor

for I = 1,n
A[i+1] = B[i-1] + C[i]
B[i] = A[i] * k
endfor
C[1..n] = B[1..n] –1

Nested Loops

Useful to identify which loop 'carries the dependence'.

Assume loops are numbered: outermost is 1, next one is 2 and so on

Example
for I=1,N
for J=1,M
X[I,J]=X[I-1,J]
endfor
endfor

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_6.htm[6/14/2012 12:12:54 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

 Values written during one iteration of the outer loop is read during some iteration of outer loop
Dependence disappears if outer loop is kept fixed and inner loop runs free
Therefore, the dependence is carried by the outer loop and label the dependence with 1
Parallel code:
for I=1,N
X[I,1..M]=X[I-1,1..M]
endfor

Example
for I=1,100
for J=1,100
X[I,J]=X[I,J-1]
endfor
endfor

dependence is carried by the inner loop
Parallelization requires loop interchange

Loop Interchange

The most important loop restructuring transformation
It was developed for automatic parallelization of loops
If a loop carried all the dependence then it would be brought to the outermost position
Rest of the loops which did not carry dependence will be executed in parallel
It can be done if there are no dependence cycles
If outer loop iterates many times and inner loop only a few times then loop startup overhead is
high
Interchanging loops will improve performance
Interchange can lead to spatial locality (remember matrix multiplication?)

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_7.htm[6/14/2012 12:12:54 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

Loop Interchange

for I=1,N
for J=1,M
..........
endfor
endfor

d1, d2: Loop interchange is illegal
for I=1,100
for J=1,100
X[I,J]=....X[I-1,J+1]…

d3: Loop interchange is legal but may not be profitable
for I=1,100
for J=1,100
X[I,J]=X[I-1,J]

d4, d5: Interchanging loops can enhance parallel content
for I=1,100
for J=1,100
X[I,J[=X[I,J-1]....X[I-1,J-1]

Makes the inner most loop parallelizable
for I = I,n
for j = 1,m
A[I,j] = A[I,j-1] + 1
endfor
endfor
for j = 1,m
A[1..n, j] = A[1..n, j-1] + 1
endfor

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_8.htm[6/14/2012 12:12:54 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

Loop interchange

Loop interchange is not always legal

A forall loop can be changed with any loop nested inside it

A serial loop cannot always be interchanged with a loop surrounding it

Following loops can not be interchanged
for I = 2,n
for j = 1, m
A[I,j] = A[i-1, j+1] + 1
endfor
endfor

Loop Limits in Loop Interchange

When the loop limits of the inner loop are invariant in outer loop the loops can be changed without
changing limits
When the limits vary in the outer loop the limits can change
Interchanging two loops is equivalent to transposing the iteration space
Fourier Motzkin projections are used for finding new limits

For I = 1, 10
for j = I, 12
A[I,j] = A[I, j+1]
endfor
Endfor

The lower limit of j varies in I
The limits before interchanging are:
-I = -1 I = 10 i-j = 0 j = 12
The iteration space is shown in the figure on next foil

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_9.htm[6/14/2012 12:12:54 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

Transformed Loop
For j = 1, 12
for I = 1, min(10,j)
A[I,j] = A[I, j+1]
endfor
endfor

Removal of Pseudo Dependencies

Anti dependencies and output dependencies arise from reuse of storage
These dependencies can be eliminated by avoiding the reuse of storage
Most common transformations

Renaming: Give the occurrences of a variable with disjoint lifetimes different names
Expansion: Make a scalar into an array
Node splitting: Make a copy of an array

Example

for I=1,100
A=.....
B=.....A...
A=......
C=.....A...

S1
S2
S3
S4

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_10.htm[6/14/2012 12:12:54 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

Life Time Range Splitting

Rename second occurrence of A
for I=1,100
 A=...... S1
 B=......A.... S2
 A'=...... S3
 C=......A'.... S4
 endfor

Expansion of All Scalar Variables

For I=1,100
A[I]=........
B[I]=....A[I]...
A’[I]=......
C[I]=.....A’[I]....
endfor

S1
S2
S3
S4

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2035/35_11.htm[6/14/2012 12:12:54 PM]

 Module 18: Loop Optimizations
 Lecture 35: Amdahl’s Law

Node Splitting

Loop parallelization is impossible when the statements are involved in a dependence cycle
Sometimes dependence cycles can be broken resulting in total/partial parallelization of loop
Flow dependence cycles are very hard to break
Anti-and output-dependence cycles can be broken by renaming variables
Following loop can not be parallelized

for I = 1,n
A[i] = B[i] + C[i]
D[i] = A[i-1] + A[i+1]
endfor

Node Splitting …

for I = 1,n
A[i] = B[i] + C[i]
temp[i] = A[i+1]
D[i] = A[i-1] + temp[i]
endfor
for I = 1,n
temp[i] = A[i+1]
A[i] = B[i] + C[i]
D[i] = A[i-1] + temp[i]
endfor

temp[1..n] = A[2..n+1]
A[1..n] = B[1..n] + C[1..n]
D[1..n] = A[0..n-1] + temp[1..n]

Cycle Shrinking

In many loops dependence cycles are impossible to break
Such dependence cycles usually involve only few dependences
Cycle shrinking is used to extract any parallelism that may be present in the loop

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2036/36_1.htm

	35_1
	Local Disk
	Objectives_template

	35_2
	Local Disk
	Objectives_template

	35_3
	Local Disk
	Objectives_template

	35_4
	Local Disk
	Objectives_template

	35_5
	Local Disk
	Objectives_template

	35_6
	Local Disk
	Objectives_template

	35_7
	Local Disk
	Objectives_template

	35_8
	Local Disk
	Objectives_template

	35_9
	Local Disk
	Objectives_template

	35_10
	Local Disk
	Objectives_template

	35_11
	Local Disk
	Objectives_template

