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Memory Consistency Models

Memory Consistency

Coherence protocol is not enough to completely specify the output(s) of a parallel program
Coherence protocol only provides the foundation to reason about legal outcome of
accesses to the same memory location
Consistency model tells us the possible outcomes arising from legal ordering of
accesses to all memory locations
A shared memory machine advertises the supported consistency model; it is a “contract”
with the writers of parallel software and the writers of parallelizing compilers
Implementing memory consistency model is really a hardware-software tradeoff: a strict
sequential model (SC) offers execution that is intuitive, but may suffer in terms of
performance; relaxed models (RC) make program reasoning difficult, but may offer
better performance

SC

Recall that an execution is SC if the memory operations form a valid total order i.e. it is an
interleaving of the partial program orders

Sufficient conditions require that a new memory operation cannot issue until the
previous one is completed
This is too restrictive and essentially disallows compiler as well as hardware re-ordering
of instructions
No microprocessor that supports SC implements sufficient conditions
Instead, all out-of-order execution is allowed, and a proper recovery mechanism is
implemented in case of a memory order violation
Let's discuss the MIPS R10000 implementation
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SC in MIPS R10000

Issues instructions out of program order, but commits in order
The problem is with speculatively executed loads: a load may execute and use a value
long before it finally commits
In the meantime, some other processor may modify that value through a store and the
store may commit (i.e. become globally visible) before the load commits: may violate SC
(why?)
How do you detect such a violation?
How do you recover and guarantee an SC execution?
Any special consideration for prefetches ? Binding and non-binding prefetches

In MIPS R10000 a store remains at the head of the active list until it is completed in cache
Can we just remove it as soon as it issues and let the other instructions commit (the
store can complete from store buffer at a later point)? How far can we go and still
guarantee SC?

The Stanford DASH multiprocessor, on receiving a read reply that is already invalidated, forces
the processor to retry that load

Why can't it use the value in the cache line and then discard the line?
Does the cache controller need to take any special action when a line is replaced from the
cache?

Relaxed Models

Implementing SC requires complex hardware
Is there an example that clearly shows the disaster of not implementing all these?

Observe that cache coherence protocol is orthogonal
But such violations are rare
Does it make sense to invest so much time (for verification) and hardware (associative
lookup logic in load queue)?
Many processors today relax the consistency model to get rid of complex hardware and
achieve some extra performance at the cost of making program reasoning complex
P0: A=1; B=1; flag=1; P1: while (!flag); print A; print B;
SC is too restrictive; relaxing it does not always violate programmers' intuition
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Case Studies

CMP

CMP is the mantra of today's microprocessor industry
Intel's dual-core Pentium 4: each core is still hyperthreaded (just uses existing cores)
Intel's quad-core Whitefield is coming up in a year or so
For the server market Intel has announced a dual-core Itanium 2 (code named
Montecito); again each core is 2-way threaded
AMD has released dual-core Opteron in 2005
IBM released their first dual-core processor POWER4 circa 2001; next-generation
POWER5 also uses two cores but each core is also 2-way threaded
Sun's UltraSPARC IV (released in early 2004) is a dual-core processor and integrates
two UltraSPARC III cores

Why CMP?

Today microprocessor designers can afford to have a lot of transistors on the die
Ever-shrinking feature size leads to dense packing
What would you do with so many transistors?
Can invest some to cache, but beyond a certain point it doesn't help
Natural choice was to think about greater level of integration
Few chip designers decided to bring the memory and coherence controllers along with
the router on the die
The next obvious choice was to replicate the entire core; it is fairly simple: just use the
existing cores and connect them through a coherent interconnect
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Moore's Law

The number of transistors on a die doubles every 18-24 months
Exponential growth in available transistor count
If transistor utilization is constant, this would lead to exponential performance growth;
but life is slightly more complicated
Wires don't scale with transistor technology: wire delay becomes the bottleneck
Short wires are good: dictates localized logic design
But superscalar processors exercise a “centralized” control requiring long wires (or
pipelined long wires)
However, to utilize the transistors well, we need to overcome the memory wall problem
To hide memory latency we need to extract more independent instructions i.e. more ILP

Extracting more ILP directly requires more available in-flight instructions
But for that we need bigger ROB which in turn requires a bigger register file
Also we need to have bigger issue queues to be able to find more parallelism
None of these structures scale well: main problem is wiring
So the best solution to utilize these transistors effectively with a low cost must not
require long wires and must be able to leverage existing technology: CMP satisfies
these goals exactly (use existing processors and invest transistors to have more of
these on-chip instead of trying to scale the existing processor for more ILP)
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Power Consumption?

Hey, didn't I just make my power consumption roughly N-fold by putting N cores on the die?
Yes, if you do not scale down voltage or frequency
Usually CMPs are clocked at a lower frequency

Oops! My games run slower!
Voltage scaling happens due to smaller process technology
Overall, roughly cubic dependence of power on voltage or frequency
Need to talk about different metrics

Performance/Watt (same as reciprocal of energy)
More general, Performance k+1 /Watt (k > 0)

Need smarter techniques to further improve these metrics Online voltage/frequency
scaling

ABCs of CMP

Where to put the interconnect?
Do not want to access the interconnect too frequently because these wires are slow
It probably does not make much sense to have the L1 cache shared among the cores:
requires very high bandwidth and may necessitate a redesign of the L1 cache and
surrounding load/store unit which we do not want to do; so settle for private L1 caches,
one per core
Makes more sense to share the L2 or L3 caches
Need a coherence protocol at L2 interface to keep private L1 caches coherent: may use
a high-speed custom designed snoopy bus connecting the L1 controllers or may use a
simple directory protocol
An entirely different design choice is not to share the cache hierarchy at all (dual-core
AMD and Intel): rids you of the on-chip coherence protocol, but no gain in
communication latency
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IBM POWER4

4-chip 8-way NUMA
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32-way: Ring Bus

POWER4 Caches

Private L1 instruction and data caches (on chip)
L1 icache : 64 KB/direct mapped/128 bytes line
L1 dcache : 32 KB/2-way associative/128 bytes line/LRU
No M state in L1 data cache (write through)

On-chip shared L2 (on-chip coherence point)
1.5 MB/8-way associative/128 bytes line/pseudo LRU
For on-chip coherence, L2 tag is augmented with a two-bit sharer vector; used to invalidate L1 on other
core's write
Three L2 controllers and each L2 controller has four local coherence units; each L2 controller handles
roughly 512 KB of data divided into four SRAM partitions
For off-chip coherence, each L2 controller has four snoop engines; executes enhanced MESI with seven
states
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POWER4 L2 Cache 
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