
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_1.htm[6/14/2012 12:08:26 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 26: SIMD Architecture

The Lecture Contains:

Execute Outer Loop in Parallel

SIMD Architecture

Message Passing Architecture

Minimize Broadcast

SPMD Code After Strip Mining

Sequential and Parallel Loops

Dosingle Loop

Summary

Control Flow Analysis

Example 1

Example 1 Continued...

Basic Blocks

Partition Into Basic Blocks

Flow Graph

Loops in Flow Graphs

Algorithm to Find Dominators

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_10.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_2.htm[6/14/2012 12:08:26 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 26: SIMD Architecture
 Program has high synchronization cost: n2 forks and synchronizations.

Different processors may access c[i,j] and c[i,j+1] which may be on the same cache line.

Execute Outer Loop in Parallel

doall i := 1 to n do
for k := 1 to n do
for j := 1 to n do
c[i,j] = c[i,j] + a[i,k] * b[k,j]
endfor
endfor
endall

Only one fork and synchronization
Each task is large grain operation
Each task fetches whole array B

SIMD Architecture

Single front end issuing instructions
Back ends or PEs execute each instruction
Code divided into scalar and parallel code
Scalar code executes on front end
Each PE can access local memory directly
Messages must be used to access values from another PE’s memory
Assume each PE has one row of each matrix
Variables 1A, 1B and 1C contain rows of A, B and C on each PE
Fetch operation fetches 1B[j] from PE
Bkj is front end variable

for j := 1 to n do
PE(0:n-1):ctmp = 0
for k := 1 to n do
Bkj = fetch(k-1)(1B[j])
PE(0:n-1):ctmp = ctmp + 1A(k) * Bkj
endfor
PE(0:n-1):1C[j] = ctmp
endfor

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_3.htm[6/14/2012 12:08:26 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 26: SIMD Architecture

Message Passing Architecture

for j := 1 to n do
ctmp = 0
for k := 1 to n do
if (k-1 = Pindex)
then
Bkj = 1B[j]
broadcast(Bkj)
else
receive(Bkj)
endif
ctmp = ctmp + 1A(k) * Bkj
endfor
1C[j] = ctmp
endfor

Minimize Broadcast

for k := 1 to n do
if (k-1 = Pindex)
then
Bk[1 : n] = 1B[1:n]
broadcast(Bk[1 : n])
else
receive(Bk[1 : n])
endif
for j = 1 to n do
1C[j] = 1C[j] + 1A(k) * Bk[j]
endfor
endfor

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_4.htm[6/14/2012 12:08:26 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 26: SIMD Architecture

SPMD Code After Strip Mining

for k := 1 to n do
if (k-1 = Pindex)
then
Bk[1 : n] = 1B[1:n]
broadcast(Bk[1 : n])
else
receive(Bk[1 : n])
endif
for j = 1 to n do
for i = 1 to nrows do
1C[i,j] = 1C[i,j] + 1A(i,k) * Bk[j]
endfor
endfor
endfor

Sequential and Parallel Loops

Sequential Loop: The second iteration does not start until the first iteration is complete.
Forall Loop: This is a parallel loop corresponding to an array assignment. Each of the statements is
executed completely for all the values of the index variable before the next statement is started.

Forall i= 1, n
S1
S2

Sm
Endall

is equivalent to

S1(1:n)
S2(1:n)

Sm(1:n)

Dopar Loop: This is a parallel loop corresponding to parallel processors. Each iteration of the loop
is executed in parallel by a different processor.

The code within each iteration executes sequentially
Initial state seen by each processor is same as the state before the loop
Any variable update done by a processor can not be seen by any other processor
If two iteration change the same variable, the result is non-deterministic merge

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_5.htm[6/14/2012 12:08:27 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 26: SIMD Architecture

Dosingle Loop

Represents single assignment statement
Each variable assigned must be indexed by all loop index variables
Each element must be assigned only once
A statement in a dosingle sees all the updates

From previous or subsequent iterations
From previous or subsequent statements

dosingle i = 1 to 4 do
a[i] = a[i-1] + 1
b[i] = b[i+1] + a[i-1]
enddo

Summary

Re-structure code to exploit pipeline and caches.
Convert sequential loops involving scalars to vector operation.
Convert sequential loops into parallel loops.
Partition data for data parallel model.
Minimize messages to reduce overheads.

Control Flow Analysis

Shows hierarchical flow of control
Source control flow is not available in MIR or LIR
Loops may be constructed of ifs and gotos

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_6.htm[6/14/2012 12:08:27 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 26: SIMD Architecture

Example 1

unsigned int fib(m)
unsigned intm;
{
unsigned int f0 = 1, f1 = 1, f2, i;
if(m <= 1){
returnm;
}
else{
for(i = 2; i <= m; i + +){
f2 = f0 + f1;
f0 = f1;
f1 = f2;
}
return f2;
}
}

Example 1 Continued...

receive m
f0 ← 0
f1 ← 1
if m <= 1 got L3
i ← 2
L1: if i <= m goto L2
return f2
L2: f2 ← f0 + f1
f0 ← f1
f1 ← f2
i ← i + 1
goto L1
L3: return m

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_7.htm[6/14/2012 12:08:27 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 26: SIMD Architecture

Basic Blocks

Useful for collecting information for optimization
Basic Block : Sequence of consecutive statements where flow of control enters at the beginning
and leaves at the end. No branching permitted at an intermediate statement.

Partition Into Basic Blocks

Input : A sequence of three address statements
Output : A list of basic blocks

1. Mark leaders
a. First statement is a leader
b. Any statement which is target of a goto is a leader
c. Any statement that follows a goto statement is leader

2. For each leader all the statement following it up to the next leader or the end of the program
make a basic block.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_8.htm[6/14/2012 12:08:27 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 26: SIMD Architecture

(1) i := m - 1
(2) j := n
(3) t1 := 4* n
(4) v := a[t1]
(5) i := i + 1
(6) t2 := 4 * i
(7) t3 := a[t2]
(8) if t3 < v goto (5)
(9) j := j - 1
(10) t4 := 4 * j
(11) t5 := a[t4]
(12) if t5 > v goto (9)
(13) if i >= j goto (23)
(14) t6 := 4 * i
(15) x := a[t6]

(16) t7 := 4 * i
(17) t8 := 4 * j
(18) t9 := a[t8]
(19) a[t7] := t9
(20) t10 := 4 * j
(21) a[t10] := x
(22) goto (5)
(23) t11 := 4 * i
(24) x := a[t11]
(25) t12 := 4 * i
(26) t13 := 4 * n
(27) t14 := a[t13]
(28) a[t12] := t14
(29) t15 := 4 * n
(30) a[t15] := x

Flow Graph

Add flow of control information to basic blocks. The directed graph is called flow graph. The nodes of
the flow graph are basic blocks.
One node is initial. There is a directed edge from block B1 to block B2 if B2
follows B1 in execution order.

Jump from B1 to B2
B2 follows B1 in the order of the program

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_8.htm[6/14/2012 12:08:27 PM]

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2026/26_9.htm[6/14/2012 12:08:27 PM]

 Module 13: INTRODUCTION TO COMPILERS FOR HIGH PERFORMANCE COMPUTERS
 Lecture 26: SIMD Architecture

 Introduce two special nodes entry and exit
Control always enters through the entry node
Control always leaves through the exit node

Loops in Flow Graphs

A loop has a single entry point and the components of a loop are strongly connected in a CFG.

Dominators

A node d dominates a node n if every path from entry to n passes through d. Every node dominates
itself.
Dominance is a reflexive partial order.

Reflexive: A dom a a
Antisymmetry: A dom b and b dom a a=b
Transitive: A dom b and b dom c a dom c

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2027/27_1.htm

	26_1
	Local Disk
	Objectives_template

	26_2
	Local Disk
	Objectives_template

	26_3
	Local Disk
	Objectives_template

	26_4
	Local Disk
	Objectives_template

	26_5
	Local Disk
	Objectives_template

	26_6
	Local Disk
	Objectives_template

	26_7
	Local Disk
	Objectives_template

	26_8
	Local Disk
	Objectives_template

	26_9
	Local Disk
	Objectives_template

