
Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture9/9_1.htm[6/14/2012 11:56:22 AM]

 Module 5: Performance Issues in Shared Memory and Introduction to Coherence
 Lecture 9: Performance Issues in Shared Memory

 

The Lecture Contains:

Data Access and Communication

Data Access

Artifactual Comm.

Capacity Problem

Temporal Locality

Spatial Locality

2D to 4D Conversion

Transfer Granularity

Worse: False Sharing

Contention

Hot-spots

Overlap

Summary 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture8/8_3.htm


Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture9/9_2.htm[6/14/2012 11:56:23 AM]

 Module 5: Performance Issues in Shared Memory and Introduction to Coherence
 Lecture 9: Performance Issues in Shared Memory

 
Data Access and Communication

The memory hierarchy (caches and main memory) plays a significant role in determining
communication cost

May easily dominate the inherent communication of the algorithm
For uniprocessor , the execution time of a program is given by useful work time + data access
time

Useful work time is normally called the busy time or busy cycles
Data access time can be reduced either by architectural techniques (e.g., large caches)
or by cache-aware algorithm design that exploits spatial and temporal locality

Data Access

In multiprocessors
Every processor wants to see the memory interface as its own local cache and the main
memory
In reality it is much more complicated
If the system has a centralized memory (e.g., SMPs), there are still caches of other
processors; if the memory is distributed then some part of it is local and some is remote
For shared memory, data movement from local or remote memory to cache is
transparent while for message passing it is explicit
View a multiprocessor as an extended memory hierarchy where the extension includes
caches of other processors, remote memory modules and the network topology

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture9/9_3.htm[6/14/2012 11:56:23 AM]

 Module 5: Performance Issues in Shared Memory and Introduction to Coherence
 Lecture 9: Performance Issues in Shared Memory

 
Artifactual Comm.

Communication caused by artifacts of extended memory hierarchy
Data accesses not satisfied in the cache or local memory cause communication
Inherent communication is caused by data transfers determined by the program
Artifactual communication is caused by poor allocation of data across distributed
memories, unnecessary data in a transfer, unnecessary transfers due to system-
dependent transfer granularity, redundant communication of data, finite replication
capacity (in cache or memory)

Inherent communication assumes infinite capacity and perfect knowledge of what should be
transferred

Capacity Problem

Most probable reason for artifactual communication
Due to finite capacity of cache, local memory or remote memory
May view a multiprocessor as a three-level memory hierarchy for this
purpose: local cache, local memory, remote memory
Communication due to cold or compulsory misses and inherent communication are
independent of capacity
Capacity and conflict misses generate communication resulting from finite capacity
Generated traffic may be local or remote depending on the allocation of pages
General technique: exploit spatial and temporal locality to use the cache properly

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture9/9_4.htm[6/14/2012 11:56:23 AM]

 Module 5: Performance Issues in Shared Memory and Introduction to Coherence
 Lecture 9: Performance Issues in Shared Memory
 
Temporal Locality

Maximize reuse of data
Schedule tasks that access same data in close succession
Many linear algebra kernels use blocking of matrices to improve temporal (and spatial) locality
Example: Transpose phase in Fast Fourier Transform (FFT); to improve locality, the
algorithm carries out blocked transpose i.e. transposes a block of data at a time

Spatial Locality

Consider a square block decomposition of grid solver and a C-like row major layout i.e. A[ i ][j] and A[
i ][j+1] have contiguous memory locations

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture9/9_5.htm[6/14/2012 11:56:23 AM]

 Module 5: Performance Issues in Shared Memory and Introduction to Coherence
 Lecture 9: Performance Issues in Shared Memory

 
2D to 4D Conversion

Essentially you need to change the way memory is allocated
The matrix A needs to be allocated in such a way that the elements falling within a
partition are contiguous
The first two dimensions of the new 4D matrix are block row and column indices i.e. for
the partition assigned to processor P 6 these are 1 and 2 respectively (assuming 16
processors)
The next two dimensions hold the data elements within that partition
Thus the 4D array may be declared as float B[vP][vP][N/vP][N/vP]
The element B[3][2][5][10] corresponds to the element in 10 th column, 5 th row of the
partition of P 14
Now all elements within a partition have contiguous addresses

Transfer Granularity

How much data do you transfer in one communication?
For message passing it is explicit in the program
For shared memory this is really under the control of the cache coherence protocol:
there is a fixed size for which transactions are defined (normally the block size of the
outermost level of cache hierarchy)

In shared memory you have to be careful
Since the minimum transfer size is a cache line you may end up transferring extra data
e.g., in grid solver the elements of the left and right neighbors for a square block
decomposition (you need only one element, but must transfer the whole cache line): no
good solution

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture9/9_6.htm[6/14/2012 11:56:23 AM]

 Module 5: Performance Issues in Shared Memory and Introduction to Coherence
 Lecture 9: Performance Issues in Shared Memory

 
Worse: False Sharing

If the algorithm is designed so poorly that
Two processors write to two different words within a cache line at the same time
The cache line keeps on moving between two processors
The processors are not really accessing or updating the same element, but whatever
they are updating happen to fall within a cache line: not a true sharing, but false sharing
For shared memory programs false sharing can easily degrade performance by a lot
Easy to avoid: just pad up to the end of the cache line before starting the allocation
of the data for the next processor (wastes memory, but improves performance)

Contention

It is very easy to ignore contention effects when designing algorithms
Can severely degrade performance by creating hot-spots

Location hot-spot:
Consider accumulating a global variable; the accumulation takes place on a single node
i.e. all nodes access the variable allocated on that particular node whenever it tries to
increment it

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture9/9_7.htm[6/14/2012 11:56:23 AM]

 Module 5: Performance Issues in Shared Memory and Introduction to Coherence
 Lecture 9: Performance Issues in Shared Memory

 
Hot-spots

Avoid location hot-spot by either staggering accesses to the same location or by designing the
algorithm to exploit a tree structured communication
Module hot-spot

Normally happens when a particular node saturates handling too many messages (need
not be to same memory location) within a short amount of time
Normal solution again is to design the algorithm in such a way that these messages are
staggered over time

Rule of thumb: design communication pattern such that it is not bursty ; want to distribute it
uniformly over time

Overlap

Increase overlap between communication and computation
Not much to do at algorithm level unless the programming model and/or OS provide
some primitives to carry out prefetching , block data transfer, non-blocking receive etc.
Normally, these techniques increase bandwidth demand because you end up
communicating the same amount of data, but in a shorter amount of time (execution
time hopefully goes down if you can exploit overlap)

Summary

Parallel programs introduce three overhead terms: busy overhead (extra work),
remote data access time, and synchronization time

Goal of a good parallel program is to minimize these three terms
Goal of a good parallel computer architecture is to provide sufficient support to let
programmers optimize these three terms (and this is the focus of the rest of the course)

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture10/10_1.htm

	9_1
	Local Disk
	Objectives_template


	9_2
	Local Disk
	Objectives_template


	9_3
	Local Disk
	Objectives_template


	9_4
	Local Disk
	Objectives_template


	9_5
	Local Disk
	Objectives_template


	9_6
	Local Disk
	Objectives_template


	9_7
	Local Disk
	Objectives_template



