Objectives_template

Module 2: Virtual Memory and Caches

Lecture 3: Virtual Memory and Caches

The Lecture Contains:

Program Optimization for Multi-core: Hardware Side of It
Contents

RECAP: VIRTUAL MEMORY AND CACHE

Why Virtual Memory?

Virtual Memory

Addressing VM

VA to PA Translation

Page Fault

TLB

Caches

Addressing a Cache

Set Associative Cache

4| Previous Next||p

file:///D|/...naudhary,%20Dr.%20Sanjeev%20K %20Aggrwal %20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture3/3_1.htm[6/14/2012 11:30:58 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture2/2_7.htm

Objectives_template

Module 2: Virtual Memory and Caches

Lecture 3: Virtual Memory and Caches

Program Optimization For Multi-core: Hardware side of it
Contents

¢ Virtual Memory and Caches (Recap) [module 02]

« Fundamentals of Parallel Computers: ILP vs. TLP [module 03]

o Parallel Programming: Shared Memory and Message Passing [module 04]

o Performance Issues in Shared Memory [module 05]

e« Shared Memory Multiprocessors: Consistency and Coherence (Also see addendum.ppt)
[module 06]

¢ Synchronization [module 07]

« Memory consistency models [module 08]

o Case Studies of CMP [module 09]

4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture3/3_2.htm[6/14/2012 11:30:58 AM]

Objectives_template

Module 2: Virtual Memory and Caches

Lecture 3: Virtual Memory and Caches
RECAP: VIRTUAL MEMORY AND CACHE

Why Virtual Memory?

* With a 32-bit address you can access 4 GB of physical memory (you will never get the full
memory though)
o Seems enough for most day-to-day applications
o But there are important applications that have much bigger memory footprint: databases,
scientific apps operating on large matrices etc.
o Even if your application fits entirely in physical memory it seems unfair to load the full
image at startup
o Just takes away memory from other processes, but probably doesn't need the full image
at any point of time during Execution: hurts multiprogramming
* Need to provide an illusion of bigger memory: Virtual Memory (VM)

Virtual Memory

* Need an address to access virtual memory
o Virtual Address (VA)
¢ Assume a 32-bit VA
o Every process sees a 4 GB of virtual memory
o This is much better than a 4 GB physical memory shared between multiprogrammed
processes
o The size of VA is really fixed by the processor data path width
o 64-bit processors (Alpha 21264, 21364; Sun UltraSPARC ; AMD Athlon64, Opteron ;
IBM POWER4, POWERS5; MIPS R10000 onwards; Intel Itanium etc., and recently Intel
Pentium4) provide bigger virtual memory to each process
o Large virtual and physical memory is very important in commercial server market: need
to run large databases

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture3/3_3.htm[6/14/2012 11:30:59 AM]

Objectives_template

Module 2: Virtual Memory and Caches

Lecture 3: Virtual Memory and Caches

Addressing VM

o There are primarily three ways to address VM
o Paging, Segmentation, Segmented paging
o We will focus on flat paging only
« Paged VM
o The entire VM is divided into small units called pages
o Virtual pages are loaded into physical page frames as and when needed (demand
paging)
o Thus the physical memory is also divided into equal sized page frames
o The processor generates virtual addresses
o But memory is physically addressed: need a VA to PA translation

VA to PA Translation

e The VA generated by the processor is divided into two parts:

o Page offset and Virtual page number (VPN)

o Assume a 4 KB page: within a 32-bit VA, lower 12 bits will be page offset (offset within
a page) and the remaining 20 bits are VPN (hence 1 M virtual pages total)

o The page offset remains unchanged in the translation

o Need to translate VPN to a physical page frame number (PPFN)

o This translation is held in a page table resident in memory: so first we need to access
this page table

o How to get the address of the page table?

|| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture3/3_4.htm[6/14/2012 11:30:59 AM]

Objectives_template

Module 2: Virtual Memory and Caches

Lecture 3: Virtual Memory and Caches

VA to PA Translation

¢ Accessing the page table

o The Page table base register (PTBR) contains the starting physical address of the page
table

o PTBR is normally accessible in the kernel mode only

o Assume each entry in page table is 32 bits (4 bytes)

o Thus the required page table address is PTBR + (VPN << 2)

o Access memory at this address to get 32 bits of data from the page table entry (PTE)

o These 32 bits contain many things: a valid bit, the much needed PPFN (may be 20 bits
for a 4 GB physical memory), access permissions (read, write, execute), a dirty/modified
bit etc.

Page Fault

o The valid bit within the 32 bits tells you if the translation is valid

« |If this bit is reset that means the page is not resident in memory: results in a page fault

¢ In case of a page fault the kernel needs to bring in the page to memory from disk

o The disk address is normally provided by the page table entry (different interpretation of 31
bits)

¢ Also kernel needs to allocate a new physical page frame for this virtual page

« If all frames are occupied it invokes a page replacement policy

4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture3/3_5.htm[6/14/2012 11:30:59 AM]

Objectives_template

Module 2: Virtual Memory and Caches

Lecture 3: Virtual Memory and Caches

VA to PA Translation

o Page faults take a long time: order of ms
o Need a good page replacement policy
e« Once the page fault finishes, the page table entry is updated with the new VPN to PPFN
mapping
o Of course, if the valid bit was set, you get the PPFN right away without taking a page fault
o Finally, PPFN is concatenated with the page offset to get the final PA

PPFN Offset

e Processor now can issue a memory request with this PA to get the necessary data
« Really two memory accesses are needed
o Can we improve on this?

« Why can't we cache the most recently used translations?
o Translation Look-aside Buffers (TLB)
o Small set of registers (normally fully associative)
o Each entry has two parts: the tag which is simply VPN and the corresponding PTE
o The tag may also contain a process id
o On a TLB hit you just get the translation in one cycle (may take slightly longer
depending on the design)
o On a TLB miss you may need to access memory to load the PTE in TLB (more later)
o Normally there are two TLBs: instruction and data

|| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture3/3_6.htm[6/14/2012 11:30:59 AM]

Objectives_template

Module 2: Virtual Memory and Caches

Lecture 3: Virtual Memory and Caches

Caches

« Once you have completed the VA to PA translation you have the physical address. What's
next?

¢ You need to access memory with that PA

¢ Instruction and data caches hold most recently used (temporally close) and nearby (spatially
close) data

e Use the PA to access the cache first

« Caches are organized as arrays of cache lines

o Each cache line holds several contiguous bytes (32, 64 or 128 bytes)

Addressing a Cache
o« The PA is divided into several parts
TAG l INDEX | BLK. OFFSET

o The block offset determines the starting byte address within a cache line
« The index tells you which cache line to access
¢ In that cache line you compare the tag to determine hit/miss

PA | TAG INDEX BLK. OFFSET
HIT/ MIS5+ ‘
-1
y| |TAG DATA
F 9
STATE P
ACCESS SIZE L,

(HOW MANY BYTES?) 7
DATA
4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture3/3_7.htm[6/14/2012 11:30:59 AM]

Objectives_template

Module 2: Virtual Memory and Caches

Lecture 3: Virtual Memory and Caches

Addressing a Cache

e An example

o PA is 32 bits

o Cache line is 64 bytes: block offset is 6 bits

o Number of cache lines is 512: index is 9 bits

o So tag is the remaining bits: 17 bits

o Total size of the cache is 512*64 bytes i.e. 32 KB

o Each cache line contains the 64 byte data, 17-bit tag, one valid/invalid bit, and several
state bits (such as shared, dirty etc.)

o Since both the tag and the index are derived from the PA this is called a physically
indexed physically tagged cache

Set Associative Cache

e The example assumes one cache line per index
o Called a direct-mapped cache
o A different access to a line evicts the resident cache line
o This is either a capacity or a conflict miss
« Conflict misses can be reduced by providing multiple lines per index
e Access to an index returns a set of cache lines
o For an n-way set associative cache there are n lines per set
« Carry out multiple tag comparisons in parallel to see if any one in the set hits

4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture3/3_8.htm[6/14/2012 11:30:59 AM]

Objectives_template

Module 2: Virtual Memory and Caches

Lecture 3: Virtual Memory and Caches

2-way Set Associative

PA TAG l INDEX | BLK. OFFSET
TAG O TAG 1
F A
TAG DATA pa TAG DATA
A A
STATE STATE

Set Associative Cache

« When you need to evict a line in a particular set you run a replacement policy
o LRU is a good choice: keeps the most recently used lines (favors temporal locality)
o Thus you reduce the number of conflict misses
« Two extremes of set size: direct-mapped (1-way) and fully associative (all lines are in a single
set)
o Example: 32 KB cache, 2-way set associative, line size of 64 bytes: number of indices
or number of sets=32*1024/(2*64)=256 and hence index is 8 bits wide
o Example: Same size and line size, but fully associative: number of sets is 1, within the
set there are 32*1024/64 or 512 lines; you need 512 tag comparisons for each access

4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture3/3_9.htm[6/14/2012 11:30:59 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture4/4_1.htm

	3_1
	Local Disk
	Objectives_template

	3_2
	Local Disk
	Objectives_template

	3_3
	Local Disk
	Objectives_template

	3_4
	Local Disk
	Objectives_template

	3_5
	Local Disk
	Objectives_template

	3_6
	Local Disk
	Objectives_template

	3_7
	Local Disk
	Objectives_template

	3_8
	Local Disk
	Objectives_template

	3_9
	Local Disk
	Objectives_template

