Objectives_template

Module 3: Fundamentals of Parallel Computers: ILP vs TLP

Lecture 6: Preliminaries of Parallel Programming

The Lecture Contains:

Prolog: Why Bother?
Agenda

Writing a Parallel Program
Some Definitions
Decomposition

Static Assignment
Dynamic Assignment
Decomposition Types
Orchestration
Mapping

An Example
Sequential Program

Decomposition

Assignment

4|l Previous Next||p

file:///D|/...naudhary,%20Dr.%20Sanjeev%20K %20Aggrwal %20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_1.htm[6/14/2012 11:40:10 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_8.htm

Objectives_template

Module 3: Fundamentals of Parallel Computers: ILP vs TLP

Lecture 6: Preliminaries of Parallel Programming

Parallel Programming
Prolog: Why Bother?

¢ As an architect why should you be concerned with parallel programming?

o Understanding program behavior is very important in developing high-performance
computers

o An architect designs machines that will be used by the software programmers: so need
to understand the needs of a program

o Helps in making design trade-offs and cost/performance analysis i.e. what hardware
feature is worth supporting and what is not

o Normally an architect needs to have a fairly good knowledge in compilers and operating
systems

Agenda

o Steps in writing a parallel program
« Example

Writing a Parallel Program

o Start from a sequential description
o Identify work that can be done in parallel
o Partition work and/or data among threads or processes
o Decomposition and assignment
¢ Add necessary communication and synchronization
o Orchestration
« Map threads to processors (Mapping)
e How good is the parallel program?
o Measure speedup = sequential execution time/parallel execution time = number of
processors ideally

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture6/6_lahtm[6/14/2012 11:40:10 AM]

Objectives_template

Module 3: Fundamentals of Parallel Computers: ILP vs TLP

Lecture 6: Preliminaries of Parallel Programming

Some Definitions

e Task
o Arbitrary piece of sequential work
o Concurrency is only across tasks
o Fine-grained task vs. coarse-grained task: controls granularity of parallelism
(spectrum of grain: one instruction to the whole sequential program)
¢ Process/thread
o Logical entity that performs a task
o Communication and synchronization happen between threads
¢ Processors
o Physical entity on which one or more processes execute

Decomposition

* Find concurrent tasks and divide the program into tasks
o Level or grain of concurrency needs to be decided here

o Too many tasks: may lead to too much of overhead communicating and
synchronizing between tasks

o Too few tasks: may lead to idle processors
o Goal: Just enough tasks to keep the processors busy
¢ Number of tasks may vary dynamically
o New tasks may get created as the computation proceeds: new rays in ray tracing

o Number of available tasks at any point in time is an upper bound on the achievable
speedup

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture6/6_2.htm[6/14/2012 11:40:10 AM]

Objectives_template

Module 3: Fundamentals of Parallel Computers: ILP vs TLP

Lecture 6: Preliminaries of Parallel Programming

Static Assignment

* Given a decomposition it is possible to assign tasks statically
o For example, some computation on an array of size N can be decomposed statically by
assigning a range of indices to each process: for k processes P 0 operates on indices 0
to (N/k)-1, P 1 operates on N/k to (2N/k)-1,..., P k-1 operates on (k-1)N/k to N-1
o For regular computations this works great: simple and low-overhead
« What if the nature of computation depends on the index?
o For certain index ranges you do some heavy-weight computation while for others you do
something simple
o Is there a problem?

Dynamic Assignment

« Static assignment may lead to load imbalance depending on how irregular the application is
* Dynamic decomposition/assignment solves this issue by allowing a process to dynamically
choose any available task whenever it is done with its previous task
o Normally in this case you decompose the program in such a way that the number of
available tasks is larger than the number of processes
o Same example: divide the array into portions each with 10 indices; so you have N/10
tasks
o An idle process grabs the next available task
o Provides better load balance since longer tasks can execute concurrently with the
smaller ones

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture6/6_3.htm[6/14/2012 11:40:10 AM]

Objectives_template

Module 3: Fundamentals of Parallel Computers: ILP vs TLP

Lecture 6: Preliminaries of Parallel Programming

Dynamic Assignment

* Dynamic assignment comes with its own overhead
o Now you need to maintain a shared count of the number of available tasks
o The update of this variable must be protected by a lock
o Need to be careful so that this lock contention does not outweigh the benefits of
dynamic decomposition
* More complicated applications where a task may not just operate on an index range, but could
manipulate a subtree or a complex data structure
o Normally a dynamic task queue is maintained where each task is probably a pointer to
the data
o The task queue gets populated as new tasks are discovered

Decomposition Types

* Decomposition by data
o The most commonly found decomposition technique
o The data set is partitioned into several subsets and each subset is assigned to a
process
o The type of computation may or may not be identical on each subset
o Very easy to program and manage
e Computational decomposition
o Not so popular: Tricky to program and manage
o All processes operate on the same data, but probably carry out different kinds of
computation
o More common in systolic arrays, pipelined graphics processor units (GPUSs) etc.

4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture6/6_4.htm[6/14/2012 11:40:10 AM]

Objectives_template

Module 3: Fundamentals of Parallel Computers: ILP vs TLP

Lecture 6: Preliminaries of Parallel Programming

Orchestration

« Involves structuring communication and synchronization among processes, organizing data
structures to improve locality, and scheduling tasks

o This step normally depends on the programming model and the underlying architecture
e Goal is to

o Reduce communication and synchronization costs

o Maximize locality of data reference

o Schedule tasks to maximize concurrency: do not schedule dependent tasks in parallel

o Reduce overhead of parallelization and concurrency management (e.g., management of

the task queue, overhead of initiating a task etc.)

Mapping

¢ At this point you have a parallel program
o Just need to decide which and how many processes go to each processor of the parallel
machine
¢ Could be specified by the program
o Pin particular processes to a particular processor for the whole life of the program; the
processes cannot migrate to other processors
e Could be controlled entirely by the OS
o Schedule processes on idle processors
o Various scheduling algorithms are possible e.g., round robin: process#k goes to
processor#k
o NUMA-aware OS normally takes into account multiprocessor-specific metrics in
scheduling
« How many processes per processor? Most common is one-to-one

4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture6/6_5.htm[6/14/2012 11:40:10 AM]

Objectives_template

Module 3: Fundamentals of Parallel Computers: ILP vs TLP

Lecture 6: Preliminaries of Parallel Programming

An Example

* lterative equation solver

o Main kernel in Ocean simulation

o Update each 2-D grid point via Gauss-Seidel iterations

o "Ali,j]=0.2(A[i,,j]*+Ali,,j+1]+Al[i,,j-1]+A[i+1,,j]+Afi-1,,j]")

o Pad the n by n grid to (n+2) by (n+2) to avoid corner problems

o Update only interior n by n grid

o One iteration consists of updating all n 2 points in-place and accumulating the
difference from the previous value at each point

o If the difference is less than a threshold, the solver is said to have converged to a
stable grid equilibrium

Sequential Program

int n; begin Solve (A)
float **A, diff; inti,j, done =0;
begin main() float temp;

read (n); /* size of grid */ while ('done)
Allocate (A); diff = 0.0;]
Initialize (A); fori=0ton-1
Solve (A); forj=0ton-1
end main temp =A[ij];

Al i,,j]=0.2(A[i,,j 1*Ali,,j+1]+A]i, j-1]+ Afi-1,,jl+Afi+1,,i;)
diff += fabs (A[i,j] - temp);
endfor
endfor
if (diff/(n*n) < TOL) then done = 1; endwhile
end Solve
4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture6/6_6.htm[6/14/2012 11:40:10 AM]

Objectives_template

Module 3: Fundamentals of Parallel Computers: ILP vs TLP

Lecture 6: Preliminaries of Parallel Programming

Decomposition

o Look for concurrency in loop iterations
o In this case iterations are really dependent
o lIteration (i, j) depends on iterations (i, j-1) and (i-1, j)

O] L] @
o ®] ®
e o ® 0
] ®] ®

o Each anti-diagonal can be computed in parallel
o Must synchronize after each anti-diagonal (or pt-to-pt)
o Alternative: red-black ordering (different update pattern)

* Can update all red points first, synchronize globally with a barrier and then update all black
points
o May converge faster or slower compared to sequential program
o Converged equilibrium may also be different if there are multiple solutions
o Ocean simulation uses this decomposition
+ We will ignore the loop-carried dependence and go ahead with a straight-forward loop
decomposition
o Allow updates to all points in parallel
o This is yet another different update order and may affect convergence
o Update to a point may or may not see the new updates to the nearest neighbors (this
parallel algorithm is non-deterministic)

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture6/6_7.htm[6/14/2012 11:40:11 AM]

Objectives_template

Module 3: Fundamentals of Parallel Computers: ILP vs TLP

Lecture 6: Preliminaries of Parallel Programming

Decomposition

while (!done)

diff = 0.0;

for_alli=0ton-1
for_allj=0ton-1

temp = AL, JI;

Ali,jl=0.2(A[1, Al i, jJ+1]+A[i, j-1]+A[i-1, j]+AfI+1, j];)
diff += fabs (A[i, j] — temp);

end for_all

end for_all

if (diff/(n*n) < TOL) then done = 1;
end while

o Offers concurrency across elements: degree of concurrency is n 2
« Make the j loop sequential to have row-wise decomposition: degree n concurrency

Assignment

Possible static assignment: block row decomposition
o Process 0 gets rows 0 to (n/p)-1, process 1 gets rows n/p to (2n/p)-1 etc.
Another static assignment: cyclic row decomposition
o Process 0 gets rows 0, p, 2p,...; process 1 gets rows 1, p+1, 2p+1,....
Dynamic assignment
o Grab next available row, work on that, grab a new row,...
o Static block row assignment minimizes nearest neighbor communication by assigning
contiguous rows to the same process

4|l Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture6/6_8.htm[6/14/2012 11:40:11 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_1.htm

	6_1
	Local Disk
	Objectives_template

	6_1a
	Local Disk
	Objectives_template

	6_2
	Local Disk
	Objectives_template

	6_3
	Local Disk
	Objectives_template

	6_4
	Local Disk
	Objectives_template

	6_5
	Local Disk
	Objectives_template

	6_6
	Local Disk
	Objectives_template

	6_7
	Local Disk
	Objectives_template

	6_8
	Local Disk
	Objectives_template

