
Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_1.htm[6/14/2012 11:59:30 AM]

 Module 7: Synchronization
 Lecture 14: Scalable Locks and Barriers

The Lecture Contains:

Ticket Lock

Array-based Lock

RISC Processors

LL/SC

Locks With LL/SC

Fetch & op With LL/SC

Point-to-point Synch.

Barrier

Centralized Barrier

Sense Reversal

Tree Barrier

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_9.htm

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_2.htm[6/14/2012 11:59:30 AM]

 Module 7: Synchronization
 Lecture 14: Scalable Locks and Barriers

Ticket Lock

Similar to Bakery algorithm but simpler
A nice application of fetch & inc
Basic idea is to come and hold a unique ticket and wait until your turn comes

Bakery algorithm failed to offer this uniqueness thereby increasing complexity

Shared: ticket = 0, release_count = 0;
Lock: fetch & inc reg1, ticket_addr
Wait: lw reg2, release_count_addr /* while (release_count != ticket); */
sub reg3, reg2, reg1
bnez reg3, Wait

Unlock: addi reg2, reg2, 0x1 /* release_count ++ */
sw reg2, release_count_addr

Initial fetch & inc generates O(P) traffic on bus-based machines (may be worse in DSM
depending on implementation of fetch & inc)
But the waiting algorithm still suffers from 0.5P 2 messages asymptotically

Researchers have proposed proportional backoff i.e. in the wait loop put a delay
proportional to the difference between ticket value and last read release_count

Latency and storage-wise better than Bakery
Traffic-wise better than TTS and Bakery (I leave it to you to analyze the traffic of Bakery)
Guaranteed fairness: the ticket value induces a FIFO queue

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_3.htm[6/14/2012 11:59:31 AM]

 Module 7: Synchronization
 Lecture 14: Scalable Locks and Barriers

Array-based Lock

Solves the O(P 2) traffic problem
The idea is to have a bit vector (essentially a character array if boolean type is not supported)
Each processor comes and takes the next free index into the array via fetch & inc
Then each processor loops on its index location until it becomes set
On unlock a processor is responsible to set the next index location if someone is waiting
Initial fetch & inc still needs O(P) traffic, but the wait loop now needs O(1) traffic
Disadvantage: storage overhead is O(P)
Performance concerns

Avoid false sharing: allocate each array location on a different cache line
Assume a cache line size of 128 bytes and a character array: allocate an array of size
128P bytes and use every 128 the position in the array
For distributed shared memory the location a processor loops on may not be in its local
memory: on acquire it must take a remote miss; allocate P pages and let each
processor loop on one bit in a page? Too much wastage; better solution: MCS lock
(Mellor- Crummey & Scott)

Correctness concerns
Make sure to handle corner cases such as determining if someone is waiting on the
next location (this must be an atomic operation) while unlocking
Remember to reset your index location to zero while unlocking

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_4.htm[6/14/2012 11:59:31 AM]

 Module 7: Synchronization
 Lecture 14: Scalable Locks and Barriers

RISC Processors

All these atomic instructions deviate from the RISC line
Instruction needs a load as well as a store

Also, it would be great if we can offer a few simple instructions with which we can build most of
the atomic primitives

Note that it is impossible to build atomic fetch & inc with xchg instruction
MIPS, Alpha and IBM processors support a pair of instructions: LL and SC

Load linked and store conditional

LL/SC

Load linked behaves just like a normal load with some extra tricks
Puts the loaded value in destination register as usual
Sets a load_linked bit residing in cache controller to 1
Puts the address in a special lock_address register residing in the cache controller

Store conditional is a special store
sc reg , addr stores value in reg to addr only if load_linked bit is set; also it copies the
value in load_linked bit to reg and resets load_linked bit

Any intervening “operation” (e.g., bus transaction or cache replacement) to the cache line
containing the address in lock_address register clears the load_linked bit so that subsequent
sc fails

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_5.htm[6/14/2012 11:59:31 AM]

 Module 7: Synchronization
 Lecture 14: Scalable Locks and Barriers

Locks With LL/SC

Test & set

Lock: LL r1, lock_addr /* Normal read miss/ BusRead */
 addi r2, r0, 0x1
 SC r2, lock_addr /* Possibly upgrade miss */
 beqz r2, Lock /* Check if SC succeeded */
 bnez r1, Lock /* Check if someone is in CS */

LL/SC is best-suited for test & test & set locks

Lock: LL r1, lock_addr
 bnez r1, Lock
 addi r1, r0, 0x1
 SC r1, lock_addr
 beqz r1, Lock

Fetch & op with LL/SC

Fetch & inc

Try: LL r1, addr
 addi r1, r1, 0x1
 SC r1, addr
 beqz r1, Try

Compare & swap: Compare with r1, swap r2 and memory location (here we keep on trying until
comparison passes)

Try: LL r3, addr
 sub r4, r3, r1
 bnez r4, Try
 add r4, r2, r0
 SC r4, addr
 beqz r4, Try
 add r2, r3, r0

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_6.htm[6/14/2012 11:59:31 AM]

 Module 7: Synchronization
 Lecture 14: Scalable Locks and Barriers

Point-to-point Synch.

Normally done in software with flags

P0: A = 1; flag = 1;
P1: while (!flag); print A;

Some old machines supported full/empty bits in memory
Each memory location is augmented with a full/empty bit
Producer writes the location only if bit is reset
Consumer reads location if bit is set and resets it
Lot less flexible: one producer-one consumer sharing only (one producer-many
consumers is very popular); all accesses to a memory location become synchronized
(unless compiler flags some accesses as special)

Possible optimization for shared memory
Allocate flag and data structures (if small) guarded by flag in same cache line e.g., flag
and A in above example

Barrier

High-level classification of barriers
Hardware and software barriers

Will focus on two types of software barriers
Centralized barrier: every processor polls a single count
Distributed tree barrier: shows much better scalability

Performance goals of a barrier implementation
Low latency: After all processors have arrived at the barrier, they should be able to
leave quickly
Low traffic: Minimize bus transaction and contention
Scalability: Latency and traffic should scale slowly with the number of processors
Low storage: Barrier state should not be big
Fairness: Preserve some strict order of barrier exit (could be FIFO according to arrival
order); a particular processor should not always be the last one to exit

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_7.htm[6/14/2012 11:59:31 AM]

 Module 7: Synchronization
 Lecture 14: Scalable Locks and Barriers

Centralized Barrier

struct bar_type {
int counter;
struct lock_type lock;
int flag = 0;
} bar_name ;
BARINIT (bar_name) {
LOCKINIT(bar_name.lock);
bar_name.counter = 0;
}

BARRIER (bar_name , P) {
int my_count ;
LOCK (bar_name.lock);
if (! bar_name.counter) {
bar_name.flag = 0; /* first one */
}
my_count = ++ bar_name.counter ;
UNLOCK (bar_name.lock);
if (my_count == P) {
bar_name.counter = 0;
bar_name.flag = 1; /* last one */
}
else {
while (! bar_name.flag);
}
}

Sense Reversal

The last implementation fails to work for two
consecutive barrier invocations

Need to prevent a process from entering a
barrier instance until all have left the
previous instance
Reverse the sense of a barrier i.e. every
other barrier will have the same sense:
basically attach parity or sense to a barrier

 BARRIER (bar_name , P) {
local sense = ! local_sense ; /* this is private
per processor */
LOCK (bar_name.lock);
bar_name.counter ++;
if (bar_name.counter == P) {
UNLOCK (bar_name.lock);
bar_name.counter = 0;
bar_name.flag = local_sense ;
}
else {
UNLOCK (bar_name.lock);
while (bar_name.flag != local_sense);
}
}

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_8.htm[6/14/2012 11:59:31 AM]

 Module 7: Synchronization
 Lecture 14: Scalable Locks and Barriers

Centralized Barrier

How fast is it?
Assume that the program is perfectly balanced and hence all processors arrive at the
barrier at the same time
Latency is proportional to P due to the critical section (assume that the lock algorithm
exhibits at most O(P) latency)
The amount of traffic of acquire section (the CS) depends on the lock algorithm; after
everyone has settled in the waiting loop the last processor will generate a BusRdX
during release (flag write) and others will subsequently generate BusRd before
releasing: O(P)
Scalability turns out to be low partly due to the critical section and partly due to O(P)
traffic of release
No fairness in terms of who exits first

Tree Barrier

Does not need a lock, only uses flags
Arrange the processors logically in a binary tree (higher degree also possible)
Two siblings tell each other of arrival via simple flags (i.e. one waits on a flag while the
other sets it on arrival)
One of them moves up the tree to participate in the next level of the barrier
Introduces concurrency in the barrier algorithm since independent subtrees can proceed
in parallel
Takes log(P) steps to complete the acquire
A fixed processor starts a downward pass of release waking up other processors that in
turn set other flags
Shows much better scalability compared to centralized barriers in DSM multiprocessors;
the advantage in small bus-based systems is not much, since all transactions are any
way serialized on the bus; in fact the additional log (P) delay may hurt performance in
bus-based SMPs

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_9.htm[6/14/2012 11:59:31 AM]

 Module 7: Synchronization
 Lecture 14: Scalable Locks and Barriers

Tree Barrier

TreeBarrier (pid , P) {
unsigned int i , mask;
for (i = 0, mask = 1; (mask &
pid) != 0; ++ i , mask <<= 1) {
while (!flag[pid][i]);
flag[pid][i] = 0;
}
if (pid < (P - 1)) {
flag[pid + mask][i] = 1;
while (!flag[pid][MAX- 1]);
flag[pid][MAX - 1] = 0;
}
for (mask >>= 1; mask > 0; mask >>= 1) {
flag[pid - mask][MAX-1] = 1;
}

Convince yourself that this works
Take 8 processors and arrange them on leaves of
a tree of depth 3
You will find that only odd nodes move up at
every level during acquire (implemented in the
first for loop)
The even nodes just set the flags (the first
statement in the if condition): they bail out of the
first loop with mask=1
The release is initiated by the last processor in
the last for loop; only odd nodes execute this
loop (7 wakes up 3, 5, 6; 5 wakes up 4; 3 wakes
up 1, 2; 1 wakes up 0)

Each processor will need at most log (P) + 1 flags
Avoid false sharing: allocate each processor's flags on a separate chunk of cache lines
With some memory wastage (possibly worth it) allocate each processor's flags on a separate
page and map that page locally in that processor's physical memory

Avoid remote misses in DSM multiprocessor
Does not matter in bus-based SMPs

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture15/15_1.htm

	14_1
	Local Disk
	Objectives_template

	14_2
	Local Disk
	Objectives_template

	14_3
	Local Disk
	Objectives_template

	14_4
	Local Disk
	Objectives_template

	14_5
	Local Disk
	Objectives_template

	14_6
	Local Disk
	Objectives_template

	14_7
	Local Disk
	Objectives_template

	14_8
	Local Disk
	Objectives_template

	14_9
	Local Disk
	Objectives_template

