
Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_1.htm[6/14/2012 12:02:09 PM]

 Module 9: Addendum to Module 6: Shared Memory Multiprocessors
 Lecture 18: Sharing Patterns and Cache Coherence Protocols

 

The Lecture Contains:

Invalidation vs. Update

Sharing Patterns

Migratory Hand-off

States of a Cache Line

Stores

MSI Protocol

State Transition

MSI Example

MESI Protocol

MESI Example

MOESI Protocol

MOSI Protocol

Hybrid Inval+update 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture17/17_8.htm


Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_2.htm[6/14/2012 12:02:09 PM]

 Module 9: Addendum to Module 6: Shared Memory Multiprocessors
 Lecture 18: Sharing Patterns and Cache Coherence Protocols

 
Invalidation vs. Update

Two main classes of protocols:
Dictates what action should be taken on a store
Invalidation-based protocols invalidate sharers when a store miss appears
Update-based protocols update the sharer caches with new value on a store
Advantage of update-based protocols: sharers continue to hit in the cache while in
invalidation-based protocols sharers will miss next time they try to access the line
Advantage of invalidation-based protocols: only store misses go on bus and subsequent
stores to the same line are cache hits

When is update-based protocol good?
What sharing pattern? (large-scale producer/consumer)
Otherwise it would just waste bus bandwidth doing useless updates

When is invalidation-protocol good?
Sequence of multiple writes to a cache line
Saves intermediate write transactions

Overhead of initiating small updates
Invalidation-based protocols are much more popular
Some systems support both or maybe some hybrid based on dynamic sharing pattern of
a cache line

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_3.htm[6/14/2012 12:02:09 PM]

 Module 9: Addendum to Module 6: Shared Memory Multiprocessors
 Lecture 18: Sharing Patterns and Cache Coherence Protocols

 
Sharing Patterns

Producer-consumer (initially flag, done are zero)

T0: while (!exit) {x=y; flag=1; while (done != k); 
flag=0; done=0;}
T1 to Tk : while (!exit) {while (!flag); use x; 
done++; while (flag);}

Exit condition not shown
What if T1 to Tk do not have the outer loop?

Migratory (initially flag is zero)

T0: x = f0(x); flag++;
T1 to Tk : while (flag != pid ); x = f1(x); flag++;

Migratory hand-off?

Migratory Hand-off

Needs a memory writeback on every hand-off
r0, w0, r1 , w1, r2 , w2, r3 , w3, r4 , w4, …
How to avoid these unnecessary writebacks ?
Saves memory bandwidth
Solution: add an owner state (different from M) in caches
Only owner can write a line back on eviction
Ownership shifts along the migratory chain

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_4.htm[6/14/2012 12:02:09 PM]

 Module 9: Addendum to Module 6: Shared Memory Multiprocessors
 Lecture 18: Sharing Patterns and Cache Coherence Protocols

 
States of a Cache Line

Invalid (I), Shared (S), Modified or dirty (M), Clean exclusive (E), Owned (O)
Every processor does not support all five states
E state is equivalent to M in the sense that the line has permission to write, but in E
state the line is not yet modified and the copy in memory is the same as in cache; if
someone else requests the line the memory will provide the line
O state is exactly same as E state but in this case memory is not responsible for
servicing requests to the line; the owner must supply the line (just as in M state)

Stores

Look at stores a little more closely
There are three situations at the time a store issues: the line is not in the
cache, the line is in the cache in S state, the line is in the cache in one of M, E and O
states
If the line is in I state, the store generates a read-exclusive request on the bus and gets
the line in M state
If the line is in S or O state, that means the processor only has read permission for that
line; the store generates an upgrade request on the bus and the upgrade
acknowledgment gives it the write permission (this is a data-less transaction)

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_5.htm[6/14/2012 12:02:09 PM]

 Module 9: Addendum to Module 6: Shared Memory Multiprocessors
 Lecture 18: Sharing Patterns and Cache Coherence Protocols

 
MSI Protocol

Forms the foundation of invalidation-based writeback protocols
Assumes only three supported cache line states: I, S, and M
There may be multiple processors caching a line in S state
There must be exactly one processor caching a line in M state and it is the owner of the
line
If none of the caches have the line, memory must have the most up-to-date copy of the
line

State Transition

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_6.htm[6/14/2012 12:02:09 PM]

 Module 9: Addendum to Module 6: Shared Memory Multiprocessors
 Lecture 18: Sharing Patterns and Cache Coherence Protocols

 
MSI Example

Take the following example
P0 reads x, P1 reads x, P1 writes x, P0 reads x, P2 reads x, P3 writes x
Assume the state of the cache line containing the address of x is I in all processors

P0 generates BusRd , memory provides line, P0 puts line in S state
P1 generates BusRd , memory provides line, P1 puts line in S state
P1 generates BusUpgr , P0 snoops and invalidates line, memory does not respond, P1 sets state of
line to M
P0 generates BusRd , P1 flushes line and goes to S state, P0 puts line in S state, memory writes
back
P2 generates BusRd , memory provides line, P2 puts line in S state
P3 generates BusRdX , P0, P1, P2 snoop and invalidate, memory provides line, P3 puts line in cache
in M state

MESI Protocol

The most popular invalidation-based protocol e.g., appears in Intel Xeon MP
Why need E state?

The MSI protocol requires two transactions to go from I to M even if
there is no intervening requests for the line: BusRd followed by BusUpgr
Save one transaction by having memory controller respond to the first BusRd with E
state if there is no other sharer in the system
Needs a dedicated control wire that gets asserted by a sharer (wired OR)
Processor can write to a line in E state silently

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_7.htm[6/14/2012 12:02:10 PM]

Consider this example: P0 reads x, P1 reads x,…

 Module 9: Addendum to Module 6: Shared Memory Multiprocessors
 Lecture 18: Sharing Patterns and Cache Coherence Protocols

 
State Transition

MESI Example

Take the following example
P0 reads x, P0 writes x, P1 reads x, P1 writes x, …

P0 generates BusRd , memory provides line, P0 puts line in cache in E state
P0 does write silently, goes to M state
P1 generates BusRd , P0 provides line, P1 puts line in cache in S state, P0 transitions to S state
Rest is identical to MSI

 

P0 generates BusRd , memory provides line, P0 puts line in cache in E state
P1 generates BusRd , memory provides line, P1 puts line in cache in S state, P0 transitions to S state
(no cache-to-cache sharing)
Rest is same as MSI

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_8.htm[6/14/2012 12:02:10 PM]

 Module 9: Addendum to Module 6: Shared Memory Multiprocessors
 Lecture 18: Sharing Patterns and Cache Coherence Protocols

 
MOESI Protocol

State transitions pertaining to O state
I to O: Not possible
E to O or S to O: Not possible
M to O: On a BusRd /Flush (but no memory writeback )
O to I: On CacheEvict / BusWB or { BusRdX,BusUpgr }/Flush ]
O to S: Not possible
O to E: Not possible
O to M: On PrWr / BusUpgr

At most one cache can have a line in O state at any point in time
Two main design choices for MOESI

Consider the example: P0 reads x, P0 writes x, P1 reads x, P2 reads x, P3 reads
x, …
When P1 launches BusRd , P0 sources the line and now the protocol has two options:
1. The line in P0 goes to O and the line in P1 is filled in state S; 2. The line in P0 goes
to S and the line in P1 is filled in state O i.e. P1 inherits ownership from P0
For distributed shared memory, the second choice is better
According to the second choice, when P2 generates a BusRd request, P1 sources the
line and transitions from O to S; P2 becomes the new owner

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture18/18_9.htm[6/14/2012 12:02:10 PM]

 Module 9: Addendum to Module 6: Shared Memory Multiprocessors
 Lecture 18: Sharing Patterns and Cache Coherence Protocols

 
MOSI Protocol

Some SMPs do not support the E state
In many cases it is not helpful, only complicates the protocol
MOSI allows a compact state encoding in 2 bits
Sun WildFire uses MOSI protocol

Hybrid inval+update

One possible hybrid protocol
Keep a counter per cache line and make Dragon update protocol the default
Every time the local processor accesses a cache line set its counter to some pre-
defined threshold k
On each received update decrease the counter by one
When the counter reaches zero, the line is locally invalidated hoping that eventually the
writer will switch to M state from Sm state when no sharers are left

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture19/19_1.htm

	18_1
	Local Disk
	Objectives_template


	18_2
	Local Disk
	Objectives_template


	18_3
	Local Disk
	Objectives_template


	18_4
	Local Disk
	Objectives_template


	18_5
	Local Disk
	Objectives_template


	18_6
	Local Disk
	Objectives_template


	18_7
	Local Disk
	Objectives_template


	18_8
	Local Disk
	Objectives_template


	18_9
	Local Disk
	Objectives_template



