Objectives_template

Module 15: Reaching Definition

Lecture 29: Reaching Definition

The Lecture Contains:

Reaching Definition

Taxonomy of Dataflow Problems
Techniques

Four Kinds of Dataflow Problems

A Lattice L Consists of

Properties of Lattices

Example

Flow Functions For The Flow—graph in The Example
Iterative (forward) Data-flow Analysis
Control Tree Based Data-Flow Analysis
If-then Construct

If-then-else Construct

While Loop

Improper Region

4|l Previous Next||p

file://ID|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2029/29_1.htm[6/14/2012 12:09:57 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2028/28_9.htm

Objectives_template

Module 15: Reaching Definition

Lecture 29: Reaching Definition

Reaching Definition

« Definition: Assignment of a value to a variable

« A definition d of a variable reaches a point p if there is a path from d to p and value of a
variable is same as assigned at d

« Use iterative forward bit vector problem

o A bit vector of a 8 bit can be used to represent all the definition

« Initial condition
in(entry) = @ = 00000000
in(i) = @ = 00000000 for all nodes i

« If an instruction re-defines a variable then it is killed

Bit position Definition Basic block
minnode 1 Bl

f0 in node 2

f1 in node 3

iin node b B3

f2in node 8 B6

f0 in node 9

f1 in node 10

iin node 11

00 =] Ch N S|) B et

a definition not killed is preserved

prsv(B1) = 4, 5, 8 = 00011001

prsv(B3) = 1,2, 3, 5, 6, 7 = 11101110

prsv(B6) = 1 = 10000000

prsv(i) = 1,2, 3,4, 5,6, 7, 8 = 11111111 for i # B1, B3, B6

Gen: Definitions generated in a basic block and not subsequently killed in it
gen(Bl) =1, 2, 3 = 11100000

gen(B3) = 4 = 00010000

gen(B6) =5, 6, 7, 8 = 00001111

gen(i) = @ = 00000000 for i 6= B1, B3, B6

Out: Definitions which reach at the end of a basic block
out(i) = @ = 00000000 for all i
A definition reaches end of a basic block iff either

o It is generated in the basic block OR
o It reaches in and is preserved

4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2029/29_2.htm[6/14/2012 12:09:57 PM]

Objectives_template

Module 15: Reaching Definition

Lecture 29: Reaching Definition

Therefore,
out = gen U (in nyprsv) for all i
out = gen p (in V prsv) for all i

in(i) = S out(j) for all predecessors of i
in(i) = W out(j) for all predecessors of i

Taxonomy of Dataflow Problems

Categorized along several dimensions

o The information they are designed to provide
e The direction of flow
« Tonfluence operator

Techniques

« lterative dataflow analysis
o Control tree based method using intervals
o Control tree based method using structural analysis

Four Kinds of Dataflow Problems

Four varieties are distinguished by two orthogonal characteristic

o The operator used for confluence or divergence
o Data flows backward or forward

] n
Forward reaching def available expression
Backward live variable busy epxression

Transfer Function

« In forward dataflow out(B) is a transfer function of in(B)
¢ In backward dataflow in(B) is a transfer function of out(B)

out = (in - kill) [gen
4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2029/29_3.htm[6/14/2012 12:09:57 PM]

Objectives_template

Module 15: Reaching Definition

Lecture 29: Reaching Definition
A Lattice L Consists of

« A set of values
e 'Meet’ operator 1
« 'Join’ operator L|

Properties of Lattices
o Wx,y €EL3w,z EL suchthatx My =wand x Uy =z (closure)

o Wx,v €L
X¥Ny=¥y NxandxUy = ¥U X (Commutative)

« Wx, v,z EL
(xny)nz=xn(ynz) and
(xuy) uz=xu (y uz) (associate)

« ¥x,v,zEL
(xny)uz=1(xnz) n(y uz) and
(xuy)nz=(zxnz) u (y nz) (distributive)

¢ It has two unique element top T and bottom L
Suchthat ¥x €L
X¥XMNl=landxuT=T

Forward Reaching Definition Analysis

« Elements are bit vectors
« Meet is bitwise and
« Join is bitwise or

« Bottom is 0" and top is 1"

« BV " denotes lattice of n bits for example BV 3

110 \
&>(1u1
- um

100 # oo

\/

ooo

~ 011

|| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2029/29_4.htm[6/14/2012 12:09:57 PM]

Objectives_template

Module 15: Reaching Definition

Lecture 29: Reaching Definition

Example
entry

1: receve m
2:f0=0
If=1

m<=1

return m 4:i=2

L 4

return f2

Bf2=f0+M
6:f0 =M1
711 =f2
Bi=i+1

En |

« A function f mapping a lattice to itself
f:L — L is monotonic if for all x, y

CY =flx)cf(l)

for example f : BV 3 — BV 3 defined as
f: (X1, X2, X3) — (X1, 1, X3) is monotonic

o Height: it is the length of the longest ascending chain such that there exists
X1, X2, . . ., Xp Such that
1l==x E &, E--C x, =T
« Monotonicity and finite height ensure that the data-flow algorithms implementing function f
terminate
« flow function maps lattice to lattice.
Flow function for B is given as
Fgq '[:i L - }} == 111z, 25 002y =
o Let Fg() be the flow function representing flow through block B and F, represent the

composition of the flow functions encountered in following path p then £z = Fg,, 0 ...0 Fgq

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2029/29_5.htm[6/14/2012 12:09:57 PM]

Objectives_template

Module 15: Reaching Definition

Lecture 29: Reaching Definition

Flow Functions For The Flow-graph in The Example

Fentry = 4«

Fg1 '[c‘: &y, Xz e, kg :}} == 111x, &g 00xg =

Fgo = id

Fgs {ﬁ‘: Xy Xy ..,Xg }} =< ay Ko g lag 2020 =
Fge= id

Fgg = id

Fre (< 2y #5 g =) =< 2, 000111 =

Iterative (forward) Data-flow Analysis
Compute in (B) and out (B) £ L for each B & flow graph

init for B = entry
P € pred(B)out (P) otherwise
Out (B) = Fg (in(B))

Control Tree Based Data-Flow Analysis

e These methods are known as elimination methods
« Applies to both intervals and structures
« Significantly harder to implement - requiring node splitting, iteration, solving of data flow
problems over improper regions
o Can be easily adapted to incremental updating of data flow information
« It makes two passes over the control tree
o First pass (bottom up) constructs flow functions
o Second pass (top down) constructs and evaluates data-flow equations for each region

If-then Construct

F_iflY if-them
F if/N

then J’ F if-then

ka !

4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonal/M ulti-core_Architecture/lecture%2029/29_6.htm[6/14/2012 12:09:58 PM]

Objectives template

Module 15: Reaching Definition

Lecture 29: Reaching Definition

First Pass

Fif —then (F:'f,*i’} N Firm

If we do not distinguish between Fiz/¥ and Fif x then
Fa‘f—mgn:(F then o Fip)N Fp=(F then Nid)oF;s
Second Pass

in(if) = in(if-then)
in(then) = Fig v (in(if))

If we do not distinguish between the true and the false parts

in(if) = in(if-then)
in(then) = Eir (in(if)

If-then-else Construct

'

if-then-else

’

F_if-then-else

then else

™

F_then \. F_then

Fir -then —else = (F then oF;f/v) N (F else o Fipw)

First Pass

Second Pass

in(if) = in(if-then-else)
in(then) = Fis sy (in(if))
in(else) = Fig w (in(if)
4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2029/29 _7.htm[6/14/2012 12:09:58 PM]

Objectives template

Module 15: Reaching Definition
Lecture 29: Reaching Definition

While Loop
while l
F while/Y while loop
body F_while/N l
F while-loop
— F_body
First Pass

F!oop = (Fbod_}' o thz'!a.-"YJ *

thz'!a—!oo*p = whz’!a.l'{ND F!oo*p
Second Pass

in(while) = F1z05 (in(while-loop))
in(body) = Fuwnite/¥ (in(while))

If we do not distinguish between Fuhile /¥ and Finite /o then
Fioop = (Fyody 0 Funite) *
thz‘:a—:mp = Fihite © F:m-p
= Funite © (Fooay © Fynite J*
In(while) = Fiaop (in while- loop))
In(body) = Fux:1s (in (while))
4| Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2029/29_8.htm[6/14/2012 12:09:58 PM]

Objectives template

Module 15: Reaching Definition
Lecture 29: Reaching Definition

Improper Region

Y \ B1a

Bottom up equation:

((Fg1a = Fgz0Fgz) +0Fgq)

M ((Fgs 0Fgy) * 0Fg3 0Fg,
Top down equations:

in (B1) = in(B1a)
in (B2) = Fg4(in(B1)) M Fgs (in(B3))

in(B3) = Fg4(in(B1)) N Fg.(in(B2))
solve for in(B2) and in(B3) in function lattice

in(B2) = (((Fgzo Fgy) * oFg,)

1 ((F30Fg,) * 0 Fgs 0 Fy))(in(B1))

= ((Fg30Fg,) * o(id N Fg3)oFg,)(in(B1))
in(B3) = (((Fsz 0 Fg3) * 0Fg)

M ((Faz0 Fga) * 0 Fp20Fp))(in(B1))

((FBED Fga) * (id M FB:}UF32}0F31](1’-’1(5’1}}
4|l Previous Next||p

file://IDJ/...ary,%20Dr.%20Sanj eev%20K %20A ggrwal %20& %20Dr.%20Rasj at%20M oonalM ulti-core_Architecture/lecture%2029/29_9.htm[6/14/2012 12:09:58 PM]

Objectives template

Module 15: Reaching Definition
Lecture 29: Reaching Definition

Example

Consider the flow graph in an earlier slide and its structural flow analysis

entry entry
B1 B1
¥ ¥ +
B2 B3 __whis B2 B3
B4 Bda
BS l
+ BS
| B6 I

axit
I— | exit

entry
entry
B1 if-then-else
block o1a block entry
B2 Bia L
exit
¥
exit

First Pass

Fp,, = Fg,0(Fg,0Fg,) *

Fg, =Fp o0Fg oFg

Fa,, = (Fa,0 Fg,) N (Fg, 0 Fa,)
meyﬁ = F,.;:0 f*}_;,1 .0 mey
Second Pass

For entrya block

in (entry) = init

file:/lIDJ/...ry,%20Dr.%20Sanjeev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture%2029/29_10.htm[6/14/2012 12:09:58 PM]

Objectives_template

E;Tl(Bln'z} = anrr}-(iﬂ(enﬁ“}’}}
in(exit) = Fg,_ (in(By,))
For if-then else block
in(B,) = in(By,)

in(B,) = Fp, (in(By))

in(By) = F, (in(B,))
4|l Previous Next||p

file:/lIDJ/...ry,%20Dr.%20Sanjeev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture%2029/29_10.htm[6/14/2012 12:09:58 PM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2030/30_1.htm

	29_1
	Local Disk
	Objectives_template

	29_2
	Local Disk
	Objectives_template

	29_3
	Local Disk
	Objectives_template

	29_4
	Local Disk
	Objectives_template

	29_5
	Local Disk
	Objectives_template

	29_6
	Local Disk
	Objectives_template

	29_7
	Local Disk
	Objectives_template

	29_8
	Local Disk
	Objectives_template

	29_9
	Local Disk
	Objectives_template

	29_10
	Local Disk
	Objectives_template

