
Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_1.htm[6/14/2012 11:40:10 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 6: Preliminaries of Parallel Programming

The Lecture Contains:

Prolog: Why Bother?

Agenda

Writing a Parallel Program

Some Definitions

Decomposition

Static Assignment

Dynamic Assignment

Decomposition Types

Orchestration

Mapping

An Example

Sequential Program

Decomposition

Assignment

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture5/5_8.htm

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_1a.htm[6/14/2012 11:40:10 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 6: Preliminaries of Parallel Programming

Parallel Programming

Prolog: Why Bother?

As an architect why should you be concerned with parallel programming?
Understanding program behavior is very important in developing high-performance
computers
An architect designs machines that will be used by the software programmers: so need
to understand the needs of a program
Helps in making design trade-offs and cost/performance analysis i.e. what hardware
feature is worth supporting and what is not
Normally an architect needs to have a fairly good knowledge in compilers and operating
systems

Agenda

Steps in writing a parallel program
Example

Writing a Parallel Program

Start from a sequential description
Identify work that can be done in parallel
Partition work and/or data among threads or processes

Decomposition and assignment
Add necessary communication and synchronization

Orchestration
Map threads to processors (Mapping)
How good is the parallel program?

Measure speedup = sequential execution time/parallel execution time = number of
processors ideally

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_2.htm[6/14/2012 11:40:10 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 6: Preliminaries of Parallel Programming

Some Definitions

Task
Arbitrary piece of sequential work
Concurrency is only across tasks
Fine-grained task vs. coarse-grained task: controls granularity of parallelism
(spectrum of grain: one instruction to the whole sequential program)

Process/thread
Logical entity that performs a task
Communication and synchronization happen between threads

Processors
Physical entity on which one or more processes execute

Decomposition

Find concurrent tasks and divide the program into tasks
Level or grain of concurrency needs to be decided here
Too many tasks: may lead to too much of overhead communicating and
synchronizing between tasks
Too few tasks: may lead to idle processors
Goal: Just enough tasks to keep the processors busy

Number of tasks may vary dynamically
New tasks may get created as the computation proceeds: new rays in ray tracing
Number of available tasks at any point in time is an upper bound on the achievable
speedup

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_3.htm[6/14/2012 11:40:10 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 6: Preliminaries of Parallel Programming

Static Assignment

Given a decomposition it is possible to assign tasks statically
For example, some computation on an array of size N can be decomposed statically by
assigning a range of indices to each process: for k processes P 0 operates on indices 0
to (N/k)-1, P 1 operates on N/k to (2N/k)-1,…, P k-1 operates on (k-1)N/k to N-1
For regular computations this works great: simple and low-overhead

What if the nature of computation depends on the index?
For certain index ranges you do some heavy-weight computation while for others you do
something simple
Is there a problem?

Dynamic Assignment

Static assignment may lead to load imbalance depending on how irregular the application is
Dynamic decomposition/assignment solves this issue by allowing a process to dynamically
choose any available task whenever it is done with its previous task

Normally in this case you decompose the program in such a way that the number of
available tasks is larger than the number of processes
Same example: divide the array into portions each with 10 indices; so you have N/10
tasks
An idle process grabs the next available task
Provides better load balance since longer tasks can execute concurrently with the
smaller ones

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_4.htm[6/14/2012 11:40:10 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 6: Preliminaries of Parallel Programming

Dynamic Assignment

Dynamic assignment comes with its own overhead
Now you need to maintain a shared count of the number of available tasks
The update of this variable must be protected by a lock
Need to be careful so that this lock contention does not outweigh the benefits of
dynamic decomposition

More complicated applications where a task may not just operate on an index range, but could
manipulate a subtree or a complex data structure

Normally a dynamic task queue is maintained where each task is probably a pointer to
the data
The task queue gets populated as new tasks are discovered

Decomposition Types

Decomposition by data
The most commonly found decomposition technique
The data set is partitioned into several subsets and each subset is assigned to a
process
The type of computation may or may not be identical on each subset
Very easy to program and manage

Computational decomposition
Not so popular: Tricky to program and manage
All processes operate on the same data, but probably carry out different kinds of
computation
More common in systolic arrays, pipelined graphics processor units (GPUs) etc.

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_5.htm[6/14/2012 11:40:10 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 6: Preliminaries of Parallel Programming

Orchestration

Involves structuring communication and synchronization among processes, organizing data
structures to improve locality, and scheduling tasks

This step normally depends on the programming model and the underlying architecture
Goal is to

Reduce communication and synchronization costs
Maximize locality of data reference
Schedule tasks to maximize concurrency: do not schedule dependent tasks in parallel
Reduce overhead of parallelization and concurrency management (e.g., management of
the task queue, overhead of initiating a task etc.)

Mapping

At this point you have a parallel program
Just need to decide which and how many processes go to each processor of the parallel
machine

Could be specified by the program
Pin particular processes to a particular processor for the whole life of the program; the
processes cannot migrate to other processors

Could be controlled entirely by the OS
Schedule processes on idle processors
Various scheduling algorithms are possible e.g., round robin: process#k goes to
processor#k
NUMA-aware OS normally takes into account multiprocessor-specific metrics in
scheduling

How many processes per processor? Most common is one-to-one

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_6.htm[6/14/2012 11:40:10 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 6: Preliminaries of Parallel Programming

An Example

Iterative equation solver
Main kernel in Ocean simulation
Update each 2-D grid point via Gauss-Seidel iterations
"A[i,,j] = 0.2(A[i,,j]+A[i,,j+1]+A[i,,j-1]+A[i+1,,j]+A[i-1,,j]")
Pad the n by n grid to (n+2) by (n+2) to avoid corner problems
Update only interior n by n grid
One iteration consists of updating all n 2 points in-place and accumulating the
difference from the previous value at each point
If the difference is less than a threshold, the solver is said to have converged to a
stable grid equilibrium

Sequential Program

int n;
float **A, diff;
begin main()
read (n); /* size of grid */
Allocate (A);
Initialize (A);
Solve (A);
end main

begin Solve (A)
int i , j, done = 0;
float temp;
while (!done)
diff = 0.0;|
for i = 0 to n-1
for j = 0 to n-1
temp = A[i,j];
A[i,,j] = 0.2(A[i,,j]+A[i,,j+1]+A[i,,j-1]+ A[i-1,,j]+A[i+1,,j];)
diff += fabs (A[i,j] - temp);
endfor
endfor
if (diff/(n*n) < TOL) then done = 1; endwhile
end Solve

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_7.htm[6/14/2012 11:40:11 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 6: Preliminaries of Parallel Programming

Decomposition

Look for concurrency in loop iterations
In this case iterations are really dependent
Iteration (i , j) depends on iterations (i , j-1) and (i-1, j)

Each anti-diagonal can be computed in parallel
Must synchronize after each anti-diagonal (or pt-to-pt)
Alternative: red-black ordering (different update pattern)

Can update all red points first, synchronize globally with a barrier and then update all black
points

May converge faster or slower compared to sequential program
Converged equilibrium may also be different if there are multiple solutions
Ocean simulation uses this decomposition

We will ignore the loop-carried dependence and go ahead with a straight-forward loop
decomposition

Allow updates to all points in parallel
This is yet another different update order and may affect convergence
Update to a point may or may not see the new updates to the nearest neighbors (this
parallel algorithm is non-deterministic)

Objectives_template

file:///D|/...haudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture6/6_8.htm[6/14/2012 11:40:11 AM]

 Module 3: Fundamentals of Parallel Computers: ILP vs TLP
 Lecture 6: Preliminaries of Parallel Programming

Decomposition

while (!done)
diff = 0.0;
for_all i = 0 to n-1
for_all j = 0 to n-1
temp = A[i , j];
A[i , j] = 0.2(A[i , j]+A[i , j+1]+A[i , j-1]+A[i-1, j]+A[i+1, j];)
diff += fabs (A[i , j] – temp);
end for_all
end for_all
if (diff/(n*n) < TOL) then done = 1;
end while

Offers concurrency across elements: degree of concurrency is n 2
Make the j loop sequential to have row-wise decomposition: degree n concurrency

Assignment

Possible static assignment: block row decomposition
Process 0 gets rows 0 to (n/p)-1, process 1 gets rows n/p to (2n/p)-1 etc.

Another static assignment: cyclic row decomposition
Process 0 gets rows 0, p, 2p,…; process 1 gets rows 1, p+1, 2p+1,….

Dynamic assignment
Grab next available row, work on that, grab a new row,…

Static block row assignment minimizes nearest neighbor communication by assigning
contiguous rows to the same process

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_1.htm

	6_1
	Local Disk
	Objectives_template

	6_1a
	Local Disk
	Objectives_template

	6_2
	Local Disk
	Objectives_template

	6_3
	Local Disk
	Objectives_template

	6_4
	Local Disk
	Objectives_template

	6_5
	Local Disk
	Objectives_template

	6_6
	Local Disk
	Objectives_template

	6_7
	Local Disk
	Objectives_template

	6_8
	Local Disk
	Objectives_template

