
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_1.htm[6/14/2012 12:17:05 PM]

 Module 21: Problem and Solution
 Lecture 42: Multi-core ComputingInter-process Communication

The Lecture Contains:

Semaphore Types

Synchronization Among Processes

OS Implementations

Linux API for Semaphores

Pthread Mutex Locks

Win32 Mutex Locks and Semaphores

Processes in a Group

Cooperating Processes (example)

Cooperating Processes

Shared Memory System

Message Passing (Send)

Message Passing (Receive)

Cooperating Processes

IPC: Shared Memory

Producer and Consumer Code

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2041/41_9.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_2.htm[6/14/2012 12:17:06 PM]

 Module 21: Problem and Solution
 Lecture 42: Multi-core ComputingInter-process Communication

Semaphore Types

Binary or counting
Binary: Semaphore value can be T or F only
Binary semaphores provide mutual exclusion

Sometimes known as mutex locks
Counting semaphores

Can be used when the given resource has finite number of instances (n).
Initialize semaphore.value to n.

Synchronization Among Processes

Two Processes P1 and P2.
How do we make sure that P1 executes S1 first before P2 executes S2?

semaphore synch;
P1:
S1;
synch.signal();

P2:
synch.wait();
S2

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_3.htm[6/14/2012 12:17:06 PM]

 Module 21: Problem and Solution
 Lecture 42: Multi-core ComputingInter-process Communication

OS Implementations

Busy wait is not tolerated in an OS!!
Bounded wait is to be ensured.
Solution:

Use sleep and wakeup to move processes from running to waiting state and waiting to
ready state.
Maintain a queue of processes waiting and wake up processes in that order.

class semaphore {
private:
int value;
list<PCB> wait_list;
public:
semaphore() {
value = 0;
wait_list = list<PCB>();
}
semaphore(int a) {
value = a;
wait_list = list<PCB>();
}

void wait(void) {
value--;
if (value < 0) { wait_list.push_front(
current);
sleep();
}
}
void signal(void) {
PCB p;
value++;
if (value <=0) {
p = *(wait_list.end()); wait_list.pop_back();
wakeup(p);
}
}
}

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_4.htm[6/14/2012 12:17:06 PM]

 Module 21: Problem and Solution
 Lecture 42: Multi-core ComputingInter-process Communication

Linux API for Semaphores

Semget
To get an array of semaphores

Semctl
Semaphore controls. For example initial value

Semop
Semaphore Operations (lock, signal etc.)

Pthread Mutex Locks

Data Types: pthread_mutex_t
Creation: pthread_mutex_init
Lock: pthread_mutex_lock
Unlock: pthread_mutex_unlock
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);
pthread_mutex_lock(&mutex);
pthread_mutex_unlock(&mutex);

Win32 Mutex Locks and Semaphores

Declaration
HANDLE mutex; (or HANDLE semaphore);

Creation
CreateMutex: To create a mutex lock
CreateSemaphore: To create a semaphore

semaphore = CreateSemaphore(NULL, 1, 5, NULL);
Wait for mutex or semaphore

WaitForSingleObject(HANDLE, WAITTYPE)
WaitForSingleObject(Sem, INFINITE);

Releasing
ReleaseMutex(mutex)
ReleaseSemaphore(sem, 1, NULL)

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_5.htm[6/14/2012 12:17:06 PM]

 Module 21: Problem and Solution
 Lecture 42: Multi-core ComputingInter-process Communication

Multi-core ComputingInter-process Communication

Processes in a Group

A process can be independent
Is not directly affected by other processes.
Does not affect other processes.
Example: /bin/ls and the shell

Are they related?
Processes may be cooperating

Information Sharing
Speed up of execution
Modularity and convenience

Cooperating Processes (example)

Not really an example of “processes” but “threads”.
The issues are the similar though.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_6.htm[6/14/2012 12:17:06 PM]

 Module 21: Problem and Solution
 Lecture 42: Multi-core ComputingInter-process Communication

Cooperating Processes

Require
Inter process communication

Shared memory between processes
Message passing

Sender makes a call to the OS to send a message
Receiver makes a call to read message from the OS

Producer consumer relationship
A process produces data to be consumed by other process.

Shared Memory System

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_7.htm[6/14/2012 12:17:06 PM]

 Module 21: Problem and Solution
 Lecture 42: Multi-core ComputingInter-process Communication

Message Passing (Send)

Message Passing (Receive)

Receive can be blocking
A process makes a system call to receive a message.

If message is not available, the process is made to sleep (wait) and woken up
when message is received.

Receive can be non-blocking
Process makes a system call to receive a message.

Return value from the system call determines whether a message is ready or
not.

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2042/42_8.htm[6/14/2012 12:17:07 PM]

 Module 21: Problem and Solution
 Lecture 42: Multi-core ComputingInter-process Communication

Cooperating Processes

Inter process communication
Shared memory between processes
Message passing

Producer consumer relationship

IPC: Shared Memory

Shared buffer between processes
#define BUF_SZ 1024
typedef struct {
...
} BUF_Data;
struct {
BUF_Data items[BUF_SZ];
int inptr, outptr; /* Global variables */
} buffer;/* Must be shared between
/* two processes */

Producer and Consumer Code

void produce(BUF_Data item) {
while ((buffer.inptr+1)%BUF_SZ == buffer.outptr) ;
buffer.items[buffer.inptr] = item;
buffer.inptr = (buffer.inptr +1)%BUF_SZ;
}
BUF_Data consume(void) {
BUF_Data item;
while (buffer.outptr == buffer.inptr) ;
item = buffer.items[buffer.outptr];
buffer.outptr = (buffer.outptr +1)%BUF_SZ;
return (item);
}

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2043/43_1.htm

	42_1
	Local Disk
	Objectives_template

	42_2
	Local Disk
	Objectives_template

	42_3
	Local Disk
	Objectives_template

	42_4
	Local Disk
	Objectives_template

	42_5
	Local Disk
	Objectives_template

	42_6
	Local Disk
	Objectives_template

	42_7
	Local Disk
	Objectives_template

	42_8
	Local Disk
	Objectives_template

