Objectives_template

Module 7: Synchronization

Lecture 13: Introduction to Atomic Primitives

The Lecture Contains:

Synchronization
Waiting Algorithms
Implementation
Hardwired Locks
Software Locks
Hardware Support
Atomic Exchange
Test & Set

Fetch & op
Compare & Swap
Traffic of Test & Set
Backoff Test & Set

Test & Test & Set

TTS Traffic Analysis

Goals of a Lock Algorithm

4|l Previous Next||p

file:///D|/...audhary,%20Dr.%20Sanjeev%20K %20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_1.htm[6/14/2012 11:57:57 AM]


file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_9.htm

Objectives_template

Module 7: Synchronization

Lecture 13: Introduction to Atomic Primitives

Synchronization
Types

¢ Mutual exclusion
o Synchronize entry into critical sections
o Normally done with locks
¢ Point-to-point synchronization
o Tell a set of processors (normally set cardinality is one) that they can proceed
o Normally done with flags
¢ Global synchronization
o Bring every processor to sync
o Wait at a point until everyone is there
o Normally done with barriers

Synchronization

« Normally a two-part process: acquire and release; acquire can be broken into two parts: intent
and wait
o Intent: express intent to synchronize (i.e. contend for the lock, arrive at a barrier)
o Wait: wait for your turn to synchronization (i.e. wait until you get the lock)
o Release: proceed past synchronization and enable other contenders to synchronize
* Waiting algorithms do not depend on the type of synchronization

|| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel3/13_2.htm[6/14/2012 11:57:57 AM]



Objectives_template

Module 7: Synchronization
Lecture 13: Introduction to Atomic Primitives

Waiting Algorithms

Busy wait (common in multiprocessors)
o Waiting processes repeatedly poll a location (implemented as a load in a loop)
o Releasing process sets the location appropriately
o May cause network or bus transactions
Block
o Waiting processes are de-scheduled
o Frees up processor cycles for doing something else
Busy waiting is better if
o De-scheduling and re-scheduling take longer than busy waiting
o No other active process
o Does not work for single processor
Hybrid policies: busy wait for some time and then block

Implementation

o Popular trend
o Architects offer some simple atomic primitives
o Library writers use these primitives to implement synchronization algorithms
o Normally hardware primitives for acquire and possibly release are provided
o Hard to offer hardware solutions for waiting
o Also hardwired waiting may not offer that much of flexibility

|| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel3/13_3.htm[6/14/2012 11:57:57 AM]



Objectives_template

Module 7: Synchronization

Lecture 13: Introduction to Atomic Primitives

Hardwired Locks

« Not popular today
o Less flexible
o Cannot support large number of locks
o Possible designs
o Dedicated lock line in bus so that the lock holder keeps it asserted and waiters snoop
the lock line in hardware
o Set of lock registers shared among processors and lock holder gets a lock register
(Cray Xmp )

Software Locks
* Bakery algorithm
Shared: choosing[P] = FALSE, ticket[P] = 0;
Acquire : choosing[ i ] = TRUE; ticket[ i ] = max(ticket[0],... ticket[P-1]) + 1;

choosing[ i ] = FALSE;
forj=0to P-1

while (choosing[j]);
while (ticket[] && ((ticket[j], j) < (ticket[ i ], i)));

endfor
Release : ticket[i] = 0;

¢ Does it work for multiprocessors?
o Assume sequential consistency
o Performance issues related to coherence?

e Too much overhead: need faster and simpler lock algorithms
o Need some hardware support

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel3/13_4.htm[6/14/2012 11:57:57 AM]



Objectives_template

Module 7: Synchronization

Lecture 13: Introduction to Atomic Primitives

Hardware Support
o Start with a simple software lock

Shared: lock = 0;
Acquire : while (lock); lock = 1;
Release or Unlock : lock = 0;

¢ Assembly translation

Lock: Iw register, lock_addr /* register is any processor register */
bnez register, Lock

addi register, register, Ox1

sw register, lock_addr

Unlock: xor register, register, register

sw register, lock_addr

e Does it work?

o What went wrong?
o We wanted the read-modify-write sequence to be atomic

Atomic Exchange
* We can fix this if we have an atomic exchange instruction

addi register, r0, 0x1 * r0 is hardwired to 0 */
Lock: xchg register, lock_addr /* An atomic load and store */

bnez register, Lock
Unlock remains unchanged

« Various processors support this type of instruction
o Intel x86 has xchg , Sun UltraSPARC has Idstub (load-store-unsigned byte),
UltraSPARC also has swap
o Normally easy to implement for bus-based systems: whoever wins the bus for xchg can
lock the bus
o Difficult to support in distributed memory systems

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel3/13_5.htm[6/14/2012 11:57:57 AM]



Objectives_template

Module 7: Synchronization

Lecture 13: Introduction to Atomic Primitives

Test & Set

* Less general compared to exchange

Lock: ts register, lock_addr
bnez register, Lock
Unlock remains unchanged

« Loads current lock value in a register and sets location always with 1
o Exchange allows to swap any value
o A similar type of instruction is fetch & op
o Fetch memory location in a register and apply op on the memory location
o Op can be a set of supported operations e.g. add, increment, decrement, store etc.
o In Test & set op=set

Fetch & op

* Possible to implement a lock with fetch & clear then add (used to be supported in BBN
Butterfly 1)

addi regl, r0, Ox1

Lock: fetch & clr then add regl, reg2, lock_addr
/* fetch in reg2, clear, add regl */

bnez reg2, Lock

o Butterfly 1 also supports fetch & clear then xor
e Sequent Symmetry supports fetch & store
« More sophisticated: compare & swap
o Takes three operands: regl, reg2, memory address
o Compares the value in regl with address and if they are equal swaps the contents of
reg2 and address
o Not in line with RISC philosophy (same goes for fetch & add)

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel3/13_6.htm[6/14/2012 11:57:57 AM]



Objectives_template

Module 7: Synchronization

Lecture 13: Introduction to Atomic Primitives

Compare & Swap

addi regl, r0, Ox0 /* regl has 0x0 */

addi reg2, r0, Ox1 /* reg2 has Ox1 */

Lock: compare & swap regl, reg2, lock_addr
bnez reg2, Lock

Traffic of Test & Set

¢ In some machines (e.g., SGI Origin 2000) uncached fetch & op is supported
o Every such instruction will generate a transaction (may be good or bad depending on
the support in memory controller; will discuss later)
¢ Let us assume that the lock location is cacheable and is kept coherent
o Every invocation of test & set must generate a bus transaction; Why? What is the
transaction? What are the possible states of the cache line holding lock_addr ?
o Therefore all lock contenders repeatedly generate bus transactions even if someone is
still in the critical section and is holding the lock
e Can we improve this?
o Test & set with backoff

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel3/13_7.htm[6/14/2012 11:57:57 AM]



Objectives_template

Module 7: Synchronization

Lecture 13: Introduction to Atomic Primitives

Backoff Test & Set

Instead of retrying immediately wait for a while

« How long to wait?

« Waiting for too long may lead to long latency and lost opportunity

« Constant and variable backoff

« Special kind of variable backoff : exponential backoff (after the i th attempt the delay is k* c i
where k and ¢ are constants)

o Test & set with exponential backoff works pretty well

delay = k

Lock: ts register, lock_addr

bez register, Enter_CS

pause (delay) /* Can be simulated as a timed loop */
delay = delay*c

j Lock

Test & Test & Set
¢ Reduce traffic further
Before trying test & set make sure that the lock is free

Lock: ts register, lock_addr
bez register, Enter_CS
Test: Iw register, lock_addr
bnez register, Test

j Lock

« How good is it?

o In a cacheable lock environment the Test loop will execute from cache until it receives
an invalidation (due to store in unlock); at this point the load may return a zero value
after fetching the cache line

o If the location is zero then only everyone will try test & set

4|l Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel3/13_8.htm[6/14/2012 11:57:57 AM]



Objectives_template

Module 7: Synchronization

Lecture 13: Introduction to Atomic Primitives

TTS Traffic Analysis

* Recall that unlock is always a simple store
¢ In the worst case everyone will try to enter the CS at the same time
o First time P transactions for ts and one succeeds; every other processor suffers a miss
on the load in Test loop; then loops from cache
o The lock-holder when unlocking generates an upgrade (why?) and invalidates all others
o All other processors suffer read miss and get value zero now; so they break Test loop
and try ts and the process continues until everyone has visited the CS

(P+(P-1)+1+(P-1))+((P-1)+(P-2)+1+(P-2))+... = (3P-1) +
(3P-4) + (3P-7) + ... ~ 1.5P 2 asymptotically

o For distributed shared memory the situation is worse because each invalidation
becomes a separate message (more later)

Goals of a Lock Algorithm

« Low latency: If no contender the lock should be acquired fast

« Low traffic: Worst case lock acquire traffic should be low; otherwise it may affect unrelated
transactions

o Scalability: Traffic and latency should scale slowly with the number of processors

« Low storage cost: Maintaining lock states should not impose unrealistic memory overhead

o Fairness: Ideally processors should enter CS according to the order of lock request (TS or
TTS does not guarantee this)

4| Previous Next||p

file:///DJ/...audhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecturel3/13_9.htm[6/14/2012 11:57:58 AM]


file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_1.htm

	13_1
	Local Disk
	Objectives_template


	13_2
	Local Disk
	Objectives_template


	13_3
	Local Disk
	Objectives_template


	13_4
	Local Disk
	Objectives_template


	13_5
	Local Disk
	Objectives_template


	13_6
	Local Disk
	Objectives_template


	13_7
	Local Disk
	Objectives_template


	13_8
	Local Disk
	Objectives_template


	13_9
	Local Disk
	Objectives_template



