
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_1.htm[6/14/2012 12:07:21 PM]

 Module 12: View
 Lecture 24: Code Optimization

The Lecture Contains:

Code Optimization

Most Important Optimizations

Low Level Model of Optimization

Mixed Model of Optimization

Placement of Optimizations

Placement of Optimizations: Continued

Common Subexpression Elimination

Copy Propagation

Dead Code Elimination

Algebraic Transformation

Loop Optimizations

Loop-unrolling

Induction Variable Simplification

Loop Jamming

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2023/23_12.htm

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_2.htm[6/14/2012 12:07:22 PM]

 Module 12: View
 Lecture 24: Code Optimization

Code Optimization

int a,b,c,d
c = a+b
d = c+1

ldw a,r1
ldw b,r2
add r1,r2,r3
stw r3,c
ldw c,r3
add r3,1,r4
stw r4,d

add r1,r2,r3
add r3,1,r4

source code naive sparc code
10 cycles

optimized code
2 cycles

Most Important Optimizations

Loop Optimizations
Moving loop invariant computations
Simplifying or eliminating computations on induction variables

Global register allocation
Instruction scheduling
Some optimizations may be relevant to a particular program and may vary according to the
structure and details of the programs

A highly recursive program may benefit from tail call optimization
A program with few loops and large basic blocks may benefit from loop distribution
In-lining may decrease call over heads; in-lining may increase the code size and may
have negative effect on performance by increasing cache misses

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_3.htm[6/14/2012 12:07:22 PM]

 Module 12: View
 Lecture 24: Code Optimization

Choice is largely one of investment and development focus.

Low Level Model of Optimization

Difficult to port unless second architecture is close to the first one
Used in IBM Power-PC and HP PA-RISC
Easier to avoid phase ordering problem
Exposes all addresses to the optimizer
Recommended for similar architectures

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_4.htm[6/14/2012 12:07:22 PM]

 Module 12: View
 Lecture 24: Code Optimization

Mixed Model of Optimization

More easily to be adapted to new architectures
May be more efficient at compile time
Used in Sun Sparc, Digital Alpha, Intel, SGI MIPS
More appropriate for same language and many architectures

Placement of Optimizations

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_5.htm[6/14/2012 12:07:22 PM]

 Module 12: View
 Lecture 24: Code Optimization

Placement of Optimizations: Cont’d

Code Optimization

Criteria for Code Improving Transformation

Preserve the meaning
Must speed up the program
Must be worth the effort
The analysis must be fast

Local transformation : Within basic blocks
Global transformation : Across basic blocks

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_6.htm[6/14/2012 12:07:22 PM]

 Module 12: View
 Lecture 24: Code Optimization

Common Subexpression Elimination

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_7.htm[6/14/2012 12:07:23 PM]

 Module 12: View
 Lecture 24: Code Optimization

Copy Propagation

Use g for f after assignment f = g

Dead Code Elimination

Dead Operation : Unreachable by any path produces a value not used

If whose true and false arcs are same
If whose B expr known at compile time
loop not to be executed
procedure not to be called

debug := false
...
if (debug) {
...
}

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_8.htm[6/14/2012 12:07:23 PM]

while(i <= limit - 2) {
* statement not changing limit *\
}

t := limit - 2
while(i <= t) { statement }

 Module 12: View
 Lecture 24: Code Optimization

Renaming Temporary Variable Rename temporary variable t to u and replace all the
occurrences of
t by u.
This transformation increases parallelism.
Interchange Statements Two statements may be interchanged if value of the block is not
affected.

t1 = b + c
t2 = X + Y

t2 = X + Y
t1 = b + c

Constant folding Evaluate constant expressions at compile time.

X = 3 + 5
Y = X * 2

X = 8
Y = 16

Algebraic Transformation

Eliminate addition/subtraction with 0 X = X ± 0 should be eliminated.
Eliminate multiplication/division by 1 X = X * 1 or X = X/1 should be eliminated.
Eliminate multiplication by 0 X = X * 0 should be replaced with X = 0

Strength reduction Costly operators should be replaced by cheaper operators

Replace T = X * * *2 by T = X * X
Replace T = X * 4 by T = ls(X, 2)
Replace 2 * X by X + X
Replace X * 0.5 by X/2
Replace X/2 by rs(X, 1)

Loop Optimizations

Code Motion: Expression not evaluated in the code must be moved out of loop

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_9.htm[6/14/2012 12:07:23 PM]

 Module 12: View
 Lecture 24: Code Optimization

Loop-unrolling

Induction Variable Simplification

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2024/24_10.htm[6/14/2012 12:07:23 PM]

 Module 12: View
 Lecture 24: Code Optimization

Induction Variable Simplification

Loop Jamming

Two adjacent loops may me merged into a single loop

can be replaced by

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2025/25_1.htm

	24_1
	Local Disk
	Objectives_template

	24_2
	Local Disk
	Objectives_template

	24_3
	Local Disk
	Objectives_template

	24_4
	Local Disk
	Objectives_template

	24_5
	Local Disk
	Objectives_template

	24_6
	Local Disk
	Objectives_template

	24_7
	Local Disk
	Objectives_template

	24_8
	Local Disk
	Objectives_template

	24_9
	Local Disk
	Objectives_template

	24_10
	Local Disk
	Objectives_template

