Objectives_template

Module 4: Parallel Programming: Shared Memory and Message Passing
Lecture 8: Optimizing Shared Memory Performance

The Lecture Contains:

Agenda

Partitioning For Perf .

Load Balancing

Dynamic Task Queues

Task Stealing

Architect's Job

Partitioning and Communication
Domain Decomposition

Comme-to-comp Ratio

Extra Work

4| Previous Next||p

file:///D|/...naudhary,%20Dr.%20Sanjeev%20K %20Aggrwal %20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture8/8_1.htm[6/14/2012 11:55:55 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture7/7_5.htm

Objectives_template

Module 4: Parallel Programming: Shared Memory and Message Passing

Lecture 8: Optimizing Shared Memory Performance

Performance Issues
Agenda

« Partitioning for performance
o Data access and communication
e Summary
e Goal is to understand simple trade-offs involved in writing a parallel program keeping an eye
on parallel performance
o Getting good performance out of a multiprocessor is difficult
o Programmers need to be careful
o A little carelessness may lead to extremely poor performance

Partitioning For Perf .

o Partitioning plays an important role in the parallel performance

o This is where you essentially determine the tasks
¢ A good partitioning should practise

o Load balance

o Minimal communication

o Low overhead to determine and manage task assignment (sometimes called extra work)
« A well-balanced parallel program automatically has low barrier or point-to-point synchronization

time
o Ideally | want all the threads to arrive at a barrier at the same time

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Ra) at%20M oona/M ulti-core_Architecture/lecture8/8_lahtm[6/14/2012 11:55:55 AM]

Objectives_template

Module 4: Parallel Programming: Shared Memory and Message Passing

Lecture 8: Optimizing Shared Memory Performance

Load Balancing

¢ Achievable speedup is bounded above by
o Sequential exec. time / Max. time for any processor
o Thus speedup is maximized when the maximum time and minimum time across all
processors are close (want to minimize the variance of parallel execution time)
o This directly gets translated to load balancing
« What leads to a high variance?
o Ultimately all processors finish at the same time
o But some do useful work all over this period while others may spend a significant time
at synchronization points
o This may arise from a bad partitioning
o There may be other architectural reasons for load imbalance beyond the scope of a
programmer e.g., network congestion, unforeseen cache conflicts etc. (slows down a
few threads)

Dynamic Task Queues

¢ Introduced in the last lecture
« Normally implemented as part of the parallel program
* Two possible designs
o Centralized task queue: a single queue of tasks; may lead to heavy contention because
insertion and deletion to/from the queue must be critical sections
o Distributed task queues: one queue per processor
* Issue with distributed task queues
o When a queue of a particular processor is empty what does it do? Task stealing

4|l Previous Next||p

file:///DJ/...naudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture8/8_1b.htm[6/14/2012 11:55:55 AM]

Objectives_template

Module 3: Parallel Programming: Shared Memory and Message Passing

Lecture 8: Optimizing Shared Memory Performance

Task Stealing

e A processor may choose to steal tasks from another processor's queue if the former's queue is
empty

o How many tasks to steal? Whom to steal from?

o The biggest question: how to detect termination? Really a distributed consensus!

o Task stealing, in general, may increase overhead and communication, but a smart
design may lead to excellent load balance (normally hard to design efficiently)

o This is a form of a more general technique called Receiver Initiated Diffusion (RID)
where the receiver of the task initiates the task transfer

o In Sender Initiated Diffusion (SID) a processor may choose to insert into another
processor's queue if the former's task queue is full above a threshold

Architect's Job

« Normally load balancing is a responsibility of the programmer

o However, an architecture may provide efficient primitives to implement task queues and
task stealing

o For example, the task queue may be allocated in a special shared memory segment,
accesses to which may be optimized by special hardware in the memory controller

o But this may expose some of the architectural features to the programmer

o There are multiprocessors that provide efficient implementations for certain
synchronization primitives; this may improve load balance

o Sophisticated hardware tricks are possible: dynamic load monitoring and
favoring slow threads dynamically

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture8/8_1c.htm[6/14/2012 11:55:56 AM]

Objectives_template

Module 4: Parallel Programming: Shared Memory and Message Passing

Lecture 8: Optimizing Shared Memory Performance

Partitioning and Communication

¢ Need to reduce inherent communication
o This is the part of communication determined by assignment of tasks
o There may be other communication traffic also (more later)
e Goal is to assign tasks such that accessed data are mostly local to a process
o |deally | do not want any communication
o But in life sometimes you need to talk to people to get some work done!

Domain Decomposition

* Normally applications show a local bias on data usage

o Communication is short-range e.g. nearest neighbor

o Even if it is long-range it falls off with distance

o View the dataset of an application as the domain of the problem e.g., the 2-D grid in
equation solver

o If you consider a point in this domain, in most of the applications it turns out that this
point depends on points that are close by

o Partitioning can exploit this property by assigning contiguous pieces of data to each
process

o Exact shape of decomposed domain depends on the application and load balancing
requirements

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %620& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture8/8_1d.htm[6/14/2012 11:55:56 AM]

Objectives_template

Module 4: Parallel Programming: Shared Memory and Message Passing

Lecture 8: Optimizing Shared Memory Performance

Comm -to-comp Ratio

« Surely, there could be many different domain decompositions for a particular problem
o For grid solver we may have a square block decomposition, block row decomposition or
cyclic row decomposition
o How to determine which one is good? Communication-to-computation ratio

Assume P processors and NxN grid for grid solver

PO|P1)P2|P3 Size of each block: N/ P by N/, P
P4 P5 P6|P7 Communication (perimeter): 4N/, P
Computation (area): N2/P
Comm-to-comp ratio = 4,” P/N

P15

Sq. block decomp. for P=16

e For block row decomposition
o Each strip has N/P rows
o Communication (boundary rows): 2N
o Computation (area): N 2 /P (same as square block)
o Comm -to-comp ratio: 2P/N
e For cyclic row decomposition
o Each processor gets N/P isolated rows
o Communication: 2N 2 /P
o Computation: N 2 /P
o Comm-to-comp ratio: 2
e Normally N is much much larger than P
o Asymptotically, square block yields lowest comm -to-comp ratio

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture8/8_2.htm[6/14/2012 11:55:56 AM]

Objectives_template

Module 4: Parallel Programming: Shared Memory and Message Passing

Lecture 8: Optimizing Shared Memory Performance

Comm-to-comp Ratio

« Idea is to measure the volume of inherent communication per computation

o In most cases it is beneficial to pick the decomposition with the lowest comm -to-comp
ratio

o But depends on the application structure i.e. picking the lowest comm -to-comp may
have other problems

o Normally this ratio gives you a rough estimate about average communication bandwidth
requirement of the application i.e. how frequent is communication

o But it does not tell you the nature of communication i.e. bursty or uniform

o For grid solver comm. happens only at the start of each iteration; it is not uniformly
distributed over computation

o Thus the worst case BW requirement may exceed the average comm -to-comp ratio

Extra Work

o Extra work in a parallel version of a sequential program may result from
o Decomposition
o Assignment techniques
o Management of the task pool etc.
« Speedup is bounded above by Sequential work / Max (Useful work + Synchronization + Comm.
cost + Extra work) where the Max is taken over all processors
o But this is still incomplete
o We have only considered communication cost from the viewpoint of the algorithm and
ignored the architecture completely

4| Previous Next||p

file:///DJ/...haudhary,%20Dr.%20San] eev%20K %20A ggrwal %20& %20Dr.%20Raj at%20M oona/M ulti-core_Architecture/lecture8/8_3.htm[6/14/2012 11:55:56 AM]

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture9/9_1.htm

	8_1
	Local Disk
	Objectives_template

	8_1a
	Local Disk
	Objectives_template

	8_1b
	Local Disk
	Objectives_template

	8_1c
	Local Disk
	Objectives_template

	8_1d
	Local Disk
	Objectives_template

	8_2
	Local Disk
	Objectives_template

	8_3
	Local Disk
	Objectives_template

