
Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_1.htm[6/14/2012 12:04:33 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

The Lecture Contains:

The “lastprivate” Clause

Data Scope Attribute Clauses

Reduction

Loop Work-sharing Construct: Schedule Clause

Run-Time Library Routines

Environment Variables

List of Variables

References:

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2020/20_10.htm

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_1a.htm[6/14/2012 12:04:33 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

The “lastprivate” Clause

Example: “lastprivate” Clause
void useless() {
int tmp = 0;
#pragma omp parallel for firstprivate(tmp)lastprivate(tmp)
for (int j = 0; j ¡ 1000; ++j)
tmp += j;
printf(“%d”, tmp);
}

Each thread gets its own code with initial value 0.Is there something still wrong with the code ?
Tmp is defined as its value at the “last sequential” iteration (i .e., for j=999)

Data Scope Attribute Clauses

“shared” Clause
Purpose: The shared clause declares variables in its list to be shared among all the threads in the
team
Format: Shared (list)

A shared variable exists in only one memory and all the threads can read or write the same
address
Its programmers responsibility to ensure that multiple threads properly access shared variables
(such as critical sections)

“default” Clause
Purpose: The default clause allows user to specify a default scope for all variables in the parallel
region
Format: Default(shared | none)

Using NONE as a default requires that the programmer explicitly scope all the variables
The C/C++ OpenMP does not include private or firstprivate as a possible default
Only the Fortran API supports default(private)
Note that the default storage attribute is DEFAULT(SHARED) (so no need to use it)

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_2.htm[6/14/2012 12:04:34 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

Reduction

How to handle this case?

Example
double ave = 0.0, A [MAX]; int i;
for (i = 0; i < MAX; i++) {
ave + = A[i];
}
ave = ave/MAX;

We are combining values into a single accumulation variable (ave) there is a true dependence
between loop iterations that can not be trivially removed
This is a very common situation.it is called a “reduction”
Support for reduction operations is included in most parallel programming environments.

Data Scope Attribute Clauses

“reduction” Clause
Purpose: Reduction
Format: reduction (operation : list)

A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”)
Compiler finds standard reduction expressions containing “op” and uses them to update the
local copy.
Local copies are reduced into a single value and combined with the original global value
Variables in the list must be named scalar variables. They can not be array or structure type
variables.
Reduction variables must be shared in the enclosing context.
Note that the value of a reduction variable is undefined from the moment the first thread
reaches the clause till the operation has completed

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_3.htm[6/14/2012 12:04:34 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

Reduction

Example: Reduction
double ave = 0.0, A [MAX]; int i;
#pragma omp parallel for reduction (+ : ave)
for (i = 0; i < MAX; i++) {
ave + = A[i];
}
ave = ave/MAX;

Data Scope Attribute Clauses

“copyin” Clause
Purpose: The copyin clause provides a means for assigning the same value to threadprivate
variables for all threads in the team.
Format: copyin (list)

The master thread variable is used as the copy source. The team threads are initialized with its
value upon entry into the parallel construct.

Loop Work-sharing Construct: Schedule Clause

Format
schedule (static | dynamic | guided [, chunk])
schedule (runtime)

The schedule clause affect how loop iterations are mapped into threads

Static [,chunk]
Loop iterations are divided into pieces of size chunk and then statically assigned to threads
In absence of chunk size iterations are evenly (if possible) divided contiguously among the
threads.
Pre-determined and predictable by the programmer
Least work at runtime: scheduling done at compile-time

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_4.htm[6/14/2012 12:04:34 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

Loop Work-sharing Construct: Schedule Clause

Dynamic [, chunk]
Fixed portions of work; size is controlled by the value of chunk
When a thread finishes one chunk, It is dynamically assigned another
The default chunk size is 1.
Most work at runtime: complex scheduling logic used at run-time

Guided [,chunk]
Special case of dynamic to reduce scheduling overhead
The size of the block starts large and shrinks down to size chunk as the calculation proceeds
Default chunk size is 1

Runtime
Iteration scheduling scheme is set at runtime through environment variable OMP SCHEDULE
or the runtime library

Questions
Given loop of length 16 with 4 threads:
How the iterations will be assigned in static schedule with no chunk and chunk=2 ?
What will be the change in case of dynamic scheduling?

Run-Time Library Routines

OMP SET NUM THREADS: Sets the number of threads that will be used in the next parallel
region. Must be a positive number.

Format
void omp set num threads(int num threads)

This routine can only be called from the serial portion of the code.
This call has precedence over the OMP NUM THREADS

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_5.htm[6/14/2012 12:04:34 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

Run-Time Library Routines

OMP GET NUM THREADS: Returns the number of threads that are currently in the team
executing the parallel region from which it is called.

Format
int omp get num threads(void)

If this call is made from a serial portion of the program, or a nested parallel region that is
serialized, it will return 1.
The default number of threads is implementation dependent

OMP GET MAX THREADS: Returns the maximum value that can be returned by a call to the
OMP GET NUM THREADS function.

Format
int omp get max threads(void)

This routine can only be called from the serial portion of the code.
This call has precedence over the OMP NUM THREADS

OMP GET THREAD NUM: Returns the thread number of the thread, within the team, making this
call. This number will be between 0 and OMP GET NUM THREADS-1. The master thread of the
team is thread 0

Format
int omp get thread num(void)

If called from a nested parallel region, or a serial region, this function will return 0

OMP GET THREAD LIMIT: New with OpenMP 3.0. Returns the maximum number of OpenMP
threads available to a program.

Format
int omp get thread limit(void)

OMP GET NUM PROCS: Returns the number of processors that are available to the program.

Format
int omp get num procs(void)

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_6.htm[6/14/2012 12:04:34 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

Run-Time Library Routines

OMP IN PARALLEL: May be called to determine if the section of code which is executing is parallel
or not.

Format
int omp in parallel(void)

For FORTRAN, this function returns TRUE if is called from the dynamic extent of a region
executing in parallel, and FALSE otherwise. For C/C++, it will return a non-zero integer if
parallel and zero otherwise

OMP SET DYNAMIC: Enables or Disables dynamic adjustment(by the run time system) of the
number of threads available for the execution of parallel regions.

Format
int omp set dynamic(int dynamic threads)

Must be called from serial section of the program
If dynamic threads evaluated to non-zero, then the mechanism is enabled, otherwise it is
disabled

OMP GET DYNAMIC: Used to determine thread adjustment is enabled or not

Format
int omp get dynamic(void)

For C/C++, non-zero will be returned if dynamic thread adjustment is enabled, and zero
otherwise
For FORTRAN, this function returns TRUE if dynamic thread adjustment is enabled and
FALSE otherwise

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_7.htm[6/14/2012 12:04:34 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

Run-Time Library Routines

OMP SET NESTED: Used to enable or disable nested parallelism.

Format
int omp set nested(int nested)

The default is for nested parallelism to be disabled
For C/C++, if nested evaluates to non-zero, nested parallelism is enabled;otherwise is disabled

OMP GET NESTED: Used to determine if nested parallelism is enabled or not.

Format
int omp get nested(void)

The default is for nested parallelism to be disabled
For C/C++, if non-zero value returned then nested parallelism is enabled;otherwise is disabled

OMP INIT LOCK: This subroutine initializes a lock associated with the lock variable.

Format
void omp init lock(omp lock t *lock)
void omp init nest lock(omp nest nest lock t *lock)

The initial state is unlocked

OMP DESTROY LOCK: This subroutine disassociates the given lock variable from any locks.

Format
void omp destroy lock(omp lock t *lock)
void omp destroy nest lock(omp nest nest lock t *lock)

It is illegal to call this routine with a lock variable that is not initialized

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_8.htm[6/14/2012 12:04:34 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

Run-Time Library Routines

OMP SET LOCK: This subroutine forces the executing thread to wait until the specified lock is
available. A thread is granted ownership of a lock when it becomes available.

Format
void omp set lock(omp lock t *lock)
void omp set nest lock(omp nest nest lock t *lock)

It is illegal to call this routine with a lock variable that is not initialized.

OMP UNSET LOCK: This subroutine releases the lock from the executing subroutine

Format
void omp unset lock(omp lock t *lock)
void omp unset nest lock(omp nest nest lock t *lock)

It is illegal to call this routine with a lock variable that is not initialized.

OMP TEST LOCK: This subroutine attempts to set a lock, but does not block if the lock is
unavailable.

Format
void omp test lock(omp lock t *lock)
void omp test nest lock(omp nest nest lock t *lock)

It is illegal to call this routine with a lock variable that is not initialized.
For C/C++ non zero is returned if the lock was set successfully,otherwise zero is returned

Objectives_template

file:///D|/...ary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_9.htm[6/14/2012 12:04:35 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

OMP GET WTIME: Provides a portable wall clock timing routine and returns a double precision
floating point value equal to the number of elapsed seconds since some point in the past. Usually
used in ”pairs” with the value of the first call substracted from the value of the second call to obtain
the elapsed time for ablock of code (per thread times)

Format
double omp get wtime(void)

OMP GET WTICK: Returns a double precision floating point value equal to the number of seconds
between successive clock ticks.

Format
double omp get wtick(void)

Environment Variables

OpenMP provides the following environment variables for controlling the execution of parallel
code
All environment variable names are uppercase. The values assigned to them are not case
sensitive

List of Variables
OMP_SCHEDULE
OMP_NUM THREADS
OMP_DYNAMIC
OMP_NESTED
OMP_STACKSIZE

Uses Example
setenv OMP_SCHEDULE “guided, 4”
setenv OMP_NUM THREADS 8

Objectives_template

file:///D|/...ry,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2021/21_10.htm[6/14/2012 12:04:35 PM]

 Module 11: The “lastprivate” Clause
 Lecture 21: Clause and Routines

Thank You

Questions ?

References:

OpenMP Home (link)
OpenMP Book Using OpenMP
Portable Shared Memory Parallel Programming
Barbara Chapman, Gabriele Jost and Ruud van der Pas (link)
OpenMP Tutorial by Blaise Barney, Lawrence Livermore National Laboratory (link)
An Overview of OpenMP - Ruud van der Pas - Sun Microsystems (link)
Hands-On Introduction to OpenMP, Mattson and Meadows, from SC08 (Austin) (link)
OpenMP wikipedia page
More resources can be found at (link)

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture%2022/22_1.htm

	21_1
	Local Disk
	Objectives_template

	21_1a
	Local Disk
	Objectives_template

	21_2
	Local Disk
	Objectives_template

	21_3
	Local Disk
	Objectives_template

	21_4
	Local Disk
	Objectives_template

	21_5
	Local Disk
	Objectives_template

	21_6
	Local Disk
	Objectives_template

	21_7
	Local Disk
	Objectives_template

	21_8
	Local Disk
	Objectives_template

	21_9
	Local Disk
	Objectives_template

	21_10
	Local Disk
	Objectives_template

