
Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_1.htm[6/14/2012 11:57:57 AM]

 Module 7: Synchronization
 Lecture 13: Introduction to Atomic Primitives

The Lecture Contains:

Synchronization

Waiting Algorithms

Implementation

Hardwired Locks

Software Locks

Hardware Support

Atomic Exchange

Test & Set

Fetch & op

Compare & Swap

Traffic of Test & Set

Backoff Test & Set

Test & Test & Set

TTS Traffic Analysis

Goals of a Lock Algorithm

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture12/12_9.htm

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_2.htm[6/14/2012 11:57:57 AM]

 Module 7: Synchronization
 Lecture 13: Introduction to Atomic Primitives

Synchronization

Types

Mutual exclusion
Synchronize entry into critical sections
Normally done with locks

Point-to-point synchronization
Tell a set of processors (normally set cardinality is one) that they can proceed
Normally done with flags

Global synchronization
Bring every processor to sync
Wait at a point until everyone is there
Normally done with barriers

Synchronization

Normally a two-part process: acquire and release; acquire can be broken into two parts: intent
and wait

Intent: express intent to synchronize (i.e. contend for the lock, arrive at a barrier)
Wait: wait for your turn to synchronization (i.e. wait until you get the lock)
Release: proceed past synchronization and enable other contenders to synchronize

Waiting algorithms do not depend on the type of synchronization

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_3.htm[6/14/2012 11:57:57 AM]

 Module 7: Synchronization
 Lecture 13: Introduction to Atomic Primitives

Waiting Algorithms

Busy wait (common in multiprocessors)
Waiting processes repeatedly poll a location (implemented as a load in a loop)
Releasing process sets the location appropriately
May cause network or bus transactions

Block
Waiting processes are de-scheduled
Frees up processor cycles for doing something else

Busy waiting is better if
De-scheduling and re-scheduling take longer than busy waiting
No other active process
Does not work for single processor

Hybrid policies: busy wait for some time and then block

Implementation

Popular trend
Architects offer some simple atomic primitives
Library writers use these primitives to implement synchronization algorithms
Normally hardware primitives for acquire and possibly release are provided
Hard to offer hardware solutions for waiting
Also hardwired waiting may not offer that much of flexibility

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_4.htm[6/14/2012 11:57:57 AM]

 Module 7: Synchronization
 Lecture 13: Introduction to Atomic Primitives

Hardwired Locks

Not popular today
Less flexible
Cannot support large number of locks

Possible designs
Dedicated lock line in bus so that the lock holder keeps it asserted and waiters snoop
the lock line in hardware
Set of lock registers shared among processors and lock holder gets a lock register
(Cray Xmp)

Software Locks

Bakery algorithm

Shared: choosing[P] = FALSE, ticket[P] = 0;

Acquire : choosing[i] = TRUE; ticket[i] = max(ticket[0],…,ticket[P-1]) + 1;

choosing[i] = FALSE;
for j = 0 to P-1

while (choosing[j]);
while (ticket[j] && ((ticket[j], j) < (ticket[i], i)));

endfor

Release : ticket[i] = 0;

Does it work for multiprocessors?
Assume sequential consistency
Performance issues related to coherence?

Too much overhead: need faster and simpler lock algorithms
Need some hardware support

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_5.htm[6/14/2012 11:57:57 AM]

 Module 7: Synchronization
 Lecture 13: Introduction to Atomic Primitives

Hardware Support

Start with a simple software lock

Shared: lock = 0;
Acquire : while (lock); lock = 1;
Release or Unlock : lock = 0;

Assembly translation

Lock: lw register, lock_addr /* register is any processor register */
bnez register, Lock
addi register, register, 0x1
sw register, lock_addr
Unlock: xor register, register, register
sw register, lock_addr

Does it work?

What went wrong?
We wanted the read-modify-write sequence to be atomic

Atomic Exchange

We can fix this if we have an atomic exchange instruction

addi register, r0, 0x1 /* r0 is hardwired to 0 */
Lock: xchg register, lock_addr /* An atomic load and store */

bnez register, Lock
Unlock remains unchanged

Various processors support this type of instruction
Intel x86 has xchg , Sun UltraSPARC has ldstub (load-store-unsigned byte),
UltraSPARC also has swap
Normally easy to implement for bus-based systems: whoever wins the bus for xchg can
lock the bus
Difficult to support in distributed memory systems

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_6.htm[6/14/2012 11:57:57 AM]

 Module 7: Synchronization
 Lecture 13: Introduction to Atomic Primitives

Test & Set

Less general compared to exchange

Lock: ts register, lock_addr
bnez register, Lock
Unlock remains unchanged

Loads current lock value in a register and sets location always with 1
Exchange allows to swap any value

A similar type of instruction is fetch & op
Fetch memory location in a register and apply op on the memory location
Op can be a set of supported operations e.g. add, increment, decrement, store etc.
In Test & set op=set

Fetch & op

Possible to implement a lock with fetch & clear then add (used to be supported in BBN
Butterfly 1)

addi reg1, r0, 0x1
Lock: fetch & clr then add reg1, reg2, lock_addr
/* fetch in reg2, clear, add reg1 */
bnez reg2, Lock

Butterfly 1 also supports fetch & clear then xor
Sequent Symmetry supports fetch & store
More sophisticated: compare & swap

Takes three operands: reg1, reg2, memory address
Compares the value in reg1 with address and if they are equal swaps the contents of
reg2 and address
Not in line with RISC philosophy (same goes for fetch & add)

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_7.htm[6/14/2012 11:57:57 AM]

 Module 7: Synchronization
 Lecture 13: Introduction to Atomic Primitives

Compare & Swap

addi reg1, r0, 0x0 /* reg1 has 0x0 */
addi reg2, r0, 0x1 /* reg2 has 0x1 */
Lock: compare & swap reg1, reg2, lock_addr
bnez reg2, Lock

Traffic of Test & Set

In some machines (e.g., SGI Origin 2000) uncached fetch & op is supported
Every such instruction will generate a transaction (may be good or bad depending on
the support in memory controller; will discuss later)

Let us assume that the lock location is cacheable and is kept coherent
Every invocation of test & set must generate a bus transaction; Why? What is the
transaction? What are the possible states of the cache line holding lock_addr ?
Therefore all lock contenders repeatedly generate bus transactions even if someone is
still in the critical section and is holding the lock

Can we improve this?
Test & set with backoff

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_8.htm[6/14/2012 11:57:57 AM]

 Module 7: Synchronization
 Lecture 13: Introduction to Atomic Primitives

Backoff Test & Set

Instead of retrying immediately wait for a while

How long to wait?
Waiting for too long may lead to long latency and lost opportunity
Constant and variable backoff
Special kind of variable backoff : exponential backoff (after the i th attempt the delay is k* c i
where k and c are constants)
Test & set with exponential backoff works pretty well

delay = k
Lock: ts register, lock_addr
bez register, Enter_CS
pause (delay) /* Can be simulated as a timed loop */
delay = delay*c
j Lock

Test & Test & Set

Reduce traffic further

Before trying test & set make sure that the lock is free

Lock: ts register, lock_addr
bez register, Enter_CS
Test: lw register, lock_addr
bnez register, Test
j Lock

How good is it?
In a cacheable lock environment the Test loop will execute from cache until it receives
an invalidation (due to store in unlock); at this point the load may return a zero value
after fetching the cache line
If the location is zero then only everyone will try test & set

Objectives_template

file:///D|/...audhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture13/13_9.htm[6/14/2012 11:57:58 AM]

 Module 7: Synchronization
 Lecture 13: Introduction to Atomic Primitives

TTS Traffic Analysis

Recall that unlock is always a simple store
In the worst case everyone will try to enter the CS at the same time

First time P transactions for ts and one succeeds; every other processor suffers a miss
on the load in Test loop; then loops from cache
The lock-holder when unlocking generates an upgrade (why?) and invalidates all others
All other processors suffer read miss and get value zero now; so they break Test loop
and try ts and the process continues until everyone has visited the CS

(P+(P-1)+1+(P-1))+((P-1)+(P-2)+1+(P-2))+… = (3P-1) +
(3P-4) + (3P-7) + … ~ 1.5P 2 asymptotically

For distributed shared memory the situation is worse because each invalidation
becomes a separate message (more later)

Goals of a Lock Algorithm

Low latency: If no contender the lock should be acquired fast
Low traffic: Worst case lock acquire traffic should be low; otherwise it may affect unrelated
transactions
Scalability: Traffic and latency should scale slowly with the number of processors
Low storage cost: Maintaining lock states should not impose unrealistic memory overhead
Fairness: Ideally processors should enter CS according to the order of lock request (TS or
TTS does not guarantee this)

file:///D|/Web%20Course/Dr.%20Mainik%20Chaudhary,%20Dr.%20Sanjeev%20K%20Aggrwal%20&%20Dr.%20Rajat%20Moona/Multi-core_Architecture/lecture14/14_1.htm

	13_1
	Local Disk
	Objectives_template

	13_2
	Local Disk
	Objectives_template

	13_3
	Local Disk
	Objectives_template

	13_4
	Local Disk
	Objectives_template

	13_5
	Local Disk
	Objectives_template

	13_6
	Local Disk
	Objectives_template

	13_7
	Local Disk
	Objectives_template

	13_8
	Local Disk
	Objectives_template

	13_9
	Local Disk
	Objectives_template

