Objectives_template

Module 9: "Introduction to Shared Memory Multiprocessors"
Lecture 17: "Introduction to Cache Coherence Protocols"

Invalidation vs. Update
Sharing patterns
Migratory hand-off
States of a cache line

Stores

MSI protocol

State transition
MSI example

MESI protocol
State transition
MESI example

MOESI protocol

Hybrid inval+update

4|l Previous Next||p

file:/I/E|/parallel_com_arch/lecture17/17_1.htm[6/13/2012 11:29:55 AM]

file:///E|/parallel_com_arch/lecture16/16_4.htm

Objectives_template

Module 9: "Introduction to Shared Memory Multiprocessors"

Lecture 17: "Introduction to Cache Coherence Protocols"

Invalidation vs. Update

= Two main classes of protocols:
« Dictates what action should be taken on a store
« Invalidation-based protocols invalidate sharers when a store miss appears
o Update-based protocols update the sharer caches with new value on a store
Advantage of update-based protocols: sharers continue to hit in the cache while in
invalidation-based protocols sharers will miss next time they try to access the line
e Advantage of invalidation-based protocols: only store misses go on bus and
subsequent stores to the same line are cache hits
= When is update-based protocol good?
o What sharing pattern? (large-scale producer/consumer)
e Otherwise it would just waste bus bandwidth doing useless updates
= When is invalidation-protocol good?
e Sequence of multiple writes to a cache line
e Saves intermediate write transactions
= Overhead of initiating small updates
« Invalidation-based protocols are much more popular
e« Some systems support both or maybe some hybrid based on dynamic sharing pattern
of a cache line

Sharing patterns

= Producer-consumer (initially flag, done are zero)
TO: while (lexit) {x=y; flag=1; while (done != k); flag=0; done=0;}
T1 to Tk: while (lexit) {while (!flag); use x; done++; while (flag);}
« Exit condition not shown
e What if T1 to Tk do not have the outer loop?
= Migratory (initially flag is zero)
TO: x = fO(x); flag++;
T1 to Tk: while (flag != pid); x = f1(x); flag++;
« Migratory hand-off?

Migratory hand-off

= Needs a memory writeback on every hand-off
e 10, WO, r1, wl, r2, w2, r3, w3, r4, w4, ...
e How to avoid these unnecessary writebacks?
e Saves memory bandwidth
e Solution: add an owner state (different from M) in caches
« Only owner can write a line back on eviction
e Ownership shifts along the migratory chain

dllPrevious Next||p

file:/l/E|/parallel_com_arch/lecturel7/17_2.htm[6/13/2012 11:29:55 AM]

Objectives_template

Module 9: "Introduction to Shared Memory Multiprocessors"

Lecture 17: "Introduction to Cache Coherence Protocols"

States of a cache line

= |nvalid (1), Shared (S), Modified or dirty (M), Clean exclusive (E), Owned (O)
« Every processor does not support all five states
e E state is equivalent to M in the sense that the line has permission to write, but in E
state the line is not yet modified and the copy in memory is the same as in cache; if
someone else requests the line the memory will provide the line
e« O state is exactly same as E state but in this case memory is not responsible for
servicing requests to the line; the owner must supply the line (just as in M state)

Stores

= Look at stores a little more closely

e There are three situations at the time a store issues: the line is not in the cache, the
line is in the cache in S state, the line is in the cache in one of M, E and O states

o If the line is in | state, the store generates a read-exclusive request on the bus and
gets the line in M state

o If the line is in S or O state, that means the processor only has read permission for
that line; the store generates an upgrade request on the bus and the upgrade
acknowledgment gives it the write permission (this is a data-less transaction)

MSI protocol

= Forms the foundation of invalidation-based writeback protocols
e Assumes only three supported cache line states: I, S, and M
e There may be multiple processors caching a line in S state
e There must be exactly one processor caching a line in M state and it is the owner of
the line
e If none of the caches have the line, memory must have the most up-to-date copy of
the line

4|l Previous Next||p

file:/l/E|/parallel_com_arch/lecturel7/17_3.htm[6/13/2012 11:29:55 AM]

Objectives_template

Module 9: "Introduction to Shared Memory Multiprocessors"
Lecture 17: "Introduction to Cache Coherence Protocols"

State transition

e ——

- Pritr/BusRdX o
f#,-”"" riBus \\
/f’
/ _— f/'flf"r-’lFNr.fBusUpgr I

-~ PrRd/Bu sRu
PrRd/- \ I
Busﬁdr- PrRd/-

BusRd/Flush Prive-
[\ /;’
h {BusRdX BusUpgr}- A
b CacheEvict/-
T _ BusRdX/Flush

CacheEvict/BusWEB

MSI example

= Take the following example
e PO reads x, P1 reads x, P1 writes x, PO reads x, P2 reads x, P3 writes x
e Assume the state of the cache line containing the address of x is | in all processors

PO generates BusRd, memory provides line, PO puts line in S state
P1 generates BusRd, memory provides line, P1 puts line in S state

P1 generates BusUpgr, PO snoops and invalidates line, memory does not respond, P1
sets state of line to M

PO generates BusRd, P1 flushes line and goes to S state, PO puts line in S state,
memory writes back

P2 generates BusRd, memory provides line, P2 puts line in S state

P3 generates BusRdX, PO, P1, P2 snoop and invalidate, memory provides line, P3 puts
line in cache in M state

MESI protocol

= The most popular invalidation-based protocol e.g., appears in Intel Xeon MP
= Why need E state?
e« The MSI protocol requires two transactions to go from | to M even if there is no
intervening requests for the line: BusRd followed by BusUpgr
e Save one transaction by having memory controller respond to the first BusRd with E
state if there is no other sharer in the system
« Needs a dedicated control wire that gets asserted by a sharer (wired OR)
e Processor can write to a line in E state silently

4|l Previous Next||p

file:/l/E|/parallel_com_arch/lecturel7/17_4.htm[6/13/2012 11:29:56 AM]

Objectives_template

Module 9: "Introduction to Shared Memory Multiprocessors"
Lecture 17: "Introduction to Cache Coherence Protocols"

State transition

PrRd/BusRd(S) PrRd/-

FRd/Flush
PrtvvriBusUpgr

PrRd/-

MESI example

= Take the following example
e PO reads x, PO writes x, P1 reads x, P1 writes x, ...

PO generates BusRd, memory provides line, PO puts line in cache in E state
PO does write silently, goes to M state

P1 generates BusRd, PO provides line, P1 puts line in cache in S state, PO transitions
to S state

Rest is identical to MSI
e Consider this example: PO reads x, P1 reads x, ...
PO generates BusRd, memory provides line, PO puts line in cache in E state

P1 generates BusRd, memory provides line, P1 puts line in cache in S state, PO
transitions to S state (no cache-to-cache sharing)

Rest is same as MSI

dllPrevious Next||p

file:/l/E|/parallel_com_arch/lecturel7/17_5.htm[6/13/2012 11:29:56 AM]

Objectives_template

Module 9: "Introduction to Shared Memory Multiprocessors"

Lecture 17: "Introduction to Cache Coherence Protocols"

MOESI protocol

= State transitions pertaining to O state
e | to O: not possible
e Eto O or Sto O: not possible
e Mto O: on a BusRd/Flush (but no memory writeback)
e O to I: on CacheEvict/BusWB or {BusRdX,BusUpgr}/Flush
e O to S: not possible
e O to E: not possible
e O to M: on PrWr/BusUpgr
= At most one cache can have a line in O state at any point in time
= Two main design choices for MOESI
e Consider the example: PO reads x, PO writes X, P1 reads x, P2 reads x, P3 reads X, ...
o« When P1 launches BusRd, PO sources the line and now the protocol has two options:
1. The line in PO goes to O and the line in P1 is filled in state S; 2. The line in PO
goes to S and the line in P1 is filled in state O i.e. P1 inherits ownership from PO
o For distributed shared memory, the second choice is better
e According to the second choice, when P2 generates a BusRd request, P1 sources the
line and transitions from O to S; P2 becomes the new owner
= Some SMPs do not support the E state
« In many cases it is not helpful, only complicates the protocol
e MOSI allows a compact state encoding in 2 bits
e Sun WildFire uses MOSI protocol

Hybrid inval+update

= One possible hybrid protocol
e Keep a counter per cache line and make Dragon update protocol the default
o Every time the local processor accesses a cache line set its counter to some pre-
defined threshold k
e On each received update decrease the counter by one
« When the counter reaches zero, the line is locally invalidated hoping that eventually
the writer will switch to M state from Sm state when no sharers are left

dllPrevious Next||p

file:/l/E|/parallel_com_arch/lecturel7/17_6.htm[6/13/2012 11:29:56 AM]

file:///E|/parallel_com_arch/lecture18/18_1.htm

	17_1
	Local Disk
	Objectives_template

	17_2
	Local Disk
	Objectives_template

	17_3
	Local Disk
	Objectives_template

	17_4
	Local Disk
	Objectives_template

	17_5
	Local Disk
	Objectives_template

	17_6
	Local Disk
	Objectives_template

