
Objectives_template

file:///E|/parallel_com_arch/lecture19/19_1.htm[6/13/2012 11:47:48 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 19: "Sequential Consistency and Cache Coherence Protocols"

Memory consistency

Consistency model

Sequential consistency

What is program order?

OOO and SC

SC example

Implementing SC

Write atomicity

Summary of SC

Back to shared bus

Snoopy protocols

Stores

Invalidation vs. update

Which one is better?

MSI protocol

State transition

MSI protocol

M to S, or M to I?

MSI example

MESI protocol

State transition

MESI protocol

MESI example

file:///E|/parallel_com_arch/lecture18/18_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_2.htm[6/13/2012 11:47:48 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 19: "Sequential Consistency and Cache Coherence Protocols"

Memory consistency

Need a more formal description of memory ordering
How to establish the order between reads and writes from different processors to
different variables?

The most clear way is to use synchronization
P0: A=1; flag=1
P1: while (!flag); print A;
Another example (assume A=0, B=0 initially)
P0: A=1; print B;
P1: B=1; print A;

What do you expect?
Memory consistency model is a contract between programmer and hardware regarding
memory ordering

Consistency model

A multiprocessor normally advertises the supported memory consistency model
This essentially tells the programmer what the possible correct outcome of a program
could be when run on that machine
Cache coherence deals with memory operations to the same location, but not different
locations
Without a formally defined order across all memory operations it often becomes
impossible to argue about what is correct and what is wrong in shared memory

Various memory consistency models
Sequential consistency (SC) is the most intuitive one and we will focus on it now (more
consistency models later)

Sequential consistency

Total order achieved by interleaving accesses from different processors
The accesses from the same processor are presented to the memory system in program
order
Essentially, behaves like a randomly moving switch connecting the processors to memory

Picks the next access from a randomly chosen processor
Lamport’s definition of SC

A multiprocessor is sequentially consistent if the result of any execution is the same as
if the operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order specified
by its program

What is program order?

Any legal re-ordering is allowed
The program order is the order of instructions from a sequential piece of code where
programmer’s intuition is preserved

The order must produce the result a programmer expects
Can out-of-order execution violate program order?

No. All microprocessors commit instructions in-order and that is where the state

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_2.htm[6/13/2012 11:47:48 AM]

becomes visible
For modern microprocessors the program order is really the commit order

Can out-of-order (OOO) execution violate SC?
Yes. Need extra logic to support SC on top of OOO

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_3.htm[6/13/2012 11:47:49 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 19: "Sequential Consistency and Cache Coherence Protocols"

OOO and SC

Consider a simple example (all are zero initially)

P0: x=w+1; r=y+1;

P1: y=2; w=y+1;

Suppose the load that reads w takes a miss and so w is not ready for a long time;
therefore, x=w+1 cannot complete immediately; eventually w returns with value 3
Inside the microprocessor r=y+1 completes (but does not commit) before x=w+1 and
gets the old value of y (possibly from cache); eventually instructions commit in order
with x=4, r=1, y=2, w=3
So we have the following partial orders

P0: x=w+1 < r=y+1 and P1: y=2 < w=y+1

Cross-thread: w=y+1 < x=w+1 and r=y+1 < y=2

Combine these to get a contradictory total order
What went wrong?

SC example

Consider the following example

P0: A=1; print B;

P1: B=1; print A;

Possible outcomes for an SC machine
(A, B) = (0,1); interleaving: B=1; print A; A=1; print B
(A, B) = (1,0); interleaving: A=1; print B; B=1; print A
(A, B) = (1,1); interleaving: A=1; B=1; print A; print B
 A=1; B=1; print B; print A
(A, B) = (0,0) is impossible: read of A must occur before write of A and read of B must
occur before write of B i.e. print A < A=1 and print B < B=1, but A=1 < print B and B=1
< print A; thus print B < B=1 < print A < A=1 < print B which implies print B < print B, a
contradiction

Implementing SC

Two basic requirements
Memory operations issued by a processor must become visible to others in program
order
Need to make sure that all processors see the same total order of memory operations:
in the previous example for the (0,1) case both P0 and P1 should see the same
interleaving: B=1; print A; A=1; print B

The tricky part is to make sure that writes become visible in the same order to all processors
Write atomicity: as if each write is an atomic operation
Otherwise, two processors may end up using different values (which may still be

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_3.htm[6/13/2012 11:47:49 AM]

correct from the viewpoint of cache coherence, but will violate SC)

Write atomicity

Example (A=0, B=0 initially)

P0: A=1;

P1: while (!A); B=1;

P2: while (!B); print A;

A correct execution on an SC machine should print A=1
A=0 will be printed only if write to A is not visible to P2, but clearly it is visible to P1
since it came out of the loop
Thus A=0 is possible if P1 sees the order A=1 < B=1 and P2 sees the order B=1 <
A=1 i.e. from the viewpoint of the whole system the write A=1 was not “atomic”
Without write atomicity P2 may proceed to print 0 with a stale value from its cache

Summary of SC

Program order from each processor creates a partial order among memory operations
Interleaving of these partial orders defines a total order
Sequential consistency: one of many total orders
A multiprocessor is said to be SC if any execution on this machine is SC compliant
Sufficient but not necessary conditions for SC

Issue memory operation in program order
Every processor waits for write to complete before issuing the next operation
Every processor waits for read to complete and the write that affects the returned
value to complete before issuing the next operation (important for write atomicity)

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_4.htm[6/13/2012 11:47:49 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 19: "Sequential Consistency and Cache Coherence Protocols"

Back to shared bus

Centralized shared bus makes it easy to support SC
Writes and reads are all serialized in a total order through the bus transaction ordering
If a read gets a value of a previous write, that write is guaranteed to be complete
because that bus transaction is complete
The write order seen by all processors is the same in a write through system because
every write causes a transaction and hence is visible to all in the same order
In a nutshell, every processor sees the same total bus order for all memory operations
and therefore any bus-based SMP with write through caches is SC

What about a multiprocessor with writeback cache?
No SMP uses write through protocol due to high BW

Snoopy protocols

No change to processor or cache
Just extend the cache controller with snoop logic and exploit the bus

We will focus on writeback caches only
Possible states of a cache line: Invalid (I), Shared (S), Modified or dirty (M), Clean
exclusive (E), Owned (O); every processor does not support all five states
E state is equivalent to M in the sense that the line has permission to write, but in E
state the line is not yet modified and the copy in memory is the same as in cache; if
someone else requests the line the memory will provide the line
O state is exactly same as E state but in this case memory is not responsible for
servicing requests to the line; the owner must supply the line (just as in M state)
Stores really read the memory (as opposed to write)

Stores

Look at stores a little more closely
There are three situations at the time a store issues: the line is not in the cache, the
line is in the cache in S state, the line is in the cache in one of M, E and O states
If the line is in I state, the store generates a read-exclusive request on the bus and
gets the line in M state
If the line is in S or O state, that means the processor only has read permission for
that line; the store generates an upgrade request on the bus and the upgrade
acknowledgment gives it the write permission (this is a data-less transaction)
If the line is in M or E state, no bus transaction is generated; the cache already has
write permission for the line (this is the case of a write hit; previous two are write
misses)

Invalidation vs. update

Two main classes of protocols:
Invalidation-based and update-based
Dictates what action should be taken on a write
Invalidation-based protocols invalidate sharers when a write miss (upgrade or readX)
appears on the bus
Update-based protocols update the sharer caches with new value on a write: requires

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_4.htm[6/13/2012 11:47:49 AM]

write transactions (carrying just the modified bytes) on the bus even on write hits (not
very attractive with writeback caches)
Advantage of update-based protocols: sharers continue to hit in the cache while in
invalidation-based protocols sharers will miss next time they try to access the line
Advantage of invalidation-based protocols: only write misses go on bus (suited for
writeback caches) and subsequent stores to the same line are cache hits

Which one is better?

Difficult to answer
Depends on program behavior and hardware cost

When is update-based protocol good?
What sharing pattern? (large-scale producer/consumer)
Otherwise it would just waste bus bandwidth doing useless updates

When is invalidation-protocol good?
Sequence of multiple writes to a cache line
Saves intermediate write transactions

Also think about the overhead of initiating small updates for every write in update protocols
Invalidation-based protocols are much more popular
Some systems support both or maybe some hybrid based on dynamic sharing pattern
of a cache line

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_5.htm[6/13/2012 11:47:49 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 19: "Sequential Consistency and Cache Coherence Protocols"

MSI protocol

Forms the foundation of invalidation-based writeback protocols
Assumes only three supported cache line states: I, S, and M
There may be multiple processors caching a line in S state
There must be exactly one processor caching a line in M state and it is the owner of
the line
If none of the caches have the line, memory must have the most up-to-date copy of
the line

Processor requests to cache: PrRd, PrWr
Bus transactions: BusRd, BusRdX, BusUpgr, BusWB

State transition

MSI protocol

Few things to note
Flush operation essentially launches the line on the bus
Processor with the cache line in M state is responsible for flushing the line on bus
whenever there is a BusRd or BusRdX transaction generated by some other processor
On BusRd the line transitions from M to S, but not M to I. Why? Also at this point both
the requester and memory pick up the line from the bus; the requester puts the line in
its cache in S state while memory writes the line back. Why does memory need to write
back?
On BusRdX the line transitions from M to I and this time memory does not need to pick
up the line from bus. Only the requester picks up the line and puts it in M state in its
cache. Why?

M to S, or M to I?

BusRd takes a cache line in M state to S state
The assumption here is that the processor will read it soon, so save a cache miss by
going to S
May not be good if the sharing pattern is migratory: P0 reads and writes cache line A,

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_5.htm[6/13/2012 11:47:49 AM]

then P1 reads and writes cache line A, then P2…
For migratory patterns it makes sense to go to I state so that a future invalidation is
saved
But for bus-based SMPs it does not matter much because an upgrade transaction will
be launched anyway by the next writer, unless there is special hardware support to
avoid that: how?
The big problem is that the sharing pattern for a cache line may change dynamically:
adaptive protocols are good and are supported by Sequent Symmetry and MIT Alewife

MSI example

Take the following example
P0 reads x, P1 reads x, P1 writes x, P0 reads x, P2 reads x, P3 writes x
Assume the state of the cache line containing the address of x is I in all processors

P0 generates BusRd, memory provides line, P0 puts line in S state

P1 generates BusRd, memory provides line, P1 puts line in S state

P1 generates BusUpgr, P0 snoops and invalidates line, memory does not respond, P1
sets state of line to M

P0 generates BusRd, P1 flushes line and goes to S state, P0 puts line in S state,
memory writes back

P2 generates BusRd, memory provides line, P2 puts line in S state

P3 generates BusRdX, P0, P1, P2 snoop and invalidate, memory provides line, P3 puts
line in cache in M state

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_6.htm[6/13/2012 11:47:50 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 19: "Sequential Consistency and Cache Coherence Protocols"

MESI protocol

The most popular invalidation-based protocol e.g., appears in Intel Xeon MP
Why need E state?

The MSI protocol requires two transactions to go from I to M even if there is no
intervening requests for the line: BusRd followed by BusUpgr
We can save one transaction by having memory controller respond to the first BusRd
with E state if there is no other sharer in the system
How to know if there is no other sharer? Needs a dedicated control wire that gets
asserted by a sharer (wired OR)
Processor can write to a line in E state silently and take it to M state

State transition

MESI protocol

If a cache line is in M state definitely the processor with the line is responsible for flushing it
on the next BusRd or BusRdX transaction
If a line is not in M state who is responsible?

Memory or other caches in S or E state?
Original Illinois MESI protocol assumed cache-to-cache transfer i.e. any processor in E
or S state is responsible for flushing the line
However, it requires some expensive hardware, namely, if multiple processors are
caching the line in S state who flushes it? Also, memory needs to wait to know if it
should source the line
Without cache-to-cache sharing memory always sources the line unless it is in M state

MESI example

Take the following example
P0 reads x, P0 writes x, P1 reads x, P1 writes x, …

P0 generates BusRd, memory provides line, P0 puts line in cache in E state

Objectives_template

file:///E|/parallel_com_arch/lecture19/19_6.htm[6/13/2012 11:47:50 AM]

P0 does write silently, goes to M state

P1 generates BusRd, P0 provides line, P1 puts line in cache in S state, P0 transitions
to S state
Rest is identical to MSI

Consider this example: P0 reads x, P1 reads x, …

P0 generates BusRd, memory provides line, P0 puts line in cache in E state

P1 generates BusRd, memory provides line, P1 puts line in cache in S state, P0
transitions to S state (no cache-to-cache sharing)
Rest is same as MSI

file:///E|/parallel_com_arch/lecture20/20_1.htm

	19_1
	Local Disk
	Objectives_template

	19_2
	Local Disk
	Objectives_template

	19_3
	Local Disk
	Objectives_template

	19_4
	Local Disk
	Objectives_template

	19_5
	Local Disk
	Objectives_template

	19_6
	Local Disk
	Objectives_template

