
Objectives_template

file:///E|/parallel_com_arch/lecture36/36_1.htm[6/13/2012 12:17:33 PM]

 Module 16: "Software Distributed Shared Memory Multiprocessors"
 Lecture 36: "Software Distributed Shared Memory Multiprocessors"

 
Software Distributed Shared Memory Multiprocessors

Why SDSM?

SVM for dummy

SVM overheads

Use of RC

Eager and lazy release

Lazy release

Multiple writers

Twin and diff

HLRC

Twin and diff overhead

Performance factors

Arbitrary grain

Implementing ERC

Implementing LRC

An example

Sequential program

[From Section 9.3 of Culler, Singh, Gupta]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture35/ex_sol_3.htm


Objectives_template

file:///E|/parallel_com_arch/lecture36/36_2.htm[6/13/2012 12:17:33 PM]

 Module 16: "Software Distributed Shared Memory Multiprocessors"
 Lecture 36: "Software Distributed Shared Memory Multiprocessors"

 

Why SDSM?

Hardware DSM is hard to design
Must have tightly integrated communication assist and NI
The CA should probably be custom designed for performance
Expensive in terms of time to market and the amount of custom design in memory
system
But still want to retain shared memory programming

Software DSM
Provides shared virtual memory (SVM) over message passing programs
Just take the commodity nodes, connect them over a commodity high-speed network,
augment commodity OS with an SVM kernel, and port your shared memory programs
to SVM
Coherence granularity is a page

SVM for dummy

Embed a coherence protocol in the page fault handler
On a page fault, figure out if the page is mapped on some other node
If yes, get a copy of the page and map it in local memory in some free page frame and
return from interrupt
If no, swap it in from disk and map it as usual
If it was a page fault generated by a load, set only read permission in the PTE;
subsequent write will generate another access fault and then you invalidate all copies
in the system
Multiple nodes are allowed to have a virtual page mapped at different physical frames
locally; thus the sharing really happens in the virtual address space and physical
address space is private

SVM overheads

Performance factors
Every protocol invocation requires an interrupt and context switch
Messages are sent through message passing libraries as opposed to specialized NI
The entire protocol runs in software; there is no hardware support
Even remote requests interrupt local processes and pollute local caches due to protocol
processing
The granularity of coherence is too big; causes unnecessary communication and false
sharing
This last point was the major problem when such systems took off; attempts to limit
false sharing and communication volume led to numerous innovations in SDSM
coherence protocols

Use of RC

A good place to make use of relaxed models
With SC there is no other choice but to invalidate all sharers and wait for all
acknowledgments on every write to a page; immediately the invalidated readers may
proceed to bring the page back and performance will degrade sharply

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_2.htm[6/13/2012 12:17:33 PM]

SDSM systems invariably advertise RC or WO or some other relaxed model, but not
SC
Under WO since all accesses between synchronization points can be re-ordered
arbitrarily, the writer can hold back all write notices (i.e. invalidations) until that point
For RC this needs to be done only at release boundaries
Note how different the use of RC is from hardware DSM; there RC is used to hide write
latency and invalidations are sent immediately; here RC is used to limit communication
(close to delayed consistency)

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_3.htm[6/13/2012 12:17:34 PM]

 Module 16: "Software Distributed Shared Memory Multiprocessors"
 Lecture 36: "Software Distributed Shared Memory Multiprocessors"

 

Eager and lazy release

Propagating invalidations at release is still conservative
P1 does not care about the writes from P0 until P1 executes the next acquire; at this
point P1 must see all updated values
Delay write notices until next acquire of the consumer
Let the consumer ask for the updates (on demand)
This leads to lazy release consistency (LRC); the conventional release consistency is
often called eager release consistency (ERC) in SDSM world
In LRC a process executing an acquire obtains all write notices corresponding to all
releases that happened in the system since its last acquire (conservative)

Lazy release

All synchronization operations must be carefully labeled

P0: P1:

LOCK(L); while (!ptr);

ptr = some_non_null_value; LOCK(L);

UNLOCK(L); f(ptr);

 UNLOCK(L);

Hardware DSM binaries may not work directly in SVM
The fence instructions are largely useless here
What is more important is a way to tell the SVM library to propagate writes at proper
points

Multiple writers

Thus far we have silently assumed only one writer
With multiple writers if the coherence protocol only allows a single modified page at a
time, ownership must be transferred every time a new writer arrives
Clearly, under release consistency there is no problem in having multiple writers; you
just need to pretend as if all the writes from one processor happened before all the
writes from another even though they actually interleaved (assume that none of these
writes are part of a release)
So we just need to design a multiple writer protocol which allows multiple writers to co-
exist between two consecutive synchronization points, allows pages to be modified
locally and become inconsistent
The main design concern of this protocol is: what happens when a process reaches
acquire? How to collect all write notices?

Multiple writer protocol (from TreadMarks SVM)
When a page is brought in, the PTE is marked to have only read permission
On the first write to the page an access fault handler is invoked and the handler makes
a copy of the page (called twin); also at this point the PTE is set to have RW
Now the process can write to the page as many times as it wishes
At release boundary (for ERC) or at the time of an incoming acquire request (for LRC),
the page is compared with the twin and a diff is created (containing just the

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_3.htm[6/13/2012 12:17:34 PM]

modifications)
Finally, the diff is propagated to the requester
The requester collects all the diffs and merges them into its own copies

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_4.htm[6/13/2012 12:17:34 PM]

 Module 16: "Software Distributed Shared Memory Multiprocessors"
 Lecture 36: "Software Distributed Shared Memory Multiprocessors"

 

Twin and diff

Fits well with ERC
Can free storage of twin at release
In LRC must hold back diff until requested, and until it is guaranteed that no process will
request in future
Garbage collection becomes necessary in LRC forcing diffs to be propagated; this is
very complex due to the fact that a page may have distributed diffs across many nodes
and all of them must be collected before propagating
Solution: home-based LRC (HLRC)
Let every page have a home node (may be necessary anyway even in standard LRC to
find out writers/readers unless the OS kernel has a shared page table; in a commodity
cluster usually each node has a separate OS which is much simpler than a distributed
NUMA OS)
At release send the diff to the home node which merges the received diffs into the
“master copy”

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_4.htm[6/13/2012 12:17:34 PM]

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_5.htm[6/13/2012 12:17:34 PM]

 Module 16: "Software Distributed Shared Memory Multiprocessors"
 Lecture 36: "Software Distributed Shared Memory Multiprocessors"

 

HLRC

Home-based LRC
A process performing acquire obtains write notices from previous releaser
But on getting a page fault it asks the home node to send the entire page (of course,
with already merged diffs)
Note that this protocol not only provides space advantage, but also leads to two-hop
page transfer from home to acquirer (as opposed to multiple two hops corresponding to
multiple previous writers)
Also, home node never suffers from page fault; here also you see a notion of local vs.
remote access faults
However, here the whole page (as opposed to diffs) is communicated every time from
the home leading to wastage of BW

 

Twin and diff overhead

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_5.htm[6/13/2012 12:17:34 PM]

Diff processing is expensive
Twin creation, diff computation and diff application take up precious CPU cycles (but still
faster than network)
Some hardware support (especially for fine-grain write propagation) in NI would
definitely help
Writes can be detected by snooping the memory bus if the caches are write-through
Otherwise, every write can be instrumented in software
Thus writes can be automatically propagated to home
Problem is all writes are propagated wasting BW
All-software approach to avoid diff is also proposed: maintain a dirty bit in software per
memory block or memory word; dirty bit is cleared at synchronization points and only the
words with dirty bits set are propagated to acquirer

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_6.htm[6/13/2012 12:17:34 PM]

 Module 16: "Software Distributed Shared Memory Multiprocessors"
 Lecture 36: "Software Distributed Shared Memory Multiprocessors"

 

Performance factors

Where does SDSM stand?
HLRC and multiple writer protocols do improve performance dramatically
But SDSM is still lagging behind its hardware counterpart by a considerable margin
The main bottlenecks are: false sharing, cost of protocol processing, time spent in taking
page faults i.e. the interrupt overhead
As a result, coarse-grain sharing is very well suited
Also, synchronization does not scale well on SDSM because all primitives must be
implemented with explicit messages
Suggestions: hardware support for diff processing in memory controller (e.g., page copy
engine)? Dedicated hardware thread for protocol processing and capability to deliver
interrupt from a protocol thread to kernel (partitioned contexts?)?

Arbitrary grain

Why not let the user specify which variables (or formally called “objects”) should be kept
coherent

To each synchronization point attach the “objects” (nothing to do with OOP) for which
write notices must be propagated (leads to “shared object space programs”)
If nothing is attached to a synchronization point just fall back to release consistency
The big advantage is that false sharing may disappear completely
Disadvantages: a careful analysis of the program is needed, an efficient run-time library
must intercept all synchronization events and manage the attached objects
This is known as entry consistency
Same philosophy has been applied to page-based SVM also leading to scope
consistency

Implementing ERC

Single writer
Simple scheme: maintain sharer list at the owner and transfer it with ownership to the
next writer; at release send write notices to all sharers for all pages that the writer has
written to since its last release
Problem1: Multiple invalidations to the same node
Solution1: Maintain a directory entry per page and store the sharer list there; releaser
first consults the directory and then sends invalidations
Problem2: Invalidating copies more recent than the releaser’s copy (not a correctness
issue, just a performance problem)
Solution2: Attach version number to each copy; increment version number on write;
receiver applies invalidation only if its version number is lower than releaser’s; is it
better with directory?

Single writer
When to collect the invalidation acknowledgments?
Conservative: wait for all acknowledgments immediately at release
Observation: following the same argument as LRC we can push the time to collect all
acknowledgments until the next incoming acquire (the acquire will come to the last
releaser because it probably has the dirty page with the synchronization variable)

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_6.htm[6/13/2012 12:17:34 PM]

This optimization allows the releaser to proceed past release while the
acknowledgments are collected in background; again without hardware support,
collection of each acknowledgment may need an interrupt
Under heavy contention the next acquire may immediately follow the release

Multiple writers
Doesn’t make sense to talk about sharing list unless the sharing list is kept coherent
across all writers (this may require broadcasting read access faults to all owners)
Two ways to communicate write notices: broadcast write notices at release or use a
directory to find sharers
How does a faulting processor obtain the diffs?
Two solutions: use a home node and releaser sends diffs to the home node or visit all
“causal” releasers and apply diffs in appropriate order; order of diffs is very hard to
decide and therefore, multiple writer ERC systems use updates instead of invalidations if
no home (diffs are sent at release and are not demand-based); is the order okay now?
Non-deterministic if not race-free
Update-based multiple writer ERC protocol is used in Munin
What about version numbers? Not helpful

 



Objectives_template

file:///E|/parallel_com_arch/lecture36/36_7.htm[6/13/2012 12:17:35 PM]

 Module 16: "Software Distributed Shared Memory Multiprocessors"
 Lecture 36: "Software Distributed Shared Memory Multiprocessors"

 

Implementing LRC

Single writer
The invalidations may be sent at any time between release and the next incoming
acquire
Sending invalidations at acquire time puts the entire inval/ack round-trip time in the
critical path of acquire
On the receiving side, a processor may or may not choose to apply the invalidations
immediately; it is perfectly fine to defer application until next acquire of the processor
Note that invalidations are sent to all sharers not just the acquirer (why?)

Otherwise, the last releaser not only sends the invalidations for pages it has
written to, but also the invalidations it itself has received; optimally acquirer wants
to receive invalidations for releaser’s writes and others that it hasn’t yet seen, but
not all

Single writer
Version numbers don’t help in limiting invalidation traffic (note the difference with single
writer ERC)
To reduce unnecessary invalidation traffic every node maintains a vector time stamp
The vector has P elements if the system has P nodes
The execution on each node is divided into intervals such that every acquire or release
starts a new one and each interval has a vector time stamp per process
Vector element i of the vector in node k records the last logical interval of node i that
sent a notice to node k
When a node sends an acquire request to the last releaser it also sends the vector time
stamp so that the releaser can compare it with its own and reply with the appropriate
invalidations

Multiple writers
Essentially same as single writer as far as invalidations are concerned
Diffs introduce new storage overhead
HLRC seems to offer the best solution: home node can maintain the diffs (already
discussed)
Without home, vector time stamps can be used for determining correct diff order
Even in the presence of home node, vector time stamps can be used to reduce
invalidations as in single writer case
One of the main design goal is to keep diff storage low so that large problems can be
run

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture37/37_1.htm

	36_1
	Local Disk
	Objectives_template


	36_2
	Local Disk
	Objectives_template


	36_3
	Local Disk
	Objectives_template


	36_4
	Local Disk
	Objectives_template


	36_5
	Local Disk
	Objectives_template


	36_6
	Local Disk
	Objectives_template


	36_7
	Local Disk
	Objectives_template



