
Objectives_template

file:///E|/parallel_com_arch/lecture24/24_1.htm[6/13/2012 11:54:50 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 24: "Write Serialization in a Simple Design"

 
Multiprocessors on A Snoopy Bus

Agenda

Correctness goals

A simple design

Cache controller

Snoop logic

Writebacks

A simple design

Inherently non-atomic

Write serialization

Fetch deadlock

Livelock

Starvation

More on LL/SC

Multi-level caches

[From Chapter 6 of Culler, Singh, Gupta]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture23/23_6.htm


Objectives_template

file:///E|/parallel_com_arch/lecture24/24_2.htm[6/13/2012 11:54:50 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 24: "Write Serialization in a Simple Design"

 

Agenda

Goal is to understand what influences the performance, cost and scalability of SMPs
Details of physical design of SMPs
At least three goals of any design: correctness, performance, low hardware complexity
Performance gains are normally achieved by pipelining memory transactions and
having multiple outstanding requests
These performance optimizations occasionally introduce new protocol races involving
transient states leading to correctness issues in terms of coherence and consistency

Correctness goals

Must enforce coherence and write serialization
Recall that write serialization guarantees all writes to a location to be seen in the same
order by all processors

Must obey the target memory consistency model
If sequential consistency is the goal, the system must provide write atomicity and
detect write completion correctly (write atomicity extends the definition of write
serialization for any location i.e. it guarantees that positions of writes within the total
order seen by all processors be the same)

Must be free of deadlock, livelock and starvation
Starvation confined to a part of the system is not as problematic as deadlock and
livelock
However, system-wide starvation leads to livelock

A simple design

Start with a rather naïve design
Each processor has a single level of data and instruction caches
The cache allows exactly one outstanding miss at a time i.e. a cache miss request is
blocked if already another is outstanding (this serializes all bus requests from a
particular processor)
The bus is atomic i.e. it handles one request at a time

Cache controller

Must be able to respond to bus transactions as necessary 1
Handled by the snoop logic

The snoop logic should have access to the cache tags
A single set of tags cannot allow concurrent accesses by the processor-side and the
bus-side controllers
When the snoop logic accesses the tags the processor must remain locked out from
accessing the tags
Possible enhancements: two read ports in the tag RAM allows concurrent reads;
duplicate copies are also possible; multiple banks reduce the contention also
In all cases, updates to tags must still be atomic or must be applied to both copies in
case of duplicate tags; however, tag updates are a lot less frequent compared to reads

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture24/24_3.htm[6/13/2012 11:54:50 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 24: "Write Serialization in a Simple Design"

 

Snoop logic

Couple of decisions need to be taken while designing the snoop logic
How long should the snoop decision take?
How should processors convey the snoop decision?

Snoop latency (three design choices)
Possible to set an upper bound in terms of number of cycles; advantage: no change in
memory controller hardware; disadvantage: potentially large snoop latency (Pentium Pro,
Sun Enterprise servers)
The memory controller samples the snoop results every cycle until all caches have
completed snoop (SGI Challenge uses this approach where the memory controller
fetches the line from memory, but stalls if all caches haven’t yet snooped)
Maintain a bit per memory line to indicate if it is in M state in some cache

Conveying snoop result
For MESI the bus is augmented with three wired-OR snoop result lines (shared,
modified, valid); the valid line is active low
The original Illinois MESI protocol requires cache-to-cache transfer even when the line
is in S state; this may complicate the hardware enormously due to the involved priority
mechanism
Commercial MESI protocols normally allow cache-to-cache sharing only for lines in M
state
SGI Challenge and Sun Enterprise allow cache-to-cache transfers only in M state;
Challenge updates memory when going from M to S while Enterprise exercises a
MOESI protocol

Writebacks

Writebacks are essentially eviction of modified lines
Caused by a miss mapping to the same cache index
Needs two bus transactions: one for the miss and one for the writeback
Definitely the miss should be given first priority since this directly impacts forward
progress of the program
Need a writeback buffer (WBB) to hold the evicted line until the bus can be acquired for
the second time by this cache
In the meantime a new request from another processor may be launched for the evicted
line: the evicting cache must provide the line from the WBB and cancel the pending
writeback (need an address comparator with WBB)

A simple design

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture24/24_3.htm[6/13/2012 11:54:50 AM]

 



Objectives_template

file:///E|/parallel_com_arch/lecture24/24_4.htm[6/13/2012 11:54:51 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 24: "Write Serialization in a Simple Design"

 

Inherently non-atomic

Even though the bus is atomic, a complete protocol transaction involves quite a few steps
which together forms a non-atomic transaction

Issuing processor request
Looking up cache tags
Arbitrating for bus
Snoop action in other cache controller
Refill in requesting cache controller at the end

Different requests from different processors may be in a different phase of a transaction
This makes a protocol transition inherently non-atomic

Consider an example
P0 and P1 have cache line C in shared state
Both proceed to write the line
Both cache controllers look up the tags, put a BusUpgr into the bus request queue, and
start arbitrating for the bus
P1 gets the bus first and launches its BusUpgr
P0 observes the BusUpgr and now it must invalidate C in its cache and change the
request type to BusRdX
So every cache controller needs to do an associative lookup of the snoop address
against its pending request queue and depending on the request type take appropriate
actions

One way to reason about the correctness is to introduce transient states
Possible to think of the last problem as the line C being in a transient S M state
On observing a BusUpgr or BusRdX, this state transitions to I M which is also
transient
The line C goes to stable M state only after the transaction completes
These transient states are not really encoded in the state bits of a cache line because
at any point in time there will be a small number of outstanding requests from a
particular processor (today the maximum I know of is 16)
These states are really determined by the state of an outstanding line and the state of
the cache controller

Write serialization

Atomic bus makes it rather easy, but optimizations are possible
Consider a processor write to a shared cache line
Is it safe to continue with the write and change the state to M even before the bus
transaction is complete?
After the bus transaction is launched it is totally safe because the bus is atomic and
hence the position of the write is committed in the total order; therefore no need to wait
any further (note that the exact point in time when the other caches invalidate the line
is not important)
If the processor decides to proceed even before the bus transaction is launched (very
much possible in ooo execution), the cache controller must take the responsibility of
squashing and re-executing offending instructions so that the total order is consistent
across the system

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture24/24_4.htm[6/13/2012 11:54:51 AM]

Fetch deadlock

Just a fancy name for a pretty intuitive deadlock
Suppose P0’s cache controller is waiting to get the bus for launching a BusRdX to
cache line A
P1 has a modified copy of cache line A
P1 has launched a BusRd to cache line B and awaiting completion
P0 has a modified copy of cache line B
If both keep on waiting without responding to snoop requests, the deadlock cycle is
pretty obvious
So every controller must continue to respond to snoop requests while waiting for the
bus for its own requests
Normally the cache controller is designed as two separate independent logic units,
namely, the inbound unit (handles snoop requests) and the outbound unit (handles own
requests and arbitrates for bus)

 



Objectives_template

file:///E|/parallel_com_arch/lecture24/24_5.htm[6/13/2012 11:54:51 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 24: "Write Serialization in a Simple Design"

 

Livelock

Consider the following example
P0 and P1 try to write to the same cache line
P0 gets exclusive ownership, fills the line in cache and notifies the load/store unit (or
retirement unit) to retry the store
While all these are happening P1’s request appears on the bus and P0’s cache
controller modifies tag state to I before the store could retry
This can easily lead to a livelock
Normally this is avoided by giving the load/store unit higher priority for tag access (i.e.
the snoop logic cannot modify the tag arrays when there is a processor access
pending in the same clock cycle)
This is even rarer in multi-level cache hierarchy (more later)

Starvation

Some amount of fairness is necessary in the bus arbiter
An FCFS policy is possible for granting bus, but that needs some buffering in the
arbiter to hold already placed requests
Most machines implement an aging scheme which keeps track of the number of times
a particular request is denied and when the count crosses a threshold that request
becomes the highest priority (this too needs some storage)

More on LL/SC

We have seen that both LL and SC may suffer from cache misses (a read followed by an
upgrade miss)
Is it possible to save one transaction?

What if I design my cache controller in such a way that it can recognize LL instructions
and launch a BusRdX instead of BusRd?
This is called Read-for-Ownership (RFO); also used by Intel atomic xchg instruction
Nice idea, but you have to be careful
By doing this you have just enormously increased the probability of a livelock: before
the SC executes there is a high probability that another LL will take away the line
Possible solution is to buffer incoming snoop requests until the SC completes (buffer
space is proportional to P); may introduce new deadlock cycles (especially for modern
non-atomic busses)

Multi-level caches

We have talked about multi-level caches and the involved inclusion property
Multiprocessors create new problems related to multi-level caches

A bus snoop result may be relevant to inner levels of cache e.g., bus transactions are
not visible to the first level cache controller
Similarly, modifications made in the first level cache may not be visible to the second
level cache controller which is responsible for handling bus requests

Inclusion property makes it easier to maintain coherence
Since L1 cache is a subset of L2 cache a snoop miss in L2 cache need not be sent to
L1 cache

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture24/24_5.htm[6/13/2012 11:54:51 AM]

 

file:///E|/parallel_com_arch/lecture25/25_1.htm

	24_1
	Local Disk
	Objectives_template


	24_2
	Local Disk
	Objectives_template


	24_3
	Local Disk
	Objectives_template


	24_4
	Local Disk
	Objectives_template


	24_5
	Local Disk
	Objectives_template



