
Objectives_template

file:///E|/parallel_com_arch/lecture34/34_1.htm[6/13/2012 12:15:56 PM]

 Module 15: "Memory Consistency Models"
 Lecture 34: "Sequential Consistency and Relaxed Models"

Memory Consistency Models

Memory consistency

SC

SC in MIPS R10000

Relaxed models

Total store ordering

PC and PSO

TSO, PC, PSO

Weak ordering (WO)

[From Chapters 9 and 11 of Culler, Singh, Gupta]
[Additional reading: Adve and Gharachorloo , WRL Tech Report, 1995]

file:///E|/parallel_com_arch/lecture33/33_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture34/34_2.htm[6/13/2012 12:15:56 PM]

 Module 15: "Memory Consistency Models"
 Lecture 34: "Sequential Consistency and Relaxed Models"

Memory consistency

Coherence protocol is not enough to completely specify the output(s) of a parallel program
Coherence protocol only provides the foundation to reason about legal outcome of
accesses to the same memory location
Consistency model tells us the possible outcomes arising from legal ordering of
accesses to all memory locations
A shared memory machine advertises the supported consistency model; it is a
“contract” with the writers of parallel software and the writers of parallelizing compilers
Implementing memory consistency model is really a hardware-software tradeoff: a strict
sequential model (SC) offers execution that is intuitive, but may suffer in terms of
performance; relaxed models (RC) make program reasoning difficult, but may offer
better performance

SC

Recall that an execution is SC if the memory operations form a valid total order i.e. it is an
interleaving of the partial program orders

Sufficient conditions require that a new memory operation cannot issue until the
previous one is completed
This is too restrictive and essentially disallows compiler as well as hardware any re-
ordering of instructions
No microprocessor that supports SC implements sufficient conditions
Instead, all out-of-order execution is allowed, and a proper recovery mechanism is
implemented in case of a memory order violation
Let’s discuss the MIPS R10000 implementation

SC in MIPS R10000

Issues instructions out of program order, but commits in order
The problem is with speculatively executed loads: a load may execute and use a value
long before it finally commits
In the meantime, some other processor may modify that value through a store and the
store may commit (i.e. become globally visible) before the load commits: may violate
SC (why?)
How do you detect such a violation?
How do you recover and guarantee an SC execution?
Any special consideration for prefetches?

Binding and non-binding prefetches
In MIPS R10000 a store remains at the head of the active list until it is completed in cache

Can we just remove it as soon as it issues and let the other instructions commit (the
store can complete from store buffer at a later point)? How far can we go and still
guarantee SC?

The Stanford DASH multiprocessor, on receiving a read reply that is already invalidated,
forces the processor to retry that load

Why can’t it use the value in the cache line and then discard the line?
Does the cache controller need to take any special action when a line is replaced from the
cache?

Objectives_template

file:///E|/parallel_com_arch/lecture34/34_2.htm[6/13/2012 12:15:56 PM]

Objectives_template

file:///E|/parallel_com_arch/lecture34/34_3.htm[6/13/2012 12:15:57 PM]

 Module 15: "Memory Consistency Models"
 Lecture 34: "Sequential Consistency and Relaxed Models"

Relaxed models

Implementing SC requires complex hardware
Is there an example that clearly shows the disaster of not implementing all these?

Observe that cache coherence protocol is orthogonal
But such violations are rare
Does it make sense to invest so much time (for verification) and hardware (associative
lookup logic in load queue)?
Many processors today relax the consistency model to get rid of complex hardware and
achieve some extra performance at the cost of making program reasoning complex
P0: A=1; B=1; flag=1; P1: while (!flag); print A; print B;
SC is too restrictive; relaxing it does not always violate programmers’ intuition

Three attributes
System specification: which orders are preserved and which are not; if all program
orders are not preserved what support is provided (software and hardware) to enforce
a particular order that the programmer wishes
Programmer’s interface: set of rules, if followed, will lead to an execution as expected
by the programmer; normally specified in terms of high-level language annotations and
labels
Translation mechanism: how to translate programmer’s annotations to hardware actions

Let’s take a look at a few relaxed models: TSO, PSO, PC, WO/WC, RC, DC

Total store ordering

Allows a read to bypass (i.e. commit before) an earlier incomplete write
This essentially means a blocked store at the head of the ROB can be removed (but
remains in write buffer) and subsequent instructions are allowed to commit bypassing
the blocked store
Can hide latency of write operations
Note that this is the only allowed re-ordering
Programmer’s intuition is preserved in most cases, but not always
P0: A=1; flag=1; P1: while (!flag); print A; [same as SC]
P0: A=1; B=1; P1: print B; print A; [same as SC]
P0: A=1; print B; P1: B=1; print A; [violates SC]
Implemented in many Sun UltraSPARC microprocessors

How do I enforce SC in the last example if I really care?
May be needed when porting this program from R10000 to UltraSPARC
Must ensure that a read cannot bypass earlier writes
Microprocessors provide “fence” instructions for this purpose
SPARC v9 specification provides MEMBAR (memory barrier) instruction of different
flavors
Here we only need to use one of these flavors, namely, write-to-read fence just before
the load instruction
This fence will not allow graduation of load until all stores before it graduates
If fence instruction is not available, substituting the read by a read-modify-write (e.g.,
ldstub in SPARC) also works

Objectives_template

file:///E|/parallel_com_arch/lecture34/34_4.htm[6/13/2012 12:15:57 PM]

 Module 15: "Memory Consistency Models"
 Lecture 34: "Sequential Consistency and Relaxed Models"

PC and PSO

Processor consistency (PC) is same as TSO, but does not guarantee write atomicity
The writes may become visible to different processors in different order
P0: A=1; P1: while (!A); B=1; P2: while (!B); print A;
BTW, how can a system not guarantee write atomicity? What hardware logics you get
rid of by not implementing write atomicity?
Implemented in Intel processors

Partial store ordering (PSO) allows reads as well as writes to bypass writes
Still implements write atomicity like TSO
Further overlaps write latency
Deviates a lot from SC (flag spinning no longer works)
Store barrier instruction is needed to “emulate” SC

TSO, PC, PSO

Hardware support
TSO and PC still need to worry about load-invalidate squash (why?)
In TSO and PC the store queue entries are freed in-order because stores are not
allowed to bypass stores
A processor supporting PSO can retire stores in any order (however, a store cannot
bypass a load)
The store barrier instruction (stbar in SPARC) goes through the normal store queue
and controls issuing of future store instructions
Note that in all three models memory operations to the same or overlapping
addresses must issue in program order
All three models may benefit from bigger write/store buffers

Weak ordering (WO)

First seminal relaxed consistency model; also known as weak consistency
An important observation is that a parallel programmer does not really care about
ordering among memory operations between synchronizations as long as conventional
data and control dependencies are preserved within a process
For example, within a critical section the exact order in which independent reads/writes
are executed is not important
Weak ordering makes use of this property and relaxes all memory orders between
synchronization operations e.g., within and outside critical sections, between
consecutive barriers, before and after flag synchronization

A few constraints must be followed
Any code from outside a critical section cannot be re-ordered with codes inside the
critical section i.e. all codes before a critical section must commit before lock is
acquired, all codes within a critical section must commit before releasing the lock, and
any code after a critical section must not issue before releasing the lock
Any code before a barrier must commit before entering a barrier and any code after a
barrier must not issue before leaving the barrier (second condition should hold
naturally if barrier implementation itself is same)
Any code before flag wait must commit before waiting on the flag, any code after flag

Objectives_template

file:///E|/parallel_com_arch/lecture34/34_4.htm[6/13/2012 12:15:57 PM]

wait must not issue before the flag is set by producer, any code before setting of a flag
must commit before setting the flag, and any code after setting of flag must not issue
before setting of flag

Perfectly suits modern microprocessors and aggressive compiler optimizations
Either hardware must be able to recognize synchronization operations and stall until
everything before it has graduated or compiler must insert proper memory barrier
instructions
MIPS R10000 provides a sync instruction and a fence count register for this purpose;
fence count register is incremented whenever an L2 miss leaves the chip and
decremented on a reply; a sync instruction disables issuing from address queue until
fence register is zero and all outstanding memory operations have committed
A processor supporting WO does not need to have load-invalidate squash as in the
MIPS R10000

file:///E|/parallel_com_arch/lecture35/35_1.htm

	34_1
	Local Disk
	Objectives_template

	34_2
	Local Disk
	Objectives_template

	34_3
	Local Disk
	Objectives_template

	34_4
	Local Disk
	Objectives_template

