
Objectives_template

file:///E|/parallel_com_arch/lecture21/21_1.htm[6/13/2012 11:52:37 AM]

 Module 11: "Synchronization"
 Lecture 21: "Introduction to Synchronization"

Cache Coherence & OOO Execution

Complication with stores

What about others?

More example

Yet another example

Types

Synchronization

Waiting algorithms

Implementation

Hardwired locks

Software locks

Hardware support

Atomic exchange

Test & set

Fetch & op

Compare & swap

[From Chapter 5 of Culler, Singh, Gupta]
[Speculative synchronization material taken from ASPLOS 2002 proceedings]

file:///E|/parallel_com_arch/lecture20/20_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture21/21_2.htm[6/13/2012 11:52:38 AM]

 Module 11: "Synchronization"
 Lecture 21: "Introduction to Synchronization"

Complication with stores

In OOO execution instructions issue out of program order
A store may issue out of program order
But it cannot write its value to cache until it retires i.e. comes to the head of ROB;
Why? (assume 1p)
So its value is kept in a store buffer (this is normally part of the store queue entry
occupied by the store)
If it hits in the cache (i.e. a write hit), nothing happens
If it misses in the cache, either a ReadX or an Upgrade request is issued on the bus
depending on the state of the requested cache line
Until the store retires subsequent loads from the same processor to the same
address can steal the value from store buffer (why not the old value?)

What about others?

Take the following example (assume invalidation-based protocol)
P0 writes x, P1 reads x
P0 issues store, assume that it hits in cache, but it commits much later (any simple
reason?)
P1 issues BusRd (Can it hit in P1’s cache?)
Snoop logic in P0’s cache controller finds that it is responsible for sourcing the cache
line (M state)
What value of x does the launched cache line contain? New value or the old value?
After this BusRd what is the state of P0’s line?
After this BusRd can the loads from P0 still continue to use the value written by the
store?
What happens when P0 ultimately commits the store?

Take the following example (assume invalidation-based protocol)
P0 writes x, P1 reads x
P0 issues store, assume that it hits in cache, but it commits much later (any simple
reason?)
P1 issues BusRd (Can it hit in P1’s cache?)
Snoop logic in P0’s cache controller finds that it is responsible for sourcing the cache
line (M state)
What value of x does the launched cache line contain? New value or the old value?
OLD VALUE
After this BusRd what is the state of P0’s line? S
After this BusRd can the matching loads from P0 still continue to use the value written
by the store? YES
What happens when P0 ultimately commits the store? UPGRADE MISS

More example

In the previous example same situation may arise even if P0 misses in the cache; the timing
of P1’s read decides whether the race happens or not
Another example

P0 writes x, P1 writes x

Objectives_template

file:///E|/parallel_com_arch/lecture21/21_2.htm[6/13/2012 11:52:38 AM]

Suppose the race does happen i.e. P1 launches BusRdX before P0’s store commits
(Can P1 launch upgrade?)
Surely the launched cache line will have old value of x as before
Is it safe for the matching loads from P0 to use the new value of x from store buffer?
What happens when P0’s store ultimately commits?

In the previous example same situation may arise even if P0 misses in the cache; the timing
of P1’s read decides whether the race happens or not
Another example

P0 writes x, P1 writes x
Suppose the race does happen i.e. P1 launches BusRdX before P0’s store commits
(Can P1 launch upgrade?)
Surely the launched cache line will have old value of x as before
Is it safe for the matching loads from P0 to use the new value of x from store buffer?
YES
What happens when P0 ’s store ultimately commits? READ-EXCLUSIVE MISS

Yet another example

Another example
P0 reads x, P0 writes x, P1 writes x
Suppose the race does happen i.e. P1 launches BusRdX before P0’s store commits
Surely the launched cache line will have old value of x as before
What value does P0’s load commit?

Objectives_template

file:///E|/parallel_com_arch/lecture21/21_3.htm[6/13/2012 11:52:38 AM]

 Module 11: "Synchronization"
 Lecture 21: "Introduction to Synchronization"

Synchronization Types

Mutual exclusion
Synchronize entry into critical sections
Normally done with locks

Point-to-point synchronization
Tell a set of processors (normally set cardinality is one) that they can proceed
Normally done with flags

Global synchronization
Bring every processor to sync
Wait at a point until everyone is there
Normally done with barriers

Synchronization

Normally a two-part process: acquire and release; acquire can be broken into two parts: intent
and wait

Intent: express intent to synchronize (i.e. contend for the lock, arrive at a barrier)
Wait: wait for your turn to synchronization (i.e. wait until you get the lock)
Release: proceed past synchronization and enable other contenders to synchronize
Waiting algorithms do not depend on the type of synchronization

Waiting algorithms

Busy wait (common in multiprocessors)
Waiting processes repeatedly poll a location (implemented as a load in a loop)
Releasing process sets the location appropriately
May cause network or bus transactions

Block
Waiting processes are de-scheduled
Frees up processor cycles for doing something else

Busy waiting is better if
De-scheduling and re-scheduling take longer than busy waiting
No other active process
Does not work for single processor

Hybrid policies: busy wait for some time and then block

Implementation

Popular trend
Architects offer some simple atomic primitives
Library writers use these primitives to implement synchronization algorithms
Normally hardware primitives for acquire and possibly release are provided
Hard to offer hardware solutions for waiting
Also hardwired waiting may not offer that much of flexibility

Objectives_template

file:///E|/parallel_com_arch/lecture21/21_4.htm[6/13/2012 11:52:38 AM]

 Module 11: "Synchronization"
 Lecture 21: "Introduction to Synchronization"

Hardwired locks

Not popular today
Less flexible
Cannot support large number of locks

Possible designs
Dedicated lock line in bus so that the lock holder keeps it asserted and waiters snoop
the lock line in hardware
Set of lock registers shared among processors and lock holder gets a lock register
(Cray Xmp)

Software locks

Bakery algorithm
Shared: choosing[P] = FALSE, ticket[P] = 0;
Acquire: choosing[i] = TRUE; ticket[i] = max(ticket[0],…,ticket[P-1]) + 1; choosing[i] =
FALSE;
 for j = 0 to P-1
 while (choosing[j]);
 while (ticket[j] && ((ticket[j], j) < (ticket[i], i)));
 endfor
Release: ticket[i] = 0;
Does it work for multiprocessors?

Assume sequential consistency
Performance issues related to coherence?

Too much overhead: need faster and simpler lock algorithms
Need some hardware support

Hardware support

Start with a simple software lock
Shared: lock = 0;
Acquire: while (lock); lock = 1;
Release or Unlock: lock = 0;
Assembly translation
Lock: lw register, lock_addr /* register is any processor register */
 bnez register, Lock
 addi register, register, 0x1
 sw register, lock_addr
Unlock: xor register, register, register
 sw register, lock_addr
Does it work?

What went wrong?
We wanted the read-modify-write sequence to be atomic

Objectives_template

file:///E|/parallel_com_arch/lecture21/21_5.htm[6/13/2012 11:52:39 AM]

 Module 11: "Synchronization"
 Lecture 21: "Introduction to Synchronization"

Atomic exchange

We can fix this if we have an atomic exchange instruction

 addi register, r0, 0x1 /* r0 is hardwired to 0 */
Lock: xchg register, lock_addr /* An atomic load and store */
 bnez register, Lock
Unlock remains unchanged

Various processors support this type of instruction
Intel x86 has xchg, Sun UltraSPARC has ldstub (load-store-unsigned byte),
UltraSPARC also has swap
Normally easy to implement for bus-based systems: whoever wins the bus for xchg
can lock the bus
Difficult to support in distributed memory systems

Test & set

Less general compared to exchange

Lock: ts register, lock_addr
 bnez register, Lock
Unlock remains unchanged

Loads current lock value in a register and sets location always with 1
Exchange allows to swap any value

A similar type of instruction is fetch & op
Fetch memory location in a register and apply op on the memory location
Op can be a set of supported operations e.g. add, increment, decrement, store etc.
In Test & set op=set

Fetch & op

Possible to implement a lock with fetch & clear then add (used to be supported in BBN
Butterfly 1)

 addi reg1, r0, 0x1
Lock: fetch & clr then add reg1, reg2, lock_addr /* fetch in reg2, clear, add reg1 */
 bnez reg2, Lock

Butterfly 1 also supports fetch & clear then xor
Sequent Symmetry supports fetch & store
More sophisticated: compare & swap

Takes three operands: reg1, reg2, memory address
Compares the value in reg1 with address and if they are equal swaps the contents of
reg2 and address
Not in line with RISC philosophy (same goes for fetch & add)

Compare & swap

 addi reg1, r0, 0x0 /* reg1 has 0x0 */

Objectives_template

file:///E|/parallel_com_arch/lecture21/21_5.htm[6/13/2012 11:52:39 AM]

 addi reg2, r0, 0x1 /* reg2 has 0x1 */
Lock: compare & swap reg1, reg2, lock_addr
 bnez reg2, Lock

file:///E|/parallel_com_arch/lecture22/22_1.htm

	21_1
	Local Disk
	Objectives_template

	21_2
	Local Disk
	Objectives_template

	21_3
	Local Disk
	Objectives_template

	21_4
	Local Disk
	Objectives_template

	21_5
	Local Disk
	Objectives_template

