
Objectives_template

file:///E|/parallel_com_arch/lecture18/18_1.htm[6/13/2012 11:30:35 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 18: "Introduction to Cache Coherence"

 
Shared Memory Multiprocessors

Four organizations

Hierarchical design

Cache Coherence

Example

What went wrong?

Definitions

Ordering memory op

Example

Cache coherence

Bus-based SMP

Snoopy protocols

Write through caches

State transition

Ordering memory op

Write through is bad

[From Chapter 5 of Culler, Singh, Gupta]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture17/17_6.htm


Objectives_template

file:///E|/parallel_com_arch/lecture18/18_2.htm[6/13/2012 11:30:35 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 18: "Introduction to Cache Coherence"

 

Four organizations

Shared cache

The switch is a simple controller for granting access to cache banks
Interconnect is between the processors and the shared cache
Which level of cache hierarchy is shared depends on the design: Chip multiprocessors today
normally share the outermost level (L2 or L3 cache)
The cache and memory are interleaved to improve bandwidth by allowing multiple concurrent
accesses
Normally small scale due to heavy bandwidth demand on switch and shared cache
Bus-based SMP

Scalability is limited by the shared bus bandwidth
Interconnect is a shared bus located between the private cache hierarchies and memory

 
 
 
 
 
 
 
 
 
 
 
 



Objectives_template

file:///E|/parallel_com_arch/lecture18/18_2.htm[6/13/2012 11:30:35 AM]

 

controller
The most popular organization for small to medium-scale servers
Possible to connect 30 or so processors with smart bus design
Bus bandwidth requirement is lower compared to shared cache approach

Why?
Dancehall

Better scalability compared to previous two designs
The difference from bus-based SMP is that the interconnect is a scalable point-to-point
network (e.g. crossbar or other topology)
Memory is still symmetric from all processors
Drawback: a cache miss may take a long time since all memory banks too far off from the
processors (may be several network hops)
Distributed shared memory

The most popular scalable organization
Each node now has local memory banks
Shared memory on other nodes must be accessed over the network

Remote memory access
Non-uniform memory access (NUMA)

Latency to access local memory is much smaller compared to remote memory
Caching is very important to reduce remote memory access
In all four organizations caches play an important role in reducing latency and bandwidth



Objectives_template

file:///E|/parallel_com_arch/lecture18/18_2.htm[6/13/2012 11:30:35 AM]

requirement
If an access is satisfied in cache, the transaction will not appear on the interconnect
and hence the bandwidth requirement of the interconnect will be less (shared L1 cache
does not have this advantage)

In distributed shared memory (DSM) cache and local memory should be used cleverly
Bus-based SMP and DSM are the two designs supported today by industry vendors

In bus-based SMP every cache miss is launched on the shared bus so that all
processors can see all transactions
In DSM this is not the case

 



Objectives_template

file:///E|/parallel_com_arch/lecture18/18_3.htm[6/13/2012 11:30:35 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 18: "Introduction to Cache Coherence"

 

Hierarchical design

Possible to combine bus-based SMP and DSM to build hierarchical shared memory
Sun Wildfire connects four large SMPs (28 processors) over a scalable interconnect to
form a 112p multiprocessor
IBM POWER4 has two processors on-chip with private L1 caches, but shared L2 and
L3 caches (this is called a chip multiprocessor); connect these chips over a network to
form scalable multiprocessors

Next few lectures will focus on bus-based SMPs only

Cache Coherence

Intuitive memory model
For sequential programs we expect a memory location to return the latest value written
to that location
For concurrent programs running on multiple threads or processes on a single
processor we expect the same model to hold because all threads see the same cache
hierarchy (same as shared L1 cache)
For multiprocessors there remains a danger of using a stale value: in SMP or DSM the
caches are not shared and processors are allowed to replicate data independently in
each cache; hardware must ensure that cached values are coherent across the
system and they satisfy programmers’ intuitive memory model

Example

Assume a write-through cache i.e. every store updates the value in cache as well as in
memory

P0: reads x from memory, puts it in its cache, and gets the value 5
P1: reads x from memory, puts it in its cache, and gets the value 5
P1: writes x=7, updates its cached value and memory value
P0: reads x from its cache and gets the value 5
P2: reads x from memory, puts it in its cache, and gets the value 7 (now the system is
completely incoherent)
P2: writes x=10, updates its cached value and memory value

Consider the same example with a writeback cache i.e. values are written back to memory
only when the cache line is evicted from the cache

P0 has a cached value 5, P1 has 7, P2 has 10, memory has 5 (since caches are not
write through)
The state of the line in P1 and P2 is M while the line in P0 is clean
Eviction of the line from P1 and P2 will issue writebacks while eviction of the line from
P0 will not issue a writeback (clean lines do not need writeback)
Suppose P2 evicts the line first, and then P1
Final memory value is 7: we lost the store x=10 from P2

What went wrong?

For write through cache
The memory value may be correct if the writes are correctly ordered
But the system allowed a store to proceed when there is already a cached copy

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture18/18_3.htm[6/13/2012 11:30:35 AM]

Lesson learned: must invalidate all cached copies before allowing a store to proceed
Writeback cache

Problem is even more complicated: stores are no longer visible to memory immediately
Writeback order is important
Lesson learned: do not allow more than one copy of a cache line in M state

Need to formalize the intuitive memory model
In sequential programs the order of read/write is defined by the program order; the
notion of “last write” is well-defined
For multiprocessors how do you define “last write to a memory location” in presence of
independent caches?
Within a processor it is still fine, but how do you order read/write across processors?

 



Objectives_template

file:///E|/parallel_com_arch/lecture18/18_4.htm[6/13/2012 11:30:36 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 18: "Introduction to Cache Coherence"

 

Definitions

Memory operation: a read (load), a write (store), or a read-modify-write
Assumed to take place atomically

A memory operation is said to issue when it leaves the issue queue and looks up the cache
A memory operation is said to perform with respect to a processor when a processor can
tell that from other issued memory operations

A read is said to perform with respect to a processor when subsequent writes issued
by that processor cannot affect the returned read value
A write is said to perform with respect to a processor when a subsequent read from
that processor to the same address returns the new value

Ordering memory op

A memory operation is said to complete when it has performed with respect to all processors
in the system
Assume that there is a single shared memory and no caches

Memory operations complete in shared memory when they access the corresponding
memory locations
Operations from the same processor complete in program order: this imposes a
partial order among the memory operations
Operations from different processors are interleaved in such a way that the program
order is maintained for each processor: memory imposes some total order (many
are possible)

Example

P0: x = 8; u = y; v = 9;

P1: r = 5; y = 4; t = v;

Legal total order:

x = 8; u = y; r = 5; y = 4; t = v; v = 9;

Another legal total order:

x = 8; r = 5; y = 4; u = y; v = 9; t = v;

“Last” means the most recent in some legal total order
A system is coherent if

Reads get the last written value in the total order
All processors see writes to a location in the same order

Cache coherence

Formal definition
A memory system is coherent if the values returned by reads to a memory location
during an execution of a program are such that all operations to that location can form
a hypothetical total order that is consistent with the serial order and has the following
two properties:

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture18/18_4.htm[6/13/2012 11:30:36 AM]

1. Operations issued by any particular processor perform according to the issue order
2. The value returned by a read is the value written to that location by the last write in

the total order
Two necessary features that follow from above:

A. Write propagation: writes must eventually become visible to all processors
B. Write serialization: Every processor should see the writes to a location in the same

order (if I see w1 before w2, you should not see w2 before w1)

Bus-based SMP

Extend the philosophy of uniprocessor bus transactions
Three phases: arbitrate for bus, launch command (often called request) and address,
transfer data
Every device connected to the bus can observe the transaction
Appropriate device responds to the request
In SMP, processors also observe the transactions and may take appropriate actions to
guarantee coherence
The other device on the bus that will be of interest to us is the memory controller (north
bridge in standard mother boards)
Depending on the bus transaction a cache block executes a finite state machine
implementing the coherence protocol

 



Objectives_template

file:///E|/parallel_com_arch/lecture18/18_5.htm[6/13/2012 11:30:36 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 18: "Introduction to Cache Coherence"

 

Snoopy protocols

Cache coherence protocols implemented in bus-based machines are called snoopy protocols
The processors snoop or monitor the bus and take appropriate protocol actions based
on snoop results
Cache controller now receives requests both from processor and bus
Since cache state is maintained on a per line basis that also dictates the coherence
granularity
Cannot normally take a coherence action on parts of a cache line
The coherence protocol is implemented as a finite state machine on a per cache line
basis
The snoop logic in each processor grabs the address from the bus and decides if any
action should be taken on the cache line containing that address (only if the line is in
cache)

Write through caches

There are only two cache line states
Invalid (I): not in cache
Valid (V): present in cache, may be present in other caches also

Read access to a cache line in I state generates a BusRd request on the bus
Memory controller responds to the request and after reading from memory launches
the line on the bus
Requester matches the address and picks up the line from the bus and fills the cache
in V state
A store to a line always generates a BusWr transaction on the bus (since write
through); other sharers either invalidate the line in their caches or update the line with
new value

State transition

The finite state machine for each cache line:

On a write miss no line is allocated
The state remains at I: called write through write no-allocated

A/B means: A is generated by processor, B is the resulting bus transaction (if any)
Changes for write through write allocate?

Ordering memory op

Assume that the bus is atomic
It takes up the next transaction only after finishing the previous one

Read misses and writes appear on the bus and hence are visible to all processors

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture18/18_5.htm[6/13/2012 11:30:36 AM]

What about read hits?
They take place transparently in the cache
But they are correct as long as they are correctly ordered with respect to writes
And all writes appear on the bus and hence are visible immediately in the presence of
an atomic bus

In general, in between writes reads can happen in any order without violating coherence
Writes establish a partial order

Write through is bad

High bandwidth requirement
Every write appears on the bus
Assume a 3 GHz processor running application with 10% store instructions, assume
CPI of 1
If the application runs for 100 cycles it generates 10 stores; assume each store is 4
bytes; 40 bytes are generated per 100/3 ns i.e. BW of 1.2 GB/s
A 1 GB/s bus cannot even support one processor
There are multiple processors and also there are read misses

Writeback caches absorb most of the write traffic
Writes that hit in cache do not go on bus (not visible to others)
Complicated coherence protocol with many choices

 

file:///E|/parallel_com_arch/lecture19/19_1.htm

	18_1
	Local Disk
	Objectives_template


	18_2
	Local Disk
	Objectives_template


	18_3
	Local Disk
	Objectives_template


	18_4
	Local Disk
	Objectives_template


	18_5
	Local Disk
	Objectives_template



