
Objectives_template

file:///E|/parallel_com_arch/lecture15/15_1.htm[6/13/2012 11:27:57 AM]

 Module 8: "Performance Issues"
 Lecture 15: "Locality and Communication Optimizations"

Artifactual comm.

Capacity problem

Temporal locality

Spatial locality

2D to 4D conversion

Transfer granularity

Worse: false sharing

Communication cost

Contention

Hot-spots

Overlap

Summary

[From Chapter 3 of Culler, Singh, Gupta]

file:///E|/parallel_com_arch/lecture14/14_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture15/15_2.htm[6/13/2012 11:27:57 AM]

 Module 8: "Performance Issues"
 Lecture 15: "Locality and Communication Optimizations"

Artifactual comm.

Communication caused by artifacts of extended memory hierarchy
Data accesses not satisfied in the cache or local memory cause communication
Inherent communication is caused by data transfers determined by the program
Artifactual communication is caused by poor allocation of data across distributed
memories, unnecessary data in a transfer, unnecessary transfers due to system-
dependent transfer granularity, redundant communication of data, finite replication
capacity (in cache or memory)

Inherent communication assumes infinite capacity and perfect knowledge of what should be
transferred

Capacity problem

Most probable reason for artifactual communication
Due to finite capacity of cache, local memory or remote memory
May view a multiprocessor as a three-level memory hierarchy for this purpose: local
cache, local memory, remote memory
Communication due to cold or compulsory misses and inherent communication are
independent of capacity
Capacity and conflict misses generate communication resulting from finite capacity
Generated traffic may be local or remote depending on the allocation of pages
General technique: exploit spatial and temporal locality to use the cache properly

Temporal locality

Maximize reuse of data
Schedule tasks that access same data in close succession
Many linear algebra kernels use blocking of matrices to improve temporal (and spatial)
locality
Example: Transpose phase in Fast Fourier Transform (FFT); to improve locality, the
algorithm carries out blocked transpose i.e. transposes a block of data at a time

Block
transpose

Objectives_template

file:///E|/parallel_com_arch/lecture15/15_3.htm[6/13/2012 11:27:57 AM]

 Module 8: "Performance Issues"
 Lecture 15: "Locality and Communication Optimizations"

Spatial locality

Consider a square block decomposition of grid solver and a C-like row major layout i.e. A[i][j]
and A[i][j+1] have contiguous memory locations

The same page is local to a
processor while remote to
others; same applies to
straddling cache lines.
Ideally, I want to have all
pages within a partition local
to a single processor.
Standard trick is to covert the
2D array to 4D.

2D to 4D conversion

Essentially you need to change the way memory is allocated
The matrix A needs to be allocated in such a way that the elements falling within a
partition are contiguous
The first two dimensions of the new 4D matrix are block row and column indices i.e. for
the partition assigned to processor P6 these are 1 and 2 respectively (assuming 16

processors)
The next two dimensions hold the data elements within that partition
Thus the 4D array may be declared as float B[vP][vP][N/vP][N/vP]

The element B[3][2][5][10] corresponds to the element in 10th column, 5th row of the
partition of P14

Now all elements within a partition have contiguous addresses
Clearly, naming requires some support from hw and OS

Need to make sure that the accessed virtual address gets translated to the correct
physical address

Transfer granularity

How much data do you transfer in one communication?
For message passing it is explicit in the program
For shared memory this is really under the control of the cache coherence protocol:
there is a fixed size for which transactions are defined (normally the block size of the
outermost level of cache hierarchy)

In shared memory you have to be careful
Since the minimum transfer size is a cache line you may end up transferring extra data
e.g., in grid solver the elements of the left and right neighbors for a square block

Objectives_template

file:///E|/parallel_com_arch/lecture15/15_3.htm[6/13/2012 11:27:57 AM]

decomposition (you need only one element, but must transfer the whole cache line): no
good solution

Objectives_template

file:///E|/parallel_com_arch/lecture15/15_4.htm[6/13/2012 11:27:57 AM]

 Module 8: "Performance Issues"
 Lecture 15: "Locality and Communication Optimizations"

Worse: false sharing

If the algorithm is designed so poorly that
Two processors write to two different words within a cache line at the same time
The cache line keeps on moving between two processors
The processors are not really accessing or updating the same element, but whatever
they are updating happen to fall within a cache line: not a true sharing, but false
sharing
For shared memory programs false sharing can easily degrade performance by a lot
Easy to avoid: just pad up to the end of the cache line before starting the allocation of
the data for the next processor (wastes memory, but improves performance)

Communication cost

Given the total volume of communication (in bytes, say) the goal is to reduce the end-to-end
latency
Simple model:

T = f*(o + L + (n / m) / B + tc – overlap) where
f = frequency of messages
o = overhead per message (at receiver and sender)
L = network delay per message (really the router delay)
n = total volume of communication in bytes
m = total number of messages
B = node-to-network bandwidth
tc = contention-induced average latency per message

overlap = how much communication time is overlapped with useful computation

The goal is to reduce T
Reduce o by communicating less: restructure algorithm to reduce m i.e. communicate
larger messages (easy for message passing, but need extra support in memory
controller for shared memory e.g., block transfer)
Reduce L = number of average hops*time per hop
Number of hops can be reduced by mapping the algorithm on the topology properly
e.g., nearest neighbor communication is well-suited for a ring (just left/right) or a mesh
(grid solver example); however, L is not very important because today routers are
really fast (routing delay is ~10 ns); o and tc are the dominant parts in T

Reduce tc by not creating hot-spots in the system: restructure algorithm to make

sure a particular node does not get flooded with messages; distribute uniformly

Contention

It is very easy to ignore contention effects when designing algorithms
Can severely degrade performance by creating hot-spots

Location hot-spot:
Consider accumulating a global variable; the accumulation takes place on a single
node i.e. all nodes access the variable allocated on that particular node whenever it
tries to increment it

Objectives_template

file:///E|/parallel_com_arch/lecture15/15_4.htm[6/13/2012 11:27:57 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture15/15_5.htm[6/13/2012 11:27:58 AM]

 Module 8: "Performance Issues"
 Lecture 15: "Locality and Communication Optimizations"

Hot-spots

Avoid location hot-spot by either staggering accesses to the same location or by designing the
algorithm to exploit a tree structured communication
Module hot-spot

Normally happens when a particular node saturates handling too many messages
(need not be to same memory location) within a short amount of time
Normal solution again is to design the algorithm in such a way that these messages
are staggered over time

Rule of thumb: design communication pattern such that it is not bursty; want to distribute it
uniformly over time

Overlap

Increase overlap between communication and computation
Not much to do at algorithm level unless the programming model and/or OS provide
some primitives to carry out prefetching, block data transfer, non-blocking receive etc.
Normally, these techniques increase bandwidth demand because you end up
communicating the same amount of data, but in a shorter amount of time (execution
time hopefully goes down if you can exploit overlap)

Summary

Comparison of sequential and parallel execution
Sequential execution time = busy useful time + local data access time
Parallel execution time = busy useful time + busy overhead (extra work) + local data
access time + remote data access time + synchronization time
Busy useful time in parallel execution is ideally equal to sequential busy useful time /
number of processors
Local data access time in parallel execution is also less compared to that in sequential
execution because ideally each processor accesses less than 1/P th of the local data
(some data now become remote)

Parallel programs introduce three overhead terms: busy overhead (extra work), remote data
access time, and synchronization time

Goal of a good parallel program is to minimize these three terms
Goal of a good parallel computer architecture is to provide sufficient
support to let programmers optimize these three terms (and this is the
focus of the rest of the course)

Objectives_template

file:///E|/parallel_com_arch/lecture15/ex_1.htm[6/13/2012 11:27:58 AM]

Exercise : 1

These problems should be tried after module 08 is completed.

1. [10 points] Suppose you are given a program that does a fixed amount of
work, and some fraction s of that work must be done sequentially. The
remaining portion of the work is perfectly parallelizable on P processors. Derive
a formula for execution time on P processors and establish an upper bound on
the achievable speedup.

2. [40 points] Suppose you want to transfer n bytes from a source node S to a
destination node D and there are H links between S and D. Therefore, notice
that there are H+1 routers in the path (including the ones in S and D). Suppose
W is the node-to-network bandwidth at each router. So at S you require n/W
time to copy the message into the router buffer. Similarly, to copy the message
from the buffer of router in S to the buffer of the next router on the path, you
require another n/W time. Assuming a store-and-forward protocol total time
spent doing these copy operations would be (H+2)n/W and the data will end up
in some memory buffer in D. On top of this, at each router we spend R amount
of time to figure out the exit port. So the total time taken to transfer n bytes from
S to D in a store-and-forward protocol is (H+2)n/W+(H+1)R. On the other hand,
if you assume a cut-through protocol the critical path would just be n/W+(H+1)R.
Here we assume the best possible scenario where the header routing delay at
each node is exposed and only the startup n/W delay at S is exposed. The rest
is pipelined. Now suppose that you are asked to compare the performance of
these two routing protocols on an 8x8 grid. Compute the maximum, minimum,
and average latency to transfer an n byte message in this topology for both the
protocols. Assume the following values: W=3.2 GB/s and R=10 ns. Compute for
n=64 and 256. Note that for each protocol you will have three answers
(maximum, minimum, average) for each value of n. Here GB means 10^9 bytes
and not 2^30 bytes.

3. [20 points] Consider a simple computation on an nxn double matrix (each
element is 8 bytes) where each element A[i][j] is modified as follows. A[i][j] =
A[i][j] - (A[i-1][j] + A[i+1][j] + A[i][j-1] + A[i][j+1])/4. Suppose you assign one matrix
element to one processor (i.e. you have n^2 processors). Compute the total
amount of data communication between processors.

4. [30 points] Consider a machine running at 10^8 instructions per second on
some workload with the following mix: 50% ALU instructions, 20% load
instructions, 10% store instructions, and 20% branch instructions. Suppose the
instruction cache miss rate is 1%, the writeback data cache miss rate is 5%, and
the cache line size is 32 bytes. Assume that a store miss requires two cache
line transfers, one to load the newly updated line and one to replace the dirty
line at a later point in time. If the machine provides a 250 MB/s bus, how many
processors can it accommodate at peak bus bandwidth?

Objectives_template

file:///E|/parallel_com_arch/lecture15/ex_1.htm[6/13/2012 11:27:58 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture15/ex_sol_1.htm[6/13/2012 11:27:58 AM]

Solution of Exercise : 1

1. [10 points] Suppose you are given a program that does a fixed amount of
work, and some fraction s of that work must be done sequentially. The
remaining portion of the work is perfectly parallelizable on P processors. Derive
a formula for execution time on P processors and establish an upper bound on
the achievable speedup.

Solution: Execution time on P processors, T(P) = sT(1) + (1-s)T(1)/P.
Speedup = 1/(s + (1-s)/P). Upper bound is achieved when P approaches infinity.
So maximum speedup = 1/s. As expected, the upper bound on achievable
speedup is inversely proportional to the sequential fraction.

2. [40 points] Suppose you want to transfer n bytes from a source node S to a
destination node D and there are H links between S and D. Therefore, notice
that there are H+1 routers in the path (including the ones in S and D). Suppose
W is the node-to-network bandwidth at each router. So at S you require n/W
time to copy the message into the router buffer. Similarly, to copy the message
from the buffer of router in S to the buffer of the next router on the path, you
require another n/W time. Assuming a store-and-forward protocol total time
spent doing these copy operations would be (H+2)n/W and the data will end up
in some memory buffer in D. On top of this, at each router we spend R amount
of time to figure out the exit port. So the total time taken to transfer n bytes from
S to D in a store-and-forward protocol is (H+2)n/W+(H+1)R. On the other hand,
if you assume a cut-through protocol the critical path would just be n/W+(H+1)R.
Here we assume the best possible scenario where the header routing delay at
each node is exposed and only the startup n/W delay at S is exposed. The rest
is pipelined. Now suppose that you are asked to compare the performance of
these two routing protocols on an 8x8 grid. Compute the maximum, minimum,
and average latency to transfer an n byte message in this topology for both the
protocols. Assume the following values: W=3.2 GB/s and R=10 ns. Compute for
n=64 and 256. Note that for each protocol you will have three answers
(maximum, minimum, average) for each value of n. Here GB means 10^9 bytes
and not 2^30 bytes.

Solution: The basic problem is to compute the maximum, minimum, and
average values of H. The rest is just about substituting the values of the
parameters. The maximum value of H is 14 while the minimum is 1. To compute
the average, you need to consider all possible messages, compute H for them,
and then take the average. Consider S=(x0, y0) and D=(x1, y1). So H = |x0-x1|
+ |y0-y1|. Therefore, average H = (sum over all x0, x1, y0, y1 |x0-x1| + |y0-
y1|)/(64*63), where each of x0, x1, y0, y1 varies from 0 to 7. Clearly, this is
same as (sum over x0, x1 |x0-x1| + sum over y0, y1 |y0-y1|)/63, which in turn is
equal to 2*(sum over x0, x1 |x0-x1|)/63 = 2*(sum over x0=0 to 7, x1=0 to x0
(x0-x1)+ sum over x0=0 to 7, x1=x0+1 to 7 (x1-x0))/63 = 16/3.

3. [20 points] Consider a simple computation on an nxn double matrix (each
element is 8 bytes) where each element A[i][j] is modified as follows. A[i][j] =

Objectives_template

file:///E|/parallel_com_arch/lecture15/ex_sol_1.htm[6/13/2012 11:27:58 AM]

A[i][j] - (A[i-1][j] + A[i+1][j] + A[i][j-1] + A[i][j+1])/4. Suppose you assign one matrix
element to one processor (i.e. you have n^2 processors). Compute the total
amount of data communication between processors.

Solution: Each processor requires the four neighbors i.e. 32 bytes. So total
amount of data communicated is 32n^2.

4. [30 points] Consider a machine running at 10^8 instructions per second on
some workload with the following mix: 50% ALU instructions, 20% load
instructions, 10% store instructions, and 20% branch instructions. Suppose the
instruction cache miss rate is 1%, the writeback data cache miss rate is 5%, and
the cache line size is 32 bytes. Assume that a store miss requires two cache
line transfers, one to load the newly updated line and one to replace the dirty
line at a later point in time. If the machine provides a 250 MB/s bus, how many
processors can it accommodate at peak bus bandwidth?

Solution: Let us compute the bandwidth requirement of the processor per
second. Instruction cache misses 10^6 times transferring 32 bytes on each miss.
Out of 20*10^6 loads 10^6 miss in the cache transferring 32 bytes on each
miss. Out of 10^7 stores 5*10^5 miss in the cache transferring 64 bytes on each
miss. Thus, total amount of data transferred per second is 96*10^6 bytes. Thus
at most two processors can be supported on a 250 MB/s bus.

file:///E|/parallel_com_arch/lecture16/16_1.htm

	15_1
	Local Disk
	Objectives_template

	15_2
	Local Disk
	Objectives_template

	15_3
	Local Disk
	Objectives_template

	15_4
	Local Disk
	Objectives_template

	15_5
	Local Disk
	Objectives_template

	ex_1
	Local Disk
	Objectives_template

	ex_sol_1
	Local Disk
	Objectives_template

