
Objectives_template

file:///E|/parallel_com_arch/lecture30/30_1.htm[6/13/2012 12:13:08 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 30: "SGI Origin 2000"

Directory-based Cache Coherence:

Virtual networks

Three-lane protocols

Performance issues

SGI Origin 2000

Origin 2000 network

Origin 2000 I/O

Origin directory

Cache and dir. states

Handling a read miss

Serializing requests

Handling writebacks

[From Chapter 8 of Culler, Singh, Gupta]
[SGI Origin 2000 material taken from Laudon and Lenoski, ISCA 1997]
[GS320 material taken from Gharachorloo et al., ASPLOS 2000]

file:///E|/parallel_com_arch/lecture29/29_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture30/30_2.htm[6/13/2012 12:13:09 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 30: "SGI Origin 2000"

Virtual networks

Consider a two-node system with one incoming and one outgoing queue on each node

Single queue is not enough to avoid deadlock
Single queue forms a single virtual network

Similar deadlock issues as multi-level caches
An incoming message may generate another message e.g., request generates reply, ReadX
generates reply and invalidation requests, request may generate intervention request
Memory controller refuses to schedule a message if the outgoing queue is full
Same situation may happen on all nodes: deadlock
One incoming and one outgoing queue is not enough
What if we have two in each direction?: one for request and one for reply
Replies can usually sink
Requests generating requests?

What is the length of the longest transaction in terms of number of messages?
This decides the number of queues needed in each direction (Origin 2000 uses a different
scheme)
One type of message is usually assigned to a queue
One queue type connected across the system forms a virtual network of that type e.g.
request network, reply network, third party request (invalidations and interventions) network
Virtual networks are multiplexed over a physical network

Sink message type must get scheduled eventually
Resources should be sized properly so that scheduling of these messages does not depend
on anything
Avoid buffer shortage (and deadlock) by keeping reserved buffer for the sink queue

Three-lane protocols

Quite popular due to its simplicity
Let the request network be R, reply network Y, intervention/invalidation network be RR
Network dependence (aka lane dependence) graph looks something like this

Objectives_template

file:///E|/parallel_com_arch/lecture30/30_2.htm[6/13/2012 12:13:09 PM]

Objectives_template

file:///E|/parallel_com_arch/lecture30/30_3.htm[6/13/2012 12:13:09 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 30: "SGI Origin 2000"

Performance issues

Latency optimizations
Reduce transactions on critical path: 3-hop vs. 4-hop
Overlap activities: protocol processing and data access, invalidations, invalidation
acknowledgments
Make critical path fast: directory cache, integrated memory controller, smart protocol
Reduce occupancy of protocol engine

Throughput optimizations
Pipeline the protocol processing
Multiple coherence engines
Protocol decisions: where to collect invalidation acknowledgments, existence of clean
replacement hints

SGI Origin 2000

Similar to Stanford DASH
Flat memory-based directory organization

Objectives_template

file:///E|/parallel_com_arch/lecture30/30_3.htm[6/13/2012 12:13:09 PM]

 Connections to Backplane

Directory state in separate DRAMs, accessed in parallel with data
Up to 512 nodes (1024 processors)
195 MHz MIPS R10k (peak 390 MFLOPS and 780 MIPS per processor)
Peak SysADBus (64 bits) bandwidth is 780 MB/s; same for hub-memory
Hub to router and Xbow (I/O processor) is 1.56 GB/s
Hub is 500 K gates in 0.5 micron CMOS
Outstanding transaction buffer (aka CRB): 4 per processor
Two processors per node are not snoop-coherent

Objectives_template

file:///E|/parallel_com_arch/lecture30/30_4.htm[6/13/2012 12:13:09 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 30: "SGI Origin 2000"

Origin 2000 network

Each router has six pairs of 1.56 GB/s unidirectional links; two to nodes (bristled), four to other
routers
41 ns pin to pin latency
Four virtual networks: request, reply, priority, I/O

Origin 2000 I/O

Any processor can access I/O device either through uncached ops or through coherent DMA
Any I/O device can access any data through router/hub

Origin directory

Directory formats
If exclusive in a cache, entry contains processor number (not node number)
If shared, entry is a bitvector of sharers where each corresponds to a node (not a
processor)

Objectives_template

file:///E|/parallel_com_arch/lecture30/30_4.htm[6/13/2012 12:13:09 PM]

Invalidations sent to a node is broadcast to both processors by hub
Two sizes

16-bit format (up to 32 processors), kept in DRAM
64-bit format (up to 128 processors), kept in extension DRAM
For machine sizes larger than 128 processors the protocol is coarse-vector (each
bit is for 8 nodes)
Machine can switch between BV and CV dynamically

Objectives_template

file:///E|/parallel_com_arch/lecture30/30_5.htm[6/13/2012 12:13:10 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 30: "SGI Origin 2000"

Cache and dir. states

Cache states: MESI
Six directory states (may not be six bits)

Unowned (I): no cache has a copy, memory copy is valid
Shared (S): one or more caches have copies, memory copy is valid
Dirty exclusive (M or DEX): exactly one cache has block in M or E state

Directory cannot distinguish between M and E
Two pending or busy or transient states (PSH and PDEX): a transaction for the cache block
is in progress; home cannot accept any new request
Poisoned state: used for efficient page migration

Handling a read miss

Origin protocol does not assume anything about ordering of messages in the network
At requesting hub

Address is decoded and home is located
Request forwarded to home if home is remote

At home
Directory lookup and data lookup are initiated in parallel
Directory banks are designed to be slightly faster than other banks
The directory entry may reveal several possible states

Actions taken depends on this
Directory state lookup

Unowned: mark directory to point to requester, state becomes M, send cache line
Shared: mark directory bit, send cache line
Busy: send NACK to requester
Modified: if owner is not home, forward to owner

3-hop vs. 4-hop reply?
Origin has only two virtual networks available to protocol

How to handle interventions?
Directory state M

Actions at home: set PSH state, set the vector with two sharers, NACK all subsequent
requests until state is S
Actions at owner: if cache state is M send reply to requester (how to know who the requester
is?) and send sharing writeback (SWB) to home; if cache state is E send completion

Objectives_template

file:///E|/parallel_com_arch/lecture30/30_5.htm[6/13/2012 12:13:10 PM]

messages to requester and home (no data is sent); in all cases cache state becomes S
Sharing writeback or completion message, on arrival at home, changes directory state to S
If the owner state is E, how does the requester get the data?

The famous speculative reply of Origin 2000
Note how processor design (in this case MIPS R10k) influences protocol decisions

Objectives_template

file:///E|/parallel_com_arch/lecture30/30_6.htm[6/13/2012 12:13:10 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 30: "SGI Origin 2000"

Handling a write miss

Request opcode could be upgrade or read exclusive
State busy: send NACK
State unowned: if ReadX send cache block, change state to M, mark owner in vector; if
upgrade what do you do?
State shared: send reply (upgrade ack or ReadX reply) with number of sharers, send
invalidations to sharers, change state to M, mark owner in vector; sharers send
invalidation acknowledgments to requester directly

What if outgoing request network queue fills up before all invalidations are sent?
State M: same as read miss except directory remains in PDEX state until completion
message (no data) is received from owner; directory remains in M state, only the owner
changes; how do you handle upgrades here?

Serializing requests

The tricky situation is collection of invalidation acknowledgments
Note from previous slides that even before all acknowledgments are collected at the
requester, the directory at home goes to M state with the new owner marked
A subsequent request will get forwarded to the new owner (at this point directory goes
to PSH or PDEX state)
The owner is responsible for serializing the new request with the previous write

The write is not complete until all invalidation acknowledgments are collected
OTT (aka CRB) of the owner is equipped to block any incoming request until all
the acknowledgments and the reply from home are collected (early
interventions)

Note that there is no completion message back to home

Handling writebacks

Valid directory states: M or busy; cannot be S or I
State M

Just clear directory entry, write block to memory
Need to send writeback acknowledgment to the evicting processor (explanation coming
up)

State busy
How can this happen? (Late intervention race)
Can NACK writeback? What support needed for this?
Better solution: writeback forwarding
Any special consideration at the evicting node?

Drop intervention (how?)
How does the directory state change in this case?

file:///E|/parallel_com_arch/lecture31/31_1.htm

	30_1
	Local Disk
	Objectives_template

	30_2
	Local Disk
	Objectives_template

	30_3
	Local Disk
	Objectives_template

	30_4
	Local Disk
	Objectives_template

	30_5
	Local Disk
	Objectives_template

	30_6
	Local Disk
	Objectives_template

