Objectives_template

Module 11: "Synchronization"

Lecture 22: "Scalable Locking Primitives"”

Traffic of test & set
Backoff test & set

Test & test & set

TTS traffic analysis
Goals of a lock algorithm
Ticket lock

Array-based lock

RISC processors

LL/SC

Locks with LL/SC

Fetch & op with LL/SC
Store conditional & OO0

Speculative SC?

Point-to-point synch.

4| Previous Next||p

file:/I/E|/parallel_com_arch/lecture22/22_1.htm[6/13/2012 11:53:18 AM]

file:///E|/parallel_com_arch/lecture21/21_5.htm

Objectives_template

Module 11: "Synchronization"

Lecture 22: "Scalable Locking Primitives"

Traffic of test & set

= |n some machines (e.g., SGI Origin 2000) uncached fetch & op is supported
e every such instruction will generate a transaction (may be good or bad depending on
the support in memory controller; will discuss later)
= Let us assume that the lock location is cacheable and is kept coherent
e Every invocation of test & set must generate a bus transaction; Why? What is the
transaction? What are the possible states of the cache line holding lock_addr?
o Therefore all lock contenders repeatedly generate bus transactions even if someone is
still in the critical section and is holding the lock
= Can we improve this?
e Test & set with backoff

Backoff test & set

= Instead of retrying immediately wait for a while
e How long to wait?
« Waiting for too long may lead to long latency and lost opportunity
« Constant and variable backoff
e Special kind of variable backoff: exponential backoff (after the i th attempt the delay is
k*ci where k and c are constants)
e Test & set with exponential backoff works pretty well

delay = k
Lock: ts register, lock_addr
bez register, Enter_CS
pause (delay) /* Can be simulated as a timed loop */
delay = delay*c
j Lock

Test & test & set

= Reduce traffic further
« Before trying test & set make sure that the lock is free

Lock: ts register, lock_addr
bez register, Enter_CS
Test: Iw register, lock_addr
bnez register, Test
j Lock

= How good is it?

e In a cacheable lock environment the Test loop will execute from cache until it receives
an invalidation (due to store in unlock); at this point the load may return a zero value
after fetching the cache line

« If the location is zero then only everyone will try test & set

TTS traffic analysis

= Recall that unlock is always a simple store

file:/l/E|/parallel_com_arch/lecture22/22_2.htm[6/13/2012 11:53:18 AM]

Objectives_template

= In the worst case everyone will try to enter the CS at the same time
o First time P transactions for ts and one succeeds; every other processor suffers a miss
on the load in Test loop; then loops from cache
e The lock-holder when unlocking generates an upgrade (why?) and invalidates all
others
e All other processors suffer read miss and get value zero now; so they break Test loop
and try ts and the process continues until everyone has visited the CS

(P+(P-1)+1+(P-1))+((P-1)+(P-2)+1+(P-2))+... = (3P-1) + (3P-4) + (3P-7) + ... ~ 1.5P2
asymptotically

e For distributed shared memory the situation is worse because each invalidation
becomes a separate message (more later)

dllPrevious Next||p

file:/l/E|/parallel_com_arch/lecture22/22_2.htm[6/13/2012 11:53:18 AM]

Objectives_template

Module 11: "Synchronization"

Lecture 22: "Scalable Locking Primitives"

Goals of a lock algorithm

= Low latency: if no contender the lock should be acquired fast

= Low traffic: worst case lock acquire traffic should be low; otherwise it may affect unrelated
transactions

= Scalability: Traffic and latency should scale slowly with the number of processors

= Low storage cost: Maintaining lock states should not impose unrealistic memory overhead

= Fairness: Ideally processors should enter CS according to the order of lock request (TS or
TTS does not guarantee this)

Ticket lock

= Similar to Bakery algorithm but simpler
= A nice application of fetch & inc
= Basic idea is to come and hold a unique ticket and wait until your turn comes
o Bakery algorithm failed to offer this uniqueness thereby increasing complexity

Shared: ticket = 0, release_count = 0O;

Lock: fetch & inc regl, ticket_addr

Wait: Iw reg2, release_count_addr /* while (release_count != ticket); */
sub reg3, reg2, regl
bnez reg3, Wait

Unlock: addi reg2, reg2, 0x1 /* release_count++ */
sw reg2, release_count_addr

= Initial fetch & inc generates O(P) traffic on bus-based machines (may be worse in DSM
depending on implementation of fetch & inc)
= But the waiting algorithm still suffers from 0.5P2 messages asymptotically
e Researchers have proposed proportional backoff i.e. in the wait loop put a delay
proportional to the difference between ticket value and last read release_count
= Latency and storage-wise better than Bakery
= Traffic-wise better than TTS and Bakery (I leave it to you to analyze the traffic of Bakery)
= Guaranteed fairness: the ticket value induces a FIFO queue

Array-based lock

= Solves the O(Pz) traffic problem
= The idea is to have a bit vector (essentially a character array if boolean type is not supported)
= Each processor comes and takes the next free index into the array via fetch & inc
= Then each processor loops on its index location until it becomes set
= On unlock a processor is responsible to set the next index location if someone is waiting
= Initial fetch & inc still needs O(P) traffic, but the wait loop now needs O(1) traffic
= Disadvantage: storage overhead is O(P)
= Performance concerns
e Avoid false sharing: allocate each array location on a different cache line
e Assume a cache line size of 128 bytes and a character array: allocate an array of size
128P bytes and use every 128th position in the array
o For distributed shared memory the location a processor loops on may not be in its local

file:///E|/parallel_com_arch/lecture22/22_3.htm[6/13/2012 11:53:18 AM]

Objectives_template

memory: on acquire it must take a remote miss; allocate P pages and let each
processor loop on one bit in a page? Too much wastage; better solution: MCS lock
(Mellor-Crummey & Scott)
= Correctness concerns
e Make sure to handle corner cases such as determining if someone is waiting on the
next location (this must be an atomic operation) while unlocking
« Remember to reset your index location to zero while unlocking

4|l Previous Next||p

file:///E|/parallel_com_arch/lecture22/22_3.htm[6/13/2012 11:53:18 AM]

Objectives_template

Module 11: "Synchronization"

Lecture 22: "Scalable Locking Primitives"

RISC processors

= All these atomic instructions deviate from the RISC line
« Instruction needs a load as well as a store
= Also, it would be great if we can offer a few simple instructions with which we can build most
of the atomic primitives
« Note that it is impossible to build atomic fetch & inc with xchg instruction
= MIPS, Alpha and IBM processors support a pair of instructions: LL and SC
e Load linked and store conditional

LL/SC

= Load linked behaves just like a normal load with some extra tricks
e Puts the loaded value in destination register as usual
e Sets a load_linked bit residing in cache controller to 1
o Puts the address in a special lock_address register residing in the cache controller
= Store conditional is a special store
e SC reg, addr stores value in reg to addr only if load_linked bit is set; also it copies the
value in load_linked bit to reg and resets load_linked bit
= Any intervening “operation” (e.g., bus transaction or cache replacement) to the cache line
containing the address in lock_address register clears the load_linked bit so that subsequent
sc fails

Locks with LL/SC

= Test & set
Lock: LL r1, lock_addr /* Normal read miss/BusRead */
addi r2, r0, Ox1
SC r2, lock_addr /* Possibly upgrade miss */
beqz r2, Lock /* Check if SC succeeded */
bnez r1, Lock /* Check if someone is in CS */

= LL/SC is best-suited for test & test & set locks

Lock: LL rl, lock_addr
bnez r1, Lock
addi r1, r0, Ox1
SC rl, lock_addr
beqz rl, Lock

Fetch & op with LL/SC
= Fetch & inc

Try: LLrl, addr
addi r1, r1, Ox1
SC rl, addr
beqz r1, Try

file:/l/E|/parallel_com_arch/lecture22/22_4.htm[6/13/2012 11:53:19 AM]

Objectives_template

Compare & swap: Compare with rl, swap r2 and memory location (here we keep on trying
until comparison passes)

Try: LL r3, addr
sub r4, r3, rl
bnez r4, Try
add r4, r2, rO
SC r4, addr
beqz r4, Try
add r2, r3, r0

4l Previous Next||p

file:/l/E|/parallel_com_arch/lecture22/22_4.htm[6/13/2012 11:53:19 AM]

Objectives_template

Module 11: "Synchronization"

Lecture 22: "Scalable Locking Primitives"

Store conditional & OO0

= Execution of SC in an OOO pipeline

« Rather subtle

e For now assume that SC issues only when it comes to the head of ROB i.e. non-
speculative execution of SC

e It first checks the load_linked bit; if reset doesn’'t even access cache (saves cache
bandwidth and unnecessary bus transactions) and returns zero in register

o If load_linked bit is set, it accesses cache and issues bus transaction if needed
(BusReadX if cache line in | state and BusUpgr if in S state)

e Checks load_linked bit again before writing to cache (note that cache line goes to M
state in any case)

e Can wake up dependents only when SC graduates (a case where a store initiates a
dependence chain)

Speculative SC?

= What happens if SC is issued speculatively?

e Actual store happens only when it graduates and issuing a store early only starts the
write permission process

e Suppose two processors are contending for a lock

e Both do LL and succeed because nobody is in CS

e Both issue SC speculatively and due to some reason the graduation of SC in both of
them gets delayed

e So although initially both may get the line one after another in M state in their caches,
the load_linked bit will get reset in both by the time SC tries to graduate

e They go back and start over with LL and may issue SC again speculatively leading to a
livelock (probability of this type of livelock increases with more processors)

e Speculative issue of SC with hardwired backoff may help

e Better to turn off speculation for SC

= What about the branch following SC?

e Can we speculate past that branch?

e Assume that the branch predictor tells you that the branch is not taken i.e. fall through:
we speculatively venture into the critical section

o We speculatively execute the critical section

e This may be good and bad

« If the branch prediction was correct we did great

o If the predictor went wrong, we might have interfered with the execution of the
processor that is actually in CS: may cause unnecessary invalidations and extra traffic

« Any correctness issues?

Point-to-point synch.
= Normally done in software with flags

PO: A =1; flag = 1,
P1: while (iflag); print A,;

= Some old machines supported full/lempty bits in memory

file:///E|/parallel_com_arch/lecture22/22_5.htm[6/13/2012 11:53:19 AM]

Objectives_template

e Each memory location is augmented with a full/lempty bit

o Producer writes the location only if bit is reset

e Consumer reads location if bit is set and resets it

e Lot less flexible: one producer-one consumer sharing only (one producer-many
consumers is very popular); all accesses to a memory location become synchronized
(unless compiler flags some accesses as special)

= Possible optimization for shared memory

e Allocate flag and data structures (if small) guarded by flag in same cache line e.g., flag

and A in above example

dllPrevious Next||p

file:///E|/parallel_com_arch/lecture22/22_5.htm[6/13/2012 11:53:19 AM]

file:///E|/parallel_com_arch/lecture23/23_1.htm

	22_1
	Local Disk
	Objectives_template

	22_2
	Local Disk
	Objectives_template

	22_3
	Local Disk
	Objectives_template

	22_4
	Local Disk
	Objectives_template

	22_5
	Local Disk
	Objectives_template

