
Objectives_template

file:///E|/parallel_com_arch/lecture20/20_1.htm[6/13/2012 11:51:54 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 20: "Performance of Coherence Protocols"

MOESI protocol

Dragon protocol

State transition

Dragon example

Design issues

General issues

Evaluating protocols

Protocol optimizations

Cache size

Cache line size

Impact on bus traffic

Large cache line

Performance of update protocol

Hybrid inval+update

Update-based protocol

Shared cache

file:///E|/parallel_com_arch/lecture19/19_6.htm

Objectives_template

file:///E|/parallel_com_arch/lecture20/20_2.htm[6/13/2012 11:51:54 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 20: "Performance of Coherence Protocols"

MOESI protocol

Some SMPs implement MOESI today e.g., AMD Athlon MP and the IBM servers
Why is the O state needed?

O state is very similar to E state with four differences: 1. If a cache line is in O state
in some cache, that cache is responsible for sourcing the line to the next requester; 2.
The memory may not have the most up-to-date copy of the line (this implies 1); 3.
Eviction of a line in O state generates a BusWB; 4. Write to a line in O state must
generate a bus transaction
When a line transitions from M to S it is necessary to write the line back to memory
For a migratory sharing pattern (frequent in database workloads) this leads to a series
of writebacks to memory
These writebacks just keep the memory banks busy and consumes memory bandwidth

Take the following example
P0 reads x, P0 writes x, P1 reads x, P1 writes x, P2 reads x, P2 writes x, …
Thus at the time of a BusRd response the memory will write the line back: one
writeback per processor handover
O state aims at eliminating all these writebacks by transitioning from M to O instead of
M to S on a BusRd/Flush
Subsequent BusRd requests are replied by the owner holding the line in O state
The line is written back only when the owner evicts it: one single writeback

State transitions pertaining to O state
I to O: not possible (or maybe; see below)
E to O or S to O: not possible
M to O: on a BusRd/Flush (but no memory writeback)
O to I: on CacheEvict/BusWB or {BusRdX,BusUpgr}/Flush
O to S: not possible (or maybe; see below)
O to E: not possible (or maybe if silent eviction not allowed)
O to M: on PrWr/BusUpgr

At most one cache can have a line in O state at any point in time
Two main design choices for MOESI

Consider the example P0 reads x, P0 writes x, P1 reads x, P2 reads x, P3 reads x, …
When P1 launches BusRd, P0 sources the line and now the protocol has two options:
1. The line in P0 goes to O and the line in P1 is filled in state S; 2. The line in P0
goes to S and the line in P1 is filled in state O i.e. P1 inherits ownership from P0
For bus-based SMPs the two choices will yield roughly the same performance
For DSM multiprocessors we will revisit this issue if time permits
According to the second choice, when P2 generates a BusRd request, P1 sources the
line and transitions from O to S; P2 becomes the new owner

Some SMPs do not support the E state
In many cases it is not helpful, only complicates the protocol
MOSI allows a compact state encoding in 2 bits
Sun WildFire uses MOSI protocol

Dragon protocol

An update-based protocol for writeback caches
Four states: Two of them are standard E and M

Objectives_template

file:///E|/parallel_com_arch/lecture20/20_2.htm[6/13/2012 11:51:54 AM]

Shared clean (Sc): The standard S state
Shared modified (Sm): This is really the O state

In fact, five states because you always have I i.e. not in cache
So really a MOESI update-based protocol
New bus transaction: BusUpd

Used to update part of cache line
Distinguish between cache hits and misses:

PrRd and PrWr are hits, PrRdMiss and PrWrMiss are misses

Objectives_template

file:///E|/parallel_com_arch/lecture20/20_3.htm[6/13/2012 11:51:54 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 20: "Performance of Coherence Protocols"

Design issues

Dragon example

Take the following sequence
P0 reads x, P1 reads x, P1 writes x, P0 reads x, P2 reads x, P3 writes x
P0 generates BusRd, shared line remains low, it puts line in E state
P1 generates BusRd, shared line is asserted by P0, P1 puts line in Sc state, P0 also
transitions to Sc state
P1 generates BusUpd, P0 asserts shared line, P1 takes the line to Sm state, P0
applies update but remains in Sc
P0 reads from cache, no state transition
P2 generates BusRd, P0 and P1 assert shared line, P1 sources the line on bus, P2
puts line in Sc state, P1 remains in Sm state, P0 remains in Sc state
P3 generates BusRd followed by BusUpd, P0, P1, P2 assert shared line, P1 sources
the line on bus, P3 puts line in Sm state, line in P1 goes to Sc state, lines in P0 and
P2 remain in Sc state, all processors update line

Design issues

Can we eliminate the Sm state?
Yes. Provided on every BusUpd the memory is also updated; then the Sc state is
sufficient (essentially boils down to a standard MSI update protocol)
However, update to cache may be faster than memory; but updating cache means
occupying data banks during update thereby preventing the processor from accessing
the cache, so not to degrade performance, extra cache ports may be needed

Is it necessary to launch a bus transaction on an eviction of a line in Sc state?
May help if this was the last copy of line in Sc state
If there is a line in Sm state, it can go back to M and save subsequent unnecessary
BusUpd transactions (the shared wire already solves this)

Objectives_template

file:///E|/parallel_com_arch/lecture20/20_3.htm[6/13/2012 11:51:54 AM]

General issues

Thus far we have assumed an atomic bus where transactions are not interleaved
In reality, high performance busses are pipelined and multiple transactions are in
progress at the same time
How do you reason about coherence?

Thus far we have assumed that the processor has only one level of cache
How to extend the coherence protocol to multiple levels of cache?
Normally, the cache coherence protocols we have discussed thus far executes only on
the outermost level of cache hierarchy
A simpler but different protocol runs within the hierarchy to maintain coherence

We will revisit these questions soon

Evaluating protocols

In message passing machines the design of the message layer plays an important role
Similarly, cache coherence protocols are central to the design of a shared memory
multiprocessor
The protocol performance depends on an array of parameters
Experience and intuition help in determining good design points
Otherwise designers use workload-driven simulations for cost/performance analysis

Goal is to decide where to spend money, time and energy
The simulators model the underlying multiprocessor in enough detail to capture correct
performance trends as one explores the parameter space

Objectives_template

file:///E|/parallel_com_arch/lecture20/20_4.htm[6/13/2012 11:51:55 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 20: "Performance of Coherence Protocols"

Protocol optimizations

MSI vs. MESI
Need to measure bus bandwidth consumption with and without E state because E
state saves the otherwise S to M BusUpgr transactions
Turns out that the E state is not very helpful
The main reason is the E to M transition is rare; normally some other processor also
reads the line before the write takes place (if at all)

How important is BusUpgr?
Again need to look at bus bandwidth consumption with BusUpgr and with BusUpgr
replaced by BusRdX
Turns out that BusUpgr helps

Smaller caches demand more bus bandwidth
Especially when the primary working set does not fit in cache

Cache size

With increasing problem size normally working set size also increases
More pressure on cache

With increasing number of processors working set per processor goes down
Less pressure on cache
This effect sometimes leads to superlinear speedup i.e. on P processors you get
speedup more than P

Important to design the parallel program so that the critical working sets fit in cache
Otherwise bus bandwidth requirement may increase dramatically

Cache line size

Uniprocessors have three C misses: cold, capacity, conflict
Multiprocessors add two new types

True sharing miss: inherent in the algorithm e.g., P0 writes x and P1 uses x, so P1 will
suffer from a true sharing miss when it reads x
False sharing miss: artifactual miss due to cache line size e.g. P0 writes x and P1
reads y, but x and y belong to the same cache line

True and false sharing together form the communication or coherence misses in
multiprocessors making it four C misses
Technology is pushing for large cache line sizes, but…
Increasing cache line size helps reduce

Cold misses if there is spatial locality
True sharing misses if the algorithm is properly structured to exploit spatial locality

Increasing cache line size
Reduces the number of sets in a fixed-sized cache and may lead to more conflict
misses
May increase the volume of false sharing
May increase miss penalty depending on the bus transfer algorithm (need to transfer
more data per miss)
May fetch unnecessary data and waste bandwidth

Note that true sharing misses will exist even with an infinite cache

Objectives_template

file:///E|/parallel_com_arch/lecture20/20_4.htm[6/13/2012 11:51:55 AM]

Impact of cache line size on true sharing heavily depends on application characteristics
Blocked matrix computations tend to have good spatial locality with shared data
because they access data in small blocks thereby exploiting temporal as well as spatial
locality
Nearest neighbor computations tend to have little spatial locality when accessing left
and right border elements

The exact proportion of various types of misses in an application normally changes with
cache size, problem size and the number of processors

With small cache, capacity miss may dominate everything else
With large cache, true sharing misses may cause the major traffic

Impact on bus traffic

When cache line size is increased it may seem that we bring in more data together and have
better spatial locality and reuse

Should reduce bus traffic per unit computation
However, bus traffic normally increases monotonically with cache line size

Unless we have enough spatial and temporal locality to exploit, bus traffic will increase
For most cases bus bandwidth requirement attains a minimum at a block size different
from the minimum size; this is because at very small line sizes the overhead of
communication becomes too high

Objectives_template

file:///E|/parallel_com_arch/lecture20/20_5.htm[6/13/2012 11:51:55 AM]

 Module 10: "Design of Shared Memory Multiprocessors"
 Lecture 20: "Performance of Coherence Protocols"

Large cache line

Large cache lines are intended to amortize the DRAM access and bus transfer latency over a
large number of data points
But false sharing becomes a problem
Hardware solutions

Coherence at subblock level: divide the cache line into smaller blocks and maintain
coherence for each of them; subblock invalidation on a write reduces chances of
coherence misses even in the presence of false sharing
Delay invalidations: send invalidations only after the writer has completed several
writes; but this directly impacts the write propagation model and hence leads to
consistency models weaker than SC
Use update-based protocols instead of invalidation-based: probably not a good idea

Performance of update protocol

Already discussed main trade-offs
Consider running a sequential program on an SMP with update protocol

If the kernel decides to migrate the process to a different processor subsequent
updates will go to caches that are never used: “pack-rat” phenomenon

Possible designs that combine update and invalidation-based protocols
For each page, decide what type of protocol to run and make it part of the translation
(i.e. hold it in TLB)
Otherwise dynamically detect for each cache line what protocol is good

Hybrid inval+update

One possible hybrid protocol
Keep a counter per cache line and make Dragon update protocol the default
Every time the local processor accesses a cache line set its counter to some pre-
defined threshold k
On each received update decrease the counter by one
When the counter reaches zero, the line is locally invalidated hoping that eventually
the writer will switch to M state from Sm state when no sharers are left

Update-based protocol

Update-based protocols tend to increase capacity misses slightly
Cache lines stay longer in the cache compared to an invalidation-based protocol; why?

Update-based protocols can significantly reduce coherence misses
True sharing misses definitely go down
False sharing misses also decrease due to absence of invalidations

But update-based protocols significantly increase bus bandwidth demand
This increases bus contention and delays other transactions
Possible to delay the updates by merging a number of them in a buffer

Shared cache

Advantages
If there is only one level of cache no need for a coherence protocol

Objectives_template

file:///E|/parallel_com_arch/lecture20/20_5.htm[6/13/2012 11:51:55 AM]

Very fine-grained sharing resulting in fast cross-thread communication
No false sharing
Smaller cache capacity requirement: overlapped working set
One processor’s fetched cache line can be used by others: prefetch effect

Disadvantages
High cache bandwidth requirement and port contention
Destructive interference and conflict misses

Will revisit this when discussing chip multiprocessing and hyper-threading

file:///E|/parallel_com_arch/lecture21/21_1.htm

	20_1
	Local Disk
	Objectives_template

	20_2
	Local Disk
	Objectives_template

	20_3
	Local Disk
	Objectives_template

	20_4
	Local Disk
	Objectives_template

	20_5
	Local Disk
	Objectives_template

