Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 30: "SGI Origin 2000"

Directory-based Cache Coherence:

Virtual networks
Three-lane protocols
Performance issues
SGI Origin 2000
Origin 2000 network
Origin 2000 I/O
Origin directory
Cache and dir. states
Handling a read miss

Serializing requests

Handling writebacks

[From Chapter 8 of Culler, Singh, Gupta]
[SGI Origin 2000 material taken from Laudon and Lenoski, ISCA 1997]
[GS320 material taken from Gharachorloo et al., ASPLOS 2000]

4| Previous Next||p

file:///E|/parallel_com_arch/lecture30/30_1.htm[6/13/2012 12:13:08 PM]

file:///E|/parallel_com_arch/lecture29/29_5.htm

Objectives_template

Module 14: "Directory-based Cache Coherence"
Lecture 30: "SGI Origin 2000"

Virtual networks

= Consider a two-node system with one incoming and one outgoing queue on each node

<« \/irtual channels —

Physical network

= Single queue is not enough to avoid deadlock
e Single queue forms a single virtual network
= Similar deadlock issues as multi-level caches
e An incoming message may generate another message e.g., request generates reply, ReadX
generates reply and invalidation requests, request may generate intervention request
« Memory controller refuses to schedule a message if the outgoing queue is full
e Same situation may happen on all nodes: deadlock
e One incoming and one outgoing queue is not enough
« What if we have two in each direction?: one for request and one for reply
« Replies can usually sink
e Requests generating requests?
= What is the length of the longest transaction in terms of number of messages?
e This decides the number of queues needed in each direction (Origin 2000 uses a different
scheme)
e One type of message is usually assigned to a queue
e« One queue type connected across the system forms a virtual network of that type e.g.
request network, reply network, third party request (invalidations and interventions) network
o Virtual networks are multiplexed over a physical network
= Sink message type must get scheduled eventually
e Resources should be sized properly so that scheduling of these messages does not depend
on anything
e Avoid buffer shortage (and deadlock) by keeping reserved buffer for the sink queue

Three-lane protocols

= Quite popular due to its simplicity
o Let the request network be R, reply network Y, intervention/invalidation network be RR
o Network dependence (aka lane dependence) graph looks something like this

file:///E|/parallel_com_arch/lecture30/30_2.htm[6/13/2012 12:13:09 PM]

Objectives template

RR

4| Previous

Next ||p

file:///E|/parallel_com_arch/lecture30/30_2.htm[6/13/2012 12:13:09 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 30: "SGI Origin 2000"

Performance issues

= Latency optimizations
« Reduce transactions on critical path: 3-hop vs. 4-hop
e« Overlap activities: protocol processing and data access, invalidations, invalidation
acknowledgments
« Make critical path fast: directory cache, integrated memory controller, smart protocol
« Reduce occupancy of protocol engine
= Throughput optimizations
« Pipeline the protocol processing
« Multiple coherence engines
« Protocol decisions: where to collect invalidation acknowledgments, existence of clean
replacement hints

SGI Origin 2000

= Similar to Stanford DASH
= Flat memory-based directory organization

®

L2 cache
(1-4 MB)

L2 cache L2 cache
{1-4 MBE) {1-4 MB)

Huhb Hub
| |
Main Main
Dire- Dire-
“::rr'} f‘s-'ln::mi.jry' ct {lﬂ;r, MC]I‘[(}T}’
i(1-4 GB) (1-4 GB)

Interconnection Network

file:///E|/parallel_com_arch/lecture30/30_3.htm[6/13/2012 12:13:09 PM]

Objectives_template

fo=m===== '
"|Tag . Extended

. i Directory Main Memory

: RI0K X and 16-bit directory

' SC : | | [| |
I . Hub BCHBCHBCHBCHBCHBC
[l [sc]fscl: b bbb
N [

! RI10K T Main Memory

' : and 16-bit directory

L)

Pwr/gnd MNetwork Pwr/gnd Pwr/gnd 10
Connections to Backplane

= Directory state in separate DRAMSs, accessed in parallel with data

= Up to 512 nodes (1024 processors)

= 195 MHz MIPS R10k (peak 390 MFLOPS and 780 MIPS per processor)
= Peak SysADBus (64 hits) bandwidth is 780 MB/s; same for hub-memory
= Hub to router and Xbow (1/O processor) is 1.56 GB/s

= Hub is 500 K gates in 0.5 micron CMOS

= Qutstanding transaction buffer (aka CRB): 4 per processor

= Two processors per node are not snoop-coherent

4|l Previous Next||p

file:///E|/parallel_com_arch/lecture30/30_3.htm[6/13/2012 12:13:09 PM]

Objectives template

Module 14: "Directory-based Cache Coherence"
Lecture 30: "SGI Origin 2000"

Origin 2000 network

agn s

{b) 4-node {c) 8-node (d) 16-node

(¢) 64-node

= Each router has six pairs of 1.56 GB/s unidirectional links; two to nodes (bristled), four to other
routers

= 41 ns pin to pin latency

= Four virtual networks: request, reply, priority, 1/O

Origin 2000 1/O

== Ti» Bridge

e TETITTTERTEED .
SI0

o Bridze 3 F :

1 "

16 18 ' v BN P "

Huk1 N SCEL | ¥

£ £l

Hub2 & & P - '

Giraphics
]

e Tix Briclgee

= Any processor can access /O device either through uncached ops or through coherent DMA
= Any I/O device can access any data through router/hub

Origin directory

= Directory formats
« If exclusive in a cache, entry contains processor number (not node number)
o If shared, entry is a bitvector of sharers where each corresponds to a node (nhot a
processor)

file:///E|/parallel_com_arch/lecture30/30_4.htm[6/13/2012 12:13:09 PM]

Objectives_template

o

[e]
[e]

o

Invalidations sent to a node is broadcast to both processors by hub

e« Two sizes

16-bit format (up to 32 processors), kept in DRAM
64-bit format (up to 128 processors), kept in extension DRAM

For machine sizes larger than 128 processors the protocol is coarse-vector (each

bit is for 8 nodes)
Machine can switch between BV and CV dynamically

4|l Previous

Next [}

file:///E|/parallel_com_arch/lecture30/30_4.htm[6/13/2012 12:13:09 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 30: "SGI Origin 2000"

Cache and dir. states

= Cache states: MESI
= Six directory states (may not be six bits)
e Unowned (I): no cache has a copy, memory copy is valid
« Shared (S): one or more caches have copies, memory copy is valid
o Dirty exclusive (M or DEX): exactly one cache has block in M or E state
o Directory cannot distinguish between M and E
« Two pending or busy or transient states (PSH and PDEX): a transaction for the cache block
is in progress; home cannot accept any new request
e Poisoned state: used for efficient page migration

Handling a read miss

= Origin protocol does not assume anything about ordering of messages in the network
= At requesting hub
« Address is decoded and home is located
e Request forwarded to home if home is remote
= At home
« Directory lookup and data lookup are initiated in parallel
o Directory banks are designed to be slightly faster than other banks
e The directory entry may reveal several possible states
o Actions taken depends on this
= Directory state lookup
e Unowned: mark directory to point to requester, state becomes M, send cache line
« Shared: mark directory bit, send cache line
e Busy: send NACK to requester
« Modified: if owner is not home, forward to owner

l:req 2:intervention

.

3a:revise

SWB

<

3b:response

e 3-hop vs. 4-hop reply?
« Origin has only two virtual networks available to protocol
o How to handle interventions?
= Directory state M

e Actions at home: set PSH state, set the vector with two sharers, NACK all subsequent
requests until state is S

e Actions at owner: if cache state is M send reply to requester (how to know who the requester
is?) and send sharing writeback (SWB) to home; if cache state is E send completion

file:///E|/parallel_com_arch/lecture30/30_5.htm[6/13/2012 12:13:10 PM]

Objectives_template

messages to requester and home (no data is sent); in all cases cache state becomes S
e Sharing writeback or completion message, on arrival at home, changes directory state to S
« If the owner state is E, how does the requester get the data?
o The famous speculative reply of Origin 2000
o Note how processor design (in this case MIPS R10Kk) influences protocol decisions

4| Previous Next||p

file:///E|/parallel_com_arch/lecture30/30_5.htm[6/13/2012 12:13:10 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 30: "SGI Origin 2000"

Handling a write miss

= Request opcode could be upgrade or read exclusive

o State busy: send NACK

e State unowned: if ReadX send cache block, change state to M, mark owner in vector; if
upgrade what do you do?

o State shared: send reply (upgrade ack or ReadX reply) with number of sharers, send
invalidations to sharers, change state to M, mark owner in vector; sharers send
invalidation acknowledgments to requester directly

o What if outgoing request network queue fills up before all invalidations are sent?

o State M: same as read miss except directory remains in PDEX state until completion
message (no data) is received from owner; directory remains in M state, only the owner
changes; how do you handle upgrades here?

Serializing requests

= The tricky situation is collection of invalidation acknowledgments
e Note from previous slides that even before all acknowledgments are collected at the
requester, the directory at home goes to M state with the new owner marked
e A subsequent request will get forwarded to the new owner (at this point directory goes
to PSH or PDEX state)
e The owner is responsible for serializing the new request with the previous write
o The write is not complete until all invalidation acknowledgments are collected
o OTT (aka CRB) of the owner is equipped to block any incoming request until all
the acknowledgments and the reply from home are collected (early
interventions)
« Note that there is no completion message back to home

Handling writebacks

= Valid directory states: M or busy; cannot be S or |
= State M
o Just clear directory entry, write block to memory
e Need to send writeback acknowledgment to the evicting processor (explanation coming
up)
= State busy
e How can this happen? (Late intervention race)
e Can NACK writeback? What support needed for this?
o Better solution: writeback forwarding
e Any special consideration at the evicting node?
o Drop intervention (how?)
e How does the directory state change in this case?

dllPrevious Next||p

file:///E|/parallel_com_arch/lecture30/30_6.htm[6/13/2012 12:13:10 PM]

file:///E|/parallel_com_arch/lecture31/31_1.htm

	30_1
	Local Disk
	Objectives_template

	30_2
	Local Disk
	Objectives_template

	30_3
	Local Disk
	Objectives_template

	30_4
	Local Disk
	Objectives_template

	30_5
	Local Disk
	Objectives_template

	30_6
	Local Disk
	Objectives_template

