Objectives_template

Module 14: "Directory-based Cache Coherence"
Lecture 31: "Managing Directory Overhead"

Directory-based Cache Coherence:

Replacement of S blocks
Serialization

VN deadlock

Starvation

Overflow schemes

Remote access cache
COMA
Latency tolerance

Page migration

=
=
=
=
=
B Sparse directory
=
=
=
=
=

Queue lock in hardware

[From Chapter 8 of Culler, Singh, Gupta]
[SGI Origin 2000 material taken from Laudon and Lenoski, ISCA 1997]
[GS320 material taken from Gharachorloo et al., ASPLOS 2000]

4| Previous Next||p

file:///E|/parallel_com_arch/lecture31/31_1.htm[6/13/2012 12:14:03 PM]

file:///E|/parallel_com_arch/lecture30/30_6.htm

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 31: "Managing Directory Overhead"

Replacement of S blocks

= Send notification to directory?
e Can save a future invalidation
e Does it reduce overall traffic?
= Origin 2000 does not use replacement hints
« No notification to directory
e Why?
= Replacements of E blocks are hinted and require acknowledgments also (why?)
= Summary of transaction types
o Coherence: 9 request transaction types, 6 invalidation/intervention, 39 reply types
e Non-coherent (I/O, synch, special): 19 requests, 14 replies

Serialization

= Home is used to serialize requests
e The order determined by the home is final
« No node should violate this order
e Example: read-invalidate races
o PO, P1, and P2 are trying to access a cache block
o PO and P2 want to read while P1 wants to write
o The requests from PO and P2 reach home first, home replies and marks both in
sharer vector; but the reply message to PO gets delayed in the network
o P1’s write causes home to send out invalidation to PO and P2; PO’s inv. reaches
PO before the read reply
o PO’s hub sends acknowledgment to P1 and also forwards the invalidation to PO’s
processor cache
o What happens when POQ’s reply arrives? Can the data be used?
= Requester’s viewpoint
« When a read reply arrives it finds the OTT entry has the “inv” bit set
o Under what conditions can it happen?
o Seen one in the last slide
e Can replacement hints help?
= What about upgrade-invalidation races?
= What about readX-invalidation races?

VN deadlock

= Origin 2000 has only two virtual networks, but has three-hop transactions
e Resorts to back-off invalidate or intervention to fall back to strict request-reply
e Does it really solve the problem or just move the problem elsewhere?
= Stanford DASH has same problems
o Uses NACKSs after a time-out period if the outgoing network doesn't free up
e Worse compared to Origin because NACKs inflate total traffic and may lead to livelock
« DASH avoids livelocks by sizing the queues according to the machine size (not a
scalable solution)

4|l Previous Next||p

file:/l/E|/parallel_com_arch/lecture31/31_2.htm[6/13/2012 12:14:03 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 31: "Managing Directory Overhead"

Starvation

= NACKS can cause starvation
e Build a FIFO list of waiters either in home memory (Chaudhuri and Heinrich, 2004) or
use a distributed linked list (IEEE Scalable Coherent Interface)
o Former imposes large occupancy on home, yet offers better performance by
read combining
o Latter is an extremely complex protocol with a large number of transient states
and 29 stable states, but does distribute the occupancy across the system
« Origin 2000 devotes extra bits in the directory to raise priority of requests NACKed too
many times (above a threshold)
e Use delay between retries
e Use Alpha GS320 protocol (will discuss later)

Overflow schemes

= How to make the directory size independent of the number of processors
o Basic idea is to have a bit vector scheme until the total number of sharers is not more
than the directory entry width
« When the number of sharers overflows the hardware resorts to an “overflow scheme”
o DirB: i sharer bits, broadcast invalidation on overflow

o DirjNB: pick one sharer and invalidate it
o DirjCV: assign one bit to a group of nodes of size P/i; broadcast invalidations to

that group on a write
e May generate useless invalidations
= DiriDP (Stanford FLASH)

e DP stands for dynamic pointer
o Allocate directory entries from a free list pool maintained in memory
e Need replacement hints
« Still may run into reclamation mode if free list pool is not sized properly at boot time
o How do you size it?
« If replacement hints are not supported, assume k sharers on average per cache block
(k=8 is found to be good)
e Reclamation algorithms?
o Pick a random cache line and invalidate it
= Diri{SW (MIT Alewife)
« Trap to software on overflow
« Software maintains the information about overflown sharers
e MIT Alewife has directory entry of five pointers and a local bit (i.e. overflow threshold is
five or six)
o Remote read before overflow takes 40 cycles and after overflow takes 425
cycles
o Five invalidations take 84 cycles while six invalidations take 707 cycles

Sparse directory

= How to reduce the height of the directory?

file:///E|/parallel_com_arch/lecture31/31_3.htm[6/13/2012 12:14:03 PM]

Objectives_template

Observation: total number of cache blocks in all processors is far less than total
number of memory blocks
o Assume a 32 MB L3 cache and 4 GB memory: less than 1% of directory entries
are active at any point in time
o Idea is to organize directory as a highly associative cache
e On a directory entry “eviction” send invalidations to all sharers or retrieve line if dirty

dllPrevious Next||p

file:///E|/parallel_com_arch/lecture31/31_3.htm[6/13/2012 12:14:03 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 31: "Managing Directory Overhead"

Remote access cache

= Essentially a large tertiary cache
« Captures remote cache blocks evicted from local cache hierarchy
e Also visible to the coherence protocol: so inclusion must be maintained with processor
caches
Must be highly associative and larger than the outermost level of cache
e Usually part of DRAM is reserved for RAC
o For multiprocessor nodes, requests from different processors to the same cache block
can be merged together; also there is a prefetching effect
e Used in Stanford DASH
Disadvantage: latency and space

COMA

= Cache-only memory architecture
e Solves the space problem of RAC
« Home node only maintains the directory entries, but may not have the cache block in
memory
e A node requesting a cache block brings it to its local memory and local cache as usual
o Entire memory is treated as a large tertiary cache
o Known as the attraction memory (AM)
« Home as well as any node having a cache block maintain a directory entry for the
cache block
e A request first looks up AM directory state and, if unowned, gets forwarded to home
which, in turn, forwards it to one of the sharers
= Cache-only memory architecture
e To start with home has the cache blocks
« It retains a cache block until it is replaced by some other migration
e There is always a master copy of each cache block
o The last valid copy
o What happens on a replacement of the master copy?
o Swap with source of migrating cache block
Latency problem remains at the requester
¢ Inclusion problems between AM and processor cache hierarchy
o Complicates the protocol

dllPrevious Next||p

file:/l/E|/parallel_com_arch/lecture31/31_4.htm[6/13/2012 12:14:04 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 31: "Managing Directory Overhead"

Latency tolerance

= Page placement
« Application-directed page placement is used in many cases to minimize the number of
remote misses
e The application provides the kernel (via system call) the starting address and ending
address of a chunk of memory (multiple of pages) and also the node number where to
map these pages
e Thus an application writer can specify (based on sharing pattern) which shared pages
he/she wants to map in a node’s local memory (private pages and stack pages are
mapped on local memory by default)
e The page fault handler of a NUMA kernel is normally equipped with some default
policies e.g., round robin mapping or first-touch mapping
o Examples: matrix-vector multiplication, matrix transpose
= Software prefetching
« Even after rigorous analysis of a parallel application it may not be possible to map all
pages used by a node on its local memory: the same page may be used by multiple
nodes at different times (example: matrix-vector multiplication)
« Two options are available: dynamic page migration (very costly; coming next, stay
tuned) or software prefetching
e Today, most microprocessors support prefetch and prefetch exclusive instructions: use
prefetch to initiate a cache line read miss long before application actually accesses it;
use prefetch exclusive if you know for sure that you will write to the line and no one
else will need the line before you write to it
o Prefetches must be used carefully
o Swap with source of migrating cache block
o Early prefetches may evict useful cache blocks and itself may get evicted before
use; may generate extra invalidations or interventions in multiprocessors
o Late prefetches may not be fully effective, but at least less harmful than early
prefetches
o Wrong prefetches are most dangerous: these bring in cache blocks that may not
be used at all in near-future; in multiprocessors this can severely hurt
performance by generating extra invalidations and interventions
o Wrong prefetches waste bandwidth and pollute cache
o Software prefetching usually offers better control than hardware prefetching
= Software prefetching vs. hardware prefetching
e Software prefetching requires close analysis of program; profile information may help
o Hardware prefetching tries to detect patterns in accessed addresses and using the
detected patterns predicts future addresses
o AMD Athlon has a simple next line prefetcher (works perfectly for most
numerical applications)
o Intel Pentium 4 has a very sophisticated stream prefetcher

dllPrevious Next||p

file:///E|/parallel_com_arch/lecture31/31_5.htm[6/13/2012 12:14:04 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 31: "Managing Directory Overhead"

Page migration

= Page migration changes the existing VA to PA mapping of the migrated page
« Requires notifying all TLBs caching the old mapping
e Introduces a TLB coherence problem
= Origin 2000 uses a smart page migration algorithm: allows the page copy and TLB shootdown
to proceed in parallel
e Array of 64 page reference counters per directory entry to decide whether to migrate a
page or not: compare requester’s counter against home’s and send an interrupt to
home if migration is required
= What does the interrupt handler do?
e Access all directory entries of the lines belonging to the to-be migrated page
e Send invalidations to sharers or interventions to owners; at the end all cache lines of
that page must be in memory
e Set the poison bits in the directory entries of all the cache lines of the page
e Start a block transfer of the page from home to requester at this point (30 us to copy
16 KB)
= An access to a poisoned cache line from a node results in a bus error which invalidates the
TLB entry for that page in the requesting node (avoids broadcast shootdown)
= Until the page is completely migrated and is assigned a physical page frame on target node,
all nodes accessing a poisoned line wait in a pending queue
= After the page copy is completed the waiting nodes are served one by one; however, the
directory entries and the page itself are moved to a “poisoned list” and are not yet freed at the
home (i.e. you still cannot use that physical page frame)
= On every scheduler tick the kernel invalidates one TLB entry per processor
= After a time equal to TLB entries per processor multiplied by scheduling quantum the page
frame is marked free and is removed from the poisoned list
= Major advantage: requesting nodes only see the page copy latency including invalidation and
interventions in critical path, but not the TLB shootdown latency

Queue lock in hardware

= Stanford DASH
« Memory controller recognizes lock accesses
o Requires changes in compiler and instruction set
e Marks the directory entry with contenders
e On unlock a contender is chosen and lock is granted to that node
e Unlock is forced to generate a notification message to home
o Possibly requires special cache state for lock variables or special uncached
instructions for unlock if lock variables are not allowed to be cached

dllPrevious Next||p

file:///E|/parallel_com_arch/lecture31/31_6.htm[6/13/2012 12:14:04 PM]

file:///E|/parallel_com_arch/lecture32/32_1.htm

	31_1
	Local Disk
	Objectives_template

	31_2
	Local Disk
	Objectives_template

	31_3
	Local Disk
	Objectives_template

	31_4
	Local Disk
	Objectives_template

	31_5
	Local Disk
	Objectives_template

	31_6
	Local Disk
	Objectives_template

