
Objectives_template

file:///E|/parallel_com_arch/lecture23/23_1.htm[6/13/2012 11:54:08 AM]

 Module 11: "Synchronization"
 Lecture 23: "Barriers and Speculative Synchronization"

Barrier

Centralized barrier

Sense reversal

Centralized barrier

Tree barrier

Hardware support

Hardware barrier

Speculative synch.

Why is it good?

How does it work?

Why is it correct?

Performance concerns

Speculative flags and barriers

Speculative flags and branch prediction

file:///E|/parallel_com_arch/lecture22/22_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture23/23_2.htm[6/13/2012 11:54:08 AM]

 Module 11: "Synchronization"
 Lecture 23: "Barriers and Speculative Synchronization"

Barrier

High-level classification of barriers
Hardware and software barriers

Will focus on two types of software barriers
.Centralized barrier: every processor polls a single count
Distributed tree barrier: shows much better scalability

Performance goals of a barrier implementation
Low latency: after all processors have arrived at the barrier, they should be able to
leave quickly
Low traffic: minimize bus transaction and contention
Scalability: latency and traffic should scale slowly with the number of processors
Low storage: barrier state should not be big
Fairness: Preserve some strict order of barrier exit (could be FIFO according to arrival
order); a particular processor should not always be the last one to exit

Centralized barrier

struct bar_type {
 int counter;
 struct lock_type lock;
 int flag = 0;
} bar_name;

BARINIT (bar_name) {
 LOCKINIT(bar_name.lock);
 bar_name.counter = 0;
}

BARRIER (bar_name, P) {
 int my_count;
 LOCK (bar_name.lock);
 if (!bar_name.counter) {
 bar_name.flag = 0; /* first one */
 }
 my_count = ++bar_name.counter;
 UNLOCK (bar_name.lock);
 if (my_count == P) {
 bar_name.counter = 0;
 bar_name.flag = 1; /* last one */
 }
 else {
 while (!bar_name.flag);
 }
}

Sense reversal

Objectives_template

file:///E|/parallel_com_arch/lecture23/23_2.htm[6/13/2012 11:54:08 AM]

The last implementation fails to work for two consecutive barrier invocations
Need to prevent a process from entering a barrier instance until all have left the
previous instance
Reverse the sense of a barrier i.e. every other barrier will have the same sense:
basically attach parity or sense to a barrier

BARRIER (bar_name, P) {
 local sense = !local_sense; /* this is private per processor */
 LOCK (bar_name.lock);
 bar_name.counter++;
 if (bar_name.counter == P) {
 UNLOCK (bar_name.lock);
 bar_name.counter = 0;
 bar_name.flag = local_sense;
 }
 else {
 UNLOCK (bar_name.lock);
 while (bar_name.flag != local_sense);
 }
}

Objectives_template

file:///E|/parallel_com_arch/lecture23/23_3.htm[6/13/2012 11:54:08 AM]

 Module 11: "Synchronization"
 Lecture 23: "Barriers and Speculative Synchronization"

Centralized barrier

How fast is it?
Assume that the program is perfectly balanced and hence all processors arrive at the
barrier at the same time
Latency is proportional to P due to the critical section (assume that the lock algorithm
exhibits at most O(P) latency)
The amount of traffic of acquire section (the CS) depends on the lock algorithm; after
everyone has settled in the waiting loop the last processor will generate a BusRdX
during release (flag write) and others will subsequently generate BusRd before
releasing: O(P)
Scalability turns out to be low partly due to the critical section and partly due to O(P)
traffic of release
No fairness in terms of who exits first

Tree barrier

Does not need a lock, only uses flags
Arrange the processors logically in a binary tree (higher degree also possible)
Two siblings tell each other of arrival via simple flags (i.e. one waits on a flag while the
other sets it on arrival)
One of them moves up the tree to participate in the next level of the barrier
Introduces concurrency in the barrier algorithm since independent subtrees can
proceed in parallel
Takes log(P) steps to complete the acquire
A fixed processor starts a downward pass of release waking up other processors that
in turn set other flags
Shows much better scalability compared to centralized barriers in DSM
multiprocessors; the advantage in small bus-based systems is not much, since all
transactions are any way serialized on the bus; in fact the additional log (P) delay may
hurt performance in bus-based SMPs

TreeBarrier (pid, P) {
 unsigned int i, mask;
 for (i = 0, mask = 1; (mask & pid) != 0; ++i, mask <<= 1) {
 while (!flag[pid][i]);
 flag[pid][i] = 0;
 }
 if (pid < (P - 1)) {
 flag[pid + mask][i] = 1;
 while (!flag[pid][MAX- 1]);
 flag[pid][MAX - 1] = 0;
 }
 for (mask >>= 1; mask > 0; mask >>= 1) {
flag[pid - mask][MAX-1] = 1;
 }
}

Objectives_template

file:///E|/parallel_com_arch/lecture23/23_3.htm[6/13/2012 11:54:08 AM]

Convince yourself that this works
Take 8 processors and arrange them on leaves of a tree of depth 3
You will find that only odd nodes move up at every level during acquire (implemented in the
first for loop)
The even nodes just set the flags (the first statement in the if condition): they bail out of the
first loop with mask=1
The release is initiated by the last processor in the last for loop; only odd nodes execute this
loop (7 wakes up 3, 5, 6; 5 wakes up 4; 3 wakes up 1, 2; 1 wakes up 0)
Each processor will need at most log (P) + 1 flags
Avoid false sharing: allocate each processor’s flags on a separate chunk of cache lines
With some memory wastage (possibly worth it) allocate each processor’s flags on a separate
page and map that page locally in that processor’s physical memory

Avoid remote misses in DSM multiprocessor
Does not matter in bus-based SMPs

Objectives_template

file:///E|/parallel_com_arch/lecture23/23_4.htm[6/13/2012 11:54:09 AM]

 Module 11: "Synchronization"
 Lecture 23: "Barriers and Speculative Synchronization"

Hardware support

Read broadcast
Possible to reduce the number of bus transactions from P-1 to 1 in the best case
A processor seeing a read miss to flag location (possibly from a fellow processor)
backs off and does not put its read miss on the bus
Every processor picks up the read reply from the bus and the release completes with
one bus transaction
Needs special hardware/compiler support to recognize these flag addresses and resort
to read broadcast

Hardware barrier

Useful if frequency of barriers is high
Need a couple of wired-AND bus lines: one for odd barriers and one for even barriers
A processor arrives at the barrier and asserts its input line and waits for the wired-AND
line output to go HIGH
Not very flexible: assumes that all processors will always participate in all barriers
Bigger problem: what if multiple processes belonging to the same parallel program are
assigned to each processor?
No SMP supports it today
However, possible to provide flexible hardware barrier support in the memory controller
of DSM multiprocessors: memory controller can recognize accesses to special barrier
counter or barrier flag, combine them in memory and reply to processors only when the
barrier is complete (no retry due to failed lock)

Speculative synch.

Speculative synchronization
Basic idea is to introduce speculation in the execution of critical sections
Assume that no other processor will have conflicting data accesses in the critical
section and hence don’t even try to acquire the lock
Just venture into the critical section and start executing
Note the difference between this and speculative execution of critical section due to
speculation on the branch following SC: there you still contend for the lock generating
network transactions

Martinez and Torrellas. In ASPLOS 2002.
Rajwar and Goodman. In ASPLOS 2002.
We will discuss Martinez and Torrellas

Why is it good?

In many cases compiler/user inserts synchronization conservatively
Hard to know exact access pattern
The addresses accessed may depend on input

Take a simple example of a hash table
When the hash table is updated by two processes you really do not know which bins
they will insert into
So you conservatively make the hash table access a critical section

Objectives_template

file:///E|/parallel_com_arch/lecture23/23_4.htm[6/13/2012 11:54:09 AM]

For certain input values it may happen that the processes could actually update the
hash table concurrently

Objectives_template

file:///E|/parallel_com_arch/lecture23/23_5.htm[6/13/2012 11:54:09 AM]

 Module 11: "Synchronization"
 Lecture 23: "Barriers and Speculative Synchronization"

How does it work?

Speculative locks
Every processor comes to the critical section and tries to acquire the lock
One of them succeeds and the rest fail
The successful processor becomes the safe thread
The failed ones don’t retry but venture into the critical section speculatively as if they
have the lock; at this point a speculative thread also takes a checkpoint of its register
state in case a rollback is needed
The safe thread executes the critical section as usual
The speculative threads are allowed to consume values produced by the safe thread
but not by the sp. threads
All stores from a speculative thread are kept inside its cache hierarchy in a special
“speculative modified” state; these lines cannot be sent to memory until it is known to
be safe; if such a line is replaced from cache either it can be kept in a small buffer or
the thread can be stalled

Speculative locks (continued)
If a speculative thread receives a request for a cache line that is in speculative M
state, that means there is a data race inside the critical section and by design the
receiver thread is rolled back to the beginning of critical section
Why can’t the requester thread be rolled back?
In summary, the safe thread is never squashed and the speculative threads are not
squashed if there is no cross-thread data race
If a speculative thread finishes executing the critical section without getting squashed,
it still must wait for the safe thread to finish the critical section before committing the
speculative state (i.e. changing speculative M lines to M); why?

Speculative locks (continued)
Upon finishing the critical section, a speculative thread can continue executing beyond
the CS, but still remaining in speculative mode
When the safe thread finishes the CS all speculative threads that have already
completed CS, can commit in some non-deterministic order and revert to normal
execution
The speculative threads that are still inside the critical section remain speculative; a
dedicated hardware unit elects one of them the lock owner and that becomes the safe
non-speculative thread; the process continues
Clearly, under favorable conditions speculative synchronization can reduce lock
contention enormously

Objectives_template

file:///E|/parallel_com_arch/lecture23/23_6.htm[6/13/2012 11:54:09 AM]

 Module 11: "Synchronization"
 Lecture 23: "Barriers and Speculative Synchronization"

Why is it correct?

In a non-speculative setting there is no order in which the threads execute the CS
Even if there is an order that must be enforced by the program itself

In speculative synchronization some threads are considered safe (depends on time of arrival)
and there is exactly one safe thread at a time in a CS
The speculative threads behave as if they complete the CS in some order after the safe
thread(s)
A read from a thread (spec. or safe) after a write from another speculative thread to the same
cache line triggers a squash

It may not be correct to consume the speculative value
Same applies to write after write

Performance concerns

Maintaining a safe thread guarantees forward progress
Otherwise if all were speculative, cross-thread races may repeatedly squash all of them

False sharing?
What if two bins of a hash table belong to the same cache line?
Two threads are really not accessing the same address, but the speculative thread will
still suffer from a squash
Possible to maintain per-word speculative state

Speculative flags and barriers

Speculative flags are easy to support
Just continue past an unset flag in speculative mode
The thread that sets the flag is always safe
The thread(s) that read the flag will speculate

Speculative barriers come for free
Barriers use locks and flags
However, since the critical section in a barrier accesses a counter, multiple threads
venturing into the CS are guaranteed to have conflicts
So just speculate on the flag and let the critical section be executed conventionally

Speculative flags and branch prediction

P0: A=1; flag=1;
P1: while (!flag); print A;
Assembly of P1’s code
Loop: lw register, flag_addr
 beqz register, Loop
 …

What if I pass a hint via the compiler (say, a single bit in each branch instruction) to the
branch predictor asking it to always predict not taken for this branch?

Isn’t it achieving the same effect as speculative flag, but with a much simpler
technique? No.

Objectives_template

file:///E|/parallel_com_arch/lecture23/23_6.htm[6/13/2012 11:54:09 AM]

file:///E|/parallel_com_arch/lecture24/24_1.htm

	23_1
	Local Disk
	Objectives_template

	23_2
	Local Disk
	Objectives_template

	23_3
	Local Disk
	Objectives_template

	23_4
	Local Disk
	Objectives_template

	23_5
	Local Disk
	Objectives_template

	23_6
	Local Disk
	Objectives_template

