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 Module 17: "Interconnection Networks"

 Lecture 37: "Introduction to Routers"

 
Interconnection Networks

Fundamentals

Latency and bandwidth

Router architecture

Coherence protocol and routing

[From Chapter 10 of Culler, Singh, Gupta]
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 Module 17: "Interconnection Networks"
 Lecture 37: "Introduction to Routers"

 

Fundamentals

The switches or the routers directly talk to the NI
The NI output and input queues normally map to the virtual channels of the connecting router
Topology

The structure of the interconnect network
Direct network: each router is attached to a complete node (most popular)
Indirect network: Nodes are attached to few routers only; other routers cannot generate
packets, but can only forward them in right direction

Routing algorithms
Deterministic: fixed route between every pair of source and destination
Adaptive: based on congestion different routes may be selected dynamically

Switching strategy
Circuit switching: the path from source to destination is first established and reserved
before the message is transmitted (popular in phone world, but not in PCA)
Packet switching: A message is divided into several packets and each packet carries
routing information in its header; leads to better utilization of network resources since
individual packets need to be routed only (as opposed to the entire message together)

Flow control
How to detect and avoid resource (buffer, channel, etc.) collision?
Minimum unit of information that can be transferred over a link at a time is called flit (flow
control unit): may  be as small as a phit (physical unit) or as large as a message

Metrics to compare topology
Diameter: maximum shortest distance between any pair
Average distance: distance between two arbitrary nodes averaged over all pairs
Bisection bandwidth: aggregate bandwidth of minimum set of links which when removed
leaves the network as two disjoint roughly equal collection of nodes

Packet structure
Header: contains routing and control information, e.g., source, destination, size of data
payload, message opcode, etc.; an intermediate router only needs to inspect the header
to handle a newly arrived packet
Address: for CC-NUMA machines the cache line address
Payload: transmitted data; for CC-NUMA machines this is normally a cache line, or
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uncached words, or empty;
Trailer: normally contains an error-checking code

Life of a message in CC-NUMA
Starts when the coherence protocol engine (residing in the memory controller) of source
node queues the message into one of the NI output queues
NI outbound scheduler picks messages from the head of one of the queues possibly
according to round-robin scheme
The selected message is assembled by NI outbound hardware and is queued in the
outgoing virtual channel of the router port connected to NI (from router’s viewpoint this is
an input port); any payload is copied into a message buffer of that port obeying the copy
bandwidth
The scheduling algorithm of the router tries to match as many input ports to output ports;
this forms the routing delay or hop time
The selected packets are pushed into the network obeying the node-to-network
bandwidth

Latency of a message
Overhead in NI (at source and dest.) + hop time + channel occupancy (time to push into
network) + contention (queuing delay at various places)
Store-and-forward routing: each intermediate switch stores the message completely
before forwarding it to the next switch; uncontended latency (ignore overhead) = h(n/b+d)
where h is the number of hops, n is the size of the message, d is the hop time, b is the
node-to-network BW
Cut-through routing: as soon as the complete header arrives, routing decision is taken
and there is no need to wait for all packets to arrive; uncontended optimistic latency =
n/b + hd (much like circuit switching)

Couple of things to notice:

Time of flight (transmission delay through wires) is negligible
In cut-through routing formula, the assumption is that routing delay is bigger than channel
occupancy of a phit
Contention control in cut-through routing

Virtual cut-through: buffer incoming packet if outgoing port is busy (in the worst case it
behaves as store-and-forward)
Wormhole routing: allows buffering of few packets inside the router (the packets of a
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message stay blocked at several routers along the route like a worm)
General contention-control

What happens to incoming packets if router buffers are full?
General solution in data communication or in WAN is to drop packets and retry based on
time-out (TCP/IP, ATM, etc.)
In parallel computers packets are normally not dropped; a link-level flow control blocks
the packets in the last router’s output port: may cause tree saturation
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Latency and bandwidth

Latency gets affected by delivered bandwidth and the delivered bandwidth may be lower than the
actual bandwidth under contention, i.e. when bandwidth demand (called offered bandwidth) is much
higher than affordable link bandwidth

Router architecture

Number of input ports is normally equal to the number of output ports which is the degree of the router
In a direct network one input and one output port would connect to the host node’s NI outbound and NI
inbound control respectively
A single VLSI chip

Pin count is essentially number of ports (input and output) multiplied by channel width
High speed serial links offer lowest pin count, but the clock and control must be encoded within
the serial bit stream
Parallel links require high pin count and one extra channel is devoted to transmit the clock; also
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must be careful about the cross-channel clock skew
Flow control is realized with a separate set of wires comprising ready and acknowledge signals

Channel buffers
With no buffering a blocked packet at an input port may block all subsequent packets at that
port creating a tree saturation very fast
Input buffering: provide FIFO buffers at each input port; each input port independently requests
its output port; one severe problem is head-of-line blocking: two packets from two different ports
may ask the same output port and only the selected one can proceed, but the port that is not
selected may block subsequent packets destined for a different output port (buffers are FIFO)
Output buffering: for each input port partition the buffer storage equally among output ports
(normally after crossbar) or provide FIFO buffers per output port; solves head-of-line blocking
Shared pool: provide buffer storage (typically SRAM) shared among all input ports; must provide
high read/write bandwidth
Virtual channels: each input port is equipped with independent virtual channels and an incoming
packet is deposited into one of them; normally, a packet is copied from input virtual channel to
the same output virtual channel of the requested output port and the virtual channels of an
output port are multiplexed onto one physical link

Output scheduling
Simply speaking, each output port can carry out an independent arbitration across all input ports
and select one (assumption?)
Selection algorithm can be round-robin, oldest first, static priority, etc.
For adaptive routing each input port may request multiple output ports and hence output ports
cannot arbitrate independently
In such a situation, formulate the problem as an online bipartite matching; start with a random
selection of requests at each output; assign unselected outputs via improvement iterations
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Coherence protocol and routing

Have already discussed the necessity of at least two queues in each direction in NI; how do
they talk to the router?

Let’s call the queues as request and reply (in each direction): gets specified by the
source coherence engine
These queues form request and reply virtual networks in the system
Each output queue of NI may map to several input virtual lanes in the router (at least
one)
Each port of the router has equal number of virtual lanes, e.g. the request virtual lanes
form the request virtual network

The coherence protocol normally does a static assignment of message types to virtual
networks

A message originating from request lane will be carried along the route in the request
network and will arrive at the destination in the input request queue of NI
Within each virtual network there may be several virtual channels per port of the router
to avoid routing deadlock cycles, head-of-line blocking, and to aid adaptive routing
Three-lane protocols normally have a third virtual network to carry requests generated
by requests e.g., interventions and invalidations
Stanford FLASH runs four-lane coherence protocols and uses all the four virtual lanes
of SGI Spider router
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