
Objectives_template

file:///E|/parallel_com_arch/lecture22/22_1.htm[6/13/2012 11:53:18 AM]

 Module 11: "Synchronization"
 Lecture 22: "Scalable Locking Primitives"

Traffic of test & set

Backoff test & set

Test & test & set

TTS traffic analysis

Goals of a lock algorithm

Ticket lock

Array-based lock

RISC processors

LL/SC

Locks with LL/SC

Fetch & op with LL/SC

Store conditional & OOO

Speculative SC?

Point-to-point synch.

file:///E|/parallel_com_arch/lecture21/21_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture22/22_2.htm[6/13/2012 11:53:18 AM]

 Module 11: "Synchronization"
 Lecture 22: "Scalable Locking Primitives"

Traffic of test & set

In some machines (e.g., SGI Origin 2000) uncached fetch & op is supported
every such instruction will generate a transaction (may be good or bad depending on
the support in memory controller; will discuss later)

Let us assume that the lock location is cacheable and is kept coherent
Every invocation of test & set must generate a bus transaction; Why? What is the
transaction? What are the possible states of the cache line holding lock_addr?
Therefore all lock contenders repeatedly generate bus transactions even if someone is
still in the critical section and is holding the lock

Can we improve this?
Test & set with backoff

Backoff test & set

Instead of retrying immediately wait for a while
How long to wait?
Waiting for too long may lead to long latency and lost opportunity
Constant and variable backoff
Special kind of variable backoff: exponential backoff (after the i th attempt the delay is
k*ci where k and c are constants)
Test & set with exponential backoff works pretty well

 delay = k
Lock: ts register, lock_addr
 bez register, Enter_CS
 pause (delay) /* Can be simulated as a timed loop */
 delay = delay*c
 j Lock

Test & test & set

Reduce traffic further
Before trying test & set make sure that the lock is free

Lock: ts register, lock_addr
 bez register, Enter_CS
Test: lw register, lock_addr
 bnez register, Test
 j Lock

How good is it?
In a cacheable lock environment the Test loop will execute from cache until it receives
an invalidation (due to store in unlock); at this point the load may return a zero value
after fetching the cache line
If the location is zero then only everyone will try test & set

TTS traffic analysis

Recall that unlock is always a simple store

Objectives_template

file:///E|/parallel_com_arch/lecture22/22_2.htm[6/13/2012 11:53:18 AM]

In the worst case everyone will try to enter the CS at the same time
First time P transactions for ts and one succeeds; every other processor suffers a miss
on the load in Test loop; then loops from cache
The lock-holder when unlocking generates an upgrade (why?) and invalidates all
others
All other processors suffer read miss and get value zero now; so they break Test loop
and try ts and the process continues until everyone has visited the CS

(P+(P-1)+1+(P-1))+((P-1)+(P-2)+1+(P-2))+… = (3P-1) + (3P-4) + (3P-7) + … ~ 1.5P2
asymptotically

For distributed shared memory the situation is worse because each invalidation
becomes a separate message (more later)

Objectives_template

file:///E|/parallel_com_arch/lecture22/22_3.htm[6/13/2012 11:53:18 AM]

 Module 11: "Synchronization"
 Lecture 22: "Scalable Locking Primitives"

Goals of a lock algorithm

Low latency: if no contender the lock should be acquired fast
Low traffic: worst case lock acquire traffic should be low; otherwise it may affect unrelated
transactions
Scalability: Traffic and latency should scale slowly with the number of processors
Low storage cost: Maintaining lock states should not impose unrealistic memory overhead
Fairness: Ideally processors should enter CS according to the order of lock request (TS or
TTS does not guarantee this)

Ticket lock

Similar to Bakery algorithm but simpler
A nice application of fetch & inc
Basic idea is to come and hold a unique ticket and wait until your turn comes

Bakery algorithm failed to offer this uniqueness thereby increasing complexity

Shared: ticket = 0, release_count = 0;
Lock: fetch & inc reg1, ticket_addr
Wait: lw reg2, release_count_addr /* while (release_count != ticket); */
 sub reg3, reg2, reg1
 bnez reg3, Wait

Unlock: addi reg2, reg2, 0x1 /* release_count++ */
 sw reg2, release_count_addr

Initial fetch & inc generates O(P) traffic on bus-based machines (may be worse in DSM
depending on implementation of fetch & inc)
But the waiting algorithm still suffers from 0.5P2 messages asymptotically

Researchers have proposed proportional backoff i.e. in the wait loop put a delay
proportional to the difference between ticket value and last read release_count

Latency and storage-wise better than Bakery
Traffic-wise better than TTS and Bakery (I leave it to you to analyze the traffic of Bakery)
Guaranteed fairness: the ticket value induces a FIFO queue

Array-based lock

Solves the O(P2) traffic problem
The idea is to have a bit vector (essentially a character array if boolean type is not supported)
Each processor comes and takes the next free index into the array via fetch & inc
Then each processor loops on its index location until it becomes set
On unlock a processor is responsible to set the next index location if someone is waiting
Initial fetch & inc still needs O(P) traffic, but the wait loop now needs O(1) traffic
Disadvantage: storage overhead is O(P)
Performance concerns

Avoid false sharing: allocate each array location on a different cache line
Assume a cache line size of 128 bytes and a character array: allocate an array of size
128P bytes and use every 128th position in the array
For distributed shared memory the location a processor loops on may not be in its local

Objectives_template

file:///E|/parallel_com_arch/lecture22/22_3.htm[6/13/2012 11:53:18 AM]

memory: on acquire it must take a remote miss; allocate P pages and let each
processor loop on one bit in a page? Too much wastage; better solution: MCS lock
(Mellor-Crummey & Scott)

Correctness concerns
Make sure to handle corner cases such as determining if someone is waiting on the
next location (this must be an atomic operation) while unlocking
Remember to reset your index location to zero while unlocking

Objectives_template

file:///E|/parallel_com_arch/lecture22/22_4.htm[6/13/2012 11:53:19 AM]

 Module 11: "Synchronization"
 Lecture 22: "Scalable Locking Primitives"

RISC processors

All these atomic instructions deviate from the RISC line
Instruction needs a load as well as a store

Also, it would be great if we can offer a few simple instructions with which we can build most
of the atomic primitives

Note that it is impossible to build atomic fetch & inc with xchg instruction
MIPS, Alpha and IBM processors support a pair of instructions: LL and SC

Load linked and store conditional

LL/SC

Load linked behaves just like a normal load with some extra tricks
Puts the loaded value in destination register as usual
Sets a load_linked bit residing in cache controller to 1
Puts the address in a special lock_address register residing in the cache controller

Store conditional is a special store
sc reg, addr stores value in reg to addr only if load_linked bit is set; also it copies the
value in load_linked bit to reg and resets load_linked bit

Any intervening “operation” (e.g., bus transaction or cache replacement) to the cache line
containing the address in lock_address register clears the load_linked bit so that subsequent
sc fails

Locks with LL/SC

Test & set

Lock: LL r1, lock_addr /* Normal read miss/BusRead */
 addi r2, r0, 0x1
 SC r2, lock_addr /* Possibly upgrade miss */
 beqz r2, Lock /* Check if SC succeeded */
 bnez r1, Lock /* Check if someone is in CS */

LL/SC is best-suited for test & test & set locks

Lock: LL r1, lock_addr
 bnez r1, Lock
 addi r1, r0, 0x1
 SC r1, lock_addr
 beqz r1, Lock

Fetch & op with LL/SC

Fetch & inc

Try: LL r1, addr
 addi r1, r1, 0x1
 SC r1, addr
 beqz r1, Try

Objectives_template

file:///E|/parallel_com_arch/lecture22/22_4.htm[6/13/2012 11:53:19 AM]

Compare & swap: Compare with r1, swap r2 and memory location (here we keep on trying
until comparison passes)

Try: LL r3, addr
 sub r4, r3, r1
 bnez r4, Try
 add r4, r2, r0
 SC r4, addr
 beqz r4, Try
 add r2, r3, r0

Objectives_template

file:///E|/parallel_com_arch/lecture22/22_5.htm[6/13/2012 11:53:19 AM]

 Module 11: "Synchronization"
 Lecture 22: "Scalable Locking Primitives"

Store conditional & OOO

Execution of SC in an OOO pipeline
Rather subtle
For now assume that SC issues only when it comes to the head of ROB i.e. non-
speculative execution of SC
It first checks the load_linked bit; if reset doesn’t even access cache (saves cache
bandwidth and unnecessary bus transactions) and returns zero in register
If load_linked bit is set, it accesses cache and issues bus transaction if needed
(BusReadX if cache line in I state and BusUpgr if in S state)
Checks load_linked bit again before writing to cache (note that cache line goes to M
state in any case)
Can wake up dependents only when SC graduates (a case where a store initiates a
dependence chain)

Speculative SC?

What happens if SC is issued speculatively?
Actual store happens only when it graduates and issuing a store early only starts the
write permission process
Suppose two processors are contending for a lock
Both do LL and succeed because nobody is in CS
Both issue SC speculatively and due to some reason the graduation of SC in both of
them gets delayed
So although initially both may get the line one after another in M state in their caches,
the load_linked bit will get reset in both by the time SC tries to graduate
They go back and start over with LL and may issue SC again speculatively leading to a
livelock (probability of this type of livelock increases with more processors)
Speculative issue of SC with hardwired backoff may help
Better to turn off speculation for SC

What about the branch following SC?
Can we speculate past that branch?
Assume that the branch predictor tells you that the branch is not taken i.e. fall through:
we speculatively venture into the critical section
We speculatively execute the critical section
This may be good and bad
If the branch prediction was correct we did great
If the predictor went wrong, we might have interfered with the execution of the
processor that is actually in CS: may cause unnecessary invalidations and extra traffic
Any correctness issues?

Point-to-point synch.

Normally done in software with flags

P0: A = 1; flag = 1;
P1: while (!flag); print A;

Some old machines supported full/empty bits in memory

Objectives_template

file:///E|/parallel_com_arch/lecture22/22_5.htm[6/13/2012 11:53:19 AM]

Each memory location is augmented with a full/empty bit
Producer writes the location only if bit is reset
Consumer reads location if bit is set and resets it
Lot less flexible: one producer-one consumer sharing only (one producer-many
consumers is very popular); all accesses to a memory location become synchronized
(unless compiler flags some accesses as special)

Possible optimization for shared memory
Allocate flag and data structures (if small) guarded by flag in same cache line e.g., flag
and A in above example

file:///E|/parallel_com_arch/lecture23/23_1.htm

	22_1
	Local Disk
	Objectives_template

	22_2
	Local Disk
	Objectives_template

	22_3
	Local Disk
	Objectives_template

	22_4
	Local Disk
	Objectives_template

	22_5
	Local Disk
	Objectives_template

