
Objectives_template

file:///E|/parallel_com_arch/lecture32/32_1.htm[6/13/2012 12:14:36 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 32: "Protocol Occupancy and Directory Controllers"

 
Directory-based Cache Coherence:

Special Topics

AlphaServer GS320

Virtual network: Case Studies

Coherence controller occupancy

Protocol occupancy

Directory controllers

Flexible protocol engine

[From Chapter 8 of Culler, Singh, Gupta]
[SGI Origin 2000 material taken from Laudon and Lenoski, ISCA 1997]
[GS320 material taken from Gharachorloo et al., ASPLOS 2000]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture31/31_6.htm


Objectives_template

file:///E|/parallel_com_arch/lecture32/32_2.htm[6/13/2012 12:14:36 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 32: "Protocol Occupancy and Directory Controllers"

 

AlphaServer GS320

Recall that SGI Origin 2000 eliminates NACKs related to late and early interventions
Late interventions are replied by home via writeback forwarding
Early interventions are buffered at writer until write is completed

Origin 2000 still uses NACKs if directory state is busy
GS320 eliminates all NACKs

Simply doesn’t have busy states
How do you serialize transactions?

Eliminating PSH: dirty sharing
Same as a standard MOESI protocol, but state change in directory is immediate
Suppose node P0 is caching a block in M state
Node P1 issues a read request to home
Home forwards it to P0, changes directory state to clean, and marks P0 as the owner
(need an owner field in directory)
P0 supplies data to P1 and moves to O state

P1 could also become O (is it better or worse?)
All subsequent requests are forwarded to P0 by home
P0 must serialize them properly

Philosophy: keep home free, serialize in the periphery
Dirty sharing

Problem arises if owner evicts the cache block
Now home cannot figure out what to do

Directory only specifies the sharers and the owner
Home does not know exactly which sharers did not get the cache block from P0
Home only writes the block back to memory, marks that there is no owner for
this block, and sends a writeback acknowledgment to owner

Owner in all cases must source the cache block until the writeback is acknowledged
Must hold evicted cache blocks in a writeback buffer

More problems: what if a request arrives at home before the WB, but reaches owner
after the WB ACK?

Dirty sharing
GS320 maintains total order in the network

Needed by other optimizations related to invalidation acknowledgments also
What if the protocol allows the ownership to move along the sharer chain?

New problem: writeback ordering
Easy to resolve at home: only accept data from owner marked in the directory
entry
Always acknowledge writebacks
Still need to rely on network order? No, if there are two types of writeback
acknowledgments

Eliminating the PDEX state: write forwarding
Same as read case with ownership changing along a chain

Performance considerations
How will a migratory sharing pattern perform on GS320?
How will a large-scale producer-consumer pattern perform on GS320?
Any special considerations for LL/SC locks?

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture32/32_2.htm[6/13/2012 12:14:36 PM]

Note that lock acquire is essentially a large-scale producer-consumer pattern
with the number of consumers decreasing from P-1 to zero

 



Objectives_template

file:///E|/parallel_com_arch/lecture32/32_3.htm[6/13/2012 12:14:36 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 32: "Protocol Occupancy and Directory Controllers"

 

Virtual network: Case Studies

Each virtual network consists of an NI queue in each direction connected to the corresponding
queue or group of queues in the router
SGI Origin 2000

Two virtual networks; uses back-off intervention and invalidation to avoid cycles in the
network dependence graph

Stanford DASH
Two virtual networks; in case an incoming request needs space in outgoing request
network and outgoing request queue is full, it waits for a pre-defined number of cycles
and then if still full, sends a NACK to the requester

AlphaServer GS320
Three virtual networks; longest transaction is 3-hop

Stanford FLASH
Four virtual networks; longest transaction is 4-hop (special case of reply generating a
reply)

Alpha 21364 router
19 virtual channels (essentially queues) in each direction per port: 3 channels per
virtual network, six coherence message types, one extra channel forms the seventh
virtual network to carry some special coherence control messages (3 channels within a
network are used for adaptive routing)

Coherence controller occupancy

How long does it take to service a message on average?
If you imagine the coherence controller as a centralized server in a queuing model,
occupancy is just the reciprocal of service rate
Occupancy of servicing a message induces a waiting time on the subsequent
messages (shows up as a contention component in the total end-to-end latency)

Queuing analysis and simulation show that contention grows faster than
quadratic in occupancy (Chaudhuri et al, 2003); later empirically confirmed by
other researchers that it is likely to be sub-cubic
Goal should be to design low-occupancy protocols

Protocol occupancy

Goal is to design low-occupancy protocol
Doesn’t mean cannot do smart things
A high-occupancy protocol can still perform well if it can reduce the message count
accordingly
Latency tolerating techniques such as prefetching usually puts more pressure on the
coherence controller (why?)

Leads to an increased average protocol occupancy
Some bad protocol decisions

Invalidation acknowledgments at home
Replacement hints
NACKs

Final design is usually influenced by directory organization and coherence controller

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture32/32_3.htm[6/13/2012 12:14:36 PM]

microarchitecture

Directory controllers

Two main designs
Hardwired finite state machines (fixed protocol)
Software protocol running on embedded protocol processor in memory controller
(suited for off-chip memory controllers) or protocol thread in main processor (suited for
multi-threaded processors) or protocol core in main processor (suited for multi-core
processors)

Hardwired FSM
Low occupancy (all-hardware)
Protocol must be simple enough to be able to design and verify in hardware
Possible to pipeline various stages of protocol processing
Cannot afford late-binding or flexibility in the choice of protocol
SGI Origin 2000, MIT Alewife, Stanford DASH

 



Objectives_template

file:///E|/parallel_com_arch/lecture32/32_4.htm[6/13/2012 12:14:36 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 32: "Protocol Occupancy and Directory Controllers"

 

Flexible protocol engine

Software protocol
Executes short sequences of instructions or micro-code known as protocol handlers on
a processor
Each message type has a separate handler
Can make the protocol complicated
Allows late-binding of protocol, can choose appropriate protocol, easier verification path
Normally higher occupancy than hardwired controllers if controller clock is slow
Protocol processor may use separate protocol data and code caches to speed up
protocol processing

Four existing designs
Customized coprocessor embedded in memory controller

ISA designed to include bit field operations: helpful for directory manipulation (bit
clear, bit set, branch on bit clear, branch on bit set, find first set bit, etc.)
Processor is normally simple e.g. short pipeline, in-order, no fp unit or mult/div
Example: Stanford FLASH, Sun S3.mp, Alpha Piranha CMP, Sequent STiNG,
Sequent NUMA-Q

Four existing designs
General purpose processor embedded in memory controller

Uses commodity processor cores
May be wasteful of resources
Normally higher occupancy than customized coprocessor if memory clock is
slow
Example: Wisconsin Typhoon

Four existing designs
Execute on main processor

Interrupt the main processor to execute coherence protocol on cache miss or
network message arrival
Needs an extremely low overhead interrupt mechanism to be competitive
Grahn and Stenstrom (1995)

Four existing designs
Execute on spare hardware thread context of multi-threaded (or hyper-threaded)
processors

No interrupt overhead
Reserve a protocol thread context
Application and protocol threads co-exist in the processor (no context switch
needed)
Chaudhuri and Heinrich (2004)
Can’t discuss in detail before talking about SMT/HT

Possible future design
Devote a core to protocol processing in multi-core architectures (Kalamkar, Chaudhuri,
and Heinrich, 2007)
Increasingly attractive as number of cores increases

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture33/33_1.htm

	32_1
	Local Disk
	Objectives_template


	32_2
	Local Disk
	Objectives_template


	32_3
	Local Disk
	Objectives_template


	32_4
	Local Disk
	Objectives_template



