
Objectives_template

file:///E|/parallel_com_arch/lecture25/25_1.htm[6/13/2012 11:59:05 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 25: "Protocols for Split-transaction Buses"

Recap of inclusion

Inclusion and snoop

L2 to L1 interventions

Invalidation acks?

Intervention races

Tag RAM design

Exclusive cache levels

Split-transaction bus

New issues

SGI Powerpath-2 bus

Bus interface logic

Snoop results

[From Chapter 6 of Culler, Singh, Gupta]

file:///E|/parallel_com_arch/lecture24/24_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture25/25_2.htm[6/13/2012 11:59:06 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 25: "Protocols for Split-transaction Buses"

Recap of inclusion

A processor read
Looks up L1 first and in case of miss goes to L2, and finally may need to launch a
BusRd request if it misses in L2
Finally, the line is in S state in both L1 and L2

A processor write
Looks up L1 first and if it is in I state sends a ReadX request to L2 which may have
the line in M state
In case of L2 hit, the line is filled in M state in L1
In case of L2 miss, if the line is in S state in L2 it launches BusUpgr; otherwise it
launches BusRdX; finally, the line is in state M in both L1 and L2
If the line is in S state in L1, it sends an upgrade request to L2 and either there is an
L2 hit or L2 just conveys the upgrade to bus (Why can’t it get changed to BusRdX?)

L1 cache replacement
Replacement of a line in S state may or may not be conveyed to L2
Replacement of a line in M state must be sent to L2 so that it can hold the most up-to-
date copy
The line is in I state in L1 after replacement, the state of line remains unchanged in L2

L2 cache replacement
Replacement of a line in S state may or may not generate a bus transaction; it must
send a notification to the L1 caches so that they can invalidate the line to maintain
inclusion
Replacement of a line in M state first asks the L1 cache to send all the relevant L1
lines (these are the most up-to-date copies) and then launches a BusWB
The state of line in both L1 and L2 is I after replacement

Replacement of a line in E state from L1?
Replacement of a line in E state from L2?
Replacement of a line in O state from L1?
Replacement of a line in O state from L2?
In summary

A line in S state in L2 may or may not be in L1 in S state
A line in M state in L2 may or may not be in L1 in M state; Why? Can it be in S state?
A line in I state in L2 must not be present in L

Inclusion and snoop

BusRd snoop
Look up L2 cache tag; if in I state no action; if in S state no action; if in M state assert
wired-OR M line, send read intervention to L1 data cache, L1 data cache sends lines
back, L2 controller launches line on bus, both L1 and L2 lines go to S state

BusRdX snoop
Look up L2 cache tag; if in I state no action; if in S state invalidate and also notify L1;
if in M state assert wired-OR M line, send readX intervention to L1 data cache, L1 data
cache sends lines back, L2 controller launches line on bus, both L1 and L2 lines go to
I state

BusUpgr snoop
Similar to BusRdX without the cache line flush

Objectives_template

file:///E|/parallel_com_arch/lecture25/25_2.htm[6/13/2012 11:59:06 AM]

L2 to L1 interventions

Two types of interventions
One is read/readX intervention that requires data reply
Other is plain invalidation that does not need data reply

Data interventions can be eliminated by making L1 cache write-through
But introduces too much of write traffic to L2
One possible solution is to have a store buffer that can handle the stores in
background obeying the available BW, so that the processor can proceed
independently; this can easily violate sequential consistency unless store buffer also
becomes a part of snoop logic

Useless invalidations can be eliminated by introducing an inclusion bit in L2 cache state

Objectives_template

file:///E|/parallel_com_arch/lecture25/25_3.htm[6/13/2012 11:59:06 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 25: "Protocols for Split-transaction Buses"

Invalidation acks?

On a BusRdX or BusUpgr in case of a snoop hit in S state L2 cache sends invalidation to L1
caches

Does the snoop logic wait for an invalidation acknowledgment from L1 cache before
the transaction can be marked complete?
Do we need a two-phase mechanism?
What are the issues?

Intervention races

Writebacks introduce new races in multi-level cache hierarchy
Suppose L2 sends a read intervention to L1 and in the meantime L1 decides to
replace that line (due to some conflicting processor access)
The intervention will naturally miss the up-to-date copy
When the writeback arrives at L2, L2 realizes that the intervention race has occurred
(need extra hardware to implement this logic; what hardware?)
When the intervention reply arrives from L1, L2 can apply the newly received writeback
and launch the line on bus
Exactly same situation may arise even in uniprocessor if a dirty replacement from L2
misses the line in L1 because L1 just replaced that line too

Tag RAM design

A multi-level cache hierarchy reduces tag contention
L1 tags are mostly accessed by the processor because L2 cache acts as a filter for
external requests
L2 tags are mostly accessed by the system because hopefully L1 cache can absorb
most of the processor traffic
Still some machines maintain duplicate tags at all or the outermost level only

Exclusive cache levels

AMD K7 (Athlon XP) and K8 (Athlon64, Opteron) architectures chose to have exclusive levels
of caches instead of inclusive

Definitely provides you much better utilization of on-chip caches since there is no
duplication
But complicates many issues related to coherence
The uniprocessor protocol is to refill requested lines directly into L1 without placing a
copy in L2; only on an L1 eviction put the line into L2; on an L1 miss look up L2 and in
case of L2 hit replace line from L2 and put it in L1 (may have to replace multiple L1
lines to accommodate the full L2 line; not sure what K8 does: possible to maintain
inclusion bit per L1 line sector in L2 cache)
For multiprocessors one solution could be to have one snoop engine per cache level
and a tournament logic that selects the successful snoop result

Objectives_template

file:///E|/parallel_com_arch/lecture25/25_4.htm[6/13/2012 11:59:06 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 25: "Protocols for Split-transaction Buses"

Split-transaction bus

Atomic bus leads to underutilization of bus resources
Between the address is taken off the bus and the snoop responses are available the
bus stays idle
Even after the snoop result is available the bus may remain idle due to high memory
access latency

Split-transaction bus divides each transaction into two parts: request and response
Between the request and response of a particular transaction there may be other
requests and/or responses from different transactions
Outstanding transactions that have not yet started or have completed only one phase
are buffered in the requesting cache controllers

New issues

Split-transaction bus introduces new protocol races
P0 and P1 have a line in S state and both issue BusUpgr, say, in consecutive cycles
Snoop response arrives later because it takes time
Now both P0 and P1 may think that they have ownership

Flow control is important since buffer space is finite
In-order or out-of-order response?

Out-of-order response may better tolerate variable memory latency by servicing other
requests
Pentium Pro uses in-order response
SGI Challenge and Sun Enterprise use out-of-order response i.e. no ordering is
enforced

SGI Powerpath-2 bus

Used in SGI Challenge
Conflicts are resolved by not allowing multiple bus transactions to the same cache line
Allows eight outstanding requests on the bus at any point in time
Flow control on buffers is provided by negative acknowledgments (NACKs): the bus
has a dedicated NACK line which remains asserted if the buffer holding outstanding
transactions is full; a NACKed transaction must be retried
The request order determines the total order of memory accesses, but the responses
may be delivered in a different order depending on the completion time of them
In subsequent slides we call this design Powerpath-2 since it is loosely based on that

Logically two separate buses
Request bus for launching the command type (BusRd, BusWB etc.) and the involved
address
Response bus for providing the data response, if any
Since responses may arrive in an order different from the request order, a 3-bit tag is
assigned to each request
Responses launch this tag on the tag bus along with the data reply so that the
address bus may be left free for other requests

The data bus is 256-bit wide while a cache line is 128 bytes
One data response phase needs four bus cycles along with one additional hardware

Objectives_template

file:///E|/parallel_com_arch/lecture25/25_4.htm[6/13/2012 11:59:06 AM]

turnaround cycle

Objectives_template

file:///E|/parallel_com_arch/lecture25/25_5.htm[6/13/2012 11:59:07 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 25: "Protocols for Split-transaction Buses"

SGI Powerpath-2 bus

Essentially two main buses and various control wires for snoop results, flow control etc.
Address bus: five cycle arbitration, used during request
Data bus: five cycle arbitration, five cycle transfer, used during response
Three different transactions may be in one of these three phases at any point in time

Forming a total order
After the decode cycle during request phase every cache controller takes appropriate
coherence actions i.e. BusRd downgrades M line to S, BusRdX invalidates line
If a cache controller does not get the tags due to contention with the processor; it simply
lengthens the ack phase beyond one cycle
Thus the total order is formed during the request phase itself i.e. the position of each request in
the total order is determined at that point

BusWB case
BusWB only needs the request phase
However needs both address and data lines together
Must arbitrate for both together

BusUpgr case
Consists only of the request phase
No response or acknowledgment
As soon as the “ack” phase of address arbitration is completed by the issuing node, the
upgrade has sealed a position in the total order and hence is marked complete by sending a
completion signal to the issuing processor by its local bus controller (each node has its own bus
controller to handle bus requests)

Objectives_template

file:///E|/parallel_com_arch/lecture25/25_5.htm[6/13/2012 11:59:07 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture25/25_6.htm[6/13/2012 11:59:07 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 25: "Protocols for Split-transaction Buses"

Bus interface logic

A request table entry is freed when the response is observed on the bus

Snoop results

Three snoop wires: shared, modified, inhibit (all wired-OR)
The inhibit wire helps in holding off snoop responses until the data response is launched
on the bus
Although the request phase determines who will source the data i.e. some cache or
memory, the memory controller does not know it
The cache with a modified copy keeps the inhibit line asserted until it gets the data bus
and flushes the data; this prevents memory controller from sourcing the data
Otherwise memory controller arbitrates for the data bus
When the data appears all cache controllers appropriately assert the shared and
modified line
Why not launch snoop results as soon as they are available?

file:///E|/parallel_com_arch/lecture26/26_1.htm

	25_1
	Local Disk
	Objectives_template

	25_2
	Local Disk
	Objectives_template

	25_3
	Local Disk
	Objectives_template

	25_4
	Local Disk
	Objectives_template

	25_5
	Local Disk
	Objectives_template

	25_6
	Local Disk
	Objectives_template

