
Objectives_template

file:///E|/parallel_com_arch/lecture14/14_1.htm[6/13/2012 11:26:55 AM]

 Module 8: "Performance Issues"
 Lecture 14: "Load Balancing and Domain Decomposition"

 
Performance Issues

Agenda

Partitioning for perf.

Load balancing

Dynamic task queues

Task stealing

Architect’s job

Partitioning and communication

Domain decomposition

Comm-to-comp ratio

Extra work

Data access and communication

Data access

[From Chapter 3 of Culler, Singh, Gupta]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture13/13_6.htm


Objectives_template

file:///E|/parallel_com_arch/lecture14/14_2.htm[6/13/2012 11:26:55 AM]

 Module 8: "Performance Issues"
 Lecture 14: "Load Balancing and Domain Decomposition"

 

Agenda

Partitioning for performance
Data access and communication
Summary
Goal is to understand simple trade-offs involved in writing a parallel program keeping an eye
on parallel performance

Getting good performance out of a multiprocessor is difficult
Programmers need to be careful
A little carelessness may lead to extremely poor performanc

Partitioning for perf.

Partitioning plays an important role in the parallel performance
This is where you essentially determine the tasks

A good partitioning should practise
Load balance
Minimal communication
Low overhead to determine and manage task assignment (sometimes called extra
work)

A well-balanced parallel program automatically has low barrier or point-to-point
synchronization time

Ideally I want all the threads to arrive at a barrier at the same time

Load balancing

Achievable speedup is bounded above by
Sequential exec. time / Max. time for any processor
Thus speedup is maximized when the maximum time and minimum time across all
processors are close (want to minimize the variance of parallel execution time)
This directly gets translated to load balancing

What leads to a high variance?
Ultimately all processors finish at the same time
But some do useful work all over this period while others may spend a significant time
at synchronization points
This may arise from a bad partitioning
There may be other architectural reasons for load imbalance beyond the scope of a
programmer e.g., network congestion, unforeseen cache conflicts etc. (slows down a
few threads)

Effect of decomposition/assignment on load balancing
Static partitioning is good when the nature of computation is predictable and regular
Dynamic partitioning normally provides better load balance, but has more runtime
overhead for task management; also it may increase communication
Fine grain partitioning (extreme is one instruction per thread) leads to more overhead,
but better load balance
Coarse grain partitioning (e.g., large tasks) may lead to load imbalance if the tasks are
not well-balanced

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture14/14_2.htm[6/13/2012 11:26:55 AM]

 



Objectives_template

file:///E|/parallel_com_arch/lecture14/14_3.htm[6/13/2012 11:26:56 AM]

 Module 8: "Performance Issues"
 Lecture 14: "Load Balancing and Domain Decomposition"

 

Dynamic task queues

Introduced in the last lecture
Normally implemented as part of the parallel program
Two possible designs

Centralized task queue: a single queue of tasks; may lead to heavy contention because
insertion and deletion to/from the queue must be critical sections
Distributed task queues: one queue per processor

Issue with distributed task queues
When a queue of a particular processor is empty what does it do? Task stealing

Task stealing

A processor may choose to steal tasks from another processor’s queue if the former’s queue
is empty

How many tasks to steal? Whom to steal from?
The biggest question: how to detect termination? Really a distributed consensus!
Task stealing, in general, may increase overhead and communication, but a smart
design may lead to excellent load balance (normally hard to design efficiently)
This is a form of a more general technique called Receiver Initiated Diffusion (RID)
where the receiver of the task initiates the task transfer
In Sender Initiated Diffusion (SID) a processor may choose to insert into another
processor’s queue if the former’s task queue is full above a threshold

Architect’s job

Normally load balancing is a responsibility of the programmer
However, an architecture may provide efficient primitives to implement task queues and
task stealing
For example, the task queue may be allocated in a special shared memory segment,
accesses to which may be optimized by special hardware in the memory controller
But this may expose some of the architectural features to the programmer
There are multiprocessors that provide efficient implementations for certain
synchronization primitives; this may improve load balance
Sophisticated hardware tricks are possible: dynamic load monitoring and favoring slow
threads dynamicall

Partitioning and communication

Need to reduce inherent communication
This is the part of communication determined by assignment of tasks
There may be other communication traffic also (more later)

Goal is to assign tasks such that accessed data are mostly local to a process
Ideally I do not want any communication
But in life sometimes you need to talk to people to get some work done!

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture14/14_4.htm[6/13/2012 11:26:56 AM]

 Module 8: "Performance Issues"
 Lecture 14: "Load Balancing and Domain Decomposition"

 

Domain decomposition

Normally applications show a local bias on data usage
Communication is short-range e.g. nearest neighbor
Even if it is long-range it falls off with distance
View the dataset of an application as the domain of the problem e.g., the 2-D grid in
equation solver
If you consider a point in this domain, in most of the applications it turns out that this
point depends on points that are close by
Partitioning can exploit this property by assigning contiguous pieces of data to each
process
Exact shape of decomposed domain depends on the application and load balancing
requirements

Comm-to-comp ratio

Surely, there could be many different domain decompositions for a particular problem
For grid solver we may have a square block decomposition, block row decomposition
or cyclic row decomposition
How to determine which one is good? Communication-to-computation ratio

Assume P processors and NxN grid for grid solver

Size of each block: N/vP by N/vP

Communication (perimeter): 4N/vP

Computation (area): N2/P

Comm-to-comp ratio = 4vP/N

Sq. block decomp. for P=16

For block row decomposition
Each strip has N/P rows
Communication (boundary rows): 2N

Computation (area): N2/P (same as square block)
Comm-to-comp ratio: 2P/N

For cyclic row decomposition
Each processor gets N/P isolated rows

Communication: 2N2/P

Computation: N2/P
Comm-to-comp ratio: 2

Normally N is much much larger than P
Asymptotically, square block yields lowest comm-to-comp ratio

Idea is to measure the volume of inherent communication per computation

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture14/14_4.htm[6/13/2012 11:26:56 AM]

In most cases it is beneficial to pick the decomposition with the lowest comm-to-comp
ratio
But depends on the application structure i.e. picking the lowest comm-to-comp may
have other problems
Normally this ratio gives you a rough estimate about average communication
bandwidth requirement of the application i.e. how frequent is communication
But it does not tell you the nature of communication i.e. bursty or uniform
For grid solver comm. happens only at the start of each iteration; it is not uniformly
distributed over computation
Thus the worst case BW requirement may exceed the average comm-to-comp ratio

 



Objectives_template

file:///E|/parallel_com_arch/lecture14/14_5.htm[6/13/2012 11:26:56 AM]

 Module 8: "Performance Issues"
 Lecture 14: "Load Balancing and Domain Decomposition"

 

Extra work

Extra work in a parallel version of a sequential program may result from
Decomposition
Assignment techniques
Management of the task pool etc.

Speedup is bounded above by
Sequential work / Max (Useful work + Synchronization + Comm. cost + Extra work)
where the Max is taken over all processors
But this is still incomplete

We have only considered communication cost from the viewpoint of the algorithm and
ignored the architecture completely

Data access and communication

The memory hierarchy (caches and main memory) plays a significant role in determining
communication cost

May easily dominate the inherent communication of the algorithm
For uniprocessor, the execution time of a program is given by useful work time + data access
time

Useful work time is normally called the busy time or busy cycles
Data access time can be reduced either by architectural techniques (e.g., large caches)
or by cache-aware algorithm design that exploits spatial and temporal locality

Data access

In multiprocessors
Every processor wants to see the memory interface as its own local cache and the
main memory
In reality it is much more complicated
If the system has a centralized memory (e.g., SMPs), there are still caches of other
processors; if the memory is distributed then some part of it is local and some is
remote
For shared memory, data movement from local or remote memory to cache is
transparent while for message passing it is explicit
View a multiprocessor as an extended memory hierarchy where the extension includes
caches of other processors, remote memory modules and the network topology

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture15/15_1.htm

	14_1
	Local Disk
	Objectives_template


	14_2
	Local Disk
	Objectives_template


	14_3
	Local Disk
	Objectives_template


	14_4
	Local Disk
	Objectives_template


	14_5
	Local Disk
	Objectives_template



