Objectives_template

Module 14: "Directory-based Cache Coherence"
Lecture 32: "Protocol Occupancy and Directory Controllers™

Directory-based Cache Coherence:

Special Topics

AlphaServer GS320

Virtual network: Case Studies
Coherence controller occupancy
Protocol occupancy

Directory controllers

Flexible protocol engine

[From Chapter 8 of Culler, Singh, Gupta]
[SGI Origin 2000 material taken from Laudon and Lenoski, ISCA 1997]
[GS320 material taken from Gharachorloo et al., ASPLOS 2000]

4|l Previous Next||p

file:///E|/parallel_com_arch/lecture32/32_1.htm[6/13/2012 12:14:36 PM]

file:///E|/parallel_com_arch/lecture31/31_6.htm

Objectives_template

Module 14: "Directory-based Cache Coherence"
Lecture 32: "Protocol Occupancy and Directory Controllers™

AlphaServer GS320

= Recall that SGI Origin 2000 eliminates NACKs related to late and early interventions
« Late interventions are replied by home via writeback forwarding
e Early interventions are buffered at writer until write is completed
= Origin 2000 still uses NACKs if directory state is busy
= GS320 eliminates all NACKs
e Simply doesn’t have busy states
e How do you serialize transactions?
= Eliminating PSH: dirty sharing
e Same as a standard MOESI protocol, but state change in directory is immediate
e Suppose node PO is caching a block in M state
e Node P1 issues a read request to home
« Home forwards it to PO, changes directory state to clean, and marks PO as the owner
(need an owner field in directory)
e PO supplies data to P1 and moves to O state
o P1 could also become O (is it better or worse?)
e All subsequent requests are forwarded to PO by home
e PO must serialize them properly
o Philosophy: keep home free, serialize in the periphery
= Dirty sharing
o Problem arises if owner evicts the cache block
« Now home cannot figure out what to do
o Directory only specifies the sharers and the owner
o Home does not know exactly which sharers did not get the cache block from PO
o Home only writes the block back to memory, marks that there is no owner for
this block, and sends a writeback acknowledgment to owner
e Owner in all cases must source the cache block until the writeback is acknowledged
o Must hold evicted cache blocks in a writeback buffer
e More problems: what if a request arrives at home before the WB, but reaches owner
after the WB ACK?
= Dirty sharing
e GS320 maintains total order in the network
o Needed by other optimizations related to invalidation acknowledgments also
e What if the protocol allows the ownership to move along the sharer chain?
o New problem: writeback ordering
o Easy to resolve at home: only accept data from owner marked in the directory
entry
o Always acknowledge writebacks
o Still need to rely on network order? No, if there are two types of writeback
acknowledgments
= Eliminating the PDEX state: write forwarding
e Same as read case with ownership changing along a chain
= Performance considerations
e How will a migratory sharing pattern perform on GS3207?
e How will a large-scale producer-consumer pattern perform on GS3207?
e Any special considerations for LL/SC locks?

file:/l/E|/parallel_com_arch/lecture32/32_2.htm[6/13/2012 12:14:36 PM]

Objectives_template

o Note that lock acquire is essentially a large-scale producer-consumer pattern
with the number of consumers decreasing from P-1 to zero

4l Previous Next||p

file:/l/E|/parallel_com_arch/lecture32/32_2.htm[6/13/2012 12:14:36 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"
Lecture 32: "Protocol Occupancy and Directory Controllers™

Virtual network: Case Studies

= Each virtual network consists of an NI queue in each direction connected to the corresponding
queue or group of queues in the router
= SGI Origin 2000
o Two virtual networks; uses back-off intervention and invalidation to avoid cycles in the
network dependence graph
= Stanford DASH
o Two virtual networks; in case an incoming request needs space in outgoing request
network and outgoing request queue is full, it waits for a pre-defined number of cycles
and then if still full, sends a NACK to the requester
= AlphaServer GS320
e Three virtual networks; longest transaction is 3-hop
= Stanford FLASH
e Four virtual networks; longest transaction is 4-hop (special case of reply generating a
reply)
= Alpha 21364 router
e 19 virtual channels (essentially queues) in each direction per port: 3 channels per
virtual network, six coherence message types, one extra channel forms the seventh
virtual network to carry some special coherence control messages (3 channels within a
network are used for adaptive routing)

Coherence controller occupancy

= How long does it take to service a message on average?
« If you imagine the coherence controller as a centralized server in a queuing model,
occupancy is just the reciprocal of service rate
e Occupancy of servicing a message induces a waiting time on the subsequent
messages (shows up as a contention component in the total end-to-end latency)

o Queuing analysis and simulation show that contention grows faster than
quadratic in occupancy (Chaudhuri et al, 2003); later empirically confirmed by
other researchers that it is likely to be sub-cubic

o Goal should be to design low-occupancy protocols

Protocol occupancy

= Goal is to design low-occupancy protocol
o Doesn't mean cannot do smart things
e A high-occupancy protocol can still perform well if it can reduce the message count
accordingly
e Latency tolerating techniques such as prefetching usually puts more pressure on the
coherence controller (why?)
o Leads to an increased average protocol occupancy
e Some bad protocol decisions
o Invalidation acknowledgments at home
o Replacement hints
o NACKs
e Final design is usually influenced by directory organization and coherence controller

file:///E|/parallel_com_arch/lecture32/32_3.htm[6/13/2012 12:14:36 PM]

Objectives_template

microarchitecture

Directory controllers

= Two main designs

« Hardwired finite state machines (fixed protocol)

e Software protocol running on embedded protocol processor in memory controller
(suited for off-chip memory controllers) or protocol thread in main processor (suited for
multi-threaded processors) or protocol core in main processor (suited for multi-core
processors)

= Hardwired FSM

e Low occupancy (all-hardware)

e Protocol must be simple enough to be able to design and verify in hardware

« Possible to pipeline various stages of protocol processing

« Cannot afford late-binding or flexibility in the choice of protocol

e SGI Origin 2000, MIT Alewife, Stanford DASH

4|l Previous Next||p

file:///E|/parallel_com_arch/lecture32/32_3.htm[6/13/2012 12:14:36 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"
Lecture 32: "Protocol Occupancy and Directory Controllers™

Flexible protocol engine

= Software protocol
« Executes short sequences of instructions or micro-code known as protocol handlers on
a processor
o Each message type has a separate handler
e Can make the protocol complicated
« Allows late-binding of protocol, can choose appropriate protocol, easier verification path
« Normally higher occupancy than hardwired controllers if controller clock is slow
e Protocol processor may use separate protocol data and code caches to speed up
protocol processing
= Four existing designs
e Customized coprocessor embedded in memory controller
o ISA designed to include bit field operations: helpful for directory manipulation (bit
clear, bit set, branch on bit clear, branch on bit set, find first set bit, etc.)
o Processor is normally simple e.g. short pipeline, in-order, no fp unit or mult/div
o Example: Stanford FLASH, Sun S3.mp, Alpha Piranha CMP, Sequent STiNG,
Sequent NUMA-Q
= Four existing designs
e General purpose processor embedded in memory controller
o Uses commodity processor cores
o May be wasteful of resources
o Normally higher occupancy than customized coprocessor if memory clock is
slow
o Example: Wisconsin Typhoon
= Four existing designs
« Execute on main processor
o Interrupt the main processor to execute coherence protocol on cache miss or
network message arrival
o Needs an extremely low overhead interrupt mechanism to be competitive
o Grahn and Stenstrom (1995)
= Four existing designs
o Execute on spare hardware thread context of multi-threaded (or hyper-threaded)
processors
o No interrupt overhead
o Reserve a protocol thread context
o Application and protocol threads co-exist in the processor (no context switch
needed)
o Chaudhuri and Heinrich (2004)
o Can't discuss in detail before talking about SMT/HT
= Possible future design
e Devote a core to protocol processing in multi-core architectures (Kalamkar, Chaudhuri,
and Heinrich, 2007)
« Increasingly attractive as number of cores increases

dllPrevious Next||p

file:/l/E|/parallel_com_arch/lecture32/32_4.htm[6/13/2012 12:14:36 PM]

file:///E|/parallel_com_arch/lecture33/33_1.htm

	32_1
	Local Disk
	Objectives_template

	32_2
	Local Disk
	Objectives_template

	32_3
	Local Disk
	Objectives_template

	32_4
	Local Disk
	Objectives_template

