
Objectives_template

file:///E|/parallel_com_arch/lecture29/29_1.htm[6/13/2012 12:12:37 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 29: "Basics of Directory"

Directory-based Cache Coherence:

What is needed?

Adv. of MP nodes

Disadvantages

Basics of directory

Directory organization

Is directory useful?

Sharing pattern

Directory organization

Directory overhead

Path of a read miss

Correctness issues

[From Chapter 8 of Culler, Singh, Gupta]
[SGI Origin 2000 material taken from Laudon and Lenoski, ISCA 1997]
[GS320 material taken from Gharachorloo et al., ASPLOS 2000]

file:///E|/parallel_com_arch/lecture28/28_6.htm

Objectives_template

file:///E|/parallel_com_arch/lecture29/29_2.htm[6/13/2012 12:12:38 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 29: "Basics of Directory"

What is needed?

On every memory operation
Find the state of the cache line (normally present in cache)
Tell others about the operation if needed (achieved by broadcasting in bus-based or
small-scale distributed systems)
Other processors must take appropriate actions
Also, need a mechanism to resolve races between concurrent conflicting accesses (i.e.
one of them is a write): this essentially needs some central control on a per cache line
basis
Atomic bus provides an easy way of serializing
Split-transaction bus with a distributed request table works only because every request
table can see every transaction

Need to have a table that gets accessed/updated by every cache line access
This is the directory
Every cache line has a separate directory entry
The directory entry stores the state of the line, who the current owner is (if any), the
sharers (if any), etc.
On a miss, the directory entry must be located, and appropriate coherence action must
be taken
A popular architecture is to have a two-level hierarchy: each node is SMP, kept
coherent via snoopy or directory protocol, and nodes are kept coherent by a scalable
directory protocol (Convex Exemplar: directory-directory, Sequent, Data General, HAL,
DASH: snoopy-directory)

Adv. of MP nodes

Amortization of node fixed cost over multiple processors; can use commodity SMPs
Much communication may be contained within a node i.e. less “remote” communication
Request combining by some extra hardware in memory controller
Possible to share caches e.g., chip multiprocessor nodes (IBM POWER4 and POWER5) or
hyper-threaded nodes (Intel Xeon MP)
Exact benefit depends on sharing pattern

Widely shared data or nearest neighbor (if properly mapped) may be good

Disadvantages

Snoopy bus delays all accesses
The local snoop must complete first
Then only a request can be sent to remote home
Same delay may be incurred at the remote home also depending on the coherence
scheme
This dictated SGI Origin 2000 to have dual processor nodes, but managed entirely by
director

Bandwidth at critical points is shared by all processors
System bus, memory controller, DRAM, router
Bad communication patterns can actually result in execution time larger than
uniprocessor nodes even though average “hop” time may be larger e.g., compare two

Objectives_template

file:///E|/parallel_com_arch/lecture29/29_2.htm[6/13/2012 12:12:38 PM]

16P systems one with 4-way 4 nodes and one with 16 nodess

Objectives_template

file:///E|/parallel_com_arch/lecture29/29_3.htm[6/13/2012 12:12:38 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 29: "Basics of Directory"

Basics of directory

Theoretically speaking each directory entry should have a dirty bit and a bitvector of length P
On a read from processor k, if dirty bit is off read cache line from memory, send it to k,
set bit[k] in vector; if dirty bit is on read owner id from vector (different interpretation of
bitvector), send read intervention to owner, owner replies line directly to k (how?),
sends a copy to home, home updates memory, directory controller sets bit[k] and
bit[owner] in vector
On a write from processor k, if dirty bit is off send invalidations to all sharers marked in
vector, wait for acknowledgments, read cache line from memory, send it to k, zero out
vector and write k in vector, set dirty bit; if dirty bit on same as read, but now
intervention is of readX type and memory does not write the line back, dirty bit is set
and vector=k

Directory organization

Centralized vs. distributed
Centralized directory helps to resolve many races, but becomes a bandwidth bottleneck
One solution is to provide a banked directory structure: with each memory bank
associate its directory bank
But since memory is distributed, this essentially leads to distributed directory structure
i.e. each node is responsible for holding the directory entries corresponding to the
memory lines it is holding
Why did we decide to have a distributed memory organization instead of dance hall?

Is directory useful?

One drawback of directory
Before looking up the directory you cannot decide what to do (even if you start reading
memory speculatively)
So directory introduces one level of indirection in every request that misses in
processor’s cache hierarchy
Therefore, broadcast is definitely preferable over directory if the system can offer
enough memory controller and router bandwidth to handle broadcast messages
(network link bandwidth is normally not the bottleneck since most messages do not
carry data; observe that you would never broadcast a reply); AMD Opteron adopted this
scheme, but target is small scale

Directory is preferable
If number of sharers is small because in this case a broadcast would waste enormous
amount of memory controller bandwidth

Objectives_template

file:///E|/parallel_com_arch/lecture29/29_4.htm[6/13/2012 12:12:38 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 29: "Basics of Directory"

Sharing pattern

Problem is with the writes
Frequently written cache lines exhibit a small number of sharers; so small number of
invalidations
Widely shared data are written infrequently; so large number of invalidations, but rare
Synchronization variables are notorious: heavily contended locks are widely shared and
written in quick succession generating a burst of invalidations; require special solutions
such as queue locks or tree barriers
What about interventions? These are very problematic because in these cases you
cannot send the interventions before looking up the directory and any speculative
memory lookup would be useless
For scientific applications interventions are small due to mostly one producer-many
consumer pattern; for database workloads these take the lion’s share due to migratory
pattern and tend to increase with bigger cache

Optimizing interventions related to migratory sharing has been a major focus of high-end
scalable servers

AlphaServer GS320 employs few optimizations to quickly resolve races related to
migratory hand-off (more later)
Some academic research looked at destination or owner prediction to speculatively
send interventions even before consulting the directory (Martin and Hill 2003, Acacio et
al 2002)

In general, directory provides far better utilization of bandwidth for scalable MPs compared to
broadcast

Directory organization

How to find source of directory information
Centralized: just access the directory (bandwidth limited)
Distributed: flat scheme distributes directory with memory and every cache line has a
home node where its memory and directory reside
Hierarchical scheme organizes the processors as the leaves of a logical tree (need not
be binary) and an internal node stores the directory entries for the memory lines local
to its children; a directory entry essentially tells you which of its children subtrees are
caching the line and if some subtree which is not its children is also caching; finding
the directory entry of a cache line involves a traversal of the tree until the entry is found
(inclusion is maintained between level k and k+1 directory node where the root is at the
highest level i.e. in the worst case may have to go to the root to find dir.)

Format of a directory entry
Varies a lot: no specific rule
Memory-based scheme: directory entry is co-located in the home node with the
memory line; various organizations can be used; the most popular one is a simple bit
vector (with a 128 bytes line, storage overhead for 64 nodes is 6.35%, for 256 nodes
25%, for 1024 nodes 100%); clearly does not scale with P (more later)
Cache-based scheme: Organize the directory as a distributed linked-list where the
sharer nodes form a chain; the cache tag is extended to hold a node number; the
home node only knows the id of the first sharer; on a read miss the requester adds
itself to the head (involves home and first sharer); on a write miss traverse list and

Objectives_template

file:///E|/parallel_com_arch/lecture29/29_4.htm[6/13/2012 12:12:38 PM]

invalidate (essentially serialized chain of messages); advantage: distributes contention
and does not make the home node a hot-spot, storage overhead is fixed; but very
complex (IEEE SCI standard)

Lot of research has been done to reduce directory storage overhead
The trade-off is between preciseness of information and performance
Normal trick is to have a superset of information e.g., group every two sharers into a
cluster and have a bit per cluster: may lead to one useless invalidation per cluster
We will explore this in detail later
Memory-based bitvector scheme is very popular: invalidations can be overlapped or
multicast
Cache-based schemes incur serialized message chain for invalidation
Hierarchical schemes are not used much due to high latency and volume of messages
(up and down tree); also root may become a bandwidth bottleneck

Objectives_template

file:///E|/parallel_com_arch/lecture29/29_5.htm[6/13/2012 12:12:38 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 29: "Basics of Directory"

Directory overhead

Quadratic in number of processors for bitvector
Assume P processors, each with M amount of local memory (i.e. total shared memory
size is M*P)
Let the coherence granularity (cache block size) be B
Number of cache blocks per node = M/B = number of directory entries per node
Size of one directory entry = P + O(1)

Total size of directory memory across all processors = (M/B)(P+O(1))*P = O(P2)

Path of a read miss

Assume that the line is not shared by anyone
Load issues from load queue (for data) or fetcher accesses icache; looks up TLB and
gets PA
Misses in L1, L2, L3,… caches
Launches address and request type on system bus
The request gets queued in memory controller and registered in OTT or TTT
(Outstanding Transaction Table or Transactions in Transit Table)
Memory controller eventually schedules the request
Decodes home node from upper few bits of address
Local home: access directory and data memory (how?)
Remote home: request gets queued in network interface

From NI onward
Eventually the request gets forwarded to the router and through the network to the
home
At the home the request gets queued in NI and waits for being scheduled by the home
memory controller
After it is scheduled home memory controller looks up directory and data memory
Reply returns through the same path

Total time (by log model and memory latency m)
Local home: max(kho, m)

Remote home: kro + gh+a + Nl + gh+a + max(kho, m) + gh+a+d + Nl + gh+a+d + kro

Correctness issues

Serialization to a location
Schedule order at home
Use NACKs (extra traffic and livelock) or smarter techniques (back-off, NACK-free)

Flow control deadlock
Avoid buffer dependence cycles
Avoid network queue dependence cycles
Virtual networks multiplexed on physical networks
Coherence protocol dictates the virtual network usage

file:///E|/parallel_com_arch/lecture30/30_1.htm

	29_1
	Local Disk
	Objectives_template

	29_2
	Local Disk
	Objectives_template

	29_3
	Local Disk
	Objectives_template

	29_4
	Local Disk
	Objectives_template

	29_5
	Local Disk
	Objectives_template

