
Objectives_template

file:///E|/parallel_com_arch/lecture27/27_1.htm[6/13/2012 12:00:41 PM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 27: "Scalable Snooping and AMD Hammer Protocol"

Special Topics

Virtually indexed caches

Virtual indexing

TLB coherence

TLB shootdown

Snooping on a ring

Scaling bandwidth

AMD Opteron

Opteron servers

AMD Hammer protocol

[From Chapter 6 of Culler, Singh, Gupta]

file:///E|/parallel_com_arch/lecture26/26_6.htm

Objectives_template

file:///E|/parallel_com_arch/lecture27/27_2.htm[6/13/2012 12:00:41 PM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 27: "Scalable Snooping and AMD Hammer Protocol"

Virtually indexed caches

Recall that to have concurrent accesses to TLB and cache, L1 caches are often made
virtually indexed

Can read the physical tag and data while the TLB lookup takes place
Later compare the tag for hit/miss detection
How does it impact the functioning of coherence protocols and snoop logic?

Even for uniprocessor the synonym problem
Two different virtual addresses may map to the same physical page frame
One simple solution may be to flush all cache lines mapped to a page frame at the
time of replacement
But this clearly prevents page sharing between two processes

Virtual indexing

Software normally employs page coloring to solve the synonym issue
Allow two virtual pages to point to the same physical page frame only if the two virtual
addresses have at least lower k bits common where k is equal to cache line block
offset plus log2 (number of cache sets)
This guarantees that in a virtually indexed cache, lines from both pages will map to the
same index range

What about the snoop logic?
Putting virtual address on the bus requires a VA to PA translation in the snoop so that
physical tags can be generated (adds extra latency to snoop and also requires
duplicate set of translations)
Putting physical address on the bus requires a reverse translation to generate the
virtual index (requires an inverted page table)

Dual tags (Goodman, 1987)
Hardware solution to avoid synonyms in shared memory
Maintain virtual and physical tags; each corresponding tag pair points to each other
Assume no page coloring
Use virtual address to look up cache (i.e. virtual index and virtual tag) from processor
side; if it hits everything is fine; if it misses use the physical address to look up the
physical tag and if it hits follow the physical tag to virtual tag pointer to find the index
If virtual tag misses and physical tag hits, that means the synonym problem has
happened i.e. two different VAs are mapped to the same PA; in this case invalidate the
cache line pointed to by physical tag, replace the line at the virtual index of the current
virtual address, place the contents of the invalidated line there and update the physical
tag pointer to point to the new virtual index

Goodman, 1987
Always use physical address for snooping
Obviates the need for a TLB in memory controller
The physical tag is used to look up the cache for snoop decision
In case of a snoop hit the pointer stored with the physical tag is followed to get the
virtual index and then the cache block can be accessed if needed (e.g., in M state)
Note that even if there are two different types of tags the state of a cache line is the
same and does not depend on what type of tag is used to access the line

Multi-level cache hierarchy

Objectives_template

file:///E|/parallel_com_arch/lecture27/27_2.htm[6/13/2012 12:00:41 PM]

Normally the L1 cache is designed to be virtually indexed and other levels are
physically indexed
L2 sends interventions to L1 by communicating the PA
L1 must determine the virtual index from that to access the cache: dual tags are
sufficient for this purpose

Objectives_template

file:///E|/parallel_com_arch/lecture27/27_3.htm[6/13/2012 12:00:41 PM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 27: "Scalable Snooping and AMD Hammer Protocol"

TLB coherence

A page table entry (PTE) may be held in multiple processors in shared memory because all of
them access the same shared page

A PTE may get modified when the page is swapped out and/or access permissions are
changed
Must tell all processors having this PTE to invalidate
How to do it efficiently?

No TLB: virtually indexed virtually tagged L1 caches
On L1 miss directly access PTE in memory and bring it to cache; then use normal
cache coherence because the PTEs also reside in the shared memory segment
On page replacement the page fault handler can flush the cache line containing the
replaced PTE
Too impractical: fully virtual caches are rare, still uses a TLB for upper levels (Alpha
21264 instruction cache)

Hardware solution
Extend snoop logic to handle TLB coherence
PowerPC family exercises a tlbie instruction (TLB invalidate entry)
When OS modifies a PTE it puts a tlbie instruction on bus
Snoop logic picks it up and invalidates the TLB entry if present in all processors
This is well suited for bus-based SMPs, but not for DSMs because broadcast in a
large-scale machine is not good

TLB shootdown

Popular TLB coherence solution
Invoked by an initiator (the processor which modifies the PTE) by sending interrupt to
processors that might be caching the PTE in TLBs; before doing so OS also locks the
involved PTE to avoid any further access to it in case of TLB misses from other
processors
The receiver of the interrupt simply invalidates the involved PTE if it is present in its
TLB and sets a flag in shared memory on which the initiator polls
On completion the initiator unlocks the PTE
SGI Origin uses a lazy TLB shootdown i.e. it invalidates a TLB entry only when a
processor tries to access it next time (will discuss in detail)

Snooping on a ring

Length of the bus limits the frequency at which it can be clocked which in turn limits the
bandwidth offered by the bus leading to a limited number of processors
A ring interconnect provides a better solution

Connect a processor only to its two neighbors
Short wires, much higher switching frequency, better bandwidth, more processors
Each node has private local memory (more like a distributed shared memory
multiprocessor)
Every cache line has a home node i.e. the node where the memory contains this line:
can be determined by upper few bits of the PA
Transactions traverse the ring node by node

Objectives_template

file:///E|/parallel_com_arch/lecture27/27_3.htm[6/13/2012 12:00:41 PM]

Snoop mechanism
When a transaction passes by the ring interface of a node it snoops the transaction,
takes appropriate coherence actions, and forwards the transaction to its neighbor if
necessary
The home node also receives the transaction eventually and let’s assume that it has a
dirty bit associated with every memory line (otherwise you need a two-phase protocol)
A request transaction is removed from the ring when it comes back to the requester
(serves as an acknowledgment that every node has seen the request)
The ring is essentially divided into time slots where a node can insert new request or
response; if there is no free time slot it must wait until one passes by: called a
slotted ring

The snoop logic must be able to finish coherence actions for a transaction before the next
time slot arrives
The main problem of a ring is the end-to-end latency, since the transactions must traverse
hop-by-hop
Serialization and sequential consistency is trickier

The order of two transactions may be differently seen by two processors if the source
of one transaction is between the two processors
The home node can resort to NACKs if it sees conflicting outstanding requests
Introduces many races in the protocol

Objectives_template

file:///E|/parallel_com_arch/lecture27/27_4.htm[6/13/2012 12:00:41 PM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 27: "Scalable Snooping and AMD Hammer Protocol"

Scaling bandwidth

Data bandwidth
Make the bus wider: costly hardware
Replace bus by point-to-point crossbar: since only the address portion of a transaction
is needed for coherence, the data transaction can be directly between source and
destination
Add multiple data busses

Snoop or coherence bandwidth
This is determined by the number of snoop actions that can be executed in unit time
Having concurrent non-conflicting snoop actions definitely helps improve the protocol
throughput
Multiple address busses: a separate snoop engine is associated with each bus on each
node
Order the address busses logically to define a partial order among concurrent requests
so that these partial orders can be combined to form a total order

AMD Opteron

Objectives_template

file:///E|/parallel_com_arch/lecture27/27_4.htm[6/13/2012 12:00:41 PM]

Each node contains an x86-64 core, 64 KB L1 data and instruction caches, 1 MB L2 cache,
on-chip integrated memory controller, three fast routing links called hyperTransport, local DDR
memory
Glueless MP: just connect 8 Opteron chips via HT to design a distributed shared memory
multiprocessor
L2 cache supports 10 outstanding misses
Integrated memory controller and north bridge functionality help a lot

Can clock the memory controller at processor frequency (2 GHz)
No need to have a cumbersome motherboard; just buy the Opteron chip and connect it
to a few peripherals (system maintenance is much easier)
Overall, improves performance by 20-25% over Athlon
Snoop throughput and bandwidth is much higher since the snoop logic is clocked at 2
GHz

Integrated hyperTransport provides very high communication bandwidth
Point-to-point links, split-transaction and full duplex (bidirectional links)
On each HT link you can connect a processor or I/O

Objectives_template

file:///E|/parallel_com_arch/lecture27/27_5.htm[6/13/2012 12:00:42 PM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 27: "Scalable Snooping and AMD Hammer Protocol"

Opteron servers

Produced from IEEE Micro

AMD Hammer protocol

Opteron uses the snoop-based Hammer protocol
First the requester sends a transaction to home node
The home node starts accessing main memory and in parallel broadcasts the request to
all the nodes via point-to-point messages
The nodes individually snoop the request, take appropriate coherence actions in their
local caches, and sends data (if someone has it in M or O state) or an empty completion
acknowledgment to the requester; the home memory also sends the data speculatively
After gathering all responses the requester sends a completion message to the home
node so that it can proceed with subsequent requests (this completion ack may be
needed for serializing conflicting requests)
This is one example of a snoopy protocol over a point-to-point interconnect unlike the
shared bus

Objectives_template

file:///E|/parallel_com_arch/lecture27/ex_2.htm[6/13/2012 12:00:42 PM]

Exercise : 2

These problems should be tried after module 12 is completed.

1. [30 points] For each of the memory reference streams given in the following,
compare the cost of executing it on a bus-based SMP that supports (a) MESI
protocol without cache-to-cache sharing, and (b) Dragon protocol. A read from
processor N is denoted by rN while a write from processor N is denoted by wN.
Assume that all caches are empty to start with and that cache hits take a single
cycle, misses requiring upgrade or update take 60 cycles, and misses requiring
whole block transfer take 90 cycles. Assume that all caches are writeback.

Stream1: r1 w1 r1 w1 r2 w2 r2 w2 r3 w3 r3 w3
Stream2: r1 r2 r3 w1 w2 w3 r1 r2 r3 w3 w1
Stream3: r1 r2 r3 r3 w1 w1 w1 w1 w2 w3

[For each stream for each protocol: 5 points]

2. [15 points] (a) As cache miss latency increases, does an update protocol
become more or less preferable as compared to an invalidation based protocol?
Explain.

(b) In a multi-level cache hierarchy, would you propagate updates all the way to
the first-level cache? What are the alternative design choices?

(c) Why is update-based protocol not a good idea for multiprogramming
workloads running on SMPs?

3. [20 points] Assuming all variables to be initialized to zero, enumerate all
outcomes possible under sequential consistency for the following code
segments.

(a) P1: A=1;
P2: u=A; B=1;
P3: v=B; w=A;

(b) P1: A=1;
P2: u=A; v=B;
P3: B=1;
P4: w=B; x=A;

(c) P1: u=A; A=u+1;
P2: v=A; A=v+1;

(d) P1: fetch-and-inc (A)
P2: fetch-and-inc (A)

4. [30 points] Consider a quad SMP using a MESI protocol (without cache-to-
cache sharing). Each processor tries to acquire a test-and-set lock to gain
access to a null critical section. Assume that test-and-set instructions always go

Objectives_template

file:///E|/parallel_com_arch/lecture27/ex_2.htm[6/13/2012 12:00:42 PM]

on the bus and they take the same time as the normal read transactions. The
initial condition is such that processor 1 has the lock and processors 2, 3, 4 are
spinning on their caches waiting for the lock to be released. Every processor
gets the lock once, unlocks, and then exits the program. Consider the bus
transactions related to the lock/unlock operations only.

(a) What is the least number of transactions executed to get from the initial to
the final state? [10 points]

(b) What is the worst-case number of transactions? [5 points]

(c) Answer the above two questions if the protocol is changed to Dragon. [15
points]

5. [30 points] Answer the above question for a test-and-test-and-set lock for a
16-processor SMP. The initial condition is such that the lock is released and no
one has got the lock yet.

6. [10 points] If the lock variable is not allowed to be cached, how will the traffic
of a test-and-set lock compare against that of a test-and-test-and set lock?

7. [15 points] You are given a bus-based shared memory machine. Assume that
the processors have a cache block size of 32 bytes and A is an array of
integers (four bytes each). You want to parallelize the following loop.

for(i=0; i<17; i++) {
for (j=0; j<256; j++) {
A[j] = do_something(A[j]);
}
}

(a) Under what conditions would it be better to use a dynamically scheduled
loop?

(b) Under what conditions would it be better to use a statically scheduled loop?

(c) For a dynamically scheduled inner loop, how many iterations should a
processor pick each time?

8. [20 points] The following barrier implementation is wrong. Make as little
change as possible to correct it.

struct bar_struct {
LOCKDEC(lock);
int count; // Initialized to zero
int releasing; // Initialized to zero
} bar;

void BARRIER (int P) {
LOCK(bar.lock);
bar.count++;
if (bar.count == P) {
bar.releasing = 1;
bar.count--;
}

Objectives_template

file:///E|/parallel_com_arch/lecture27/ex_2.htm[6/13/2012 12:00:42 PM]

else {
UNLOCK(bar.lock);
while (!bar.releasing);
LOCK(bar.lock);
bar.count--;
if (bar.count == 0) {
bar.releasing = 0;
}
}
UNLOCK(bar.lock);
}

Objectives_template

file:///E|/parallel_com_arch/lecture27/ex_sol_2.htm[6/13/2012 12:00:42 PM]

Solution of Exercise : 2

[Thanks to Saurabh Joshi for some of the suggestions.]

1. [30 points] For each of the memory reference streams given in the following,
compare the cost of executing it on a bus-based SMP that supports (a) MESI
protocol without cache-to-cache sharing, and (b) Dragon protocol. A read from
processor N is denoted by rN while a write from processor N is denoted by wN.
Assume that all caches are empty to start with and that cache hits take a single
cycle, misses requiring upgrade or update take 60 cycles, and misses requiring
whole block transfer take 90 cycles. Assume that all caches are writeback.

Solution:
Stream1: r1 w1 r1 w1 r2 w2 r2 w2 r3 w3 r3 w3

(a) MESI: read miss, hit, hit, hit, read miss, upgrade, hit, hit, read miss,
upgrade, hit, hit. Total latency = 90+1+1+1+2*(90+60+1+1) = 397 cycles
(b) Dragon: read miss, hit, hit, hit, read miss, update, hit, update, read miss,
update, hit, update. Total latency = 90+1+1+1+2*(90+60+1+60) = 515 cycles

Stream2: r1 r2 r3 w1 w2 w3 r1 r2 r3 w3 w1

(a) MESI: read miss, read miss, read miss, upgrade, readX, readX, read miss,
read miss, hit, upgrade, readX. Total latency =
90+90+90+60+90+90+90+90+1+60+90 = 841 cycles
(b) Dragon: read miss, read miss, read miss, update, update, update, hit, hit,
hit, update, update. Total latency = 90+90+90+60+60+60+1+1+1+60+60=573
cycles

Stream3: r1 r2 r3 r3 w1 w1 w1 w1 w2 w3

(a) MESI: read miss, read miss, read miss, hit, upgrade, hit, hit, hit, readX,
readX. Total latency = 90+90+90+1+60+1+1+1+90+90 = 514 cycles
(b) Dragon: read miss, read miss, read miss, hit, update, update, update,
update, update, update. Total latency=90+90+90+1+60*6=631 cycles

[For each stream for each protocol: 5 points]

2. [15 points] (a) As cache miss latency increases, does an update protocol
become more or less preferable as compared to an invalidation based protocol?
Explain.

Solution: If the system is bandwidth-limited, invalidation protocol will remain
the choice. However, if there is enough bandwidth, with increasing cache miss
latency, invalidation protocol will lose in importance.

(b) In a multi-level cache hierarchy, would you propagate updates all the way to
the first-level cache? What are the alternative design choices?

Solution: If updates are not propagated to L1 caches, on an update the L1
block must be invalidated/retrieved to the L2 cache.

Objectives_template

file:///E|/parallel_com_arch/lecture27/ex_sol_2.htm[6/13/2012 12:00:42 PM]

(c) Why is update-based protocol not a good idea for multiprogramming
workloads running on SMPs?

Solution: Pack-rat. Discussed in class.

3. [20 points] Assuming all variables to be initialized to zero, enumerate all
outcomes possible under sequential consistency for the following code
segments.

(a) P1: A=1;
P2: u=A; B=1;
P3: v=B; w=A;

Solution: If u=1 and v=1, then w must be 1. So (u, v, w) = (1, 1, 0) is not
allowed. All other outcomes are possible.

(b) P1: A=1;
P2: u=A; v=B;
P3: B=1;
P4: w=B; x=A;

Solution: Observe that if u sees the new value A, v does not see the new
value of B, and w sees that new value of B, then x cannot see the old value of
A. So (u, v, w, x) = (1, 0, 1, 0) is not allowed. Similarly, if w sees the new value
of B, x sees the old value of A, u sees the new value of A, then v cannot see
the old value B. So (1, 0, 1, 0) is not allowed, which is already eliminated in the
above case. All other 15 combinations are possible.

(c) P1: u=A; A=u+1;
P2: v=A; A=v+1;

Solution: If v=A happens before A=u+1, then the final (u, v, A) = (0, 0, 1).
If v=A happens after A=u+1, then the final (u, v, A) = (0, 1, 2).
Since u and v are symmetric, we will also observe the outcome (1, 0, 2) in some
cases.

(d) P1: fetch-and-inc (A)
P2: fetch-and-inc (A)

Solution: The final value of A is 2.

4. [30 points] Consider a quad SMP using a MESI protocol (without cache-to-
cache sharing). Each processor tries to acquire a test-and-set lock to gain
access to a null critical section. Assume that test-and-set instructions always go
on the bus and they take the same time as the normal read transactions. The
initial condition is such that processor 1 has the lock and processors 2, 3, 4 are
spinning on their caches waiting for the lock to be released. Every processor
gets the lock once, unlocks, and then exits the program. Consider the bus
transactions related to the lock/unlock operations only.

(a) What is the least number of transactions executed to get from the initial to
the final state? [10 points]

Solution: 1 unlocks, 2 locks, 2 unlocks (no transaction), 3 locks, 3 unlocks (no

Objectives_template

file:///E|/parallel_com_arch/lecture27/ex_sol_2.htm[6/13/2012 12:00:42 PM]

transaction), 4 locks, 4 unlocks (no transaction). Notice that in the best possible
scenario, the timings will be such that when someone is in the critical section no
one will even attempt a test-and-set. So when the lock holder unlocks, the
cache block will still be in its cache in M state.

(b) What is the worst-case number of transactions? [5 points]

Solution: Unbounded. While someone is holding the lock, other contending
processors may keep on invalidating each other indefinite number of times.

(c) Answer the above two questions if the protocol is changed to Dragon. [15
points]

Solution: Observe that it is an order of magnitude more difficult to implement
shared test-and-set locks (LL/SC-based locks are easier to implement) in a
machine running an update-based protocol. In a straightforward implementation,
on an unlock everyone will update the value in cache and then will try to do
test-and-set. Observe that the processor which wins the bus and puts its update
first, will be the one to enter the critical section. Others will observe the update
on the bus and must abort their test-and-set attempts. While someone is in the
critical section, nothing stops the other contending processors from trying test-
and-set (notice the difference with test-and-test-and-set). However, these
processors will not succeed in getting entry to the critical section until the unlock
happens.

Least number is still 7. A test-and-set or an unlock involves putting an update
on the bus.

Worst case is still unbounded.

5. [30 points] Answer the above question for a test-and-test-and-set lock for a
16-processor SMP. The initial condition is such that the lock is released and no
one has got the lock yet.

Solution:MESI:

Best case analysis: 1 locks, 1 unlocks, 2 locks, 2 unlocks, ... This involves
exactly 16 transactions (unlocks will not generate any transaction in the best
case timing).

Worst case analysis: Done in the class. The first round will have (16 + 15 + 1 +
15) transactions. The second round will have (15 + 14 + 1 + 14) transactions.
The last but one round will have (2 + 1 + 1 + 1) transactions and the last round
will have one transaction (just locking of the last processor). The last unlock will
not generate any transaction. If you add these up, you will get (1.5P+2)(P-1) +
1. For P=16, this is 391.

Dragon:

Best case analysis: Now both unlocks and locks will generate updates. So the
total number of transactions would be 32.

Worst case analysis: The test & set attempts in each round will generate
updates. The unlocks will also generate updates. Everything else will be cache
hits. So the number of transactions is (16+1)+(15+1)+...+(1+1) = 152.

Objectives_template

file:///E|/parallel_com_arch/lecture27/ex_sol_2.htm[6/13/2012 12:00:42 PM]

6. [10 points] If the lock variable is not allowed to be cached, how will the traffic
of a test-and-set lock compare against that of a test-and-test-and-set lock?

Solution:In the worst case both would be unbounded.

7. [15 points] You are given a bus-based shared memory machine. Assume that
the processors have a cache block size of 32 bytes and A is an array of
integers (four bytes each). You want to parallelize the following loop.

for(i=0; i<17; i++) {
for (j=0; j<256; j++) {
A[j] = do_something(A[j]);
}
}

(a) Under what conditions would it be better to use a dynamically scheduled
loop?

Solution: If runtime of do_something varies a lot depending on its argument
value or if nothing is known about do_something.

(b) Under what conditions would it be better to use a statically scheduled loop?

Solution: If runtime of do_something is roughly independent of its argument
value.

(c) For a dynamically scheduled inner loop, how many iterations should a
processor pick each time?

Solution: Multiple of 8 integers (one cache block is eight integers).

8. [20 points] The following barrier implementation is wrong. Make as little
change as possible to correct it.

struct bar_struct {
LOCKDEC(lock);
int count; // Initialized to zero
int releasing; // Initialized to zero
} bar;

void BARRIER (int P) {
LOCK(bar.lock);
bar.count++;
if (bar.count == P) {
bar.releasing = 1;
bar.count--;
}
else {
UNLOCK(bar.lock);
while (!bar.releasing);
LOCK(bar.lock);
bar.count--;
if (bar.count == 0) {
bar.releasing = 0;

Objectives_template

file:///E|/parallel_com_arch/lecture27/ex_sol_2.htm[6/13/2012 12:00:42 PM]

}
}
UNLOCK(bar.lock);
}

Solution: There are too many problems with this implementation. I will not list
them here. The correct barrier code is given below which requires addition of
one line of code. Notice that the releasing variable nicely captures the notion of
sense reversal.

void BARRIER (int P) {
while (bar.releasing); // New addition
LOCK(bar.lock);
bar.count++;
if (bar.count == P) {
bar.releasing = 1;
bar.count--;
}
else {
UNLOCK(bar.lock);
while (!bar.releasing);
LOCK(bar.lock);
bar.count--;
if (bar.count == 0) {
bar.releasing = 0;
}
}
UNLOCK(bar.lock);
}

file:///E|/parallel_com_arch/lecture28/28_1.htm

	27_1
	Local Disk
	Objectives_template

	27_2
	Local Disk
	Objectives_template

	27_3
	Local Disk
	Objectives_template

	27_4
	Local Disk
	Objectives_template

	27_5
	Local Disk
	Objectives_template

	ex_2
	Local Disk
	Objectives_template

	ex_sol_2
	Local Disk
	Objectives_template

