
Objectives_template

file:///E|/parallel_com_arch/lecture33/33_1.htm[6/13/2012 12:15:17 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 33: "SCI Protocol"

 
Directory-based Cache Coherence:

Special Topics

Sequent NUMA-Q

SCI protocol

Directory overhead

Cache overhead

Handling read miss

Handling write miss

Handling writebacks

Roll-out protocol

Snoop interaction

Protocol processor

[From Chapter 8 of Culler, Singh, Gupta]
[SGI Origin 2000 material taken from Laudon and Lenoski, ISCA 1997]
[GS320 material taken from Gharachorloo et al., ASPLOS 2000]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture32/32_4.htm


Objectives_template

file:///E|/parallel_com_arch/lecture33/33_2.htm[6/13/2012 12:15:18 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 33: "SCI Protocol"

 

Sequent NUMA-Q

Implements the IEEE SCI directory protocol
One node is an Intel Pentium Pro quad SMP
The IQ-Link board connects to the system bus and implements the directory protocol

Also contains a 32 MB 4-way set associative RAC
Processors within a node are kept coherent via a MESI snoop-based protocol already
implemented in Pentium Pro quad
The SCI protocol keeps the RACs coherent across nodes
The RAC maintains inclusion with the processor caches

SCI protocol

Directory structure
Home contains the id of the most recently queued sharer or the owner (6 bits)

Sharing list
A sharer contains the id of the next sharer and the previous sharer
The last sharer contains the id of home node and previous sharer
A circular doubly linked list

Three major states in directory
Home: remotely unowned, but may be in local quad
Fresh: same as shared
Gone: some node has exclusive ownership; memory stale 

Cache states
Processor cache: MESI
RAC: 29 stable states and many transient states

7 bits for representing RAC state
Two-part naming of RAC state: first part says the location of the block in the list
(ONLY, HEAD, TAIL, MID), second part mentions the actual state (modified,
exclusive, fresh, copy, …)
We will use some of these to understand the basics of SCI (full description
available from IEEE standards)

HEAD_DIRTY, TAIL_CLEAN, etc
Three major operations on the list

List construction: involves adding a new sharer to the list
Rollout: remove a sharer from the list; must synchronize with immediate neighbors
Purge/invalidate: head node always has write permission and so it can purge the entire
list before writing; naturally, only the head node has the privilege of doing this

Three classes of protocol
Minimal SCI: sharing not allowed
Typical SCI (will discuss this): all supports that a normal human being can imagine
Full SCI: lot of optimizations including hardware support for synchronization

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture33/33_3.htm[6/13/2012 12:15:18 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 33: "SCI Protocol"

 

Directory overhead

Directory overhead
Need 6 bits to maintain the head node id

NUMA-Q scales up to 64 nodes
Need 2 bits for encoding three states: HOME, FRESH, GONE
A system with P nodes, M bytes of memory, and cache block size of B bytes has M/B
cache blocks per node

2 + log(P) bits needed for directory entry per cache block
Total overhead = (M/B)*(log (P) + O(1))*P

O(P*log(P))

Cache overhead

Extended RAC tags for storing upstream and downstream pointers
2*log(P) per cache block
Total increased tag DRAM area is O(P*log(P))

Handling read miss

Requester on missing the RAC as well as quad snoop sends a read request to home
Allocates a block in RAC and marks its state PENDING
CASE A: directory is HOME state

Change directory state to FRESH
Change head pointer to requester id
Send reply to requester
Requester fills cache block in RAC, forwards it to requesting processor, changes
RAC block state to ONLY_FRESH

CASE B: directory state is FRESH
Home changes head pointer to requester id
Sends reply with data read from memory and the old head node id
Requester sends a request to the previous head expressing intention to become
the new head
Old head changes its upstream pointer to point to the requester and the RAC
state to MID_VALID or TAIL_VALID; sends an acknowledgment to requester
Requester changes its downstream pointer to old head and upstream pointer to
home; also changes RAC line state to HEAD_FRESH
Observe the strict request-reply nature of the protocol

CASE C: directory state is GONE
Means head node has an exclusive copy of the cache line
Home replies to the requester with the head node id, but does not change the
state of the directory
Requester sets RAC line state to PENDING and sends a data request to the
head node
Old head changes RAC line state to TAIL_VALID, sets its upstream pointer to
the requester, and sends data to requester
Requester sets RAC line state to HEAD_DIRTY, sets its upstream pointer to
home and downstream pointer to old head

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture33/33_3.htm[6/13/2012 12:15:18 PM]

Note that directory remains in GONE state and memory is not updated (similar
to an M to O transition)

Handling races
Suppose when the requester’s (say A) message reaches the old head (say B) the RAC
line is in PENDING state
SCI doesn’t have any pending state in directory or doesn’t use NACKs (actually uses,
but small in number)
B does become the new head (has to because the home has already updated the
directory), but inherits the PENDING state from A
Any subsequent request will come to B and will become the new pending head
Ultimately the PENDING state is resolved along the chain starting from A upstream
FIFO nature of the pending list guarantees fairness
Also, no problem related to sizing the buffers for holding pending requests (no extra
space needed

 



Objectives_template

file:///E|/parallel_com_arch/lecture33/33_4.htm[6/13/2012 12:15:18 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 33: "SCI Protocol"

 

Handling write miss

CASE A: requester is in HEAD_DIRTY state already
Directory must be in GONE state
Only need to invalidate sharers
Requester sends an invalidation to the next sharer
A sharer upon receiving an invalidation sends a roll-out request to its next sharer
(unless TAIL); the receiving node sets its upstream pointer properly and sends a roll-
out acknowledgment
Eventually roll-out request is acknowledged, the sharer invalidates its RAC line and
sends a reply back to head with the id of the next sharer
Head moves on to purge the sharer with received id
During the entire process requester’s RAC line remains in PENDING state
Note that home is not at all involved here

CASE B: requester is in ONLY_DIRTY state
No transaction needed

CASE C: requester is in HEAD_FRESH state
Send state change request to home (FRESH to GONE)
Once acknowledgment from home is received list purging can be started
What if the home is in a state different from FRESH with a different head node?

The only case in SCI when a NACK is generated
The requester on receiving the NACK changes its state to PENDING and
initiates a new write request to home for transitioning to ONLY_DIRTY

CASE D: requester in MID_FRESH or TAIL_FRESH state
First it must roll out from the list and attach itself to the head in HEAD_FRESH state
(recall that only the head node can write)
This roll-out may require acknowledgments from upstream and downstream neighbors
(if MID) or just the upstream neighbor (if TAIL)
Follow CASE C

CASE E: requester not a sharer
First get the block in HEAD_DIRTY state
Follow CASE A

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture33/33_5.htm[6/13/2012 12:15:18 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 33: "SCI Protocol"

 

Handling writebacks

Requires the evicting node to roll out
Same for clean replacements also
Dirty eviction (requiring a data transaction to home) can happen only from the head
node

Requires the head node to roll out
Clean eviction can happen from any node in the list

Does not require a transaction to home unless its state is ONLY_FRESH or
HEAD_FRESH
ONLY_FRESH eviction changes directory state from FRESH to HOME (i.e. no
sharer)
HEAD_FRESH eviction must update the head pointer in directory (directory
state remains unchanged)

Dirty eviction is completed first before initiating the miss generating the eviction
Rationale is low complexity, and RAC eviction is rare

Roll-out protocol

Some details about the roll-out mechanism
CASE A: rolling out from the middle of the list

Request-acknowledgment protocol between the victim and its upstream and
downstream neighbors
If one of the neighbors is in PENDING state it can NACK the roll-out request;
the requester must retry
Problem arises when two adjacent nodes try to roll out simultaneously (nothing
stops both nodes to replace the same cache line at the same time)

Both will keep on NACKing each other leading to a livelock
To break this cycle the node closer to tail is given priority (how do you
know who is closer to tail?)

Neighbors may need to change RAC state depending on situation
(HEAD_DIRTY to ONLY_DIRTY or HEAD_FRESH to ONLY_FRESH)

CASE B: Roll-out from head of the list
Neighbor must update RAC state to reflect the fact that it is the new head
Home also should be notified about the new head (directory state may not
always change)
Problem arises when the head change message reaching the home finds a
totally new head already registered

Means some other node is in the process of attaching itself to the head
Home NACKs the roll-out
Rolling out node remains in PENDING state and keeps on retrying until
the request from the new would-be head arrives
At this point the list goes back to stable state and the roll-out can
complete

Snoop interaction

Interesting design problems arise due to limitations of the Pentium Pro quad

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture33/33_5.htm[6/13/2012 12:15:18 PM]

The biggest problem is that the MESI protocol is designed for in-order response (so
what?)
Had to use the deferred response signal for remote requests

Lesson learned: for hierarchical protocols bus must be split-transaction with out-
of-order response (what happens otherwise?)

Snoop response is available after four cycles earliest
Stall wire may be asserted by any processor unable to meet this four-cycle limit
Bus controller samples the stall wire every two cycles

RAC and directory (for local requests) are also looked up in parallel

Protocol processor

NUMA-Q runs protocols in microcode
The protocol processor is customized with bit-field operations and is a three-stage dual
issue pipeline
Has dedicated cache for holding recently accessed directory entries and RAC tags
Protocol processor also contains three counters for monitoring performance

These counters can be programmed through protocol code (i.e. read and written
to)

 

file:///E|/parallel_com_arch/lecture34/34_1.htm

	33_1
	Local Disk
	Objectives_template


	33_2
	Local Disk
	Objectives_template


	33_3
	Local Disk
	Objectives_template


	33_4
	Local Disk
	Objectives_template


	33_5
	Local Disk
	Objectives_template



