
Objectives_template

file:///E|/parallel_com_arch/lecture16/16_1.htm[6/13/2012 11:29:10 AM]

 Module 9: "Introduction to Shared Memory Multiprocessors"
 Lecture 16: "Multiprocessor Organizations and Cache Coherence"

 
Shared Memory Multiprocessors

Shared memory multiprocessors

Shared cache

Private cache/Dancehall

Distributed shared memory

Shared vs. private in CMPs

Cache coherence

Cache coherence: Example

What went wrong?

Implementations

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture15/ex_sol_1.htm


Objectives_template

file:///E|/parallel_com_arch/lecture16/16_2.htm[6/13/2012 11:29:10 AM]

 Module 9: "Introduction to Shared Memory Multiprocessors"
 Lecture 16: "Multiprocessor Organizations and Cache Coherence"

 

Shared memory multiprocessors

What do they look like?
We will assume that each processor has a hierarchy of caches (possibly shared)
We will not discuss shared memory in a time-shared single-thread computer

A degenerate case of the following
Shared cache (popular in CMPs)
Private cache (popular in CMPs and SMPs)
Dancehall (popular in old computers)
Distributed shared memory (popular in medium to large-scale servers)

Shared cache

Private cache/Dancehall

Distributed shared memory

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture16/16_2.htm[6/13/2012 11:29:10 AM]

 



Objectives_template

file:///E|/parallel_com_arch/lecture16/16_3.htm[6/13/2012 11:29:10 AM]

 Module 9: "Introduction to Shared Memory Multiprocessors"
 Lecture 16: "Multiprocessor Organizations and Cache Coherence"

 

Shared vs. private in CMPs

Shared caches are often very large in the CMPs
They are banked to avoid worst-case wire delay
The banks are usually distributed across the floor of the chip on an interconnect

In shared caches, getting a block from a remote bank takes time proportional to the physical
distance between the requester and the bank

Non-uniform cache architecture (NUCA)
This is same for private caches, if the data resides in a remote cache
Shared cache may have higher average hit latency than the private cache

Hopefully most hits in the latter will be local
Shared caches are most likely to have less misses than private caches

Latter wastes space due to replication

Cache coherence

Nothing unique to multiprocessors
Even uniprocessor computers need to worry about cache coherence
For sequential programs we expect a memory location to return the latest value written
For concurrent programs running on multiple threads or processes on a single
processor we expect the same model to hold because all threads see the same cache
hierarchy (same as shared L1 cache)
For multiprocessors there remains a danger of using a stale value: hardware must
ensure that cached values are coherent across the system and they satisfy
programmers’ intuitive memory model

Cache coherence: Example

Assume a write-through cache
P0: reads x from memory, puts it in its cache, and gets the value 5
P1: reads x from memory, puts it in its cache, and gets the value 5
P1: writes x=7, updates its cached value and memory value
P0: reads x from its cache and gets the value 5
P2: reads x from memory, puts it in its cache, and gets the value 7 (now the system is
completely incoherent)
P2: writes x=10, updates its cached value and memory value

Consider the same example with a writeback cache
P0 has a cached value 5, P1 has 7, P2 has 10, memory has 5 (since caches are not
write through)

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture16/16_3.htm[6/13/2012 11:29:10 AM]

The state of the line in P1 and P2 is M while the line in P0 is clean
Eviction of the line from P1 and P2 will issue writebacks while eviction of the line from
P0 will not issue a writeback (clean lines do not need writeback)
Suppose P2 evicts the line first, and then P1
Final memory value is 7: we lost the store x=10 from P2

 



Objectives_template

file:///E|/parallel_com_arch/lecture16/16_4.htm[6/13/2012 11:29:11 AM]

 Module 9: "Introduction to Shared Memory Multiprocessors"
 Lecture 16: "Multiprocessor Organizations and Cache Coherence"

 

What went wrong?

For write through cache
The memory value may be correct if the writes are correctly ordered
But the system allowed a store to proceed when there is already a cached copy
Lesson learned: must invalidate all cached copies before allowing a store to proceed

Writeback cache
Problem is even more complicated: stores are no longer visible to memory immediately
Writeback order is important
Lesson learned: do not allow more than one copy of a cache line in M state

Implementations

Must invalidate all cached copies before allowing a store to proceed
Need to know where the cached copies are
Solution1: Never mind! Just tell everyone that you are going to do a store

Leads to broadcast snoopy protocols
Popular with small-scale bus-based CMPs and SMPs
AMD Opteron implements it on a distributed network (the Hammer protocol)
The biggest reason why quotidian Windows fans would buy small-scale
multiprocessors and multi-core today

Solution2: Keep track of the sharers and invalidate them when needed
Where and how is this information stored?
Leads to directory-based scalable protocols

Directory-based protocols
Maintain one directory entry per memory block
Each directory entry contains a sharer bitvector and state bits
Concept of home node in distributed shared memory multiprocessors
Concept of sparse directory for on-chip coherence in CMPs

Do not allow more than one copy of a cache line in M state
Need some form of access control mechanism
Before a processor does a store it must take “permission” from the current “owner” (if
any)
Need to know who the current owner is

Either a processor or main memory
Solution1 and Solution2 apply here also

Latest value must be propagated to the requester
Notion of “latest” is very fuzzy
Once we know the owner, this is easy
Solution1 and Solution2 apply here also

Invariant: if a cache block is not in M state in any processor, memory must provide the block
to the requester

Memory must be updated when a block transitions from M state to S state
Note that a transition from M to I always updates memory in systems with writeback
caches (these are normal writeback operations)

Most of the implementations of a coherence protocol deals with uncommon cases and races

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture17/17_1.htm

	16_1
	Local Disk
	Objectives_template


	16_2
	Local Disk
	Objectives_template


	16_3
	Local Disk
	Objectives_template


	16_4
	Local Disk
	Objectives_template



