
Objectives_template

file:///E|/parallel_com_arch/lecture31/31_1.htm[6/13/2012 12:14:03 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 31: "Managing Directory Overhead"

 
Directory-based Cache Coherence:

Replacement of S blocks

Serialization

VN deadlock

Starvation

Overflow schemes

Sparse directory

Remote access cache

COMA

Latency tolerance

Page migration

Queue lock in hardware

[From Chapter 8 of Culler, Singh, Gupta]
[SGI Origin 2000 material taken from Laudon and Lenoski, ISCA 1997]
[GS320 material taken from Gharachorloo et al., ASPLOS 2000]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture30/30_6.htm


Objectives_template

file:///E|/parallel_com_arch/lecture31/31_2.htm[6/13/2012 12:14:03 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 31: "Managing Directory Overhead"

 

Replacement of S blocks

Send notification to directory?
Can save a future invalidation
Does it reduce overall traffic?

Origin 2000 does not use replacement hints
No notification to directory
Why?

Replacements of E blocks are hinted and require acknowledgments also (why?)
Summary of transaction types

Coherence: 9 request transaction types, 6 invalidation/intervention, 39 reply types
Non-coherent (I/O, synch, special): 19 requests, 14 replies

Serialization

Home is used to serialize requests
The order determined by the home is final
No node should violate this order
Example: read-invalidate races

P0, P1, and P2 are trying to access a cache block
P0 and P2 want to read while P1 wants to write
The requests from P0 and P2 reach home first, home replies and marks both in
sharer vector; but the reply message to P0 gets delayed in the network
P1’s write causes home to send out invalidation to P0 and P2; P0’s inv. reaches
P0 before the read reply
P0’s hub sends acknowledgment to P1 and also forwards the invalidation to P0’s
processor cache
What happens when P0’s reply arrives? Can the data be used?

Requester’s viewpoint
When a read reply arrives it finds the OTT entry has the “inv” bit set
Under what conditions can it happen?

Seen one in the last slide
Can replacement hints help?

What about upgrade-invalidation races?
What about readX-invalidation races?

VN deadlock

Origin 2000 has only two virtual networks, but has three-hop transactions
Resorts to back-off invalidate or intervention to fall back to strict request-reply
Does it really solve the problem or just move the problem elsewhere?

Stanford DASH has same problems
Uses NACKs after a time-out period if the outgoing network doesn’t free up
Worse compared to Origin because NACKs inflate total traffic and may lead to livelock
DASH avoids livelocks by sizing the queues according to the machine size (not a
scalable solution)

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture31/31_3.htm[6/13/2012 12:14:03 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 31: "Managing Directory Overhead"

 

Starvation

NACKs can cause starvation
Build a FIFO list of waiters either in home memory (Chaudhuri and Heinrich, 2004) or
use a distributed linked list (IEEE Scalable Coherent Interface)

Former imposes large occupancy on home, yet offers better performance by
read combining
Latter is an extremely complex protocol with a large number of transient states
and 29 stable states, but does distribute the occupancy across the system

Origin 2000 devotes extra bits in the directory to raise priority of requests NACKed too
many times (above a threshold)
Use delay between retries
Use Alpha GS320 protocol (will discuss later)

Overflow schemes

How to make the directory size independent of the number of processors
Basic idea is to have a bit vector scheme until the total number of sharers is not more
than the directory entry width
When the number of sharers overflows the hardware resorts to an “overflow scheme”

DiriB: i sharer bits, broadcast invalidation on overflow

DiriNB: pick one sharer and invalidate it

DiriCV: assign one bit to a group of nodes of size P/i; broadcast invalidations to

that group on a write
May generate useless invalidations

DiriDP (Stanford FLASH)

DP stands for dynamic pointer
Allocate directory entries from a free list pool maintained in memory
Need replacement hints
Still may run into reclamation mode if free list pool is not sized properly at boot time

How do you size it?
If replacement hints are not supported, assume k sharers on average per cache block
(k=8 is found to be good)
Reclamation algorithms?

Pick a random cache line and invalidate it
DiriSW (MIT Alewife)

Trap to software on overflow
Software maintains the information about overflown sharers
MIT Alewife has directory entry of five pointers and a local bit (i.e. overflow threshold is
five or six)

Remote read before overflow takes 40 cycles and after overflow takes 425
cycles
Five invalidations take 84 cycles while six invalidations take 707 cycles

Sparse directory

How to reduce the height of the directory?

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture31/31_3.htm[6/13/2012 12:14:03 PM]

Observation: total number of cache blocks in all processors is far less than total
number of memory blocks

Assume a 32 MB L3 cache and 4 GB memory: less than 1% of directory entries
are active at any point in time

Idea is to organize directory as a highly associative cache
On a directory entry “eviction” send invalidations to all sharers or retrieve line if dirty

 



Objectives_template

file:///E|/parallel_com_arch/lecture31/31_4.htm[6/13/2012 12:14:04 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 31: "Managing Directory Overhead"

 

Remote access cache

Essentially a large tertiary cache
Captures remote cache blocks evicted from local cache hierarchy
Also visible to the coherence protocol: so inclusion must be maintained with processor
caches
Must be highly associative and larger than the outermost level of cache
Usually part of DRAM is reserved for RAC
For multiprocessor nodes, requests from different processors to the same cache block
can be merged together; also there is a prefetching effect
Used in Stanford DASH
Disadvantage: latency and space

COMA

Cache-only memory architecture
Solves the space problem of RAC
Home node only maintains the directory entries, but may not have the cache block in
memory
A node requesting a cache block brings it to its local memory and local cache as usual
Entire memory is treated as a large tertiary cache

Known as the attraction memory (AM)
Home as well as any node having a cache block maintain a directory entry for the
cache block
A request first looks up AM directory state and, if unowned, gets forwarded to home
which, in turn, forwards it to one of the sharers

Cache-only memory architecture
To start with home has the cache blocks
It retains a cache block until it is replaced by some other migration
There is always a master copy of each cache block

The last valid copy
What happens on a replacement of the master copy?

Swap with source of migrating cache block
Latency problem remains at the requester
Inclusion problems between AM and processor cache hierarchy

Complicates the protocol

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture31/31_5.htm[6/13/2012 12:14:04 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 31: "Managing Directory Overhead"

 

Latency tolerance

Page placement
Application-directed page placement is used in many cases to minimize the number of
remote misses
The application provides the kernel (via system call) the starting address and ending
address of a chunk of memory (multiple of pages) and also the node number where to
map these pages
Thus an application writer can specify (based on sharing pattern) which shared pages
he/she wants to map in a node’s local memory (private pages and stack pages are
mapped on local memory by default)
The page fault handler of a NUMA kernel is normally equipped with some default
policies e.g., round robin mapping or first-touch mapping
Examples: matrix-vector multiplication, matrix transpose

Software prefetching
Even after rigorous analysis of a parallel application it may not be possible to map all
pages used by a node on its local memory: the same page may be used by multiple
nodes at different times (example: matrix-vector multiplication)
Two options are available: dynamic page migration (very costly; coming next, stay
tuned) or software prefetching
Today, most microprocessors support prefetch and prefetch exclusive instructions: use
prefetch to initiate a cache line read miss long before application actually accesses it;
use prefetch exclusive if you know for sure that you will write to the line and no one
else will need the line before you write to it
Prefetches must be used carefully

Swap with source of migrating cache block
Early prefetches may evict useful cache blocks and itself may get evicted before
use; may generate extra invalidations or interventions in multiprocessors
Late prefetches may not be fully effective, but at least less harmful than early
prefetches
Wrong prefetches are most dangerous: these bring in cache blocks that may not
be used at all in near-future; in multiprocessors this can severely hurt
performance by generating extra invalidations and interventions
Wrong prefetches waste bandwidth and pollute cache

Software prefetching usually offers better control than hardware prefetching
Software prefetching vs. hardware prefetching

Software prefetching requires close analysis of program; profile information may help
Hardware prefetching tries to detect patterns in accessed addresses and using the
detected patterns predicts future addresses

AMD Athlon has a simple next line prefetcher (works perfectly for most
numerical applications)
Intel Pentium 4 has a very sophisticated stream prefetcher

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture31/31_6.htm[6/13/2012 12:14:04 PM]

 Module 14: "Directory-based Cache Coherence"
 Lecture 31: "Managing Directory Overhead"

 

Page migration

Page migration changes the existing VA to PA mapping of the migrated page
Requires notifying all TLBs caching the old mapping
Introduces a TLB coherence problem

Origin 2000 uses a smart page migration algorithm: allows the page copy and TLB shootdown
to proceed in parallel

Array of 64 page reference counters per directory entry to decide whether to migrate a
page or not: compare requester’s counter against home’s and send an interrupt to
home if migration is required

What does the interrupt handler do?
Access all directory entries of the lines belonging to the to-be migrated page
Send invalidations to sharers or interventions to owners; at the end all cache lines of
that page must be in memory
Set the poison bits in the directory entries of all the cache lines of the page
Start a block transfer of the page from home to requester at this point (30 µs to copy
16 KB)

An access to a poisoned cache line from a node results in a bus error which invalidates the
TLB entry for that page in the requesting node (avoids broadcast shootdown)
Until the page is completely migrated and is assigned a physical page frame on target node,
all nodes accessing a poisoned line wait in a pending queue
After the page copy is completed the waiting nodes are served one by one; however, the
directory entries and the page itself are moved to a “poisoned list” and are not yet freed at the
home (i.e. you still cannot use that physical page frame)
On every scheduler tick the kernel invalidates one TLB entry per processor
After a time equal to TLB entries per processor multiplied by scheduling quantum the page
frame is marked free and is removed from the poisoned list
Major advantage: requesting nodes only see the page copy latency including invalidation and
interventions in critical path, but not the TLB shootdown latency

Queue lock in hardware

Stanford DASH
Memory controller recognizes lock accesses

Requires changes in compiler and instruction set
Marks the directory entry with contenders
On unlock a contender is chosen and lock is granted to that node
Unlock is forced to generate a notification message to home

Possibly requires special cache state for lock variables or special uncached
instructions for unlock if lock variables are not allowed to be cached

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture32/32_1.htm

	31_1
	Local Disk
	Objectives_template


	31_2
	Local Disk
	Objectives_template


	31_3
	Local Disk
	Objectives_template


	31_4
	Local Disk
	Objectives_template


	31_5
	Local Disk
	Objectives_template


	31_6
	Local Disk
	Objectives_template



