
Objectives_template

file:///E|/parallel_com_arch/lecture39/39_1.htm[6/13/2012 12:20:22 PM]

 Module 18: "TLP on Chip: HT/SMT and CMP"
 Lecture 39: "Simultaneous Multithreading and Chip-multiprocessing"

 
TLP on Chip: HT/SMT and CMP

SMT

Multi-threading

Problems of SMT

CMP

Why CMP?

Moore’s law

Power consumption?

Clustered arch.

ABCs of CMP

Shared cache design

Hierarchical MP

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture38/38_4.htm


Objectives_template

file:///E|/parallel_com_arch/lecture39/39_2.htm[6/13/2012 12:20:23 PM]

 Module 18: "TLP on Chip: HT/SMT and CMP"
 Lecture 39: "Simultaneous Multithreading and Chip-multiprocessing"

 

SMT

Discussed simultaneous multithreading (SMT)
Basic goal is to run multiple threads at the same time
Helps in hiding large memory latency because even if one thread is blocked due to a
cache miss, it is still possible to schedule ready instructions from other threads without
taking the overhead of context switch
Improves memory level parallelism (MLP)
Overall, improves resource utilization enormously as compared to a superscalar
processor
Latency of a particular thread may not improve, but the overall throughput of the
system increases (i.e. average number of retired instructions per cycle)

Multi-threading

Three design choices for single-core hardware multi-threading
Coarse-grain multithreading: Execute one thread at a time; when the running thread is
blocked on a long-latency event e.g., cache miss, swap in a new thread; this swap can
take place in hardware (needs extra support and extra cycles for flushing the pipe and
saving register values unless renamed registers remain pinned)
Fine-grain multithreading: Fetch, decode, rename, issue, execute instructions from
threads in round robin fashion; improved utilization across cycles, but problem remains
within cycle; also if a thread gets blocked on a long-latency event its slots will go
wasted for many cycles
Simultaneous multithreading (SMT): Mix instructions from all threads every cycle;
maximum utilization of resources

Problems of SMT

Offers a processor that can deliver reasonably good multithreaded performance with fine-
grained fast communication through cache

Although it is possible to design an SMT processor with small die area increase (5% in
Pentium 4), for good performance it is necessary to rethink about resource allocation
policies at various stages of the pipe
Also, verifying an SMT processor is much harder than the basic underlying superscalar
design
Must think about various deadlock/livelock possibilities since the threads interact with
each other through shared resources on a per-cycle basis
Why not exploit the transistors available today to just replicate existing superscalar
cores and design a single chip multiprocessor (CMP)?

CMP

CMP is the mantra of today’s microprocessor industry
Intel’s dual-core Pentium 4: each core is still hyperthreaded (just uses existing cores)
Intel’s quad-core Whitefield is coming up in a year or so
For the server market Intel has announced a dual-core Itanium 2 (code named
Montecito); again each core is 2-way threaded
AMD has released dual-core Opteron in 2005

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture39/39_2.htm[6/13/2012 12:20:23 PM]

IBM released their first dual-core processor POWER4 circa 2001; next-generation
POWER5 also uses two cores but each core is also 2-way threaded
Sun’s UltraSPARC IV (released in early 2004) is a dual-core processor and integrates
two UltraSPARC III cores

Why CMP?

Today microprocessor designers can afford to have a lot of transistors on the die
Ever-shrinking feature size leads to dense packing
What would you do with so many transistors?
Can invest some to cache, but beyond a certain point it doesn’t help
Natural choice was to think about greater level of integration
Few chip designers decided to bring the memory and coherence controllers along with
the router on the die
The next obvious choice was to replicate the entire core; it is fairly simple: just use the
existing cores and connect them through a coherent interconnect

 



Objectives_template

file:///E|/parallel_com_arch/lecture39/39_3.htm[6/13/2012 12:20:23 PM]

 Module 18: "TLP on Chip: HT/SMT and CMP"
 Lecture 39: "Simultaneous Multithreading and Chip-multiprocessing"

 

Moore’s law

The number of transistors on a die doubles every 18-24 months
Exponential growth in available transistor count
If transistor utilization is constant, this would lead to exponential performance growth; but
life is slightly more complicated
Wires don’t scale with transistor technology: wire delay becomes the bottleneck
Short wires are good: dictates localized logic design
But superscalar processors exercise a “centralized” control requiring long wires (or
pipelined long wires)
However, to utilize the transistors well, we need to overcome the memory wall problem
To hide memory latency we need to extract more independent instructions i.e. more ILP

Extracting more ILP directly requires more available in-flight instructions
But for that we need bigger ROB which in turn requires a bigger register file
Also we need to have bigger issue queues to be able to find more parallelism
None of these structures scale well: main problem is wiring
So the best solution to utilize these transistors effectively with a low cost must not require
long wires and must be able to leverage existing technology: CMP satisfies these goals
exactly (use existing processors and invest transistors to have more of these on-chip
instead of trying to scale the existing processor for more ILP)

 

Power consumption?

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture39/39_3.htm[6/13/2012 12:20:23 PM]

Hey, didn’t I just make my power consumption roughly N-fold by putting N cores on the die?
Yes, if you do not scale down voltage or frequency
Usually CMPs are clocked at a lower frequency

Oops! My games run slower!
Voltage scaling happens due to smaller process technology
Overall, roughly cubic dependence of power on voltage or frequency
Need to talk about different metrics

Performance/Watt (same as reciprocal of energy)
More general, Performancek+1/Watt (k > 0)

Need smarter techniques to further improve these metrics
Online voltage/frequency scaling

 



Objectives_template

file:///E|/parallel_com_arch/lecture39/39_4.htm[6/13/2012 12:20:23 PM]

 Module 18: "TLP on Chip: HT/SMT and CMP"
 Lecture 39: "Simultaneous Multithreading and Chip-multiprocessing"

 

Clustered arch.

An alternative to CMP is clustered microarchitecture
Still tries to extract ILP and runs a single thread
But divides the execution unit into clusters where each cluster has a separate register
file
Number of ports per register file goes down dramatically reducing the complexity
Can even replicate/partition caches
Big disadvantage: keeping the register file and cache partitions coherent; may need
global wires

Key factor: frequency of communication
Also, standard problems of single-threaded execution remain: branch prediction, fetch
bandwidth, etc.

May want to steer dependent instructions to the same Cluster to minimize
communication

ABCs of CMP

Where to put the interconnect?

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture39/39_4.htm[6/13/2012 12:20:23 PM]

Do not want to access the interconnect too frequently because these wires are slow
It probably does not make much sense to have the L1 cache shared among the cores:
requires very high bandwidth and may necessitate a redesign of the L1 cache and
surrounding load/store unit which we do not want to do; so settle for private L1 caches,
one per core
Makes more sense to share the L2 or L3 caches
Need a coherence protocol at L2 interface to keep private L1 caches coherent: may
use a high-speed custom designed snoopy bus connecting the L1 controllers or may
use a simple directory protocol
An entirely different design choice is not to share the cache hierarchy at all (dual-core
AMD and Intel): rids you of the on-chip coherence protocol, but no gain in
communication latency

Shared cache design

Need to be banked
How many coherence engines per bank?
Notion of home bank? Miss in home bank means what?
Snoop or directory?
COMA with home bank?

Hierarchical MP

SMT and CMP add couple more levels in hierarchical multiprocessor design
If you just have an SMT processor, among the threads you can do shared memory
multiprocessing with possibly the fastest communication; you can connect the SMT
processors to build an SMP over a snoopy bus; you can connect these SMP nodes
over a network with a directory protocol
Can do the same thing with CMP, only difference is that you need to design the on-
chip coherence logic (that is not automatically enforced as in SMT)
If you have a CMP with each core being an SMT, then you really have a tall hierarchy
of shared memory; the communication becomes costlier as you go up the hierarchy;
also communication becomes very much non-uniform

 

file:///E|/parallel_com_arch/lecture40/40_1.htm

	39_1
	Local Disk
	Objectives_template


	39_2
	Local Disk
	Objectives_template


	39_3
	Local Disk
	Objectives_template


	39_4
	Local Disk
	Objectives_template



