
Objectives_template

file:///E|/parallel_com_arch/lecture26/26_1.htm[6/13/2012 11:59:55 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 26: "Case Studies"

Conflict resolution

Path of a cache miss

Write serialization

Write atomicity and SC

Another example

In-order response

Multi-level caches

Dependence graph

Multiple outstanding requests

SGI Challenge

Sun Enterprise

Sun Gigaplane bus

[From Chapter 6 of Culler, Singh, Gupta]

file:///E|/parallel_com_arch/lecture25/25_6.htm

Objectives_template

file:///E|/parallel_com_arch/lecture26/26_2.htm[6/13/2012 11:59:56 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 26: "Case Studies"

Conflict resolution

Use the pending request table to resolve conflicts
Every processor has a copy of the table
Before arbitrating for the address bus every processor looks up the table to see if there
is a match
In case of a match the request is not issued and is held in a pending buffer

Flow control is needed at different levels
Essentially need to detect if any buffer is full
SGI Challenge uses a separate NACK line for each of address and data phases
Before the phases reach the “ack” cycle any cache controller can assert the NACK line
if it runs out of some critical buffer; this invalidates the transaction and the requester
must retry (may use back-off and/or priority)
Sun Enterprise requires the receiver to generate the retry when it has buffer space
(thus only one retry)

Path of a cache miss

Assume a read miss
Look up request table; in case of a match with BusRd just mark the entry indicating
that this processor will snoop the response from the bus and that it will also assert the
shared line
In case of a request table hit with BusRdX the cache controller must hold on to the
request until the conflict resolves
In case of a request table miss the requester arbitrates for address bus; while
arbitrating if a conflicting request arrives, the controller must put a NOP transaction
within the slot it is granted and hold on to the request until the conflict resolves

Suppose the requester succeeds in putting the request on address/command bus
Other cache controllers snoop the request, register it in request table (the requester
also does this), take appropriate coherence action within own cache hierarchy, main
memory also starts fetching the cache line
If a cache holds the line in M state it should source it on bus during response phase; it
keeps the inhibit line asserted until it gets the data bus; then it lowers inhibit line and
asserts the modified line; at this point the memory controller aborts the data
fetch/response and instead fields the line from the data bus for writing back

If the memory fetches the line even before the snoop is complete, the inhibit line will not allow
the memory controller to launch the data on bus

After the inhibit line is lowered depending on the state of the modified line memory
cancels the data response
If no one has the line in M state, the requester grabs the response from memory

A store miss is similar
Only difference is that even if a cache has the line in M state, the memory controller
does not write the response back
Also any pending BusUpgr to the same cache line must be converted to BusReadX

Write serialization

In a split-transaction bus setting, the request table provides sufficient support for write

Objectives_template

file:///E|/parallel_com_arch/lecture26/26_2.htm[6/13/2012 11:59:56 AM]

serialization
Requests to the same cache line are not allowed to proceed at the same time
A read to a line after a write to the same line can be launched only after the write
response phase has completed; this guarantees that the read will see the new value
A write after a read to the same line can be started only after the read response has
completed; this guarantees that the value of the read cannot be altered by the value
written

Objectives_template

file:///E|/parallel_com_arch/lecture26/26_3.htm[6/13/2012 11:59:56 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 26: "Case Studies"

Write atomicity and SC

Sequential consistency (SC) requires write atomicity i.e. total order of all writes seen by all
processors should be identical

Since a BusRdX or BusUpgr does not wait until the invalidations are actually applied to
the caches, you have to be careful

P0: A=1; B=1;
P1: print B; print A

Under SC (A, B) = (0, 1) is not allowed
Suppose to start with P1 has the line containing A in cache, but not the line containing
B
The stores of P0 queue the invalidation of A in P1’s cache controller
P1 takes read miss for B, but the response of B is re-ordered by P1’s cache
controller so that it overtakes the invalidaton (thought it may be better to prioritize
reads)

Another example

P0: A=1; print B;

P1: B=1; print A;

Under SC (A, B) = (0, 0) is not allowed
Same problem if P0 executes both instructions first, then P1 executes the write of B (which
let’s assume generates an upgrade so that it is marked complete as soon as the address
arbitration phase finishes), then the upgrade completion is re-ordered with the pending
invalidation of A
So, the reason these two cases fail is that the new values are made visible before older
invalidations are applied
One solution is to have a strict FIFO queue between the bus controller and the cache
hierarchy
But it is sufficient as long as replies do not overtake invalidations; otherwise the bus
responses can be re-ordered without violating write atomicity and hence SC (e.g., if there are
only read and write responses in the queue, it sometimes may make sense to prioritize read
responses)

In-order response

In-order response can simplify quite a few things in the design
The fully associative request table can be replaced by a FIFO queue
Conflicting requests where one is a write can actually be allowed now (multiple reads
were allowed even before although only the first one actually appears on the bus)
Consider a BusRdX followed by a BusRd from two different processors
With in-order response it is guaranteed that the BusRdX response will be granted the
data bus before the BusRd response (which may not be true for ooo response and
hence such a conflict is disallowed)
So when the cache controller generating the BusRdX sees the BusRd it only notes that

Objectives_template

file:///E|/parallel_com_arch/lecture26/26_3.htm[6/13/2012 11:59:56 AM]

it should source the line for this request after its own write is completed
The performance penalty may be huge

Essentially because of the memory
Consider a situation where three requests are pending to cache lines A, B, C in that
order
A and B map to the same memory bank while C is in a different bank
Although the response for C may be ready long before that of B, it cannot get the bus

Objectives_template

file:///E|/parallel_com_arch/lecture26/26_4.htm[6/13/2012 11:59:56 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 26: "Case Studies"

Multi-level caches

Split-transaction bus makes the design of multi-level caches a little more difficult
The usual design is to have queues between levels of caches in each direction
How do you size the queues? Between processor and L1 one buffer is sufficient
(assume one outstanding processor access), L1-to-L2 needs P+1 buffers (why?), L2-to-
L1 needs P buffers (why?), L1 to processor needs one buffer
With smaller buffers there is a possibility of deadlock: suppose the L1-to-L2 and L2-to-L1
have one queue entry each, there is a request in L1-to-L2 queue and there is also an
intervention in L2-to-L1 queue; clearly L1 cannot pick up the intervention because it
does not have space to put the reply in L1-to-L2 queue while L2 cannot pick up the
request because it might need space in L2-to-L1 queue in case of an L2 hit

Formalizing the deadlock with dependence graph
There are four types of transactions in the cache hierarchy: 1. Processor requests
(outbound requests), 2. Responses to processor requests (inbound responses), 3.
Interventions (inbound requests), 4. Intervention responses (outbound responses)
Processor requests need space in L1-to-L2 queue; responses to processors need space
in L2-to-L1 queue; interventions need space in L2-to-L1 queue; intervention responses
need space in L1-to-L2 queue
Thus a message in L1-to-L2 queue may need space in L2-to-L1 queue (e.g. a processor
request generating a response due to L2 hit); also a message in L2-to-L1 queue may
need space in L1-to-L2 queue (e.g. an intervention response)
This creates a cycle in queue space dependence graph

Dependence graph

Represent a queue by a vertex in the graph
Number of vertices = number of queues

A directed edge from vertex u to vertex v is present if a message at the head of queue u may
generate another message which requires space in queue v
In our case we have two queues

L2-L1 and L1-L2; the graph is not a DAG, hence deadlock

Multi-level caches

In summary
L2 cache controller refuses to drain L1-to-L2 queue if there is no space in L2-to-L1
queue; this is rather conservative because the message at the head of L1-to-L2 queue
may not need space in L2-to-L1 queue e.g., in case of L2 miss or if it is an intervention

Objectives_template

file:///E|/parallel_com_arch/lecture26/26_4.htm[6/13/2012 11:59:56 AM]

reply; but after popping the head of L1-to-L2 queue it is impossible to backtrack if the
message does need space in L2-to-L1 queue
Similarly, L1 cache controller refuses to drain L2-to-L1 queue if there is no space in L1-
to-L2 queue
How do we break this cycle?
Observe that responses for processor requests are guaranteed not to generate any more
messages and intervention requests do not generate new requests, but can only
generate replies

Solving the queue deadlock
Introduce one more queue in each direction i.e. have a pair of queues in each direction
L1-to-L2 processor request queue and L1-to-L2 intervention response queue
Similarly, L2-to-L1 intervention request queue and L2-to-L1 processor response queue
Now L2 cache controller can serve L1-to-L2 processor request queue as long as there is
space in L2-to-L1 processor response queue, but there is no constraint on L1 cache
controller for draining L2-to-L1 processor response queue
Similarly, L1 cache controller can serve L2-to-L1 intervention request queue as long as
there is space in L1-to-L2 intervention response queue, but L1-to-L2 intervention
response queue will drain as soon as bus is granted

Objectives_template

file:///E|/parallel_com_arch/lecture26/26_5.htm[6/13/2012 11:59:57 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 26: "Case Studies"

Dependence graph

Now we have four queues
Processor request (PR) and intervention reply (IY) are L1 to L2
Processor reply (PY) and intervention request (IR) are L2 to L1

Possible to combine PR and IY into a supernode of the graph and still be cycle-free
Leads to one L1 to L2 queue

Similarly, possible to combine IR and PY into a supernode
Leads to one L2 to L1 queue

Cannot do both
Leads to cycle as already discussed

Bottomline: need at least three queues for two-level cache hierarchy

Multiple outstanding requests

Today all processors allow multiple outstanding cache misses
We have already discussed issues related to ooo execution
Not much needs to be added on top of that to support multiple outstanding misses
For multi-level cache hierarchy the queue depths may be made bigger for performance
reasons
Various other buffers such as writeback buffer need to be made bigger

Objectives_template

file:///E|/parallel_com_arch/lecture26/26_6.htm[6/13/2012 11:59:57 AM]

 Module 12: "Multiprocessors on a Snoopy Bus"
 Lecture 26: "Case Studies"

SGI Challenge

Supports 36 MIPS R4400 (4 per board) or 18 MIPS R8000 (2 per board)
A-chip has the address bus interface, request table
CC-chip handles coherence through the duplicate set of tags
Each D-chip handles 64 bits of data and as a whole 4 D-chips interface to a 256-bit wide data
bus

Sun Enterprise

Supports up to 30 UltraSPARC processors
2 processors and 1 GB memory per board
Wide 64-byte memory bus and hence two memory cycles to transfer the entire cache line (128
bytes)

Sun Gigaplane bus

Split-transaction, 256 bits data, 41 bits address, 83.5 MHz (compare to 47.6 MHz of SGI
Powerpath-2)
Supports 16 boards
112 outstanding transactions (up to 7 from each board)

Objectives_template

file:///E|/parallel_com_arch/lecture26/26_6.htm[6/13/2012 11:59:57 AM]

Snoop result is available 5 cycles after the request phase
Memory fetches data speculatively
MOESI protocol

file:///E|/parallel_com_arch/lecture27/27_1.htm

	26_1
	Local Disk
	Objectives_template

	26_2
	Local Disk
	Objectives_template

	26_3
	Local Disk
	Objectives_template

	26_4
	Local Disk
	Objectives_template

	26_5
	Local Disk
	Objectives_template

	26_6
	Local Disk
	Objectives_template

