Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 33: "SCI Protocol"

Directory-based Cache Coherence:

Special Topics

Sequent NUMA-Q
SCI protocol
Directory overhead
Cache overhead
Handling read miss
Handling write miss
Handling writebacks
Roll-out protocol

Snoop interaction

Protocol processor

[From Chapter 8 of Culler, Singh, Gupta]
[SGI Origin 2000 material taken from Laudon and Lenoski, ISCA 1997]
[GS320 material taken from Gharachorloo et al., ASPLOS 2000]

4|l Previous Next||p

file:///E|/parallel_com_arch/lecture33/33_1.htm[6/13/2012 12:15:17 PM]

file:///E|/parallel_com_arch/lecture32/32_4.htm

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 33: "SCI Protocol"

Sequent NUMA-Q

= Implements the IEEE SCI directory protocol
e One node is an Intel Pentium Pro quad SMP
e The IQ-Link board connects to the system bus and implements the directory protocol
o Also contains a 32 MB 4-way set associative RAC
e Processors within a node are kept coherent via a MESI snoop-based protocol already
implemented in Pentium Pro quad
e The SCI protocol keeps the RACs coherent across nodes
e The RAC maintains inclusion with the processor caches

SCI protocol

= Directory structure
« Home contains the id of the most recently queued sharer or the owner (6 bits)
= Sharing list
e A sharer contains the id of the next sharer and the previous sharer
e The last sharer contains the id of home node and previous sharer
e A circular doubly linked list
= Three major states in directory
e Home: remotely unowned, but may be in local quad
e Fresh: same as shared
e Gone: some node has exclusive ownership; memory stale
= Cache states
e Processor cache: MESI
e RAC: 29 stable states and many transient states
o 7 bits for representing RAC state
o Two-part naming of RAC state: first part says the location of the block in the list
(ONLY, HEAD, TAIL, MID), second part mentions the actual state (modified,
exclusive, fresh, copy, ...)
o We will use some of these to understand the basics of SCI (full description
available from IEEE standards)
« HEAD_DIRTY, TAIL_CLEAN, etc
= Three major operations on the list
e List construction: involves adding a new sharer to the list
e Rollout: remove a sharer from the list; must synchronize with immediate neighbors
o Purge/invalidate: head node always has write permission and so it can purge the entire
list before writing; naturally, only the head node has the privilege of doing this
= Three classes of protocol
e Minimal SCI: sharing not allowed
e Typical SCI (will discuss this): all supports that a normal human being can imagine
o Full SCI: lot of optimizations including hardware support for synchronization

4|l Previous Next||p

file:///E|/parallel_com_arch/lecture33/33_2.htm[6/13/2012 12:15:18 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 33: "SCI Protocol"

Directory overhead

= Directory overhead
« Need 6 bits to maintain the head node id
o NUMA-Q scales up to 64 nodes
e Need 2 bits for encoding three states: HOME, FRESH, GONE
e A system with P nodes, M bytes of memory, and cache block size of B bytes has M/B
cache blocks per node
o 2 + log(P) bits needed for directory entry per cache block
o Total overhead = (M/B)*(log (P) + O(1))*P
e O(P*log(P))

Cache overhead

= Extended RAC tags for storing upstream and downstream pointers
e 2*log(P) per cache block
e Total increased tag DRAM area is O(P*log(P))

Handling read miss

= Requester on missing the RAC as well as quad snoop sends a read request to home
« Allocates a block in RAC and marks its state PENDING
e CASE A: directory is HOME state
o Change directory state to FRESH
o Change head pointer to requester id
o Send reply to requester
o Requester fills cache block in RAC, forwards it to requesting processor, changes
RAC block state to ONLY_FRESH
o CASE B: directory state is FRESH
o Home changes head pointer to requester id
o Sends reply with data read from memory and the old head node id
o Requester sends a request to the previous head expressing intention to become
the new head
o Old head changes its upstream pointer to point to the requester and the RAC
state to MID_VALID or TAIL_VALID; sends an acknowledgment to requester
o Requester changes its downstream pointer to old head and upstream pointer to
home; also changes RAC line state to HEAD_FRESH
o Observe the strict request-reply nature of the protocol
e CASE C: directory state is GONE
o Means head node has an exclusive copy of the cache line
o Home replies to the requester with the head node id, but does not change the
state of the directory
o Requester sets RAC line state to PENDING and sends a data request to the
head node
o Old head changes RAC line state to TAIL_VALID, sets its upstream pointer to
the requester, and sends data to requester
o Requester sets RAC line state to HEAD_DIRTY, sets its upstream pointer to
home and downstream pointer to old head

file:///E|/parallel_com_arch/lecture33/33_3.htm[6/13/2012 12:15:18 PM]

Objectives_template

o Note that directory remains in GONE state and memory is not updated (similar
to an M to O transition)
= Handling races

e Suppose when the requester’'s (say A) message reaches the old head (say B) the RAC
line is in PENDING state

e SCI doesn't have any pending state in directory or doesn’t use NACKs (actually uses,
but small in number)

e« B does become the new head (has to because the home has already updated the
directory), but inherits the PENDING state from A

« Any subsequent request will come to B and will become the new pending head

« Ultimately the PENDING state is resolved along the chain starting from A upstream

¢ FIFO nature of the pending list guarantees fairness

e Also, no problem related to sizing the buffers for holding pending requests (no extra
space needed

dllPrevious Next||p

file:///E|/parallel_com_arch/lecture33/33_3.htm[6/13/2012 12:15:18 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 33: "SCI Protocol"

Handling write miss

= CASE A: requester is in HEAD_DIRTY state already
« Directory must be in GONE state
e Only need to invalidate sharers
e Requester sends an invalidation to the next sharer
e A sharer upon receiving an invalidation sends a roll-out request to its next sharer
(unless TAIL); the receiving node sets its upstream pointer properly and sends a roll-
out acknowledgment
e Eventually roll-out request is acknowledged, the sharer invalidates its RAC line and
sends a reply back to head with the id of the next sharer
e Head moves on to purge the sharer with received id
e During the entire process requester’'s RAC line remains in PENDING state
o Note that home is not at all involved here
CASE B: requester is in ONLY_DIRTY state
« No transaction needed
CASE C: requester is in HEAD_FRESH state
e Send state change request to home (FRESH to GONE)
¢ Once acknowledgment from home is received list purging can be started
« What if the home is in a state different from FRESH with a different head node?
o The only case in SCI when a NACK is generated
o The requester on receiving the NACK changes its state to PENDING and
initiates a new write request to home for transitioning to ONLY_DIRTY
CASE D: requester in MID_FRESH or TAIL_FRESH state
e First it must roll out from the list and attach itself to the head in HEAD_FRESH state
(recall that only the head node can write)
e This roll-out may require acknowledgments from upstream and downstream neighbors
(if MID) or just the upstream neighbor (if TAIL)
e Follow CASE C
CASE E: requester not a sharer
o First get the block in HEAD_DIRTY state
o Follow CASE A

dllPrevious Next||p

file:///E|/parallel_com_arch/lecture33/33_4.htm[6/13/2012 12:15:18 PM]

Objectives_template

Module 14: "Directory-based Cache Coherence"

Lecture 33: "SCI Protocol"

Handling writebacks

= Requires the evicting node to roll out
e Same for clean replacements also
« Dirty eviction (requiring a data transaction to home) can happen only from the head
node
o Requires the head node to roll out
e Clean eviction can happen from any node in the list
o Does not require a transaction to home unless its state is ONLY_FRESH or
HEAD_FRESH
o ONLY_FRESH eviction changes directory state from FRESH to HOME (i.e. no
sharer)
o HEAD_FRESH eviction must update the head pointer in directory (directory
state remains unchanged)
« Dirty eviction is completed first before initiating the miss generating the eviction
o Rationale is low complexity, and RAC eviction is rare

Roll-out protocol

= Some details about the roll-out mechanism
e CASE A: rolling out from the middle of the list
o Request-acknowledgment protocol between the victim and its upstream and
downstream neighbors
o If one of the neighbors is in PENDING state it can NACK the roll-out request;
the requester must retry
o Problem arises when two adjacent nodes try to roll out simultaneously (nothing
stops both nodes to replace the same cache line at the same time)
« Both will keep on NACKing each other leading to a livelock
e To break this cycle the node closer to tail is given priority (how do you
know who is closer to tail?)
o Neighbors may need to change RAC state depending on situation
(HEAD_DIRTY to ONLY_DIRTY or HEAD_FRESH to ONLY_FRESH)
e CASE B: Roll-out from head of the list
o Neighbor must update RAC state to reflect the fact that it is the new head
o Home also should be notified about the new head (directory state may not
always change)
o Problem arises when the head change message reaching the home finds a
totally new head already registered
« Means some other node is in the process of attaching itself to the head
« Home NACKSs the roll-out
e Rolling out node remains in PENDING state and keeps on retrying until
the request from the new would-be head arrives
e At this point the list goes back to stable state and the roll-out can
complete

Snoop interaction

= Interesting design problems arise due to limitations of the Pentium Pro quad

file:///E|/parallel_com_arch/lecture33/33_5.htm[6/13/2012 12:15:18 PM]

Objectives_template

The biggest problem is that the MESI protocol is designed for in-order response (so
what?)
e Had to use the deferred response signal for remote requests
o Lesson learned: for hierarchical protocols bus must be split-transaction with out-
of-order response (what happens otherwise?)
Snoop response is available after four cycles earliest
o Stall wire may be asserted by any processor unable to meet this four-cycle limit
o Bus controller samples the stall wire every two cycles
e RAC and directory (for local requests) are also looked up in parallel

Protocol processor

= NUMA-Q runs protocols in microcode
e The protocol processor is customized with bit-field operations and is a three-stage dual
issue pipeline
e Has dedicated cache for holding recently accessed directory entries and RAC tags
« Protocol processor also contains three counters for monitoring performance
o These counters can be programmed through protocol code (i.e. read and written
to)

4|l Previous Next||p

file:///E|/parallel_com_arch/lecture33/33_5.htm[6/13/2012 12:15:18 PM]

file:///E|/parallel_com_arch/lecture34/34_1.htm

	33_1
	Local Disk
	Objectives_template

	33_2
	Local Disk
	Objectives_template

	33_3
	Local Disk
	Objectives_template

	33_4
	Local Disk
	Objectives_template

	33_5
	Local Disk
	Objectives_template

