
Objectives_template

file:///E|/parallel_com_arch/lecture28/28_1.htm[6/13/2012 12:11:52 PM]

 Module 13: "Scalable Multiprocessors"
 Lecture 28: "Scalable Multiprocessors"

 
Scalable Multiprocessors

Agenda

Basics of scalability

Bandwidth scaling

Latency scaling

Cost scaling

Physical scaling

IBM SP-2

Programming model

Common challenges

Spectrum of designs

Physical DMA

nCUBE/2

User-level ports

User-level handling

Message co-processor

Intel Paragon

Meiko CS-2

Shared physical addr.

Caching shared data?

COWs and NOWs

Scalable synchronization

Distributed queue locks

[From Chapter 7 of Culler, Singh, Gupta]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture27/ex_sol_2.htm


Objectives_template

file:///E|/parallel_com_arch/lecture28/28_2.htm[6/13/2012 12:11:53 PM]

 Module 13: "Scalable Multiprocessors"
 Lecture 28: "Scalable Multiprocessors"

 

Agenda

Basics of scalability
Programming models
Physical DMA
User-level networking
Dedicated message processing
Shared physical address
Cluster of workstations (COWs) and Network of workstations (NOWs)
Scaling parallel software

Scalable synchronization

Basics of scalability

Main problem is the communication medium
Busses don’t scale
Need more wires that are not always shared by all
Replace bus by a network of switches

Distributed memory multiprocessors
Each node has its own local memory
To access remote memory, node sends a point-to-point message to the destination
How to support efficient messaging?
Main goal is to reduce the ratio of remote memory latency to local memory latency
In shared memory, how to support coherence efficiently?

Bandwidth scaling

Need a large number of independent paths between two nodes
Makes it possible to support a large number of concurrent transactions
They get initiated independently (as opposed to a single centralized bus arbiter)

Local accesses should be higher bandwidth
Since communication takes place via point-to-point messages, only the routers or switches
along the path are involved

No global visibility of messages (unlike a bus)
Must send separate messages to make sure that global visibility is guaranteed when
necessary (e.g., invalidations)

Latency scaling

End-to-end latency of a message involves three parts (log model)
Overhead (o): time to initiate a message and to terminate a message (at sender and
receiver respectively); normally involves kernel overhead in message passing and the
coherence overhead in shared memory
Node-to-network time or gap (g): number of bytes/link bandwidth where this is the
bandwidth offered by the router to/from network (how fast you can push packets into
the network or pull packets from the network); normally the bandwidth between
network interface (NI) and the router is at least as big and hence is not a bottleneck
Routing time or hop time (L): determined by topology, routing algorithm, and router
circuitry (e.g., arbitration, number of ports etc.)

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture28/28_2.htm[6/13/2012 12:11:53 PM]

Importance: L < g < o for most scientific applications

Cost scaling

Cost of anything has two components
Fixed cost
Incremental cost for adding something more (in our case more nodes)

Bus-based SMPs have too much of fixed cost
Scaling involves adding a commodity processor and possibly more DRAM
Need to have more modular cost scaling i.e. don’t want to pay so much even for a
small scale machine

Costup = cost of P nodes / cost of single node
Parallel computing on a machine is cost-effective if speedup > costup on average for target
applications

 



Objectives_template

file:///E|/parallel_com_arch/lecture28/28_3.htm[6/13/2012 12:11:53 PM]

 Module 13: "Scalable Multiprocessors"
 Lecture 28: "Scalable Multiprocessors"

 

Physical scaling

Integration at various levels
Chip-level integration to keep wires short: nCUBE/2 (1990) puts the processor, router,
MMU, DRAM interface on a single chip
Board-level integration: Thinking machine CM-5 uses the core of a Sun SparcStation 1
and other peripherals on a single board to realize a node
System-level integration: IBM SP1 and SP2 exploit commodity RS6000 workstations and
connect them through an external communication assist / network interface card and a
router

IBM SP-2

Programming model

Shared address space
Communication initiated by load/store instructions
Requires local or remote memory access before the data can be sent
Request/response protocol initiated by receiver

Message passing
A one way communication: normally initiated by the sender
Number of sends can be buffered before a matching receive shows up

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture28/28_3.htm[6/13/2012 12:11:53 PM]

Synchronous vs. asynchronous sends
Active messages

Restricted form of remote procedure call

 



Objectives_template

file:///E|/parallel_com_arch/lecture28/28_4.htm[6/13/2012 12:11:53 PM]

 Module 13: "Scalable Multiprocessors"
 Lecture 28: "Scalable Multiprocessors"

 

Common challenges

Input buffer overflow
Reserve space per source
Refuse input when full
Let the network backup naturally: tree saturation
Deadlock-free networks
Traffic not bound to hot-spot nodes may get severely affected
Keep a reserved NACK channel
May drop packets depending on the network protocol

Fetch deadlock
Nodes must continue to serve new messages while waiting for queue space so that it
can put new requests
Separate request and response virtual networks (essentially disjoint set of queues in
each port of the router) or have enough buffer space to never run into this problem
(may be too expensive)

Spectrum of designs

In increasing order of hardware support and probably performance and cost
Physical bit stream, physical DMA (nCUBE, iPSC)
User-level network port (CM-5, MIT *T)
User-level handler (MIT J machine, Monsoon)
Remote virtual address (Intel Paragon, Meiko CS-2)
Global physical address (Cray T3D, T3E)
Cache-coherent shared memory (SGI Origin, Alpha GS320, Sun S3.mp)

Physical DMA

A reserved area in physical memory is used for sending and receiving messages
After setting up the memory region the processor takes a trap to the kernel
The interrupt handler typically copies the data into kernel area so that it can be
manipulated
Finally, kernel instructs the DMA device to push the message into the network via the
physical address of the message (typically called DMA channel address)
At the destination the DMA device will deposit the message in a predefined physical
memory area and generates an interrupt for the processor
The interrupt handler now can copy the message into kernel area and inspect and
parse the message to take appropriate actions (this is called blind deposit)

nCUBE/2

Independent DMA channels per link direction
Segmented messages (first segment can be inspected to decide what to do with the rest)
Active messages: 13 µs outbound, 15 µs inbound
Dimension-order routing on hypercube

User-level ports

Network ports and status registers are memory-mapped in user address space

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture28/28_4.htm[6/13/2012 12:11:53 PM]

User program can initiate a transaction by composing the message and writing to the
status registers
Communication assist does the protection check and pushes the message into the
physical medium
A message at the destination can sit in the input queue until the user program pops it
off
A system message generates an interrupt through the destination assist, but user
messages do not require OS intervention
Problem with context switch: messages are now really part of the process state; need
to save and restore them
Thinking machine CM-5 has outbound message latency of 1.5 µs and inbound 1.6 µs

 



Objectives_template

file:///E|/parallel_com_arch/lecture28/28_5.htm[6/13/2012 12:11:54 PM]

 Module 13: "Scalable Multiprocessors"
 Lecture 28: "Scalable Multiprocessors"

 

User-level handling

Instead of mapping the network ports to user memory, make them processor registers
Even faster messaging
Communication assist now looks really like a functional unit inside the processor (just
like a FPU)
Send and receive are now register to register transfers
iWARP from CMU and Intel, *T from MIT and Motorola, J machine from MIT
iWARP binds two processor registers to the heads of the network input and output
ports; the processor accesses the message word-by-word as it streams in
*T extended Motorola 88110 RISC core to include a network function unit containing
dedicated sets of input and output registers; a message is spread over a set of such
registers and a special instruction initiates the transfer

Message co-processor

Nodes equipped with a dedicated message processor or communication processor (CP)
Two possible organizations: main processor and CP sit on a shared memory bus along
with the main memory and NI; otherwise the CP may be integrated into the NI
The main processor and CP talk to each other via the normal cache coherence
protocol i.e. while sending a message the main processor fills a shared buffer and sets
a flag and while receiving a message CP does the same thing
Possible inefficiency due to invalidation-based coherence protocol (Update protocol
would be worse)
CP may need to handle a lot of concurrent transactions e.g., from main processor and
from network: a single dispatch loop serializes the processing (multi-threaded CP?)

Intel Paragon

One i860XP processor per SMP node (MESI) is dedicated as CP
One receive and one transmit DMA engine for transferring data from/to shared memory
to/from NI transmit/receive queue (each 2 KB)
While sending a large message the NI queue may become full and the network may not drain
that fast

To avoid deadlock the transmit DMA is stalled by hardware flow control and the bus is
relinquished

Takes about 10 µs to send a small message (about two cache lines) from the register file of
source to the register file of destination

Meiko CS-2

The CP is tightly integrated with the NI and has separate concurrent units
The command unit sits directly on the shared bus and is responsible for fielding
processor requests
The processor executes an atomic swap between one register and a fixed memory
location which is mapped to the head of the CP input queue
The command contains a command type and a VA
Depending on the command type the command processor can invoke the DMA
processor (may need assistance from VA to PA unit), an event processor (to wake up

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture28/28_5.htm[6/13/2012 12:11:54 PM]

some thread on the main processor), or a thread processor to construct and issue a
message
The input processor fields new messages from the network and may invoke the reply
processor, or any of the above three units

Shared physical addr.

Memory controller on each node accepts PAs from the system bus
The processor initially issues a VA
The TLB provides the translation and the upper few bits of PA represent the home
node for this address (determined when the mapping is established for the first time)
If the address is local i.e. requester is the home node, the memory controller returns
data just as in uniprocessor
If address is remote the memory controller instructs the communication assist
(essentially the NI) to generate a remote memory request
In the remote home the CA issues a request to the memory controller to read memory
and eventually data is returned to the requester

 



Objectives_template

file:///E|/parallel_com_arch/lecture28/28_6.htm[6/13/2012 12:11:54 PM]

 Module 13: "Scalable Multiprocessors"
 Lecture 28: "Scalable Multiprocessors"

 

Caching shared data?

All transactions are no longer visible to all
Whether a page should be cached or not is normally part of the VA to PA translation
For example, in some graphics co-processors all operations must be through uncached
writes or storing command/data to memory-mapped control registers is also uncached
Private memory lines can be cached without any problem and does not depend on if the
line is local or remote
Caching shared lines introduce coherence issues

COWs and NOWs

Historically, used to build a multi-programmed multi-user system
Connect a number of PCs or workstations over a cheap commodity network and
schedule independent jobs on machines depending on the load

Increasingly, these clusters are being used as parallel machines
One major reason is the availability of message passing libraries to express parallelism
over commodity LAN or WAN
Also, technology breakthrough in terms of high-speed interconnects (ServerNet, Myrinet,
Infiniband, PCI Express AS, etc.)

Varying specialized support in CA
Conventional TCP/IP stack imposes an enormous overhead to move even a small
amount of data (often more than common Ethernet): network processor architecture has
been a hot research topic
Active messages allow user-level communication
Reflective memory allows writes to special regions of memory to appear as writes into
regions on remote processors
Virtual interface architecture (VIA): each process has a communication end point
consisting of a send queue, receive queue, and status; a process can deposit a
message in its send queue with a dest. id so that it actually gets into the receive queue
of target process
The CA hardware normally plugs on to I/O bus as opposed memory bus (fast PCI bus
supports coherence); could be on the graphics bus also

Scalable synchronization

In message-passing a send/receive pair provides point-to-point synchronization
Handle all-to-all synchronization via tree barrier
Also, all-to-all communication must be properly staggered to avoid hot-spots in the system

Classical example of matrix transpose
Scalable locks such as ticket or array should be used
Any problem with array locks?

Array locations now may not be local: invalidation causes remote misses

Distributed queue locks

Goodman, Vernon, Woest (1989)
Logically arrange the array as a linked list
Allocate a new node (must be atomic) when a processor enters acquire

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture28/28_6.htm[6/13/2012 12:11:54 PM]

The node is allocated on the local memory of the contending processor
A tail pointer is always maintained

 

file:///E|/parallel_com_arch/lecture29/29_1.htm

	28_1
	Local Disk
	Objectives_template


	28_2
	Local Disk
	Objectives_template


	28_3
	Local Disk
	Objectives_template


	28_4
	Local Disk
	Objectives_template


	28_5
	Local Disk
	Objectives_template


	28_6
	Local Disk
	Objectives_template



