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Chapter 1

Introduction

This course builds upon the concepts learned in the course “Mechanics of
Materials” also known as “Strength of Materials”. In the “Mechanics of Ma-
terials” course one would have learnt two new concepts “stress” and “strain”
in addition to revisiting the concept of a “force” and “displacement” that
one would have mastered in a first course in mechanics, namely “Engineering
Mechanics”. Also one might have been exposed to four equations connect-
ing these four concepts, namely strain-displacement equation, constitutive
equation, equilibrium equation and compatibility equation. Figure 1.1 pic-
torially depicts the concepts that these equations relate. Thus, the strain
displacement relation allows one to compute the strain given a displacement;
constitutive relation gives the value of stress for a known value of the strain
or vice versa; equilibrium equation, crudely, relates the stresses developed in
the body to the forces and moment applied on it; and finally compatibility
equation places restrictions on how the strains can vary over the body so
that a continuous displacement field could be found for the assumed strain
field.

In this course too we shall be studying the same four concepts and four
equations. While in the “mechanics of materials” course, one was introduced
to the various components of the stress and strain, namely the normal and
shear, in the problems that was solved not more than one component of the
stress or strain occurred simultaneously. Here we shall be studying these
problems in which more than one component of the stress or strain occurs
simultaneously. Thus, in this course we shall be generalizing these concepts
and equations to facilitate three dimensional analysis of structures.

Before venturing into the generalization of these concepts and equations,

1
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Force Displacement

Stress StrainConstitutive
relation

Strain-
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Figure 1.1: Basic concepts and equations in mechanics

a few drawbacks of the definitions and ideas that one might have acquired
from the previous course needs to be highlighted and clarified. This we
shall do in sections 1.1 and 1.2. Specifically, in section 1.1 we look at the
four concepts in mechanics and in section 1.2 we look at the equations in
mechanics. These sections also serve as a motivation for the mathematical
tools that we would be developing in chapter 2. Then, in section 1.3 we look
into various idealizations of the response of materials and the mathematical
framework used to study them. However, in this course we shall be only
focusing on the elastic response or more precisely, non-dissipative response
of the materials. Finally, in section 1.4 we outline three ways by which we
can solve problems in mechanics.

1.1 Basic Concepts in Mechanics

1.1.1 What is force?

Force is a mathematical idea to study the motion of bodies. It is not “real”
as many think it to be. However, it can be associated with the twitching of
the muscle, feeling of the burden of mass, linear translation of the motor, so
on and so forth. Despite seeing only displacements we relate it to its cause
the force, as the concept of force has now been ingrained.



1.1. BASIC CONCEPTS IN MECHANICS 3

Let us see why force is an idea that arises from mathematical need. Say,
the position1 (xo) and velocity (vo) of the body is known at some time, t
= to, then one is interested in knowing where this body would be at a later
time, t = t1. It turns out that mathematically, if the acceleration (a) of the
body at any later instant in time is specified then the position of the body
can be determined through Taylor’s series. That is if

a =
d2x

dt2
= fa(t), (1.1)

then from Taylor’s series

x1 = x(t1) = x(to) +
dx

dt

∣∣∣∣
t=to

(t1 − to) +
d2x

dt2

∣∣∣∣
t=to

(t1 − to)2

2!

+
d3x

dt3

∣∣∣∣
t=to

(t1 − to)3

3!
+
d4x

dt4

∣∣∣∣
t=to

(t1 − to)4

4!
+ . . . , (1.2)

which when written in terms of xo, vo and a reduces to2

x1 = xo + vo(t1 − to) + fa(to)
(t1 − to)2

2!
+
dfa
dt

∣∣∣∣
t=to

(t1 − to)3

3!

+
d2fa
dt2

∣∣∣∣
t=to

(t1 − to)4

4!
+ . . . . (1.3)

Thus, if the function fa is known then the position of the body at any other
instant in time can be determined. This function is nothing but force per
unit mass3, as per Newton’s second law which gives a definition for the force.
This shows that force is a function that one defines mathematically so that
the position of the body at any later instance can be obtained from knowing
its current position and velocity.

It is pertinent to point out that this function fa could also be prescribed
using the position, x and velocity, v of the body which are themselves func-
tion of time, t and hence fa would still be a function of time. Thus, fa =
g(x(t),v(t), t). However, fa could not arbitrarily depend on t, x and v. At

1Any bold small case alphabet denotes a vector. Example a, x.
2Here it is pertinent to note that the subscripts denote the instant in time when position

or velocity is determined. Thus, xo denotes the position at time to and x1 denotes the
position at time t1.

3Here the mass of the body is assumed to be a constant.
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this point it suffices to say that the other two laws of Newton and certain
objectivity requirements have to be met by this function. We shall see what
these objectivity requirements are and how to prescribe functions that meet
this requirement subsequently in chapter - 6.

Next, let us understand what kind of quantity is force. In other words is
force a scalar or vector and why? Since, position is a vector and acceleration
is second time derivative of position, it is also a vector. Then, it follows from
equation (1.1) that fa also has to be a vector. Therefore, force is a vector
quantity. Numerous experiments also show that addition of forces follow
vector addition law (or the parallelogram law of addition). In chapter 2 we
shall see how the vector addition differs from scalar addition. In fact it is this
addition rule that distinguishes a vector from a scalar and hence confirms
that force is a vector.

As a summary, we showed that force is a mathematical construct which
is used to mathematically describe the motion of bodies.

1.1.2 What is stress?

As is evident from figure 1.1, stress is a quantity derived from force. The
commonly stated definitions in an introductory course in mechanics for stress
are:

1. Stress is the force acting per unit area

2. Stress is the resistance offered by the body to a force acting on it

While the first definition tells how to compute the stress from the force, this
definition holds only for simple loading case. One can construct a number
of examples where definition 1 does not hold. The following two cases are
presented just as an example. Case -1: A cantilever beam of rectangular cross
section with a uniform pressure, p, applied on the top surface, as shown in
figure 1.2a. According to the definition 1 the stress in the beam should be
p, but it is not. Case -2: An annular cylinder subjected to a pressure, p
at its inner surface, as shown in figure 1.2b. The net force acting on the
cylinder is zero but the stresses are not zero at any location. Also, the stress
is not p, anywhere in the interior of the cylinder. This being the state of
the first definition, the second definition is of little use as it does not tell
how to compute the stress. These definitions does not tell that there are
various components of the stress nor whether the area over which the force
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P 

(a) A cantilever beam with uniform
pressure applied on its top surface.

P

(b) An annular cylinder subjected to
internal pressure.

Figure 1.2: Structures subjected to pressure loading

is considered to be distributed is the deformed or the undeformed. They do
not distinguish between traction (or stress vector), t(n) and stress tensor, σ.

Traction is the distributed force acting per unit area of a cut surface
or boundary of the body. This traction apart from varying spatially and
temporally also depends on the plane of cut characterized by its normal.
This quantity integrated over the cut surface gives the net force acting on
that surface. Consequently, since force is a vector quantity this traction is
also a vector quantity. The component of the traction along the normal
direction4, n is called as the normal stress (σ(n)). The magnitude of the
component of the traction5 acting parallel to the plane is called as the shear
stress (τ(n)).

If the force is distributed over the deformed area then the corresponding
traction is called as the Cauchy traction (t(n)) and if the force is distributed
over the undeformed or original area that traction is called as the Piola
traction (p(n)). If the deformed area does not change significantly from the

4 Here n is a unit vector.
5Recognize that there would be two components of traction acting on the plane of cut.

Shear stress is neither of those components. For example, if traction on a plane whose
normal is ez is, t(ez) = axex + ayey + azez, then the normal stress σ(ez) = az and the

shear stress τ(ez) =
√
a2x + a2y. See chapter 4 for more details.
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original area, then both these traction would have nearly the same magnitude
and direction. More details about these traction is presented in chapter 4.

The stress tensor, is a linear function (crudely, a matrix) that relates the
normal vector, n to the traction acting on that plane whose normal is n. The
stress tensor could vary spatially and temporally but does not change with
the plane of cut. Just like there is Cauchy and Piola traction, depending on
over which area the force is distributed, there are two stress tensors. The
Cauchy (or true) stress tensor, σ and the Piola-Kirchhoff stress tensor (P).
While these two tensors may nearly be the same when the deformed area is
not significantly different from the original area, qualitatively these tensors
are different. To satisfy the moment equilibrium in the absence of body
couples, Cauchy stress tensor has to be symmetric tensor (crudely, symmetric
matrix) and Piola-Kirchhoff stress tensor cannot be symmetric. In fact the
transpose of the Piola-Kirchhoff stress tensor is called as the engineering
stress or nominal stress. Moreover, there are many other stress measures
obtained from the Cauchy stress and the gradient of the displacement which
shall be studied in chapter 4.

1.1.3 What is displacement?

The difference between the position vectors of a material particle at two
different instances of time is called as displacement. In general, the displace-
ment of the material particle would depend on time; the instances between
which the displacement is sought. It is also possible that different particles
get displaced differently between the same two instances of time. Thus, dis-
placement in general varies spatially and temporally. Displacement is what
can be observed and measured. Forces, traction and stress tensors are intro-
duced to explain (or mathematically capture) this displacement.

The displacement field is at least differentiable twice temporally so that
acceleration could be computed. This stems from the observations that the
location or velocity of the body does not change abruptly. Similarly, the basic
tenant of continuum mechanics is that the displacement field is continuous
spatially and is piecewise differentiable spatially at least twice. That is while
the displacement field is required to be continuous over the entire body it is
required to be twice differentiable not necessarily over the entire body but
only on subsets of the body. Thus, in continuum mechanics interpenetration
of two surfaces or separation and formation of new surfaces is precluded. The
validity of the theory stops just before the body fractures. Notwithstanding
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this many attempt to use continuum mechanics concepts to understand the
process of fracture.

A body is said to undergo rigid body displacement if the distance between
any two particles that belongs to the body remains unchanged. That is in
a rigid body displacement the particles that belong to a body do not move
relative to each other. A body is said to be rigid if it always undergoes only
rigid body displacement under action of any force. On the other hand, a body
is said to be deformable if it allows relative displacement of its particles under
the action of some force. Though, all real bodies are deformable, at times
one could idealize a given body as rigid under the action of certain forces.

1.1.4 What is strain?

One observes that rigid body displacements of the body does not give raise
to any stresses. Further, stresses are induced only when there is relative
displacement of the material particles. Consequently, one requires a measure
(or metric) for this relative displacement so that it can be related to the
stress. The unique measure of relative displacement is the stretch ratio,
λ(A), defined as the ratio of the deformed length to the original length of a
material fiber along a given direction, A. (Note that here A is a unit vector.)
However, this measure has the drawback that when the body is not deformed
the stretch ratio is 1 (by virtue of the deformed length being same as the
original length) and hence inconvenient to write the constitutive relation of
the form

σ(A) = f(λ(A)), (1.4)

where σ(A) denotes the normal stress on a plane whose normal is A. Since
the stress is zero when the body is not deformed, the function f should be
such that f(1) = 0. Mathematical implementation of this condition that
f(1) = 0 and that f be a one to one function is thought to be difficult when
f is a nonlinear function of λ(A). Consequently, another measure of relative
displacement is sought which would be 0 when the body is not deformed and
less than zero when compressed and greater than zero when stretched. This
measure is called as the strain, ε(A). There is no unique way of obtaining the
strain from the stretch ratio. The following functions satisfy the requirement
of the strain:

ε(A) =
λm(A) − 1

m
, ε(A) = ln(λ(A)), (1.5)
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where m is some real number and ln stands for natural logarithm. Thus, if
m = 1 in (1.5a) then the resulting strain is called as the engineering strain,
if m = −1, it is called as the true strain, if m = 2 it is Cauchy-Green strain.
The second function wherein ε(A) = ln(λ(A)), is called as the Hencky strain
or the logarithmic strain.

Just like the traction and hence the normal stress changes with the ori-
entation of the plane, the stretch ratio also changes with the orientation
along which it is measured. We shall see in chapter 3 that a tensor called
the Cauchy-Green deformation tensor carries all the information required to
compute the stretch ratio along any direction. This is akin to the stress ten-
sor which when known we could compute the traction or the normal stress
in any plane.

1.2 Basic Equations in Mechanics

Having gained a superficial understanding of the four concepts in mechanics
namely the force, stress, displacement and strain, let us look at the four
equations that connect these concepts and the reasoning used to obtain them.

1.2.1 Equilibrium equations

Equilibrium equations are Newton’s second law which states that the rate of
change of linear momentum would be equal in magnitude and direction to
the net applied force. Deformable bodies are subjected to two kinds of forces,
namely, contact force and body force. As the name suggest the contact force
arises by virtue of the body being in contact with its surroundings. Traction
arises only due to these contact force and hence so does the stress tensor.
The magnitude of the contact force depends on the contact area between
the body and its surroundings. On the other hand, the body forces are
action at a distance forces. Examples of body force are gravitational force,
electromagnetic force. The magnitude of these body forces depend on the
mass of the body and hence are generally expressed as per unit mass of the
body and denoted by b.

On further assuming that the Newton’s second law holds for any subpart
of the body and that the stress field is continuously differentiable within the
body the equilibrium equations can be written as:

div(σ) + ρb = ρa, (1.6)
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where ρ is the density, a is the acceleration and the mass is assumed to be
conserved. Detail derivation of the above equation is given in chapter 5. The
meaning of the operator div(·) can be found in chapter 2.

Also, the rate of change of angular momentum must be equal to the net
applied moment on the body. Assuming that the moment is generated only
by the contact forces and body forces, this condition requires that the Cauchy
stress tensor to be symmetric. That is in the absence of body couples, σ = σt,
where the superscript (·)t denotes the transpose. Here again the assumptions
made to obtain the force equilibrium equation (1.6) should hold. See chapter
5 for detailed derivation.

1.2.2 Strain-Displacement relation

The relationship that connects the displacement field with the strain is called
as the strain displacement relationship. As pointed out before there is no
unique definition of the strain and hence there are various strain tensors.
However, all these strains are some function of the gradient of the deformation
field, F; commonly called as the deformation gradient. The deformation
field is a function that gives the position vector of any material particle
that belongs to the body at any instance in time with the material particle
identified by its location at some time to. Then, in chapter 3 we show that,
the stretch ratio along a given direction A is,

λ(A) =
√

CA ·A, (1.7)

where C = FtF, is called as the right Cauchy-Green deformation tensor.
When the body is undeformed, F = 1 and hence, C = 1 and λ(A) = 1.
Instead of looking at the deformation field, one can develop the expression
for the stretch ratio, looking at the displacement field too. Now, the dis-
placement field can be a function of the coordinates of the material particles
in the reference or undeformed state or the coordinates in the current or
deformed state. If the displacement is a function of the coordinates of the
material particles in the reference configuration it is called as Lagrangian
representation of the displacement field and the gradient of this Lagrangian
displacement field is called as the Lagrangian displacement gradient and is
denoted by H. On the other hand if the displacement is a function of the
coordinates of the material particle in the deformed state, such a representa-
tion of the displacement field is said to be Eulerian and the gradient of this
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Eulerian displacement field is called as the Eulerian displacement gradient
and is denoted by h. Then it can be shown that (see chapter 3),

F = H + 1, F−1 = 1− h, (1.8)

where, 1 stands for identity tensor (see chapter 2 for its definition). Now,
the right Cauchy-Green deformation tensor can be written in terms of the
Lagrangian displacement gradient as,

C = 1 + H + Ht + HtH. (1.9)

Note that the if the body is undeformed then H = 0. Hence, if one cannot
see the displacement of the body then it is likely that the components of
the Lagrangian displacement gradient are going to be small, say of order
10−3. Then, the components of the tensor HtH are going to be of the order
10−6. Hence, the equation (1.9) for this case when the components of the
Lagrangian displacement gradient is small can be approximately calculated
as,

C = 1 + 2εL, (1.10)

where

εL =
1

2

[
H + Ht

]
, (1.11)

is called as the linearized Lagrangian strain. We shall see in chapter 3 that
when the components of the Lagrangian displacement gradient is small, the
stretch ratio (1.7) reduces to

λA = 1 + εLA ·A. (1.12)

Thus we find that εL contains information about changes in length along
any given direction, A when the components of the Lagrangian displacement
gradient are small. Hence, it is called as the linearized Lagrangian strain.
We shall in chapter 3 derive the various strain tensors corresponding to the
various definition of strains given in equation (1.5).

Further, since FF−1 = 1, it follows from (1.8) that

H = h + Hh, (1.13)

which when the components of both the Lagrangian and Eulerian displace-
ment gradient are small can be approximated as H = h. Thus, when the
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components of the Lagrangian and Eulerian displacement gradients are small
these displacement gradients are the same. Hence, the Eulerian linearized
strain defined as,

εE =
1

2

[
h + ht

]
, (1.14)

and the Lagrangian linearized strain, εL would be the same when the com-
ponents of the displacement gradients are small.

Equation (1.14) is the strain displacement relationship that we would use
to solve boundary value problems in this course, as we limit ourselves to cases
where the components of the Lagrangian and Eulerian displacement gradient
is small.

1.2.3 Compatibility equation

It is evident from the definition of the linearized Lagrangian strain, (1.11)
that it is a symmetric tensor. Hence, it has only 6 independent components.
Now, one cannot prescribe arbitrarily these six components since a smooth
differentiable displacement field should be obtainable from this six prescribed
components. The restrictions placed on how this six components of the
strain could vary spatially so that a smooth differentiable displacement field
is obtainable is called as compatibility equation. Thus, the compatibility
condition is

curl(curl(ε)) = 0. (1.15)

The derivation of this equation as well as the components of the curl(·)
operator in Cartesian coordinates is presented in chapter 3.

It should also be mentioned that the compatibility condition in case of
large deformations is yet to be obtained. That is if the components of the
right Cauchy-Green deformation tensor, C is prescribed, the restrictions that
have to be placed on these prescribed components so that a smooth differ-
entiable deformation field could be obtained is unknown, except for some
special cases.

1.2.4 Constitutive relation

Broadly constitutive relation is the equation that relates the stress (and stress
rates) with the displacement gradient (and rate of displacement gradient).
While the above three equations - Equilibrium equations, strain-displacement
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relation, compatibility equations - are independent of the material that the
body is made up of and/or the process that the body is subjected to, the
constitutive relation is dependent on the material and the process. Consti-
tutive relation is required to bring in the dependance of the material in the
response of the body and to have as many equations as there are unknowns,
as will be shown in chapter 6.

The fidelity of the predictions, namely the likely displacement or stress
for a given force depends only on the constitutive relation. This is so because
the other three equations are the same irrespective of the material that the
body is made up of. Consequently, a lot of research is being undertaken to
arrive at better constitutive relations for materials.

It is difficult to have a constitutive relation that could describe the re-
sponse of a material subjected to any process. Hence, usually constitutive
relations are prescribed for a particular process that the material undergoes.
The variables in the constitutive relation depends on the process that is being
studied. The same material could undergo different processes depending on
the stimuli; for example, the same material could respond elastically or plas-
tically depending on say, the magnitude of the load or temperature. Hence
it is only apt to qualify the process and not the material. However, it is
customary to qualify the material instead of the process too. This we shall
desist.

Traditionally, the constitutive relation is said to depend on whether the
given material behaves like a solid or fluid and one elaborates on how to
classify a given material as a solid or a fluid. A material that is not a solid
is defined as a fluid. This means one has to define what a solid is. A couple
of definitions of a solid are listed below:

1. Solid is one which can resist sustained shear forces without continuously
deforming

2. Solid is one which does not take the shape of the container

Though these definitions are intuitive they are ambiguous. A class of mate-
rials called “viscoelastic solids”, neither take the shape of the container nor
resist shear forces without continuously deforming. Also, the same mate-
rial would behave like a solid, like a mixture of a solid and a fluid or like a
fluid depending on say, the temperature and the mechanical stress it is being
subjected to. These prompts us to say that a given material behaves in a
solid-like or fluid-like manner. However, as we shall see, this classification of
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a given material as solid or fluid is immaterial. If one appeals to thermody-
namics for the classification of the processes, the response of materials could
be classified based on (1) Whether there is conversion of energy from one
form to another during the process, and (2) Whether the process is thermo-
dynamically equilibrated. Though, in the following section, we classify the
response of materials based on thermodynamics, we also give the commonly
stated definitions and discuss their shortcomings. In this course, as well as
in all these classifications, it is assumed that there are no chemical changes
occurring in the body and hence the composition of the body remains a
constant.

1.3 Classification of the Response of Materi-

als

First, it should be clarified that one should not get confused with the real
body and its mathematical idealization. Modeling is all about idealizations
that lead to predictions that are close to observations. To illustrate, the
earth and the sun are assumed as point masses when one is interested in
planetary motion. The same earth is assumed as a rigid sphere if one is
interested in studying the eclipse. These assumptions are made to make the
resulting problem tractable without losing on the required accuracy. In the
same sprit, the all material responses, some amount of mechanical energy is
converted into other forms of energy. However, in some cases, this loss in the
mechanical energy is small that it can be idealized as having no loss, i.e., a
non-dissipative process.

1.3.1 Non-dissipative response

A response is said to be non-dissipative if there is no conversion of mechanical
energy to other forms of energy, namely heat energy. Commonly, a material
responding in this fashion is said to be elastic. The common definitions of
elastic response,

1. If the body’s original size and shape can be recovered on unloading,
the loading process is said to be elastic.

2. Processes in which the state of stress depends only on the current strain,
is said to be elastic.
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The first definition is of little use, because it requires one to do a complimen-
tary process (unloading) to decide on whether the process that needs to be
classified as being elastic. The second definition, though useful for deciding
on the variables in the constitutive relation, it also requires one to do a com-
plimentary process (unload and load again) to decide on whether the first
process is elastic. The definition based on thermodynamics does not suffer
from this drawback. In chapter 6 we provide examples where these three def-
initions are not equivalent. However, many processes (approximately) satisfy
all the three definitions.

This class of processes also proceeds through thermodynamically equili-
brated states. That is, if the body is isolated at any instant of loading (or
displacement) then the stress, displacement, internal energy, entropy do not
change with time.

Ideal gas, a fluid is the best example of a material that responds in a
non-dissipative manner. Metals up to a certain stress level, called the yield
stress, are also idealized as responding in a non dissipative manner. Thus,
the notion that only solids respond in a non-dissipative manner is not correct.

Thus, for these non-dissipative, thermodynamically equilibrated processes
the Cauchy stress and the deformation gradient can in general be related
through an implicit function. That is, for isotropic materials (see chapter
6 for when a material is said to be isotropic), f(σ,F) = 0. However, in
classical elasticity it is customary to assume that Cauchy stress in a isotropic
material is a function of the deformation gradient, σ = f̂(F). On requiring
the restriction6 due to objectivity and second law of thermodynamics to hold,
it can be shown that if σ = f̂(F), then

σ =
∂ψR
∂J3

1 +
2

J3

[
∂ψR
∂J1

B− ∂ψR
∂J2

B−1

]
, (1.16)

where ψR = ψ̂R(J1, J2, J3) is the Helmoltz free energy defined per unit volume
in the reference configuration, also called as the stored energy, B = FFt and
J1 = tr(B), J2 = tr(B−1), J3 =

√
det(B). When the components of the

displacement gradient is small, then (1.16) reduces to,

σ = tr(ε)λ1 + 2µε, (1.17)

on neglecting the higher powers of the Lagrangian displacement gradient
and where λ and µ are called as the Lamè constants. The equation (1.17) is

6See chapter 6 for more details about these restrictions.
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the famous Hooke’s law for isotropic materials. In this course Hooke’s law
is the constitutive equation that we shall be using to solve boundary value
problems.

Before concluding this section, another misnomer needs to be clarified.
As can be seen from equation (1.16) the relationship between Cauchy stress
and the displacement gradient can be nonlinear when the response is non-
dissipative. Only sometimes as in the case of the material obeying Hooke’s
law is this relationship linear. It is also true that if the response is dissi-
pative, the relationship between the stress and the displacement gradient is
always nonlinear. However, nonlinear relationship between the stress and the
displacement gradient does not mean that the response is dissipative. That
is, nonlinear relationship between the stress and the displacement gradient
is only a necessary condition for the response to be dissipative but not a
sufficient condition.

1.3.2 Dissipative response

A response is said to be dissipative if there is conversion of mechanical energy
to other forms of energy. A material responding in this fashion is popularly
said to be inelastic. There are three types of dissipative response, which we
shall see in some detail.

Plastic response

A material is said to deform plastically if the deformation process proceeds
through thermodynamically equilibrated states but is dissipative. That is,
if the body is isolated at any instant of loading (or displacement) then the
stress, displacement, internal energy, entropy do not change with time. By
virtue of the process being dissipative, the stress at an instant would depend
on the history of the deformation. However, the stress does not depend on the
rate of loading or displacement by virtue of the process proceeding through
thermodynamically equilibrated states.

For plastic response, the classical constitutive relation is assumed to be
of the form,

σ = f(F,Fp, q1, q2), (1.18)

where Fp, q1, q2 are internal variables whose values could change with de-
formation and/or stress. For illustration, we have used two scalar internal
variables and one second order tensor internal variable while there can be any
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number of tensor or scalar internal variables. In some theories the internal
variables are given a physical interpretation but in general, these variable
need not have any meaning and are proposed for mathematical modeling
purpose only.

Thus, when a material deforms plastically, it does not return back to
its original shape when unloaded; there would be a permanent deformation.
Hence, the process is irreversible. The response does not depend on the rate
of loading (or displacement). Metals like steel at room temperature respond
plastically when stressed above a particular limit, called the yield stress.

Viscoelastic response

If the dissipative process proceeds through states that are not in thermody-
namic equilibrium7, then it is said to be viscoelastic. Therefore, if a body is
isolated at some instant of loading (or displacement) then the displacement
(or the stress) continues to change with time. A viscoelastic material when
subjected to constant stress would result in a deformation that changes with
time which is called as creep. Also, when a viscoelastic material is subjected
to a constant deformation field, its stress changes with time and this is called
as stress relaxation. This is in contrary to a elastic or plastic material which
when subjected to a constant stress would have a constant strain.

The constitutive relation for a viscoelastic response is of the form,

f(σ,F, σ̇, Ḟ) = 0, (1.19)

where σ̇ denotes the time derivative of stress and Ḟ time derivative of the
deformation gradient. Though here we have truncated to first order time
derivatives, the general theory allows for higher order time derivatives too.

Thus, the response of a viscoelastic material depends on the rate at which
it is loaded (or displaced) apart from the history of the loading (or dis-
placement). The response of a viscoelastic material changes depending on
whether load is controlled or displacement is controlled. This process too
is irreversible and there would be unrecovered deformation immediately on
removal of the load. The magnitude of unrecovered deformation after a long
time (asymptotically) would tend to zero or remain the same constant value
that it is immediately after the removal of load.

7A body is said to be in thermodynamic equilibrium if no quantity that describes its
state changes when it is isolated from its surroundings. A body is said to be isolated when
there is no mass or energy flux in to or out of the body.
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Constitutive relations of the form,

σ = f(Ḟ), (1.20)

which is a special case of the viscoelastic constitutive relation (1.19), is that
of a viscous fluid.

In some treatments of the subject, a viscoelastic material would be said
to be a combination of a viscous fluid and an elastic solid and the viscoelastic
models are obtained by combining springs and dashpots. There are several
philosophical problems associated with this viewpoint about which we cannot
elaborate here.

Viscoplastic response

This process too is dissipative and proceeds through states that are not
in thermodynamic equilibrium. However, in order to model this class of
response the constitutive relation has to be of the form,

f(σ,F, σ̇, Ḟ,Fp, q1, q2) = 0, (1.21)

where Fp, q1, q2 are the internal variables whose values could change with
deformation and/or stress. Their significance is same as that discussed for
plastic response. As can be easily seen the constitutive relation form for
the viscoplastic response (1.21) encompasses viscoelastic, plastic and elastic
response as a special case.

In this case, constant load causes a deformation that changes with time.
Also, a constant deformation causes applied load to change with time. The
response of the material depends on the rate of loading or displacement.
The process is irreversible and there would be unrecovered deformation on
removal of load. The magnitude of this unrecovered deformation varies with
rate of loading, time and would tend to a value which is not zero. This
dependance of the constant value that the unrecovered deformation tends
on the rate of loading, could be taken as the characteristic of viscoplastic
response.

Figure 1.3 shows the typical variation in the strain for various responses
when the material is loaded, held at a constant load and unloaded, as dis-
cussed above. This kind of loading is called as the creep and recovery loading,
helps one to distinguish various kinds of responses.

As mentioned already, in this course we shall focus on the elastic or non-
dissipative response only.
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Figure 1.3: Schematic of the variation in the strain with time for various
responses when the material is loaded and unloaded.
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1.4 Solution to Boundary Value Problems

A boundary value problem is one in which we specify the traction applied on
the surface of a body and/or displacement of the boundary of a body and
are interested in finding the displacement and/or the stress at any interior
point in the body or on part of the boundary where they were not specified.
This specification of the boundary traction and/or displacement is called
as boundary condition. The boundary condition is in a sense constitutive
relation for the boundary. It tells how the body and its surroundings interact.
Thus, in a boundary value problem one needs to prescribe the geometry of the
body, the constitutive relation for the material that the body is made up of for
the process it is going to be subjected to and the boundary condition. Using
this information one needs to find the displacement and stress that the body
is subjected to. The so found displacement and stress field should satisfy the
equilibrium equations, constitutive relations, compatibility conditions and
boundary conditions.

The purpose of formulating and solving a boundary value problem is to:

1. To ensure the stresses are within prescribed limits

2. To ensure that the displacements are within prescribed limits

3. To find the distribution of forces and moments on part of the boundary
where displacements are specified

There are four type of boundary conditions. They are

1. Displacement boundary condition: Here the displacement of the
entire boundary of the body alone is specified. This is also called as
Dirichlet boundary condition

2. Traction boundary condition: Here the traction on the entire bound-
ary of the body alone is specified. This is also called as Neumann
boundary condition

3. Mixed boundary condition: Here the displacement is specified on
part of the boundary and traction is specified on the remaining part of
the boundary. Both traction as well as displacement are not specified
over any part of boundary
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4. Robin boundary condition: Here both the displacement and the
traction are specified on the same part of the boundary.

There are three methods by which the displacement and stress field in
the body can be found, satisfying all the required governing equations and
the boundary conditions. Outline of these methods are presented next. The
choice of a method depends on the type of boundary condition.

1.4.1 Displacement method

Here displacement field is taken as the basic unknown. Then, using the
strain displacement relation, (1.14) the strain is computed. This strain in
substituted in the constitutive relation, (1.17) to obtain the stress. The stress
is then substituted in the equilibrium equation (1.6) to obtain 3 second order
partial differential equations in terms of the components of the displacement
field as,

(λ+ µ)grad(div(u)) + µ∆u + ρb = ρ
d2u

dt2
, (1.22)

where ∆(·) stands for the Laplace operator and t denotes time. The detail
derivation of this equation is given in chapter 7. Equation (1.22) is called the
Navier-Lamè equations. Thus, in the displacement method equation (1.22)
is solved along with the prescribed boundary condition.

If three dimensional solid elements are used for modeling the body in
finite element programs, then the weakened form of equation (1.22) is solved
for the specified boundary conditions.

1.4.2 Stress method

In this method, the stress field is assumed such that it satisfies the equilib-
rium equations as well as the prescribed traction boundary conditions. For
example, in the absence of body forces and static equilibrium, it can be eas-
ily seen that if the Cartesian components of the stress are derived from a
potential, φ = φ̃(x, y, z) called as the Airy’s stress potential as,

σ =


∂2φ
∂y2

+ ∂2φ
∂z2

− ∂2φ
∂x∂y

− ∂2φ
∂x∂z

− ∂2φ
∂x∂y

∂2φ
∂x2

+ ∂2φ
∂z2

− ∂2φ
∂y∂z

− ∂2φ
∂x∂z

− ∂2φ
∂y∂z

∂2φ
∂x2

+ ∂2φ
∂y2

 , (1.23)
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then the equilibrium equations are satisfied. Having arrived at the stress,
the strain is computed using

ε =
1

2µ
σ − λtr(σ)

2µ(3λ+ 2µ)
1, (1.24)

obtained by inverting the constitutive relation, (1.17). In order to be able
to find a smooth displacement field from this strain, it has to satisfy com-
patibility condition (1.15). This procedure is formulated in chapter 7 and is
followed to solve some boundary value problems in chapters 8 and 9.

1.4.3 Semi-inverse method

This method is used to solve problems when the constitutive relation is not
given by Hooke’s law (1.17). When the constitutive relation is not given by
Hooke’s law, displacement method results in three coupled nonlinear partial
differential equations for the displacement components which are difficult to
solve. Hence, simplifying assumptions are made for the displacement field,
wherein a the displacement field is prescribed but for some constants and/or
some functions. Except in cases where the constitutive relation is of the form
(1.16), one has to make an assumption on the components of the stress which
would be nonzero for this prescribed displacement field. Then, these nonzero
components of the stress field is found in terms of the constants and unknown
functions in the displacement field. On substituting these stress components
in the equilibrium equations and boundary conditions, one obtains differen-
tial equations for the unknown functions and algebraic equations to find the
unknown constants. The prescription of the displacement field is made in
such a way that it results in ordinary differential equations governing the
form of the unknown functions. Since part displacement and part stress are
prescribed it is called semi-inverse method. This method of solving equations
would not be illustrated in this course.

Finally, we say that the boundary value problem is well posed if (1) There
exist a displacement and stress field that satisfies the boundary conditions
and the governing equations (2) There exist only one such displacement and
stress field (3) Small changes in the boundary conditions causes only small
changes in the displacement and stress fields. The boundary value problem
obtained when Hooke’s law (1.17) is used for the constitutive relation is
known to be well posed, as will be discussed in chapter 7.
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1.5 Summary

Thus in this chapter we introduced the four concepts in mechanics, the four
equations connecting these concepts as well as the methodologies used to
solve boundary value problems. In the following chapters we elaborate on
the same topics. It is not intended that in a first reading of this chapter,
one would understand all the details. However, reading the same chapter
at the end of this course, one should appreciate the details. This chapter
summarizes the concepts that should be assimilated and digested during this
course.



Chapter 2

Mathematical Preliminaries

2.1 Overview

In the introduction, we saw that some of the quantities like force is a vector
or first order tensor, stress is a second order tensor or simply a tensor. The
algebra and calculus associated with these quantities differs, in some aspects
from that of scalar quantities. In this chapter, we shall study on how to ma-
nipulate equations involving vectors and tensors and how to take derivatives
of scalar valued function of a tensor or tensor valued function of a tensor.

2.2 Algebra of vectors

A physical quantity, completely described by a single real number, such as
temperature, density or mass is called a scalar. A vector is a directed line
element in space used to model physical quantities such as force, velocity,
acceleration which have both direction and magnitude. The vector could
be denoted as v or v. Here we denote vectors as v. The length of the
directed line segment is called as the magnitude of the vector and is denoted
by |v|. Two vectors are said to be equal if they have the same direction and
magnitude. The point that vector is a geometric object, namely a directed
line segment cannot be overemphasized. Thus, for us a set of numbers is not
a vector.

The sum of two vectors yields a new vector, based on the parallelogram

23
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law of addition and has the following properties:

u + v = v + u, (2.1)

(u + v) + w = u + (v + w), (2.2)

u + o = u, (2.3)

u + (−u) = o, (2.4)

where o denotes the zero vector with unspecified direction and zero length, u,
v, w are any vectors. The parallelogram law of addition has been proposed
for the vectors because that is how forces, velocities add up.

Then the scalar multiplication αu produces a new vector with the same
direction as u if α > 0 or with the opposite direction to u if α < 0 with the
following properties:

(αβ)u = α(βu), (2.5)

(α + β)u = αu + βu, (2.6)

α(u + v) = αu + αv, (2.7)

where α, β are some scalars(real number).
The dot (or scalar or inner) product of two vectors u and v denoted by

u · v assigns a real number to a given pair of vectors such that the following
properties hold:

u · v = v · u, (2.8)

u · o = 0, (2.9)

u · (αv + βw) = α(u · v) + β(u ·w), (2.10)

u · u > 0, for all u 6= o, and

u · u = 0, if and only if u = o. (2.11)

The quantity |u| (or ‖u‖) is called the magnitude (or length or norm) of a
vector u which is a non-negative real number is defined as

|u| = (u · u)1/2 ≥ 0. (2.12)

A vector e is called a unit vector if |e| = 1. A nonzero vector u is said to
be orthogonal (or perpendicular) to a nonzero vector v if: u · v = 0. Then,
the projection of a vector u along the direction of a vector e whose length is
unity is given by: u · e
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So far algebra has been presented in symbolic (or direct or absolute)
notation. It represents a very convenient and concise tool to manipulate
most of the relations used in continuum mechanics. However, particularly in
computational mechanics, it is essential to refer vector (and tensor) quantities
to a basis. Also, for carrying out mathematical operations more intuitively
it is often helpful to refer to components.

We introduce a fixed set of three basis vectors e1, e2, e3 (sometimes
introduced as i, j, k) called a Cartesian basis, with properties:

e1 · e2 = e2 · e3 = e3 · e1 = 0, e1 · e1 = e2 · e2 = e3 · e3 = 1, (2.13)

so that any vector in three dimensional space can be written in terms of these
three basis vectors with ease. However, in general, it is not required for the
basis vectors to be fixed or to satisfy (2.13). Basis vectors that satisfy (2.13)
are called as orthonormal basis vectors.

Any vector u in the three dimensional space is represented uniquely by a
linear combination of the basis vectors e1, e2, e3, i.e.

u = u1e1 + u2e2 + u3e3, (2.14)

where the three real numbers u1, u2, u3 are the uniquely determined Cartesian
components of vector u along the given directions e1, e2, e3, respectively.
In other words, what we are doing here is representing any directed line
segment as a linear combination of three directed line segments. This is akin
to representing any real number using the ten arabic numerals.

If an orthonormal basis is used to represent the vector, then the compo-
nents of the vector along the basis directions is nothing but the projection
of the vector on to the basis directions. Thus,

u1 = u · e1, u2 = u · e2, u3 = u · e3. (2.15)

Using index (or subscript or suffix) notation relation (2.14) can be written
as u =

∑3
i=1 uiei or, in an abbreviated form by leaving out the summation

symbol, simply as

u = uiei, (sum over i = 1,2,3), (2.16)

where we have adopted the summation convention, invented by Einstein. The
summation convention says that whenever an index is repeated (only once)
in the same term, then, a summation over the range of this index is implied
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unless otherwise indicated. The index i that is summed over is said to be
a dummy (or summation) index, since a replacement by any other symbol
does not affect the value of the sum. An index that is not summed over in a
given term is called a free (or live) index. Note that in the same equation an
index is either dummy or free. Here we consider only the three dimensional
space and denote the basis vectors by {ei}i∈{1,2,3} collectively.

In light of the above, relations (2.13) can be written in a more convenient
form as

ei · ej = δij ≡
{

1, if i = j,
0, if i 6= j,

, (2.17)

where δij is called the Kronecker delta. It is easy to deduce the following
identities:

δii = 3, δijui = uj, δijδjk = δik. (2.18)

The projection of a vector u onto the Cartesian basis vectors, ei yields the
ith component of u. Thus, in index notation u · ei = ui.

As already mentioned a set of numbers is not a vector. However, for ease
of computations we represent the components of a vector, u obtained with
respect to some basis as,

u =


u1

u2

u3

 , (2.19)

instead of writing as u = uiei using the summation notation introduced
above. The numbers u1, u2 and u3 have no meaning without the basis vectors
which are present even though they are not mentioned explicitly.

If ui and vj represents the Cartesian components of vectors u and v
respectively, then,

u · v = uivjei · ej = uivjδij = uivi, (2.20)

|u|2 = uiui = u2
1 + u2

2 + u2
3. (2.21)

Here we have used the replacement property of the Kronecker delta to write
vjδij as vi which reflects the fact that only if j = i is δij = 1 and otherwise
δij = 0.

The cross (or vector) product of u and v, denoted by u ∧ v produces a
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v

u

u v

-u v

Figure 2.1: Cross product of two vectors u and v

new vector satisfying the following properties:

u ∧ v = −(v ∧ u), (2.22)

(αu) ∧ v = u ∧ (αv) = α(u ∧ v), (2.23)

u ∧ (v + w) = (u ∧ v) + (u ∧w), (2.24)

u ∧ v = o, iff u and v are linearly dependent (2.25)

when u 6= o v 6= o. Two vectors u and v are said to be linearly dependent
if u = αv, for some constant α. Note that because of the first property the
cross product is not commutative.

The cross product characterizes the area of a parallelogram spanned by
the vectors u and v given that

u ∧ v = |u||v| sin(θ)n, (2.26)

where θ is the angle between the vectors u and v and n is a unit vector
normal to the plane spanned by u and v, as shown in figure 2.1.

In order to express the cross product in terms of components we introduce
the permutation (or alternating or Levi-Civita) symbol εijk which is defined
as

εijk =


1, for even permutations of (i, j, k) (i.e. 123,231,312),
−1, for odd permutations of (i, j, k) (i.e. 132,213,321),
0, if there is repeated index,

(2.27)

with the property εijk = εjki = εkij, εijk = −εikj and εijk = −εjik, respectively.
Thus, for an orthonormal Cartesian basis, {e1, e2, e3}, ei ∧ ej = εijkek

It could be verified that εijk may be expressed as:

εijk = δi1(δj2δk3 − δj3δk2) + δi2(δj3δk1 − δj1δk3) + δi3(δj1δk2 − δj2δk1). (2.28)
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It could also be verified that the product of the permutation symbols εijkεpqr
is related to the Kronecker delta by the relation

εijkεpqr = δip(δjqδkr−δjrδkq)+δiq(δjrδkp−δjpδkr)+δir(δjpδkq−δjqδkp). (2.29)

We deduce from the above equation (2.29) the important relations:

εijkεpqk = δipδjq − δiqδjp, εijkεpjk = 2δip, εijkεijk = 6. (2.30)

The triple scalar (or box) product: [u,v,w] represents the volume V of
a parallelepiped spanned by u, v, w forming a right handed triad. Thus, in
index notation:

V = [u,v,w] = (u ∧ v) ·w = εijkuivjwk. (2.31)

Note that the vectors u, v, w are linearly dependent if and only if their scalar
triple product vanishes, i.e., [u,v,w] = 0

The product (u ∧ v) ∧ w is called the vector triple product and it may
be verified that

(u ∧ v) ∧w = εkqr(εijkuivj)wqer = εqrkεijkuivjwqer (2.32)

= (δqiδrj − δqjδri)uivjwqer (2.33)

= (uqvrwq − urvqwq)er (2.34)

= (u ·w)v − (v ·w)u. (2.35)

Similarly, it can be shown that

u ∧ (v ∧w) = (u ·w)v − (u · v)w. (2.36)

Thus triple product, in general, is not associative, i.e., u∧(v∧w) 6= (u∧v)∧w.

2.3 Algebra of second order tensors

A second order tensor A, for our purposes here, may be thought of as a linear
function that maps a directed line segment to another directed line segment.
This we write as, v = Au where A is the linear function that assigns a vector
v to each vector u. Since A is a linear function,

A(αu + βv) = αAu + βAv, (2.37)
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for all vectors u, v and all scalars α, β.
If A and B are two second order tensors, we can define the sum A + B,

the difference A − B and the scalar multiplication αA by the rules

(A±B)u = Au±Bu, (2.38)

(αA)u = α(Au), (2.39)

where u denotes an arbitrary vector. The important second order unit (or
identity) tensor 1 and the second order zero tensor 0 are defined, respectively,
by the relation 1u = u and 0u = o, for all (∀) vectors u.

If the relation v · Av ≥ 0 holds for all vectors, then A is said to be a
positive semi-definite tensor. If the condition v ·Av > 0 holds for all nonzero
vectors v, then A is said to be positive definite tensor. Tensor A is called
negative semi-definite if v ·Av ≤ 0 and negative definite if v ·Av < 0 for
all vectors, v 6= o, respectively.

The tensor (or direct or matrix) product or the dyad of the vectors u and
v is denoted by u⊗ v. It is a second order tensor which linearly transforms
a vector w into a vector with the direction of u following the rule

(u⊗ v)w = (v ·w)u. (2.40)

The dyad satisfies the linearity property

(u⊗ v)(αw + βx) = α(u⊗ v)w + β(u⊗ v)x. (2.41)

The following relations are easy to establish:

(αu + βv)⊗w = α(u⊗w) + β(v ⊗w), (2.42)

(u⊗ v)(w ⊗ x) = (v ·w)(u⊗ x), (2.43)

A(u⊗ v) = (Au)⊗ v, (2.44)

where, A is an arbitrary second order tensor, u, v, w and x are arbitrary
vectors and α and β are arbitrary scalars. Dyad is not commutative, i.e.,
u⊗ v 6= v ⊗ u and (u⊗ v)(w ⊗ x) 6= (w ⊗ x)(u⊗ v).

A dyadic is a linear combination of dyads with scalar coefficients, for
example, α(u ⊗ v) + β(w ⊗ x). Any second-order tensor can be expressed
as a dyadic. As an example, the second order tensor A may be represented
by a linear combination of dyads formed by the Cartesian basis {ei}, i.e.,
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A = Aijei ⊗ ej. The nine Cartesian components of A with respect to {ei},
represented by Aij can be expressed as a matrix [A], i.e.,

[A] =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (2.45)

This is known as the matrix notation of tensor A. We call A, which is
resolved along basis vectors that are orthonormal and fixed, a Cartesian
tensor of order two. Then, the components of A with respect to a fixed,
orthonormal basis vectors ei is obtained as:

Aij = ei ·Aej. (2.46)

The Cartesian components of the unit tensor 1 form the Kronecker delta
symbol, thus 1 = δijei ⊗ ej = ei ⊗ ei and in matrix form

1 =

1 0 0
0 1 0
0 0 1

 (2.47)

Next we would like to derive the components of u⊗v along an orthonor-
mal basis {ei}. Using the representation (2.46) we find that

(u⊗ v)ij = ei · (u⊗ v)ej

= (ei · u)(ej · v)

= uivj, (2.48)

where ui and vj are the Cartesian components of the vectors u and v re-
spectively. Writing the above equation in the convenient matrix notation we
have

(u⊗ v)ij =

 u1

u2

u3

 [ v1 v2 v3

]
=

 u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 . (2.49)

The product of two second order tensors A and B, denoted by AB,
is again a second order tensor. It follows from the requirement (AB)u =
A(Bu), for all vectors u.
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Further, the product of second order tensors is not commutative, i.e., AB
6= BA. The components of the product AB along an orthonormal basis {ei}
is found to be:

(AB)ij = ei · (AB)ej = ei ·A(Bej), (2.50)

= ei ·A(Bkjek) = (ei ·Aek)Bkj, (2.51)

= AikBkj. (2.52)

The following properties hold for second order tensors:

A + B = B + A, (2.53)

A + 0 = A, (2.54)

A + (−A) = 0, (2.55)

(A + B) + C = A + (B + C), (2.56)

(AB)C = A(BC) = ABC, (2.57)

A2 = AA, (2.58)

(A + B)C = AC + BC, (2.59)

Note that the relations AB = 0 and Au = o does not imply that A or
B is 0 or u = o.

The unique transpose of a second order tensor A denoted by At is gov-
erned by the identity:

v ·Atu = u ·Av (2.60)

for all vectors u and v.
Some useful properties of the transpose are

(At)t = A, (2.61)

(αA + βB)t = αAt + βBt, (2.62)

(AB)t = BtAt, (2.63)

(u⊗ v)t = v ⊗ u. (2.64)

From identity (2.60) we obtain ei ·Atej = ej ·Aei, which gives, in regard
to equation (2.46), the relation (At)ij = Aji.

The trace of a tensor A is a scalar denoted by tr(A) and is defined as:

tr(A) =
[Au,v,w] + [u,Av,w] + [u,v,Aw]

[u,v,w]
(2.65)
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where u, v, w are any vectors such that [u,v,w] 6= 0, i.e., these vectors
span the entire 3D vector space. Thus, tr(m⊗ n) = m · n. Let us see how:
Without loss of generality we can assume the vectors u, v and w to be m,
n and (m ∧ n) respectively. Then, (2.65) becomes

tr(m⊗ n) =
(n ·m)[m,n,m ∧ n] + |n|[m,m,m ∧ n] + [m,n,n][m,n,m]

[m,n,m ∧ n]
,

= n ·m. (2.66)

The following properties of trace is easy to establish from (2.65):

tr(At) = tr(A), (2.67)

tr(AB) = tr(BA), (2.68)

tr(αA + βB) = αtr(A) + βtr(B). (2.69)

Then, the trace of a tensor A with respect to the orthonormal basis {ei} is
given by

tr(A) = tr(Aijei ⊗ ej) = Aijtr(ei ⊗ ej)

= Aijei · ej = Aijδij = Aii

= A11 + A22 + A33 (2.70)

The dot product between two tensors denoted by A ·B, just like the dot
product of two vectors yields a real value and is defined as

A ·B = tr(AtB) = tr(BtA) (2.71)

Next, we record some useful properties of the dot operator:

1 ·A = tr(A) = A · 1, (2.72)

A · (BC) = BtA ·C = ACt ·B, (2.73)

A · (u⊗ v) = u ·Av, (2.74)

(u⊗ v) · (w ⊗ x) = (u ·w)(v · x). (2.75)

Note that if we have the relation A·B = C·B, in general, we cannot conclude
that A equals C. A = C only if the above equality holds for any arbitrary
B.

The norm of a tensor A is denoted by |A| (or ‖A‖). It is a non-negative
real number and is defined by the square root of A ·A, i.e.,

|A| = (A ·A)1/2 = (AijAij)
1/2. (2.76)
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The determinant of a tensor A is defined as:

det(A) =
[Au,Av,Aw]

[u,v,w]
, (2.77)

where u, v, w are any vectors such that [u,v,w] 6= 0, i.e., these vectors span
the entire 3D vector space. In index notation:

det(A) = εijkAi1Aj2Ak3. (2.78)

Then, it could be shown that

det(AB) = det(A) det(B), (2.79)

det(At) = det(A). (2.80)

A tensor A is said to be singular if and only if det(A) = 0. If A is a
non-singular tensor i.e., det(A) 6= 0, then there exist a unique tensor A−1,
called the inverse of A satisfying the relation

AA−1 = A−1A = 1. (2.81)

If tensors A and B are invertible (i.e., they are non-singular), then the prop-
erties

(AB)−1 = B−1A−1, (2.82)

(A−1)−1 = A, (2.83)

(αA)−1 =
1

α
A−1, (2.84)

(A−1)t = (At)−1 = A−t, (2.85)

A−2 = A−1A−1, (2.86)

det(A−1) = (det(A))−1, (2.87)

hold.
Corresponding to an arbitrary tensor A there is a unique tensor A∗, called

the adjugate of A, such that

A∗(a ∧ b) = Aa ∧Ab, (2.88)

for any arbitrary vectors a and b in the vector space. Suppose that A is
invertible and that a, b, c are arbitrary vectors, then

At∗(a ∧ b) · c = [Ata,Atb,AtA−tc]

= det(At)(a ∧ b) · {A−tc}
= det(A){A−1(a ∧ b)} · c, (2.89)
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where successive use has been made of equations (2.88), (2.81), (2.63), (2.77)
and (2.60). Because of the arbitrariness of a, b, c there follows the connection

A−1 =
1

det(A)
At∗, (2.90)

between the inverse of A and the adjugate of At.

2.3.1 Orthogonal tensor

An orthogonal tensor Q is a linear function satisfying the condition

Qu ·Qv = u · v, (2.91)

for all vectors u and v. As can be seen, the dot product is invariant (its value
does not change) due to the transformation of the vectors by the orthogonal
tensor. The dot product being invariant means that both the angle, θ between
the vectors u and v and the magnitude of the vectors |u|, |v| are preserved.
Consequently, the following properties of orthogonal tensor can be inferred:

QQt = QtQ = 1, (2.92)

det(Q) = ±1. (2.93)

It follows from (2.92) that Q−1 = Qt. If det(Q) = 1, Q is said to be proper
orthogonal tensor and this transformation corresponds to a rotation. On the
other hand, if det(Q) = −1, Q is said to be improper orthogonal tensor and
this transformation corresponds to a reflection superposed on a rotation.

Figure 2.2 shows what happens to two directed line segments, u1 and
v1 under the action the two kinds of orthogonal tensors. A proper orthogo-
nal tensor corresponding to a rotation about the e3 basis, whose Cartesian
coordinate components are given by

Q =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 , (2.94)

transforms, u1 to u+
1 and v1 to v+

1 , maintaining their lengths and the angle
between these line segments. Here α = Φ − Θ. An improper orthogonal
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Figure 2.2: Schematic of transformation of directed line segments u1 and v1

under the action of proper orthogonal tensor to u+
1 and v+

1 as well as by
improper orthogonal tensor to u−1 and v−1 respectively.

tensor corresponding to reflection about e1 axis, whose Cartesian coordinate
components are given by

Q =

−1 0 0
0 1 0
0 0 1

 , (2.95)

transforms, u1 to u−1 and v1 to v−1 , still maintaining their lengths and the
angle between these line segments a constant.

2.3.2 Symmetric and skew tensors

A symmetric tensor, S and a skew symmetric tensor, W are such:

S = St or Sij = Sji, W = −Wt or Wij = −Wji, (2.96)

therefore the matrix components of these tensor reads

[S] =

 S11 S12 S13

S12 S22 S23

S13 S23 S33

 , [W] =

 0 W12 W13

−W12 0 W23

−W13 −W23 0

 , (2.97)
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thus, there are only six independent components in symmetric tensors and
three independent components in skew tensors. Since, there are only three
independent scalar quantities that in a skew tensor, it behaves like a vector
with three components. Indeed, the relation holds:

Wu = ω ∧ u, (2.98)

where u is any vector and ω characterizes the axial (or dual) vector of the
skew tensor W, with the property |ω| = |W|/

√
2 (proof is omitted). The

relation between the Cartesian components of W and ω is obtained as:

Wij = ei ·Wej = ei · (ω ∧ ej) = ei · (ωkek ∧ ej)

= ei · (ωkεkjlel) = ωkεkjlδil

= εkjiωk = −εijkωk. (2.99)

Thus, we get

W12 = −ε12kωk = −ω3, (2.100)

W13 = −ε13kωk = ω2, (2.101)

W23 = −ε23kωk = −ω1, (2.102)

where the components W12, W13, W23 form the entries of the matrix [W] as
characterized in (2.97)b.

Any tensor A can always be uniquely decomposed into a symmetric ten-
sor, denoted by S (or sym(A)), and a skew (or antisymmetric) tensor, de-
noted by W (or skew(A)). Hence, A = S + W, where

S =
1

2
(A + At), W =

1

2
(A−At) (2.103)

Next, we shall look at some properties of symmetric and skew tensors:

S ·B = S ·Bt = S · 1

2
(B + Bt), (2.104)

W ·B = −W ·Bt = W · 1

2
(B−Bt), (2.105)

S ·W = W · S = 0, (2.106)

where B denotes any second order tensor. The first of these equalities in the
above equations is due to the property of the dot and trace operator, namely
A ·B = At ·Bt and that A ·B = B ·A.
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2.3.3 Projection tensor

Consider any vector u and a unit vector e. Then, we write u = u‖ + u⊥,
with u‖ and u⊥ characterizing the projection of u onto the line spanned by e
and onto the plane normal to e respectively. Using the definition of a tensor
product (2.40) we deduce that

u‖ = (u · e)e = (e⊗ e)u = P‖eu, (2.107)

u⊥ = u− u‖ = u− (e⊗ e)u = (1− e⊗ e)u = P⊥e u, (2.108)

where

P‖e = e⊗ e, (2.109)

P⊥e = 1− e⊗ e, (2.110)

are projection tensors of order two. A tensor P is a projection if P is sym-
metric and Pn = P where n is a positive integer, with properties:

P‖e + P⊥e = 1, (2.111)

P‖eP
‖
e = P‖e, (2.112)

P⊥e P⊥e = P⊥e , (2.113)

P‖eP
⊥
e = 0. (2.114)

2.3.4 Spherical and deviatoric tensors

Any tensor of the form α1, with α denoting a scalar is known as a spherical
tensor.

Every tensor A can be decomposed into its so called spherical part and
its deviatoric part, i.e.,

A = α1 + dev(A), or Aij = αδij + [dev(A)]ij, (2.115)

where α = tr(A)/3 = Aii/3 and dev(A) is known as a deviator of A or a
deviatoric tensor and is defined as dev(A) = A − (1/3)tr(A)1, or [dev(A)]ij
= Aij − (1/3)Akkδij. It then can be easily verified that tr(dev(A)) = 0, for
any second order tensor A.
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2.3.5 Polar Decomposition theorem

Above we saw two additive decompositions of an arbitrary tensor A. Of com-
parable significance in continuum mechanics are the multiplicative decompo-
sitions afforded by the polar decomposition theorem. This result states that
an arbitrary invertible tensor A can be uniquely expressed in the forms

A = QU = VQ, (2.116)

where Q is an orthogonal tensor and U, V are positive definite symmetric
tensors. It should be noted that Q is proper or improper orthogonal according
as det(A) is positive or negative. (See, for example, Chadwick [1] for proof
of the theorem.)

2.4 Algebra of fourth order tensors

A fourth order tensor A may be thought of as a linear function that maps
second order tensor A into another second order tensor B. While this is
too narrow a viewpoint1, it suffices for the study of mechanics. We write B
= A : A which defines a linear transformation that assigns a second order
tensor B to each second order tensor A.

We can express any fourth order tensor, A in terms of the three Cartesian
basis vectors as

A = Aijklei ⊗ ej ⊗ ek ⊗ el, (2.117)

where Aijkl are the Cartesian components of A. Thus, the fourth order tensor
A has 34 = 81 components. Remember that any repeated index has to be
summed from one through three.

One example for a fourth order tensor is the tensor product of the four
vectors u, v, w, x, denoted by u⊗ v⊗w⊗ x. We have the useful property:

(u⊗ v)⊗ (w ⊗ x) = u⊗ v ⊗w ⊗ x. (2.118)

If A = u⊗ v ⊗w ⊗ x, then it is easy to see that the Cartesian components
of A, Aijkl = uivjwkxl, where ui, vj, wk, xl are the Cartesian components of
the vectors u, v, w and x respectively.

1A fourth order tensor can operate on a vector to yield third order tensor or can operate
on a third order tensor to yield an vector.
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Another example of a fourth order tensor, is the tensor obtained from the
tensor product of two second order tensors, i.e., D = A⊗B, where A, B are
second order tensors and D is the fourth order tensor. In index notation we
may write: Dijkl = AijBkl where Dijkl, Aij, Bkl are the Cartesian components
of the respective tensors.

The double contraction of a fourth order tensor A with a second order
tensor B results in a second order tensor, denoted by A : B with the property
that:

(u⊗ v ⊗w ⊗ x) : (y ⊗ z) = (w · y)(x · z)(u⊗ v), (2.119)

(y ⊗ z) : (u⊗ v ⊗w ⊗ x) = (u · y)(v · z)(w ⊗ x). (2.120)

Hence, we can show that the components of A, Aijkl can be expressed as

Aijkl = (ei ⊗ ej) · A : (ek ⊗ el) = (ei ⊗ ej) : A · (ek ⊗ el) (2.121)

Next, we compute the Cartesian components of A : B to be:

A : B = AijklBmn(ei ⊗ ej ⊗ ek ⊗ el) : (em ⊗ en)

= AijklBmnδkmδlnei ⊗ ej

= AijklBklei ⊗ ej, (2.122)

where Aijkl and Bmn are the Cartesian components of the tensors A and B.
Note that B : A 6= A : B.

Then, the following can be established:

(A⊗B) : C = (B ·C)A, (2.123)

A : (B⊗C) = (A ·B)C, (2.124)

where A, B, C and D are second order tensors.
The unique transpose of a fourth order tensor A denoted by At is governed

by the identity
B · At : C = C · A : B = A : B ·C (2.125)

for all the second order tensors B and C. From the above identity we deduce
the index relation (At)ijkl = Aklij. The following properties of fourth order
tensors can be established:

(At)t = A, (2.126)

(A⊗B)t = B⊗A. (2.127)
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Next, we define fourth order unit tensors I and Ī so that

A = I : A, At = Ī : A, (2.128)

for any second order tensor A. These fourth order unit tensors may be
represented by

I = δikδjlei ⊗ ej ⊗ ek ⊗ el = ei ⊗ ej ⊗ ei ⊗ ej, (2.129)

Ī = δilδjkei ⊗ ej ⊗ ek ⊗ el = ei ⊗ ej ⊗ ej ⊗ ei, (2.130)

where (I)ijkl = δikδjl and (Ī)ijkl = δilδjk define the Cartesian components of
I and Ī, respectively. Note that Ī 6= It.

The deviatoric part of a second order tensor A may be described by means
of a fourth order projection tensor, P where

dev(A) = P : A, P = I− 1

3
1⊗ 1. (2.131)

Thus the components of dev(A) and A are related through the expression
[dev(A)]ij = PijklAkl, with Pijkl = δikδjl − (1/3)δijδkl.

Similarly, the fourth order tensors S and W given by

S =
1

2
(I + Ī), W =

1

2
(I− Ī), (2.132)

are such that for any second order tensor A, they assign symmetric and skew
part of A respectively, i.e.,

S : A =
1

2
(A + At), W : A =

1

2
(A−At). (2.133)

2.4.1 Alternate representation for tensors

Till now, we represented second order tensor components in a matrix form,
for the advantages that it offers in computing other quantities and defining
other operators. However, when we want to study mapping of second or-
der tensor on to another second order tensor, this representation seem to be
inconvenient. For this purpose, we introduce this alternate representation.
Now, we view the second order tensor as a column vector of nine components
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instead of a 3 by 3 matrix as introduced in (2.45). The order of these com-
ponents is subjective. Keeping in mind the application of this is to study
elasticity, we order the components of a general second order tensor, A, as,

{A} =



A11

A22

A33

A12

A13

A21

A23

A31

A32


. (2.134)

In view of this, the fourth order tensor, which for us is a linear function
that maps a second order tensor to another second order tensor, can be
represented as a 9 by 9 matrix as,

{B}i =
9∑
j=1

[C]ij{A}j, i = 1 . . . 9. (2.135)

where A and B are second order tensors and C is a fourth order tensor. Note
that as before the fourth order tensor has 81 (=9*9) components. Thus, now
the fourth order tensor is a matrix which is the reason for representing the
second order tensor as vector.

2.5 Eigenvalues, eigenvectors of tensors

The scalar λi characterize eigenvalues (or principal values) of a tensor A if
there exist corresponding nonzero normalized eigenvectors n̂i (or principal
directions or principal axes) of A, so that

An̂i = λin̂i, (i = 1,2,3; no summation). (2.136)

To identify the eigenvectors of a tensor, we use subsequently a hat on the
vector quantity concerned, for example, n̂.

Thus, a set of homogeneous algebraic equations for the unknown eigen-
values λi, i = 1,2,3, and the unknown eigenvectors n̂i, i = 1,2,3, is

(A− λi1)n̂i = o, (i = 1,2,3; no summation). (2.137)
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For the above system to have a solution n̂i 6= o the determinant of the system
must vanish. Thus,

det(A− λi1) = 0 (2.138)

where

det(A− λi1) = −λ3
i + I1λ

2
i − I2λi + I3. (2.139)

This requires that we solve a cubic equation in λ, usually written as

λ3 − I1λ
2 + I2λ− I3 = 0, (2.140)

called the characteristic polynomial (or equation) for A, the solutions of
which are the eigenvalues λi, i = 1,2,3. Here, Ii, i = 1,2,3, are the so-called
principal scalar invariants of A and are given by

I1 = tr(A) = Aii = λ1 + λ2 + λ3,

I2 =
1

2
[(tr(A))2 − tr(A2)] =

1

2
(AiiAjj − AmnAnm) = λ1λ2 + λ2λ3 + λ1λ3,

I3 = det(A) = εijkAi1Aj2Ak3 = λ1λ2λ3. (2.141)

If A is invertible then we can compute I2 using the expression I2 = tr(A−1)
det(A).

A repeated application of tensor A to equation (2.136) yields Aαn̂i =
λαi n̂i, i = 1,2,3, for any positive integer α. (If A is invertible then α can
be any integer; not necessarily positive.) Using this relation and (2.140)
multiplied by n̂i, we obtain the well-known Cayley-Hamilton equation:

A3 − I1A
2 + I2A− I31 = 0. (2.142)

It states that every second order tensor A satisfies its own characteristic
equation. As a consequence of Cayley-Hamilton equation, we can express
Aα in terms of A2, A, 1 and principal invariants for positive integer, α >
2. (If A is invertible, the above holds for any integer value of α positive or
negative provided α 6= {0, 1, 2}.)

For a symmetric tensor S the characteristic equation (2.140) always has
three real solutions and the set of eigenvectors form a orthonormal basis
{n̂i} (the proof of this statement is omitted). Hence, for a positive definite
symmetric tensor A, all eigenvalues λi are (real and) positive since, using
(2.136), we have λi = n̂i ·An̂i > 0, i = 1,2,3.
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Any symmetric tensor S may be represented by its eigenvalues λi, i =
1,2,3, and the corresponding eigenvectors of S forming an orthonormal basis
{n̂i}. Thus, S can be expressed as

S =
3∑
i=1

λin̂i ⊗ n̂i, (2.143)

called the spectral representation (or spectral decomposition) of S. Thus,
when orthonormal eigenvectors are used as the Cartesian basis to represent
S then

[S] =

 λ1 0 0
0 λ2 0
0 0 λ3

 . (2.144)

The above holds when all the three eigenvalues are distinct. On the other
hand, if there exists a pair of equal roots, i.e., λ1 = λ2 = λ 6= λ3, with an
unique eigenvector n̂3 associated with λ3, we deduce that

S = λ3(n̂3 ⊗ n̂3) + λ[1− (n̂3 ⊗ n̂3)] = λ3P
‖
n̂3

+ λP⊥n̂3
, (2.145)

where P
‖
n̂3

and P⊥n̂3
denote projection tensors introduced in (2.109) and

(2.110) respectively. Finally, if all the three eigenvalues are equal, i.e., λ1

= λ2 = λ3 = λ, then
S = λ1, (2.146)

where every direction is a principal direction and every set of mutually or-
thogonal basis denotes principal axes.

It is important to recognize that eigenvalues characterize the physical
nature of the tensor and that they do not depend on the coordinates chosen.

2.5.1 Square root theorem

Let C be symmetric and positive definite tensor. Then there is a unique
positive definite, symmetric tensor U such that

U2 = C. (2.147)

We write
√

C for U. If spectral representation of C is:

C =
3∑
i=1

λin̂i ⊗ n̂i, (2.148)
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then the spectral representation for U is:

U =
3∑
i=1

√
λin̂i ⊗ n̂i, (2.149)

where we have assumed that the eigenvalues of C, λi are distinct. On the
other hand if λ1 = λ2 = λ3 = λ then

U =
√
λ1. (2.150)

If λ1 = λ2 = λ 6= λ3, with an unique eigenvector n̂3 associated with λ3 then

U =
√
λ3(n̂3 ⊗ n̂3) +

√
λ[1− (n̂3 ⊗ n̂3)] (2.151)

(For proof of this theorem, see for example, Gurtin [2].)

2.6 Transformation laws

Consider two sets of mutually orthogonal basis vectors which share a com-
mon origin. They correspond to a ‘new’ and an ‘old’ (original) Cartesian
coordinate system which we assume to be right-handed characterized by two
sets of basis vectors {ẽi} and {ei}, respectively. Hence, the new coordinate
system could be obtained from the original one by a rotation of the basis
vectors ei about their origin. We then define the directional cosine matrix,
Qij, as,

Qij = ei · ẽj = cos(θ(ei, ẽj)). (2.152)

Note that the first index on Qij indicates the ‘old’ components whereas the
second index holds for the ‘new’ components.

It is worthwhile to mention that vectors and tensors themselves remain
invariant upon a change of basis - they are said to be independent of the
coordinate system. However, their respective components do depend upon
the coordinate system introduced. This is the reason why a set of numbers
arranged as a 3 by 1 or 3 by 3 matrix is not a vector or a tensor.

2.6.1 Vectorial transformation law

Consider some vector u represented using the two sets of basis vectors {ei}
and {ẽi}, i.e.,

u = uiei = ũj ẽj. (2.153)
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Recalling the method to find the components of the vector along the basis
directions, (2.15),

ũj = u · ẽj = (uiei) · ẽj = Qijui, (2.154)

from the definition of the directional cosine matrix, (2.152). We assume that
the relation between the basis vectors ei and ẽj is known and hence given
the components of a vector in a basis, its components in another basis can
be found using equation (2.154).

In an analogous manner, we find that

uj = u · ej = (ũiẽi) · ej = Qjiũi. (2.155)

The results of equations (2.154) and (2.155) could be cast in matrix notation
as

[ũ] = [Q]t[u], and [u] = [Q][ũ], (2.156)

respectively. It is important to emphasize that the above equations are not
identical to ũ = Qtu and u = Qũ, respectively. In (2.156) [ũ] and [u]
are column vectors characterizing components of the same vector in two
different coordinate systems, whereas ũ and u are different vectors, in the
later. Similarly, [Q] is a matrix of directional cosines, it is not a tensor even
though it has the attributes of an orthogonal tensor as we will see next.

Combining equations (2.154) and (2.155), we obtain

uj = Qjiũi = QjiQaiua, and ũj = Qijui = QijQiaũa (2.157)

Hence, (QaiQji − δja)ua = 0 and (QijQia − δja)ũa = 0 for any vector u.
Therefore,

QaiQji = δja, or [Q][Q]t = [1], (2.158)

QiaQij = δja, or [Q]t[Q] = [1]. (2.159)

Thus, the transformation matrix, Qij is sometimes called as orthogonal ma-
trix but never as orthogonal tensor.

2.6.2 Tensorial transformation law

To determine the transformation laws for the Cartesian components of any
second-order tensor A, we proceed along the lines similar to that done for



46 CHAPTER 2. MATHEMATICAL PRELIMINARIES

vectors. Since, we seek the components of the same tensor in two different
basis,

A = Aabea ⊗ eb = Ãijei ⊗ ej. (2.160)

Then it follows from (2.46) that,

Ãij = ẽi ·Aẽj = ẽi · (Aabea ⊗ eb)ẽj

= Aab(eb · ẽj)(ea · ẽi) = AabQaiQbj. (2.161)

In matrix notation, [Ã] = [Q]t[A][Q]. In an analogous manner, we find that

Aij = QikQjmÃkm, or [A] = [Q][Ã][Q]t. (2.162)

We emphasize again that these transformations relates the different matrices
[Ã] and [A], which have the components of the same tensor A and the equa-
tions [Ã] = [Q]t[A][Q] and [A] = [Q][Ã][Q]t differ from the tensor equations
Ã = QtAQ and A = QÃQt, relating two different tensors, namely A and
Ã.

Finally, the 3n components Aj1j2...jn of a tensor of order n (with n indices
j1, j2, . . ., jn) transform as

Ãi1i2...in = Qj1i1Qj2i2 . . . QjninAj1j2...jn . (2.163)

This tensorial transformation law relates the different components Ãi1i2...in
(along the directions ẽ1, ẽ2, ẽ3) and Aj1j2...jn (along the directions e1, e2, e3)
of the same tensor of order n.

We note that, in general a second order tensor, A will be represented as
Aijei⊗Ej, where {ei} and {Ej} are different basis vectors spanning the same
space. It is not necessary that the directional cosines Qij = Ei · Ẽi and qij =
ei · ẽi be the same, where ẽi and Ẽj are the ‘new’ basis vectors with respect to
which the matrix components of A is sought. Thus, generalizing the above
is straightforward; each directional cosine matrices can be different, contrary
to the assumption made.

2.6.3 Isotropic tensors

A tensor A is said to be isotropic if its components are the same under
arbitrary rotations of the basis vectors. The requirement is deduced from
equation (2.161) as

Aij = QkiQmjAkm or [A] = [Q]t[A][Q]. (2.164)
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Of course here we assume that the components of the tensor are with respect
to a single basis and not two or more independent basis.

Note that all scalars, zeroth order tensors are isotropic tensors. Also, zero
tensors and unit tensors of all orders are isotropic. It can be easily verified
that for second order tensors spherical tensor is also isotropic. The most
general isotropic tensor of order four is of the form

α(1⊗ 1) + βI + γĪ, (2.165)

where α, β, γ are scalars. The same in component form is given by: αδijδkl
+ βδikδjl + γδilδjk.

2.7 Scalar, vector, tensor functions

Having got an introduction to algebra of tensors we next focus on tensor
calculus. Here we shall understand the meaning of a function and define
what we mean by continuity and derivative of a function.

A function is a mathematical correspondence that assigns exactly one
element of one set to each element of the same or another set. Thus, if
we consider scalar functions of one scalar variable, then for each element
(value) in the subset of the real line one associates an element in the real
line or in the space of vectors or in the space of second order tensors. For
example, Φ = Φ̂(t), u = û(t) = ui(t)ei, A = Â(t) = Aij(t)ei ⊗ ej are scalar
valued, vector valued, second order tensor valued scalar functions with a set
of Cartesian basis vectors assumed to be fixed. The components ui(t) and
Aij(t) are assumed to be real valued smooth functions of t varying over a
certain interval.

The first derivative of the scalar function Φ is simply Φ̇ = dΦ/dt. Recol-
lecting from a first course in calculus, dΦ/dt stands for that unique value of
the limit

lim
h→0

Φ̂(t+ h)− Φ̂(t)

h
(2.166)

The first derivative of u and A with respect to t (rate of change) de-
noted by u̇ = du/dt and Ȧ = dA/dt, is given by the first derivative of their
associated components. Since, dei/dt = o, i = 1, 2, 3, we have

u̇ = u̇i(t)ei, Ȧ = Ȧij(t)ei ⊗ ej. (2.167)
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In general, the nth derivative of u and A (for any desired n) denoted by
dnu/dtn and dnA/dtn, is a vector-valued and tensor-valued function whose
components are dnui/dt

n and dnAij/dt
n, respectively. Again we have as-

sumed that dei/dt = o.
By applying the rules of differentiation, we obtain the identities:

˙u± v = u̇± v̇, (2.168)

Φ̇u = Φ̇u + Φu̇, (2.169)
˙u⊗ v = u̇⊗ v + u⊗ v̇, (2.170)
˙A±B = Ȧ± Ḃ, (2.171)

Ȧu = Ȧu + Au̇, (2.172)

Ȧt = Ȧt, (2.173)
˙A ·B = Ȧ ·B + A · Ḃ, (2.174)

ȦB = ȦB + AḂ, (2.175)

where Φ is a scalar valued scalar function, u and v are vector valued scalar
function, A and B are second order tensor valued scalar function. Here and
elsewhere in this notes, the overbars cover the quantities to which the dot
operations are applied.

Since, AA−1 = 1,
˙

AA−1 = 0. Hence, we compute:

˙A−1 = −A−1ȦA−1. (2.176)

A tensor function is a function whose arguments are one or more tensor
variables and whose values are scalars, vectors or tensors. The functions
Φ(B), u(B), and A(B) are examples of so-called scalar-valued, vector-valued
and second order tensor-valued functions of one second order tensor variable
B, respectively. In an analogous manner, Φ(v), u(v), and A(v) are scalar-
valued, vector-valued and second order tensor-valued functions of one vector
variable v, respectively.

Let D denote the region of the vector space that is of interest. Then a
scalar field Φ, defined on a domain D, is said to be continuous if

lim
α→0
|Φ(v + αa)− Φ(v)| = 0, ∀v ∈ D, a ∈ V, (2.177)

where V denote the set of all vectors in the vector space. The properties of
continuity are attributed to a vector field u and a tensor field A defined on
D, if they apply to the scalar field u · a and a ·Ab ∀ a and b ∈ V.
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Consider a scalar valued function of one second order tensor variable A,
Φ(A). Assuming the function Φ is continuous in A, the derivative of Φ with
respect to A, denoted by ∂Φ

∂A
, is the second order tensor that satisfies

∂Φ

∂A
·U =

d

ds
[Φ(A + sU)] |s=0 = tr(

(
∂Φ

∂A

)t
U) = tr(

∂Φ

∂A
Ut), (2.178)

for any second order tensor U.
Example: If Φ(A) = det(A), find ∂Φ

∂A
both when A is invertible and

when it is not.
Taking trace of the Cayley-Hamilton equation (2.142) and rearranging we

get

det(A) =
1

6
[2tr(A3)− 3tr(A)tr(A2) + (tr(A))3]. (2.179)

Hence,

∂[det(A)]

∂A
=

1

6
[2
∂[tr(A3)]

∂A
+3

∂[tr(A)]

∂A
[(tr(A))2−tr(A2)]−3tr(A)

∂[tr(A2)]

∂A
].

(2.180)
Using the properties of trace and dot product we find that

tr(A + sU) = tr(A) + s1 ·U, (2.181)

tr([A + sU]2) = tr(A2) + 2sAt ·U + s2tr(U2), (2.182)

tr([A + sU]3) = tr(A3) + 3s(At)2 ·U + 3s2At ·U2 + s3tr(U3),(2.183)

from which, we deduce that

∂[tr(A)]

∂A
= 1, (2.184)

∂[tr(A2)]

∂A
= 2At, (2.185)

∂[tr(A3)]

∂A
= 3(At)2, (2.186)

using equation (2.178). Substituting equations (2.184) through (2.186) in
(2.180) we get

∂[det(A)]

∂A
= (At)2 + I21− I1A

t. (2.187)

If A is invertible, then multiplying (2.142) by A−t and rearranging we get

(At)2 − I1A
t + I21 = I3A

−t. (2.188)
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In light of the above equation, (2.187) reduces to

∂[det(A)]

∂A
= det(A)A−t. (2.189)

Next, we consider a smooth tensor valued function of one second order
tensor variable A, f(A). As before, the derivative of f with respect to A,
denoted by ∂f

∂A
, is the fourth order tensor that satisfies

∂f

∂A
: U =

d

ds
[f(A + sU)] |s=0, (2.190)

for any second order tensor U.
It is straight forward to see that when f(A) = A, where A is any second

order tensor, then (2.190) reduces to

∂f

∂A
: U = U, (2.191)

hence, ∂f
∂A

= I, the fourth order unit tensor where we have used equation
(2.128a).

If f(A) = At where A is any second order tensor, then using (2.190) it
can be shown that ∂f

∂A
= Ī obtained using equation (2.128b).

Now, say the tensor valued function f is defined only for symmetric ten-
sors, and that f(S) = S, where S is a symmetric second order tensor. Com-
pute the derivative of f with respect to S, i.e., ∂f

∂S
.

First, since the function f is defined only for symmetric tensors, we have
to generalize the function for any tensor. This is required because U is any
second order tensor. Hence, f(S) = f(1

2
[A + At]) = f̄(A), where A is any

second order tensor. Now, find the derivative of f̄ with respect to A and then
rewrite the result in terms of S. The resulting expression is the derivative of
f with respect to S. Hence,

f̄(A + sU) =
1

2
[A + At + s[U + Ut]]. (2.192)

Substituting the above in equation (2.190) we get

∂ f̄

∂A
: U =

1

2
[U + Ut]. (2.193)

Thus,
∂ f̄

∂A
=

1

2
[I + Ī]. (2.194)
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Consequently,
∂f

∂S
=

∂ f̄

∂A
=

1

2
[I + Ī]. (2.195)

Example - 1: Assume that A is an invertible tensor and f(A) = A−1.
Then show that

∂f

∂A
: U = −A−1UA−1. (2.196)

Recalling that all invertible tensors satisfy the relation AA−1 = 1, we obtain

(A + sU)(A + sU)−1 = 1. (2.197)

Differentiating the above equation with respect to s

U(A + sU)−1 + (A + sU)
d

ds
(A + sU)−1 = 0. (2.198)

Evaluating the above equation at s = 0, and rearranging

∂f

∂A
: U =

d

ds
(A + sU)−1|s=0 = −A−1UA−1. (2.199)

Hence proved.
Example - 2: Assume that S is an invertible symmetrical tensor and

f(S) = S−1. Find ∂f
∂S

.
As before generalizing the given function, we have f̄(A) = {1

2
[A+At]}−1.

Following the same steps as in the previous example we obtain:

[A + At + s(U + Ut)][A + At + s(U + Ut)]−1 = 1. (2.200)

Differentiating the above equation with respect to s and evaluating at s = 0
and rearranging we get

∂ f̄

∂A
: U = 2

d

ds
[A+At + s(U+Ut)]−1|s=0 = 2[A+At]−1[U+Ut][A+At]−1.

(2.201)
Therefore,

∂f

∂S
: U = −1

2
S−1[U + Ut]S−1. (2.202)

Let Φ be a smooth scalar-valued function and A, B smooth tensor-valued
functions of a tensor variable C. Then, it can be shown that

∂(A ·B)

∂C
= A :

∂B

∂C
+ B :

∂A

∂C
, (2.203)

∂(ΦA)

∂C
= A⊗ ∂Φ

∂C
+ Φ

∂A

∂C
. (2.204)
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2.8 Gradients and related operators

In this section, we consider scalar and vector-valued functions that assign a
scalar and vector to each element in the subset of the set of position vectors
for the points in 3D space. If x denotes the position vector of points in the
3D space, then Φ̂(x) is a function that assigns a scalar Φ to each point in
the 3D space of interest and Φ is called the scalar field. A few examples of
scalar fields are temperature, density, energy. Similarly, the vector field û(x)
assigns a vector to each point in the 3D space of interest. Displacement,
velocity, acceleration are a few examples of vector fields.

Let D denote the region of the 3D space that is of interest, that is the
set of position vectors of points that is of interest in the 3D space. Then a
scalar field Φ, defined on a domain D, is said to be continuous if

lim
α→0
|Φ(x + αa)− Φ(x)| = 0, ∀x ∈ D, a ∈ E, (2.205)

where E denote the set of all position vectors of points in the 3D space and
a is a constant vector. The scalar field Φ is said to be differentiable if there
exist a vector field w such that

lim
α→0
|w(x) · a− α−1[Φ(x + αa)− Φ(x)]| = 0, ∀x ∈ D, a ∈ E. (2.206)

It can be shown that there is at most one vector field, w satisfying the above
equation (proof omitted). This unique vector field w is called the gradient
of Φ and denoted by grad(Φ).

The properties of continuity and differentiability are attributed to a vector
field u and a tensor field T defined on D, if they apply to the scalar field u ·a
and a · Tb ∀ a and b ∈ E. Given that the vector field u, is differentiable,
the gradient of u denoted by grad(u), is the tensor field defined by

{grad(u)}ta = grad(u · a) ∀a ∈ E (2.207)

The divergence and the curl of a vector u denoted as div(u) and curl(u), are
respectively scalar valued and vector valued and are defined by

div(u) = tr(grad(u)), (2.208)

curl(u) · a = div(u ∧ a), ∀a ∈ E. (2.209)

When the tensor field T is differentiable, its divergence denoted by div(T),
is the vector field defined by

div(T) · a = div(Ta), ∀a ∈ E. (2.210)
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If grad(Φ) exist and is continuous, Φ is said to be continuously differen-
tiable and this property extends to u and T if grad(u · a) and grad(a ·Tb)
exist and are continuous for all a, b ∈ E.

An important identity: For a continuously differentiable vector field, u

div((grad(u))t) = grad(div(u)). (2.211)

(Proof omitted)
Let Φ and u be some scalar and vector field respectively. Then, the

Laplacian operator, denoted by ∆ (or by ∇2), is defined as

∆(Φ) = div(grad(Φ)), ∆(u) = div(grad(u)). (2.212)

The Hessian operator, denoted by ∇∇ is defined as

∇∇(Φ) = grad(grad(Φ)) (2.213)

If a vector field u is divergence free (i.e. div(u) = 0) then it is called
solenoidal. It is called irrotational if curl(u) = o. It can be established
that

curl(curl(u)) = grad(div(u))−∆(u). (2.214)

Consequently, if a vector field, u is both solenoidal and irrotational, then
∆(u) = o (follows from the above equation) and such a vector field is said
to be harmonic. If a scalar field Φ satisfies ∆(Φ) = 0, then Φ is said to be
harmonic.

Potential theorem: Let u be a smooth point field on an open or closed
simply connected region R and let curl(u) = o. Then there is a continuously
differentiable scalar field on R such that

u = grad(Φ) (2.215)

From the definition of grad (2.207), it can be seen that it is a linear
operator. That is,

grad(u1 + u2) = grad(u1) + grad(u2). (2.216)

Consequently, all other operators div, ∆ are also linear operators.
Before concluding this section we collect a few identities that are useful

subsequently. Here Φ, Ψ are scalar fields, u, v are vector fields and A is
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second order tensor field.

div(Φu) = Φdiv(u) + u · grad(Φ), (2.217)

div(ΦA) = Φdiv(A) + Atgrad(Φ), (2.218)

div(Atu) = div(A) · u + A · grad(u), (2.219)

div(u ∧ v) = v · curl(u)− u · curl(v), (2.220)

div(u⊗ v) = (grad(u))v + div(v)u, (2.221)

grad(ΦΨ) = Ψgrad(Φ) + Φgrad(Ψ), (2.222)

grad(Φu) = u⊗ grad(Φ) + Φgrad(u), (2.223)

grad(u · v) = (grad(u))tv + (grad(v))tu, (2.224)

curl(Φu) = grad(Φ) ∧ u + Φcurl(u), (2.225)

curl(u ∧ v) = udiv(v)− vdiv(u) + (grad(u))v − (grad(v))u,(2.226)

∆(u · v) = v ·∆(u) + 2grad(u) · grad(v) + u ·∆(v). (2.227)

Till now, in this section we defined all the quantities in closed form but
we require them in component form to perform the actual calculations. This
would be the focus in the reminder of this section. In the following, let ei
denote the Cartesian basis vectors and xi i = 1, 2, 3, the Cartesian coordi-
nates.

Let Φ be differentiable scalar field, then it follows from equation (2.206),
on replacing a by the base vectors ei in turn, that the partial derivatives ∂Φ

∂xi

exist in D and that, moreover, wi = ∂Φ
∂xi

. Hence

grad(Φ) =
∂Φ

∂xi
ei. (2.228)

Let u be differentiable vector field in D and a some constant vector in E.
Then, using (2.228) we compute

grad(u·a) =
∂(u · a)

∂xi
ei =

∂up
∂xi

apei =
∂up
∂xi

eia·ep =

(
∂up
∂xi

ei ⊗ ep

)
a, (2.229)

where ap and up are the Cartesian components of a and u respectively. Con-
sequently, appealing to definition (2.207) we obtain

grad(u) =
∂up
∂xi

ep ⊗ ei. (2.230)
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Then, according to the definition for divergence, (2.208)

div(u) =
∂up
∂xp

. (2.231)

Next, we compute div(u ∧ a) to be

div(u ∧ a) = ±∂(εijkuiaj)

∂xk
= ±εijk

∂ui
∂xk

aj = ±
(
εijk

∂ui
∂xk

ej

)
· (epap), (2.232)

using (2.231). Comparing the above result with the definition of curl in
(2.209) we infer

curl(u) = ±εijk
∂ui
∂xk

ej (2.233)

Finally, let T be a differentiable tensor field in D, then we compute

div(Ta) =
∂Tijaj
∂xi

=
∂Tij
∂xi

aj =

(
∂Tij
∂xi

ej

)
· (apep), (2.234)

using equation (2.231). Then, we infer

div(T) =
∂Tij
∂xi

ej, (2.235)

from the definition (2.210).
The component form for the other operators, namely Laplacian and Hes-

sian can be obtained as

∆(Φ) =
∂2Φ

∂x2
i

, ∆(u) =
∂2uj
∂x2

i

ej, sum i from 1 to 3,(2.236)

∇∇(Φ) =
∂2Φ

∂xi∂xj
ei ⊗ ej, (2.237)

respectively.
Above we obtained the components of the different operators in Cartesian

coordinate system, we shall now proceed to obtain the same with respect to
other coordinate systems. While using the method illustrated here we could
obtain the components in any orthogonal curvilinear system, we choose the
cylindrical polar coordinate system for illustration.
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First, we outline a general procedure to find the basis vectors for a given
orthogonal curvilinear coordinates. A differential vector dp in the 3D vec-
tor space is written as dp = dxiei relative to Cartesian coordinates. The
same coordinate independent vector in orthogonal curvilinear coordinates is
written as

dp =
∂p

∂xi
dxi =

∂p

∂zi
dzi, (2.238)

where zi denotes curvilinear coordinates. But

dp = dxiei = dzigi, (2.239)

where gi is the basis vectors in the orthogonal curvilinear coordinates. Thus,

ei =
∂p

∂xi
, and gi =

∂p

∂zi
. (2.240)

Comparing equations (2.239) and (2.240) we obtain the desired transforma-
tion relation between the bases to be:

gi =
∂p

∂zi
=

∂p

∂xk

∂xk
∂zi

=
∂xk
∂zi

ek (2.241)

The basis gi so obtained will vary from point to point in the Euclidean space
and will be orthogonal (by the choice of curvilinear coordinates) at each point
but not orthonormal. Hence we define

(ec)i = gi/|gi|, (no summation on i) (2.242)

and use these as the basis vectors for the orthogonal curvilinear coordinates.

Let (x, y, z) denote the coordinates of a typical point in Cartesian coor-
dinate system and (r, θ, Z) the coordinates of a typical point in cylindrical
polar coordinate system. Then, the coordinate transformation from cylindri-
cal polar to Cartesian and vice versa is given by:

x = r cos(θ), y = r sin(θ), z = Z, (2.243)

r =
√
x2 + y2, θ = tan−1

(y
x

)
, Z = z, (2.244)
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respectively. From these we compute

∂r

∂x
= cos(θ),

∂r

∂y
= sin(θ),

∂r

∂z
= 0, (2.245)

∂θ

∂x
= −1

r
sin(θ),

∂θ

∂y
=

1

r
cos(θ),

∂θ

∂z
= 0, (2.246)

∂Z

∂x
= 0,

∂Z

∂y
= 0,

∂Z

∂z
= 1, (2.247)

∂x

∂r
= cos(θ),

∂x

∂θ
= −r sin(θ),

∂x

∂Z
= 0, (2.248)

∂y

∂r
= sin(θ),

∂y

∂θ
= r cos(θ),

∂y

∂Z
= 0, (2.249)

∂z

∂r
= 0,

∂z

∂θ
= 0,

∂z

∂Z
= 1. (2.250)

Consequently, the orthonormal cylindrical polar basis vectors (er, eθ, eZ)
and Cartesian basis vectors (e1, e2, e3) are related through the equations

er = cos(θ)e1 + sin(θ)e2, (2.251)

eθ = − sin(θ)e1 + cos(θ)e2, (2.252)

eZ = e3, (2.253)

obtained using equation (2.242) along with a change in notation: ((ec)1,
(ec)2,(ec)3) = (er, eθ, eZ).

Now, we can compute the components of grad(Φ) in cylindrical polar
coordinates. Towards this, we obtain

grad(Φ) =
∂Φ

∂x
e1 +

∂Φ

∂y
e2 +

∂Φ

∂z
e3, in Cartesian coordinate system

=

(
∂Φ

∂r

∂r

∂x
+
∂Φ

∂θ

∂θ

∂x
+
∂Φ

∂Z

∂Z

∂x

)
e1

+

(
∂Φ

∂r

∂r

∂y
+
∂Φ

∂θ

∂θ

∂y
+
∂Φ

∂Z

∂Z

∂y

)
e2

+

(
∂Φ

∂r

∂r

∂z
+
∂Φ

∂θ

∂θ

∂z
+
∂Φ

∂Z

∂Z

∂z

)
e3

=
∂Φ

∂r
(cos(θ)e1 + sin(θ)e2) +

1

r

∂Φ

∂θ
(− sin(θ)e1 + cos(θ)e2) +

∂Φ

∂Z
e3

=
∂Φ

∂r
er +

1

r

∂Φ

∂θ
eθ +

∂Φ

∂Z
eZ , (2.254)
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using the chain rule for differentiation.
To obtain the components of grad(u) one can follow the same procedure

outlined above or can compute the same using the above result and the
definition of grad (2.207) as detailed below:

grad(u · a) =

(
∂

∂r
er +

1

r

∂

∂θ
eθ +

∂

∂z
ez

)
(urar + uθaθ + uZaZ)

=

[
∂ur
∂r

ar +
∂uθ
∂r

aθ +
∂uZ
∂r

aZ

]
er

+
1

r

[
∂ur
∂θ

ar + uraθ +
∂uθ
∂θ

aθ − uθar +
∂uZ
∂θ

aZ

]
eθ

+

[
∂ur
∂Z

ar +
∂uθ
∂Z

aθ +
∂uZ
∂Z

aZ

]
eZ , (2.255)

where we have used the following identities:

∂ar
∂r

=
∂aθ
∂r

=
∂aZ
∂r

= 0, (2.256)

∂ar
∂θ

= aθ,
∂aθ
∂θ

= −ar,
∂aZ
∂θ

= 0, (2.257)

∂ar
∂Z

=
∂aθ
∂Z

=
∂aZ
∂Z

= 0, (2.258)

obtained by recognizing that only the Cartesian components of a are to be
treated as constants and not the cylindrical polar components, ar = ax cos(θ)
+ ay sin(θ), aθ = −ax sin(θ) + ay cos(θ), aZ = az. From (2.255) and (2.207)
the matrix components of grad(u) in cylindrical polar coordinates are written
as

grad(u) =

 ∂ur
∂r

1
r
∂ur
∂θ
− uθ

r
∂ur
∂Z

∂uθ
∂r

1
r
∂uθ
∂θ

+ ur
r

∂uθ
∂Z

∂uZ
∂r

1
r
∂uZ
∂θ

∂uZ
∂Z

 . (2.259)

Using the techniques illustrated above the following identities can be es-
tablished:

div(u) =
∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uZ
∂Z

, (2.260)

div(T) =


∂Trr
∂r

+ 1
r
∂Tθr
∂θ

+ ∂TZr
∂Z

+ Trr−Tθθ
r

∂Trθ
∂r

+ 1
r
∂Tθθ
∂θ

+ ∂TZθ
∂Z

+ Trθ+Tθr
r

∂TrZ
∂r

+ 1
r
∂TθZ
∂θ

+ ∂TZZ
∂Z

+ TrZ
r

 . (2.261)



2.9. INTEGRAL THEOREMS 59

2.9 Integral theorems

2.9.1 Divergence theorem

Suppose u(x) is a vector field defined on some convex three dimensional
region, R in physical space with volume v and on a closed surface a bounding
this volume2 and u(x) is continuous in R and continuously differentiable in
the interior of R. Then, ∫

a

u · nda =

∫
v

div(u)dv, (2.262)

where, n is the outward unit normal field acting along the surface a, dv and
da are infinitesimal volume and surface element, respectively. Proof of this
theorem is beyond the scope of these notes.

Using (2.262) the following identities can be established:∫
a

Anda =

∫
v

div(A)dv, (2.263)∫
a

Φnda =

∫
v

grad(Φ)dv, (2.264)∫
a

n ∧ uda =

∫
v

curl(u)dv, (2.265)∫
a

u⊗ nda =

∫
v

grad(u)dv, (2.266)∫
a

u ·Anda =

∫
v

div(Atu)dv, (2.267)

where Φ, u, A are continuously differentiable scalar, vector and tensor fields
defined in v and continuous in v and n is the outward unit normal field acting
along the surface a.

2.9.2 Stokes theorem

Stokes theorem relates a surface integral, which is valid over any open surface
a, to a line integral around the bounding single simple closed curve c in three
dimensional space. Let dx denote the tangent vector to the curve, c and n

2To be more precise, it is sufficient if the domain is a regular region. See Kellogg [3] to
understand what a regular region is.
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Surface element ds

Surface s

Curve c

n

x3

x1
x2

dx

Figure 2.3: Open surface

denote the outward unit vector field n normal to s. The curve c has positive
orientation relative to n in the sense shown in figure 2.3. The indicated circuit
with the adjacent points 1, 2, 3 (1, 2 on curve c and 3 an interior point of
the surface s) induced by the orientation of c is related to the direction of n
(i.e., a unit vector normal to s at point 3) by right-hand screw rule. For a
continuously differentiable vector field u defined on some region containing
a, we have ∫

a

curl(u) · nda =

∮
c

u · dx. (2.268)

Let Φ and u be continuously differentiable scalar and vector fields defined
on a and c and n is the outward drawn normal to a. Then, the following can
be shown: ∮

c

Φdx =

∫
a

n ∧ grad(Φ)da, (2.269)∮
c

u ∧ dx =

∫
a

[div(u)n− (grad(u))tn]da. (2.270)

2.9.3 Green’s theorem

Finally, we record Greens’s theorem. We do this first for simply connected
domain and then for multiply connected domain. If any curve within the
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domain can be shrunk to a point in the domain without leaving the domain,
then such a domain is said to be simply connected. A domain that is not
simply connected is said to be multiply connected.

Applying Stoke’s theorem, (2.268) to a planar simply connected domain
with the vector field given as u = f(x, y)e1 + g(x, y)e2,∫

a

(
∂f

∂y
− ∂g

∂x

)
dxdy =

∮
c

(fdx+ gdy). (2.271)

The above equation (2.271) when f(x, y) = 0 reduces to∫
a

∂g

∂x
dxdy =

∮
c

−gdy =

∮
c

−g sin(θ)ds =

∮
c

gnxds, (2.272)

where θ is the angle made by the tangent to the curve c with e1 and nx is
the component of the unit normal n along e1 direction, refer to figure 2.4.
Then, when g(x, y) = 0 equation (2.271) yields,∫

a

∂f

∂y
dxdy =

∮
c

fdx =

∮
c

f cos(θ)ds =

∮
c

fnyds, (2.273)

where ny is the component of the unit normal along the e2 direction.

Similarly, applying Stoke’s theorem (2.268) to a vector field, u = f̂(y, z)e2

+ ĝ(y, z)e3 defined over a planar simply connected domain,∫
a

(
∂ĝ

∂y
− ∂f̂

∂z

)
dydz =

∮
c

(f̂dy + ĝdz). (2.274)

The above equation (2.274) when f̂(y, z) = 0 reduces to∫
a

∂ĝ

∂y
dydz =

∮
c

ĝnyds, (2.275)

where ny is the component of the normal to the curve along the e2 direction
and when ĝ(y, z) = 0 yields∫

a

∂f̂

∂z
dydz =

∮
c

f̂nzds, (2.276)

where nz is the component of the normal to the curve along the e3 direction.
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e2 

e1 

n ny 

nx 
dy 

dx 

ds 

θ 

θ 

Figure 2.4: Relation between tangent and normal vectors to a curve in xy
plane

  

 

 

 

Figure 2.5: Illustration of a multiply connected region
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In a simply connected domain, the region of interest has a single simple
closed curve. In a multiply connected domain, the region of interest has
several simple closed curves, like the one shown in figure 2.5. If the line
integrals are computed by traversing in the direction shown in figure 2.5,∫

a

(
∂f

∂y
− ∂g

∂x

)
dxdy =

∮
C0

(fdx+ gdy)−
N∑
i=1

∮
Ci

(fdx+ gdy), (2.277)

where the functions f and g are continuously differentiable in the domain,
C0 is the outer boundary of the domain, Ci’s are the boundary of the voids
in the interior of the domain and we have assumed that there are N such
voids in the domain. We emphasize again our assumption that we transverse
the interior voids in the same sense as the outer boundary.

The above equation (2.277) when f(x, y) = 0 reduces to∫
a

∂g

∂x
dxdy =

∮
C0

gn0
xds0 −

N∑
i=1

∮
Ci

gnixdsi, (2.278)

where nix is the component of the unit normal n along e1 direction of the ith

curve. Then, when g(x, y) = 0 equation (2.277) yields,∫
a

∂f

∂y
dxdy =

∮
C0

fn0
yds0 −

N∑
i=1

∮
Ci

fniydsi, (2.279)

where niy is the component of the unit normal along the e2 direction of the
ith curve.

2.10 Summary

In this chapter, we looked at the mathematical tools required to embark on a
study of mechanics. In particular, we began with a study on algebra of tensors
and then graduated to study tensor calculus. Most of the mathematical
results that we would be using is summarized in this chapter.

2.11 Self-Evaluation

1. Give reasons for the following: (a) δii = 3, (b) δijδij = 3, (c) δijai =
aj, (d) δijajk = aik, (e) δijakj = aki, (f) δijaij = aii, (g) δijδjkδik = 3,
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(h) δikδjmδij = δkm (i) εkki = 0, (j) δijεijk = 0, (k) εijkεijk = 6, where
δij denotes the Kronecker delta and εijk the permutation symbol

2. Show that aij = aji when εijkajk = 0. εijk is the permutation symbol

3. Expand aijbij

4. Expand Dijxixj. If possible simplify the expression Dijxixj when (a)
Dij = Dji (b) Dij = −Dji

5. Express the expression ci = Aijbj− bi as ci = Bijbj and thus obtain Bij

6. Consider two vectors a = e1 + 4e2 + 6e3 and b = 2e1 + 4e2, where {ei}
are orthonormal Cartesian basis vectors. For these vectors compute,

(a) Norm of a

(b) The angle between vectors a and b

(c) The area of the parallelogram bounded by the vectors a and b

(d) b ∧ a

(e) The component of vector a in the direction z = e1 + e2.

7. Show that y = mx where y and x are vectors and m is a scalar is
a linear transformation. Find the second order tensor that maps the
given vector x on to y.

8. Show that y = mx + c where y, x and c are vectors and m is a scalar
is not a linear transformation.

9. Establish the following εijkTjkei = (T23−T32)e1 +(T31−T13)e2 +(T12−
T21)e3 and use this to show that δijεijkek = o. Here {ei} denotes
the orthonormal Cartesian basis, δij the Kronecker delta and εijk the
permutation symbol

10. Show that if tensor A is positive definite then det(A) > 0

11. Using Cayley-Hamilton theorem, deduce that

I3 = {[tr(A)]3 − 3tr(A)tr(A2) + 2tr(A3)}/6

for an arbitrary tensor A.
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12. Let A be an arbitrary tensor. Show that AtA and AAt are positive
semi-definite symmetric tensors. If A is invertible, prove that these
tensors - AtA and AAt - are positive definite.

13. Let u, v, w, x be arbitrary vectors and A an arbitrary tensor. Show
that

(a) (u⊗ v)(w ⊗ x) = (v ·w)(u⊗ x)

(b) A(u⊗ v) = (Au)⊗ v

(c) (u⊗ v)A = u⊗ (Atv)

14. Let Q be a proper orthogonal tensor. If {p,q, r} form an orthonormal
basis then a general representation for Q is: Q = p⊗p + (q⊗ q + r⊗
r) cos(θ) + (r⊗ q− q⊗ r) sin(θ). Now, show that

(a) I1 = I2 = 1 + 2 cos(θ)

(b) I3 = 1

(c) Q has only one real eigen value if θ 6= 0, π

15. Let A be an invertible tensor which depends upon a real parameter, t.
Assuming that dA

dt
exists, prove that

d(det(A))

dt
= det(A)tr

(
dA

dt
A−1

)
16. Let φ(A) = det(A) and A be an invertible tensor. Then, show that

∂φ
∂A

= I3A
−1

17. Let φ, u and T be differentiable scalar, vector and tensor fields. Using
index notation verify the following for Cartesian coordinate system:

(a) grad(φu) = u⊗ grad(φ) + φgrad(u)

(b) div
(

u
φ

)
= 1

φ
div(u)− 1

φ2
u · grad(φ)

(c) div(φT) = Ttgrad(φ) + φdiv(T)

(d) curl(grad(φ)) = o

(e) grad(u · u) = 2grad(u)tu

(f) div(Ttu) = T · grad(u) + u · div(T)
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18. If A is an invertible tensor, then it can be decomposed uniquely as A
= RU = VR where R is an orthogonal tensor, and U, V are positive
definite symmetric tensors. Then, show that AAt = V2 and AtA =
U2. Using these results prove that the eigenvalues of AtA and AAt are
the same and that their eigenvectors are related as: pi = Rqi, where
pi are the eigenvectors of AAt and qi are the eigenvectors of AtA.

19. The matrix components of a tensor A when represented using Cartesian
coordinate basis are

A =

1 1 1
1 1 1
1 1 1

 .

For this tensor find the following:

(a) The spherical and deviatoric parts of A

(b) The eigenvalues of A

(c) The eigenvectors of A

20. Let a new right-handed Cartesian coordinate system be represented by
the set {ẽi} of basis vectors with transformation law ẽ2 = − sin(θ)e1 +
cos(θ)e2, ẽ3 = e3. The origin of the new coordinate system coincides
with the old origin.

(a) Find ẽ1 in terms of the old set {ei} of basis vectors

(b) Find the orthogonal matrix [Q]ij that expresses the directional
cosine of the new basis with respect to the old one

(c) Express the vector u = −6e1 − 3e2 + e3 in terms of the new set
{ẽi} of basis vectors

(d) Express the position vector, r of an arbitrary point using both
{ei} and {ẽi} basis and establish the relationship between the
components of r represented using {ei} basis and {ẽi} basis.

21. For the following components of a second order tensor:

T =

10 4 −6
4 −6 8
−6 8 14

 ,

relative to a Cartesian orthonormal basis, {ei}, determine



2.11. SELF-EVALUATION 67

(a) The principal invariants

(b) The principal values, p1, p2, p3

(c) The orientation of the principal directions with respect to the
Cartesian basis, {e}

(d) The orientation of the orthonormal basis, {êi} with respect to the
basis, {ei}, so that the stress tensor has a matrix representation
of the form, T = diag[p1, p2, p3] when expressed with respect to
the {êi} basis

(e) The transformation matrix, [Q]ij which transforms the set of or-
thonormal basis {ei} to {êi}.

(f) The components of the same tensor T with respect to a basis {ẽi}
when ẽ1 = (

√
3e1 + e2)/2, ẽ2 = (−e1 +

√
3e2)/2, ẽ3 = e3.

22. Let a tensor A be given by: A = α[1− e1 ⊗ e1] + β[e1 ⊗ e2 + e2 ⊗ e1],
where α and β are scalars and e1 and e2 are orthogonal unit vectors.

(a) Show that the eigenvalues (λi) of A are

λ1 = α, λ2 =
α

2
+

√
α2

4
+ β2, λ3 =

α

2
−
√
α2

4
+ β2,

(b) Derive and show that the associated normalized eigenvectors ni
are given by:

n1 = e3, n2 =
e1 + (λ2/β)e2√

1 + λ2
2/β

2
, n3 =

e1 + (λ3/β)e2√
1 + λ2

3/β
2
.

23. Show that u∧v is the axial vector for v⊗u−u⊗v. Using this establish
the identity a ∧ (b ∧ c) = (b ⊗ c − c ⊗ b)a, ∀ a,b, c ∈ V. Use could
be made of the identity [(u ∧ v) ∧ u] · v = (u ∧ v) · (u ∧ v).

24. Let R be a regular region and T a tensor field which is continuous in
R and continuously differentiable in the interior of R. Show that,∫

∂R
x ∧Ttnda =

∫
R

(x ∧ div(T)− τ )dv,

where x is the position of a representative point of R and τ is the axial
vector of T−Tt. (Hint: Make use of the identity obtained in problem
23.)
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25. Let (r, θ, φ) denote the spherical coordinates of a typical point related
to the Cartesian coordinates (x, y, z) through x = r cos(θ) cos(φ), y
= r cos(θ) sin(φ), z = r sin(θ). Then express the spherical coordinate
basis in terms of the Cartesian basis and show that

grad(α) =
∂α

∂r
er +

1

r

∂α

∂θ
eθ +

1

r cos(θ)

∂α

∂φ
eφ,

grad(v) =


∂vr
∂r

1
r
∂vr
∂θ
− vθ

r
1

r cos(θ)
∂vr
∂φ
− vφ

r
∂vθ
∂r

1
r
∂vθ
∂θ

+ vr
r

1
r cos(θ)

∂vθ
∂φ
− vφ

r
tan(θ)

∂vφ
∂r

1
r

∂vφ
∂θ

1
r cos(θ)

∂vφ
∂φ

+ vr
r
− vθ

r
tan(θ)

 ,

div(T) =
∂Trr
∂r

+ 1
r
∂Tθr
∂θ

+ 1
r cos(θ)

∂Tφr
∂φ

+ 1
r
[2Trr − Tθθ − Tφφ]

∂Trθ
∂r

+ 1
r
∂Tθθ
∂θ

+ 1
r cos(θ)

∂Tφθ
∂φ

+ 1
r
[2Trθ + Tθr + (Tθθ − Tφφ) tan(θ)]

∂Trφ
∂r

+ 1
r

∂Tθφ
∂θ

+ 1
r cos(θ)

∂Tφφ
∂φ

+ 1
r
[2Trφ + Tφr + (Tφθ + Tθφ) tan(θ)]

 ,

where α is a scalar field, v is a vector field represented in spherical
coordinates and T is a tensor field also represented using spherical
coordinate basis vectors.



Chapter 3

Kinematics

3.1 Overview

Kinematics is the study of motion, regardless of what is causing it. All
bodies in this universe are in motion. Hence, it becomes important to un-
derstand how the motion can be described or abstracted mathematically.
First, we shall strive to develop an intuitive understanding of certain prim-
itive concepts, namely, body, position and time. Then, we shall proceed to
define motion, displacement and velocity fields. Here we shall see that there
are two ways of mathematically representing these fields, called the mate-
rial description and spatial description. Then, we shall dwell on kinematical
considerations which are basic to solid mechanics.

3.2 Body

Intuitively we understand what a body is. We think that the body is made
of a number of particles. Picking up some arbitrary particle we can talk
about particles that are on top or below this particle, in front or behind this
particle, and to the right or left of this particle. This relationship between
the particles is maintained in all motions of the body, that is if two particles
is on two different sides of another particle, these two particles stay on either
side of the other particle for any motion of the body. Therefore, we say
that the body is made up of ordered particles. If the number of particles is
countless then the body is described as a continuum and when it is countable
it is described to be discrete.

69
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Now, we want to express these intuitive notions of the body in the lan-
guage of mathematics. The mathematical analogue of the material particle
is the point. Mathematically, by point we mean a collection of ‘n’ (real)
numbers, for our purposes here. Assuming that we have a scale to measure
the distance, then to identify other particles from a given particle, we need to
give three distances, namely the distance on top, to the right and in the front
of that particular particle. Hence, for each point we have to associate three
numbers corresponding to the three distances mentioned above. Therefore
the points are said to belong to a three dimensional space, since the value of
n is 3. If we use a linear scale, which is the usual practice, to measure the
distance then we say that the points belong to a 3D Euclidean space or more
specifically 3D Euclidean translation space, also sometimes referred to as 3D
Euclidean point space. Further, in the language of mechanics, this mapping
of the particles to points in the 3D Euclidean space is called a placer and is
denoted by κ.

Though one might understand what a body is intuitively, some choices
made here to mathematically represent it needs deliberation. For this we need
to understand the mathematical notion of a “point”. Though we associate - ·
- it as a point. It is not. · is at best a collection of points. Point by definition is
a limiting sphere obtained when the radius of the sphere tends to zero. Thus
one cannot see a point; its volume is also zero. Stacking of points along one
direction alone yields a line, stacking of lines along a direction perpendicular
to the direction of the line yields a plane, stacking of planes along the normal
direction to the plane yields a 3D cube which alone can be seen and has a
volume. Thus, one should realize that by stacking countless number of points
of zero volume we have created a finite volume, as a consequence of limiting
process. Consequently, the same1 countless number of points could occupy
different volumes at different instances in time.

It should be clear from the above discussion that particle is not a chunk of
material that many believe it to be. This is because the particle is mapped on
to the mathematical idea of a point which as we saw above has zero volume.

Let B denote the abstract body, that is the set of particles that constitute
the body. Assuming that the body is made of only 8 particles we write

B = {(X, Y, Z)|X ∈ {0, 1}, Y ∈ {0, 1}, Z ∈ {0, 1}}, (3.1)

1When the number of points is countless, using this adjective same is a oxymoron. But
it is used to convey an idea.
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meaning that the eight particles are mapped on to the points (0, 0, 0), (1, 0, 0),
(1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1). The right hand side of
the equation (3.1) means the following: Take an element each from the set
X, Y and Z and form a new set called B which is the collection of these three
elements. Mathematically, this is stated as: the set B is obtained by taking
the Cartesian product2 of the sets X, Y and Z. The elements in the set X
are 0 and 1 and that in the set Y and Z are also 0 and 1. The elements in
the set need not be discrete they can be continuous also. In fact, they have
to be continuous when the body is a continuum.

Thus, for the body made up of countless number of material particles, we
write

B = {(X, Y, Z)|0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ Z ≤ 1}. (3.2)

By this, we mean that each point within the unit cube is occupied by a
material particle belonging to the body. Since the body occupies contiguous
region in space it is apt that it is described as a continuum. Pictorially this
configuration of the body is represented as shown in figure 3.1a.

It is just incidental that one of the vertex of the cube coincides with the
point (0, 0, 0). Another person can map the same body onto a different region
of the Euclidean space and thus he might write

B = {(X, Y, Z)|X0 ≤ X ≤ X0 +1, Y0 ≤ Y ≤ Y0 +1, Z0 ≤ Z ≤ Z0 +1}, (3.3)

where, X0, Y0, Z0 are some constants. This representation of the unit cube
is shown pictorially in figure 3.1b. In fact, it is not necessary that the cube
be oriented such that the normal to its faces coincide with the Cartesian
coordinate basis, it can make an angle with the coordinate basis too, as
shown in figure 3.1c. This configuration of the body is analytically expressed
as:

B = {(X cos(θ) + Y sin(θ)−X0,−X sin(θ) + Y cos(θ)− Y0, Z − Z0)

|0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ Z ≤ 1}, (3.4)

where, X0, Y0, Z0 and θ are some constants.
Before proceeding further, we recap the properties of the placers. First,

the placers are one to one functions that is each material particle gets mapped

2The Cartesian product of two sets X and Y, denoted X × Y , is the set of all possible
ordered pairs whose first component is a member of X and whose second component is a
member of Y.
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Figure 3.1: Schematic of cube oriented in space such that (a) One of the
corners coincides with the origin and the normal to the faces of the cube
are oriented parallel to the Cartesian basis (b) None of the corners coincides
with the origin but the normal to the faces of the cube are oriented parallel
to the Cartesian basis (c) None of the corners coincides with the origin and
the normal to the faces of the cube are not oriented parallel to the Cartesian
basis

on to a unique point in the 3D Euclidean space. However, there is no unique
placer for a given body. Different persons can map a given body to different
regions of Euclidean point space. We shall later see how this non-uniqueness
of placers is built into the theory developed to describe the mechanical re-
sponse of the bodies.

While defining bodies in equations (3.1) through (3.4) we tacitly assumed
that the point space corresponded to Cartesian coordinates. This specifica-
tion of the coordinate system is important to arrive at the formula to be used
to compute the distance between two triplets. Recognize that if we are us-
ing the same formula to obtain the distance between two triplets in different
coordinate systems, it is equivalent to using different scales to measure the
distance.

Many a times, the choice of coordinate system is made so that we can
define the body succinctly. For example, consider a body in the shape of an
annular (or solid) right circular cylinder of length, H. Using cylindrical polar
coordinates, (R,Θ, Z), this body is mathematically defined as:

B = {(R,Θ, Z)|Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ H}, (3.5)
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where Ri and Ro are some positive constants, with Ri = 0 for a solid cylinder.
Try defining this body using Cartesian coordinates.

Experience has shown that it is easier to do computations if we use vector
space instead of point space. Naively, while in vector spaces we speak of
position vectors of a point, in point space we speak about the coordinates
of a point. Next, we would like to establish this relationship between the
mathematical ideas of the vector space and point space. To do this, for each
ordered pair of points (a, b) in the Euclidean point space E there corresponds

a unique vector in the Euclidean vector space, V, denoted by ~ab, with the
properties

(i) ~ba = −~ab, ∀ a, b ∈ E .

(ii) ~ab = ~ac + ~cb, ∀ a, b, c ∈ E .

(iii) Choosing arbitrarily a point o from E , and a Cartesian coordinate basis
to span the vector space, V, there corresponds to each vector a ∈ V a
unique point a ∈ E such that a = ~oa, the point o is called the origin
and a the position of a relative to o.

In other words, property (iii) states that the components of any vector a
(a1, a2, a3) relative to a chosen Cartesian coordinate basis correspond to the
coordinates of some point a in E . The fact that this holds only for Carte-
sian coordinate system cannot be overemphasized. To see this, recall that in
cylindrical polar coordinate system even though a triplet (R,Θ, Z) charac-
terizes a point in E , position vectors have components of the form (R, 0, Z)
only. That is the components of the position vector of a point is not same
as the coordinates of the point.

The notions of distance and angle in E are derived from the scalar product
on the supporting vector space V: the distance between the arbitrary points
a and b is defined by |~ab| and the angle, α subtended by a and b at a third
arbitrary point c by

α = cos−1

(
~ca · ~cb
|~ca||~cb|

)
, (0 ≤ φ ≤ π). (3.6)

Thus, the choice of scale corresponds to the different expressions for the
scalar product.

Considering the physical body to be made up of material particles, de-
noted by P , we have seen how it can be mapped to the 3D Euclidean point
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space and hence to the 3D Euclidean vector space. Thus, the region occupied
by this body in the 3D Euclidean vector space is called as the configuration
of the body and is denoted by B. Then, the placing function κ: B → B and
its inverse κ−1: B → B are defined as:

X = κ(P ), P = κ−1(X). (3.7)

Recognize that the inverse exist because the mappings are one to one by
definition. Henceforth, by placer we mean placing the body in the Euclidean
vector space not the point space.

Next, let us understand what time is. Time concerns with the ordering
of events. That is, it tells us whether an event occurred before or after a
particular event. We shall assume that we cannot count the number of events.
Hence, we map the events to the points on a real line. This assumption that
the number of events is countless, is required so that we can take derivatives
with respect to time. The part of the real line that is used to map a set of
events is the prerogative of the person who establishes this correspondence
which is similar to the mapping of the body on to the 3D Euclidean point
space. The motion of a body is considered to be an event in mechanics.
When a body moves, its configuration changes, that is the region occupied
by the body in the 3D Euclidean vector space changes.

Let t be a real variable denoting time such that t ∈ I ⊆ R, set of reals.
If we could associate a configuration, Bt for the body B for each instant of
time in the interval of interest then the family of configurations {Bt : t ∈ I}
is called motion of B. Hence, we can define functions φ: B × I → Bt and
φ−1: Bt × I → B such that

x = φ(P, t), P = φ−1(x, t). (3.8)

In a motion of B a typical particle, P occupies a succession of points which
together form a curve in E . This curve is called the path of P and is given in
a parametric manner by equation (3.8a). The velocity and acceleration of P
are defined as rate of change of position and velocity with time, respectively,
as P traverses its path.

While the definition of motion by (3.8a) is satisfactory, it would be useful
if it were to be a function of the vectors instead of points. To achieve this we
make use of the equation (3.7b). That is we choose a certain configuration
of the body and identify the particles by the position vector of the point it
occupies in this configuration, then

x = φ(κ−1(X), t) = χκ(X, t). (3.9)
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χκ is called the motion field and the subscript κ denotes that it depends on
the configuration which is used to identify the particles. The configuration in
which the particles are identified is called the reference configuration and is
denoted by Br. This definition does not require the reference configuration
to be a configuration actually occupied by the body during its motion. If the
reference configuration were to be a configuration actually occupied by the
body during its motion at some time to, then (3.9) could be obtained from
(3.8) as

x = φ(φ−1(X, to), t) = χto(X, t). (3.10)

We call χκ (or χto) the deformation field when it is independent of time or
its dependence on time is irrelevant.

Now, we would like to make a few remarks. The definition of a body
and motion is independent of whether we are concerned with rigid body or
deformable body. However, certain structures or details impounded on the
body depends on this choice. Till now, we have been talking about the
body being a set of particles but to be precise we should have said material
particles. This detail is important within the context of deformable bodies,
as we shall see later. It should also be remembered that the distinction that
a given particle is steel or wood is made right in the beginning. Thus, within
the realms of classical mechanics we cannot model chemically reacting body
where material particles of a particular type gets transformed into another.
Because the body is considered to be a fixed set of material particles, they
cannot die or be born or get transformed.

As we shall see later, an important kinematical quantity in the study
of deformable bodies is the gradient of motion. For us to be able to find
the gradient of motion, we require the motion field, (3.9) to be continuous
on B and there should exist countless material particles of the same type
(material) in spheres of radius, r for any value of r less than δo where δo is
some constant. It is for this purpose, in the study of deformable bodies we
require the body to be a continuum.

3.3 Deformation Gradient

The gradient of motion is generally called the deformation gradient and is
denoted by F. Thus

F =
∂x

∂X
= O(x). (3.11)
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Since, χ is a function of both X and t we have used a partial derivative in
the definition of the deformation gradient. Also, we haven’t defined it as
Grad(x) because for the Grad operator, as defined in chapter 2, the range
of the function for which gradient is sought is any vector; not just position
vectors. The difference becomes evident in curvilinear coordinate systems
like the cylindrical polar coordinates.

Let {Ei} be the three Cartesian basis vectors in the reference configu-
ration and {ei} the basis vectors in the current configuration. Then, the
deformation gradient is written as

F = Fijei ⊗ Ej. (3.12)

In general, the basis vectors ei and Ej need not be the same. Since the
deformation gradient depends on two sets of basis vectors, it is called a two-
point tensor. It is pertinent here to point out that the grad operator as
defined in chapter 2 (2.207), is not a two-point tensor either. The matrix
components of the deformation gradient in Cartesian coordinate system is

(F)ij =

 ∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

 , (3.13)

where (X, Y, Z) and (x, y, z) are the Cartesian coordinates of a typical mate-
rial particle, P in the reference and current configuration respectively. Simi-
larly, the matrix components of the deformation gradient in cylindrical polar
coordinate system is:

(F)ij =

 ∂r
∂R

1
R
∂r
∂Θ

∂r
∂Z

r ∂θ
∂R

r
R
∂θ
∂Θ

r ∂θ
∂Z

∂z
∂R

1
R
∂z
∂Θ

∂z
∂Z

 , (3.14)

where (R,Θ, Z) and (r, θ, z) are the cylindrical polar coordinates of a typical
material particle, P in the reference and current configuration respectively.
Substituting

X = R cos(Θ), Y = R sin(Θ), Z = Z,

x = r cos(θ), y = r sin(θ), z = z, (3.15)
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in (3.13) we obtain

(F)xX
(F)xY
(F)xZ
(F)yX
(F)yY
(F)yZ
(F)zX
(F)zY
(F)zZ


=



∂r
∂X

cos(θ)− r sin(θ) ∂θ
∂X

∂r
∂Y

cos(θ)− r sin(θ) ∂θ
∂Y

∂r
∂Z

cos(θ)− r sin(θ) ∂θ
∂Z

∂r
∂X

sin(θ) + r cos(θ) ∂θ
∂X

∂r
∂Y

sin(θ) + r cos(θ) ∂θ
∂Y

∂r
∂Z

sin(θ) + r cos(θ) ∂θ
∂Z

∂z
∂X
∂z
∂Y
∂z
∂Z


(3.16)

where

∂(·)
∂X

= cos(Θ)
∂(·)
∂R
− sin(Θ)

R

∂(·)
∂Θ

, (3.17)

∂(·)
∂Y

= sin(Θ)
∂(·)
∂R

+
cos(Θ)

R

∂(·)
∂Θ

, (3.18)

∂(·)
∂Z

=
∂(·)
∂Z

, (3.19)

from which we obtain (3.14) recognizing that

ER = cos(Θ)E1 + sin(Θ)E2, er = cos(θ)e1 + sin(θ)e2,
EΘ = − sin(Θ)E1 + cos(Θ)E2, eθ = − sin(θ)e1 + cos(θ)e2,
EZ = E3, ez = e3,

where {ER,EΘ,EZ} and {er, eθ, ez} are the cylindrical polar coordinate basis
vectors obtained from (2.242) using (3.15). Comparing equations (3.14) with
(2.259) we see the difference between the Grad operator and O operator.

3.4 Lagrangian and Eulerian description

In the development of the basic principles of continuum mechanics, a body B
is endowed with various physical properties which are represented by scalar
or tensor fields, defined either on a reference configuration, Br or on the
current configuration Bt. In the former case, the independent variables are
the position vectors of the particles in the reference configuration, X and
time, t. This characterization of the field with X and t as independent
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variables is called Lagrangian (or material) description. In the latter case,
the independent variables are the position vectors of the particles in the
current configuration, x and time, t. The characterization of the field with
x and t as independent variables is called Eulerian (or spatial) description.
Thus, density, displacement and stress are examples of scalar, vector and
second order tensor fields respectively and can be represented as

ρ = ρ̂(X, t) = ρ̃(x, t), (3.20)

u = û(X, t) = ũ(x, t), (3.21)

σ = σ̂(X, t) = σ̃(x, t), (3.22)

where the second equality is obtained by using the relation X = χ−1
κ (x, t),

which is possible because the function χκ in (3.9) is one to one. Here functions
with a hat denote that the independent variables are X and t, while functions
with a tilde denote that the independent variables are x and t.

To understand the difference between the Lagrangian description and
Eulerian description, consider the flow of water through a pipe from a large
tank. Now, if we seed the tank with micro-spheres and determine the velocity
of these spheres as a function of time and their initial position in the tank
then we get the Lagrangian description for the velocity. On the other hand,
if we choose a point in the pipe and determine the velocity of the particles
crossing that point as a function of time then we get the Eulerian description
of velocity. While in fluid mechanics we use the Eulerian description, in solid
mechanics we use Lagrangian description, mostly.

Next, we define what is called as the material time derivative or La-
grangian time derivative or total time derivative and spatial time derivative
or Eulerian time derivative. It could be inferred from the above that various
variables of interest are functions of time, t and either X or x. Hence, when
we differentiate these variables with respect to time, we can hold either X a
constant or x a constant. If we hold X a constant while differentiating with
time, we call such a derivative total time derivative and denote it by D(·)

Dt
.

On the other hand if we hold x a constant, we call it spatial time derivative
and denote it by d(·)

dt
. Thus, for the scalar field defined by, say (3.20) we have

Dρ

Dt
=

∂ρ̂

∂t
=
∂ρ̃

∂t
+ grad(ρ̃) · v, (3.23)

dρ

dt
=

∂ρ̃

∂t
=
∂ρ̂

∂t
+Grad(ρ̂) · dX

dt
, (3.24)
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where grad(·) stands for the gradient with respect to x, Grad(·) stands for the
gradient with respect to X and v = Dx

Dt
. The above equations are obtained

by using the chain rule. Similarly, for a vector field defined by (3.21) we have

Du

Dt
=

∂û

∂t
=
∂ũ

∂t
+ grad(ũ)v, (3.25)

du

dt
=

∂ũ

∂t
=
∂û

∂t
+Grad(û)

dX

dt
. (3.26)

Recognize that DX
Dt

= o and dx
dt

= o.
Finally, a note on the notation. If the starting letter is capitalized for any

of the operators introduced in chapter 2 then it means that the derivative is
with respect to the material coordinates, i.e. X otherwise, the derivative is
with respect to the spatial coordinates, i.e. x. In the above, we have already
used this convention for the gradient operator.

3.5 Displacement, velocity and acceleration

The vector field, u, defined as

u = x−X, (3.27)

represents the displacement field, that is the displacement of the material
particles initially at X or currently at x depending on whether Lagrangian
or Eulerian description is used. Thus,

û(X, t) = χκ(X, t)−X, (3.28)

ũ(x, t) = x− χ−1
κ (x, t). (3.29)

Figure 3.2 schematically shows the displacement vector. As shown in the
figure, displacement vector is a straight line segment joining the location
of a material particle in the current and reference configuration. While,
in the schematic we have used the same coordinate system to describe all
the three directed line segments namely, the position vector of a particle
in the reference configuration, current configuration and the displacement
vector; this is not necessary. In fact, if one uses cylindrical polar coordinate
basis, the position vector of the material particle in the current and reference
configuration, in general would be different.



80 CHAPTER 3. KINEMATICS

ex ex

ey 

ez 

X x 
u 

Current Configuration 
Reference Configuration 

Figure 3.2: Schematic of deformation of a cube (X position vector of a typical
material particle in the reference configuration, x position vector of the same
material particle whose position vector in the reference configuration is X in
the current configuration, u displacement vector of this material particle).

The first and second total time derivatives of the motion field is called
the velocity and acceleration respectively. Thus

v =
Dχ

Dt
, a =

D2χ

Dt2
=
Dv

Dt
. (3.30)

We note that both the velocity and acceleration can be expressed as a La-
grangian field or Eulerian field. From the definition of the displacement
(3.27) it can be seen that the velocity and acceleration can be equivalently
written as,

v =
Du

Dt
, a =

D2u

Dt2
. (3.31)

3.5.1 Gradient of displacement

As we have seen before, the displacement field can be expressed as a La-
grangian field or Eulerian field. Thus, we can have a Lagrangian displacement
gradient, H and a Eulerian displacement gradient, h defined as

H = Grad(û), h = grad(ũ). (3.32)



3.5. DISPLACEMENT, VELOCITY AND ACCELERATION 81

Recognize that these gradients are not the same. To see this, we compute
the displacement gradient in terms of the deformation gradient as

H = Grad(û) =
∂x

∂X
− ∂X

∂X
= F− 1, (3.33)

h = grad(ũ) =
∂x

∂x
− ∂X

∂x
= 1− F−1, (3.34)

3.5.2 Example

A certain motion of a continuum body in the material description is given in
the form:

x1 = X1 − exp(−t)X2, x2 = exp(−t)X1 +X2, x3 = X3, (3.35)

for t > 0. Find the displacement, velocity and acceleration components
in terms of the material and spatial coordinates and time. Also find the
deformation and displacement. Assume that the same Cartesian coordinate
basis and origin is used to describe the body both in the current and the
reference configuration.

It follows from (3.27) that

û = − exp(−t)X2E1 + exp(−t)X1E2. (3.36)

Similarly, from (3.30) we obtain

v̂ = exp(−t)X2E1 − exp(−t)X1E2, (3.37)

â = − exp(−t)X2E1 + exp(−t)X1E2, . (3.38)

Inverting the motion field (3.35) we obtain

X1 =
[x1 + exp(−t)x2]

[1 + exp(−2t)]
, X2 =

[x2 − exp(−t)x1]

[1 + exp(−2t)]
, X3 = x3. (3.39)

Substituting (3.39) in (3.36), (3.37) and (3.38) we obtain the Eulerian
form of the displacement, velocity and acceleration fields as

ũ = − [x2 − exp(−t)x1]

[1 + exp(−2t)]
exp(−t)E1 +

[x1 + exp(−t)x2]

[1 + exp(−2t)]
exp(−t)E2,

ṽ =
[x2 − exp(−t)x1]

[1 + exp(−2t)]
exp(−t)E1 −

[x1 + exp(−t)x2]

[1 + exp(−2t)]
exp(−t)E2,

ã = − [x2 − exp(−t)x1]

[1 + exp(−2t)]
exp(−t)E1 +

[x1 + exp(−t)x2]

[1 + exp(−2t)]
exp(−t)E2.
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Here we have made use of the fact that the same Cartesian basis vectors are
used to define both the current and the reference configuration.

Next, we compute the deformation gradient to be

F =

 1 − exp(−t) 0
exp(−t) 1 0

0 0 1

 , (3.40)

and the Lagrangian and Eulerian displacement gradient as

H =

 0 − exp(−t) 0
exp(−t) 0 0

0 0 0

 , (3.41)

h =


exp(−2t)

[1+exp(−2t)]
− exp(−t)

[1+exp(−2t)]
0

exp(−t)
[1+exp(−2t)]

exp(−2t)
[1+exp(−2t)]

0

0 0 0

 , (3.42)

Notice that at t = 0, F 6= 1, but F tends to 1 as time, t tends to∞. This just
indicates that the configuration chosen as reference is not the one at time t
= 0, but at some other time and this is permissible.

3.6 Transformation of curves, surfaces and

volume

Before rigorously deriving the general expressions for transformation of curves,
surfaces and volumes, let us obtain these expressions after various simplifying
assumptions.

Let us assume the following:

1. The same Cartesian coordinate basis and origin is used to describe the
body in both its reference and current configuration.

2. The body is subjected to displacement u and the Lagrangian descrip-
tion of the displacement field is known and is sufficiently smooth for
the required derivatives to exist. That is

u = ux(X, Y, Z)ex + uy(X, Y, Z)ey + +uz(X, Y, Z)ez, (3.43)
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Figure 3.3: Schematic of the deformation of a line oriented along ex of length
∆X.

where ux(X, Y, Z), uy(X, Y, Z) and uz(X, Y, Z) are some known func-
tions of the X, Y and Z the coordinates of the material particles in
the reference configuration.

3. It is assumed that the components of the displacement can be approx-
imated as

ux(Xo + ∆X, Yo + ∆Y, Zo + ∆Z) ≈ ux(Xo, Yo, Zo)

+
∂ux
∂X

∣∣∣∣
(Xo,Yo,Zo)

∆X +
∂ux
∂Y

∣∣∣∣
(Xo,Yo,Zo)

∆Y +
∂ux
∂Z

∣∣∣∣
(Xo,Yo,Zo)

∆Z,

uy(Xo + ∆X, Yo + ∆Y, Zo + ∆Z) ≈ uy(Xo, Yo, Zo)

+
∂uy
∂X

∣∣∣∣
(Xo,Yo,Zo)

∆X +
∂uy
∂Y

∣∣∣∣
(Xo,Yo,Zo)

∆Y +
∂uy
∂Z

∣∣∣∣
(Xo,Yo,Zo)

∆Z,

uz(Xo + ∆X, Yo + ∆Y, Zo + ∆Z) ≈ uz(Xo, Yo, Zo)

+
∂uz
∂X

∣∣∣∣
(Xo,Yo,Zo)

∆X +
∂uz
∂Y

∣∣∣∣
(Xo,Yo,Zo)

∆Y +
∂uz
∂Z

∣∣∣∣
(Xo,Yo,Zo)

∆Z,

(3.44)
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where the displacement of the material particle occupying the point Xo

is u(Xo, Yo, Zo) and that displacement of the material particle that is
occupying, X1 is u(Xo + ∆X, Yo + ∆Y, Zo + ∆Z). Here it is pertinent
to point out that the above is a truncated Taylor’s series. Since, we
are interested in arbitrarily small values of ∆X, ∆Y , ∆Z, we have
truncated the Taylor’s series after the first term. However, this is not
a valid approximation for many functions. For example, functions of
the form aX3/2, where a is a constant defined over the domain, say
0.01 ≤ X ≤ 0.1 the value of the derivatives greater then second order
would be more than the first order derivative. Hence, the expression
derived based on this assumption, though intuitive has its limitations.

First, we are interested in finding how the length of the straight line of
length ∆X oriented along the ex direction in the reference configuration of the
body, as shown in the figure 3.3 has changed. With the above assumptions,
the deformed length of the straight line of length ∆X oriented along the ex
direction in the reference configuration is given by,

‖x1 − xo‖ = ‖X1 −Xo + u(X1)− u(Xo)‖

= ∆X

√[
1 +

∂ux
∂X

]2

+

[
∂uy
∂X

]2

+

[
∂uz
∂X

]2

, (3.45)

where X1 = Xo + ∆Xex, xo denotes the current position vector of the ma-
terial particle whose position in the reference configuration is Xo, x1 denotes
the current position vector of the material particle whose position in the ref-
erence configuration is X1 and use is made of equation (3.44). Now, if the
magnitude of the components of the gradient of the displacement are small
(say of the magnitude of 10−3), then equation (3.45) could be approximately
calculated as,

‖x1 − xo‖ = ∆X

[
1 +

∂ux
∂X

]
. (3.46)

Hence, the stretch ratio defined as the ratio of the current length to the
undeformed length for a line element oriented along the ex direction is,

Λ(ex) =
‖x1 − xo‖
‖X1 −Xo‖

=

√[
1 +

∂ux
∂X

]2

+

[
∂uy
∂X

]2

+

[
∂uz
∂X

]2

≈
[
1 +

∂ux
∂X

]
. (3.47)
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Figure 3.4: Schematic of the deformation of a face of the cube.

which can be approximately computed as,

Λ(ex) ≈
[
1 +

∂ux
∂X

]
. (3.48)

when the components of the displacement gradient are small. Following a
similar procedure, one can determine how the length of line elements oriented
along any direction changes. We shall derive a general expression for the same
later in section 3.6.1.

Next we are interested in finding how the area of a face of a small cuboid
changes due to deformation. Let us assume that the face of the cuboid whose
normal coincides with the ez basis is of interest and the sides of this face of
the cuboid are of length ∆X along the ex direction and ∆Y along the ey
direction. Thus, as shown in figure 3.4, Xo (= Xoex + Yoey + Zoez), X1 (=
(Xo+∆X)ex+Yoey+Zoez) and X2 (= Xoex+(Yo+∆Y )ey+Zoez) denote the
position vector of the three corners of the face of the cuboid whose normal
is ez in the reference configuration and xo, x1 and x2 denote the position of
the same three corners of the face of the cuboid in the current configuration.
For the same three assumptions listed above, the deformed area of this face
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of the cuboid is given by,

a = ‖(x1 − xo) ∧ (x2 − xo)‖
= ‖(X1 −Xo + u(X1)− u(Xo)) ∧ (X2 −Xo + u(X2)− u(Xo))‖

= (∆X)(∆Y )

∣∣∣∣{[∂uy∂X

∂uz
∂Y
− ∂uz
∂X

(
1 +

∂uy
∂Y

)]
ex

+

[
∂uz
∂X

∂ux
∂Y
−
(

1 +
∂ux
∂X

)
∂uz
∂Y

]
ey

+

[(
1 +

∂ux
∂X

)(
1 +

∂uy
∂Y

)
− ∂uy
∂X

∂ux
∂Y

]
ez

}∣∣∣∣ , (3.49)

and the orientation of the normal to this deformed face is computed as,

n =
(x1 − xo) ∧ (x2 − xo)

‖(x1 − xo) ∧ (x2 − xo)‖

=
(X1 −Xo + u(X1)− u(Xo)) ∧ (X2 −Xo + u(X2)− u(Xo))

‖(X1 −Xo + u(X1)− u(Xo)) ∧ (X2 −Xo + u(X2)− u(Xo))‖
. (3.50)

Recollect that in chapter 2 we mentioned that the cross product of two vectors
characterizes the area of the parallelogram spanned by them. We have made
use of this to obtain the above expressions.

Finally, we find the volume of the deformed cuboid. Again recollecting
from chapter 2, the box product of three vectors yields the volume of the
parallelepiped spanned by them, the deformed volume of the cuboid is given
by,

v = [x1 − xo,x2 − xo,x3 − xo]

= (∆X)(∆Y )(∆Z)

{[(
1 +

∂uz
∂Z

)(
1 +

∂uy
∂Y

)
− ∂uy
∂Z

∂uz
∂Y

](
1 +

∂ux
∂X

)
+

[
∂uz
∂Y

∂ux
∂Z
−
(

1 +
∂uz
∂Z

)
∂ux
∂Y

]
∂uy
∂X

+

[
∂ux
∂Y

∂uy
∂Z
−
(

1 +
∂uy
∂Y

)
∂ux
∂Z

]
∂uz
∂X

}
, (3.51)

where xo, x1, x2 and x3 are the position vectors of the material particles
in the current configuration corresponding to whose position vector in the
reference configuration are Xo (= Xoex+Yoey+Zoez), X1 (= (Xo+∆X)ex+
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Yoey +Zoez), X2 (= Xoex + (Yo + ∆Y )ey +Zoez) and X3 (= Xoex + Yoey +
(Zo + ∆Z)ez) respectively.

When the magnitude of the components of the displacement gradient
are small, then the deformed volume of the cuboid could be computed from
equation (3.51) as,

v ≈ (∆X)(∆Y )(∆Z)

[
1 +

∂ux
∂X

+
∂uy
∂Y

+
∂uz
∂Z

]
, (3.52)

by neglecting the quadratic and cubic terms in equation (3.51).

3.6.1 Transformation of curves

We know the position vector of any particle belonging to the body at various
instances of time, t. But now we are interested in finding how a set of con-
tiguous points forming a curve changes its shape. That is, we are interested
in finding how a circle inscribed in the reference configuration changes its
shape, say into an ellipse, in the current configuration. As we have required
the deformation field to be one to one, closed curves like circle, ellipse, will
remain as closed curves and open curves like straight line, parabola remains
open. The position vectors of the particles that occupy a curve can be de-
scribed using a single variable, say ξ. For example, a circle of radius R in
the plane whose normal coincides with ez, as shown in figure 3.5a would
be described as (R cos(ξ), R sin(ξ), Zo), where R and Zo are constants and 0
≤ ξ ≤ 2π.

Consider a material curve (or a curve in the reference configuration), X
= Γ(ξ) ⊂ Br, where ξ denotes a parametrization. The material curve by
virtue of it being defined in the reference configuration is not a function of
time. During a certain motion, the material curve deforms into another curve
called the spatial curve, x = γ(ξ, t) ⊂Bt, (see figure 3.5b). The spatial curve
at a fixed time t is then defined by the parametric equation

x = γ(ξ, t) = χ(Γ(ξ), t). (3.53)

We denote the tangent vector to the material curve as ∆X and the tangent
vector to the spatial curve as ∆x and are defined by

∆X =
dΓ

dξ
∆ξ, ∆x =

∂γ

∂ξ
∆ξ (3.54)
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(b) Deformation of a open curve

Figure 3.5: Curves in the reference configuration deforming into another
curve in the current configuration
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By using (3.53) and the chain rule we find that

∂γ

∂ξ
=
∂χ

∂X

dX

dξ
=
∂χ

∂X

dΓ

dξ
. (3.55)

Hence, from equation (3.54) and the definition of the deformation gradient,
(3.11) we find that

∆x = F∆X. (3.56)

Expression (3.56) clearly defines a linear transformation which generates
a vector ∆x by the action of the second-order tensor F on the vector ∆X. In
summary: material tangent vectors map into spatial tangent vectors via the
deformation gradient. This is the physical significance of the deformation
gradient.

In the literature, the tangent vectors ∆x and ∆X, in the current and
reference configuration are often referred to as the spatial line element and
the material line element, respectively. This is correct only when the curve
in the reference and current configuration is a straight line.

Next, we introduce the concept of stretch ratio which is defined as the
ratio between the current length to its original length. When we say original
length, we mean undeformed length, that is the length of the fiber when it is
not subjected to any force. It should be pointed out at the outset that many
a times the undeformed length would not be available and in these cases it
is approximated as the length in the reference configuration.

In general, the stretch ratio depends on the location and orientation of the
material fiber for which it is computed. Thus, we can fix the orientation of the
material fiber in the reference configuration or in the current configuration.
Corresponding to the configuration in which the orientation of the fiber is
fixed we have two stretch measures. Recognize that we can fix the orientation
of the fibers in only one configuration because its orientation in others is
determined by the motion.

First, we consider deformations in which any straight line segments in
the reference configuration gets mapped on to a straight line segment in the
current configuration. Such a deformation field which maps straight line seg-
ments in the reference configuration to straight line segments in the current
configuration is called homogeneous deformation. We shall in section 3.10,
illustrate that when the deformation is homogeneous, the Cartesian compo-
nents of the deformation gradient would be a constant. As a consequence
of assuming the curve to be a straight line, the tangent and secant to the
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curve is the same. Hence, saying that we are considering a material fiber3 of
length ∆L initially oriented along A, (where A is a unit vector) and located
at P, is same as saying that we are studying the influence of the deformation
on the tangent vector, ∆LA at P. Due to some motion of the body, the
material particle that occupied the point P will occupy the point p ∈ Bt

and the tangent vector ∆LA is going to be mapped on to a tangent vector
with length, say ∆l and orientation a. From (3.56) we have

∆la = ∆LFA. (3.57)

Dotting the above equation with ∆la, we get

(∆l)2 = (∆L)2FA · FA = (∆L)2FtFA ·A, (3.58)

where we have used the fact that a is a unit vector, the relation (3.57) and
the definition of transpose. Defining the right Cauchy-Green deformation
tensor, C as

C = FtF, (3.59)

and using equation (3.58) we obtain

ΛA =
∆l

∆L
=
√

CA ·A, (3.60)

where ΛA represents the stretch ratio of a line segment initially oriented
along A. The stretch ratio, ΛA is the one that could be directly determined
in an experiment. However, there is no reason why we should restrict our
studies to line segments which are initially oriented along a given direction.
We can also study about material fibers that are finally oriented along a
given direction. Towards this, we invert equation (3.57) to get

∆LA = ∆lF−1a. (3.61)

Dotting the above equation with ∆LA, we get

(∆L)2 = (∆l)2F−1a · F−1a = (∆l)2F−tF−1a · a, (3.62)

using arguments similar to that used to get (3.58) from (3.57). Defining the
left Cauchy-Green deformation tensor or the Finger deformation tensor, B
as

B = FFt, (3.63)

3A material fiber is also sometimes called as infinitesimal line elements.
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and using equation (3.62) we obtain

Λa =
∆l

∆L
=

1√
B−1a · a

, (3.64)

where Λa represents the stretch ratio of a fiber finally oriented along a.
Next, we would like to compute the final angle between two two straight

line segments initially oriented along A1 and A2. Recognizing that the angle
between two straight line segments, α is computed using the expression:

α = cos−1

(
A1 ·A2

|A1||A2|

)
. (3.65)

Using (3.65) and similar arguments as that used to obtain the stretch ratio,
it can be shown that the final angle, αf between the straight line segments
initially oriented along A1 and A2 is given by

αf = cos−1

(
CA1 ·A2√

CA1 ·A1

√
CA2 ·A2

)
. (3.66)

Just, as in the case of stretch ratio, we can also study the initial angle, αi
between straight line segments that are finally oriented along a1 and a2. For
this case, following the same steps outlined above we compute

αi = cos−1

(
B−1a1 · a2√

B−1a1 · a1

√
B−1a2 · a2

)
. (3.67)

We like to record that as in the case of stretch ratio, αi and αf depends on
the orientation of the line segments.

Next, let us see what happens when the deformation is inhomogeneous.
For inhomogeneous deformation, the Cartesian components of the deforma-
tion gradient would vary spatially and the straight line segment in the refer-
ence configuration would have become a curve in the current configuration.
Hence, distinction between the tangent and the secant has to be made. Now,
the deformed length of the curve, ∆l corresponding to that of a straight line
of length ∆L oriented along A is obtained from equation (3.56) as,

∆l =

∫ 1

0

√(
dx

dξ

)2

+

(
dy

dξ

)2

+

(
dz

dξ

)2

dξ

=

∫ 1

0

√√√√CA ·A

[(
dX

dξ

)2

+

(
dY

dξ

)2

+

(
dZ

dξ

)2
]
dξ, (3.68)
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Figure 3.6: Schematic of straight lines in a body

where A is a constant vector, C = Ĉ(X(ξ), Y (ξ), Z(ξ)), (X(ξ), Y (ξ), Z(ξ))
denotes the coordinates of the material points that constitutes the straight
line and ξ varies between 0 and 1 to parameterize the straight line. Thus,
for a line oriented along say Ey direction of length ∆L, starting from a point
(Xo, Yo, Zo), (see figure 3.6a) X(ξ) = Xo, Y (ξ) = Yo + ξ(∆L), Z(ξ) = Zo.
For a line oriented along say (3Ex + 4EY )/5 of length ∆L, starting from
(Xo, Yo, Zo), (see figure 3.6b) X(ξ) = Xo+3ξ(∆L)/5, Y (ξ) = Yo+4ξ(∆L)/5,
Z(ξ) = Zo. In fact, if one relaxes the assumption that A is a constant in
equation (3.68) then the straight line in the reference configuration could be
a curve and the deformed length could still be calculated from (3.68).

Hence, the stretch ratio for the case of inhomogeneous deformation is,

ΛA =
∆l

∆L
=

∫ ξ1
ξo

√
CA ·A

√(
dX
dξ

)2

+
(
dY
dξ

)2

+
(
dZ
dξ

)2

dξ

∫ ξ1
ξo

√(
dX
dξ

)2

+
(
dY
dξ

)2

+
(
dZ
dξ

)2

dξ

. (3.69)
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3.6.2 Transformation of areas

Having seen how points, curves, tangent vectors in the reference configura-
tion gets mapped to points, curves and tangent vectors in the current con-
figuration, we are now in a position to look at how surfaces get mapped. Of
interest, is how a unit vector, N normal to an infinitesimal material surface
element ∆A map on to a unit vector n normal to the associated infinitesimal
spatial surface element ∆a.

Let Sr denote the material surface in Br that is of interest. Then, an
element of area ∆A at a point P on Sr is defined through the vectors ∆X
and ∆Y, each tangent to Sr at P, as ∆AN = ∆X ∧∆Y where N is a unit
vector normal to Sr at P. Due to some motion of the body, the material
surface Sr gets mapped on to another material surface St in Bt, the material
particle that occupied the point P on Sr gets mapped onto a point p on
St and the tangent vectors ∆X and ∆Y gets mapped on to another pair of
tangent vectors at p denoted by ∆x and ∆y. Thus, we have

∆AN = ∆X ∧∆Y, ∆an = ∆x ∧∆y. (3.70)

Since, ∆X and ∆Y are tangent vectors we have ∆x = F∆X and ∆y =
F∆Y. Therefore,

∆an = (F∆X) ∧ (F∆Y) = F∗(∆X ∧∆Y) = det(F)F−tN∆A, (3.71)

where we have made use of (2.88) and (2.90). Thus, the relation

∆an = det(F)F−tN∆A, (3.72)

called Nanson’s formula is an often used expression in continuum mechanics.
Next, we are interested in computing the deformed area, a. For this case,

from Nanson’s formula we obtain,

(∆a)n · (∆a)n = det(F)F−tN(∆A) · det(F)F−tN(∆A), (3.73)

which simplifies to

a =

∫
A

det(F)
√

C−1N ·NdA. (3.74)

on using the equation (3.59) and the fact that n is a unit vector. Notice
that, once again the deformed area is determined by the right Cauchy-Green
deformation tensor.
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3.6.3 Transformation of volumes

Next, we seek to obtain the relation between elemental volumes in the ref-
erence and current configuration. An element of volume ∆V at a inte-
rior point P in reference configuration is given by the scalar triple product
[∆X,∆Y,∆Z] where ∆X, ∆Y and ∆Z are vectors oriented along the sides
of an infinitesimal parallelepiped. Since, the point under consideration is in-
terior, we can always find three material curves such that they pass through
the point P and ∆X, ∆Y and ∆Z are its tangent vectors at P. Now say due
to some motion of the body, the material particle that occupied the point
P, now occupies the point p, then the curves under investigation would pass
through p and the tangent vectors of these curves at this point p would now
be ∆x, ∆y, ∆z. Hence,

∆v = [∆x,∆y,∆z] = [F∆X,F∆Y,F∆Z] = det(F)[∆X,∆Y,∆Z]

= det(F)∆V, (3.75)

where we have used the definition of the determinant (2.77). Since, the
coordinate basis vectors for the reference and current configuration have the
same handedness, det(F) ≥ 0. Further since, we require the mapping of the
body from one configuration to the other be one to one, material particles
in a parallelepiped cannot be mapped on to a surface. Hence, det(F) 6= 0.
Therefore det(F) > 0. Thus, for a vector field to be a deformation field,
det(F) > 0.

3.7 Properties of the deformation tensors

Since det(F) > 0, using the polar decomposition theorem (2.116) the defor-
mation gradient can be represented as:

F = RU = VR, (3.76)

where R is a proper orthogonal tensor, U and V are the right and left stretch
tensors respectively. (These stretch tensors are called right and left because
they are on the right and left of the orthogonal tensor, R.) These stretch
tensors are unique, positive definite and symmetric.

Substituting (3.76) in (3.59) and (3.63) we obtain

C = U2 = RtV2R, B = V2 = RU2Rt. (3.77)
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Next, we record certain properties of the right and left Cauchy-Green
deformation tensors.

1. The right Cauchy-Green deformation tensor, C depends only on the
coordinate basis used in the reference configuration, i.e., C = CijEi⊗Ej

= FaiFajEi ⊗ Ej

2. The left Cauchy-Green deformation tensor depends only on the coor-
dinate basis used in the current configuration, i.e., B = Bijei ⊗ ej =
FiaFjaei ⊗ ej

3. It is easy to see that both the tensors C and B are symmetric and
positive definite.

4. Since the deformation tensors are symmetric, they have three real prin-
cipal values and their principal directions are orthonormal.

5. Both these tensors have the same eigen or principal values but differ-
ent eigen or principal directions. To see this, let Na be the principal
direction of the tensor U and εa its principal value that is

UNa = εaNa, (3.78)

then
CNa = U2Na = ε2

aNa. (3.79)

Now let na = RNa. Then

Bna = RU2RtRNa = ε2
aRNa = ε2

ana. (3.80)

Thus, we have shown that ε2
a is the principal value for both C and B

tensors and Na and RNa are their principal directions respectively.

3.8 Strain Tensors

Now, we shall look at the concept of strain. This is some quantity defined
by us and hence there are various definitions of the same. Also, as we shall
see later, we can develop the constitutive relation independent of these def-
initions. Experimental observations show that relative displacement of par-
ticles alone gives raise to stress. A measure of this relative displacement is
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the stretch ratio. However, this measure has the drawback that when the
body is not deformed the stretch ratio is 1 (by virtue of the deformed length
being same as the original length) and hence thought to be inconvenient to
formulate constitutive relations. Consequently, another measure of relative
displacement is sought which would be 0 when the body is not deformed and
less than zero when compressed and greater than zero when stretched. This
measure is called as the strain, ε(A). There is no unique way of obtaining the
strain from the stretch ratio. The following functions satisfy the requirement
of the strain:

ε(A) =
Λm

(A) − 1

m
, ε(A) = ln(Λ(A)), (3.81)

where m is some real number and ln stands for natural logarithm. Thus, if
m = 1 in (1.5a) then the resulting strain is called as the engineering strain,
if m = −1, it is called as the true strain, if m = 2 it is Cauchy-Green strain.
The second function wherein ε(A) = ln(λ(A)), is called as the Hencky strain
or the logarithmic strain.

Let us start by looking at the case when m = 2 in equation (3.81), that
is the case,

εCG(A) =
Λ2

(A) − 1

2
. (3.82)

Substituting (3.60) in (3.82) we obtain

εCG(A) =
1

2
(CA ·A− 1) =

1

2
(C− 1)A ·A = EA ·A, (3.83)

where, E = 0.5[C − 1], is called the Cauchy-Green strain tensor. Thus,
Cauchy-Green strain tensor carries information about the strain in the mate-
rial fibers initially oriented along a given direction. Substituting Lagrangian
displacement gradient, defined in (3.33), for deformation gradient in the ex-
pression for E, we obtain

E =
1

2
[H + Ht + HtH]. (3.84)

If tr(HHt) << 1, i.e., each of the components of H is close to zero4, then we
can compute E approximately as

E ≈ 1

2
[H + Ht] = εL. (3.85)

4Realize that tr(HHt) = H2
11 + H2

12 + H2
13 + H2

21 + H2
22 + H2

23 + H2
31 + H2

32 + H2
33



3.8. STRAIN TENSORS 97

εL is called as the Lagrangian linearized strain and will be used extensively
while studying linearized elasticity.

Next, we examine the case when m = 1, in equation (3.81), that is the
case,

εLS(A) = Λ(A) − 1. (3.86)

Substituting (3.60) in (3.86) we obtain

εLS(A) =
√

CA ·A− 1. (3.87)

Substituting Lagrangian displacement gradient, defined in (3.33), for defor-
mation gradient in the expression for C and using the definition (3.85) for
Lagrangian linearized strain, equation (3.87) evaluates to

εLS(A) =
√

1 + 2εLA ·A + (HtH)A ·A− 1, (3.88)

which when the components of the Lagrangian displacement gradient are
small could be approximately computed as

εLS(A) =
√

1 + 2εLA ·A− 1 ≈ εLA ·A, (3.89)

where we have approximately evaluated the square root using Taylor’s se-
ries5. Thus, Lagrangian linearized strain carries the information on changes
in length of material fibers initially oriented along a given direction when the
changes in length are small.

Instead of studying the strain in fibers oriented initially along a given
direction, one can also study strains in fibers finally oriented along a given
direction, a. Now, again the following functions satisfy the requirement of
the strain:

ε(a) =
Λm

(a) − 1

m
, ε(a) = ln(Λ(a)), (3.90)

where m is some real number and ln stands for natural logarithm. We study
the case when m = −2 in equation (3.90), that is the case,

εAH(a) =
1− Λ−2

(a)

2
. (3.91)

Substituting (3.64) in (3.91) and rearranging we obtain

εAH(A) =
1

2
(1−B−1a · a) =

1

2
(1−B−1)a · a = ea · a. (3.92)

5
√

1 + 2x ≈ 1 + x, when x is small.
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where, e = 0.5[1 − B−1], is called the Almansi-Hamel strain tensor and
carries information about the strain in the material fibers finally oriented
along a given direction. Substituting Eulerian displacement gradient, defined
in (3.34), for F−1 in the expression for e, we obtain

e =
1

2
[h + ht − hth]. (3.93)

If tr(hht) << 1, then we can compute e approximately as

e ≈ 1

2
[h + ht] = εE. (3.94)

εE is called as the Eulerian linearized strain.
The Lagrangian and Eulerian displacement gradients are related through

the equation
H = h + hH, (3.95)

obtained from the requirement that FF−1 = 1 and substituting the expres-
sions (3.33) and (3.34) for F and F−1 respectively. It immediately transpires
that when each of the components of H and h are close to zero then H ≈
h and hence both the Lagrangian and Eulerian linearized strain are numeri-
cally the same. Hence, when the distinction is not important the subscript,

L or E would be dropped and the linearized strain denoted as ε
There are other strain measures called the Hencky strain tensor in the

Lagrangian and Eulerian form defined as ln(U) and ln(V) respectively. This
strain tensor corresponds the case where the strain along a given direction is
defined as the natural logarithm of the corresponding stretch ratio. Hencky
strain is also sometimes called as the logarithmic strain.

3.9 Normal and shear strain

From now on we shall in this course, study the response of bodies only for
cases when the value of the components of both the Lagrangian and Eulerian
displacement gradient are small. As we have shown above, this means that
not only does the changes in length be small but the rotations also needs
to be small. Under these severe but practically reasonable assumptions, the
strain-displacement relation is

ε =
1

2

[
h + ht

]
, (3.96)
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where we stop distinguishing between Lagrangian and Eulerian gradient, as
they would be approximately the same. Thus, the Cartesian components of
the linearized strain are,

ε =

εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 =


∂ux
∂x

1
2

[
∂ux
∂y

+ ∂uy
∂x

]
1
2

[
∂ux
∂z

+ ∂uz
∂x

]
1
2

[
∂ux
∂y

+ ∂uy
∂x

]
∂uy
∂y

1
2

[
∂uy
∂z

+ ∂uz
∂y

]
1
2

[
∂ux
∂z

+ ∂uz
∂x

]
1
2

[
∂uy
∂z

+ ∂uz
∂y

]
∂uz
∂z


(3.97)

where if the displacement field is given a Lagrangian description we would
use a Lagrangian gradient and if the displacement field is given a Eulerian
description Eulerian gradient is used. Strictly speaking, we should only use
the Eulerian gradient since this strain is to be related to the Cauchy stress.

Similarly the cylindrical polar components of the linearized strain are,

ε =

εrr εrθ εrz
εrθ εθθ εθz
εrz εθz εzz


=

 ∂ur
∂r

1
2

[
1
r
∂ur
∂θ
− uθ

r
+ ∂uθ

∂r

]
1
2

[
∂ur
∂z

+ ∂uz
∂r

]
1
2

[
1
r
∂ur
∂θ
− uθ

r
+ ∂uθ

∂r

]
1
r
∂uθ
∂θ

+ ur
r

1
2

[
∂uθ
∂z

+ 1
r
∂uz
∂θ

]
1
2

[
∂ur
∂z

+ ∂uz
∂r

]
1
2

[
∂uθ
∂z

+ 1
r
∂uz
∂θ

]
∂uz
∂z

 (3.98)

where we have made use of the expression (2.259) for finding the gradient of
the displacement field in cylindrical coordinates.

3.9.1 Normal strain

The component of the strain that represents the changes in length along a
given direction is called normal strain. From equation (3.89), the change in
length along a given direction A is,

(∆l −∆L)

∆L
= εA ·A. (3.99)

Thus, the change in length along coordinate basis directions - ex, ey, ez -
is given by the components - εxx, εyy, εzz - respectively. Therefore these
components are called as the normal strain components.
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3.9.2 Principal strain

Of interest is the maximum change in length that occurs in the body sub-
jected to a given force and the direction in which this maximum change in
length occurs. Thus, we need to find the vector A such that ‖A‖ = 1 and it
maximizes, ε(A) defined as,

ε(A) = εA ·A. (3.100)

This constrained optimization is done by what is called as the Lagrange-
multiplier method. Towards this, we introduce the function

L(A, α∗) = A · εA− α∗[‖A‖2 − 1], (3.101)

where α∗ is the Lagrange multiplier and the condition ‖A‖2 − 1 = 0 char-
acterizes the constraint condition. At locations where the extremal values of
L occurs, the derivatives ∂L

∂A
and ∂L

∂α∗ must vanish, i.e.,

∂L
∂A

= 2(εA− α∗A) = o, (3.102)

∂L
∂α∗

= ‖A‖2 − 1 = 0. (3.103)

To obtain these equations we have made use of the fact that linearized strain
tensor is symmetric. Thus, we have to find three Âa and α∗a’s such that

[ε− α∗a1]Âa = o, ‖Âa‖2 = 1, (3.104)

(a = 1, 2, 3; no summation) which is nothing but the eigenvalue problem in-
volving the tensor ε with the Lagrange multiplier being identified as the eigen-
value. Hence, the results of section 2.5 follows. In particular, for (3.104a) to
have a non-trivial solution

(α∗a)
3 − I1(α∗a)

2 + I2α
∗
a − I3 = 0, (3.105)

where

I1 = tr(ε), I2 =
1

2
[I2

1 − tr(ε2)], I3 = det(ε), (3.106)

the principal invariants of the strain ε. As stated in section 2.5, equation
(3.105 has three real roots, since the linearized strain tensor is symmetric.
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These roots (α∗a) will henceforth be denoted by ε1, ε2 and ε3 and are called
principal strains. The principal strains include both the maximum and min-
imum normal strains among all material fibers passing through a given x.

The corresponding three orthonormal eigenvectors Âa, which are then
characterized through the relation (3.104) are called the principal directions
of ε. Further, these eigenvectors form a mutually orthogonal basis since the
strain tensor ε is symmetric. This property of the strain tensor also allows
us to represent ε in the spectral form

ε =
3∑

a=1

εaÂa ⊗ Âa. (3.107)

3.9.3 Shear strain

As we did to obtain equation (3.89) when the components of the displace-
ment gradient are small, the right Cauchy-Green deformation tensor could
be approximately computed as, C ≈ 1 + 2ε. For this approximation, the
deformed angle between two line segments initially oriented along A1 and
A2 directions given in (3.66) simplifies to,

cos(αf ) = A1 ·A2 + 2εA1 ·A2, (3.108)

where we have approximated (1 + 2εA ·A) as 1, since the components of ε
is much less than 1 (of the order of 10−3) and the components of A is less
than or equal to 1. If α is the angle between the line elements in the refer-
ence configuration, then cos(α) = A1 ·A2. Using the trigonometric relation,
cos(A)− cos(B) = 2 sin((A+B)/2) sin((B−A)/2) and the assumption that
the change in angle, αf − α, is small, equation (3.108) could be written as,

αf − α =
2

sin(α)
εA1 ·A2. (3.109)

When A1 and A2 are identified with the orthonormal coordinate basis, then
sin(α) = 1 and εA1 · A2 represents the off diagonal terms in the matrix
representation of the components of the strain tensor. Hence, the off di-
agonal terms are the shear strains which represents half of the change in
angle between orthogonal line elements oriented along the coordinate basis
directions.

Therefore, we conclude that the diagonal elements in the matrix repre-
sentation of the components of the strain tensor are related to the changes
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Figure 3.7: Transformation of basis vectors

in length of line elements oriented along the direction of the orthonormal
coordinate basis and the off diagonal elements are related to the changes in
angle of these line elements oriented along the direction of the orthonormal
basis. We also infer that there is no change in angle between line elements
along which the change in length is a extremum. This is a consequence of the
observation that the off diagonal elements are zero in the equation (3.107)
representing the strain using the principal directions as the coordinate basis.

3.9.4 Transformation of linearized strain tensor

Now, we are interested in finding how the components of the linearized strain
change due to transformation of the coordinate basis. By virtue of the lin-
earized strain being a second order tensor, the transformation laws (2.161)
derived in section 2.6.2 hold. Thus, if Qij (= ei · ẽj) represents the direc-
tional cosine matrix of the transformation from coordinate basis {e1, e2, e3}
to the basis {ẽ1, ẽ2, ẽ3}, then the strain components in the ẽi basis, ε̃ij could
be obtained from the strain components in the ei basis, εij, through the
equation,

ε̃ij = εabQaiQbj. (3.110)

Let us specialize to a state of strain wherein the strain tensor has a
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representation,

ε =

εxx εxy 0
εxy εyy 0
0 0 0

 . (3.111)

This state of strain is called as plane strain. A state of strain is said to be
plane strain if at least one of its principal values is zero which means that
det(ε) = 0. Let us further assume that ẽj is related to ei through,

ẽ1 = cos(θ)e1 + sin(θ)e2, ẽ2 = − sin(θ)e1 + cos(θ)e2, ẽ3 = e3. (3.112)

This represents a anticlockwise rotation of the ei basis about e3 basis to
obtain the new basis vectors (see figure 3.7). Substituting equations (3.111)
and (3.112) in (3.110) we obtain,

ε̃xx = εxx cos2(θ) + εxy sin(2θ) + εyy sin2(θ)

=
[εxx + εyy]

2
+

[εxx − εyy]
2

cos(2θ) + εxy sin(2θ), (3.113)

ε̃xy = −εxx sin(θ) cos(θ) + εxy[cos2(θ)− sin2(θ)] + εyy sin(θ) cos(θ)

= − [εxx − εyy]
2

sin(2θ)− εxy cos(2θ), (3.114)

ε̃yy = εxx sin2(θ)− εxy sin(2θ) + εyy cos2(θ)

=
[εxx + εyy]

2
− [εxx − εyy]

2
cos(2θ)− εxy sin(2θ). (3.115)

These set of equations is what is popularly called as Mohr’s equations. The
fact that this is for a special state of strain and special transformation of the
coordinate basis cannot be overemphasized.

3.10 Homogeneous Motions

Let us now understand what we mean when we say the motion to be homo-
geneous. Say, in the reference configuration, we have marked straight lines
with different slopes on each of the three mutually perpendicular planes (ma-
terial curves). Even, if only some of the line segments transform into curves
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the motion is inhomogeneous. Examples of such motions are plenty. A beam
subjected to a pure bending moment6 is an example. Thus, we can show
that for a homogeneous motion the matrix components of the deformation
gradient, F with respect to a Cartesian basis can depend only on time and
hence any homogeneous motion can be written in the form:

x = F(t)X + c(t), (3.116)

where c is some vector which depends on time, X and x are the position vec-
tors of the same material particle in the reference and current configuration,
respectively.

Recognize that, in general, the matrix components of the deformation
gradient, F with respect to a curvilinear basis (say cylindrical polar basis)
need not be a constant for the deformation to be homogeneous nor would
the deformation be homogeneous if the matrix components with respect to a
curvilinear basis were to be a constant. For example, consider a deformation
of the form:

r = R/g(Θ), θ = f(Θ), z = Z,

where

f = 2 tan−1

(√
a2

0 − a2
1 − a2

2

2(a0 − a1)
tan

(
Θ

2

)
− a2

a0 − a1

)
,

g =

√
a0 + a1 cos(2θ) + a2 sin(2θ)

a2
0 − a2

1 − a2
2

,

(R,Θ, Z) and (r, θ, z) are coordinates of the same material particle in cylin-
drical polar coordinates before and after deformation, ai’s are constants. A
straightforward computation will show that the matrix components of de-
formation gradient tensor in cylindrical polar coordinates depends on Θ but
when the same tensor is represented using Cartesian coordinates is indepen-
dent of Θ.

6A long beam bends in such a way the plane sections normal to the axis of the beam re-
main plane. Hence, straight lines contained in planes perpendicular to the axis of the beam
transform into straight lines. However, lines parallel to the axis of the beam transform
into curves.
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3.10.1 Rigid body Motion

An example, of homogeneous motion is rigid body motion. Here apart from
straight lines deforming into straight lines, the distance between any two
points in the body remain the same. Let X1 and X2 be the position vectors
of two material points in the reference configuration and let the position
vector of the same material particle in the current configuration be denoted
by x1 and x2, then, if the body undergoes rigid body motion:

| x1 − x2 |=| X1 −X2 | . (3.117)

Since, this motion is homogeneous

| x1 − x2 |=| F(X1 −X2) | . (3.118)

Combining equations (3.117) and (3.118) we obtain

(FtF− 1)(X1 −X2) = o. (3.119)

Since X1 6= X2 and (3.119) has to hold for any pair of material particles, i.e.,
X1 and X2 are some arbitrary but distinct vectors, we require that

FtF = 1, (3.120)

for a rigid body motion. Recalling the definition of an orthogonal tensor,
(2.92) and comparing it with (3.120), we immediately recognize that for a
rigid body motion, the deformation gradient has to be an orthogonal tensor.

For example, consider, a motion given by

x = Q(t)[X−Xo] + c(t), (3.121)

where Q is an orthogonal tensor which is a function of time, Xo is a constant
vector and c is a vector function of time.

Straight forward computation from the definition of the various quanti-
ties would show that the deformation gradient, F, the right and left Cauchy-
Green deformation tensors, C and B respectively, the Cauchy-Green strain
tensor, E and the Almansi-Hamel strain tensor, e for this rigid body defor-
mation are,

F = Q, C = 1, B = 1, E = 0, e = 0,
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The Lagrangian displacement gradient, H and the Eulerian displacement
gradient, h are:

H = Q− 1, h = 1−Qt,

then, the Lagrangian linearized strain tensor, εL and the Eulerian linearized
strain tensor, εE are evaluated to be,

εL =
1

2
[Q + Qt − 21], εE =

1

2
[21−Q−Qt],

Observe that the given motion corresponds to rigid body rotation of the body
about Xo and a translation. For this motion, we expect the strains to be
zero because the length between two points do not change in a rigid body de-
formation. While the Cauchy-Green strain tensor and Almansi-Hamel strain
tensor meets these requirements the linearized strain tensors don’t. How-
ever, recognize that these measures are valid only for cases when tr(HHt) =
tr(hht) = tr(21−Q−Qt) << 1. That is to use linearized strain measures
the rigid body rotation has to be small. Hence, linearized strain measures
can be used only when the change in length is small and the angle of rotation
of the line segment is small too.

3.10.2 Uniaxial or equi-biaxial motion

An uniaxial or equi-biaxial motion has the form:

x = λ1X, y = λ2Y, z = λ2Z, (3.122)

where λ1 and λ2 are functions of time and (X, Y, Z) denotes the Cartesian
coordinates of a typical material particle in the reference configuration and
(x, y, z) denote the Cartesian coordinates of the same material particle in
the current configuration. If this motion is effected by the application of the
force (traction) along just one direction (in this case along ex), then it is
called uniaxial motion. On the other hand if the deformation is effected by
the application of force along two directions(in this case along ey and ez),
then it is called equi-biaxial motion.

For the assumed motion field (3.122), the deformation gradient, F, the
right and left Cauchy-Green deformation tensors, C and B respectively, the
Cauchy-Green strain tensor, E and the Almansi-Hamel strain tensor, e are
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computed to be,

F =

λ1 0 0
0 λ2 0
0 0 λ2

 , C =

λ2
1 0 0

0 λ2
2 0

0 0 λ2
2

 , B =

λ2
1 0 0

0 λ2
2 0

0 0 λ2
2

 ,

E =
1

2

λ2
1 − 1 0 0
0 λ2

2 − 1 0
0 0 λ2

2 − 1

 , e =
1

2

1− λ−2
1 0 0

0 1− λ−2
2 0

0 0 1− λ−2
2

 ,

The Lagrangian displacement gradient, H and the Eulerian displacement
gradient, h are:

H =

λ1 − 1 0 0
0 λ2 − 1 0
0 0 λ2 − 1

 , h =

1− 1
λ1

0 0

0 1− 1
λ2

0

0 0 1− 1
λ2

 ,

then, the Lagrangian linearized strain tensor, εL and the Eulerian linearized
strain tensor, εE are evaluated to be,

εL =

λ1 − 1 0 0
0 λ2 − 1 0
0 0 λ2 − 1

 , εE =

1− 1
λ1

0 0

0 1− 1
λ2

0

0 0 1− 1
λ2

 ,

Though the form of the Cauchy-Green, Almansi-Hamel, Lagrangian lin-
earized and Eulerian linearized strain look different it can be easily verified
that when λi is close to 1, numerically their values would also be close to
each other.

Now, say a unit cube oriented in space such that B = {(X, Y, Z)|0 ≤
X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ Z ≤ 1} is subjected to a deformation of the form
(3.122). Then, the deformed volume of the cube, v as given by (3.75) is v
= det(F) = λ1λ

2
2. Notice that the cube being of unit dimensions its origi-

nal volume is 1. Similarly, the deformed surface area, a of the face whose
normal coincides with ex in the reference configuration is computed from
(3.74) as, a = det(F)

√
C−1ex · ex = λ2

2 and the deformed normal direction
is found using Nanson’s formula (3.72) as, n = det(F)F−tex(1/a) = ex. The
deformed length of a line element oriented along (ex + ey)/

√
2 and of unit

length is
√

(λ2
1 + λ2

2)/2 obtained by using (3.60). Similarly, the deformed
angle between line segments oriented along ex and (ex + ey)/

√
2 is, αf =

cos−1(λ1/
√

(λ2
1 + λ2

2)) which is found using (3.66).
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Figure 3.8: Schematic of simple shear deformation in the x-y plane

3.10.3 Isochoric motions

Motions in which the volume of a body does not change are called isochoric
motions. Thus it follows from (3.75) that det(F) = 1 for these motions.
In case of motions for which the magnitude of the components of the dis-
placement gradient are small, then det(F) can be approximately computed
as 1 + tr(ε) and thus for this deformation to be isochoric it suffices if tr(ε)
= 0. Isochoric motion can be homogeneous or inhomogeneous. However, the
examples that we shall consider here are homogeneous motions.

An isochoric uniaxial or equi-biaxial motion takes the form:

x = λX, y =
Y√
λ
, z =

Z√
λ
, (3.123)

where λ is a function of time and as before (X, Y, Z) denotes the Cartesian
coordinates of a typical material particle in the reference configuration and
(x, y, z) denote the Cartesian coordinates of the same material particle in the
current configuration. It is easy to check that det(F) for this deformation is
1.

A simple shear motion has the form:

x = X + κY, y = Y, z = Z, (3.124)

where κ is only a function of time. It is easy to verify that this motion is
isochoric. In this case, the body is assumed to shear in the X − Y plane
that is the angle between line segments initially oriented along the ex and ey
direction change (see figure 3.8) but the angle between line segments initially
oriented along ey and ez direction or ez and ex direction does not change.
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For the pure shear motion field (3.124), the deformation gradient, F, the
right and left Cauchy-Green deformation tensors, C and B respectively, the
Cauchy-Green strain tensor, E and the Almansi-Hamel strain tensor, e are
computed to be,

F =

1 κ 0
0 1 0
0 0 1

 , C =

1 κ 0
κ 1 + κ2 0
0 0 1

 , B =

1 + κ2 κ 0
κ 1 0
0 0 1

 ,

E =
1

2

0 κ 0
κ κ2 0
0 0 0

 , e =
1

2

0 κ 0
κ −κ2 0
0 0 0

 ,

The Lagrangian displacement gradient, H and the Eulerian displacement
gradient, h are:

H =

0 κ 0
0 0 0
0 0 0

 , h =

0 κ 0
0 0 0
0 0 0

 ,

then, the Lagrangian linearized strain tensor, εL and the Eulerian linearized
strain tensor, εE are evaluated to be,

εL =

0 κ
2

0
κ
2

0 0
0 0 0

 , εE =

0 κ
2

0
κ
2

0 0
0 0 0

 ,

It can be seen from the above that while the Cauchy-Green and Almansi-
Hamel tells that the length of line segments along the ey direction would
change apart from a change in angle of line segments oriented along the
ex and ey directions, Lagrangian linearized and Eulerian linearized strain
does not tell that the length of the line segments along ey changes. This is
because, the change in length along the ey direction is of order κ2, terms that
we neglected to obtain linearized strain. Careful experiments on steel wires
of circular cross section subjected to torsion7 shows axial elongation, akin to
the development of the normal strain along ey direction. It is this observation
that proved that linearized strain is an approximation of the actual strain.

7We shall see in chapter 8 that torsion of circular cross section is a pure shear defor-
mation.
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Now, say a unit cube oriented in space such that B = {(X, Y, Z)|0 ≤
X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ Z ≤ 1} is subjected to a deformation of the form
(3.124). Then, the deformed volume of the cube, v as given by (3.75) is v =
det(F) = 1. Similarly, the deformed surface area, a of the face whose normal
coincides with ex in the reference configuration is computed from (3.74) as,
a = det(F)

√
C−1ex · ex = 1 +κ2 and the deformed normal direction is found

using Nanson’s formula (3.72) as, n = det(F)F−tex(1/a) = [ex − κey]/[1 +
κ2]. The deformed length of a line element oriented along (ex + ey)/

√
2

and of unit length is
√

1 + κ+ κ2/2 obtained by using (3.60). Similarly, the

deformed angle between line segments oriented along ex and (ex+ey)/
√

2 is,
αf = cos−1([1 + κ]/

√
2 + 2κ+ κ2) which is found using (3.66). In the above

computations we have not assumed that the value of κ is small; if we do the
final expressions would be much simpler.

3.11 Compatibility condition

Till now we studied on ways to find the strain given a displacement field.
However, there arises a need while solving boundary value problems wherein
we would need to find the displacement given the strain field. This problem
involves finding the 3 components of the displacement from the 6 independent
components of the strain (only six components since strain is a symmetric
tensor) that has been prescribed. To be able to find a continuous displace-
ment field from the prescribed 6 components of the linearized strain, all these
6 components cannot be prescribed arbitrarily. The restrictions that these
prescribed 6 components of the strain should satisfy is given by the compat-
ibility condition. These restrictions are obtained from the requirement that
the sequence of differentiation is immaterial when the first derivative of the
multivariate function is continuous, i.e., ∂2ux

∂x∂y
= ∂2ux

∂y∂x
. Working with index

notation, the Cartesian components of the linearized strain is,

εij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
, (3.125)
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where ui are the Cartesian components of the displacement vector, xi are the
Cartesian coordinates of a point. Then, computing

∂2εij
∂xk∂xl

=
1

2

[
∂3ui

∂xk∂xl∂xj
+

∂uj
∂xk∂xl∂xi

]
, (3.126)

∂2εkl
∂xi∂xj

=
1

2

[
∂3uk

∂xi∂xj∂xl
+

∂ul
∂xi∂xj∂xk

]
, (3.127)

∂2εjl
∂xi∂xk

=
1

2

[
∂3uj

∂xi∂xk∂xl
+

∂ul
∂xi∂xk∂xj

]
, (3.128)

∂2εik
∂xj∂xl

=
1

2

[
∂3ui

∂xj∂xl∂xk
+

∂uk
∂xj∂xl∂xi

]
, (3.129)

we find that

∂2εij
∂xk∂xl

+
∂2εkl
∂xi∂xj

− ∂2εjl
∂xi∂xk

− ∂2εik
∂xj∂xl

= 0, (3.130)

since the order of differentiation is immaterial. Equation (3.130) is called
Saint Venant compatibility equations. It can be also seen that equation
(3.130) has 81 individual equations as each of the index - i, j, k, l - takes
values 1, 2 and 3. It has been shown that of these 81 equations most are
either simple identities or repetitions and only 6 are meaningful. These six
equations involving the 6 independent Cartesian components of the linearized
strain are:

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

(3.131)

∂2εyy
∂z2

+
∂2εzz
∂y2

= 2
∂2εyz
∂y∂z

(3.132)

∂2εxx
∂z2

+
∂2εzz
∂x2

= 2
∂2εxz
∂x∂z

(3.133)

∂

∂y

(
∂εxy
∂z

+
∂εyz
∂x
− ∂εxz

∂y

)
=

∂2εyy
∂z∂x

(3.134)

∂

∂z

(
∂εyz
∂x

+
∂εxz
∂y
− ∂εxy

∂z

)
=

∂2εzz
∂x∂y

(3.135)

∂

∂x

(
∂εxz
∂y

+
∂εxy
∂z
− ∂εyz

∂x

)
=

∂2εxx
∂y∂z

(3.136)
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Next, we show that these 6 equations are necessary conditions. For this
assume εxy = xy and all other component of the strains are 0. For this strain
it can be shown that equation (3.131) alone is violated and that no smooth
displacement field would result in this state of strain. Similarly, on assuming

ε =

0 0 0
0 0 yz
0 yz 0

 , ε =

 0 0 xz
0 0 0
xz 0 0

 ,

we find that for each of these state of strain only one of the compatibility
equations is violated; equation (3.132) for the first strain and (3.133) for the
other strain. In the same fashion, on assuming

ε =

0 0 0
0 xz 0
0 0 0

 , ε =

0 0 0
0 0 0
0 0 xy

 , ε =

yz 0 0
0 0 0
0 0 0

 ,

we find that for each of these state of strain only one of the compatibility
equations is violated; equation (3.134) for the first strain, (3.135) for the
second strain and (3.136) for the last strain. Thus, we find that all the six
equations are required to ensure the existence of a smooth displacement field
given a strain field.

However, there are claims that the number of independent compatibility
equations is only three. This is not correct for the following reasons. On
differentiating the strain field four times instead of twice as done in case
of compatibility condition, the six compatibility equations (3.131) through
(3.136) can be shown to be equivalent to the following three equations:

∂4εxx
∂y2∂z2

=
∂3

∂x∂y∂z

[
−∂εyz
∂x

+
∂εxz
∂y

+
∂εxy
∂z

]
, (3.137)

∂4εyy
∂z2∂x2

=
∂3

∂x∂y∂z

[
∂εyz
∂x
− ∂εxz

∂y
+
∂εxy
∂z

]
, (3.138)

∂4εzz
∂x2∂y2

=
∂3

∂x∂y∂z

[
∂εyz
∂x

+
∂εxz
∂y
− ∂εxy

∂z

]
. (3.139)

This assumes existence of non-zero higher derivatives of strain field which
may not be always true, as in the case of the strain field assumed above.
Hence, only if higher order derivatives of strain field exist and is different
from zero can one replace the 6 compatibility conditions (3.131) through
(3.136) by (3.137) through (3.139).
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Further, it is not easy to show that the above compatibility conditions
(3.131) through (3.136) are sufficient to find a smooth displacement field
given a strain field (see for example Sadd [4] to establish sufficiency of these
conditions). In fact the sufficiency of these conditions in multiply connected8

bodies is yet to be established.

It should be mentioned that the form of the compatibility equation de-
pends on the strain measure that is prescribed. For Cauchy-Green strain
it is given in terms of the Riemannian tensor for simply connected bodies9.
However, it is still not clear what these compatibility conditions have to be
for other classes of bodies when Cauchy-Green strain is used. Development
of compatibility conditions for other strain measures is beyond the scope of
this course.

3.12 Summary

In this chapter, we saw how to describe the motion of a body. Then, we
focused on finding how curves, surfaces and volumes get transformed due to
this motion. These transformations seem to depend on right Cauchy-Green
deformation tensor, C, related to the gradient of the deformation field, F
through

C = FtF. (3.140)

This was followed by a discussion on a need for a quantity called strain and
various definitions of the strain. Associated with each definition of strain, we
found a strain tensor that carried all the information required to compute
the strain along any direction. Here we showed that when the components
of the gradient of the displacement field, h, is small then the term hth in
the definition of the strain can be ignored to obtain, what is called as the
linearized strain tensor,

ε =
1

2
[h + ht]. (3.141)

8Bodies where simple closed curves cannot be shrunk to a point without going outside
the body are called multiply connected. Annular cylinders, annular spheres (tennis ball)
are examples of multiply connected bodies.

9Bodies where simple closed curves can be shrunk to a point without going outside the
body are called simply connected. Cuboid, solid cylinders, solid spheres are examples of
simply connected bodies.
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By virtue of the linearized strain being symmetric, there are only 6 indepen-
dent components. Since, these 6 independent components are to be obtained
from a smooth displacement field, they cannot be prescribed arbitrarily. It
was shown that they have to satisfy the compatibility condition.

This completes our study on the motion of bodies. Since, in this course,
we are interested in understanding the response of solid like materials under-
going non-dissipative response, we did not study in detail about velocity and
its gradients. A course on fluid mechanics would focus on velocity field and
its gradient. In the following chapter we shall discuss the concept of stress.

3.13 Self-Evaluation

1. A body in the form of a cube, B = {(X, Y, Z)|0 ≤ X ≤ 1cm, 0 ≤ Y ≤
1cm, 0 ≤ Z ≤ 1cm} in the reference configuration, is subjected to the
following deformation field: x = X, y = Y + A ∗ Z, z = Z + A ∗ Y ,
where A is a constant and (X, Y, Z) are the Cartesian coordinates of a
material point before deformation and (x, y, z) are the Cartesian coor-
dinates of the same material point after deformation. For the specified
deformation field:

(a) Determine the displacement vector components in both the ma-
terial and spatial forms.

(b) Determine the location of the particle originally at Cartesian co-
ordinates (1, 0, 1)

(c) Determine the location of the particle in the reference configura-
tion, if its current Cartesian coordinates are (1, 0, 1)

(d) Determine the displacement of the particle originally at Cartesian
coordinates (1, 0, 1)

(e) Determine the displacement of the particle currently at Cartesian
coordinates (1, 0, 1)

(f) Determine the deformation gradient and Eulerian and Lagrangian
displacement gradients

(g) Calculate the right Cauchy-Green deformation tensor

(h) Calculate the linearized Lagrangian strain and linearized Eulerian
strain. Compare and comment on the value of the strain measures
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(i) Calculate the change in the angle between two line segments ini-
tially oriented along Ey and Ez directions in the reference config-
uration

(j) Calculate the change in the volume of the cube

(k) Calculate the deformed surface area and its orientation for each
of the six faces of a cube

(l) Calculate the change in length of the straight line segments of
length 1 mm initially oriented along (i) Ey (ii) Ez (iii) (Ey +
Ez)/

√
2

(m) Is the motion field realizable for any value of A in the cube? Jus-
tify. If not, find the values that A can take.

(n) Determine the displaced location of the material particles which
originally comprise

(i) The plane circular surface X = 0, Y 2 + Z2 = 0.25,

(ii) The plane elliptical surface X = 0, 9Y 2 + 4Z2 = 1.

(iii) The plane elliptical surface X = 0, 4Y 2 + 9Z2 = 1.

(o) Sketch the displaced configurations for (i), (ii) and (iii) in the
above problem if A = 0.1.

(p) Sketch the deformed configuration of the cube assuming A = 0.1.

2. Rework the parts (a) to (p) in the above problem if the cube is subjected
to a displacement field of the form, u = (A ∗ Y + 2A ∗ Z)ey + (3A ∗
Y − A ∗ Z)ez, where (X, Y, Z) denotes the coordinates of a typical
material particle in the reference configuration and {ei} the Cartesian
coordinate basis.

3. Which of the following displacement fields of a cube is homogeneous?

(a) u = A ∗ Zey + A ∗ Zez, where A is a constant

(b) u = [(cos(θ)− 1)X + sin(θ)Y ]ex + [− sin(θ)X + (cos(θ)− 1)Y ]ey,
where θ is some constant

(c) u = 3XY 2ex + 2XZey + (Z2 −XY )ez

Here as usual (X, Y, Z) denotes the coordinates of a typical material
particle in the reference configuration and {ei} the Cartesian coordinate
basis. For these deformation fields find parts (a) to (l) in problem 1.
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4. A body in the form of an annular cylinder, B = {(R,Θ, Z)|0.5 ≤ R ≤
1cm, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ 10cm} is subjected to the following de-

formation field: r =
√
r2
o − 1

Λ
+ R2

Λ
, θ = Θ + ΩZ, z = ΛZ, where

(R,Θ, Z) denote the coordinates of a typical material particle in the
reference configuration, (r, θ, z) denote the coordinates of the same ma-
terial particle in the current configuration, ro, Ω and Λ are constants.
For this deformation field:

(a) Determine the displacement vector components in both the ma-
terial and spatial forms.

(b) Determine the location of the particle originally at cylindrical po-
lar coordinates (1, 0, 5)

(c) Determine the location of the particle in the reference configura-
tion, if its current cylindrical polar coordinates are (1, 0, 5)

(d) Determine the displacement of the particle originally at cylindrical
polar coordinates (1, 0, 5)

(e) Determine the displacement of the particle currently at cylindrical
polar coordinates (1, 0, 5)

(f) Determine the deformation gradient and Eulerian and Lagrangian
displacement gradients

(g) Calculate the right Cauchy-Green deformation tensor

(h) Calculate the linearized Lagrangian strain and linearized Eulerian
strain. Compare and comment on the value of the strain measures

(i) Sketch the deformed shape of the annular cylinder assuming ro =
1.1, Λ = 1.2 and Ω = 0.1

(j) Calculate the change in the volume of the annular cylinder

(k) Calculate the deformed surface area and its orientation for each of
the two lateral faces and top and bottom surfaces of the cylinder.
Assume ro = 1.1, Λ = 1.2 and Ω = 0.1

(l) Calculate the change in the angle between two line segments ori-
ented along ER and EZ directions in the reference configuration
at (0.5, 0, 5). Assume ro = 1.1, Λ = 1.2 and Ω = 0.1

(m) Calculate the change in length of the straight line segments of 1
mm length located at (1, 0, 5) and oriented along (i) ER (ii) Ez

(iii) (ER + EΘ)/
√

2. Assume ro = 1.1, Λ = 1.2 and Ω = 0.1
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Figure 3.9: Figure for problem 5

(n) Is the motion field realizable for any value of the constants - ro, Λ
and Ω - in the cylinder? Justify. If not, find the values that these
constants can take.

(o) Find the conditions when this deformation would be homogeneous.

5. Consider the following homogeneous deformation: x = a1X + k1Y , y
= a2Y + k2Z, z = a3Z, where ai and ki are constants and (X, Y, Z)
are the Cartesian coordinates of a material particle in the reference
configuration and (x, y, z) are the Cartesian coordinates of the same
material particle in the current configuration. For this deformation
field and the tetrahedron OABC shown in figure 3.9 such that OA =
OB = OC and AD = DB, compute

a. The change in length of the line segment AB

b. The change in angle between line segment AB and CD

c. The deformed surface area of the faces ABC, OAB and OBC

6. A body in the form of a unit cube, B = {(X, Y, Z)|0 ≤ X ≤ 1, 0 ≤
Y ≤ 1, 0 ≤ Z ≤ 1} in the reference configuration, is subjected to the
following deformation field: x = X, y = Y +A∗X, z = Z, where A is a
constant and (X, Y, Z) are the Cartesian coordinates of a material point
before deformation and (x, y, z) are the Cartesian coordinates of the
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same material point after deformation. For the specified deformation
field:

(a) Compute the right Cauchy-Green deformation tensor

(b) Compute the linearized Lagrangian strain tensor

(c) Compute the eigenvalues and eigenvectors for right Cauchy-Green
deformation tensor

(d) Compute the eigenvalues and eigenvectors for linearized strain ten-
sor

(e) Find the direction of the line segments in the reference configu-
ration along which the maximum extension or shortening occurs
and its value

(f) Find the directions of the line segments in the reference configu-
ration along which no extension or shortening takes place in the
cube

(g) Find the maximum change in angle between line segments and the
orientation of the line segments for which this occurs.

(h) Find the directions orthogonal to planes in which no change of
area occurs

(i) Find the change in volume of the cube

(j) Decompose deformation gradient, F as F = RU, where R is the
proper orthogonal tensor and U is a symmetric positive definite
tensor.

7. A body in the form of a unit cube, B = {(X, Y, Z)|0 ≤ X ≤ 1, 0 ≤
Y ≤ 1, 0 ≤ Z ≤ 1} in the reference configuration, is subjected to the
following linearized strain field:

ε =

 AY 3 +BX2 CXY (X + Y ) 0
CXY (X + Y ) AX3 +DY 0

0 0 0

 , (3.142)

where A, B, C, D are constants, find conditions, if any, on the con-
stants if this strain field is to be obtained from a smooth displacement
field of the cube. For this value of the constants, find the smooth dis-
placement field that gives raise to the above linearized strain field in a
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cube. Assume the coordinates of the point (0, 0, 0) after deformation is
(10, 0, 0) and that of the point (0, 0, 1) after deformation is (10, 0, 1) to
determine the unknown constants in the displacement field. For what
magnitude of these constants is the use of linearized strain justified.

8. A cube of side 10 cm, is subjected to a uniform plane state of strain
whose Cartesian components are:

ε =

 1 −2 0
−2 3 0
0 0 0

 ∗ 10−4. (3.143)

For this constant strain field, find

(a) Eigenvalues and eigenvectors of this strain tensor

(b) Maximum change in length and the direction of the material fiber
along which this occurs

(c) Maximum change in angle and the orientation of the material
fibers along which this occurs

(d) Whether the deformation is isochoric

(e) Change in length of a material fiber oriented along (ex + ey)/
√

2
and of length 1 mm

(f) Change in angle between line elements oriented along (ex+ey)/
√

2
and (ex − ey)/

√
2

9. A rosette strain gauge is an electromechanical device that can measure
relative surface elongations in three directions. Bonding such a device
to the surface of a structure allows determination of elongation along
the direction in which the gauge is located. Figure 3.10 shows the
orientation of gauges in one such rosette along with the coordinate
system used to study the problem. For a particular loading, these
gauges measured the strain along their directions as εa = 0.001, εb =
0.002 and εc = 0.004. Assuming the state of strain at the point of
measurement is plane, find the Cartesian components of the strain:
εxx, εyy and εxy for the orientation of the basis also shown in the figure
3.10.
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Y 

X 
Figure 3.10: Figure for problem 9: Schematic of a strain rosette

10. It is commonly stated that the rigid body rotation undergone by a body
for a given deformation when the components of the displacement gradi-
ent are small is the skew-symmetric part of the displacement gradient,
i.e. ω = [grad(u) − grad(u)t]/2. Show that this is not the case by
computing R, the orthogonal tensor in the polar decomposition of the
deformation gradient, F and ω for the following displacement field of
a cube with sides 10 cm: u = (AX + BY )ex + CY ey + DZez, where
A, B, C, D are constants, (X, Y, Z) are the Cartesian coordinates of
a typical material particle in the reference configuration and ei the
Cartesian coordinate basis. Recollect that R represents the true rigid
body rotation component of the deformation.



Chapter 4

Traction and Stress

4.1 Overview

Mechanics is the branch of science that describes or predicts the state of
rest or of motion of bodies subjected to some forces. In the last chapter, we
studied about mathematical descriptors of the state of rest or of motion of
bodies. Now, we shall focus on the cause for motion or change of geometry
of the body; the force. While in rigid body mechanics, the concept of force is
sufficient to describe or predict the motion of the body, in deformable bodies
it is not. For example, two bars made of the same material and of same
length but with different cross sectional area, will undergo different amount
of elongation when subjected to the same pulling force acting parallel to the
axis of the bar. It was then found that if we define a quantity called strain
which is defined as the ratio between the change in length to the original
length of the bar along the direction of the applied load and a quantity
called stress which is defined as the force acting per unit area then the stress
and strain could be related through an equation that is independent of the
geometry of the body but depend only on the material that the body is
made up of. While these definitions of strain and stress are adequate to
study homogeneous deformations resulting from uniform stress states, these
concepts have to be generalized to study the motion of bodies subjected to a
non-uniform distribution of forces and/or couples. In this chapter, we shall
generalize the concept of stress having already generalized the concept of
strain in the last chapter.

121



122 CHAPTER 4. TRACTION AND STRESS

(a) External loads acting on a solid in
equilibrium

(b) Internal loads acting on a plane pass-
ing by O inside a solid

Figure 4.1: Free body diagram showing the forces acting on a body

4.2 Traction vectors and stress tensors

Here we focus attention on a deformable continuum body B occupying an
arbitrary region Bt of the Euclidean vector space with boundary surface
∂Bt at time t, as shown in figure 4.1a. We consider a general case where in
arbitrary forces act on parts or the whole of the boundary surface called the
external forces or loads. Recognizing that these external forces arose because
we isolated the body from its surroundings, to find the internal forces we have
to section the body. Thus, to find the internal forces on a internal surface
passing through O, as indicated in the figure 4.1a, we have to section the
body as shown in the figure 4.1b, with the cutting plane coinciding with the
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t(n) n

t(n)n

o

o

Figure 4.2: Traction vectors acting on infinitesimal surface elements with
outward unit normal, n

internal surface. Now, we focus our attention on an infinitesimal part of the
body centered around O, see figure 4.2. Let x be the position vector of the
point O, n a unit vector directed along the outward normal to an infinitesimal
spatial surface element ∆s, at x and ∆f denote the infinitesimal resultant
force acting on the surface element ∆s. Then, we claim that

∆f =

∫
∆s

t(n)da, (4.1)

where t(n) = t̃(x, t,n) represents the Cauchy (or true) traction vector and the
integration here denotes an area integral. Thus, Cauchy traction vector is
the force per unit surface area defined in the current configuration acting at a
given location. The Cauchy traction vector and hence the infinitesimal force
at a given location depends also on the orientation of the cutting plane, i.e.,
the unit normal n. This means that the traction and hence the infinitesimal
force at the point O, for a vertical cutting plane could be different from that
of a horizontal cutting plane. However, the traction on the two pieces of the
cut body would be such that they are equal in magnitude but opposite in
direction, in order to satisfy Newton’s third law of motion. Hence,

t(n) = −t(−n). (4.2)

This requires: t̃(x, t,n) = −t̃(x, t,−n).
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Relationship (4.1) is referred to as Cauchy’s postulate. It is worthwhile
to mention that in any experiment we infer only these traction vectors. In
literature, the traction vector is also called as stress vector because they have
the units of stress, i.e., force per unit area. However, here we shall not use
this terminology and for us stress is always a tensor, as defined next.

4.2.1 Cauchy stress theorem

There exist unique second order tensor field σ, called the Cauchy (or true)
stress tensor, so that

t(n) = t̃(x, t,n) = σtn. (4.3)

where σ = σ̃(x, t) = σ̂(X, t), X ∈ Br, is the position vector of the material
particle in the reference configuration. It is easy to verify that the require-
ment (4.2) is met by (4.3). It will be shown in the next chapter that the
Cauchy stress tensor, σ has to be a symmetric tensor. However, the proof of
Cauchy stress theorem is beyond the scope of these lecture notes.

4.2.2 Components of Cauchy stress

It is recalled that only traction vector can be determined or inferred in the
experiments and hence the components of the stress tensor is estimated from
finding the traction vector on three (mutually perpendicular) planes. Let us
see how.

The components of the Cauchy stress tensor, σ with respect to an or-
thonormal basis {ea} is given by:

σab = ea · σeb = σtea · eb = t(ea) · eb, (4.4)

In view of Cauchy’s theorem t(ea) = σtea, a = 1, 2, 3, characterize the three
traction vectors acting on the surface elements whose outward normals point
in the directions e1, e2, e3, respectively. Then, the components of these
traction vectors along e1, e2, e3 gives the various components of the stress
tensor. Thus, for each stress component σab we adopt the mathematically
logical convention that the index b characterizes the component of the trac-
tion vector, t(ea), at a point x in the direction of the associated base vector
eb and the index a characterizes the orientation of the area element on which
t(n) is acting.
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Figure 4.3: Cartesian components of the stress tensor acting on the faces of
a cube

It is important to note that some authors reverse this convention by
identifying the index b with the orientation of the normal to the plane of
cut and the index a with the component of the traction along the direction
ea. Irrespective of the convention adopted the end results will be the same
because of two reasons: (i) The definition of divergence is suitably modified
with a transpose (ii) the Cauchy stress tensor is anyway symmetric. In other
words, to find the components of the Cauchy stress tensor, at a given location,
we isolate an infinitesimal cube with the location of interest at its center.
The cube is oriented such that the outward normal to its sides is along or
opposite to the direction of the basis vectors. Hence, for general curvilinear
coordinates, the sides of the cube need not be plane nor make right angles
with each other. Compare the stress cube for Cartesian basis (figure 4.3) and
cylindrical polar basis (figure 4.4). Then, we determine the traction that is
acting on each of the six faces of the cube. Due to equation (4.2) only three
of these six traction vectors are independent. The components of the three
traction vectors along the the three basis vectors gives the nine components
of the stress tensor.

If the component of the traction is along the direction of the basis vectors
on planes whose outward normal coincides with the direction of the basis
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Figure 4.4: Cylindrical polar basis components of the stress tensor acting on
the faces of a cube

vectors it is considered to be positive and negative otherwise. Consistently,
if the component of the traction is opposite to the direction of the basis
vectors on faces of the cube whose outward normal is opposite in direction
to the basis vectors, it is considered to be positive and negative otherwise.
Thus, one should not be confused that the same stress component points in
opposite directions on opposite planes. This is necessary for the cube under
consideration to be in equilibrium. It should also be appreciated that the
sign of some of the stress component does change when the direction of the
coordinate basis is reversed even if the right handedness of the basis vectors
is maintained. This is so, because the sign of the stress component depends
both on the direction of coordinate basis as well as the outward normal.
Thus, figure 4.3 portrays the positive components of the stress tensor when
Cartesian coordinate basis is used and it is called as the stress cube.

The positive cylindrical polar components of the stress tensor is depicted
on a cylindrical wedge in figure 4.4. Recognize that the direction of the
cylindrical polar components of the stress changes with the location unlike the
Cartesian coordinate components whose directions are fixed. This happens
because the direction of the cylindrical polar coordinate basis vectors depends
on the location. Here σrr component of the stress is called as the radial stress,
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σθθ component of the stress is known as the hoop or the circumferential stress,
σzz component of the stress is the axial stress.

4.3 Normal and shear stresses

Let the traction vector t(n) for a given current position x at time t act on an
arbitrarily oriented surface element characterized by an outward unit normal
vector n.

The traction vector t(n) may be resolved into the sum of a vector along

the normal n to the plane, denoted by t
‖
(n) and a vector perpendicular to n

denoted by t⊥(n), i.e., t(n) = t
‖
(n) + t⊥(n). From the results in section 2.3.3, it

could be seen that

t
‖
(n) = [n · t(n)]n = [n · σn]n = σnn, (4.5)

t⊥(n) = t(n) − [n · t(n)]n = [1− n⊗ n]t(n) = τnm, (4.6)

where

τn = | t(n) − [n · t(n)]n |=| σn− [n · σn]n |, (4.7)

m =
1

τn
{t(n) − [n · t(n)]n}. (4.8)

It could easily be verified that n ·m = 0. This means m is a vector embedded
in the surface. Then, σn is called the normal traction and τn is called the
shear traction. As the names suggest, normal traction acts perpendicular to
the surface and shear traction acts tangential or parallel to the surface.

Since, t(n) = t
‖
(n) + t⊥(n), we obtain the useful relation

| t(n) |2= σ2
n + τ 2

n, (4.9)

where we have made use of the property that n ·m = 0.
It could be seen from figure 4.3 that the stress components corresponding

to Cartesian basis, σxx, σyy and σzz act normal to their respective surfaces
and hence are called normal stresses and the remaining independent com-
ponents, σxy, σyz and σzx act parallel to the surface and hence are called
shear stresses. (Remember that Cauchy stress is a symmetric tensor.) When
the stress components are determined with respect to any coordinate basis
vectors, there will be three normal stresses corresponding to σii and three
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shear stresses, σij, i 6= j. Here to call certain components of the stresses as
normal and others as shear, we have exploited the relationship between the
components of the stress tensor and the traction vector.

4.4 Principal stresses and directions

At a given location in the body the magnitude of the normal and shear
traction depend on the orientation of the plane. An isotropic body can fail
along any plane and hence we require to find the maximum magnitude of
these normal and shear traction and the planes for which these occur. As we
shall see on planes where the maximum or minimum normal stresses occur
the shear stresses are zero. However, in the plane on which maximum shear
stress occurs, the normal stresses will exist.

4.4.1 Maximum and minimum normal traction

In order to obtain the maximum and minimum values of σn, the normal
traction, we have to find the orientation of the plane in which this occurs.
This is done by maximizing (4.5) subject to the constraint that | n | = 1. This
constrained optimization is done by what is called as the Lagrange-multiplier
method. Towards this, we introduce the function

L(n, λ∗) = n · σn− λ∗[| n |2 −1], (4.10)

where λ∗ is the Lagrange multiplier and the condition | n |2 − 1 = 0 char-
acterizes the constraint condition. At locations where the extremal values of
L occurs, the derivatives ∂L

∂n
and ∂L

∂λ∗
must vanish, i.e.,

∂L
∂n

= 2(σn− λ∗n) = o, (4.11)

∂L
∂λ∗

= | n |2 −1 = 0. (4.12)

To obtain these equations we have made use of the fact that Cauchy stress
tensor is symmetric. Thus, we have to find three n̂a and λ∗a’s such that

(σ − λ∗a1)n̂a = o, | n̂a |2= 1, (4.13)

(a = 1, 2, 3; no summation) which is nothing but the eigenvalue problem
involving the tensor σ with the Lagrange multiplier being identified as the
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eigenvalue. Hence, the results of section 2.5 follows. In particular, for (4.13a)
to have a non-trivial solution

λ∗3a −K1λ
∗2
a +K2λ

∗
a −K3 = 0, (4.14)

where

K1 = tr(σ), K2 =
1

2
[K2

1 − tr(σ2)], K3 = det(σ), (4.15)

the principal invariants of the stress σ. As stated in section 2.5, equation
(4.14) has three real roots, since the Cauchy stress tensor is symmetric. These
roots (λ∗a) will henceforth be denoted by σ1, σ2 and σ3 and are called principal
stresses. The principal stresses include both the maximum and minimum
normal stresses among all planes passing through a given x.

The corresponding three orthonormal eigenvectors n̂a, which are then
characterized through the relation (4.13) are called the principal directions
of σ. The planes for which these eigenvectors are normal are called principal
planes. Further, these eigenvectors form a mutually orthogonal basis since
the stress tensor σ is symmetric. This property of the stress tensor also
allows us to represent σ in the spectral form

σ =
3∑

a=1

σan̂a ⊗ n̂a. (4.16)

It is immediately apparent that the shear stresses in the principal planes are
zero. Thus, principal planes can also be defined as those planes in which the
shear stresses vanish. Consequently, σa’s are normal stresses.

4.4.2 Maximum and minimum shear traction

Next, we are interested in finding the direction of the unit vector n at x
that gives the maximum and minimum values of the shear traction, τp. This
is important because in many metals the failure is due to sliding of planes
resulting due to the shear traction exceeding a critical value along some plane.

In the following we choose the eigenvectors {n̂a} of σ as the set of basis
vectors. Then, according to the spectral decomposition (4.16), all the non-
diagonal matrix components of the Cauchy stress vanish. Then, the traction
vector t(p) on an arbitrary plane with normal p could simply be written as

t(p) = σp = σ1p1n̂1 + σ2p2n̂2 + σ3p3n̂3, (4.17)
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where p = p1n̂1 + p2n̂2 + p3n̂3. It then follows from (4.9) that

τ 2
p = | t(p) |2 −σ2

p

= σ2
1p

2
1 + σ2

2p
2
2 + σ2

3p
2
3 − (σ1p

2
1 + σ2p

2
2 + σ3p

2
3)2, (4.18)

where σp is the normal traction on the plane whose normal is p.

With the constraint condition | p |2 = 1 we can eliminate p3 from the
equation (4.18). Then, since the principal stresses, σ1, σ2, σ3 are known, τ 2

p

is a function of only p1 and p2. Therefore to obtain the extremal values of τ 2
p

we differentiate τ 2
p with respect to p1 and p2 and equate it to zero1:

∂τ 2
p

∂p1

= 2p1[σ1 − σ3]{σ1 − σ3 − 2[(σ1 − σ3)p2
1 + (σ2 − σ3)p2

2]} = 0, (4.19)

∂τ 2
p

∂p2

= 2p2[σ2 − σ3]{σ2 − σ3 − 2[(σ1 − σ3)p2
1 + (σ2 − σ3)p2

2]} = 0. (4.20)

The above set of equations has three classes of solutions.

• Set - 1: p1 = p2 = 0 and hence p3 = ±1, obtained from the condition
that | p |2 = 1.

• Set - 2: p1 = 0, p2 = ±1/
√

2 and hence p3 = ±1/
√

2.

• Set - 3: p1 = ±1/
√

2, p2 = 0 and hence p3 = ±1/
√

2.

Instead of eliminating p3 we could eliminate p2 or p1 initially and find the
remaining unknowns by adopting a procedure similar to the above. Then,
we shall find the extremal values of τp could also occur when

• Set - 4: p1 = p3 = 0 and hence p2 = ±1.

• Set - 5: p2 = p3 = 0 and hence p1 = ±1.

• Set - 6: p3 = 0, p1 = ±1/
√

2 and hence p2 = ±1/
√

2.

1Recognize that the extremal values of both τp and τ2p occur at the same location.
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Substituting these solutions in (4.18) we find the extremal values of τp. Thus,
τp = 0 when p = ±n̂1 or p = ±n̂2 or p = ±n̂3 and

p = ± 1√
2
n̂2 ±

1√
2
n̂3, τ 2

p =
1

4
(σ2 − σ3)2, (4.21)

p = ± 1√
2
n̂1 ±

1√
2
n̂3, τ 2

p =
1

4
(σ1 − σ3)2, (4.22)

p = ± 1√
2
n̂1 ±

1√
2
n̂2, τ 2

p =
1

4
(σ1 − σ2)2. (4.23)

Consequently, the maximum magnitude of the shear traction denoted by
τmax is given by the largest of the three values of (4.21b) - (4.23b). Thus, we
obtain

τmax =
1

2
(σmax − σmin), (4.24)

where σmax and σmin denote the maximum and minimum magnitudes of prin-
cipal stresses, respectively. Recognize that the maximum shear stress acts on
a plane that is shifted about an angle of ±45 degrees to the principal plane
in which the maximum and minimum principal stresses act. In addition, we
can show that the normal traction σp to the plane in which τmax occurs has
the value σp = (σmax + σmin)/2.

4.5 Stresses on a Octahedral plane

Consider now a tetrahedron element similar to that of figure 4.5 with a plane
equally inclined to the principal axes. Hence, its normal is given by

p = ± 1√
3
n̂1 ±

1√
3
n̂2 ±

1√
3
n̂3, (4.25)

where n̂a are the three principal directions of the Cauchy stress tensor. Then,
the normal traction, σoct, on this plane is

σoct =
1

3
[σ1 + σ2 + σ3], (4.26)

obtained using (4.5) and the spectral representation for the Cauchy stress
(4.16). Similarly, the shear traction, τoct on this plane is

τ 2
oct =

1

3
[σ2

1 + σ2
2 + σ2

3]− 1

9
(σ1 + σ2 + σ3)2. (4.27)
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Figure 4.5: Eight octahedral planes equally inclined to the principal axes.

From the definition of principal invariants for stress (4.15) it is easy to verify
that

σoct =
K1

3
, τoct =

2

9
K2

1 −
2

3
K2. (4.28)

Using the above formula one can compute the octahedral normal and shear
traction for stress tensor represented using some arbitrary basis.

4.6 Examples of state of stress

Specifying a state of stress means providing sufficient information to compute
the components of the stress tensor with respect to some basis. As discussed
before, knowing t(n) for three independent pairs of {t(n),n} we can construct
the stress tensor σ. Hence, specifying the set of pairs {(t(n),n)} for three
independent normal vectors, n, at a given point, so that the stress tensor
could be uniquely determined tantamount to prescribing the state of stress.
Next, we shall look at some states of stress.

The state of stress is said to be uniform if the stress tensor does not
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depend on the space coordinates at each time t, when the stress tensor is
represented using Cartesian basis vectors.

If the stress tensor has a representation

σ = σn⊗ n, (4.29)

at some point, where n is a unit vector, we say it is in a pure normal stress
state. Post-multiplying (4.29) with the unit vector n we find that

σn = σ(n⊗ n)n = σ(n · n)n = σn = t‖n. (4.30)

Evidently, the traction is along (or opposite to) n. This stress σ characterizes
either pure tension (if σ > 0) or pure compression (if σ < 0).

If we have a uniform stress state and the stress tensor when represented
using a Cartesian basis is such that σxx = σ = const and all other stress com-
ponents are zero, then such a stress state is referred to as uniaxial tension or
uniaxial compression depending on whether σ is positive or negative respec-
tively. This may be imagined as the stress in a rod with uniform cross-section
generated by forces applied to its plane ends in the x − direction. However,
recognize that this is not the only system of forces that would result in the
above state of stress; all that we require is that the resultant of a system of
forces should be oriented along the ex direction.

If the stress tensor has a representation

σ = σ(n⊗ n + m⊗m), (4.31)

at any point, where n and m are unit vectors such that n ·m = 0, then it is
said to be in equibiaxial stress state.

On the other hand, if the stress tensor has a representation

σ = τ(n⊗m + m⊗ n), (4.32)

at any point, where n and m are unit vectors such that n ·m = 0, then it is
said to be in pure shear stress state. Post-multiplying (4.32) with the unit
vector n we obtain

σn = τ(n⊗m + m⊗ n)n

= τ [(m · n)n + (n · n)m] = τm = t⊥m. (4.33)

Evidently, t⊥m is tangential to the surface whose outward unit normal is along
(or opposite to) n.
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More generally, if the stress tensor has a representation

σ = σ1n⊗ n + σ2m⊗m, (4.34)

at any point, where n and m are unit vectors such that n ·m = 0, then it
is said to be in plane or biaxial state of stress. That is in this case one of
the principal stresses is zero. A general matrix representation for the stress
tensor corresponding to a plane stress state is:

σ =

 σ11 σ12 0
σ12 σ22 0
0 0 0

 . (4.35)

Here we have assumed that e3 is a principal direction and that there exist
no stress components along this direction. We could have assumed the same
with respect to any one of the other basis vectors. A plane stress state occurs
at any unloaded surface in a continuum body and is of practical interest.

Next, we consider 3D stress states. Analogous to the equibiaxial stress
state in 2D, if the stress tensor has a representation

σ = −p1, (4.36)

at some point, we say that it is in a hydrostatic state of stress and p is called as
hydrostatic pressure. It is just customary to consider compressive hydrostatic
pressure to be positive and hence the negative sign. Post-multiplying (4.36)
by some unit vector n, we obtain

σn = (−p1)n = −pn = t‖n. (4.37)

Thus, on any surface only normal traction acts, which is characteristic of
(elastic) fluids at rest that is not able to sustain shear stresses. Hence, this
stress is called hydrostatic.

Any other state of stress is called to be triaxial stress state.
Many a times the stress is uniquely additively decomposed into two parts

namely an hydrostatic component and a deviatoric component, that is

σ =
1

3
tr(σ)1 + σdev. (4.38)

Thus, the deviatoric stress is by definition,

σdev = σ − 1

3
tr(σ)1, (4.39)
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and has the property that tr(σdev) = 0. Physically the hydrostatic compo-
nent of the stress is supposed to cause volume changes in the body and the
deviatoric component cause distortion in the body. (Shear deformation is a
kind of distortional deformation.)

4.7 Other stress measures

Till now, we have been looking only at the Cauchy (or true) stress. As its
name suggest this is the “true” measure of stress. However, there are many
other definition of stresses but all of these are propounded just to facilitate
easy algebra. Except for the first Piola-Kirchhoff stress, other stress measures
do not have a physical interpretation as well.

4.7.1 Piola-Kirchhoff stress tensors

Let ∂Ωt denote some surface within or on the boundary of the body in the
current configuration. Then, the net force acting on this surface is given by

f =

∫
∂Ωt

t(n)da =

∫
∂Ωt

σnda. (4.40)

It is easy to compute the above integral when the Cauchy stress is expressed
as a function of x, the position vector of a typical material point in the current
configuration, i.e. σ = σ̃(x, t). On the other hand computing the above
integral becomes difficult when the stress is a function of X, the position
vector of a typical material point in the reference configuration, i.e. σ =
σ̂(X, t). To facilitate the computation of the above integral in the later case,
we appeal to the Nanson’s formula (3.72) to obtain

f =

∫
∂Ωt

t(n)da =

∫
∂Ωt

σnda =

∫
∂Ωr

det(F)σF−tNdA, (4.41)

where ∂Ωr is the surface in the reference configuration, formed by the same
material particles that formed the surface ∂Ωt in the current configuration.
Then, the first Piola-Kirchhoff stress, P is defined as

P = det(F)σF−t. (4.42)
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Using this definition of Piola-Kirchhoff stress, equation (4.41) can be written
as

f =

∫
∂Ωt

σnda =

∫
∂Ωr

PNdA. (4.43)

Assuming, the stress to be uniform over the surface of interest and the state
of stress corresponds to pure normal stress, it is easy to see that while Cauchy
stress is force per unit area in the current configuration, Piola-Kirchhoff stress
is force per unit area in the reference configuration. This is the essential
difference between the Piola-Kirchhoff stress and Cauchy stress. Recognize
that in both the cases the force acts only in the current configuration. In lieu
of this Piola-Kirchhoff stress is a two-point tensor, similar to the deformation
gradient, in that it is a linear transformation that relates the unit normal to
the surface in the reference configuration to the traction acting in the current
configuration. Thus, if {Ea} denote the three Cartesian basis vectors used
to describe the reference configuration and {ea} denote the Cartesian basis
vectors used to describe the current configuration, then the Cauchy stress
and Piola-Kirchhoff stress are represented as

σ = σabea ⊗ eb, P = PaBea ⊗ EB. (4.44)

We had mentioned earlier that the Cauchy stress tensor is symmetric for
reasons to be discussed in the next chapter. Since, σ = PFt/ det(F), the
symmetric restriction on Cauchy stress tensor requires the Piola-Kirchhoff
stress to satisfy the relation

PFt = FPt. (4.45)

Consequently, in general P is not symmetric and has nine independent com-
ponents.

During an experiment, it is easy to find the surface areas in the reference
configuration and determine the traction or forces acting on these surfaces
as the experiment progresses. Thus, Piola-Kirchhoff stress is what could be
directly determined. Also, it is the stress that is reported, in many cases. The
Cauchy stress is then obtained using the equation (4.42) from the estimate
of the Piola-Kirchhoff stress and the deformation of the respective surface.

Further, since in solid mechanics, the coordinates of the material particles
in the reference configuration is used as independent variable, first Piola-
Kirchhoff stress plays an important role in formulating the boundary value
problem as we shall see in the ensuing chapters.
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The transpose of the Piola-Kirchhoff stress, Pt, is called as engineering
stress or nominal stress.

Another stress measure called the second Piola-Kirchhoff stress, S defined
as

S = det(F)F−1σF−t = F−1P (4.46)

is used in some studies. Note that this tensor is symmetric and hence its
utility.

4.7.2 Kirchhoff, Biot and Mandel stress measures

Next, we define a few stress measures popular in literature. It is easy to
establish their inter-relationship and properties which we leave it as an exer-
cise.

The Kirchhoff stress tensor, τ is defined as: τ = det(F)σ.
The Biot stress tensor, TB also called material stress tensor is defined

as: TB = RtP, where R is the orthogonal tensor obtained during polar
decomposition of F.

The co-rotated Cauchy stress tensor σu, introduced by Green and Naghdi
is defined as: σu = RtσR.

The Mandel stress tensor, used often to describe inelastic response of
materials is defined as Σ = CS, where C is the right Cauchy-Green stretch
tensor introduced in the previous chapter.

4.8 Summary

In this chapter, we introduced the concept of traction and stress tensor. If
the forces acting in the body are assumed to be distributed over the surfaces
in the current configuration of the body, then the corresponding traction is
called as Cauchy traction and the stress tensor associated with this traction
is called as the Cauchy stress tensor, σ. Similarly, if the forces acting in
the body is distributed over the surface in the reference configuration, then
this traction is called as Piola traction and the stress tensor associated with
this traction the Piola-Kirchhoff stress, P. We also defined various types of
stresses like normal stress, shear stress, hydrostatic stress, octahedral stress.
Having grasped the concepts of strain and stress we shall proceed to find the
relation between the applied force and realized displacement in the following
chapters.
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4.9 Self-Evaluation

1. Cauchy stress state corresponding to an orthonormal Cartesian basis
({ex, ey, ez}) is as given below:

σ =

−10 5 0
5 10 0
0 0 0

MPa.

For this stress state,

(a) Draw the stress cube

(b) Identify whether this stress states correspond to the plane stress

(c) Find the normal and shear stress on a plane whose normal is
oriented along the ex direction.

(d) Find the normal and shear stress on a plane whose normal makes
equal angles with all the three basis vectors, i.e., n = (ex + ey +
ez)/
√

3.

(e) Find the components of the stress tensor in the new basis {ẽx, ẽy, ẽz}.
The new basis is obtained by rotating an angle 30 degrees in the
clockwise direction about ez axis.

(f) Find the principal invariants of the stress

(g) Find the principal stresses

(h) Find the maximum shear stress

(i) Find the plane on which the maximum normal stresses occurs

(j) Find the plane on which the maximum shear stress occurs

(k) Find the normal stress on the plane on which the maximum shear
stress occurs

(l) Find the shear stress on the plane on which the maximum normal
stress occurs.

(m) Find the normal and shear stresses on the octahedral plane

(n) Find the hydrostatic and deviatoric component of the stress
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2. Cauchy stress state corresponding to an orthonormal Cartesian basis
({ex, ey, ez}) is as given below:

σ =

−10 0 5
0 10 0
5 0 10

MPa.

For this stress state solve parts (a) through (n) in problem 1.

3. For the plane Cauchy stress state shown in figure 4.6, write the stress
tensor and solve parts (b) through (n) in problem 1.

4. For the Cauchy stress cube shown in figure 4.7, write the stress tensor
and solve parts (b) through (n) in problem 1.

5. An annular circular cylinder with deformed outer diameter 25 mm is
subjected to a tensile force of 1200 N as shown in figure 4.8. Experi-
ments revealed that a uniform axial true stress of 3.8 MPa has devel-
oped due to this applied force. Using the above information, determine
the deformed inner diameter of the cylinder.

6. Three pieces of wood having 3.75 cm x 3.75 cm square cross-sections
are glued together and to the foundation as shown in figure 4.9. If the
horizontal force P = 3, 000 N what is the average shearing engineering
stress in each of the glued joints?

7. Find the maximum permissible value of load P for the bolted joint
shown in the figure 4.10, if the allowable shear stress in the bolt material
is 100 MPa. Bolts are 20 mm in diameter. List the assumptions in your
calculation, if any.

8. Two wooden planks each 25 mm thick and 150 mm wide are joined by
the glued mortise joint shown in figure 4.11. Knowing that the joint
will fail when the average engineering shearing stress in the glue exceeds
0.9 MPa, determine the smallest allowable length d of the cuts if the
joint is to withstand an axial load P that the planks would otherwise
resist if there were no joint. Assume that the wooden plank fails if the
engineering axial stresses exceed 1.5 MPa.

9. Two wooden members of 90 x 140 mm uniform rectangular cross sec-
tion are joined by the simple glued scarf splice shown in figure 4.12.



140 CHAPTER 4. TRACTION AND STRESS

10 

5 

5 

5 

5 10 

5
ex 

ey 

Figure 4.6: Plane Cauchy stress state for problem 3. The unit for stresses
shown in the figure is MPa
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Figure 4.7: Cauchy Stress cube for problem 4. The unit for stresses shown
in the figure is MPa
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Figure 4.8: Figure for problem 5
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Figure 4.9: Figure for problem 6
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Figure 4.10: Figure for problem 7
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Figure 4.11: Figure for problem 8
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20° 
P 90 mm 

150 mm 

Figure 4.12: Figure for problem 9

Knowing that the maximum allowable engineering shearing stress in
the glued splice is 0.75 MPa, determine the largest axial load P that
can be safely applied as shown in figure 4.12.

10. A plate has been subjected to the following state of Cauchy stress:

σ =

−5 0 5
0 0 0
5 0 10

MPa,

where the components of the stress is with respect to an orthonor-
mal Cartesian basis ({ex, ey, ez}). For this state of stress, answer the
following:

(a) Does this state of stress correspond to plane stress? Justify

(b) If the plate were to be made of reinforced concrete, find the di-
rection(s) in which reinforcement needs to be provided. Recollect
that reinforcement is provided in concrete to resist tensile stresses.

(c) Find the additional σzz component of the stress that can be ap-
plied, to the above plate, so that the maximum normal stress is
230 MPa

(d) If the plate were to be made of wood, in which the grains orien-
tation, m = 0.61ex + 0.50ey + 0.61ez and if the maximum shear
stress that can be sustained along the orientation of the grains is
20 MPa, determine if the wooden plate will fail for the above state
of stress.

(e) Now say, hydrostatic state of stress is applied in addition to the
above state of stress, find the hydrostatic pressure at which the
wooden plate will fail, if it will.



Chapter 5

Balance Laws

5.1 Overview

The balance laws, discussed in this chapter, has to be satisfied for all bod-
ies, irrespective of the material that they are made up of. The fundamental
balance laws that would be discussed here are conservation of mass, linear
momentum, and angular momentum. However, the particular form that
these equations take would depend on the processes that one is interested
in. Here our interest is in what is called as purely mechanical processes and
hence we are not concerned about conservation of energy or electric charge or
magnetic flux. These general balance equations in themselves do not suffice
to determine the deformation or motion of a body subject to given loading.
Also, bodies identical in geometry but made up of different material undergo
different deformation or motion when subjected to the same boundary trac-
tion. Hence, to formulate a determinate problem, it is usually necessary to
specify the material which the body is made. In continuum mechanics, such
specification is stated by constitutive equations, which relate, for example,
the stress tensor and the stretch tensor. We shall see more about these con-
stitutive relations in the subsequent chapter while we shall focus on balance
laws in this chapter.

5.2 System

We define a system as a particular collection of matter or a particular region
of space. The complement of a system, i.e., the matter or region outside the
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system, is called the surroundings. The surface that separates the system
from its surroundings is called the boundary or wall of the system.

A closed system consists of a fixed amount of matter in a region Ω in space
with boundary surface ∂Ω which depends on time t. While no matter can
cross the boundary of a closed system, energy in the form of work or heat
can cross the boundary. The volume of a closed system is not necessarily
fixed. If the energy does not cross the boundary of the system, then we say
that the boundary is insulated and such a system is said to be mechanically
and thermally isolated. An isolated system is an idealization for no physical
system is truly isolated, for there are always electromagnetic radiation into
and out of the system.

An open system (or control volume) focuses in on a region in space, Ωc

which is independent of time t. The enclosing boundary of the open system,
over which both matter and energy can cross is called a control surface, which
we denote by ∂Ωc.

5.3 Conservation of Mass

At the intuitive level mass is perceived to be a measure of the amount of
material contained in an arbitrary portion of the body. As such it is a non-
negative scalar quantity independent of time and not generally determined
by the size of the configuration occupied by the arbitrary sub-body. It is
not a count of the number of material particles in the body or its sub-parts.
However, the mass of a body is the sum of the masses of its parts. These
statements can be formalized mathematically by characterizing mass as a set
function with certain properties and we proceed on the basis of the following
definitions.

Let Bt be an arbitrary configuration of a body B and let A be a set of
points in Bt occupied by the particles in an arbitrary subset A of B. If with
A there is associated a non-negative real number m(A) having a physical
dimension independent of time and distance and such that

(i) m(A1 ∪A2) = m(A1) + m(A2) for all pairs A1, A2 of disjoint subsets
of B, and

(ii) m(A) → 0 as volume of A tends to zero,

B is said to be a material body with mass function m. The mass content of
A, denoted by m(A), is identified with the mass m(A) of A. Property two is
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a consequence of our assumption that the body is a continuum, precluding
the presence of point masses. Properties (i) and (ii) imply the existence of a
scalar field ρ, defined on B, such that

m(A) = m(A) =

∫
A

ρdv. (5.1)

ρ is called the mass density, or simply the density, of the material with which
the body is made up of.

In non-relativistic mechanics mass cannot be produced or destroyed, so
the mass of a body is a conserved quantity. Hence, if a body has a certain
mass in the reference configuration it must stay the same during a motion.
Hence, we write

m(Br) = m(Bt) > 0, (5.2)

for all times t, where Br denotes the region occupied by the body in the
reference configuration and Bt denotes the region occupied by the body in
the current configuration.

In the case of a material body executing a motion {Bt : t ∈ I}, the
density ρ is defined as a scalar field on the configurations {Bt} and the mass
content m(At) of an arbitrary region in the current configuration Bt is equal
to the mass m(A) of A. Since, m(A) does not depend upon t we deduce
directly from (5.1) the equation of mass balance

D

Dt

∫
At

ρdv = 0. (5.3)

ρ = ρ̂(x, t), the density is assumed to be continuously differentiable jointly in
the position and time variables on which it depends. Since, we are interested
in the total time derivative and the current volume of the body changes with
time, the differentiation and integration operations cannot be interchanged.
To be able to change the order of the integration and differentiation, we
have to convert it to an integral over the reference configuration. This is
accomplished by using (3.75). Hence, we obtain

D

Dt

∫
At

ρdv =
D

Dt

∫
Ar

ρ det(F)dV =

∫
Ar

D

Dt
(ρ det(F))dV = 0. (5.4)

Expanding the above equation we obtain∫
Ar

[
Dρ

Dt
det(F) + ρ

D det(F)

Dt
]dV = 0. (5.5)
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Now, we compute D det(F)
Dt

. Towards this, using the chain rule for differ-
entiation,

D det(F)

Dt
=
∂ det(F)

∂F
· DF

Dt
. (5.6)

Using the result from equation (2.187),

D det(F)

Dt
= det(F)F−t · DF

Dt
= det(F)tr(

DF

Dt
F−1), (5.7)

where to obtain the last expression we have made use of the definition of a
dot product of two tensors, (2.71) and the property of the trace operator,
(2.68). Defining, l = grad(v), it can be seen that

l =
∂2χ

∂x∂t
=

∂2χ

∂X∂t

∂X

∂x
=

D

Dt

(
∂χ

∂X

)
F−1 =

DF

Dt
F−1, (5.8)

obtained using the chain rule and by interchanging the order of the spatial
and temporal derivatives. Hence, equation (5.7) reduces to,

D det(F)

Dt
= det(F)tr(l) = det(F)tr(grad(v)) = det(F)div(v), (5.9)

on using the definition of the divergence, (2.208).
Substituting (5.9) in (5.5) we obtain∫

Ar

[
Dρ

Dt
+ ρdiv(v)] det(F)dV = 0. (5.10)

Again using (3.75) we obtain∫
At

[
Dρ

Dt
+ ρdiv(v)]dv = 0, (5.11)

wherein the integrand is continuous in Bt and the range of integration is
an arbitrary subregion of Bt. Since, the integral vanishes in Bt and in any
arbitrary subregion of Bt, the integrand should vanish, i.e.,

Dρ

Dt
+ ρdiv(v) = 0. (5.12)

Subject to the presumed smoothness of ρ, equations (5.3) and (5.12) are
equivalent expressions of the conservation of mass.
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Further, since (5.4) has to hold for any arbitrary subpart of Ar, we get

D

Dt
(ρ det(F)) = 0, hence, ρ det(F) = ρr, (5.13)

where ρr is the density in the reference configuration, Br. Note that, when-
ever the body occupies Br, det(F) = 1 and hence, ρ = ρr, giving ρr as the
constant value of ρ det(F) and hence the referential equation of conservation
of mass

ρ =
ρr

det(F)
. (5.14)

A body which is able to undergo only isochoric motions is said to be
composed of incompressible material. Since, det(F) = 1 for isochoric motions,
we see from equation (5.14) that the density does not change with time,
t. Consequently, for a body made up of an incompressible material, if the
density is uniform in some configuration it has to be the same uniform value
in every configuration which the body can occupy. On the other hand if a
body is made up of compressible material this is not so, in general.

Let φ be a scalar field and u a vector field representing properties of a
moving material body, B, and let At be an arbitrary material region in the
current configuration of B. Then show that:

D

Dt

∫
At

ρφdv =

∫
At

ρ
Dφ

Dt
dv, (5.15)

D

Dt

∫
At

ρudv =

∫
At

ρ
Du

Dt
dv. (5.16)

Using similar arguments as above

D

Dt

∫
At

ρφdv =

∫
Ar

D

Dt
(ρφ det(F))dV,

=

∫
Ar

(
ρ
Dφ

Dt
+

[
Dρ

Dt
+ ρdiv(v)

]
φ

)
det(F)dV

=

∫
At

(
ρ
Dφ

Dt
+

[
Dρ

Dt
+ ρdiv(v)

]
φ

)
dv, (5.17)

and on using equation (5.12) we obtain the first of the required results.
Following the same steps as outlined above, we can show equation (5.16)
is true.
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5.4 Conservation of momentum

There are two kinds of forces that act in a body. They are:

1. Contact forces

2. Body forces

Contact forces arise due to contact between two bodies. Body forces are
action at a distance forces like gravitational force. Similarly, while contact
forces act per unit area of the boundary of the body, body forces act per unit
mass of the body. Both these forces result in the generation of stresses.

Before deriving these conservation laws of momentum rigorously, we ob-
tain the same using using an approximate analysis, as we did for the trans-
formation of curves, areas and volumes. Moreover, we obtain these for a 2D
body. Consider an 2D infinitesimal element in the current configuration with
dimensions ∆x along the x direction and ∆y along the y direction, as shown
in figure 5.1. We assume that the center of the infinitesimal element, O is
located at (x+ 0.5∆x, y + 0.5∆y).

We assume that the Cauchy stress, σ varies over the infinitesimal element
in the current configuration, σ = σ̃(x, y). That is we have assumed Eulerian
description for the stress. Since, we are considering only 2D state of stress,
the relevant Cartesian components of the stress are σxx, σyy, σxy and σyx.
Expanding the Cartesian components of the stresses using Taylor’s series up
to first order we obtain:

σxx(x+ ∆x, y) = σxx(x, y) +
∂σxx
∂x
|(x,y)∆x, (5.18)

σxy(x+ ∆x, y) = σxy(x, y) +
∂σxy
∂x
|(x,y)∆x, (5.19)

σyx(x, y + ∆y) = σyx(x, y) +
∂σyx
∂y
|(x,y)∆y, (5.20)

σyy(x, y + ∆y) = σyy(x, y) +
∂σyy
∂y
|(x,y)∆y. (5.21)

Also seen in figure 5.1 are the Cartesian components of the Cauchy stress act-
ing on various faces of the infinitesimal element, obtained using the equations
(5.18) through (5.21).

Now, we are interested in the equilibrium of the infinitesimal element in
the deformed configuration under the action of these stresses and the body
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Figure 5.1: 2D Infinitesimal element showing the variation of Cartesian com-
ponents of the stresses on the various faces.
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force, b with Cartesian components bx and by along the x and y direction
respectively. Also, we shall assume that the infinitesimal element is acceler-
ating with acceleration, a with Cartesian components ax and ay along the x
and y direction respectively. Thus, force equilibrium along the x direction
requires:

ρ(∆x)(∆y)(1)ax =

[
σxx(x, y) +

∂σxx
∂x
|(x,y)∆x− σxx(x, y)

]
(∆y)(1)

+

[
σyx(x, y) +

∂σyx
∂y
|(x,y)∆y − σyx(x, y)

]
(∆x)(1)

+ρ(∆x)(∆y)(1)bx, (5.22)

where ρ is the density and the element is assumed to have a unit thickness.
Note that here ρ(∆x)(∆y)(1) gives the infinitesimal mass of the element and
the stresses are multiplied by the respective areas over which they act to
get the forces; since only the forces should satisfy the equilibrium equations.
Simplifying, (5.22) we obtain:

ρax =
∂σxx
∂x

+
∂σyx
∂y

+ ρbx. (5.23)

Similarly, writing the force equilibrium equation along the y direction:

ρ(∆x)(∆y)(1)ay =

[
σxy(x, y) +

∂σxy
∂x
|(x,y)∆x− σxy(x, y)

]
(∆y)(1)

+

[
σyy(x, y) +

∂σyy
∂y
|(x,y)∆y − σyy(x, y)

]
(∆x)(1)

+ρ(∆x)(∆y)(1)by. (5.24)

The above equation simplifies to:

ρay =
∂σxy
∂x

+
∂σyy
∂y

+ ρby. (5.25)

Finally, we appeal to the moment equilibrium. Here we assume that there
are no body couples or contact couples acting in the infinitesimal element.
Since, we can take moment equilibrium about any point, for convenience, we
do it about the point O, marked in figure 5.1, to obtain:[

σxy(x, y) + σxy(x, y) +
∂σxy
∂x
|(x,y)∆x

]
(∆x)

2
(∆y)(1)

=

[
σyx(x, y) + σyx(x, y) +

∂σyx
∂y
|(x,y)∆y

]
(∆y)

2
(∆x)(1).(5.26)
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Simplifying the above equation we obtain:

σxy +
∂σxy
∂x

∆x

2
= σyx +

∂σyx
∂y

∆y

2
, (5.27)

which in the limit ∆x and ∆y tending to zero, the limit that we are interested
in, reduces to requiring

σxy = σyx. (5.28)

Thus, a plane Cauchy stress field should satisfy the equations (5.23),
(5.25) and (5.28) for it to be admissible.

Generalizing it for 3D, the Cauchy stress field should satisfy:

ρax =
∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

+ ρbx, (5.29)

ρay =
∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

+ ρby, (5.30)

ρaz =
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ ρbz, (5.31)

and
σxy = σyx, σxz = σzx, σyz = σzy. (5.32)

The equations (5.29) through (5.31) are written succinctly as

ρa = div(σ) + ρb, (5.33)

and equations (5.32) tells us that the Cauchy stress should be symmetric.
Similarly, requiring a sector of cylindrical shell to be in equilibrium, under

the action of spatially varying stresses, it can be shown that

ρar =
∂σrr
∂r

+
1

r

∂σθr
∂θ

+
∂σzr
∂z

+
σrr − σθθ

r
+ ρbr, (5.34)

ρaθ =
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σzθ
∂z

+
σrθ + σθr

r
+ ρbθ, (5.35)

ρaz =
∂σrz
∂r

+
∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

+ ρbz, (5.36)

and
σrθ = σθr, σrz = σzr, σθz = σzθ. (5.37)

has to hold.
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5.4.1 Conservation of linear momentum

Let At be an arbitrary sub-region in the configuration Bt of a body B. The
total linear momentum, Γ(At), of the material particles occupying At is de-
fined by

Γ(At) =

∫
At

ρvdv. (5.38)

Next, we find the forces acting on the body. Since, the part At has
been isolated from its surroundings, traction t(n)(x), introduced in the last
chapter, acts on the boundary of the At. In addition to traction, which arises
between parts of the body that are in contact, there exist forces like gravity
which act on the material particles not through contact and are called body
force. The body forces are denoted by b and are defined per unit mass.
Hence, the resultant force, z acting on At is

z(At) =

∫
∂At

t(n)da+

∫
At

ρbdv. (5.39)

Now, using Newton’s second law of motion, which states that the rate of
change of linear momentum of the body must equal the resultant force that
acts on the body in both magnitude and direction we obtain

DΓ

Dt
=

D

Dt

∫
At

ρvdv =

∫
∂At

t(n)da+

∫
At

ρbdv = z. (5.40)

Using (3.30), definition of acceleration, a and (5.16) the above equation can
be written as ∫

At

ρ
Dv

Dt
dv =

∫
At

ρadv =

∫
∂At

t(n)da+

∫
At

ρbdv. (5.41)

Next, using Cauchy’s stress theorem (4.3) and the divergence theorem (2.263)
the above equation further can be reduced to∫

At

ρadv =

∫
∂At

σnda+

∫
At

ρbdv =

∫
At

[div(σ) + ρb] dv. (5.42)

Since, the above equation has to hold for Bt and any subset, At, of it

ρa = div(σ) + ρb. (5.43)
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Many a times, we are interested in cases for which a = o, then (5.43)
becomes

div(σ) + ρb = o, (5.44)

which is referred to as Cauchy’s equation of equilibrium. Further, there arises
scenarios where the body forces can be neglected and in those cases div(σ) =
o. Thus, divergence free stress fields are called self equilibrated stress fields.

Equation (5.43) is in spatial form, that is it assumes that σ = σ̃(x, t), b =
b̃(x, t), a = ã(x, t), ρ = ρ̃(x, t) are known. But on most occasions, especially
in solid mechanics, we know only the material form of these fields that is σ
= σ̂(X, t), b = b̂(X, t), a = â(X, t), ρ = ρ̂(X, t) and in those occasions it
is difficult to obtain the spatial divergence of these fields. To make it easier
at these instances, we seek a statement of balance of linear momentum in
material form. For this, equation (5.42a) has to be modified. Towards this,
we obtain ∫

At

ρadv =

∫
Ar

ρa det(F)dV =

∫
Ar

ρradV

=

∫
∂At

σnda+

∫
At

ρbdv

=

∫
∂Ar

det(F)σF−tNdA+

∫
Ar

ρb det(F)dV

=

∫
Ar

Div(P)dV +

∫
Ar

ρrbdV, (5.45)

for which we have successively used equation (3.75), (5.14), (3.72) and def-
inition of Piola-Kirchhoff stress (4.42) and the divergence theorem. Since,
(5.45) has to hold for any arbitrary subpart of the reference configuration,
we obtain the material differential form of the balance of linear momentum
as

ρra = Div(P) + ρrb. (5.46)

It is worthwhile to emphasize that irrespective of the choice of the in-
dependent variable, the equilibrium of the forces is established only in the
current configuration. In other words, whether we use material or spatial
description for the stress, the forces and moments have to be equilibrated in
the deformed configuration and not the reference configuration.
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5.4.2 Conservation of angular momentum

Let At be an arbitrary sub-region in the configuration Bt of a body B. The
total angular momentum, Ω(At), of the material particles occupying At is
defined by

Ω(At) =

∫
At

[(x− xo) ∧ ρv + p]dv, (5.47)

where xo is the point about which the moment is taken and p is the intrinsic
angular momentum per unit volume in the current configuration.

Next, we find the moment due to the forces acting on the body. As
discussed before there are two kind of forces, surface or contact forces and
body forces act on the body which contribute to the moment. Apart from
moment arising due to applied forces, there could exist couples distributed
per unit surface area, m and body couples c, defined per unit mass. Thus,
m = m̃(x, t,n) and c = c̃(x, t). Hence, the resultant moment, ω acting on
At is

ω(At) =

∫
∂At

[(x− xo) ∧ t(n) + m]da+

∫
At

[ρ(x− xo) ∧ b + c]dv. (5.48)

However, in non-polar bodies that are the subject matter of the study here,
there exist no body couples or couples distributed per unit surface area or
intrinsic angular momentum, i.e., c = m = p = o.

The balance of angular momentum states that the rate of change of the
angular momentum must equal the applied momentum in both direction and
magnitude. Hence,

DΩ

Dt
= ω. (5.49)

Further simplification of this balance principle involves some tensor algebra.
First, we begin by calculating the left hand side of the above equation:

DΩ

Dt
=

D

Dt

[∫
At

[(x− xo) ∧ ρv + p]dv

]
=

∫
Ar

D

Dt
{[(x− xo) ∧ ρv + p] det(F)} dV

=

∫
Ar

v ∧ ρv det(F) + (x− xo) ∧
{
D

Dt
(ρ det(F))v + ρa det(F)

}
dV

+

∫
Ar

D

Dt
(p det(F)) dV. (5.50)
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Since, v ∧ v = o and using equations (5.13) and (5.9), (5.50) reduces to

DΩ

Dt
=

∫
Ar

[(x− xo) ∧ ρa] det(F)dV +

∫
Ar

[
Dp

Dt
+ pdiv(v)

]
det(F)dV

=

∫
At

{
[(x− xo) ∧ ρa] +

Dp

Dt
+ pdiv(v)

}
dv. (5.51)

Next, we simplify the right hand side of the equation (5.49). Towards
that, we first show that∫

∂At

(x− xo) ∧ σtnda =

∫
At

[(x− xo) ∧ div(σ)− τ ] dv, (5.52)

where τ is the axial vector of (σ − σt). We begin by establishing a few
vector identities which enable us to establish (5.52).

Identity - 1: If u and v are arbitrary vectors then u ∧ v is the axial
vector of the skew-symmetric tensor v ⊗ u − u⊗ v.

Proof: It is straightforward to verify that v ⊗ u − u ⊗ v is skew-
symmetric. Then we observe that

(v ⊗ u− u⊗ v)(u ∧ v) = {u · (u ∧ v)}v − {v · (u ∧ v)}u = o, (5.53)

hence, the axial vector of v⊗u−u⊗v is a scalar multiple of u∧v. Accordingly,

(v ⊗ u− u⊗ v)a = (a · u)v − (a · v)u = α(u ∧ v) ∧ a, (5.54)

for any vector a. Now, we have to show that α = 1. Setting a = u in the
above equation and then forming a scalar product on each side with v we
have

(u · u)(v · v)− (u · v)2 = α{(u ∧ v) ∧ u} · v (5.55)

Using (2.36) we find that

α{(u ∧ v) ∧ u} · v = α[(u · u)(v · v)− (u · v)2]. (5.56)

Comparing equations (5.55) and (5.56) we find that α = 1.
Identity - 2: For any vector a, b, c in the vector space

a ∧ (b ∧ c) = (b⊗ c− c⊗ b)a. (5.57)

This identity follows immediately from the above identity.
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Identity - 3: Let At be a regular region with boundary ∂At, let n be
the outward unit normal to ∂At and let u be a vector field and σ a tensor
field, each continuous in At and continuously differentiable in the interior of
At. Then ∫

∂At

u⊗ σnda =

∫
At

{u⊗ div(σ) + grad(u)σ}dv. (5.58)

Towards proving this identity, note that∫
∂At

(σn⊗ u)ada =

∫
∂At

(u · a)σnda =

∫
At

div((u · a)σ)dv

=

∫
At

[(u · a)div(σ) + σtgrad(u · a)dv

=

∫
At

[div(σ)⊗ u + σt{grad(u)}t]adv (5.59)

where a is an arbitrary constant vector. To obtain the above we have made
use of the identities∫

∂v

Tnda =

∫
v

div(T)dv, (5.60)

div(ΦT) = Φdiv(T) + Ttgrad(Φ), (5.61)

and the definition of the gradient. Further, since a is arbitrary in (5.59) we
have the identity∫

∂At

σn⊗ uda =

∫
At

[div(σ)⊗ u + σt{grad(u)}t]dv (5.62)

Taking the transpose of the above identity, we obtain the required vector
identity (5.58).

Now, we are in a position to prove (5.52). For this we replace b by (x−xo)
and c by σn in (5.57) and then integrating each side over the surface ∂At we
obtain

a∧
∫
∂At

(x−xo)∧(σn)da =

(∫
∂At

{(x− xo)⊗ (σn)− (σn)⊗ (x− xo)}da
)

a,

(5.63)
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a being an arbitrary vector. From (5.58) it follows that∫
∂At

(x− xo)⊗ (σn)da =

∫
At

{(x− xo)⊗ div(σ) + σ}dv, (5.64)∫
∂At

(σn)⊗ (x− xo)da =

∫
At

{div(σ)⊗ (x− xo) + σt}dv, (5.65)

Substituting the above equations in (5.63), we obtain

a ∧
∫
∂At

(x− xo) ∧ (σn)da =

∫
At

{[(x− xo)⊗ div(σ)− div(σ)⊗ (x− xo)]a

+(σ − σt)a}dv (5.66)

Again using (5.57) and the definition of axial vector to a skew-symmetric
tensor (2.98) the above equations can be reduced to

a ∧
∫
∂At

(x− xo) ∧ (σn)da = a ∧
∫
At

[(x− xo) ∧ div(σ)− τ ]dv, (5.67)

and hence the required identity (5.52), since a is an arbitrary vector.
Substituting (5.51) and (5.52) in (5.49) yields∫

∂At

mda =

∫
At

[(x− xo) ∧ (ρa− div(σ)− ρb)]dv

+

∫
At

[
Dp

Dt
+ pdiv(v)− c + τ ]dv. (5.68)

Since, the body also satisfies the balance of linear momentum (5.43), the first
term on the RHS is zero. Hence, the balance of angular momentum requires∫

∂At

mda =

∫
At

[
Dp

Dt
+ pdiv(v)− c + τ ]dv. (5.69)

Here we are interested only in non-polar bodies and hence, p = c = m = o.
Therefore, (5.69) simplifies to requiring∫

At

τdv = o. (5.70)

Since, this has to hold for any arbitrary subparts of the body, Bt, τ = o.
Consequently,

σ = σt, (5.71)

that is the Cauchy stress tensor has to be symmetric in non-polar bodies.
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5.5 Summary

Since, in this course we are interested only in purely mechanical process, we
studied only conservation of mass and momentum. There are other quantities
like energy, charge which is also conserved. In courses on thermodynamics
or electromagnetism, one would study the other conservation laws. The one
equation that would be used frequently in the following chapters is the final
expression for the conservation of linear momentum, also called as equilib-
rium equations,

ρa = div(σ) + ρb, (5.72)

where ρ is the density, b is the body force per unit mass, σ is the Cauchy
stress tensor.

5.6 Self-Evaluation

1. Determine which of the following Cauchy stress fields are possible within
a body at rest assuming that there are no body forces acting on it:

(a) σ =

−3
2
x2y2 xy3 0
xy3 −1

4
y4 0

0 0 0

 ,

(b) σ =

3yz z2 5y2

z2 7xz 2x2

5y2 2x2 9xy

 ,

(c) σ =

3x+ 5y 7x− 3y 0
7x− 3y 2x− 7y 0

0 0 0

 ,

(d) σ =

 3x −3y 0
−7x 7y 0

0 0 0

 ,

(e) σ =

7x −3x 0
7y 3y 0
0 0 0

 ,

where the components of the stress are with respect to orthonormal
Cartesian basis and (x, y, z) denote the Cartesian coordinates of a typ-
ical material particle in the current configuration of the body.
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2. The Cartesian components of the Cauchy stress tensor in a plate at
rest is

σ =

 −2x2 −7 + 4xy + z 1 + x− 3y
−7 + 4xy + z 3x2 − 2y2 + 5z 0

1 + x− 3y 0 −5 + x+ 3y + 3z

 .

Find the body force that should act on the plate so that this state of
stress is realizable in the body.

3. A body at rest is subjected to a plane state of stress such that the
non-zero Cartesian components of the Cauchy stress are σxx, σxz and
σzz. Derive the equilibrium equations for this special case. Then, show
that in the absence of body forces the equilibrium equations hold if,

σxx =
∂2φ

∂z2
, σxz = − ∂2φ

∂x∂z
, σzz =

∂2φ

∂x2
,

where φ = φ̄(x, y), for any choice of φ. φ is called the Airy’s stress
potential.

4. Derive form first principles and show that for the plane stress prob-
lem in cylindrical polar coordinates with the non-zero cylindrical polar
components of the Cauchy stress being σrr, σrθ and σθθ, as shown in
figure 5.2, the equilibrium equations in the absence of body forces with
the body in static equilibrium are

∂σrr
∂r

+
1

r

∂σθr
∂θ

+
σrr − σθθ

r
= 0,

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
2σrθ
r

= 0.

5. Is any stress field that satisfies the equilibrium equations realizable in
a given body? Discuss.
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Figure 5.2: Figure for problem 4. Variation of the cylindrical polar compo-
nents of the Cauchy stress over an infinitesimal cylindrical wedge, in plane
stress state



Chapter 6

Constitutive Relations

6.1 Overview

The concepts and equations introduced in chapters 3 to 5, within the frame-
work of non-relativistic mechanics, are essential to characterize kinematics,
stresses and balance principles and as mentioned already these concepts and
equations hold for any body undergoing a purely mechanical process. How-
ever, they do not distinguish one material from another which is contra-
dictory with the experiments. Also, for a non-polar body while there are
only seven equations1 there are thirteen2 scalar fields that needs to be deter-
mined. Thus, there are more unknowns in the balance laws than available
equations and hence all of the unknown fields cannot be determined from
the balance laws alone. In other words, balance laws alone are incapable of
determining the response (displacement of the body due to an applied force)
of deformable bodies3. They must be augmented by additional equations,
called constitutive relations or equations of state, which depends on the ma-
terial that the body is made up of. A constitutive relation approximates the
observed physical behavior of a material under specific conditions of interest.
To summarize, constitutive relations are required for two reasons:

• To bring in the material dependence in the force displacement relation.

1As we saw in the last chapter, there are 1 equation due to balance of mass, 3 equations
due to balance of linear momentum and 3 equations due to balance of angular momentum.

2The thirteen scalar fields are: density, three components for body force and nine
components of stress. Here we assume that the body is non-polar.

3If we were to specify a body as rigid, then balance laws alone is sufficient to determine
its motion. However, specifying a body as rigid is a constitutive specification.

161
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• To bridge the gap between the number of unknowns and the available
equations while trying to develop a force displacement relation.

Thus, we may constitutively prescribe the six independent components
of Cauchy stress. Now, for a non-polar body, we have as many equations as
there are variables. Then, the balance of mass is used to obtain the density
and balance of linear momentum to obtain the body force. By prescribing
the constitutive relation only for the six components of the stress field, we
have already made use of the balance of angular momentum as applicable
for a non-polar body. We hasten to emphasize the arbitrariness in the choice
of variables that are constitutively prescribed and those that are found from
the balance laws.

Quantities characterizing a system at a certain time are called state vari-
ables. The state variables are quantities like stress, density. Contrary to some
presentations of thermodynamics, we do not consider kinematical quantities
as state variables. We treat them as independent variables, because they
are the directly measurable quantities in an experiment. On the other hand,
none of the state variables can be measured directly in an experiment. How-
ever, we require the state variables to depend (explicitly or implicitly) on
the kinematical quantities and the function that establishes this relation be-
tween kinematic variables and state variables is called constitutive relation.
Reemphasizing, these constitutive relation depend on the material that the
body is made up of and of course, the process that is being studied.

Naturally, it is at this stage where the major subdivisions of the subject,
such as the theories of viscous flow, elasticity branch out. These subdivisions
are nothing but assumptions made on which kinematic variables determine
the Cauchy stress. For example, if Cauchy stress is assumed to be prescribed
through a function of the Eulerian gradient of the velocity field, i.e., σ =
g(grad(v)), then it can describe the flow of a viscous material. On the other
hand, if Cauchy stress is assumed to be depend explicitly on the gradient
of the deformation field, i.e., σ = f(F), then this can describe the elastic
deformation of a solid. As this course is concerned about elastic response of
the body, let us understand what we mean by elastic response?

6.2 Definition of elastic process

All bodies deform under the application of load. Depending on the charac-
teristics of this deformation, the process or the body is classified as elastic or
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inelastic. The characteristics of this deformation depends on the material,
temperature, magnitude of the applied load and among many other factors.
Now, let us understand the characteristics of a elastic process.

Some of the definitions of an elastic process in the literature are:

1. The processes in which the original size and shape can be recovered is
termed as elasticity.

2. Processes in which, the value of state variables in a given configuration
are independent of how it was reached is called elastic.

3. A non-dissipative process is called a elastic process.

The first two definitions are popular in the literature. However, they are
of little use because they cannot tell whether a process that the body is
currently being subjected to is elastic. Such a conclusion can be arrived at
only after subjecting the body to a complementary process. However, the
last definition does not have such a drawback.

Further, it turns out that these various definitions are not equivalent. To
see this, consider the uniaxial stress versus stretch ratio plot shown in figure
6.1a. Such a response, possible in shape memory alloys, would qualify as
elastic only if the first definition is used. Since, the stress corresponding to
a given stretch ratio depends on whether it is being loaded or unloaded it
is not elastic according to the second definition. Also, since the loading and
unloading path are different, there will be dissipation (wherein the mechan-
ical energy is converted into thermal energy). Hence, it cannot be elastic by
the last definition either.

Consider a axial stress vs. stretch response as shown in figure 6.1b which
will be characterized as elastic according to definitions one and three. But
the value of state variable stress could be anything corresponding to a stretch
ratio of Λo. Hence, it is not elastic according to definition two. Of course,
such a stress versus stretch response occurs for an idealized system made of a
spring and an inextensible chord as shown in figure 6.1c. But then elasticity
is an idealized process too and biological soft tissues response can be idealized
as shown in figure 6.1b.

For us, a process is elastic only if it is consistent with all three definitions.
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1

(a)

1
(b)

Rigid plate 

Spring Inextensible
chord 

(c)

Figure 6.1: Uniaxial stress, σ versus axial stretch ratio, λ1 plot for (a) su-
perelastic process (b) mechanical model shown in (c).
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Before proceeding further a few words of caution is necessary. In reality,
no process is elastic but some are close to being elastic. It is common in the
literature, as we also did in the first paragraph, to call a material or a body
to be elastic. This is incorrect, in a strict sense. It is the process that the
body is being subjected to which is elastic. After all, the same body under
different circumstances deforms inelastically.

Based on the above definition of elasticity, it can be shown that the
Cauchy stress, σ, in an elastic process would at most depend on the defor-
mation gradient, F, three material unit vectors, Mi and the state of Cauchy
stress in the reference configuration4, σR and thus,

g(σ,F,σR,M1,M2,M3) = 0. (6.1)

In other words, equation (6.1) is an assumption on how the state variable,
stress, varies with the motion of the body. Since, by definition 2 for an
elastic process, the value of stress cannot depend on the history of the motion
field that the body has experienced, we are assured that there is an implicit
function that relates the Cauchy stress and the deformation gradient.

We shall assume σR = 0, that is the reference configuration is stress free
and that the Cauchy stress is related explicitly to the deformation gradient,
so that equation (6.1) could be simplified to,

σ = h(F,M1,M2,M3). (6.2)

Further if we assume that the material is isotropic, that is the response of
the material is same in all directions (see section 6.3.2 for more detailed
discussion), the Cauchy stress would not depend on the three unit material
vectors, Mi. For this case, the Cauchy stress depends explicitly only on the
deformation gradient, i.e.,

σ = f(F). (6.3)

Thus, we have to find the relation between the six independent com-
ponents of the stress tensor and the nine independent components of the
deformation gradient. To find this relation in general through experimenta-
tion alone is daunting, as we illustrate now. Let us say the relation between
the components of the Cauchy stress (σij) and deformation gradient (Fkl) is
linear and of the form,

σij = Cijkl(Fkl − δkl), (6.4)

4Do not confuse the stress in the reference configuration with Piola-Kirchhoff stresses.
While σR = f(1,σR), Piola-Kirchhoff stress, P = det(F)f(F,σR)F−t.
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where Cijkl is the components of a constant fourth order tensor and δkl is
the Kronecher delta. Even for this case, we have to find 6*9 = 54 constants
which means we require 54 independent measurements. This is too many.
While for metals this relationship is linear for polymers it is nonlinear. It
is easy to see that the number of constants required in case of nonlinear
relationship would be much higher than the linear case. Hence, if there is
some way by which we can reduce the number of unknown functions from
6 and the variables that it depends on from 9 in equation (6.3) it would be
useful. It turns out that this is possible and this is what we shall see next.

6.3 Restrictions on constitutive relation

There are certain restrictions, guidelines and principles that are common
which the constitutive relations for different materials and under different
conditions of interest, should satisfy. Thus, we require the constitutive rela-
tion to ensure that the value of the state variables for a given state of the
body are independent of the placement of the body in the Euclidean space
and to honor the coordinate transformation rules. There is also, the concept
of material symmetry which to a large extent determines the variables in the
constitutive relation. The following section is devoted towards understanding
these concepts.

6.3.1 Restrictions due to objectivity

While the physical body was given a mathematical representation, we made
two arbitrary choices regarding:

1. The region in the Euclidean point space to which the body is mapped.

2. The orientation of the basis vectors with respect to which the position,
velocity, acceleration, etc. of the material particles are defined.

Since these choices are arbitrary, the state of the body cannot depend on
these choices. (Clearly, a body subjected to a particular load cannot fail
just because, the body is mapped on to a different region of Euclidean point
space or a different set of basis vectors is used.) Hence, the constitutive
relations that relate these state variables with the independent variables,
i.e., kinematic variables, should also not depend to these choices.
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The value of state variables variables have to be invariant with respect to
the above choices because they mathematically describe the state of the body.
We emphasize that the value of the state variables have to be invariant and
not same. Thus, while the value of scalar valued state variables like density
have to be the same, the components of tensor valued state variables like
stress will change with the choice of the basis according to the transformation
rules discussed in section 2.6. However, as pointed out in 2.6 just because the
components of a tensor is different does not mean they are different tensors.
Only, if the value of at least one of the certain scalar valued functions of
the components of the tensor are different5, the two tensors are said to be
different.

Restriction due to non-uniqueness of placers

In this section, we shall explore the restrictions that needs to be placed
on the constitutive relations so that they remain invariant for the different
equivalent mappings of the body on to the Euclidean point space. From a
physical standpoint, the same restriction could be viewed as requiring the
constitutive relation of the body be the same irrespective of where the body
is. That is, say, the deflection of the beam to a given set of loads should
remain the same whether it is tested in Chennai or Delhi or Washington or
London.

It should be realized that in the different mappings of the body onto
the Euclidean space, it is the point space that changes and not the vector
space. If the vector space were to change, it means that we are changing the
basis vectors. Further, it is assumed that the scale used to measure distances
between two points does not change. Consequently, the distance between
any two points in the body does not change due to these different mappings
of the body. Hence, this restriction, as we shall see, tantamount to requiring
that the state variables be invariant to superposed rigid body rotation of the
current or the reference configuration.

Let x and x+ denote the position vector of a material particle at time t,
mapped on to different regions of the Euclidean point space. Then, they are

5For example, if A is a second order tensor then one of the following: tr(A), tr(A−1),
det(A), must be different. There is nothing unique about the choice of the scalar valued
functions of A. One could have chosen tr(A2) instead of det(A) or more generally, tr(Am)
where m takes some integer value.
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related by the equation:
x+ = Qx + c, (6.5)

where Q and c are functions of time, t and Q is an orthogonal tensor, not
necessarily a proper orthogonal tensor6. While it is easy to see that (6.5)
preserves the distance between any two points, the converse can be proved
by following the same steps as that outlined in section 3.10.1.

Since, similar non-uniqueness exist with respect to placers for the refer-
ence configuration

X+ = QoX + co, (6.6)

where X and X+ are the position vectors of same material particle mapped
on to the different regions of the Euclidean point space, Qo is a constant
orthogonal tensor and co is a constant vector.

Next, we like to compute the standard kinematical quantities and see
how they change due to these equivalent mappings of the body on to the
Euclidean point space. This is a prerequisite to find the restrictions on the
constitutive relations due to this requirement.

We begin by considering the transformations of the motion field, χ. Let

x = χ(X, t), x+ = χ+(X+, t) (6.7)

then using equations (6.5) and (6.6) we obtain

x+ = χ+(X+, t) = Qχ(X, t) + c = Qχ(Qt
o(X

+ − co), t) + c, (6.8)

Now, we can find the relation between the deformation gradients, F and
F+ defined as

F =
∂x

∂X
, F+ =

∂x+

∂X+
, (6.9)

using (6.6), (6.8) and chain rule for differentiation to be

F+ = QF
∂X

∂X+
= QFQt

o. (6.10)

Next, we find the relation between the velocity fields, v and v+ defined
as

v =
Dx

Dt
, v+ =

Dx+

Dt
, (6.11)

6We allow improper orthogonal tensors because what is considered as top or bottom,
left or right is subjective.
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using equation (6.5) as

v+ = Qv +
DQ

Dt
x +

Dc

Dt
= Qv +

DQ

Dt
Qt(x+ − c) +

Dc

Dt
. (6.12)

Similarly, we obtain the relationship between accelerations a and a+ as

a+ = Qa + 2
DQ

Dt
v +

D2Q

Dt2
x +

D2c

Dt2
. (6.13)

In order to simplify equations (6.12) and (6.13) we introduce, the skew tensor

Ω =
DQ

Dt
Qt. (6.14)

To show that Ω is a skew tensor, taking the total time derivative of the
relation QQt = 1, we obtain

DQ

Dt
Qt + Q

DQt

Dt
= 0, (6.15)

from which the required result follows. In lieu of definition (6.14), equations
(6.12) and (6.13) can be written as

v+ = Qv +
Dc

Dt
+ Ω(x+ − c), (6.16)

a+ = Qa +
D2c

Dt2
+ 2Ω

(
v+ − Dc

Dt

)
+

(
DΩ

Dt
−Ω2

)
(x+ − c).(6.17)

where we have made use of the identity

DQ

Dt
v = Ω

(
v+ − Dc

Dt

)
−Ω2(x+ − c),

to obtain (6.17).

Now, we would like to see how the displacement transforms due to differ-
ent placements of the body in the Euclidean point space. Recalling that the
displacement field is defined as:

u = x−X, u+ = x+ −X+. (6.18)
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The Eulerian displacement gradient transforms like

h =
∂u

∂x
= 1− F−1,

h+ =
∂u+

∂x+
= 1− (F+)−1

= 1−QoF
−1Qt = 1−QoQ

t + QohQt, (6.19)

where we have used (6.10) and (3.34). Similarly, the Lagrangian displacement
gradient, is computed to be

H =
∂u

∂X
= F− 1,

H+ =
∂u+

∂X+
= F+ − 1 = QHQt

o + QQt
o − 1, (6.20)

using (6.10) and (3.33). It is apparent from the above equations that dis-
placement gradient transforms as QhQt (or QoHQt

o) only if Q = Qo.
Then, it is straightforward to show that the right and left Cauchy-Green

deformation tensor transform as:

C+ = QoCQt
o, B+ = QBQt. (6.21)

Next, we examine what happens to stress tensors due to different placements
of the body in the current configuration. Recalling traction is related to the
Cauchy stress, by the relation t(n) = σn, where n is the outward unit normal
at a point x on the boundary surface ∂Bt of an arbitrary region Bt.

As evidenced from the figure (6.2) a different placer of the body in the
Euclidean space, in general, alters the orientation of the normal with respect
to a fixed set of basis vectors. Let n and n+ denote the outward unit normals
to the same material surface ∂B and at the same material particle, P , in two
different placements of the body in the Euclidean space, Bt and B+

t . Since,
we are interested in the same material surface, we can appeal to Nanson’s
formula (3.72) to relate the unit normals as

n+ = Qn. (6.22)

where we have made use of the equation (6.5) which provides the relationship
between the placements Bt and B+

t .
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n

t(n)

1

n
t(n)

2

Figure 6.2: Two placements (κ1, κ2) of the same body in the same state
along with a unit normal (n) and traction (t(n)).

Similarly, the traction vector t(n) and t+
(n+) acting on the same material

surface, ∂B and at the same material particle P , in two different placements
of the body, Bt and B+

t are related through:

t+
(n+) = Qt(n). (6.23)

To obtain the above equation we have made use of the fact that the normal
and shear traction acting on a material surface in two different placements
of the body in the current configuration has to be same, i.e., t+

(n+) · n
+ =

t(n) · n. Then, (6.23) is obtained by recognizing that (Qtt+
(n+) − t(n)) · n = 0

for any choice of n where we have made use of (6.22).
Since, t+

(n+) = σ+n+ and t(n) = σn, we obtain

Qσn = σ+Qn, (6.24)

using equations (6.22) and (6.23) and the above equation has to hold for any
choice of n. Therefore, the Cauchy stress will transform as

σ+ = QσQt. (6.25)

Since, the definition of Cauchy stress is independent of the choice of reference
configuration, different placers of the reference configuration, does not cause
any change in the value of the Cauchy stress.
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Next, let us see how body forces transform. These forces are essentially
action at a distance forces acting along a straight line joining the material
particles in the body under investigation to another point in space belonging
to some other body. Thus, if r is the position vector of the point belonging
to another body, then the direction along which b acts, is given by (x−r)/(|
x−r |). Then, in a different placement of the body the body force acts along
a direction (x+ − r+)/(| x+ − r+ |). Because the new placement of the body
is related to its original placement by equation (6.5), we obtain

b+ = b̂(| x+ − r+ |) x+ − r+

| x+ − r+ |
= b̂(| Qx−Qr |) Qx−Qr

| Qx−Qr |

= b̂(| x− r |)Q(x− r)

| x− r |
= Qb, (6.26)

where b̂(·) denotes a function of the distance between two points of interest.
Here r+ = Qr + c because the transformation rule is applicable not only
to points that the body under study occupies but to its neighboring bodies
as well. This is required so that the relationship between the body under
investigation and its neighbors are preserved.

Finally, for future reference, div(σ) transforms due to equivalent place-
ments of the body as,

div+(σ+) = div(σ+)Q = div(QσQt)Q = Qdiv(σ), (6.27)

where div+ denotes the divergence with respect to x+.
Till now, we have just seen how various quantities transform between

different placements of the same body in the same state. Using this we are
in a position to state what restriction the requirement that the state variables
be invariant to the different placers of the body in the same state places on
the constitutive relation, given it depends on certain kinematic quantities
and other state variables. For example, as we saw above for elastic process
the stress is a function of deformation gradient, i.e.,

σ = f(F). (6.28)

Now, due to different placement of the body in the reference and current
configurations,

σ+ = f(F+). (6.29)
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Note that the function does not change and this is what restricts the nature
of the function. Using equations (6.25) and (6.10), (6.29) can be written as

σ+ = QσQt = f(F+) = f(QFQt
o). (6.30)

Substituting for σ from equation (6.28) we obtain a restriction of the form
of the function f as:

Qf(F)Qt = f(QFQt
o), (6.31)

for any orthogonal tensors Q and Qo and F ∈ D ⊆ Lin+, the set of all linear
transformations whose determinant is positive.

The question on how to obtain the form of the function, given the restric-
tion (6.31), is dealt in detail next. To understand how this restriction (6.31)
fixes the form of the tensor-valued tensor function, let us look at a similar
requirement on scalar-valued scalar function, g(x). Say the restriction on this
scalar function is: g(m ∗ x) = m ∗ g(x), where m is some arbitrary constant.
It then immediately tells that the function is a linear function, i.e., g(x) =
a ∗ x, where a is some constant. Similarly, it transpires that the restriction
(6.31) requires,

σ = f(F) = α01 + α1B + α2B
−1, (6.32)

where αi = α̂i(J1, J2, J3),

J1 = tr(B), J2 = tr(B−1), J3 = [det(B)]1/2 = det(F), (6.33)

are the invariants of B.
Now, we show how equation (6.32) is obtained from the restriction (6.31).

Towards this, first we set Q = 1 to obtain,

f(F) = f(FQt
o) = f(VR) = f(VRQt

o), (6.34)

where we have made use of the polar decomposition theorem (2.116). Then,
let us pick Qo = R, since R is also an orthogonal tensor. With this choice
equation (6.34) yields

f(F) = f(V) = f̄(B). (6.35)

The last equality arises because B = V2 and square-root theorem, (2.147)
ensures the existence of an unique V such that V =

√
B. Next, we shall

again appeal to equation (6.31) but now we shall not set Q to be 1 to obtain

Qf̄(B)Qt = f̄(QBQt), (6.36)
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∀ Q ∈ O. The above equation can be rewritten as

f̄(B) = Qtf̄(QBQt)Q, (6.37)

∀ Q ∈ O.
Theorem 7.1: A symmetric second order tensor valued function f̄ de-

fined over the space of symmetric second order tensors, satisfies (6.37) if and
only if it has a representation

σ = f(B) = α01 + α1B + α2B
2 (6.38)

where α0, α1, α2 are functions of principal invariants of B, Ii, i.e.,

αi = ᾱi(I1, I2, I3). (6.39)

Proof: 7 Before proving the above theorem we prove the following theo-
rem:

Theorem 7.2: Let α be a scalar function defined over the space of
symmetric positive definite second order tensors. Then α(QBQt) = α(B) ∀
Q ∈ O if and only if there exist a function α, defined on R+×R+×R+, such
that α(B) = α(λ1, λ2, λ3), where α(λ1, λ2, λ3) is insensitive to permutations
of λi and λ1, λ2, λ3 are the eigenvalues of B. Hence, α(B) = α̂(I1, I2, I3).

Proof: 8 Writing B in the spectral form

B = λ1b1 ⊗ b1 + λ2b2 ⊗ b2 + λ3b3 ⊗ b3, (6.40)

where bi’s are the ortho-normal eigenvectors of B and hence

QBQt = λ1Qb1 ⊗Qb1 + λ2Qb2 ⊗Qb2 + λ3Qb3 ⊗Qb3. (6.41)

Since, α(QBQt) = α(B) ∀ Q ∈ O, α(B) must be independent of the orien-
tation of the principal directions of B and must depend on B only through
its eigenvalues, λ1, λ2, λ3.

Next, choose Q to be a rotation of π/2 about b3 so that Qb1 = b2, Qb2

= −b1 and Qb3 = b3. Hence,

α(B) = α(λ2b1 ⊗ b1 + λ1b2 ⊗ b2 + λ3b3 ⊗ b3) (6.42)

7Adapted from Serrin [5] and Ogden [6]. The original proof is due to Rivlin and Ericksen
[7]

8Adapted from Ogden [6]
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from which we deduce that α(λ1, λ2, λ3) = α(λ2, λ1, λ3). In similar fashion it
can be shown that α is insensitive to other permutations of λi’s.

Finally, recalling that the eigenvalues are the solutions of the character-
istic equation

λ3 − I1λ
2 + I2λ− I3 = 0, (6.43)

in principal, λi’s can be expressed uniquely in terms of the principal invariants
and hence α(B) = α̂(I1, I2, I3).

The converse of the theorem 7.2 is proved easily from the property of
trace and determinants. Hence, we have proved theorem 7.2.

Theorem 7.3: If f satisfies (6.37) then the eigenvalues of f(B) are func-
tions of the principal invariants of B.

Proof: Let γ(B) be the eigenvalue of f(B). Then,

det[f(B)− γ(B)1] = 0. (6.44)

The corresponding eigenvalue of f(QBQt) is γ(QBQt) and hence

det[f(QBQt)− γ(QBQt)1] = 0. (6.45)

This can be written as

det[Q{f(B)− γ(QBQt)1}Qt] = 0, (6.46)

by using (6.37) and the relation QQt = 1. Using the property of determinants
the above equation reduces to

det[f(B)− γ(QBQt)1] = 0, (6.47)

which has to hold for all Q ∈ O. Comparing (6.44) and (6.47)

γ(QBQt) = γ(B), (6.48)

for all Q ∈ O, which by theorem 2.2 implies that γ(B) = α̂(I1, I2, I3)
Theorem 7.4: If σ = f(B) satisfies (6.37) then f(B) is coaxial with B,

i.e., the principal directions of B and f(B) would be the same.
Proof: Consider an eigenvector b1 of B and define an orthogonal trans-

formation Q by

Qb1 = −b1, Qbj = bj if b1 · bj = 0, (6.49)
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i.e. Q is a reflection on the plane normal to b1. Now, QBQt = B and hence,
by (6.37), Qσ = σQ. We therefore have

Q(σb1) = σ(Qb1) = −σb1, (6.50)

and we see that Q transforms the vector σb1 into its opposite. Since, the
only vectors transformed by the reflection Q into their opposites are the
multiples of b1, it follows that b1 is an eigenvector of σ. Similarly, it can be
shown that every eigenvector of B is also an eigenvector of σ. Hence, f(B)
is coaxial with B.

Now we prove theorem 7.1.
Clearly, if (6.38) along with (6.39) holds then (6.37) is satisfied and hence

we have to prove only the converse.
It follows from theorem 7.3 and theorem 7.4 that f(B) is coaxial with B

and its eigenvalues are functions of the principal invariants of B. Let λ1,λ2,λ3

and f1,f2,f3 be the eigenvalues of B and f(B) respectively and consider the
equations

α0 + α1λi + α2λ
2
i = fi, (i = 1, 2, 3) (6.51)

for the three unknowns α0, α1, α2. Assuming the λi and fi are given and that
λi’s are distinct it follows that αi’s are determined uniquely in terms of λi
and fi which are themselves determined uniquely by the principal invariants
of B. Thus, since B is coaxial with f(B) and αi are functions of the principal
invariants of B; equation (6.38) follows from (6.51) provided the eigenvalues
of B are distinct, of course. When the eigenvalues of B are not distinct α2

or α1 and α2 could be chosen arbitrarily, depending on whether the algebraic
multiplicity of the eigenvalues is 2 or 3 respectively. However, this choice may
cause some αi to become discontinuous even when f(B) remains continuous,
Truesdell and Noll [8] and Serrin [5] provide example of such cases.

Finally, from Cayley-Hamilton theorem, (2.142) we obtain

B2 = I1B− I21 + I3B
−1. (6.52)

Then, observing that the principal invariants of the positive definite, B, are
related bijectively to the invariants J1, J2 and J3, as defined in (6.33), we
note that

αi = α̂i(I1, I2, I3) = αi(J1, J2, J3) (6.53)

for i = (0, 1, 2). Substituting (6.52) and (6.53) in (6.38) we obtain

σ = α01 + α1B + α2B
−1. (6.54)
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Before concluding this section let us investigate a couple of issues. The
first issue is whether the balance laws should also be invariant to different
placements of the body in the same state. A straight forward calculation will
show that balance of mass is invariant to different placements of the same
body in the same state. However, balance of linear momentum and hence
angular momentum are not. In fact, due to equivalent placements of the
body, the balance of linear momentum equation transforms as

Qdiv(σ) + ρQb = ρ

(
Qa + 2

DQ

Dt
v +

D2Q

Dt2
x +

D2c

Dt2

)
. (6.55)

But for the above equation to be consistent, it is required that

2
DQ

Dt
v +

D2Q

Dt2
x +

D2c

Dt2
= o, (6.56)

since, div(σ) + ρb = ρa. The above equation holds only for placements for
which D2c

Dt2
= o and Q(t) = Qc, a constant. Thus, a school of thought requires

the constitutive relations describing the state variables to be invariant only
for placements of the body related as:

x+ = Qcx + ctt+ co, (6.57)

where Qc is a constant orthogonal tensor, ct and co are constant vectors.
Equation (6.57) is called Galilean transformation.

The other school of thought, argues that equivalent placements of the
body in a particular state is a thought experiment to obtain some restriction
on the constitutive relations describing the state variables which is not ap-
plicable for balance laws. The rational behind their argument is that for a
given body force, the balance laws will hold only for certain motions of the
body9. On the other hand, there are no such restrictions for the constitutive
relations. Hence, there is no inconsistency if motions that are not admissible
according to the balance law are used to find restrictions on the constitutive
relations. We find merit in this school of thought.

The second issue is on the existence of unique placer for the reference con-
figuration. Some researchers are of the opinion that the placer to the reference

9As we shall see, within the realms of finite elasticity, Ericksen [9] has showed that in
the absence of body forces, deformations of the form: r = r(R), θ = Θ, z = Z, where
(R,Θ, Z) and (r, θ, z) are the coordinates of a material particle in the reference and current
configuration respectively, is not possible in some compressible materials.
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configuration has to be unique for agreement on the material symmetry of
the body. In section 6.3.2, we show that the opinion of these researchers is
incorrect.

Restrictions due to non-uniqueness of the basis vectors

We have been writing equations in direct form, that is independent of the
choice of basis vectors. To beginners it is natural to ask the question, if
we were to continue to write equations in direct form what restriction can
this choice of basis vectors place? To answer this question let us look at an
example. Say, some person investigating the response of some body subjected
to some process finds that Cauchy stress, σ is related to the deformation
gradient, F, as σ = α(F− 1), where α is a constant. Even though we have
written in direct notation, say, we change the basis vectors used to describe
the reference configuration, then the matrix components of the Cauchy stress
will not change. However, the matrix components of the deformation gradient
will change resulting in a contradiction and inadmissability of the proposed
relation.

To elaborate, recall that σ = σijei ⊗ ej and F = Fijei ⊗ Ej, where
ei is the basis vectors used to represent the current configuration and Ej

is the basis vectors used in the reference configuration. Then, let [σ̄] and
[F̄] represent the matrix components of the Cauchy stress and deformation
gradient with respect to the {Ēi} basis. Similarly, let [σ] and [F] denote
the matrix components of the Cauchy stress and deformation gradient with
respect to the {Ei} basis. It follows from the transformation laws 2.6 that

[σ̄] = [σ], [F̄] = [F][Q], (6.58)

where Qij = Ei · Ēj. Immediately, the contradiction in the constitutive
relation, σ = α(F− 1) is apparent.

Let us see what restriction is placed on the form of the function (or
functional) to ensure that it obeys the necessary transformation rules. Thus,
say, we postulate that: σ = f(F). Let Qij = ei · ēj and Qo

ij = Ei · Ēj. Due
to this transformation of the basis vectors in the current and the reference
configuration, the stress transforms as [σ̄] = [Q]t[σ][Q] and the deformation
gradient transforms as [F̄] = [Q]t[F][Qo]. Then, we require that [σ̄] = [f([F̄])].
Hence, the function f(·) should be such that

[Q]t[f([F])][Q] = [f([Q]t[F][Qo])] (6.59)
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for any [Q] and [Qo] such that [Q][Q]t = [Q]t[Q] = [Qo][Qo]t = [Qo]t[Qo] =
[1] and for all F ∈ D ⊆ Lin+.

While it is non-trivial to deduce the form of the function f(F) satisfying
the condition (6.59), it is easy to verify that

f(F) = α01 + α1B + α2B
−1, (6.60)

where B = FFt, αi = α̂i(tr(B), tr(B−1), det(F)) upholds the condition (6.59).
Looking at restriction (6.31) and (6.59) one might wonder on the need

for (6.59). Because if (6.31) were to hold then (6.59) will always hold. How-
ever, recognize that (6.59) is a different requirement than (6.31) and these
differences would be apparent for cases where the constitutive relation de-
pends on velocity or its derivatives. To see this, a change of basis used to
describe the current configuration results in the velocity vector transforming
as [Q][v], which is different from (6.16) and hence the difference between the
restrictions (6.59) and (6.31). To clarify, even if the basis were to change
continuously with time, the velocity will transform as [Q(t)][v] because the
choice of the basis determines only the components of the velocity vector and
not the velocity of the particle which depends only on the relative motion of
the particle and the observer.

6.3.2 Restrictions due to Material Symmetry

Before looking at the concept of material symmetry, we have to understand
what we mean by the body being homogeneous or inhomogeneous. Intu-
itively, we think that a body is homogeneous if it is made up of the same
material. However, there is no particular variable in our formulation that
uniquely characterizes the material and only the material. But the consti-
tutive relation (or equation of state) which relates the state variables and
the kinematic variable depends on the material. However, since the value
of the kinematic variable, say the displacement or the deformation gradient,
depends on the configuration used as reference, the constitutive relation also
depends on the reference configuration or more particularly on the value of
the state variables in the configuration used as reference. Hence, just because
the constitutive relation for two particles are different does not mean that
they are different materials, the difference can arise due to the use of different
configurations being used as reference.

Consequently, mathematically, we say that two particles in a body belong
to the same material, if there exist a configuration in which the density and
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temperature of these particles are same and with respect to which the con-
stitutive equations are also same. In other words, what we are looking at is if
the value of the state variables evolve in the same manner when two particles
along with their neighborhood are subjected to identical motion fields from
some reference configuration in which the value of the state variables are the
same.

A body that is made up of particles that belong to the same material
is called homogeneous. If a body is not homogeneous it is inhomogeneous.
Now, say we have a body, in which different subsets of the body have the
same constitutive relation only when different configurations are used as ref-
erence, i.e., any configuration that the body can take without breaking its
integrity would result in different constitutive relations for different mate-
rial particles, then the issue is how to classify such a body. Any body with
residual stresses10 like shrink fitted shafts, biological bodies are a couple of
examples of bodies that fall in this category. One school of thought is to
classify these bodies also as inhomogeneous, we subscribe to this definition
simply for mathematical convenience.

Having seen what a homogeneous body is we are now in a position to un-
derstand what an isotropic material is. Consider an experimentalist who has
mathematically represented the reference configuration of a homogeneous
body, i.e., identify the region of the Euclidean point space that this body
occupies, has found the spatial variation of the state variables. Now, say
without the knowledge of the experimentalist, this reference configuration of
the body is deformed (or rotated). Then, the question is will this deforma-
tion (or rotation) be recognized by the experimentalist? Theoretically, if the
experimentalist cannot identify the deformation (or rotation), then the func-
tional form of the constitutive relations should be the same for this deformed
and initial reference configuration. This set of indistinguishable deformation
or rotation forms a group called the symmetry group and it depends on the
material as well as the configuration that it is in. If the symmetry group
contains all the elements in the orthogonal group11 then the material in that
configuration is said to possess isotropic material symmetry. If the symmetry
group does not contain all the elements in the orthogonal group, the material
in that configuration is said to be anisotropic. There are various classes of

10The non-uniform stresses field in a body free of boundary traction is called residual
stress.

11The set of all linear transformations, Q, such that QQt = QtQ = 1 form a group
called the orthogonal group.
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anisotropy like transversely isotropic, orthorhombic, etc., depending on the
elements contained in the symmetry group.

Here we like to emphasize on some subtleties. Firstly, we emphasize that
the symmetry group of a material depends on the configuration in which it is
assessed. Thus, the material in a stress free configuration could be isotropic
but the same material in uniaxially stressed state will not be isotropic. Sec-
ondly, we allow the body to be deformed because it has been shown [10] that
certain deformations superposed on an uniaxially extended body does not al-
ter the state of the body. Hence, it should be recognized that the symmetry
group, G ⊆ H, the unimodular group12, since the volume cannot change in
an equivalent placement of the body. In fact, for a perfect gas the symmetry
group, G = H. Thirdly, unlike in the restriction due to objectivity, in this
case only the body is rotated or deformed virtually, not its surroundings.
Even though like in the restriction due to objectivity the rotation or defor-
mation is virtual, it has to maintain the integrity of the body and satisfy the
balance laws, i.e., be statically admissible because the rotated or deformed
configuration is also in equilibrium.

Now, let us mathematically investigate the restriction material symmetry
imposes on the constitutive relation. Continuing with our example, σ = f(F)
we examine the restriction on f(F) due to material symmetry. For any G ∈
G, the restriction due to material symmetry requires that

σ = f(F) = f(FG), (6.61)

∀ F ∈ D. Of course, for this case the restriction is similar to that obtained for
objectivity (6.31), except that now, Q = 1 and Qo is not necessarily limited
to orthogonal tensors. However, for isotropic material the symmetry group
is the set of all orthogonal tensors only.

To further elucidate the difference between the restriction due to objec-
tivity and material symmetry, consider a material whose response is different
along a direction M identified in the reference configuration. Then, σ =
f(F,M). Now due to objectivity we require

Qf(F,M)Qt = f(QFQt
o,QoM), (6.62)

for any orthogonal tensors Q and Qo and for any F ∈ D. Due to material
symmetry we require

f(F,M) = f(FG,M), (6.63)

12The set of all linear transformations such that their determinant is positive and equal
to one, form a group called the unimodular group.
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∀ F ∈ D and G ∈ G. In (6.63) the right hand side is not GM because,
the rotation (or deformation) G, of the reference configuration is not dis-
tinguishable. In other words, G belongs to G only if GM = M. Thus, it
immediately transpires that restriction due to material symmetry (6.63) is
not same as that due to objectivity (6.62).

It is also instructive to note that if GM = M holds for any an orthog-
onal tensor, G, then M = o. Thus, the result that for isotropic materials
the response would be same in all directions and consequently there are no
preferred directions. If the material response along one direction is differ-
ent, then it is called as transversely isotropic and if its response along three
directions are different, it is called orthotropic.

6.4 Isotropic Hooke’s law

Having established for isotropic materials if Cauchy stress is explicitly related
to the deformation gradient, then this relationship would be of the form,

σ = f(F) = α01 + α1B + α2B
−1, (6.64)

where αi = α̂i(J1, J2, J3), called the material response functions and needs
to be determined from experiments. Thus, restriction due to objectivity, has
reduced the number of variables in the function from 9 to 3 and the number
of unknown functions from 6 to 3. Next, let us see if we can further reduce
the number of variables that the function depends upon or the number of
functions themselves. Since, in an elastic process there is no dissipation of
energy, this reduces the number of unknown functions to be determined to
just one and thus Cauchy stress is given by13,

σ =
∂W

∂J3

1 +
2

J3

[
∂W

∂J1

B− ∂W

∂J2

B−1

]
, (6.65)

where W = Ŵ (J1, J2, J3), is called as the stored (or strain) energy per unit
volume of the reference configuration. Notice that here the stored energy
function is the only function that needs to be determined through experi-
mentation.

13Derivation of this equation is beyond the scope of this course.
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In practice, the materials undergo a non-dissipative process only when the
relative displacements are small, resulting in the components of the displace-
ment gradient being small. Hence, it is of interest to see the implications of
this approximation on a general representation for Cauchy stress (6.64).

In chapter 3 (section (3.5.1), we saw that the deformation gradient is
related to the Lagrangian and Eulerian displacement gradient as:

F = H + 1, F−1 = 1− h. (6.66)

Hence, the left Cauchy-Green deformation tensor is given by

B = H + Ht + HHt + 1, B−1 = 1− h− ht + hth. (6.67)

If tr(HHt) << 1 and tr(hht) << 1, then we could approximately calculate
the left Cauchy-Green deformation tensor as

B ≈ H + Ht + 1, B−1 ≈ 1− h− ht. (6.68)

We also saw in chapter 3 (section 3.8) that when tr(HHt) << 1 and tr(hht)
<< 1, H ≈ h. Therefore we need not distinguish between the Lagrangian and
Eulerian linearized strain. By virtue of these approximations the expressions
in equation (6.68) can be written as:

B ≈ 2ε+ 1, B−1 ≈ 1− 2ε, (6.69)

where ε denotes the (Lagrangian or Eulerian) linearized strain tensor. Con-
sequently, the invariants are calculated approximately as14

J1 ≈ 3 + 2tr(ε), J2 ≈ 3− 2tr(ε), J3 ≈ 1 + tr(ε). (6.70)

Substituting (6.69) in a general representation for stress in a isotropic
material, (6.64) we obtain

σ = αl01 + αl1ε. (6.71)

14The last expression is obtained by substituting (6.69) in J3 =
√
I2/J2 and using

Taylor’s series expansion about tr(ε) = 0, to obtain

J3 =

√
I2
J2

=

√
J2
1 − tr(B2)

2J2
≈

√
3 + 4tr(ε)

3− 2tr(ε)
≈
√

1 + 2tr(ε) ≈ 1 + tr(ε).
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where
αl0 = α0 + α1 + α2, αl1 = 2(α1 − α2), (6.72)

are functions of tr(ε) by virtue of (6.70). It is necessary that αl0 should be a
linear function of tr(ε) and αl1 a constant; because we neglected the higher
order terms of ε to obtain the above expression. Consequently, the expression
for Cauchy stress (6.71) simplifies to,

σ = tr(ε)λ1 + 2µε, (6.73)

where λ and µ are Lamè constants and these constants alone need to be
determined from experiments. The relation (6.73) is called the Hooke’s law
for isotropic materials.

Since, the relation between the Cauchy stress and linearized strain is
linear we can invert the constitutive relation (6.73) and write the linearized
strain in terms of the stress as,

ε =
1

2µ
σ − λ

2µ(3λ+ 2µ)
tr(σ)1. (6.74)

Taking trace on both sides of equation (6.73) we obtain,

tr(σ) = tr(ε)[3λ+ 2µ], (6.75)

on noting that tr(·) is a linear operator and that tr(1) = 3. Thus, equation
(6.74) is obtained by rearranging equation (6.73) and using equation (6.75).

Lamè constants while allows one to write the constitutive relations suc-
cinctly, their physical meaning and the methodology for their experimental
determination is not obvious. Hence, we define various material parameters,
such as Young’s modulus, shear modulus, bulk modulus, Poisson’s ratio,
which have a physical meaning and is easy to determine experimentally.

Before proceeding further, a few comments on the Hooke’s law has to be
made. From the derivation, it is clear that (6.73) is an approximation to the
correct and more general (6.64). Consequently, Hooke’s law does not have
some of the characteristics one would expect a robust constitutive relation
to possess. The first drawback is that contrary to the observations rigid
body rotations induces stresses in the body. To see how this happens, recall
from chapter 3 (section 3.10.1) that linearized strain is not zero when the
body is subjected to rigid body rotations. Since, strain is not zero, it follows
from (6.73) that stress would be present. The second drawback is that the
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Figure 6.3: Uniaxial loading of a cuboid

constitutive relation (6.73) does not by itself satisfy the restriction due to
objectivity. In fact it is not even Galilean invariant. Given that, due to
equivalent placement of the body the displacement gradient transforms as
given in equation (6.19) and Cauchy stress transforms as given in equation
(6.25), it is evident that the restriction due to non-uniqueness of placers is
not met. Despite these drawbacks, it is useful and gives good engineering
estimates of the stresses and displacements under applied loads in certain
classes of bodies.

6.5 Material parameters

In this section, we define the various material parameters and relate them to
the Lamè constants. We do this by defining the stress that is applied on the
body in the shape of a cuboid. Since, the body is assumed to obey Hooke’s
law, the state of strain gets fixed once the state of stress is specified because
of the relation (6.74). Consequently, these parameters can be defined by
prescribing the state of strain in the body as well.

6.5.1 Young’s modulus and Poisson’s ratio

Consider a cuboid being subjected to a uniform normal traction on two of
its faces as shown in figure 6.3. Assuming the stress field is uniform, that
is spatially constant, the Cartesian components of the stress at any point in
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the body is,

σ =

σa 0 0
0 0 0
0 0 0

 . (6.76)

Substituting the above in equation (6.74) for the stress we obtain the strain
as

ε =

 1
2µ

[
1− λ

3λ+2µ

]
σa 0 0

0 − λ
2µ(3λ+2µ)

σa 0

0 0 − λ
2µ(3λ+2µ)

σa

 (6.77)

Now, Young’s modulus, E, is defined as the ratio of the uniaxial stress to the
component of the linearized strain along the direction of the applied uniaxial
stress, i.e.,

E =
σxx
εxx

=
2µ

1− λ
(3λ+2µ)

=
µ(3λ+ 2µ)

(λ+ µ)
. (6.78)

The Poisson’s ratio , ν is defined as the negative of the ratio of the component
of the strain along a direction perpendicular to the axis of loading, called the
transverse strain to the component of the strain along the axis of loading,
called the axial strain, i.e.,

ν = − εyy
εxx

=
λ

2(λ+ µ)
. (6.79)

In equations (6.78) and (6.79) we expressed the Young’s Modulus and
Poisson’s ratio in terms of the Lamè constants. This relation can be inverted
to express Lamè constants in terms of E and ν as,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(6.80)

Finally, substituting equation (6.80) in equation (6.73) and (6.74), the
constitutive relations can be written in terms of the Young’s modulus and
Poisson’s ratio as,

σ =
Eν

(1 + ν)(1− 2ν)
tr(ε)1 +

E

(1 + ν)
ε, (6.81)

ε =
(1 + ν)

E
σ − ν

E
tr(σ)1. (6.82)
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6.5.2 Shear Modulus

Consider a cuboid being subjected to uniform pure shear stress of the form

σ =

0 τ 0
τ 0 0
0 0 0

 . (6.83)

Substituting the above state of stress in (6.74), the state of strain is obtained
as,

ε =
1

2µ

0 τ 0
τ 0 0
0 0 0

 . (6.84)

In chapter 3, section 3.10.3, we showed that if the angle change between
two line segments oriented along X and Y direction is κ, then this simple
shearing deformation results in,

ε =
1

2

0 κ 0
κ 0 0
0 0 0

 . (6.85)

Then, the shear modulus, G is defined as the ratio of the shear stress (τ) to
change in angle (κ) due to this applied shear stress between two orthogonal
line elements in the plane of shear i.e.,

G =
τ

κ
= µ. (6.86)

Using equation (6.80b), the shear modulus can be written in terms of the
Young’s modulus and Poisson’s ratio as,

G =
E

(1 + ν)
. (6.87)

6.5.3 Bulk Modulus

Consider a cuboid being subjected to uniform pure hydrostatic stress,

σ = p

1 0 0
0 1 0
0 0 1

 . (6.88)
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Using (6.74) it could be seen that the above state of stress result in the strain
tensor being,

ε =
p

(3λ+ 2µ)

1 0 0
0 1 0
0 0 1

 . (6.89)

The bulk modulus, K, is defined as the ratio of the mean hydrostatic stress to
the volumetric strain when the body is subjected to pure hydrostatic stress.
Thus,

K =
tr(σ)

3tr(ε)
=

1

3
(3λ+ 2µ). (6.90)

Now, we would like to express the bulk modulus in terms of Young’s modulus
and Poisson’s ratio. Towards this, we substitute equation (6.80) in (6.90) to
obtain

K =
E

3(1− 2ν)
. (6.91)

6.6 Restriction on material parameters

Next, we would like to limit the range of values that these material param-
eters can take so that the response predicted by using these constitutive
relations confirm with the observations.

Let us now see why Young’s and shear modulus cannot be ∞. From the
definition of the Young’s modulus we find that the axial displacement due
to an applied axial load has to be zero if E = ∞. Similarly, if G = ∞ the
change in angle due to an applied shear stress is zero. These would happen
only if the body is rigid since, no strain develops despite stress being applied.
However, the focus of the study here is deformable bodies. Hence, we obtain
the condition that E < ∞, G < ∞.

However, the bulk modulus can be ∞. From the definition of bulk mod-
ulus, it is clear that if K = ∞ for some material, then the volumetric strain
developed due to applied hydrostatic pressure, for these materials has to be
zero. This means that the volume of the body made of this material does not
change, the material is incompressible. Some materials like rubber, polymers
are known to be nearly incompressible. Moreover, it is also known that the
volume of these materials do not change in any deformation. This means that
these materials are capable of undergoing only isochoric deformations. Con-
stitutive relations for such incompressible materials are obtained in section
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6.7.1.
Since, we expect that tensile stress produce elongation and compressive

stresses produce shortening, the three modulus - Young’s, shear and bulk
- should be positive. Since, E is positive, for G to be positive and finite,
equation (6.87) requires (1 + ν) > 0. Thus,

ν > −1. (6.92)

Note that, this is a strict inequality because if (1 + ν) = 0, G = ∞, (since 0
< E < ∞) which is not permissible.

Similarly, for K to be positive, it transpires from equation (6.91) that
(1− 2ν) ≥ 0, since E is positive. Hence,

ν ≤ 0.5. (6.93)

Here we allow for equality because K can be ∞.
Combining these both restrictions (6.92) and (6.93) on the Poisson’s ratio,

− 1 < ν ≤ 0.5. (6.94)

Thus, Poisson’s ratio can be negative, and it has been measured to be neg-
ative for certain foams. What this means is that as the body is stretched
along a particular direction, the cross sectional area over which the load is
distributed can increase. However, for most materials, especially metals, this
cross sectional area decreases and therefore the Poisson’s ratio is positive.

Finally, we show that the three modulus values cannot be zero. From
the definition of these modulus, they being zero means that, any amount of
strain can develop even when no stress is applied. This means that there can
be displacement without the force, when the modulus value is zero. Since,
there has to be force for displacement, this means that the modulus cannot
be zero.

In table 6.1 the restrictions on various parameters are summarized. The
point to note is that one of the Lamè constants, λ has no restrictions. From
equation (6.80), it can be seen that if 0 ≤ ν ≤ 0.5, then from the restrictions
on E and ν it can be said that λ ≥ 0. However, λ < 0 for certain foams
whose Poisson’s ratio is negative. Therefore λ has no restrictions.

6.7 Internally constraint materials

Till now we have been focusing on materials that have no internal constraint,
that is, if the required body force and boundary traction can be applied, any
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Table 6.1: Restrictions on material parameters

Material Parameter Symbol Restriction
Young’s modulus E 0 < E < ∞
Shear modulus G 0 < G < ∞
Bulk modulus K 0 < K ≤ ∞
Poisson’s ratio ν −1 < ν ≤ 0.5

Lamè constant
µ 0 < µ < ∞
λ −∞ < λ < ∞

smooth displacement field can be realized in bodies made of these materials.
However, in some materials this is not true. Only smooth displacement fields
that satisfy certain constraints are realizable. The most common constraint
on the displacement field is that it be volume preserving. Contrary to the
reality, beginners tend to think that in all materials volume is preserved in
all feasible deformations just because the cross sectional area reduces when
uniaxially stretched. However, this is not true. We show this next. Recol-
lecting from chapter 3 (section 3.6) that the ratio of the deformed volume, v
to the original volume, V in case of homogeneous deformation is given by,

v

V
= det(F) ≈ 1 + tr(ε) (6.95)

where we have used equation (6.70c) to approximately compute det(F) when
the components of the displacement gradient are small. Using equation (6.77)
that gives the state of strain in the cuboid subjected to uniaxial stress, σa,
the change in its volume is computed to be

v − V = V tr(ε) = V
σa

(3λ+ 2µ)
= V

σa
3K

= V
σa
E

(1− 2ν), (6.96)

where the last two equalities are obtained using equation (6.90) and (6.91).
Thus, it is apparent that the volume of the cuboid changes as the magnitude
of the uniaxial stress changes when ν 6= 0.5. For physically possible val-
ues of Poisson’s ratio, other than 0.5, the volume increases when uniaxially
stretched and decreases when compressed.

In this section, we outline general principle to generate constitutive re-
lations for internally constrained materials. Assuming that the materials
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internal constraint can be given by a equation of the form,

ζ̄(F) = 0, (6.97)

where ζ̄ is a scalar valued function. The requirement that the internal con-
straint (6.97) be objective necessitates

ζ̄(F) = ζ̄(QFQt
o), ∀ orthogonal Qand Qo. (6.98)

For (6.98) to hold:

ζ̄(F) = ζ̌(B) = ζ̆(J1, J2, J3) = 0, (6.99)

where Ji are the invariants of B as defined in (6.33). The proof for this is
left as an exercise; the steps leading to this is similar to that used to obtain
the constitutive representation for Cauchy stress.

In order to accommodate its motion to an internal constraint a material
body must be able to bring appropriate contact forces into play and the
constitutive equation governing its stress response must be such as to allow
these forces to act. Thus, the stress at a point x and time t is uniquely
determined by the value of the deformation gradient to within a symmetric
tensor A which is not determined by the motion of the body and which does
no work in any motion compatible with the constraints, i.e.,

σ = α01 + α1B + α2B
−1 + A, (6.100)

where αi = α̂i(J1, J2, J3) are the same material response functions as defined
before in (6.32) and Ji’s are invariants of B defined in (6.33).

It can be shown that15, the rate at which the applied stresses does work
is given by the expression σ · l, where l = grad(v), the Eulerian gradient of
the velocity field. Hence, the requirement that A do no work requires that

A · l = 0, (6.101)

15Derivation of this can be found in standard text books in continuum mechanics like
[1, 2]. For understanding these derivation a lot more concepts needs to be grasped which
is beyond the scope of this course. In fact, the following derivation here is also not easy
to follow; but made as simple as possible. To proceed further in this course, it suffices to
understand that there is a formal procedure to obtain constitutive relations for materials
with constraints.
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for all allowable motions. To relate A with ζ̌ we take material time derivative
of (6.99) to obtain

∂ζ

∂B
B · l = 0. (6.102)

Now let

A = p
∂ζ

∂B
B, (6.103)

where p is an arbitrary scalar to be determined from boundary conditions
and/or equilibrium equations. While it is easy to show that, the above choice
for the constraint stress satisfies the requirement (6.101), it is difficult to show
that this is the only choice and is beyond the scope of this course.

Hence, a general representation for stress with kinematic constraint (6.99)
is given by

σ = α01 + α1B + α2B
−1 + p

∂ζ

∂B
B, (6.104)

with a undetermined scalar p to be found using equilibrium equations and/or
boundary conditions.

6.7.1 Incompressible materials

As already discussed, material that can undergo only isochoric motions is
called incompressible material. As was shown in chapter - 3 for isochoric
motions, det(F) = J3 = 1. Hence,

ζ̆(J1, J2, J3) = J3 − 1 = 0. (6.105)

Substituting (6.105) in (6.103) and using (2.189) we obtain

A = p
J3

2
B−1B = −p∗1, (6.106)

where p∗ = −p/2. Consequently, a general representation for Cauchy stress
(6.104) for incompressibility constraint reduces to,

σ = (α0 − p∗)1 + α1B + α2B
−1, (6.107)

where now, αi = αi(J1, J2) since J3 is identically 1. Now introducing, p+ =
−α0 + p∗, we obtain

σ = −p+1 + α1B + α2B
−1, (6.108)
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where without any loss of generality we assume p+ to be some arbitrary scalar
to be determined from boundary conditions and/or equilibrium equations.
For convenience and brevity in notation we shall drop the superscript + in
p+ and write

σ = −p1 + α1B + α2B
−1, (6.109)

which we consider as the most general representation for Cauchy stress in an
incompressible material being subjected to elastic deformation.

As before (see section 6.4), it can be shown that when the components
of the displacement gradient is small, the kinematical constraint equation
(6.105) reduces to requiring,

tr(ε) = 0, (6.110)

and consequently the equation (6.109) can be approximated as,

σ = −p1 + 2µincε, (6.111)

where µinc is a constant material parameter and p is an arbitrary scalar
to be determined from equilibrium equations and/or boundary condition.
Equation (6.111) is the constitutive relation for an incompressible material
undergoing elastic deformation such that the components of the displacement
gradient are small.

Before concluding this section, we would like to find the value of all the
material parameters defined in section 6.5 for this incompressible material.

In case of the cuboid being subjected to uniaxial stress, the state of stress
and strain are:

σ =

σa 0 0
0 0 0
0 0 0

 , ε =

ε1 0 0
0 ε2 0
0 0 ε2

 . (6.112)

The incompressibility condition (6.110) requires that

ε1 + 2ε2 = 0. (6.113)

Hence, the incompressible materials Poisson’s ratio,

νinc = −ε2
ε1

= 0.5. (6.114)
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Substituting (6.112) along with the requirement that ε2 = −ε1/2 obtained
from (6.113) for stress and strain in (6.111) we obtain:σa 0 0

0 0 0
0 0 0

 =

−p+ 2µincε1 0 0
0 −p− µincε1 0
0 0 −p− µincε1

 . (6.115)

For the above equation to hold, p = −µincε1 and hence, σa = 3µincε1. Thus,
the incompressible materials Young’s modulus,

Einc =
σa
ε1

= 3µinc. (6.116)

If the cuboid is being subjected to pure shear state of stress and strain,

σ =

0 τ 0
τ 0 0
0 0 0

 , ε =

 0 κ/2 0
κ/2 0 0
0 0 0

 , (6.117)

then it is straightforward to verify that for this state of strain tr(ε) = 0
and therefore the incompressibility condition (6.110) is met. Substituting,
(6.117) in (6.111) we obtain:0 τ 0

τ 0 0
0 0 0

 =

 −p µincκ 0
µincκ −p 0

0 0 −p

 . (6.118)

For this equation to hold, p = 0 and τ = µincκ. Now, the incompressible
shear modulus is,

Ginc =
τ

κ
= µinc. (6.119)

Finally, if a incompressible cuboid is subjected to hydrostatic pressure,
σ = −p1 and ε = 0, for the incompressibility constraint (6.110) and the
constitutive relation (6.111) to hold. Thus, incompressible materials bulk
modulus, Kinc = ∞.

Understandably there is only one material parameter in (6.111). The
incompressibility constraint (6.110) requires that νinc = 0.5 or equivalently,
Kinc =∞ there by fixing one of the two independent material parameters in
the isotropic Hooke’s law.

As you would have noticed, for incompressible materials, both the state of
stress and strain are prescribed and found necessary to solve certain boundary
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value problems. On the other hand for unconstrained materials only stress (or
strain) needs to be specified for the same boundary value problems. Hence,
the solution techniques used for solving unconstrained materials is different
from that of constrained materials. In the remainder of this course we focus
on the unconstrained materials.

6.8 Orthotropic Hooke’s law

From the above exposition it would have been clear that isotropic Hooke’s
law is an approximation to a more general theory. We could proceed in a
similar fashion to obtain orthotropic Hooke’s law. On the other hand, as
is done in many textbooks on linearized elasticity, we can begin by stating
that the Cauchy stress is linearly related to the linearized strain, impose the
restriction due to material symmetry on this constitutive relation and obtain
isotropic or orthotropic Hooke’s law. However, there are some differences in
the orthotropic Hooke’s law obtained by these two approaches. Without de-
veling into these differences, in this section we obtain the orthotropic Hooke’s
law by the second approach.

Since, we assume that the second order tensor stress is linearly related to
another second order tensor, the strain, we say that the stress is obtained by
the action of a fourth order tensor on strain,

σ = C : ε, (6.120)

where C is the fourth order elasticity tensor. Equivalently, one may invert
the equation (6.120) to write strain in terms of stress as,

ε = D : σ, (6.121)

where D is the fourth order elastic compliance tensor.

Recalling from chapter 2 (section 2.4) the fourth order tensor has 81
components. As discussed in section 2.4.1, for the following discussion it is
easy to view second order tensors as column vectors with 9 components and
fourth order tensors as 9 by 9 matrix. By virtue of the stress and strain being
symmetric tensors, with only six independent components equation (6.120)
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can be written as,

σxx
σyy
σzz
σxy
σxz
σyz


=


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





εxx
εyy
εzz
εxy
εxz
εyz


. (6.122)

Thus, of the 81 components only 36 are independent.
As stated before, since elastic process is non-dissipative, the stress is

derivable from a potential called the stored (or strain) energy, W as,

σ =
∂W

∂ε
, (6.123)

where W = Ŵ (ε). The above equation in index notation is given by

σi =
∂W

∂εi
, (6.124)

when the stress and strain tensors are represented as column vectors with six
components. Now, σ1 = σxx, σ2 = σyy, σ3 = σzz, σ4 = σxy, σ5 = σxz, σ6 =
σyz and ε1 = εxx, ε2 = εyy, ε3 = εzz, ε4 = εxy, ε5 = εxz, ε6 = εyz. This is just
a change in notation.

It follows from (6.120) that the elasticity tensor could be obtained from

C =
∂σ

∂ε
, in index notation (C)ij =

∂σi
∂εj

. (6.125)

Substituting (6.124) in the above equation,

Cij =
∂2W

∂εj∂εi
. (6.126)

Thus, if W is a smooth function of strain, which it is, then the order of differ-
entiation would not matter. Hence, elasticity tensor would be a symmetric
fourth order tensor. This means that the number of independent components
in C reduces from 36 to 21 components.

Further reduction in the number of independent components of the elas-
ticity tensor cannot be done by restriction due to non-uniqueness of placers
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argument. Given that, due to equivalent placement of the body the dis-
placement gradient transforms as given in equation (6.19) and Cauchy stress
transforms as given in equation (6.25), it is evident that the restriction due
to non-uniqueness of placers is not met by the constitutive relation (6.120).
Then, due to changes in the coordinate basis, the elasticity tensor should
transforms as

C̃ijkl = QiaQjbQkcQldCabcd, (6.127)

according to the transformation law for fourth order tensor (see section 2.6).
Ideally we should require that the components of the elasticity tensor be the
same irrespective of the choice of the basis. In other words, this means, as
discussed in section 2.6.3, that the elasticity tensor should be the isotropic
fourth order tensor. Since, the elasticity fourth order tensor is symmetric, in
the general representation for the isotropic fourth order tensor (2.165), γ =
β = µ and thus,

C = λ1⊗ 1 + µ[I + Ī], (6.128)

where we have replaced the constant α with λ. This λ and µ are the same
Lamè constants. Writing (6.128) in matrix form,

C =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

 . (6.129)

Thus, we have obtained the isotropic form of the Hooke’s law.
Contrary to this ideal requirement, it is required that the components of

the elasticity tensor be the same only for certain equivalent choices of the
basis vectors. A material with three mutually perpendicular planes of sym-
metry is called orthotropic. This means that 180 degree rotation about each
of the coordinate basis should not change the components of the elasticity
tensor. Thus, for an orthotropic material the components of C̃ must be same
as that of C in (6.127) for the following choices of Qpq:

[Q]pq =

−1 0 0
0 −1 0
0 0 1

 , [Q]pq =

1 0 0
0 −1 0
0 0 −1

 , [Q]pq =

−1 0 0
0 1 0
0 0 −1

 .

(6.130)
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It can be seen that as a result of this condition, the number of independent
components in the elasticity tensor reduces from 21 to 9 for an orthotropic
material and hence C for an orthotropic material is given by:

C =


C1 C2 C3 0 0 0
C2 C4 C5 0 0 0
C3 C4 C6 0 0 0
0 0 0 C7 0 0
0 0 0 0 C8 0
0 0 0 0 0 C9

 , (6.131)

where C1, C2, . . ., C9 are material parameters.
Similarly, for other equivalent choices of the basis vector, we obtain dif-

ferent forms for the elasticity tensor.
One can now define material parameters like Young’s modulus, Poisson’s

ratio, shear modulus and elaborate on the experiments that needs to be done
to estimate the 9 constants characterizing the orthotropic material. Then,
one can look at restrictions on them. Instead of doing these, we now focus
on solving boundary value problems involving isotropic materials that obey
Hooke’s law.

6.9 Summary

In this chapter, we saw what a constitutive relation is? why do we need
constitutive relations? Then we understood what we mean by an elastic re-
sponse. This was followed by a discussion on the general restrictions that
the constitutive relation has to satisfy and its application to get a general
representation for Cauchy stress in an isotropic material undergoing elas-
tic process. When the components of the displacement gradient are small,
we showed that this general representation reduces to isotropic Hooke’s law.
Then, we introduced the various material parameters used to express the
Hooke’s law and established the relationship between them. We also found
physically reasonable range of values that these parameters can take. While
all these were dealt with in detail, we looked briefly on how to obtain con-
stitutive relations for materials with constraints. As an illustration of this
methodology, we obtained the constitutive relation for incompressible mate-
rials, materials which undergo only isochoric deformations. Finally, we also
derived the Hooke’s law for orthotropic materials. The one equation that
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should be remembered from this chapter is:

σ = λtr(ε)1 + 2µε. (6.132)

6.10 Self-Evaluation

1. A body in the form of a cube of side 10 cm is subjected to a deformation
of the form: x = (1+a1)X+a2Y , y = (1+a3)Y , z = (1+a4)Z, where ai’s
are constants and (X, Y, Z) are the Cartesian coordinates of a material
point before deformation and (x, y, z) are the Cartesian coordinates of
the same material point after deformation. If the Cauchy stress, σ
is related to the deformation gradient, F, through σ = µ[1 − FFt],
where µ is a constant. Find the (a) Cauchy stress, (b) First Piola-
Krichhoff stress, and (c) Second Piola-Krichhoff stress, for the above
deformations. Then, show that all these three stresses are nearly the
same when ai’s are small.

2. Show that a plane stress state will result in a plane strain state only
when tr(σ) = 0 in a material that obeys isotropic Hooke’s law. Rec-
ollect that this state of stress wherein tr(σ) = 0 is called pure shear
state of stress.

3. Show that a plane strain state will result in a plane stress state only
when tr(ε) = 0 in a material that obeys isotropic Hooke’s law.

4. Find the relationship between shear modulus, bulk modulus and Pois-
son’s ratio.

5. A cube of side 1 cm, defined by B = {(X, Y, Z)|0 ≤ X ≤ 1cm, 0 ≤
Y ≤ 1cm, 0 ≤ Z ≤ 1cm} obeying isotropic Hooke’s law with Young’s
modulus, E = 200 GPa and Poisson’s ratio, ν = 0.3 is subjected to an
uniform Cauchy stress,

σ =

−100 50 0
50 100 0
0 0 0

MPa,

corresponding to an orthonormal Cartesian basis ({ex, ey, ez}). For
this cube:
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(a) Determine the linearized strain, ε

(b) Determine the displacement vector given that the displacement of
the point (0, 0, 0), u(0, 0, 0) = o and that of the point (0, 0, 1) is
u(0, 0, 1) = o .

(c) Determine the location of the particle originally at Cartesian co-
ordinates (1, 0, 1)

(d) Determine the location of the particle in the reference configura-
tion, if its current Cartesian coordinates are (1, 0, 1)

(e) Determine the displacement of the particle originally at Cartesian
coordinates (1, 0, 1)

(f) Determine the displacement of the particle currently at Cartesian
coordinates (1, 0, 1)

(g) Calculate the change in the angle between two line segments ini-
tially oriented along ey and ez directions in the reference configu-
ration

(h) Calculate the change in the volume of the cube

(i) Calculate the deformed surface area and its orientation for each
of the six faces of a cube

(j) Calculate the change in length of the straight line segments of
length 1 mm oriented initially along (i) ex (ii) ey (iii) (ex+ey)/

√
2

(k) Determine the displaced location of the material particles which
originally comprise

(i) The plane circular surface Z = 0, X2 + Y 2 = 0.25,

(ii) The plane elliptical surface Z = 0, 9X2 + 4Y 2 = 1.

(iii) The plane elliptical surface Z = 0, 4X2 + 9Y 2 = 1.

(l) Sketch the displaced configurations for (i), (ii) and (iii) in the
above problem.

(m) Sketch the deformed configuration of the cube.

6. A cube of side 1 cm, defined by B = {(X, Y, Z)|0 ≤ X ≤ 1cm, 0 ≤
Y ≤ 1cm, 0 ≤ Z ≤ 1cm} obeying isotropic Hooke’s law with Young’s
modulus, E = 200 GPa and Poisson’s ratio, ν = 0.3 is subjected to an
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uniform Cauchy stress,

σ =

−100 50 0
50 100 0
0 0 100

MPa,

corresponding to an orthonormal Cartesian basis ({ex, ey, ez}). For
this cube find parts (a) through (m) in problem 5.

7. A cube of side 1 cm is subjected to a displacement field of the form, u
= (A ∗ y + 2A ∗ z)ey + (3A ∗ y − A ∗ z)ez, where (x, y, z) denotes the
coordinates of a typical material particle in the current configuration,
{ei} the Cartesian coordinate basis and A = 10−4, a constant. If the
cube is made up of a material that obeys isotropic Hooke’s law with
Young’s modulus, E = 200 GPa and Poisson’s ratio, ν = 0.3,

(a) Find the Cartesian components of the Cauchy stress with respect
to the {ei} basis.

(b) Identify whether this stress states correspond to the plane stress

(c) Find the normal and shear stress on a plane whose normal is
oriented along the ex direction.

(d) Find the normal and shear stress on a plane whose normal makes
equal angles with all the three basis vectors, i.e., n = (ex + ey +
ez)/
√

3.

(e) Find the components of the stress tensor in the new basis {ẽx, ẽy, ẽz}.
The new basis is obtained by rotating an angle 30 degrees in the
clockwise direction about ez axis.

(f) Find the principal invariants of the stress

(g) Find the principal stresses

(h) Find the maximum shear stress

(i) Find the plane on which the maximum normal stresses occurs

(j) Find the plane on which the maximum shear stress occurs

(k) Find the normal stress on the plane on which the maximum shear
stress occurs

(l) Find the shear stress on the plane on which the maximum normal
stress occurs.
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(m) Find the normal and shear stresses on the octahedral plane

(n) Find the hydrostatic and deviatoric component of the stress

8. A cube of side 10 cm and made up of a material that obeys isotropic
Hooke’s law with Young’s modulus, E = 200 GPa and Poisson’s ratio,
ν = 0.3, is subjected to a uniform plane state of strain whose Cartesian
components are:

ε =

 1 −2 0
−2 3 0
0 0 0

 ∗ 10−4. (6.133)

For this constant strain field, solve parts (a) through (n) in problem 7.

9. A body in the form of a unit cube, B = {(X, Y, Z)|0 ≤ X ≤ 1, 0 ≤
Y ≤ 1, 0 ≤ Z ≤ 1} in the reference configuration, is subjected to the
following linearized strain field:

ε =

 AY 3 +BX2 CXY (X + Y ) 0
CXY (X + Y ) AX3 +DY 0

0 0 0

 , (6.134)

where A, B, C, D are constants. Find conditions, if any, on the con-
stants if this strain field is to be obtained from a smooth displacement
field of the cube. For this value of the constants, find the stress field if
the cube obeys isotropic Hooke’s law with Young’s modulus, E = 200
GPa and Poisson’s ratio, ν = 0.3 and verify if this stress field satis-
fies the equilibrium equations assuming that there are no body forces
acting on the cube and that the cube is in static equilibrium.

10. Determine which of the following Cauchy stress fields are realizable in
a body that obeys isotropic Hooke’s law and which is at rest assuming
that there are no body forces acting on it:

(a) σ =

−3
2
x2y2 xy3 0
xy3 −1

4
y4 0

0 0 0

 ,

(b) σ =

3yz z2 5y2

z2 7xz 2x2

5y2 2x2 9xy

 ,
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(c) σ =

3x+ 5y 7x− 3y 0
7x− 3y 2x− 7y 0

0 0 0

 ,

(d) σ =

 3x −3y 0
−7x 7y 0

0 0 0

 ,

where the components of the stress are with respect to orthonormal
Cartesian basis and (x, y, z) denote the Cartesian coordinates of a typ-
ical material particle in the current configuration of the body. Recollect
that for a stress field to be realizable in a body it should not only satisfy
the equilibrium equations but also the compatibility conditions.
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Chapter 7

Boundary Value Problem:
Formulation

7.1 Overview

In the previous chapters, we mastered the basic concepts of strain and stress
along with the four basic equations, namely, the strain-displacement relation,
compatibility condition, constitutive relation and the equilibrium equations.
We are now in a position to find the stresses and displacement throughout
the body - in the interior as well as in its boundary - given the displacement
over some part of the boundary of the body and the traction on some other
part of the boundary. Usually the part of the boundary where traction is
specified, displacement would not be given and vice versa. In this course we
shall formulate the boundary value problem for a body made up of isotropic
material obeying Hooke’s law and deforming in such a manner that the rel-
ative displacement between its particles is small1. Then, we discuss three
strategies to solve this boundary value problem.

Before we endeavor on the formulation of the boundary value problem
and discuss strategies to solve it, we recollect and record the basic equations.
If u represents the displacement that the particles undergo from a stress
free reference configuration to the deformed current configuration with the
deformation taking place due to application of the traction on the boundary,

1This condition is to ensure that the components of the displacement gradient is small.

205
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then we define the linearized strain as,

ε =
1

2
[h + ht], (7.1)

where, h = grad(u). The equation (7.1) is called as the strain displacement
relation. The constitutive relation that relates the stress to the strain that is
to be used in this course is the Hooke’s law. The various forms of the same
Hooke’s law that would be used is recorded:

σ = λtr(ε)1 + 2µε, (7.2)

σ =
E

(1 + ν)

[
ν

(1− 2ν)
tr(ε)1 + ε

]
, (7.3)

ε =
(1 + ν)

E
σ − ν

E
tr(σ)1, (7.4)

where σ is the Cauchy stress, λ and µ are Lamè constants and E is the
Young’s modulus and ν is the Poisson’s ratio. The conservation of linear
momentum equation,

div(σ) + ρ(b− a) = o, (7.5)

where ρ is the density, b is the body force per unit mass and a is the accel-
eration, for our purposes here reduces to:

div(σ) = o, (7.6)

since we have ignored the body forces and look at configurations that are
in static equilibrium under the action of the applied static traction. That is
the displacement is assumed not to depend on time. It is appropriate that
we discuss these assumptions in some detail. By ignoring the body forces we
are ignoring the stresses that arise in the body due to its own mass. Since,
these stresses are expected to be much small in comparison to the stresses
induced in the body due to traction acting on its boundary and these stresses
practically do not vary over the surface of the earth, ignoring the body forces
is justifiable. In the same spirit, all that we require is that the magnitude of
acceleration be small, if not zero.

Finally, we document the compatibility conditions; the conditions that
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ensures the existence of a smooth displacement field given a strain field:

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

(7.7)

∂2εyy
∂z2

+
∂2εzz
∂y2

= 2
∂2εyz
∂y∂z

(7.8)

∂2εxx
∂z2

+
∂2εzz
∂x2

= 2
∂2εxz
∂x∂z

(7.9)

∂

∂y

(
∂εxy
∂z

+
∂εyz
∂x
− ∂εxz

∂y

)
=

∂2εyy
∂z∂x

(7.10)

∂

∂z

(
∂εyz
∂x

+
∂εxz
∂y
− ∂εxy

∂z

)
=

∂2εzz
∂x∂y

(7.11)

∂

∂x

(
∂εxz
∂y

+
∂εxy
∂z
− ∂εyz

∂x

)
=

∂2εxx
∂y∂z

(7.12)

7.2 Formulation of boundary value problem

Formulation of the boundary value problem involves specification of the ge-
ometry of the body, the constitutive relation and the boundary conditions.
To elaborate, we have to define the region of the Euclidean point space
the body occupies in the reference configuration, which is denoted by B.
For example, the body might occupy a region that is a unit cube, then us-
ing Cartesian coordinates the body is defined as B = {(X, Y, Z)|0 ≤ X ≤
1, 0 ≤ Y ≤ 1, 0 ≤ Z ≤ 1}. Alternatively, the body might be the annular
region between two annular cylinders of radius Ro and Ri and height H,
then using cylindrical polar coordinates the body may be defined as B =
{(R,Θ, Z)|Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ H}. The boundary of the
body, denoted as ∂B is a surface that encloses the body. For illustration,
in the cube example, the surface is composite of 6 different planes, defined
by X = 0, X = 1, Y = 0, Y = 1, Z = 0 and Z = 1 respectively and in
the annular cylinder example the surface is composed of 4 different planes,
defined by R = Ri, R = Ro, Z = 0, Z = H.

In this course, at least, the constitutive relation is known; it is Hooke’s
law for isotropic materials. In real life problem, the weakest link in the
formulation of the boundary value problem is the constitutive relation.

Then finally one needs to prescribe boundary conditions. These are speci-
fications of the displacement or traction on the surface of the body. Depend-
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ing on what is prescribed on the surface, there are four type of boundary
conditions. They are

1. Displacement boundary condition: Here the displacement is spec-
ified on the entire boundary of the body. This is also called as Dirichlet
boundary condition

2. Traction boundary condition: Here the traction is specified on the
entire boundary of the body. This is also called as Neumann boundary
condition

3. Mixed boundary condition: Here the displacement is specified on
part of the boundary and traction is specified on the remaining part of
the boundary. Both traction as well as displacement are not specified
over any part of boundary

4. Robin boundary condition: Here both the displacement and the
traction are specified on the same part of the boundary.

Once, the geometry of the body, constitutive relations and boundary
conditions are prescribed then finding the Cauchy stress and displacement
over the entire region of the body such that the displacement is continuous
and differentiable over the entire region occupied by the body and the stress
computed using this displacement field from the constitutive relation satisfies
the equilibrium equations is called as solving the boundary value problem.
If for a given geometry of the body, constitutive relations and boundary
conditions, there exists only one displacement and stress field as a solution
to the boundary value problem then the solution to the boundary value
problem is said to be unique.

Now it is appropriate to make a few comments regarding the choice of the
independent variable for the boundary value problem. That is, when we say
the region occupied by the body, we should have been more specific and said
whether this is the region occupied by the body in the reference or current
configuration. As described in section 3.4 of chapter 3, the displacement and
the stresses can be given an Eulerian or Lagrangian description, i.e.,

u = û(X) = ũ(x), σ = σ̂(X) = σ̃(x). (7.13)

In this course, to be specific, we follow the Eulerian description of these fields.
That is we use the region occupied by the body in the current configuration
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as the spatial domain of the boundary value problem. However, this domain
is not known a priori. Therefore, we approximate the region occupied by
the body in the current configuration with the region occupied by the body
in the reference configuration. This approximation is justified, since we are
interested only in problems where the components of the gradient of the
displacement field are small and the magnitude of the displacement is also
small. Then, one might ponder as to why we cannot say we are following the
Lagrangian description of these fields. In chapter 5 section 5.4.1, we showed
that the conservation of linear momentum takes different forms depending
on the description of the stress field. The equation used here (7.5) is de-
rived assuming Eulerian or spatial description of the stress field. If we use
(5.46) instead of (7.5) then we would have said we are following Lagrangian
description of these fields. Following Lagrangian description also, we would
obtain the same governing equations if we assume that the components of
the gradient of the deformation field are small and the magnitude of the
displacement is small; but we have to do a little more algebra than saying
upfront that we are following an Eulerian or spatial description.

7.3 Techniques to solve boundary value prob-

lems

Depending on the boundary condition specified the solution can be found us-
ing one of the following two techniques. Outline of these methods is presented
next.

7.3.1 Displacement method

Here we take the displacement field as the basic unknown that need to be
determined. Then using this displacement field we find the strain using the
strain displacement relation (7.1). The so computed strain is substituted in
the constitutive relation written using Lamè constants (7.2) to obtain

σ = λdiv(u)1 + µ
[
grad(u) + grad(u)t

]
, (7.14)

where we have used the definition of divergence operator, (2.208) and the
property of the trace operator (2.67). Substituting (7.14) in the reduced
equilibrium equations, under the assumption that body forces can be ignored
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and the body is in static equilibrium, (7.5) we obtain

(λ+µ)grad(div(u))+µ∆u+div(u)grad(λ)+2εgrad(µ)+ρb = ρ
D2u

Dt2
, (7.15)

where we have used equation (3.31) to write the acceleration in terms of the

displacement and D(·)
Dt
E denotes the total time derivative. In addition, to

obtain the equation (7.15), we have used the following identities:

1. Since divergence is a linear operator,

div(λdiv(u)1 + 2µε) = div(λdiv(u)1) + div(2µε), (7.16)

2. It follows from equation (2.218) that

div(λdiv(u)1) = grad(λdiv(u)), (7.17)

div(2µε) = 2εgrad(µ) + µ
[
div(grad(u)) + div((grad(u))t)

]
,

(7.18)

where we have used the fact that div is a linear operator and 1m = m
when m is any vector and 1 is the second order identity tensor.

3. From the identity (2.222) it follows that,

grad(λdiv(u)) = grad(λ)div(u) + λgrad(div(u)). (7.19)

4. Using definition of the Laplace operator (2.212)

div(grad(u)) = ∆u. (7.20)

5. Using the identity (2.211) we note that

div((grad(u))t) = grad(div(u)). (7.21)

Thus, we obtain (7.15) by substituting successive substitution of equations
(7.17) through (7.21) in (7.16).

In order to simplify equation (7.15), we make the following assumptions:

1. The body is homogeneous. Hence λ and µ are constants
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2. Body forces can be ignored

3. Body is in static equilibrium under the applied traction

In lieu of these assumptions, equation (7.15) reduces to

(λ+ µ)grad(div(u)) + µ∆u = o. (7.22)

If body forces cannot be ignored but the other two assumptions hold, then
(7.15) reduces to

(λ+ µ)grad(div(u)) + µ∆u + ρb = o. (7.23)

In this course, we attempt to find the displacement field that satisfies (7.22)
along with the prescribed boundary conditions. We compute the stress field
corresponding to the determined displacement field, using equation (7.2)
where the strain is related to the displacement field through equation (7.1).
We illustrate this method in section 7.4.1.

7.3.2 Stress method

Here we use stress as the basic unknown that needs to be determined. This
method is applicable only for cases when the inertial forces (ρa) can be
neglected. Since, we have assumed stress as the basic unknown, we want
to express the compatibility conditions (7.7) through (7.12) in terms of the
stresses. For this we compute the strains in terms of the stresses using the
constitutive relation (7.4) and substitute in the compatibility conditions to
obtain the following 6 equations:

(1− ν)

[
∂2σxx
∂y2

+
∂2σyy
∂x2

]
− ν

[
∂2σzz
∂x2

+
∂2σzz
∂y2

]
= 2(1 + ν)

∂2σxy
∂x∂y

, (7.24)

(1− ν)

[
∂2σyy
∂z2

+
∂2σzz
∂y2

]
− ν

[
∂2σxx
∂y2

+
∂2σxx
∂z2

]
= 2(1 + ν)

∂2σyz
∂y∂z

, (7.25)

(1− ν)

[
∂2σxx
∂z2

+
∂2σzz
∂x2

]
− ν

[
∂2σyy
∂x2

+
∂2σyy
∂z2

]
= 2(1 + ν)

∂2σxz
∂x∂z

, (7.26)

2(1 + ν)
∂

∂y

(
∂σxy
∂z

+
∂σyz
∂x
− ∂σxz

∂y

)
=

∂2

∂z∂x
(σyy − ν[σxx + σzz]) , (7.27)

2(1 + ν)
∂

∂z

(
∂σyz
∂x

+
∂σxz
∂y
− ∂σxy

∂z

)
=

∂2

∂x∂y
(σzz − ν[σxx + σyy]) , (7.28)

2(1 + ν)
∂

∂x

(
∂σxy
∂z

+
∂σxz
∂y
− ∂σyz

∂x

)
=

∂2

∂y∂z
(σxx − ν[σyy + σzz]) , (7.29)
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where we have assumed that the body is homogeneous and hence Young’s
modulus, E and Poisson’s ratio, ν do not vary spatially. Now, we have to
find the 6 components of the stress such that the 6 equations (7.24) through
(7.29) holds along with the three equilibrium equations

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ ρbx = 0, (7.30)

∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ ρby = 0, (7.31)

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ ρbz = 0, (7.32)

where bi’s are the Cartesian components of the body forces. The above
equilibrium equations (7.30) through (7.32) are obtained from (7.5) by setting
a = o.

If the body forces could be obtained from a potential, β = β̃(x, y, z) called
as the load potential, as

b = −1

ρ
grad(β), (7.33)

then the Cartesian components of the Cauchy stress could be obtained from
a potential, φ = φ̃(x, y, z) called as the Airy’s stress potential and the load
potential, β as,

σ =


∂2φ
∂y2

+ ∂2φ
∂z2

+ β − ∂2φ
∂x∂y

− ∂2φ
∂x∂z

− ∂2φ
∂x∂y

∂2φ
∂x2

+ ∂2φ
∂z2

+ β − ∂2φ
∂y∂z

− ∂2φ
∂x∂z

− ∂2φ
∂y∂z

∂2φ
∂x2

+ ∂2φ
∂y2

+ β

 , (7.34)

so that the equilibrium equations (7.30) through (7.32) is satisfied for any
choice of φ. Substituting for the Cartesian components of the stress from
equation (7.34) in the compatibility equations (7.24) through (7.29) and sim-
plifying we obtain:

(1− 2ν)

(ν − 1)

[
∂4φ

∂x4
+

∂4φ

∂x2∂y2
+
∂4φ

∂y4
+
∂2β

∂x2
+
∂2β

∂y2

]
=

∂2

∂z2

[
∂2φ

∂x2
+
∂2φ

∂y2

]
,(7.35)

(1− 2ν)

(ν − 1)

[
∂4φ

∂y4
+

∂4φ

∂y2∂z2
+
∂4φ

∂z4
+
∂2β

∂y2
+
∂2β

∂z2

]
=

∂2

∂x2

[
∂2φ

∂y2
+
∂2φ

∂z2

]
,(7.36)

(1− 2ν)

(ν − 1)

[
∂4φ

∂x4
+

∂4φ

∂x2∂z2
+
∂4φ

∂z4
+
∂2β

∂x2
+
∂2β

∂z2

]
=

∂2

∂y2

[
∂2φ

∂x2
+
∂2φ

∂z2

]
,(7.37)
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∂2

∂x∂z

[
2
∂2φ

∂y2
+ (1− ν)

{
∂2φ

∂x2
+
∂2φ

∂z2

}
+ (1− 2ν)β

]
= 0, (7.38)

∂2

∂x∂y

[
2
∂2φ

∂z2
+ (1− ν)

{
∂2φ

∂x2
+
∂2φ

∂y2

}
+ (1− 2ν)β

]
= 0, (7.39)

∂2

∂y∂z

[
2
∂2φ

∂x2
+ (1− ν)

{
∂2φ

∂y2
+
∂2φ

∂z2

}
+ (1− 2ν)β

]
= 0. (7.40)

Thus, a potential that satisfies equations (7.35) through (7.40) and the pre-
scribed boundary conditions is said to be the solution to the given boundary
value problem. Once the Airy’s stress potential is obtained, the stress field
could be computed using (7.34). Using this stress field the strain field is
computed using the constitutive relation (7.4). From this strain field, the
smooth displacement field is obtained by integrating the strain displacement
relation (7.1).

Plane stress formulation

Next, we specialize the above stress formulation for the plane stress case.
Without loss of generality, let us assume that the Cartesian components of
this plane stress state is

σ =

σxx σxy 0
σxy σyy 0
0 0 0

 . (7.41)

Further, let us assume that body forces are absent and that the Airy’s stress
function depends on only x and y. Thus, β = 0 and φ = φ̄(x, y). Note
that this assumption for the Airy’s stress function does not ensure σzz = 0,
whenever ∂2φ

∂x2
+ ∂2φ

∂y2
6= 0. Hence, plane stress formulation is not a specializa-

tion of the general 3D problem. Therefore, we have to derive the governing
equations again following the same procedure.

Since, we assume that there are no body forces and the Airy’s stress
function depends only on x and y, the Cartesian components of the stress
are related to the Airy’s stress function as,

σ =

 ∂2φ
∂y2

− ∂2φ
∂x∂y

0

− ∂2φ
∂x∂y

∂2φ
∂x2

0

0 0 0

 . (7.42)
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Substituting for stress from equation (7.42) in the constitutive relation (7.4)
we obtain,

ε =
1

E


∂2φ
∂y2
− ν ∂2φ

∂x2
−(1 + ν) ∂2φ

∂x∂y
0

−(1 + ν) ∂2φ
∂x∂y

∂2φ
∂x2
− ν ∂2φ

∂y2
0

0 0 −ν
[
∂2φ
∂x2

+ ∂2φ
∂y2

]
 . (7.43)

Substituting for strain from equation (7.43) in the compatibility condition
(7.7) through (7.12), the non-trivial equations are

∂4φ

∂y4
+
∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
= 0, (7.44)

∂2

∂y2

[
∂2φ

∂x2
+
∂2φ

∂y2

]
= 0, (7.45)

∂2

∂x2

[
∂2φ

∂x2
+
∂2φ

∂y2

]
= 0, (7.46)

∂2

∂x∂y

[
∂2φ

∂x2
+
∂2φ

∂y2

]
= 0, (7.47)

Now, for equations (7.45) through (7.47) to hold,

∂2φ

∂x2
+
∂2φ

∂y2
= α1x+ α2y + α3, (7.48)

where αi’s are constants. Differentiating equation (7.48) with respect to x
twice and adding to this the result of differentiation of equation (7.48) with
respect to y twice, we obtain equation (7.44). Thus, for equations (7.44)
through (7.47) to hold it suffices that φ satisfy equation (7.48) along with
the prescribed boundary conditions. Comparing the expression for εzz in
equation (7.43) and the requirement (7.48) arising from compatibility equa-
tions (7.8), (7.9) and (7.11) is a restriction on how the out of plane normal
strain can vary, i.e., εzz = ᾱ1x + ᾱ2y + ᾱ3, where ᾱi’s are some constants.
Hence, this requirement that φ satisfy equation (7.48) does not lead to solu-
tion of a variety of boundary value problems. Due to Poisson’s effect plane
stress does not lead to plane strain and vice versa, resulting in the present
difficulty. To overcome this difficulty, it has been suggested that for plane
problems one should use the 2 dimensional constitutive relations, instead of
3 dimensional constitutive relations that we have been using till now.
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Since, the constitutive relation is 2 dimensional, plane stress implies plane
strain and the three independent Cartesian components of the plane stress
and strain are related as,

εxx =
1

E
[σxx − νσyy] , εyy =

1

E
[σyy − νσxx] , εxy =

(1 + ν)

E
σxy. (7.49)

Inverting the above equations we obtain

σxx =
E

1− ν2
[εxx + νεyy] , σyy =

E

1− ν2
[εyy + νεxx] , σxy =

E

(1 + ν)
εxy.

(7.50)
By virtue of using (7.49) to compute the strain for the plane state of stress
given in equation (7.42), the only non-trivial restriction from compatibility
condition is (7.7) which requires that

∂4φ

∂y4
+
∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
= 0, (7.51)

Equation (7.51) is called as the bi-harmonic equation. Thus, for two dimen-
sional problems formulated using stress, one has to find the Airy’s stress
potential that satisfies the boundary conditions and the bi-harmonic equa-
tion (7.51). Then using this stress potential, the stresses are computed using
(7.42). Having estimated the stress, the strain are found from the two dimen-
sional constitutive relation (7.49). Finally, using this estimated strain, the
strain displacement relation (7.1) is integrated to obtain the smooth displace-
ment field. We study bending problems in chapter 8 using this approach.

Recognize that equation (7.51) is nothing but ∆(∆(φ)) = 0, where ∆(·)
is the Laplacian operator.

Next, we would like to formulate the plane stress problem in cylindrical
polar coordinates. Let us assume that the cylindrical polar components of
this plane stress state is

σ =

σrr σrθ 0
σrθ σθθ 0
0 0 0

 . (7.52)

Further, let us assume that body forces are absent and that the Airy’s stress
function depends on only r and θ, i.e. φ = φ̂(r, θ). For this case, the Cauchy
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stress cylindrical polar components are assumed to be

σ =

1
r
∂φ
∂r

+ 1
r2
∂2φ
∂θ2

− ∂
∂r

(
1
r
∂φ
∂θ

)
0

− ∂
∂r

(
1
r
∂φ
∂θ

)
∂2φ
∂r2

0
0 0 0

 , (7.53)

so that it satisfies the static equilibrium equations in the absence of body
forces, equation (7.6). Then, using a 2 dimensional constitutive relation, the
cylindrical polar components of the strain are related to the cylindrical polar
components of the stress through,

εrr =
1

E
[σrr − νσθθ] , εθθ =

1

E
[σθθ − νσrr] , εrθ =

(1 + ν)

E
σrθ. (7.54)

As shown before, the only non-trivial restriction from compatibility condition
in 2 dimensions is (7.7) and this in cylindrical polar coordinates takes the
form,

∂2εθθ
∂r2

+
1

r2

∂2εrr
∂θ2

+
2

r2
[εrr − εθθ] =

2

r

∂2εrθ
∂r∂θ

. (7.55)

Substituting equation (7.54) and (7.53) in (7.55) and simplifying we obtain,(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
φ = 0. (7.56)

A general periodic solution to the bi-harmonic equation in cylindrical polar
coordinates, (7.56) is

φ = a01+a02 ln(r)+a03r
2+a04r

2 ln(r)+
[
b01 + b02 ln(r) + b03r

2 + b04r
2 ln(r)

]
θ

+
[
a11r + a12r ln(r) +

a13

r
+ a14r

3 + a15rθ + a16rθ ln(r)
]

cos(θ)

+

[
b11r + b12r ln(r) +

b13

r
+ b14r

3 + b15rθ + b16rθ ln(r)

]
sin(θ)

+
∞∑
n=2

[
an1r

n + an2r
2+n + an3r

−n + an4r
2−n] cos(nθ)

+
∞∑
n=2

[
bn1r

n + bn2r
2+n + bn3r

−n + bn4r
2−n] sin(nθ), (7.57)

where anm and bnm are constants to be determined from boundary conditions.
We illustrate the use of this solution in section 7.4.2.
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Figure 7.1: Schematic of inflation of an annular cylinder

7.4 Illustrative example

Having formulated the boundary value problem and seen at techniques to
solve it, in this section we illustrate the same by solving some standard
boundary value problems.

7.4.1 Inflation of an annular cylinder

In the first boundary value problem that is of interest, the body is in the form
of an annular cylinder as shown in the figure 7.1. We use cylindrical polar
coordinates to study this problem. Consequently, the body in the reference
configuration is assumed to occupy a region in the Euclidean point space
defined by, B = {(r, θ, z)|ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L} that is
the region between two coaxial right circular cylinders of radius ri and ro
respectively and of length L.

The boundary conditions that is of interest are also illustrated in figure
7.1. Thus, the cylinder is held fixed at constant length. Consequently, there
is no axial displacement of the planes defined by z = 0 and z = L of the
cylinder,

uz(r, θ, 0) = uz(r, θ, L) = 0, (7.58)

where uz represents the axial component of the displacement field. Then,
the outer surface defined by r = ro, of the cylinder is traction free, i.e.,

t(er)(ro, θ, z) = o. (7.59)

On the remaining surface, the inner surface defined by r = ri, of the cylinder
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only radial stress acts as shown in figure 7.1. Therefore,

t(er)(ri, θ, z) = −pier, (7.60)

where pi is some positive constant. By virtue of the boundary conditions
being independent of time and the constitutive relation is that of an elastic2

response, we are justified in assuming that the body is in static equilibrium
under the action of boundary traction and hence a = o. Strictly, the traction
boundary condition has to be applied on the deformed surface and not on
the original surface. However, as discussed in section 7.2, we approximate
the deformed surface with the original surface since they are close, in lieu of
our assumptions that the magnitude of the displacement is small and that
the magnitude of the components of the displacement gradient is also small.

To proceed further one has to decide whether to use displacement or stress
as the basic unknown. Here we use displacement as the basic unknown. In
general, one needs to solve the three partial differential equations involving
the components of the displacement field, (7.22). Note by using (7.22) instead
of (7.15), we have ignored the body forces and as per the discussion above
we have assumed the body to be in static equilibrium.

Next, in order to avoid solving partial differential equations, appropri-
ate assumptions are made for the displacement field so that the governing
equation (7.22) reduces to a ordinary differential equation. This is possible
because, for mixed boundary condition boundary value problems for bodies
in static equilibrium and in the absence of body forces, it is shown in section
7.5.1 that there exist a unique solution for a body made up of a material that
obeys isotropic Hooke’s law. In light of the boundary condition (7.58) we as-
sume uz = 0. Further, we expect the cross section of the cylinder to deform
as shown in the figure 7.2. That is we expect the circular cross section to
remain circular but with a different radius and initially straight radial lines
on the cross section to remain straight after deformation. Further we assume
that there is no axial variation in the displacement field, that is any section
along the axis of the cylinder deforms in the same fashion. These suggest
that there is no circumferential component of the displacement field, i.e., uθ
= 0 and that the radial component of the displacement field vary radially
only. Thus,

u = ur(r)er. (7.61)

2As discussed in chapter 1, if the response is viscoelastic or viscoplastic, a constant stress
can cause a time dependent variation in the displacement or vice versa. Consequently, we
cannot drop time in the formulation for the viscoelastic or viscoplastic response.
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Radial line 

Figure 7.2: Schematic of deformation of the cross section of a right circular
annular cylinder

Substituting equation (7.61) for displacement field in (7.22) and using equa-
tions (2.259), (2.260) and (2.261) we obtain

(λ+ 2µ)

[
d2ur
dr2

+
dur
dr

1

r
− ur
r2

]
= 0. (7.62)

Since, (λ+ 2µ) 6= 0, for equation (7.62) to hold we require

d2ur
dr2

+
dur
dr

1

r
− ur
r2

=
d2ur
dr2

+
d

dr

(ur
r

)
= 0. (7.63)

Solving the ordinary differential equation (7.63) we get

ur =
C1

2
r +

C2

r
, (7.64)

where C1 and C2 are integration constants to be found from the bound-
ary conditions (7.59) and (7.60). Having found the unknown function in
the displacement field (7.61), using (2.259) the cylindrical polar coordinate
components of linearized strain can be computed as,

ε =

dur
dr

0 0
0 ur

r
0

0 0 0

 =

C1

2
− C2

r2
0 0

0 C1

2
+ C2

r2
0

0 0 0

 . (7.65)
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Substituting the above strain in the constitutive relation (7.2) the cylindrical
polar coordinate components of the Cauchy stress is obtained as

σ =

(λ+ µ)C1 − µC2

r2
0 0

0 (λ+ µ)C1 + µC2

r2
0

0 0 λC1

 . (7.66)

Recognizing that for the above state of stress, t(er) = [(λ+µ)C1−µC2/r
2]er,

boundary conditions (7.59) and (7.60) yield(
1 − 1

r2o

1 − 1
r2i

){
(λ+ µ)C1

µC2

}
=

{
0
−pi

}
. (7.67)

Solving the above equations we obtain:

C1 =
r2
i

(r2
o − r2

i )

pi
(λ+ µ)

, C2 =
r2
i r

2
o

(r2
o − r2

i )

pi
µ
. (7.68)

Substituting equation (7.68) in (7.66),

σ =


pi

r2i
(r2o−r2i )

[
1− r2o

r2

]
0 0

0 pi
r2i

(r2o−r2i )

[
1 + r2o

r2

]
0

0 0 2νpi
r2i

(r2o−r2i )

 , (7.69)

where we have used (6.79) to deduce that 2ν = λ/(λ + µ). Substituting
equation (7.68) in (7.64),

ur = pi
r2
i

(r2
o − r2

i )

[
r

(λ+ µ)
+
r2
o

rµ

]
. (7.70)

Figure 7.3 plots the variation of the radial (σrr) and hoop (σθθ) stresses
with respect to r as given in equation (7.69) when ri = ro/2. It is also
clear from equation (7.69) that the axial stresses do not vary across the cross
section. When ri = ro/2, the constant axial stress value is 2piν/3. Thus,
we find that due to inflation of the annular cylinder, tensile hoop stresses
develop and the radial stresses are always compressive. The magnitude of
the hoop stress is greater than radial stress. The magnitude of the axial stress
is nearly one-tenth of the maximum hoop stress and it is tensile when ν >
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Figure 7.3: Plot of the radial (σrr) and hoop (σθθ) stresses given in equation
(7.69) when ro = 1 and ri = ro/2.
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Figure 7.4: Plot of the variation in the ratio of change in thickness (∆t) of
the cylinder to its original thickness (ro − ri) as a function of the thickness
of the cylinder for various possible values of Poisson’s ratio, ν. µ is the shear
modulus and pi is the radial component of the normal stress at the inner
surface.
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0 and compressive when ν < 0 and is zero when ν = 0. Next, we physically
explain this variation of the axial stresses with the Poisson’s ratio. The hoop
stresses by virtue of being tensile in nature will cause a reduction in the axial
length due to Poisson’s effect3 if the Poisson’s ratio, ν > 0 and increase in
length if ν < 0 and no change if ν = 0. Similarly, the radial stress being
compressive in nature will cause an increase in the axial length when ν >
0, decrease in axial length when ν < 0 and no change in axial length when
ν = 0. However, the actual change in axial length would be a sum of both
the change in length due to hoop and radial stress. Since, the hoop stress
is more than the radial stress, if no axial force is applied, the axial length
would reduce when ν > 0, will not change when ν = 0 and will increase
when ν < 0. Thus, if the length is to remain unchanged, a tensile axial
force has to be applied to counter the reduction in length when ν > 0 and a
compressive axial force when ν < 0 and no axial force is required when ν =
0. It can be seen from the expression for axial stress in equation (7.69) that
the expression for the axial stresses is consistent with the expectation that
it be positive when ν > 0, negative when ν < 0 and zero when ν = 0.

Now, we study the changes that occur to the thickness of the annular
cylinder. Towards this, the ratio of change in thickness of the cylinder, ∆t
to its original thickness is obtained as

∆t

t
=
ur(ro)− ur(ri)

ro − ri
=
pi
µ

ro
ro − ri

r2
i

(r2
o − r2

i )

{
1− ro

ri
+

[
1− ri

ro

]
1− 2ν

(1− ν)

}
,

(7.71)
where we have used (6.80) to write Lamè constants in terms of the Poisson’s
ratio, ν and Young’s modulus E. Figure 7.4 plots the variation in the ratio
of change in thickness of the cylinder to its original thickness as a function of
the thickness of the cylinder for various possible values of Poisson’s ratio for a
given radial component of the normal stress at the inner surface, pi. It can be
seen from the figure that while the thickness decreases when ν ≥ 0, thickness
increases when ν < 0 for thickness less than a critical value. By virtue of
the radial component of the normal stress being compressive in nature one
would expect a reduction in the thickness of the cylinder. However, the hoop
stress being in tension, due to Poisson’s effect there would be reduction in
thickness when ν > 0 and an increase when ν < 0. The actual change in the
thickness is the sum of both the reduction due to radial stress and alteration

3Line elements on a plane whose normal coincides with the applied tensile stress shorten
if ν > 0 and elongate if ν < 0. This effect is called as the Poisson’s effect.
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Figure 7.5: Schematic of pressurized hole in an infinite medium

due to hoop stress. Hence, the thickness decreases when ν ≥ 0 and increases
when ν < 0 for thickness less than a critical value.

Finally, we would like to show that due to inflation the inner as well
as outer radius of the cylinder increases. Noting that the deformed inner
radius of the cylinder is ri + ur(ri) and that of the deformed outer radius is
ro + ur(ro), for these radius to increase we need to show that ur(ri) > 0 and
ur(ro) > 0. Towards this, using equation (7.70) and (6.80) we obtain,

ur(r) = r
pi
µ

r2
i

(r2
o − r2

i )

[
(1− 2ν)

(1− ν)
+
r2
o

r2

]
. (7.72)

Recollecting from table 6.1, that the physically possible values for the Pois-
son’s ratio is: −1 < ν ≤ 0.5, it is straightforward to see that (1−2ν)/(1−ν)
≥ 0 for these possible range of values for ν. Also, it can be seen from table
6.1 that µ > 0. Further, by definition ro > ri and pi > 0. Therefore, ur(r)
> 0 for any r, since each term in the expression for ur is positive. Hence,
in particular ur(ri) > 0 and ur(ro) > 0 and hence the radius of the cylinder
increases due to inflation, as one would expect.
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Pressurized hole in an infinite medium

As a limiting case of the above solution, we would like to study the problem
of a hole subjected to uniform radial component of the normal stress in an
infinite medium as shown in figure 7.5. We continue to use cylindrical polar
coordinates. Therefore the body in the reference configuration is assumed to
occupy the region of the Euclidean point space defined by B = {(r, θ, z)|ri ≤
r < ∞, 0 ≤ θ ≤ 2π,−∞ < z < ∞}. The boundary conditions for this
problem is essentially same as that in the inflation of an annular cylinder,
except that now ro tends to ∞. For completeness the boundary conditions
for the present problem is:

t(er)(∞, θ, z) = o, (7.73)

t(er)(ri, θ, z) = −pier, (7.74)

uz(r, θ,±∞) = 0. (7.75)

Hence, tending ro to ∞, in equations (7.69) and (7.70) we obtain the stress
and displacement field for the present problem as,

σ =

−pi r
2
i

r2
0 0

0 pi
r2i
r2

0
0 0 0

 , (7.76)

ur =
pi
µ

r2
i

r
. (7.77)

Thus, we find that both the stress and the displacement tend to zero as r
tends to ∞. This means that the effect of pressurized hole is not felt at a
distance far away from the hole.

Having studied the problem of pressurized hole, in the following section
we shall study the influence of the hole to uniaxial tensile load applied to the
infinite medium with the hole.

7.4.2 Uniaxial tensile loading of a plate with a hole

In the second boundary value problem that we study, the body is an infinite
medium with a circular stress free hole subjected to a far field tension along
the x−direction as shown in the figure 7.6. We envisage to solve this bound-
ary value problem using the stress formulation. In particular we assume
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Figure 7.6: Stress free hole in an infinite medium subjected to a uniform far
field tension along x−direction

plane stress state and the body to be two dimensional and use cylindrical
polar coordinates to study this problem. Thus, the body in the reference con-
figuration is assumed to occupy a region in the Euclidean point space defined
by B = {(r, θ)|a ≤ r <∞, 0 ≤ θ ≤ 2π}, where a is a constant characterizing
the size of the hole in the infinite medium. The boundary conditions that is
of interest are

t(er)(a, θ) = o, (7.78)

t(cos(θ)er−sin(θ)eθ)(∞, θ) = σa [cos(θ)er − sin(θ)eθ] , (7.79)

t(sin(θ)er+cos(θ)eθ)(∞, θ) = o, (7.80)

This boundary condition needs some explanation. The boundary condition
(7.78) tells that the boundary of the hole is traction free i.e.

σrr(a, θ) = 0, (7.81)

σrθ(a, θ) = 0. (7.82)

The second boundary condition (7.79) tells that the traction far away from
the center of the hole, on a surface whose normal coincides with ex is σaex.
Similarly, boundary condition (7.80) tells that a surface whose normal coin-
cides with ey and is far away from the hole is traction free. In the equations
(7.79) and (7.80), we have represented Cartesian basis ex and ey in cylindrical
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polar coordinate basis. From equations (7.79) and (7.80) we obtain,


cos(θ) − sin(θ) 0

0 cos(θ) − sin(θ)
sin(θ) cos(θ) 0

0 sin(θ) cos(θ)



σ∗rr
σ∗rθ
σ∗θθ

 =


σa cos(θ)
−σa sin(θ)

0
0

 , (7.83)

where σ∗ij represents the value of the stress at (∞, θ). Of the four equations
only 3 are independent. Picking any three equations and solving for the
cylindrical polar components of the stress, we obtain

σ∗rr = σrr(∞, θ) = σa
1 + cos(2θ)

2
, (7.84)

σ∗rθ = σrθ(∞, θ) = −σa
sin(2θ)

2
, (7.85)

σ∗θθ = σθθ(∞, θ) = σa
1− cos(2θ)

2
. (7.86)

Thus, the boundary conditions translate into five conditions on the com-
ponents of the stress given by equations, (7.81), (7.82), (7.84), (7.85) and
(7.86).

Based on the observation that the far field stresses are a function of
cos(2θ), we infer that the Airy’s stress function, φ also should contain cos(2θ)
term. Then, since the solution at θ equal to 0 and 2π should be the same,
the Airy’s stress function can depend on θ only through the trigonometric
functions present in the general solution (7.57). We assume Airy’s stress
function with only five constants from the general solution (7.57) as,

φ = a02 ln(r) + a03r
2 +

[
a21r

2 + a23r
−2 + a24

]
cos(2θ), (7.87)

and examine whether the prescribed boundary conditions can be met. Con-
sideration that the stress at ∞ be finite required dropping of the terms
r2 ln(r) and r4. The constant a01 does not enter the expressions for stress
and hence indeterminate. So we assumed it to be zero. For the assumption
of Airy’s stress function (7.87), the cylindrical polar components of the stress
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is computed using (7.53) to be

σrr =
a02

r2
+ 2a03 −

[
2a21 +

6a23

r4
+

4a24

r2

]
cos(2θ), (7.88)

σθθ = −a02

r2
+ 2a03 +

[
2a21 +

6a23

r4

]
cos(2θ), (7.89)

σrθ =

[
2a21 −

6a23

r4
− 2a24

r2

]
sin(2θ), (7.90)

Now, the boundary conditions: (7.81), (7.82) and (7.84) yield:
1
a2

2 0 0 0
0 0 2 6

a4
4
a2

0 0 2 − 6
a4
− 2
a2

0 2 0 0 0
0 0 −2 0 0



a02

a03

a21

a23

a24

 =


0
0
0
σa
2
σa
2

 , (7.91)

where we have equated the coefficients of cos(2θ), sin(2θ) and the constant
to the values of the right hand side of these equations. It can be seen that
the equations (7.85) and (7.86) yield the same last two equations in (7.91).
Solving the linear equations (7.91) for aij’s, we obtain

a02 = −a
2σa
4

, a03 =
σa
4
, a21 = −σa

4
, a23 = −a

4σa
4

, a24 =
a2σa

2
.

(7.92)
Since, we are able to meet the required boundary conditions with the assumed
form of the Airy’s stress function, this is the required stress function.

Substituting the constants (7.92) in the equations (7.88) through (7.90)
we obtain

σrr =
σa
2

{[
1− a2

r2

]
+

[
1 + 3

a4

r4
− 4

a2

r2

]
cos(2θ)

}
, (7.93)

σθθ =
σa
2

{[
1 +

a2

r2

]
−
[
1 + 3

a4

r4

]
cos(2θ)

}
, (7.94)

σrθ = −σa
2

[
1− 3

a4

r4
+ 2

a2

r2

]
sin(2θ). (7.95)

Having obtained the stress, we compute the strains from these stresses using
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the constitutive relation (7.54) as

εrr =
∂ur
∂r

=
σa
2

{
(1− ν)

E
+

(1 + ν)

E

[
−a

2

r2
+

[
1 + 3

a4

r4

]
cos(2θ)

]
− 4

E

a2

r2
cos(2θ)

}
,

(7.96)

εθθ =
1

r

∂uθ
∂θ

+
ur
r

=
σa
2

{
(1− ν)

E
+

(1 + ν)

E

[
a2

r2
−
[
1 + 3

a4

r4

]
cos(2θ)

]
+

4ν

E

a2

r2
cos(2θ)

}
,

(7.97)

εrθ =
1

2

[
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

]
= −(1 + ν)

E

σa
2

[
1− 3

a4

r4
+ 2

a2

r2

]
sin(2θ). (7.98)

Integrating equation (7.96) we obtain,

ur =
σa
2

{
(1− ν)

E
r +

(1 + ν)

E

[
a2

r
+

[
r − a4

r3

]
cos(2θ)

]
+

4

E

a2

r
cos(2θ)

}
+
df

dθ
, (7.99)

where f = f̂(θ) is a function of θ. Substituting (7.99) in equation (7.97) and
integrating we find

uθ = −σa
2

{
(1 + ν)

E

[
r +

a4

r3

]
+ 2

(1− ν)

E

a2

r

}
sin(2θ) + f(θ) + g(r), (7.100)

where g(r) is some function of r. Substituting equations (7.99) and (7.100)
in equation (7.98) and simplifying we obtain

r
dg

dr
− g − f +

d2f

dθ2
= 0. (7.101)

Since g is a function of only r and f only of θ, we require

r
dg

dr
− g = f − d2f

dθ2
= C0, (7.102)
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where C0 is a constant. Solving the linear ordinary differential equations
(7.102) we obtain

g = C1r − C0, f = C0 + C2 exp(θ) + C3 exp(−θ), (7.103)

where Ci’s are constants. To ensure that the tangential displacement of the
ray θ = 0 and θ = 2π to be the same and there be no rigid body displacement
we require that,

uθ(r, 0) = uθ(r, 2π) = 0. (7.104)

The condition (7.104) translates into requiring C1 = C2 = C3 = 0. Thus, the
displacement field is computed to be,

ur =
σa
2

{
(1− ν)

E
r +

(1 + ν)

E

[
a2

r
+

[
r − a4

r3

]
cos(2θ)

]
+

4

E

a2

r
cos(2θ)

}
,

(7.105)

uθ = −σa
2

{
(1 + ν)

E

[
r +

a4

r3

]
+ 2

(1− ν)

E

a2

r

}
sin(2θ). (7.106)

Thus, we have found the displacement and stress field and hence have solved
this boundary value problem. We would like to find the maximum stress that
occurs and its location for this boundary value problem.

First we begin with hoop stress, σθθ given in equation (7.94). Recollecting
that the extremum value of a function could occur either at the boundary
points or at points where the derivative of the function goes to zero, the
extremum hoop stress could occur at a radial location, r = a

√
6 cos(2θ),

when cos(2θ) > 0 or at the boundary points, r = a and r tending to ∞. In
figure 7.7 we plot the hoop stress as a function of r for various values of θ. As
expected, the function is monotonically decreasing function of r when cos(2θ)
< 0 and therefore the maximum value occurs at r = a for this case. When
cos(2θ) > 0, the minimum occurs at r = a, then the maximum occurs when
r = a

√
6 cos(2θ) and then the stress decreases and asymptotically reaches

the value of σa[1− cos(2θ)]/2. Therefore, at r = a an extremum of the hoop
stress occurs. The circumferential variation of the hoop stress at r = a is
given by σa[1− 2 cos(2θ)]. Hence, the maximum hoop stress occurs at r = a
and θ = π/2 (or θ = 3π/2) and the value of the maximum hoop stress is 3σa.
Thus, the stress concentration factor, defined as the ratio of the maximum
stress in the structure to the far field stress is 3 (= σmaxθθ /σa).

Next, we study the circumferential shearing stress, σrθ given in equation
(7.95). The extremum value of this stress occurs at a radial location r = a

√
3
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Figure 7.7: Variation of hoop stress, σθθ, with radial location, r for various
orientation of the ray, θ when an infinite medium with a hole of radius a is
subjected to a uniaxial tensile stress σa
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Figure 7.8: Variation of circumferential shearing stress, σrθ, with radial lo-
cation, r for various orientation of the ray, θ when an infinite medium with
a hole of radius a is subjected to a uniaxial tensile stress σa
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Figure 7.9: Variation of radial stress, σrr, with radial location, r for various
orientation of the ray, θ when an infinite medium with a hole of radius a is
subjected to a uniaxial tensile stress σa

and the value of the circumferential shearing stress at this radial location is
−2σa sin(2θ)/3. At the boundary points the circumferential shearing stress
takes values 0 at r = a and −σa sin(2θ)/2. The variation of σrθ with the radial
location, r and the orientation of the ray, θ is shown in figure 7.8. Thus, it
can be seen that the absolute maximum value of the stress, σrθ occurs at r
= a
√

3, θ = mπ/4, where m takes one of the values from the set {1, 3, 5, 7}
and this maximum value is 2σa/3.

Finally, we examine the radial stress, σrr given in equation (7.93). An
extremum value of this stress occurs at

rcrit = a
√

6 cos(2θ)/[1 + 4 cos(2θ)] (7.107)

when4 0 ≤ θ ≤ π/6 or 2π/6 ≤ θ ≤ 4π/6 or 5π/6 ≤ θ ≤ 7π/6 or 8π/6 ≤
θ ≤ 10π/6 or 11π/6 ≤ θ ≤ 2π. This extremum value of the radial stress
is −σa{11 cos(2θ)/9 + 1/9 + 5/[36 cos(2θ)]}/2. At the boundary the radial
stresses takes the value 0 at r = a and σa[1 + cos(2θ)]/2 as r tends to ∞.
Figure 7.9 portrays the variation of the radial stress with radial location, r
for various orientations of the ray, θ. It can be seen from the figure that
for certain orientations (say, θ = 90 degrees) the maximum value of the
radial stress occurs at r = a

√
6 cos(2θ)/[1 + 4 cos(2θ)] and for some other

4The restriction on θ is obtained by the requirement that
√

6 cos(2θ)/[1 + 4 cos(2θ)] ≥
1.
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Figure 7.10: Variation of two extremum radial stress σrr at rcrit [given in
equation (7.107)] and as r tends to ∞, with the orientation of the ray, θ
when an infinite medium with a hole of radius a is subjected to a uniaxial
tensile stress σa

orientations (say, θ = 15 degrees) the maximum value occurs when r tends
to ∞. To understand this, in figure 7.10 we plot the two extremum radial
stresses - one at r = rcrit and the other value that occurs when r tends to
∞. It can be seen from the figure that when π/3 ≤ θ ≤ 2π/3 and 8π/3 ≤ θ
≤ 10π/3 the maximum radial stress occurs at rcrit and for all other values of
θ it occurs as r tends to ∞. In any case the maximum value is always less
than σa.

This concludes our illustration of the two techniques to solve boundary
value problems in this chapter. However, in the remaining chapters we shall
see employment of these techniques to solve more boundary value problems
of interest in engineering.

7.5 General results

In this section, we record two results that are useful while solving boundary
value problems. One result tells when one can expect an unique solution to
a given boundary value problem. The other allows us to construct solutions
to complex boundary conditions from simple cases.
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7.5.1 Uniqueness of solution

Now, we are interested in showing that there could at most be one solution
that could satisfy the prescribed displacement or mixed boundary conditions,
in a given body made of a material that obeys Hooke’s law and in static equi-
librium with no body forces acting on it. If traction boundary condition is
specified, we shall see that the stress is uniquely determined but the displace-
ment is not for the bodies made of a material that obeys Hooke’s law and in
static equilibrium with no body forces acting on it.

Towards this, we consider a general setting with B being some region
occupied by the body and ∂B the boundary of the body. Let us also assume
that displacement is prescribed over some part of the boundary ∂Bu and
traction specified on the remaining part of the boundary, ∂Bσ. Let (u1, σ1)
and (u2, σ2) be the two distinct solutions to a given boundary value problem.
Let us define

u = u1 − u2, σ = σ1 − σ2. (7.108)

By virtue of (u1,σ1) and (u2, σ2) satisfying the specified boundary condi-
tions,

u(x) = o, for x ∈ ∂Bu, (7.109)

t(n)(x) = σn = o, for x ∈ ∂Bσ. (7.110)

First, we examine the term,

W = σ · grad(u) = σ · ε, (7.111)

here to obtain the last equality we have used (2.104) and the fact that the
Cauchy stress σ is a symmetric tensor. Since, we are interested in materials
that obey isotropic Hooke’s law, we substitute for the stress from5

σ =

[
K − 2

3
G

]
tr(ε)1 + 2Gε, (7.112)

in (7.111) to obtain

W = K[tr(ε)]2 + 2G

{
tr(ε2)− 1

3
[tr(ε)]2

}
. (7.113)

5This equation is obtained by writing Lamè constants in terms of bulk modulus, K and
shear modulus, G and substituting in equation (7.2).
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As recorded in table 6.1 G > 0 and K > 0. Further recognizing that irre-
spective of the sign of the Cartesian components of the strain,

tr(ε2)− 1

3
[tr(ε)]2

=
1

3

[
(εxx − εyy)2 + (εyy − εzz)2 + (εzz − εxx)2

]
+ 2ε2xy + 2ε2yz + 2ε2xz > 0,

(7.114)

on assuming that ε 6= 0. Thus, since each term in equation (7.113) is positive
we infer that

W > 0, (7.115)

as long as ε 6= 0.
Next, we want to express∫

B
Wdv =

∫
B
σ · grad(u)dv, (7.116)

in terms of the boundary conditions alone. Towards this, using the result in
equation (2.219) we write

div(σu) = div(σ) · u + σ · grad(u). (7.117)

Since the body is in static equilibrium and has no body forces acting on it,
from equation (7.6) div(σ) = o. Using div(σ) = o in equation (7.117) and
substituting the result in (7.116) we get∫

B
Wdv =

∫
B
div(σu)dv =

∫
∂B

u · σtnda, (7.118)

where to obtain the last equality we have used the result (2.267). Substituting
the conditions (7.109) and (7.110) on the displacement and stress, in (7.118)
that ∫

B
Wdv = 0. (7.119)

Since, from equation (7.115) the integrand in the equation (7.119) is positive
and W = 0 only if ε = 0, it follows that ε = 0 everywhere in the body.
Then, it is straight forward to see that σ = 0, everywhere in the body. It
can then be shown that, we do this next for a special case, the conditions
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ε = 0 everywhere in the body and (7.109) imply u = o everywhere in the
body.

Integrating the first order differential equations on the Cartesian compo-
nents of the displacement field when ε = 0, we obtain

u = (K1y+K2z+K4)ex+(−K1x+K3z+K5)ey−(K2x+K3y−K6)ez, (7.120)

whereKi’s are constants. Knowing the displacement of 3 points, say (x1, y1, z1),
(x2, y2, z2) and (x3, y3, z3), that are not collinear to be zero, the constants Ki’s
could be uniquely determined by solving the following system of equations:y1 z1 1

y2 z2 1
y3 z3 1


K1

K2

K4

 =


0
0
0

 ,

−x1 z1 1
−x2 z2 1
−x3 z3 1


K1

K3

K5

 =


0
0
0

 ,

−x1 −y1 1
−x2 −y2 1
−x3 −y3 1


K2

K3

K6

 =


0
0
0

 . (7.121)

As long as the three points are not collinear, it can be seen that the above set
of equations are independent and hence, Ki = 0. However, if the displacement
is not known at 3 points, as in the case of traction boundary condition being
specified, the displacement field cannot be uniquely determined.

Hence, we conclude that the solution to the boundary value problem
involving a body in static equilibrium, under the absence of body forces and
made of a material that obeys isotropic Hooke’s law is unique except in cases
where only traction boundary condition is specified. As a consequence of
this theorem, if a solution has been found for a given boundary conditions it
is the solution for a body in static equilibrium, under the absence of body
forces and made of a material that obeys isotropic Hooke’s law.

7.5.2 Principle of superposition

This principle states that For a given body made up of a material that
obeys isotropic Hooke’s law, in static equilibrium and whose magnitude of
displacement is small, if {u(1),σ(1)} is a solution to the prescribed body

forces, b(1) and boundary conditions, {u(1)
b , t

(1)
(n)} and {u(2),σ(2)} is a solution

to the prescribed body forces, b(2) and boundary conditions, {u(2)
b , t

(2)
(n)} then
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Figure 7.11: Basic variables and equations in mechanics

{u(1) + u(2),σ(1) + σ(2)} will be a solution to the problem with body forces,

b(1) + b(2) and boundary conditions, {u(1)
b + u

(2)
b , t

(1)
(n) + t

(2)
(n)}

The proof of the above statement follows immediately from the fact that
equation (7.23) is linear. That is,

o = (λ+ µ)grad(div(u(1) + u(2))) + µ∆(u(1) + u(2)) + ρ(b(1) + b(2))

= (λ+ µ)grad(div(u(1))) + µ∆u(1) + ρb(1)

+(λ+ µ)grad(div(u(2))) + µ∆u(2) + ρb(2)

= o + o,

where we have used the linearity property of the grad, div and ∆ operators
(see section 2.8).

This is one of the most often used principles to solve problems in engi-
neering. We shall illustrate the use of this principle in chapter 11.

7.6 Summary

In this chapter, we formulated the boundary value problem for an isotropic
material undergoing small elastic deformations obeying Hooke’s law. Two
techniques were outlined to solve this problem. These two techniques are
summarized in figure 7.11. Thus, in the displacement approach, one starts
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Figure 7.12: An annular cylinder pressurized from outside. (Figure for Prob-
lem 1)

with the displacement use the strain displacement relation to compute the
strain and then the constitutive relation to find the stress and finally use the
equilibrium equations to get the governing equation that the displacement
field has to satisfy along with the prescribed boundary conditions. In the
stress approach, stress field is assumed in terms of a potential, such that
equilibrium equations hold, then the strain is computed using the constitu-
tive relation. In order to be able to obtain a smooth displacement field using
this strain field, it is required that the stress potential satisfy the compat-
ibility conditions along with the prescribed boundary conditions. We then
illustrated these techniques by solving two boundary value problems, that of
inflation of an annular cylinder and that of a plate with a hole subjected to
uniaxial tension far away from the hole.

7.7 Self-Evaluation

1. A body in the form of an annular cylinder is pressurized from outside as
shown in figure 7.12. Obtain the stress and displacement field for this
boundary value problem and show that the developed hoop stresses are
compressive in nature and that the thickness of the annular cylinder
increases due to the applied external pressure. Assume that the body
is homogeneous and is made of a material that obeys isotropic Hooke’s
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Figure 7.13: Stress free hole in an infinite medium subjected to equal biaxial
loading. (Figure for Problem 2)

law.

2. Using the solution obtained in problem 1, study the problem of a stress
free hole in an infinite medium under equal biaxial loading at infinity,
as shown in figure 7.13. Recognize that this solution can be obtained
by tending ro to ∞ in the solutions to problem 1. Then show that the
hoop stresses developed at the boundary of the hole is twice the far
field equal biaxial stress applied.

3. The annular cylinder shown in figure 7.14 is pressurized from both
inside and outside. Assuming the cylinder to be homogeneous and made
of a material that obeys isotropic Hooke’s law with Young’s modulus,
E = 200 GPa and Poisson’s ratio, ν = 0.3,

(a) Obtain the location and magnitude of the maximum and minimum
hoop stress and radial stress.

(b) Obtain the maximum principal stress, its location and magnitude.

(c) Use thin cylinder approximation to obtain the hoop and radial
stress. Use this to obtain the maximum principal stress.
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Figure 7.14: An annular cylinder pressurized from inside and outside. (Figure
for Problems 3, 5 and 6)

Ro

Ri
rigid po

Figure 7.15: An annular cylinder pressurized from outside with its inner
surface prevented from radially displacing. (Figure for Problem 4)
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(d) Plot the ratio of the maximum principal stress obtained in part b
to that in part c as a function of (1−Ri/Ro)−1 for Ri/Ro = 0.05
to 0.99. Plot the same for (pi, po) = {(1, 0), (0, 1), (1, 0.5), (0.5, 1)}.
Using the above plots verify the reasonableness of the following
classification: d/t < 20 thick cylinder, d/t > 40 thin cylinder,
where d is the mean diameter of the cylinder and t is its thickness.

4. Assuming the annular cylinder shown in figure 7.15, to be homogeneous
and made of a material that obeys isotropic Hooke’s law with Young’s
modulus, E = 200 GPa and Poisson’s ratio, ν = 0.3 repeat parts (a)
and (b) in problem 3. Here the inner boundary is fixed, i.e., ur(ri, θ, z)
= 0. Find the hoop stress and radial stress as Ri/Ro tends to 0 and
comment on the significance of this limit.

5. Now assume the annular cylinder shown in figure 7.14 is inhomogeneous
and is composed of two annular cylinders made of aluminium and steel
respectively. Solve parts (a) to (d) in problem 3 assuming

(a) Aluminium cylinder occupies the region B = {(r, θ, z)|Ri ≤ r ≤
(Ri + Ro)/2, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H} and steel cylinder occupies
the region B = {(r, θ, z)|(Ri + Ro)/2 ≤ r ≤ Ro, 0 ≤ θ ≤ 2π, 0 ≤
z ≤ H}.

(b) Steel cylinder occupies the region B = {(r, θ, z)|Ri ≤ r ≤ (Ri +
Ro)/2, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H} and aluminium cylinder occupies
the region B = {(r, θ, z)|(Ri + Ro)/2 ≤ r ≤ Ro, 0 ≤ θ ≤ 2π, 0 ≤
z ≤ H}.

Take Young’s modulus of steel and aluminium to be Esteel = 200 GPa
and Ealuminium = 70 GPa respectively and Poisson’s ratio of these ma-
terials to be νsteel = 0.3 and νaluminium = 0.27.

6. Assume that an aluminium annular cylinder occupying the region B
= {(r, θ, z)|Ri ≤ r ≤ (δ + (Ri + Ro)/2), 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H} in
the stress free state is shrunk and fitted into a steel annular cylinder
occupying the region B = {(r, θ, z)|(Ri + Ro)/2 ≤ r ≤ Ro, 0 ≤ θ ≤
2π, 0 ≤ z ≤ H} in the stress free state. Then this composite shrink
fitted cylinder is pressurized as shown in figure 7.14. For this case solve
parts (a) to (d) in problem 3. Assume δ = 0.0001Ro. Take Young’s
modulus of steel and aluminium to be Esteel = 200 GPa and Ealuminium
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= 70 GPa respectively and Poisson’s ratio of these materials to be νsteel
= 0.3 and νaluminium = 0.27.
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Chapter 8

Bending of Prismatic Straight
Beams

8.1 Overview

In this chapter, we formulate and study the bending of straight and prismatic
beams. First we study the bending of these beams when the loading is in
the plane of symmetry of the beams cross section. Here we derive again the
strength of materials solution and compare it with the solution obtained from
two dimensional elasticity formulation for two loading cases, namely pure
bending of a beam and uniform loading of a simply supported beam. Then,
we study the bending of beams when the loading does not pass through the
plane of symmetry. We do this by assuming the loading causes only bending
and no torsion. We will then show that for this to happen the load should be
applied at a point called the shear center of the cross-section. We conclude
by presenting a method to compute this shear center.

Before proceeding further, let us begin by understanding what a beam is.
A beam is a structural member whose length along one direction, called the
longitudinal axis, is larger than its dimensions on the plane perpendicular to
it and is subjected to only transverse loads (i.e., the loads acting perpendic-
ular to the longitudinal axis). A typical beam with rectangular cross section
is shown in figure 8.1. Thus, this beam occupies the points in the Euclidean
point space defined by B = {(x, y, z)| − l ≤ x ≤ l,−c ≤ y ≤ c,−b ≤ z ≤ b}
where l, c and b are constants, such that l > c ≥ b with l/c typically in the
range 10 to 20.
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Figure 8.1: Schematic of a beam

Next let us understand which moment is a bending moment and how it
is related to the components of the stress. The component of the moment
parallel to the longitudinal axis of the beam is called as torsional moment and
the remaining two component of the moments are called bending moments.
Thus, for the beam with the axis oriented as shown in figure 8.1, the Mx

component of the moment is called the torsional moment and the remaining
two components, My and Mz the bending moments. To relate these moments
to the components of the stress tensor, first we find the traction that is acting
on a plane defined by x = xo, a constant. This traction is computed for a
general state of stress as

t(ex) =

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz


1
0
0

 = σxxex + σxyey + σxzez. (8.1)

Now we are interested in the net force acting at this section, i.e.,

F = Pex+Vyey+Vzez =

∫
a

t(ex)(xo, y, z)dydz =

∫
a

(σxxex+σxyey+σxzez)dydz,

(8.2)
where P is called the axial force, Vy and Vz the shear force. Equating the
components in equation (8.2) we obtain

P (xo) =

∫
a

σxx(xo, y, z)dydz, (8.3)

Vy(xo) =

∫
a

σxy(xo, y, z)dydz, (8.4)
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Vz(xo) =

∫
a

σxz(xo, y, z)dydz, (8.5)

where the axial force and the shear force could vary along the longitudinal
axis of the beam. Then, we are also interested in the net moment acting
about the point (xo, y, z) due to the traction t(ex), i.e.,

M =

∫
a

(yey + zez) ∧ (σxxex + σxyey + σxzez)dydz

=

∫
a

[(σxzy − σxyz)ex + σxxzey − σxxy] dydz. (8.6)

Thus, the torsional moment is given by

Mx(xo) =

∫
a

(σxzy − σxyz)dydz, (8.7)

and the two bending moments by

My(xo) =

∫
a

σxxzdydz, (8.8)

Mz(xo) = −
∫
a

σxxydydz. (8.9)

The two shear forces and bending moments are also called as the force resul-
tants or the stress resultants in the analysis of beams. These stress resultants
vary only along the longitudinal axis of the beam.

Next we want to recast the static equilibrium equations in the absence of
body forces, (7.6) in terms of the stress resultants. Towards this, we record
the differential form of the equilibrium equations in Cartesian coordinates:

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= 0, (8.10)

∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

= 0, (8.11)

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

= 0, (8.12)

Multiply equation (8.10) with y and integrate over the cross sectional
area to obtain∫

a

[
∂(yσxx)

∂x
+

(
∂(yσxy)

∂y
− σxy

)
+
∂(yσxz)

∂z

]
dydz = 0, (8.13)
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Recognizing that in the first term the integration is with respect to y and z
but the differentiation is with respect to another independent variable x, the
order can be interchanged to obtain

∂

∂x

(∫
a

σxxydydz

)
= −dMz

dx
, (8.14)

where we have used equation (8.9). To evaluate the second term in equation
(8.13) we appeal to the Green’s theorem (2.275) and find that∫

a

∂(yσxy)

∂y
dydz =

∮
c

yσxynyds = 0, (8.15)

The last equality is because there are no shear stresses applied on the outer
lateral surfaces of the beam. For the same reason the last term in equation
(8.13) also evaluates to be zero:∫

a

∂(yσxz)

∂z
dydz =

∮
c

yσxznzds = 0. (8.16)

It follows from equation (8.4) that the third term in equation (8.13) is Vy,
i.e., ∫

a

σxydydz = Vy. (8.17)

Substituting equations (8.14) through (8.17) in (8.13) and simplifying we
obtain

dMz

dx
+ Vy = 0. (8.18)

On multiplying equation (8.10) with z and integrating over the cross
sectional area we obtain∫

a

[
∂(zσxx)

∂x
+
∂(zσxy)

∂y
+

(
∂(zσxz)

∂z
− σxz

)]
dydz = 0. (8.19)

Using the equations (8.8) and (8.5) and Green’s theorem and following the
same steps as above, it can be shown that equation (8.19) evaluates to re-
quiring

dMy

dx
− Vz = 0. (8.20)
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Integrating equation (8.11) over the cross sectional area we obtain∫
a

[
∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

]
dydz = 0. (8.21)

Using equation (8.4), the first term in equation (8.21) evaluates to∫
a

∂σxy
∂x

dydz =
dVy
dx

, (8.22)

where by virtue of the differentiation and integration being on different in-
dependent variables, we have changed their order. Appealing to Green’s
theorem (2.275), the second term in the equation (8.21) evaluates to∫

a

∂σyy
∂y

dydz =

∮
c

σyynyds = qy, (8.23)

where qy is the transverse loading per unit length applied on the beam. The
last term in equation (8.21) evaluates as∫

a

∂σyz
∂z

dydz =

∮
c

σyznzds = 0, (8.24)

wherein we have again appealed to Green’s theorem (2.276) and the fact that
no shear stresses are applied on the lateral surface of the beam. Substituting
equations (8.22) through (8.24) in equation (8.21) it simplifies to

dVy
dx

+ qy = 0. (8.25)

Integrating equation (8.12) over the cross sectional area we obtain∫
a

[
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

]
dydz = 0. (8.26)

Using the equation (8.5) and the Green’s theorem and following the proce-
dure similar to that described above, it can be shown that equation (8.26)
simplifies to

dVz
dx

+ qz = 0, (8.27)

where

qz =

∮
c

σzznzds. (8.28)
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Figure 8.2: Schematic of a simply supported beam subjected to uniformly
distributed load (W ) on the top surface

Thus, we find that the three equilibrium equations reduces to four ordi-
nary differential equations (8.18), (8.20), (8.25) and (8.27) in terms of the
stress resultants in a beam.

Now, we are in a position to find the displacements and stresses in a beam
subjected to some transverse loading. However, we shall initially confine
ourselves to loading along the plane of symmetry of the cross section that
too only along one direction.

8.2 Symmetrical bending

Here we assume that the beam is loaded along a single symmetric plane of
the cross section. Without loss of generality we assume that this symmetric
loading plane is the xy plane of the beam. For illustration, let us assume
that the cross section of the beam is rectangular with depth 2c and width 2b
and length 2l as shown in figure 8.2. Further, let us assume that the beam is
simply supported at the ends A and B and is subjected to a uniform pressure
loading W on its top surface as pictorially represented in figure 8.2. We
derive the strength of materials solution before obtaining the 2 dimensional
elasticity solution for this problem. While the strength of materials solution
is generic, in that it is applicable for any cross section, elasticity solution is
specific for rectangular cross section alone.

8.2.1 Strength of materials solution

Here the displacement approach is used to obtain the solution. Hence, the
main assumption here is regarding the displacement field. The assumption
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Figure 8.3: Schematic of deformation of a beam. ACB beam before defor-
mation, AC ′B beam after deformation.

is that sections that are plane and perpendicular to the neutral axis (to be
defined shortly) of the beam remain plane and perpendicular to the deformed
neutral axis of the beam, as shown in figure 8.3. Hence, the displacement
field is,

u = −(y − yo)
d∆

dx
ex + ∆(x)ey, (8.29)

where ∆(x) is a function of x denotes the displacement of the neutral axis of
the beam along the ey direction and yo is a constant. yo is the y coordinate of
the neutral axis before the deformation in the chosen coordinate system and is
a constant because the beam is straight. Before proceeding further let us see
why the x component of the displacement is as given. The line D′E in figure
8.3 denotes the magnitude of the x component of the displacement. D′E
= C ′D′ sin(θ) which is approximately computed as D′E = CDθ, assuming
small rotations and that there is no shortening of line segments along the
ey direction so that C ′D′ = CD. Now if y coordinate of C is yo and that of
D is y, then the length of line segment CD = (y − yo). Similarly, from the
assumption that the plane sections perpendicular to the neutral axis remain
perpendicular to the deformed neutral axis, θ = d∆

dx
, the slope of the tangent

of the deformed neutral axis, as shown in the figure 8.3. Therefore D′E =
(y − yo)d∆

dx
and the x component of the displacement is −D′E since, it is in

a direction opposite to the ex direction.

Now, the gradient of the displacement field for the assumed displacement
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(8.29) is

h =

−[y − yo]d
2∆
dx2

−d∆
dx

0
d∆
dx

0 0
0 0 0

 , (8.30)

and therefore the linearized strain is

ε =
1

2
[h + ht] =

−[y − yo]d
2∆
dx2

0 0
0 0 0
0 0 0

 . (8.31)

Using the one dimensional constitutive relation, σ(n) = Eε(n), where σ(n) and
ε(n) are the normal stress and strain along the direction n, we obtain

σxx = −E[y − yo]
d2∆

dx2
, (8.32)

where we have equated the normal stress and strain along the ex direction.
Substituting equation (8.32) in the equation (8.3) we obtain

P =

∫
a

E[y − yo]
d2∆

dx2
da. (8.33)

Since, in a beam there would be no net applied axial load P = 0. Solving
equation (8.33) for yo under the assumption that no net axial load is applied,

yo =

∫
a
Eyda∫
a
Eda

. (8.34)

If the beam is also homogeneous then Young’s modulus, E is a constant and
therefore, yo = (

∫
a
yda)/(

∫
a
da), centroid of the cross section. Since, we have

assumed that there is no net applied axial load, i.e.,∫
a

σxxda = 0, (8.35)

equation (8.9) can be written as,

Mz = −
∫
a

yσxxda = −
∫
a

yσxxda+

∫
a

yoσxxda = −
∫
a

[y − yo]σxxda, (8.36)
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where yo is a constant given in equation (8.34). Substituting equation (8.32)
in equation (8.36) we obtain,

Mz =

∫
a

[y − yo]2E
d2∆

dx2
da =

d2∆

dx2

∫
a

[y − yo]2Eda. (8.37)

If the cross section of the beam is homogeneous, the above equation can be
written as,

Mz =
d2∆

dx2
E

∫
a

[y − yo]2da =
d2∆

dx2
EIzz, (8.38)

where,

Izz =

∫
a

[y − yo]2da, (8.39)

is the moment of inertia about the z axis.
Combining equations (8.37) and (8.32) we obtain for inhomogeneous

beams

− σxx
E(y − yo)

=
d2∆

dx2
=

Mz∫
a
[y − yo]2Eda

, (8.40)

where yo is as given in equation (8.34). Combining equations (8.38) and
(8.32) we obtain for homogeneous beams

− σxx
(y − yo)

= E
d2∆

dx2
=
Mz

Izz
, (8.41)

where yo is the y coordinate of the centroid of the cross section which can
be taken as 0 without loss of generality provided the origin of the coordinate
system used is located at the centroid of the cross section.

Next, we would like to define neutral axis. Neutral axis is defined as the
line of intersection of the plane on which the bending stress is zero (y = yo)
and the plane along which the resultant load acts.

Equations (8.40) and (8.41) relate the bending stresses and displacement
to the bending moment in an inhomogeneous and homogeneous beam re-
spectively and is called as the bending equation. While these equations are
sufficient to find all the stresses in a beam subjected to a constant bending
moment, one further needs to relate the shear stresses to the shear force that
arises when the beam is subjected to a bending moment that varies along
the longitudinal axis of the beam. This we shall do next.

Consider a section of the beam, pqrs as shown in figure 8.4 when the
beam is subjected to a bending moment that varies along the longitudinal
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Figure 8.4: Schematic of stresses acting on a beam subjected to varying
bending moment

axis of the beam. For the force equilibrium of section pqrs, the shear stress,
τ , as indicated in the figure 8.4 should be

τ(∆X)t =

∫
a

{
[y − yo]

1

Izz

[
Mz +

dMz

dx
∆x

]
− [y − yo]

Mz

Izz

}
da

=
dMz

dx

∆X

Izz

∫
a

[y − yo]da, (8.42)

where the integration is over the cross sectional area above the section of
interest, i.e., the shaded area shown in figure 8.4 and t is the width of the
cross section at the section of interest. Substituting equation (8.18) in (8.42)
and simplifying we obtain,

τ = − Vy
Izzt

∫
a

[y − yo]da. (8.43)

Having obtained the magnitude of this shear stress, next we discuss the
direction along which this acts. For thick walled sections with say, l/b < 20,
as in the case of well proportioned rectangular beams, this shear stress is the
σxy (and the complimentary σyx) component. For thin walled sections, this
shear stress would act tangential to the profile of the cross section as shown
in the figure 8.5b and figure 8.5c. Thus it has both the σxy and σxz shear
components acting on these sections.

8.2.2 2D Elasticity solution

While the strength of material solution is generic in that it can be used for
any type of loading and cross sections of any shape as long as it is loaded in
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Figure 8.5: Direction of the shear stresses acting on a cross section of a beam
subjected to varying bending moment

its plane of symmetry, 2D elasticity solution has to be developed for specific
cross sections and loading scenarios. Consequently, we assume that the cross
section is rectangular in shape with width 2b and depth 2c. Thus, the body
is assumed to occupy the region in the Euclidean point space defined by B
= {(x, y, z)| − l ≤ x ≤ l,−c ≤ y ≤ c,−b ≤ z ≤ b} before the application of
the load. Using the stress formulation introduced in chapter 7, we study the
response of this body subjected to three types of load.

Pure bending of a simply supported beam

Consider the case of a straight beam subject to end moments as shown in
figure 8.6. It can be seen from the figure that the top and bottom surfaces
are free of traction, i.e.

t(ey)(x, c) = o, t(−ey)(x,−c) = o. (8.44)

The surfaces defined by x = ±l has traction on its face such that the net
force is zero but it results in a bending moment, Mz. Representing these
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Figure 8.6: Beam subjected to end moments

conditions mathematically,∫
a

t(ex)(l, y)dydz = o,

∫
a

t(−ex)(−l, y)dydz = o,∫
a

(yey + zez) ∧ t(ex)(l, y)dydz = Mez,∫
a

(yey + zez) ∧ t(−ex)(−l, y)dydz = −Mez. (8.45)

Thus, the exact point wise loading on the ends is not considered and only
the statically equivalent effect is modeled. Consequently, the boundary con-
ditions on the ends of the beam have been relaxed, and only the statically
equivalent condition will be satisfied. This fact leads to a solution that is not
necessarily valid at the ends of the beam and could result in more than one
stress field satisfying the prescribed conditions.

Assuming the state of stress to be plane, such that

σ =

σxx σxy 0
σxy σyy 0
0 0 0

 , (8.46)

the boundary condition (8.44) translates into requiring,

σyy(x,±c) = 0, (8.47)

σxy(x,±c) = 0. (8.48)
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For the assumed state of stress (8.46) the boundary condition (8.45) requires,∫ c

−c
2bσxy(±l, y)dy = 0, (8.49)∫ b

−b
zdz

∫ c

−c
σxy(±l, y)dy = 0, (8.50)∫ c

−c
2bσxx(±l, y)dy = 0, (8.51)∫ c

−c
2bσxx(±l, y)ydy = −M. (8.52)

Recognize that condition (8.50) holds irrespective of what the variation of
the shear stress σxy is.

As discussed in detail in chapter 7 (section 7.3.2), for stress formulation,
we assume that the Cartesian components of stress are obtained from a po-
tential, φ = φ̂(x, y), called the Airy’s stress function through

σxx =
∂2φ

∂y2
, σyy =

∂2φ

∂x2
, σxy = − ∂2φ

∂x∂y
. (8.53)

Then, we have to find the potential such that it satisfies the boundary con-
ditions (8.47) through (8.52) and the bi-harmonic equation, ∆(∆(φ)) = 0.

We express φ as a power series:

φ(x, y) =
∞∑
m=0

∞∑
n=0

Amnx
myn, (8.54)

where Amn are constant coefficients to be determined from the boundary
conditions and the requirement that it satisfy the bi-harmonic equation.

The choice of the stress function is based on the fact that a third order
Airy’s stress function will give rise to a linear stress field, and this linear
boundary loading on the ends x = ±l, will satisfy the requirements (8.49)
through (8.52). Based on this observation, we choose the Airy’s stress func-
tion as

φ = A03y
3 + A30x

3 + A21x
2y + A12xy

2. (8.55)

Then, the stress field takes the form

σxx = 6A03y+2A12x, σyy = 6A30x+2A21y, σxy = 2[A12y+A21x]. (8.56)
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Substituting the above stress in boundary conditions (8.47) and (8.48) we
find that A30 = A21 = A12 = 0. Thus, the Airy’s stress function reduces to,

φ = A03y
3, (8.57)

and the stress field becomes

σxx = 6A03y, σyy = σxy = 0. (8.58)

Substituting (8.60) in the boundary conditions (8.49) through (8.52), we find
that (8.49) through (8.51) are satisfied identically and (8.52) requires,

A03 = −1

8

M

c3b
. (8.59)

It can be verified that the Airy’s stress function (8.57) satisfies the bi-
harmonic equation trivially.

Substituting (8.59) in (8.58) we obtain,

σxx =
3M

4c3b
y, σyy = σxy = 0. (8.60)

Using the 2 dimensional Hooke’s law (7.49), the strain field corresponding
to the stress field (8.60) is computed to be

εxx =
∂ux
∂x

= − 3M

4Ec3b
y, (8.61)

εyy =
∂uy
∂y

= ν
3M

4Ec3b
y, (8.62)

εxy =
1

2

[
∂ux
∂y

+
∂uy
∂x

]
= 0. (8.63)

Integrating (8.61) we obtain

ux = − 3M

4Ec3b
xy + f(y), (8.64)

where f is an arbitrary function of y. Similarly, integrating (8.62) we obtain

uy =
3Mν

8Ec3b
y2 + g(x), (8.65)
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where g is an arbitrary function of x. Substituting equations (8.64) and
(8.65) in equation (8.63) and simplifying we obtain

− 3M

4Ec3b
x+

df

dy
+
dg

dx
= 0. (8.66)

For equation (8.66) to hold,

df

dy
= −C0,

dg

dx
= C0 +

3M

4Ec3b
x, (8.67)

where C0 is a constant. Integrating (8.67) we obtain

f(y) = −C0y + C1, g(x) = C0x+
3M

8Ec3b
x2 + C2, (8.68)

where C1 and C2 are integration constants. Substituting (8.68) in equations
(8.64) and (8.65) we obtain

ux = − 3M

4Ec3b
xy − C0y + C1, uy =

3M

8Ec3b
[x2 + νy2] + C0x+ C2. (8.69)

The constants Ci’s are to be evaluated from displacement boundary con-
ditions. Assuming the beam to be simply supported at the ends A and B,
we require

uy(±l, 0) = 0, and ux(−l, 0) = 0, (8.70)

where we have assumed the left side support to be hinged (i.e., both the ver-
tical and horizontal displacement is not possible) and the right side support
to be a roller (i.e. only vertical displacement is restrained). Substituting
(8.69) in (8.70) we obtain

C0l + C2 = − 3Ml2

8Ec3b
, (8.71)

−C0l + C2 = − 3Ml2

8Ec3b
, (8.72)

C1 = 0. (8.73)

Solving the equations (8.71) and (8.72) for C0 and C2 we obtain

C0 = 0, C2 = − 3Ml2

8Ec3b
. (8.74)
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Substituting, equations (8.73) and (8.74) in the equation (8.69) we obtain
the displacement field as,

u = − 3M

4Ec3b
xyex +

3M

8Ec3b
[x2 + νy2 − l2]ey. (8.75)

If the displacement boundary condition is different, then the requirement
(8.70) will change and hence the displacement field.

We now wish to compare this elasticity solution with that obtained by
strength of materials approach. The bending equation (8.41), for rectangular
cross section being studied and the constant moment case reduces to,

− σxx
y

=
3M

4c3b
= E

d2∆

dx2
, (8.76)

where we have used the fact that for a rectangular cross section of depth 2c
and width 2b, Izz = 4c3b/3 and that yo = 0 as the origin is at the centroid
of the cross section. Using the first equality in equation (8.76) we obtain the
stress field as,

σxx = − 3M

4c3b
y, σyy = σxy = 0, (8.77)

Comparing equations (8.60) and (8.77) we find that the stress field is the same
in both the approaches. Then, using the last equality in equation (8.76) we
obtain,

∆ =
3M

4c3b

x2

2
+D1x+D2, (8.78)

where D1 and D2 are integration constants to be found from the displace-
ment boundary condition (8.70). This simply supported boundary condition
requires that ∆(±l) = 0, i.e.,

D1l +D2 = − 3M

4c3b

l2

2
, (8.79)

−D1l +D2 = − 3M

4c3b

l2

2
. (8.80)

Solving the above equations we obtain,

D1 = 0, D2 = − 3M

4c3b

l2

2
. (8.81)
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Figure 8.7: Deformed shape of a beam subjected to pure bending as obtained
from the elasticity solution

Substituting (8.81) in (8.78) and the resulting equation in (8.29) we obtain

u = − 3M

4Ec3b
xyex +

3M

8c3b
[x2 − l2]ey. (8.82)

Comparing the strength of materials displacement field (8.82) with that of the
elasticity solution (8.75) we find that the x component of the displacement
field is the same in both the cases. However, while the y component of
the displacement is in agreement with the displacement of the neutral axis,
i.e., when y = 0, it is not in other cases. This is understandable, as in the
strength of material solution we ignored the Poisson’s effect and used only a
1D constitutive relation. This means that the length of the filaments oriented
along the y direction changes in the elasticity solution, which is explicitly
assumed to be zero in the strength of materials solution. Figure 8.7 plots the
deformed shape of a beam subjected to pure bending as obtained from the
elasticity solution.

We shall find that this near agreement of the elasticity and strength of
materials solution for pure bending of the beam does not hold for other
loadings, as we shall see next.
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Figure 8.8: Beam carrying uniformly transverse loading.

Simply supported beam subjected to uniformly distributed trans-
verse loading

The next problem that we solve is that of a beam carrying a uniformly
distributed transverse loading w along its top surface,as shown in Figure 8.8.
As before the traction boundary conditions for this problem are

t(ey)(x, c) = −w
2b

ey, (8.83)

t(−ey)(x,−c) = o, (8.84)

∫ c

−c
2bt(ex)(l, y)dy = wley, (8.85)∫ c

−c
2bt(−ex)(−l, y)dy = wley, (8.86)

∫ c

−c
2b(yey + zez) ∧ t(ex)(l, y)dy = o, (8.87)∫ c

−c
2b(yey + zez) ∧ t(−ex)(−l, y)dy = o. (8.88)
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While exact point wise conditions are specified on the top and bottom sur-
faces, at the right and left surfaces the resultant horizontal axial force and
moment are set to zero and the resultant vertical shear force is specified
such that it satisfies the overall equilibrium. As before assuming plane stress
conditions, (8.46), the boundary conditions (8.83) through (8.88) evaluates
to,

σxy(x,±c) = 0, (8.89)

σyy(x,−c) = 0, (8.90)

σyy(x, c) = −w
2b
, (8.91)∫ c

−c
σxx(±l, y)dy = 0, (8.92)∫ c

−c
σxy(l, y)dy = wl, (8.93)∫ c

−c
σxy(−l, y)dy = −wl, (8.94)∫ c

−c
σxx(±l, y)ydy = 0. (8.95)

Thus, we have to chose Airy’s stress function such that conditions (8.89)
through (8.95) holds along with the bi-harmonic equation.

Seeking Airy’s stress function in the form of the polynomial (8.54), we
try the following form,

φ = A20x
2 + A21x

2y + A03y
3 + A23x

2y3 + A05y
5, (8.96)

where Aij’s are constants. For this polynomial to satisfy the bi-harmonic
equation,

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+
∂4φ

∂y4
= 0, (8.97)

it is required that

A05 = −A23

5
. (8.98)

For this assumed form for the Airy’s stress function (8.96), the stress field
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found using equation 8.53 is,

σxx = 6A03y + 6A23(x2y − 2

3
y3), (8.99)

σyy = 2A20 + 2A21y + 2A23y
3, (8.100)

σxy = −2A21x− 6A23xy
2, (8.101)

where we have used (8.98).

Substituting equation (8.101) in the boundary condition (8.89) we obtain,

A21 + 3A23c
2 = 0. (8.102)

Then, using equation (8.100) in the boundary conditions (8.90),(8.91) we
obtain,

2A20 − 2A21c− 2A23c
3 = 0, (8.103)

2A20 + 2A21c+ 2A23c
3 = −w

2b
. (8.104)

Solving the above three equations for the constants A20, A21 and A23, we
obtain

A20 = −w
8b
, A21 = − 3w

16bc
, A23 =

w

16bc3
. (8.105)

Next, substituting equation (8.99) in the boundary condition (8.92) we find
that it holds for any choice of the remaining constant, A03. Similarly, when
the constants, Aij are as given in (8.105), the shear stress (8.101) satisfies the
boundary conditions (8.93) and (8.94). Thus, substituting equation (8.99) in
the boundary condition (8.95) we obtain

A03 = −A23(l2 − 2

5
c2) = − w

16bc

[
l2

c2
− 2

5

]
. (8.106)

Thus, the assumed form for the Airy’s stress function (8.96) with the appro-
priate choice for the constants, satisfies the required boundary conditions and
the bi-harmonic equation and therefore is a solution to the given boundary
value problem.

Substituting the values for the constants from equations (8.105) and
(8.106) in equations (8.99) through (8.101), the resulting stress field can
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be written as,

σxx = − 3w

8bc

[
l2

c2
− 2

5

]
y +

3w

8bc3

[
x2y − 2

3
y3

]
, (8.107)

σyy = −w
4b

[
1 +

3

2

y

c
− 1

2

y3

c3

]
, (8.108)

σxy =
3wx

8bc

[
1− y2

c2

]
. (8.109)

Having computed the stress fields, next we determine the displacement
field. As usual, we use the 2 dimensional constitutive relation (7.49) to obtain
the strain field as

εxx =
∂ux
∂x

=
σxx
E
− νσyy

E

=
w

4Eb

{
3y

2c3

[
x2 − 2

3
y2

]
− 3y

2c

[
l2

c2
− 2

5

]
+ ν

[
1 +

3

2

y

c
− 1

2

y3

c3

]}
, (8.110)

εyy =
∂uy
∂y

=
σyy
E
− νσxx

E

=
w

4Eb

{
−
[
1 +

3

2

y

c
− 1

2

y3

c3

]
− 3yν

2c3

[
x2 − 2

3
y2

]
+

3yν

2c

[
l2

c2
− 2

5

]}
, (8.111)

εxy =
1

2

[
∂ux
∂y

+
∂uy
∂x

]
= σxy

(1 + ν)

E
=

(1 + ν)

E

3wx

8bc

[
1− y2

c2

]
. (8.112)

Integrating (8.110) we obtain

ux =
w

4Eb

{
yx

2c3

[
x2 − 2y2 − 3l2 +

3

5
c2

]
+ νx

[
1 +

3

2

y

c
− 1

2

y3

c3

]
+ f(y)

}
,

(8.113)

where f(y) is a yet to be determined function of y. Similarly integrating
(8.111),

uy = − w

4Eb

{
y +

3

4

y2

c
− 1

8

y4

c3
+

3y2ν

4c3

[
x2 − 1

3
y2

]
− 3y2ν

4c

[
l2

c2
− 2

5

]
−g(x)} , (8.114)
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where g(x) is a yet to be determined function of x.
Substituting equations (8.113) and (8.114) in (8.112) and simplifying we

obtain
x3

2c3
− 27

10

x

c
− 3ν

2

x

c
− 3

2

l2x

c3
+
df

dy
+
dg

dx
= 0. (8.115)

For equation (8.115) to hold,

df

dy
= C0,

dg

dx
= − x3

2c3
+

27

10

x

c
+

3ν

2

x

c
+

3

2

l2x

c3
+ C0, (8.116)

where C0 is a constant. Integrating the differential equation (8.115) we obtain

f(y) = C0y + C1, (8.117)

g(x) =
x2

2c

[
27

10
+

3ν

2
+

3l2

2c2

]
− x4

8c3
+ C0x+ C2, (8.118)

(8.119)

where C1 and C2 are constants to be determined from the displacement
boundary condition. Assuming the beam to be simply supported at the ends
A and B, we require

uy(±l, 0) = 0, and ux(−l, 0) = 0, (8.120)

where we have assumed the left side support to be hinged (i.e., both the ver-
tical and horizontal displacement is not possible) and the right side support
to be a roller (i.e. only vertical displacement is restrained). Substituting
(8.114) and (8.118) in (8.120a) we obtain

C0l + C2 =
l4

8c3
− l2

2c

[
27

10
+

3ν

2
+

3l2

2c2

]
, (8.121)

−C0l + C2 =
l4

8c3
− l2

2c

[
27

10
+

3ν

2
+

3l2

2c2

]
. (8.122)

Solving equations (8.121) and (8.122) for C0 and C2,

C0 = 0, C2 =
l4

8c3
− l2

2c

[
27

10
+

3ν

2
+

3l2

2c2

]
. (8.123)

Substituting equations (8.113), (8.117) and (8.123) in (8.120b), we obtain

C1 = −νl. (8.124)
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Thus, the final form of the displacements is given by

ux =
3w

8Ebc3

{
yx

3

[
x2 − 2y2 − 3l2 +

3

5
c2

]
+

2c3ν

3
x

[
1− l +

3

2

y

c
− 1

2

y3

c3

]}
,

(8.125)

uy = − 3w

8Ebc3

{[
y +

3

4

y2

c
− 1

8

y4

c3

]
2c3

3
+
y2ν

2

[
x2 − 1

3
y2

]
− y2ν

2c2

[
l2

c2
− 2

5

]
−x

2c2

3

[
27

10
+

3ν

2
+

3l2

2c2

]
+
x4

12
− l4

12
+
l2c2

3

[
27

10
+

3ν

2
+

3l2

2c2

]}
. (8.126)

In order to facilitate the comparison of this elasticity solution with that
obtained from the strength of materials approach, we rewrite the stress and
displacements field obtained using the elasticity approach in terms of the
moment of inertia of the rectangular cross section of depth 2c and width 2b,
Izz = 4bc3/3, as

σxx =
w

2Izz

[
x2 − l2 +

2c2

5
− 2y2

3

]
y, (8.127)

σyy =
w

2Izz

(
y3

3
− c2y − 2

3
c3

)
, (8.128)

σxy =
w

2Izz
x
(
c2 − y2

)
. (8.129)

ux =
w

2EIzz

{
yx

3

[
x2 − 2y2 − 3l2 +

3

5
c2

]
+

2c3ν

3
x

[
1− l +

3

2

y

c
− 1

2

y3

c3

]}
,

(8.130)

uy = − w

2EIzz

{[
y +

3

4

y2

c
− 1

8

y4

c3

]
2c3

3
+
y2ν

2

[
x2 − 1

3
y2

]
− y2ν

2c2

[
l2

c2
− 2

5

]
−x

2c2

3

[
27

10
+

3ν

2
+

3l2

2c2

]
+
x4

12
− l4

12
+
l2c2

3

[
27

10
+

3ν

2
+

3l2

2c2

]}
. (8.131)

Now, we obtain the stress and displacement field from the strength of
materials approach. The bending equation (8.41) for this boundary value
problem reduces to

− σxx
y

=
w

2Izz

[
l2 − x2

]
= E

d2∆

dx2
, (8.132)
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where we have taken yo = 0 as the origin of the coordinate system coincides
with the centroid of the cross section and substituted for bending moment,

Mz = wl(l + x)− w

2
(l + x)2 =

w

2

[
l2 − x2

]
. (8.133)

From the first equality in equation (8.132) we obtain,

σxx = − w

2Izz

[
l2 − x2

]
y, (8.134)

Using the equation (8.43) the shear stress, σxy for this cross section and
loading is estimated as,

σxy = − Vy
Izz2b

∫ b

−b
dz

∫ c

y

ydy, (8.135)

where we have used yo = 0. Noting that Vy = wl−w(l+x) = −wx, equation
(8.135) simplifies to

σxy =
w

2Izz
x
[
c2 − y2

]
, (8.136)

In strength of materials solution we do not account for the variation of the
σyy component of the stress. Hence,

σyy = 0, (8.137)

From solving the ordinary differential equation in the last equality in equation
(8.132) we obtain,

∆ =
w

4EIzz

[
l2x2 − x4

6
+D1x+D2

]
, (8.138)

where D1 and D2 are constants to be found from the displacement boundary
condition (8.120). The boundary condition (8.120a) requires that

D1l +D2 = −5

6
l4, (8.139)

−D1l +D2 = −5

6
l4. (8.140)

Solving equations (8.139) and (8.140) for the constants D1 and D2 we obtain

D1 = 0, D2 = −5

6
l4. (8.141)
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Substituting (8.141) in equation (8.138) we obtain

∆ =
w

4EIzz

[
l2x2 − x4

6
− 5

6
l4
]
. (8.142)

Hence the displacement field in a simply supported beam subjected to trans-
verse loading obtained from strength of materials approach is,

u = −y w

4EIzz

[
2l2x− 2x3

3

]
ex +

w

4EIzz

[
l2x2 − x4

6
− 5

6
l4
]

ey. (8.143)

Before concluding this section let us compare the 2 dimensional elasticity
solution with the strength of material solution. Comparing equations (8.136)
with equation (8.129), we find that identical shear stress, σxy variation is ob-
tained in both the approaches. However, comparing equations (8.134) and
(8.127) we find that the expression for the bending stress, σxx obtained by
both these approaches are different. First observe that in strength of mate-
rials solution σxx(±l, y) = 0. However, in the elasticity solution, σxx(±l, y)
= wy[c2/5− y2/3]/Izz. Figure 8.9 plots the variation of σxx(±l, y)2b/w with
respect to y/c. Moreover, at any section we find that the bending stress, σxx
varies nonlinearly with respect to y in the elasticity solution. To understand
how different the elasticity solution is from the strength of materials solu-
tion, in figure 8.10 we plot both the variation of the bending normal stress,
σxx(0, y)2b/w as a function of y/c for various values of l/c. It can be seen
from the figure that for values of l/c ≤ 1 the differences are significant but
as the value of l/c tends to get larger the differences diminishes. Also notice
that the maximum bending stress max(σxx(0, y)) varies quadratically as a
function of l/c. In figure 8.11 we plot the variation of the stress σyy2b/w
with y/c to find that its magnitude is less than 1. Thus, for typical beams
with l/c > 10, the bending stresses σxx is 100 times more than these other
stresses that they can be ignored, as done in strength of materials solution.

Having examined the difference in the stresses let us now examine the
displacements. The maximum deflection of the neutral axis of the beam in
the elasticity solution is

umaxy = uy(0, 0) = − 5wl4

24EIzz

{
1 +

c2

l2

[
54

25
+

6ν

5

]}
, (8.144)

obtained from equation (8.131). The corresponding value calculated from
strength of materials solution (8.142) is

∆max = ∆(0) = − 5wl4

24EI
. (8.145)
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Figure 8.9: Variation of the stress σxx at the supports along the depth of the
simply supported beam subjected to transverse loading
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Figure 8.10: Variation of the stress σxx at mid span of a simply supported
beam subjected to transverse loading
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Figure 8.11: Variation of the stress σyy along the depth of the simply sup-
ported beam subjected to transverse loading

Comparing equations (8.144) and (8.145) it can be seen that when l/c � 1
the results are approximately the same. Thus, again we find that for long
beams with l/c > 10 the strength of materials solution is close to the elasticity
solution. Note that from equation 8.125, the x component of displacement
indicates that plane sections do not remain plane. However, for well propor-
tioned beams, i.e. beams with l/c > 10, the deviation from being plane is
insignificant.

Simply supported beam subjected to sinusoidal loading

Finally, we consider a simply supported rectangular cross section beam sub-
jected to sinusoidally varying transverse load along its top edge as shown in
Fig 8.12. Now, we shift the coordinate origin to the left end surface of the
beam. Consequently, the beam in its initial state is assumed to occupy a re-
gion in the Euclidean point space defined by B = {(x, y, z)|0 ≤ x ≤ 2l,−c ≤
y ≤ c,−b ≤ z ≤ b}.

The traction boundary conditions for this problem are

t(ey)(x, c) = − qo
2b

sin
(
π
x

l

)
ey, (8.146)

t(−ey)(x,−c) = o, (8.147)
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Figure 8.12: Simply supported beam subjected to sinusoidally varying trans-
verse load

∫ c

−c
2bt(ex)(l, y)dy =

qo
π
ley, (8.148)∫ c

−c
2bt(−ex)(0, y)dy =

qo
π
ley, (8.149)

∫ c

−c
2b(yey + zez) ∧ t(ex)(l, y)dy = o, (8.150)∫ c

−c
2b(yey + zez) ∧ t(−ex)(0, y)dy = o. (8.151)

The conditions (8.146) through (8.151) on assuming that the beam is sub-
jected to a plane state of stress, translates into requiring

σxy(x,±c) = 0, (8.152)

σyy(x, c) = − q0

2b
sin(πx/l), (8.153)

σyy(x,−c) = 0, (8.154)

∫ c

−c
2bσxy(0, y)dy = −q0l/π, (8.155)∫ c

−c
2bσxy(l, y)dy = q0l/π, (8.156)
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−c
2bσxx(0, y)dy = 0, (8.157)∫ c

−c
2bσxx(l, y)dy = 0, (8.158)

∫ c

−c
2bσxx(0, y)ydy = 0, (8.159)∫ c

−c
2bσxx(l, y)ydy = 0, (8.160)

(8.161)

As before, we solve this boundary value problem using stress approach.
Towards this, we assume the following form for the Airy’s stress function

φ = sin(βx) {[A1 + A3βy] sinh(βy) + [A2 + A4βy] cosh(βy)} , (8.162)

where Ai’s are constants to be determined from boundary conditions. It
is straightforward to verify that the above choice of Airy’s stress function,
(8.162) satisfies the bi-harmonic equation.

Then, the Cartesian components of the stress for the assumed Airy’s
stress function (8.162) is

σxx = β2 sin(βx){A1 sinh(βy)+A3 [yβ sinh(βy) + 2 cosh(βy)]+A2 cosh(βy)

+ A4 [βy cosh(βy) + 2 sinh(βy)]}, (8.163)

σyy = −β2 sin(βx) {[A1 + A3βy] sinh(βy) + [A2 + A4βy] cosh(βy)} ,
(8.164)

σxy = β2 cos(βx){A1 cosh(βy) + A3 [βy cosh(βy) + sinh(βy)] + A2 sinh(βy)

+ A4 [βy sinh(βy) + cosh(βy)]}. (8.165)

Now applying the boundary condition we evaluate the constants, Ai’s.
The condition 8.152 implies that

A1 cosh(βc) + A3 [βc cosh(βc) + sinh(βc)] + A2 sinh(βc)

+ A4 [βc sinh(βc) + cosh(βc)] = 0. (8.166)
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A1 cosh(βc)− A3 [βc cosh(βc) + sinh(βc)]− A2 sinh(βc)

+ A4 [βc sinh(βc) + cosh(βc)] = 0. (8.167)

Adding equations (8.166) and (8.167) we obtain,

A1 cosh(βc) + A4 [βc sinh(βc) + cosh(βc)] = 0, (8.168)

Subtracting equations (8.166) and (8.167) we obtain,

A2 sinh(βc) + A3 [βc cosh(βc) + sinh(βc)] = 0. (8.169)

We write A1 in terms of A4 using equation (8.168) as

A1 = −A4[βc tanh(βc) + 1]. (8.170)

Similarly, we write A2 in terms of A3 using equation (8.169) as

A2 = −A3[βc coth(βc) + 1]. (8.171)

Substituting equations (8.170) and (8.171) in (8.164)

σyy = −β2 sin(βx){A4 [βy cosh(βy)− (βc tanh(βc) + 1) sinh(βy)]

+ A3 [βy sinh(βy)− (βc coth(βc) + 1) cosh(βy)]}. (8.172)

Applying boundary condition (8.154) we obtain a relation between A3 and
A4 as

A3 = −A4 tanh(βc)
βc− sinh(βc) cosh(βc)

βc+ sinh(βc) cosh(βc)
. (8.173)

The boundary condition (8.153) requires

q0 sin(
πx

l
) = 2β2 sin(βx)

[
βc− sinh(βc) cosh(βc)

cosh(βc)

]
A4. (8.174)

In order for equation 8.174 to be true for all x, β = π/l, and so A4 is
determined as,

A4 =
q0 cosh

(
πc
l

)
4bπ

2

l2

[
πc
l
− sinh

(
πc
l

)
cosh

(
πc
l

)] . (8.175)

It can be verified that for these choice of constants, boundary conditions
(8.155) through (8.160) is satisfied. Thus, we have found a stress function
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that satisfies the bi-harmonic equation and the traction boundary conditions
and therefore is a solution to the boundary value problem.

The displacements are determined through integration of the strain dis-
placement relations. Since the steps in its computation is same as in the
above two examples, only the final results are recorded here

ux = − β
E

cos(βx){A1[1 + ν] sinh(βy) + A2[1 + ν] cosh(βy)

+ A3 [(1 + ν)βy sinh(βy) + 2 cosh(βy)]

+ A4 [(1 + ν)βy cosh(βy) + 2 sinh(βy)]} − C0y + C1, (8.176)

uy = − β
E

sin(βx){A1[1 + ν] cosh(βy) + A2[1 + ν] sinh(βy)

+ A3 [(1 + ν)βy cosh(βy)− (1− ν) sinh(βy)]

+ A4 [(1 + ν)βy sinh(βy)− (1− ν) cosh(βy)]}+ C0x+ C2, (8.177)

where Ci’s are constants to be determined from displacement boundary con-
ditions. As before, to model a simply supported beam, we choose displace-
ment boundary conditions as

ux(0, 0) = uy(0, 0) = uy(l, 0) = 0. (8.178)

The constant Ci’s determined using the above displacement conditions is

C0 = C2 = 0, C1 =
β

E
[A2 (1 + ν) + 2A3] . (8.179)

In order to facilitate comparison of this displacement field with that ob-
tained from strength of materials approach, the vertical displacement of the
centerline is determined from equation (8.177) as

uy(x, 0) =
A4β

E
sin(βx) [2 + (1 + ν)βc tanh(βc)] . (8.180)

For the case when l� c, we approximately computeA4 asA4 ≈−3q0l
5/8bc3π5,

and so the equation (8.180) becomes

uy(x, 0) = − 3q0l
4

4bc3π4E
sin
(πx
l

)[
1 +

1 + ν

2

πc

l
tanh

(πc
l

)]
. (8.181)
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Figure 8.13: Schematic of transverse loading of a beam with rectangular cross
section

Without going into the details, the vertical deflection of the beam com-
puted using strength of materials approach is,

∆ = − 3q0l
4

4bc3π4E
sin
(πx
l

)
. (8.182)

When l/c > 10 it can be seen that both the elasticity and strength of materials
solution is in agreement as expected.

8.3 Asymmetrical bending

Having shown that for the symmetrical bending the strength of material
approximation is robust when l/c > 10, we proceed to use the same approx-
imation for asymmetrical bending. In the case of asymmetrical bending the
loading plane does not coincide with the plane of symmetry. As an illustra-
tion, consider the rectangular section, loaded as shown in the figure 8.13a.
The applied load can be resolved along the symmetry plane, as shown in fig-
ure 8.13b. Thus, the beam bends in both the xy plane due to loading along
y direction and the xz plane due to loading along the z direction. As per the
strength of materials assumption that the plane section before deformation
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remain plane and that the sections normal to the neutral axis, remain normal
after the deformation, the displacement field for this case is,

u = −
{

[y − yo]
d∆y

dx
+ [z − zo]

d∆z

dx

}
ex + ∆y(x)ey + ∆z(x)ez, (8.183)

where ∆y(x) and ∆z(x) are yet to be determined functions of x, yo and zo
are constants. The above displacement field is obtained by superposing the
bending displacement due to transverse loading along one symmetric plane,
say xy plane, (8.29) and the displacement filed due to loading along another
symmetric plane say xz (obtained by substituting z in place of y in equation
(8.29)). Recollect from section 7.5.2 that for the linear elastic material that
we are studying, we can superpose solutions as long as the displacements are
small.

As required in the displacement approach, we next compute the linearized
strain corresponding to the displacement field, (8.183) as

ε =

−
{

[y − yo]d
2∆y

dx2
+ [z − zo]d

2∆z

dx2

}
0 0

0 0 0
0 0 0

 . (8.184)

Then, using the 1 dimensional constitutive relation, the stress is obtained as

σxx = −E
{

[y − yo]
d2∆y

dx2
+ [z − zo]

d2∆z

dx2

}
. (8.185)

Substituting (8.185) in equation (8.3) and using the condition that no axial
load is applied we obtain∫∫

a

E

{
[y − yo]

d2∆y

dx2
+ [z − zo]

d2∆z

dx2

}
dydz = 0. (8.186)

For equation (8.186) to hold we require that∫∫
a

E[y − yo]dydz = 0,

∫∫
a

E[z − zo]dydz = 0, (8.187)

since in equation (8.186) ∆y and ∆z are independent functions of x and in
particular ∆y 6= −k∆z, where k is a constant. From equation (8.187) we
obtain,

yo =

∫∫
a
Eydydz∫∫
a
Edydz

, zo =

∫∫
a
Ezdydz∫∫
a
Edydz

. (8.188)
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If the beam is also homogeneous then Young’s modulus, E is a constant and
therefore,

yo = (

∫∫
a

ydydz)/(

∫∫
a

dydz), zo = (

∫∫
a

zdydz)/(

∫∫
a

dydz), (8.189)

the y and z coordinates of the centroid of the cross section. Without loss of
generality the origin of the coordinate system can be assumed to be located
at the centroid of the cross section and hence yo = zo = 0.

Since, we have assumed that there is no net applied axial load, i.e.,∫
a

σxxda = 0, (8.190)

equation (8.9) and (8.8) can be written as,

Mz = −
∫
a

yσxxda = −
∫
a

yσxxda+

∫
a

yoσxxda = −
∫
a

[y − yo]σxxda,

(8.191)

My =

∫
a

zσxxda =

∫
a

zσxxda−
∫
a

zoσxxda =

∫
a

[z − zo]σxxda, (8.192)

where yo and zo are constants as given in equation (8.188). Substituting
equation (8.185) in equation (8.191) we obtain,

Mz =

∫∫
a

[y − yo]2E
d2∆y

dx2
dydz +

∫∫
a

[y − yo][z − zo]E
d2∆z

dx2
dydz

=
d2∆y

dx2

∫∫
a

[y − yo]2Edydz +
d2∆z

dx2

∫∫
a

[y − yo][z − zo]Edydz. (8.193)

If the cross section of the beam is homogeneous, the above equation can be
written as,

Mz =
d2∆y

dx2
E

∫∫
a

[y − yo]2dydz +
d2∆z

dx2
E

∫∫
a

[y − yo][z − zo]dydz

=
d2∆y

dx2
EIzz +

d2∆z

dx2
EIyz, (8.194)
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where,

Izz =

∫∫
a

[y − yo]2dydz, Iyz =

∫∫
a

[y − yo][z − zo]dydz, (8.195)

are the moment of inertia about the z axis, the axis about which the ap-
plied forces produces a moment, Mz and the product moment of inertia.
Substituting equation (8.185) in equation (8.192) we obtain,

My = −
∫∫
a

[y − yo][z − zo]E
d2∆y

dx2
dydz −

∫∫
a

[z − zo]2E
d2∆z

dx2
dydz

= −d
2∆y

dx2

∫∫
a

[y − yo][z − zo]Edydz −
d2∆z

dx2

∫∫
a

[z − zo]2Edydz. (8.196)

If the cross section of the beam is homogeneous, the above equation can be
written as,

My = −d
2∆y

dx2
E

∫∫
a

[y − yo][z − zo]dydz −
d2∆z

dx2
E

∫∫
a

[z − zo]2dydz

= −d
2∆y

dx2
EIyz −

d2∆z

dx2
EIyy, (8.197)

where,

Iyy =

∫∫
a

[z − zo]2dydz, (8.198)

is the moment of inertia about the y axis, the axis about which the applied
forces produces a moment, My. Solving equations (8.194) and (8.197) for ∆y

and ∆z we obtain,

d2∆y

dx2
=
IyzMy + IyyMz

E[IyyIzz − I2
yz]
,

d2∆z

dx2
= −IyzMz + IzzMy

E[IyyIzz − I2
yz]
. (8.199)

Substituting (8.199) in (8.185) we obtain

σxx = −[y − yo]
IyzMy + IyyMz

IyyIzz − I2
yz

+ [z − zo]
IyzMz + IzzMy

IyyIzz − I2
yz

, (8.200)
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Figure 8.14: Schematic showing the neutral surface for a beam with rectan-
gular cross section subjected to transverse loading

where yo and zo are as given in equation (8.189). Equation (8.200) gives
the bending normal stress when a cross section is subjected to both My and
Mz bending moments or when the cross section is subjected to a bending
moment about an axis for which the product moment of inertia is not 0, i.e.,
loading is not along a plane of symmetry.

Before proceeding further, a few observations on equation (8.200) have to
be made. It is clear from the equation (8.200) that the bending normal stress
varies linearly over the cross sectional surface. As in the case of symmetrical
bending, there exist a surface which has zero bending normal stress. This
zero bending normal stress surface, called as the neutral surface is defined by

tan(β) =
y − yo
z − zo

=
IyzMz + IzzMy

IyzMy + IyyMz

. (8.201)

Figure 8.14 shows a typical neutral surface for a beam with rectangular cross
section subjected to transverse loading not in the plane of symmetry of the
cross section.

Having found the bending normal stress, next we find the bending shear
stress. Towards this, we consider the equilibrium of a cuboid pqrstuvw as
shown in figure 8.15, taken from a beam subjected to asymmetric bending
moment that varies along the longitudinal axis of the beam. Note that on
this cuboid, bending normal stress σ−xx acts on the face prtv and σ+

xx acts on
the face qsuw, shear stress, σxy acts in plane rsvw and shear stress, σxz acts
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Figure 8.15: Schematic of a section of a beam with rectangular cross section
to find the shear stresses due to asymmetric loading

in plane tuvw. Now, the force balance along the x direction requires that

σxy(∆x)(b− z) + σxz(∆x)(c− y) +

∫∫
a

[σ+
xx − σ−xx]dzdy = 0, (8.202)

where we have assumed that constant shear stresses act on faces rsvw and
pqrs and that the bending normal stress varies linearly over the faces prtv
and qsuw as indicated in equation (8.200). Appealing to Taylor’s series, we
write,

σ+
xx = σ−xx +

dσxx
dx

(∆x), (8.203)

truncating the series after first order term, since our interest is in the limit
(∆x) tending to zero. Differentiating (8.200) with respect to x we obtain,

dσxx
dx

= − [y − yo]
[IzzIyy − I2

yz]

[
Iyy

dMz

dx
+ Iyz

dMy

dx

]
+

[z − zo]
[IzzIyy − I2

yz]

[
Iyz

dMz

dx
+ Izz

dMy

dx

]
(8.204)

Substituting equations (8.18) and (8.20) in (8.204),

dσxx
dx

= − [y − yo]
[IzzIyy − I2

yz]
[−IyyVy + IyzVz] +

[z − zo]
[IzzIyy − I2

yz]
[−IyzVy + IzzVz] .

(8.205)
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Substituting equation (8.205) in (8.203) and using the resulting equation in
(8.202) we obtain

σxy(b− z) + σxz(c− y) = − [IyyVy − IyzVz]
[IzzIyy − I2

yz]

c∫
y

[y − yo]
b∫

z

dz

 dy

− [IzzVz − IyzVy]
[IzzIyy − I2

yz]

b∫
z

[z − zo]
c∫

y

dy

 dz, (8.206)

where the limits of the integration have been arrived at for the rectangu-
lar cross section shown in figure 8.15. Thus, if the section is thick walled,
equation (8.206) is insufficient to determine all the shear stresses as such.
Hence, strength of materials approach cannot yield the shear stresses in a
thick walled section subjected to asymmetrical loading. However, it should
be mentioned that the shear stresses in a well proportioned thick walled sec-
tion, with l/c > 10, for which the strength of materials solution is applicable,
will develop shear stresses which are an order of magnitude, at least, less than
that of the bending stresses.

On the other hand since the direction of the shear stress is well defined
in thin walled sections. It is going to be tangential to the cross section at
the point of interest, as in the case of symmetric bending. Further, by virtue
of the section being thin walled, we assume the shear stresses to be uniform
across its thickness, t. Now, the shear stress, τ acting as shown in figure 8.16
balances the imbalance created due to the variation of the bending normal
stresses along the longitudinal axis of the beam. Following the same steps
as in the case of thick walled cross sections detailed above, it can be shown
that

τ = −1

t

{
[IyyVy − IyzVz]
[IzzIyy − I2

yz]

∫
a

[y − yo]dydz +
[IzzVz − IyzVy]
[IzzIyy − I2

yz]

∫
a

[z − zo]dydz
}
,

(8.207)
where the area over which the integration is to be performed is the shaded
region shown in figure 8.16. If one is to use polar coordinates to describe the
cross section and defining ro =

√
y2
o + z2

o and β = tan−1(yo/zo), the equation
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Figure 8.16: Stresses acting on a thin walled cross section beam subjected to
asymmetric loading

(8.207) can be written as,

τ = − [IyyVy − IyzVz]
[IzzIyy − I2

yz]

∫ α

φ

r2
[
sin(θ)− ro

r
sin(β)

]
dθ

− [IzzVz − IyzVy]
[IzzIyy − I2

yz]

∫ α

φ

r2
[
cos(θ)− ro

r
cos(β)

]
dθ, (8.208)

where r could be a function of θ but ro and β are constants. Thus, in equation
(8.208) the shear stress, τ is a function of φ only.

While this representation is convenient in cases where the section is
not made up of straight line segments, a representation using the perime-
ter length, s, of the cross section is useful when the section is made up of
straight line segments. Thus, the expression for the shear stress in terms of
the perimeter length as shown in figure 8.16 is,

τ = − [IyyVy − IyzVz]
[IzzIyy − I2

yz]

∫ s

0

[r sin(θ)−yo]ds−
[IzzVz − IyzVy]
[IzzIyy − I2

yz]

∫ s

0

[r cos(θ)−zo]ds,

(8.209)
where now r and θ have to be expressed as a function of s. Here we have
used the relation, ds = rdθ to obtain (8.209) from (8.208).

Thus, integrating the ordinary differential equations (8.199) we obtain the
deflections of the beam along the y and z directions and hence the displace-
ment field for the beam, (8.183) can be computed. Using equation (8.200)
the bending normal stress is evaluated. While these calculations are the same
for thin or thick walled sections, the shear stress estimation is different. We
could not find the shear stresses in case of thick walled sections using the
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strength of materials approach. However, equation (8.207) gives the shear
stresses in thin walled sections. This completes the solution to asymmetrical
bending problem.

8.4 Shear center

Having found the solution to symmetrical and asymmetrical bending, in this
section we find where the load has to be applied so that it produces no
torsion.

Shear center is defined as the point about which the external load has to
be applied so that it produces no twisting moment.

Recall from equation (8.7) the torsional moment due to the shear force
σxy and σxz about the origin is,

Mx =

∫
a

[σxzy − σxyz]dydz. (8.210)

Since,
∫
a
σxzdydz = Vz and

∫
a
σxydydz = Vy, the moment about some other

point (ysc, zsc) would be,

M sc
x =

∫
a

[σxzy − σxyz]dydz − Vzysc + Vyzsc. (8.211)

If this point (ysc, zsc) is the shear center, then M sc
x = 0. Thus, we have to

find ysc and zsc such that,∫
a

[σxzy − σxyz]dydz − Vzysc + Vyzsc = 0, (8.212)

holds. We have two unknowns but only one equation. Hence, we cannot find
ysc and zsc uniquely, in general. If the loading is such that only shear force
Vy is present, then

zsc =
1

Vy

∫
a

[σxyz − σxzy]dydz. (8.213)

Similarly, if Vy = 0,

ysc =
1

Vz

∫
a

[σxzy − σxyz]dydz. (8.214)
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Equations (8.213) and (8.214) are used to find the coordinates of the shear
center with respect to the chosen origin of the coordinate system, which for
homogeneous sections is usually taken as the centroid of the cross section.
Thus, the point that (ysc, zsc) are the coordinates of the shear center from
the origin of the chosen coordinate system which in many cases would be the
centroid of the section cannot be overemphasized. In the case of thin walled
sections which develop shear stresses tangential to the cross section, σxy =
−τ sin(θ) and σxz = τ cos(θ), where τ is the magnitude of the shear stress
and θ is the angle the tangent to the cross section makes with the z direction.

By virtue of the shear stress depending linearly on the shear force (see
equations (8.43) and (8.207)), it can be seen that the coordinates of the shear
center is a geometric property of the section.

8.4.1 Illustrative examples

Next, to illustrate the use of equations (8.213) and (8.214) we find the shear
center for some shapes.

Example 1: Rectangular section

The first section that we consider is a thick walled rectangular section as
shown in figure 8.17 having a depth 2c and width 2b. The chosen coordinate
basis coincides with the two axis of symmetry that this section has and the
origin is at the centroid of the cross section.

First, we shall compute the z coordinate of the shear center zsc. For this
only shear force Vy should act on the cross section. Shear force Vy would be
caused due to loading along the xy plane, a plane of symmetry for the cross
section. Therefore the shear stress, σxy is computed using (8.43) as

σxy = − Vy
2b(2b(2c)3/12)

(2b)

∫ c

y

ydy =
3Vy
8bc

[
1− y2

c2

]
, (8.215)

where we have used the fact that yo = 0, since the origin is located at the
centroid of the cross section. Further, for this loading σxz = 0. Substituting
(8.215) and σxz = 0 in (8.213) we obtain

zsc =
3

8bc

∫ b

−b
zdz

∫ c

−c

[
1− y2

c2

]
dy = 0. (8.216)
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Figure 8.17: Schematic of a rectangular cross section subjected to a shear
force along one direction

Next, we shall compute the y coordinate of the shear center ysc. Now, only
shear force Vz should act. This shear force would be produced by loading
along the xz plane, also a plane of symmetry for the cross section. This
loading produces a shear stress as shown in figure 8.17b whose magnitude is
again computed using (8.43) as

σxz = − Vz
2c(2c(2b)3/12)

(2c)

∫ b

z

zdz =
3Vz
8bc

[
1− z2

b2

]
. (8.217)

and σxy = 0. Substituting (8.217) in (8.214) we obtain

ysc =
3

8bc

∫ c

−c
ydy

∫ b

−b

[
1− z2

c2

]
dz = 0. (8.218)

Thus, for the rectangular cross section, the shear center is located at the
origin of the coordinate system, which in turn is the centroid of the cross
section. Hence, the shear center coincides with the centroid of the cross
section.
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(a) Channel cross section subjected
to a shear force Vy.
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(b) Channel cross section subjected
to a shear force Vz.

Figure 8.18: Schematic of a channel cross section subjected to a shear force
along one direction



286 CHAPTER 8. BENDING OF PRISMATIC STRAIGHT BEAMS

Example 2: Channel section

The next section that we study is the channel section with orientation and
dimensions as shown in figure 8.18. The flange and web thickness of the
channel is the same. Before proceeding to compute the shear center the
other geometric properties, the centroid and the moment of inertia’s for the
cross section is computed. The origin of the coordinate system being used is
at the centroid of the cross section. Then, the distance from the centroid of
the cross section to the top most fiber of the cross section AB is yAB = c =
h/2 + t. Similarly, the distance of the left most fiber in the web of the cross
section, BC is zBC = (ht+ 2b2)/(2(h+ 2b)). Now,

Iyz = 0, (8.219)

Izz =
1

12

[
th3 + 2bt3

]
+

1

2
bt(h+ t)2, (8.220)

Iyy =
1

12

[
ht3 + 2tb3

]
+ ht

(
zBC −

t

2

)2

+ 2bt

(
b

2
− zBC

)2

=
1

12

[
ht3 + 2tb3

]
+
ht

4

(
b(b− 2t)

(h+ 2b)

)2

+
bt

2

(
h(b− t)
(h+ 2b)

)2

. (8.221)

Towards computing the location of the shear center along the z direction,
we first compute the shear stress acting on the cross section due to a shear
force Vy alone. The magnitude of the shear stress, τ is found using (8.209)
as

τ =



− Vy
Izz

(h+t)
2

∫ s
0
ds 0 ≤ s ≤

(
b− t

2

)
− Vy
Izz

[
(h+t)

2

∫ b−t/2
0

ds

+
∫ s
b−t/2

[
(h+t)

2
−
(
s− b+ t

2

)]
ds
] (

b− t
2

)
≤ s ≤

(
b+ h+ t

2

)
− Vy
Izz

[
(h+t)

2

∫ b−t/2
0

ds− (h+t)
2

∫ s
b+h+t/2

ds

+
∫ b+h+t/2

b−t/2

[
(h+t)

2
−
(
s− b+ t

2

)]
ds
] (

b+ h+ t
2

)
≤ s ≤ (2b+ h)

.

(8.222)
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Evaluating the integrals and simplification yields,

τ =


− Vy

2Izz
(h+ t)s 0 ≤ s ≤

(
b− t

2

)
− Vy

2Izz

[
(h+ t)

(
b− t

2

)
− s2 +

(
b− t

2

)2

+ (h+ 2b)
(
s− b+ t

2

)] (
b− t

2

)
≤ s ≤

(
b+ h+ t

2

)
Vy

2Izz
(h+ t)(2b+ h− s)

(
b+ h+ t

2

)
≤ s ≤ (2b+ h)

.

(8.223)
Since this shear stress has to be tangential to the cross section, it would
be σxz component in the flanges and σxy component in the web. Rewriting
equation (8.213) in terms of integration over the perimeter length,

zsc =
t

Vy

∫ So

0

[σxyr cos(θ)− σxzr sin(θ)] ds, (8.224)

where So is the total length of the perimeter of the cross section. Evaluating
the above equation, (8.224) for the channel section yields,

zsc =
t

2Izz

{∫ b−t/2

0

(h+ t)s
(h+ t)

2
ds

+

∫ 2b+h

b+h+t/2

(h+ t)(2b+ h− s)(h+ t)

2
ds

−
(
zBC −

t

2

)∫ b+h+t/2

b−t/2

[
(h+ t)

(
b− t

2

)
− s2 +

(
b− t

2

)2

+ (h+ 2b)

(
s− b+

t

2

)]
ds

}
. (8.225)

Evaluating the integrals in (8.225) and simplifying we obtain,

zsc =
t(h+ t)2(2b− t)2

16Izz
+

[
zBC −

t

2

]
(h+ 6b− 2t)

t(h+ t)2

12Izz
. (8.226)

For computing the location of the shear center along the y direction, we
next compute the shear stress acting on the cross section due to a shear force
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Vz alone. The magnitude of the shear stress, τ is found using (8.209) as

τ =



− Vz
Iyy

∫ s
0

(s+ zBC − b)ds 0 ≤ s ≤
(
b− t

2

)
− Vz
Iyy

[∫ b−t/2
0

(s+ zBC − b)ds

+
(
zBC − t

2

) ∫ s
b−t/2 ds

] (
b− t

2

)
≤ s ≤

(
b+ h+ t

2

)
− Vz
Iyy

[∫ b−t/2
0

(s+ zBC − b)ds
+
(
zBC − t

2

) ∫ b+h+t/2

b−t/2 ds

+
∫ s
b+h+t/2

(h− s+ zBC + b)ds
] (

b+ h+ t
2

)
≤ s ≤ (2b+ h)

.

(8.227)
Integrating the above equation we obtain,

τ =



− Vz
Iyy

[
s2

2
+ (zBC − b)s

]
0 ≤ s ≤

(
b− t

2

)
− Vz
Iyy

[
(2b−t)2

8
+ (zBC − b) (2b−t)

2

+
(
zBC − t

2

) (
s− (2b−t)

2

)] (
b− t

2

)
≤ s ≤

(
b+ h+ t

2

)
− Vz
Iyy

[
(2b−t)2

8
+ (zBC − b) (2b−t)

2

+
(
zBC − t

2

)
(h+ t)− s2

2

+ (b+h+t/2)2

2

+(zBC + b+ h)
(
s− b− h− t

2

)] (
b+ h+ t

2

)
≤ s ≤ (2b+ h)

.

(8.228)
Since this shear stress has to be tangential to the cross section, as before,
it would be σxz component in the flanges and σxy component in the web.
Rewriting equation (8.214) in terms of integration over the perimeter length,

ysc = − t

Vz

∫ So

0

[σxyr cos(θ)− σxzr sin(θ)] ds, (8.229)

where So is the total length of the perimeter of the cross section. Evaluating
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the above equation, (8.229) for the channel section yields,

ysc = − t

Iyy

{
(h+ t)

2

∫ b−t/2

0

[
s2

2
+ (zBC − b)s

]
ds

−
(
zBC −

t

2

)∫ b+h+t/2

b−t/2

[
(2b− t)2

8
+ (zBC − b)

(2b− t)
2

+

(
zBC −

t

2

)(
s− (2b− t)

2

)]
ds

− (h+ t)

2

∫ 2b+h

b+h+t/2

[
(2b− t)2

8
+ (zBC − b)

(2b− t)
2

+

(
zBC −

t

2

)
(h+ t)− s2

2

+
(b+ h+ t/2)2

2
+ (zBC + b+ h)

(
s− b− h− t

2

)]
ds

}
(8.230)

Evaluating the integrals and simplifying, we find that ysc = 0!

Example 3: Circular arc

The final section that we use to illustrate the procedure to find the shear
center is an arc of a circular section with radius R and a uniform thickness
t. The arc is assumed to span from −(π − α) ≤ θ ≤ (π − α). Thus, it is
symmetrical about the z direction. For convenience, we assume the origin
of the coordinate system to be located at the center of the circle. First, we
compute the centroid of the cross section,

yo =

∫
a
yda∫
a
da

=

∫ π−α
−(π−α)

R sin(θ)t(Rdθ)∫ π−α
−(π−α)

t(Rdθ)
= 0, (8.231)

zo =

∫
a
zda∫
a
da

=

∫ π−α
−(π−α)

R cos(θ)t(Rdθ)∫ π−α
−(π−α)

t(Rdθ)
= R

sin(α)

(π − α)
. (8.232)

Here we have identified yo and zo with the coordinates of the centroid of the
cross section, since it is homogeneous. Next, we compute the moment of
inertias about the centroid,

Izz =

∫
a

[y − yo]2da =

∫ π−α

−(π−α)

[R sin(θ)− 0]2t(Rdθ)

= R3t

[
π − α +

1

2
sin(2α)

]
, (8.233)
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(a) Circular arc section subjected to
a shear force Vy.
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(b) Circular arc section subjected to
a shear force Vz.

Figure 8.19: Schematic of a circular arc section subjected to a shear force
along one direction
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Iyz =

∫
a

[y − yo][z − zo]da =

∫ π−α

−(π−α)

[R sin(θ)− 0][R cos(θ)− zo]t(Rdθ) = 0.

(8.234)

Iyy =

∫
a

[z − zo]2da =

∫ π−α

−(π−α)

[R cos(θ)− zo]2t(Rdθ)

= R3t

[(
1 + 2

z2
o

R2

)
(π − α)− 1

2
sin(2α)− 4

zo
R

sin(α)

]
= R3t

[
π − α− 2

sin2(α)

π − α
− 1

2
sin(2α)

]
, (8.235)

where the last equality is obtained on substituting for zo from (8.232).

Towards computing the z coordinate of the shear center, we compute the
shear stress distribution in the circular arc when only shear force Vy is acting
on the cross section. The magnitude of the shear stress, τ is found using
(8.208) as,

τ = − Vy
Izz

∫ π−α

φ

R2 sin(θ)dθ = − Vy
Izz

R2[cos(α) + cos(φ)]. (8.236)

This shear stress would act tangential to the cross section at every location
as indicated in figure 8.19a. Therefore, σxy = −τ cos(φ) and σxz = τ sin(φ),
where φ is the angle the tangent makes with the y axis. Appealing to equation
(8.213) we obtain,

zsc = − 1

Vy

∫ π−α

−(π−α)

[τ cos(φ)(R cos(φ)) + τ sin(φ)(R sin(φ))] tRdφ

=
R4t

Izz

∫ π−α

−(π−α)

[cos(α) + cos(φ)]dφ = R
4[(π − α) cos(α) + sin(α)]

[2(π − α) + sin(2α)]
, (8.237)

where we have used equations (8.236) and (8.233) respectively. It can be
seen that when 0 < α ≤ π/2, zsc > 0 and in fact R < zsc ≤ 4R/π.

Next, for computing the y coordinate of the shear center, we compute
the shear stress distribution in the circular arc when only shear force Vz is
acting on the cross section. The magnitude of the shear stress, τ is found
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using (8.208) as,

τ = − Vz
Iyy

∫ π−α

φ

R2

[
cos(θ)− sin(α)

(π − α)

]
dθ

= − Vz
Iyy

R2

[
sin(α)

φ

(π − α)
− sin(φ)

]
. (8.238)

This shear stress would act tangential to the cross section at every location
as indicated in figure 8.19b. Hence, as before, σxy = −τ cos(φ) and σxz =
τ sin(φ), where φ is the angle the tangent makes with the y axis. Appealing
to equation (8.214) we obtain,

ysc =
1

Vz

∫ π−α

−(π−α)

[τ cos(φ)(R cos(φ)) + τ sin(φ)(R sin(φ))] tRdφ

= −R
4t

Iyy

∫ π−α

−(π−α)

[
sin(α)

φ

(π − α)
− sin(φ)

]
dφ = 0, (8.239)

where we have used equations (8.238) and (8.235) respectively. Thus, the
shear center is located along the z axis.

By virtue of the zsc being greater than R, the shear center is located
outside the cross section. Hence, for the loading to pass through the shear
center similar issues as discussed in the channel section exist.

8.5 Summary

In this chapter we solved boundary value problems corresponding to bending
of straight, prismatic members. We obtained the solution - the stress and
displacement field - by assuming the displacement field in the strength of
materials approach and the stress field in the elasticity approach. We also
compared the solutions and found good agreement between the solution ob-
tained by both these approaches, when the length to depth ratio of these
members are greater than 10, for the case when the loading passes through a
plane of symmetry. Then, we studied asymmetric bending and obtained the
solution by starting with an assumption on the displacement field. Though
we did not obtain the elasticity solution for this case, it can be obtained by
using principle of superposition and leave it as an exercise to the student to
work the details. Then we introduced an concept called the shear center. It
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Figure 8.20: Cantilever beam subjected to uniformly distributed load on top
surface. Figure for problem 2

is the point about which the external load has to be applied so that there is
no twisting of cross section. We outlined a method to find this shear center
and illustrated the same for three sections.

8.6 Self-Evaluation

1. Find the displacement and stress fields in a cantilever beam with rect-
angular cross section of length 2l, depth 2c and width 2b subjected to
a pure bending moment by assuming that plane section remain plane
and normal to the neutral axis. Solve the same problem by assuming a
cubic polynomial for the Airy’s stress function. Compare the solutions
and draw inferences.

2. Find the displacement and stress fields in a cantilever beam with rect-
angular cross section of length 2l, depth 2c and width 2b subjected to a
uniformly distributed load on the top surface, as shown in figure 8.20,
by assuming that plane section remain plane and normal to the neutral
axis. Solve the same problem by assuming a suitable polynomial for
the Airy’s stress function. Compare the solutions and draw inferences.

3. A simply supported wood beam of rectangular cross section carries a
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Figure 8.21: Simply supported beam subjected to uniformly distributed load
on top surface with the load not acting in the plane of symmetry. Figure for
problem 3

uniform load of intensity, w as shown in figure 8.21. The plane of
symmetry of the beam, x1y1 plane, is inclined to the vertical xy-plane
of loading by an angle α as shown. Calculate the maximum bending
stresses if l = 3 m, w = 3 kN/m, b = 0.15 m, h = 0.2 m and tan(α) =
0.5.

4. For the T-section shown in figure 8.22 find the shear center. The di-
mensions in the figure are in millimeters.

5. For the homogeneous trapezoidal cross section shown in figure 8.23
show that the neutral surface is located at a distance, c2 = h(b2 +
2b1)/(3(b2 + b1)), from the bottom of the section. Also calculate the
location of the shear center.
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Figure 8.22: T-section. Dimensions in mm. Figure for problem 4
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Figure 8.23: Trapezoidal section. NS stands for neutral surface. Figure for
problem 5
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Chapter 9

End Torsion of Prismatic Bars

9.1 Overview

In the last chapter, we studied the response of straight prismatic beams
subjected to bending moments. In this chapter, we study the stresses that
develop and the displacement that these members undergo when subjected
to twisting moment. While in the analysis of beams subjected to bending
moments we maintained some generality with the loading, the study of tor-
sion is focused on a single loading case - one end fixed and the other end free
to twist, as shown in figure 9.1. Here the double arrow indicates the twisting
moment. However, we study this boundary value problem for a variety of
cross sections. This analysis for torsion depends on whether the section is
thick walled or thin walled as in the case of bending moments. It also de-
pends on whether the section is open or closed. We shall discuss in detail as
to when a section is closed subsequently.

 

Mz 
z 
x 

y 

Figure 9.1: Schematic of a straight prismatic member subjected to end tor-
sion

297
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Before proceeding further, we would like to point out the change in the
orientation of the coordinate system, from that used in the study of the
beams. This is necessitated because for some problems we would be using
cylindrical polar coordinates, and want the cross section to be in the xy
plane. We use cylindrical polar coordinates with this orientation so that
the boundary of the cross section can be defined easily. Since, the value of
displacement or stress in a material particle is independent of the coordinate
system used, it is expected that the analyst pick coordinate systems that is
convenient for a problem and not that which he is comfortable with. Hence,
the change.

For this orientation of the coordinate system, following the same steps as
discussed in detail in chapter 8, it can be shown that the torsional moment,
Mz is given by,

Mz =

∫
a

(σyzx− σxzy)dxdy, (9.1)

and for completeness, the other two components of the moment, which are
bending moments are,

My = −
∫
a

σzzxdxdy, (9.2)

Mx =

∫
a

σzzydxdy. (9.3)

Comparing equations (9.1) with (9.2) and (9.3) it can be seen that while
the bending moments are due to normal stresses, torsional moment is due
to shear stresses. This is the major difference between the bending and
twisting moment. While the bending moment gives raise to normal stresses
predominantly, twisting moment gives raise to shear stresses predominantly.

Now let us see how to classify the sections. As in case of bending, a cross
section would be classified as thin walled if the thickness of the cross section
is such that it is much less than the characteristic dimensions of the cross
section. Typically, if the ratio of the thickness of the cross section to the
length of the member is less than 0.1, the section is classified as thin. If the
section is not thin, it is considered to be thick.

If a section when twisted can deform such that plane sections before
deformation remain plane after twisting is called closed section. Sections
which do not deform in the above manner are called open sections. Solid
Circular cross section is an example of closed section and solid rectangular
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Figure 9.2: Section classified as closed sections when subjected to torsion

Figure 9.3: Section classified as open sections when subjected to torsion

cross section is an example of open sections. Similarly, a thin walled annular
cylinder (see figure 9.2) is an example of closed section and if the same annular
cylinder has a longitudinal slit (see figure 9.3), it is an example of open
section. All closed section allows for continuous variation of shear stresses
such that it is no where zero except at the centroid of the cross section. A
section which requires the shear stresses to be zero at locations apart from
the centroid of the cross section, like at the corners of a rectangular cross
section, is an open section. It should be pointed out that in elliptical shaped
cross section also the shear stress is zero only at the centroid of the cross
section but is an open section as plane sections do not remain plane after
twisting. Thus, the requirement on the shear stress is just necessary but not
sufficient to classify a given section as closed.

In the following section, we find the displacement field and stress field for
twisting of a thick walled sections and then focus on thin walled sections.
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9.2 Twisting of thick walled closed section

First, we study the twisting of thick walled closed section and then thin walled
closed section. This problem we study using the displacement approach. We
also use cylindrical polar coordinates to formulate and study the problem.
While the solution that we obtain does not require that the cross section to
be closed section be circular, we shall assume this for illustration purpose,
mainly to fix the geometry of the body. Thus, we assume the body to be an
right circular annular (or solid) cylinder occupying a region in the Euclidean
point space given by: B = {(r, θ, z)|Ri ≤ r ≤ Ro, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L},
where Ri, Ro and L are constants with Ri = 0 in case of solid cylinder. Since,
we are interested in this body being subjected to pure torsional moment, the
traction boundary conditions are

t(er)(Ro, θ, z) = o, t(er)(Ri, θ, z) = o, (9.4)∫
a

t(−ez)(r, θ, 0)da = o,

∫
a

t(ez)(r, θ, L)da = o, (9.5)∫
a

rer ∧ t(−ez)(r, θ, 0)da = −Tez,

∫
a

rer ∧ t(ez)(r, θ, L)da = Tez,(9.6)

where T is a constant. Further, since one end of this body is assumed to be
fixed and the other end free to displace radially and circumferentially, the
displacement boundary conditions for this problem is,

u(r, θ, 0) = o, uz(r, θ, L) = 0, (9.7)

where uz denotes the z component of the displacement field and we have
assumed that the surface of the body defined by z = 0 is fixed and the other
surfaces are free to displace radially and circumferentially.

Since, we are going to solve the problem using the displacement approach,
we have to assume the displacement field. We shall assume that plane sec-
tions normal to the axis of the member, ez remain plane and perpendicular
to the axis. This means that the z component of the displacement field is
only a function of z, i.e., uz = ûz(z). Further, the boundary condition (9.7)
requires that uz(0) = uz(L) = 0. Consistent with these requirements, we
assume that the z component of the displacement, uz = 0. We could have
also assumed uz = C sin(mπz/L), where m is an integer and C is a con-
stant. However, it can be shown that such an assumption to satisfy balance
of linear momentum would require that C = 0. Then, we shall assume that
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(a) Schematic of deformation in the yz plane
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(b) Schematic of deforma-
tion in the xy plane

Figure 9.4: Schematic of the deformation of a straight prismatic member
subjected to end torsion

there is no radial component of the displacement, i.e., ur = 0. Since, straight
radial lines before deformation remain as straight radial lines after deforma-
tion with their length unchanged, we are justified in making the assumption
that ur = 0. Further, we assume that the straight line along the axis of the
member remains straight but rotates by an angle θ and that the radial lines
rotate by an angle φ as shown in the figure, 9.4 when subjected to twisting
moment. Consequently, the circumferential component of the displacement,
uθ = Ωrz, where Ω is called as the angle of twist per unit length. The slope
of the straight line along the axis of the member located at a radial distance,
r∗ after deformation, α = Ωr∗. Similarly, the rotation undergone by radial
lines in a plane defined by z = z∗, where z∗ is a constant, is φ = Ωz∗. Thus,
the displacement field is taken as,

u = Ωrzeθ. (9.8)

It can then be verified that this displacement field satisfies the displacement
boundary conditions (9.7). Then, the strain field corresponding to the dis-
placement field (9.8) is

ε =

0 0 0
0 0 Ωr

2

0 Ωr
2

0

 . (9.9)

Using isotropic Hooke’s law, (7.2) the stress corresponding to the strain (9.9)
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eθ 

Figure 9.5: Schematic of variation of eθ over the circumference of the cylinder.

is computed as

σ =

0 0 0
0 0 µΩr
0 µΩr 0

 . (9.10)

It can then be verified that the above state of stress, satisfies the static
equilibrium equations in the absence of body forces, (7.6) trivially. It can
also be verified that the stress given in equation (9.10) satisfies the boundary
condition (9.4) trivially. For the stress state (9.10) the boundary condition
(9.5) evaluates to∫

a

t(−ez)(r, θ, 0)da = −
∫
a

µΩreθda,

∫
a

t(ez)(r, θ, 0)da =

∫
a

µΩreθda,

(9.11)
Since, the direction of eθ changes with the location as shown in figure 9.5,
we write it in terms of the fixed Cartesian basis and obtain

±
∫ Ro

Ri

µΩr2dr

∫ 2π

0

[− sin(θ)ex + cos(θ)ey]dθ = o. (9.12)

Thus, the boundary condition (9.5) holds for the stress state (9.10).
Then, using the boundary condition (9.6) we obtain the relationship be-

tween the applied torque, T and the angle of twist per unit length, Ω as,∫
a

rer ∧ t(ez)(r, θ, L)da =

∫
a

r2µΩdaez = Tez. (9.13)
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Figure 9.6: Solid circular cross section of a bar

Thus,

Ω =
T∫

a
r2µda

, (9.14)

which for homogeneous sections reduces to

µΩ =
T

J
, (9.15)

where

J =

∫
a

r2da, (9.16)

is the polar moment of inertia. Combining equations (9.10) and (9.15) we
obtain

σθz
r

= µΩ =
T

J
. (9.17)

This is called the torsion equation.

9.2.1 Circular bar

As discussed, for illustration, we consider a bar with solid circular cross
section of radius R, as shown in figure 9.6. From the general expression for
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Figure 9.7: Shear stresses in a bar with solid circular cross section subjected
to end torsion

torsion of a thick walled close section (9.17), we find that the shear stresses
in the bar is given by,

σθz = r
2T

πR4
, (9.18)

where we have computed J =
∫ 2π

0
dθ
∫ R

0
r3dr. Thus, we find that the shear

stress varies linearly with the radial distance, as shown in figure 9.7.
Then, the angle of twist per unit length, Ω is also obtained from (9.17)

as,

Ω =
2T

µπR4
. (9.19)

Having determined the angle of twist per unit length, the entire displacement
field corresponding to an applied torque, T given by equation (9.8) is known.
The same is plotted in figure 9.8.

9.3 Twisting of solid open section

In this section, as in the previous, we consider a bar subjected to twisting mo-
ments at its ends. The bar axis is straight and the shape of the cross section
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(a) Undeformed circular bar (b) Deformed circular bar

Figure 9.8: Deformation of a bar with circular cross section subjected to end
torsion

is constant along the axis. The bar is assumed to have a solid cross section,
i.e, a simply connected domain. A domain is said to be simply connected if
any closed curve in the domain can be shrunk to a point in the domain itself,
without leaving the domain. A domain which is not simply connected is said
to be multiply connected. We shall analyze multiply connected domains in
the next section.

Though the problem formulation does not assume any specific shape for
the cross section, the displacement and stress field obtained are cross section
specific. Let us assume that the boundary of the cross section is defined by
a function, f(x, y) = 0. This function for a ellipse centered about the origin
and major and minor axis oriented about the ex and ey directions would be,
f(x, y) = x2/a2 +y2/b2−1. Consequently, for the body is assumed to occupy
a region in Euclidean point space, defined by B = {(x, y, z)|f(x, y) ≤ 0, 0 ≤
Z ≤ L}, where L is a constant. Here we are assuming that the bar is a
solid cross section with the cross section having only one surface, f(x, y) =
0 denoted by ∂A. To be more precise, the cross section is simply connected.
Since, we are interested in the case where in the bar is subjected to pure end
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torsional moment, the traction boundary conditions are:

t(en)(∂A, z) = o, (9.20)∫
a

t(−ez)(x, y, 0)da = o, (9.21)∫
a

t(ez)(x, y, L)da = o, (9.22)∫
a

(xex + yey) ∧ t(−ez)(z, y, 0)da = −Tez, (9.23)∫
a

(xex + yey) ∧ t(ez)(x, y, L)da = Tez, (9.24)

where

en =
[∂f
∂y

ex − ∂f
∂x

ey]√(
∂f
∂x

)2
+
(
∂f
∂y

)2
, (9.25)

and T is a constant. Here en is obtained such that it is in the xy plane,
perpendicular to grad(f) and is a unit vector. Recognize that grad(f) gives
the tangent vector to the cross section for any point in ∂A. The orientation
of en and grad(f) is as shown in figure 9.9. Further, since one end of this
body is assumed to be fixed against twisting but free to displace axially and
the other end free to displace in all directions, the displacement boundary
conditions for this problem is,

u(x, y, 0) = uz(x, y)ez, (9.26)

where uz is any function of x and y. Here we have assumed that the surface
of the body defined by z = 0 is fixed against twisting but free to displace
axially and the other surfaces are free to displace in all directions.

In a solid cross section, as a result of a twist, each cross section undergoes
a rotational displacement about the z axis. For any two cross sections the
relative angle of rotation is called the angle of twist between the two sections.
Let ∆β be the angle of twist for two cross sections at distance ∆z and Ω be
the angle of twist per unit length of the bar, then

∆β = Ω(∆z). (9.27)

Since the conditions are same for all cross sections, the above equation applies
to any two cross sections at a distance ∆z along the bar length. Thus, Ω is
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Figure 9.9: Boundary conditions at the surface of a bar subjected to end
torsion

a constant along the bar length. Also, since at z = 0, β = 0, by virtue of
the surface defined by z = 0 being fixed against rotation, the angle of twist,
β for a cross sections at distance z from the surface defined by z = 0 is

β = Ωz. (9.28)

Consider a cross section at a distance z from the fixed end. In that
section consider a point A with coordinates (x, y, z). Assuming the origin of
the coordinate system to be located at the axis of twisting, let r denote the
radial distance of the point A from the origin and let θ denote the angle that
this radial line makes with the ex, as shown in the figure 9.10. Let A move
to A′ due to twisting of the bar, as shown in the figure 9.10. The arc length
AA′ would be equal to rβ, where β is the angle of twist at the cross section
and is related to the angle of twist per unit length through (9.28). Hence,
the arc length AA′ would be,

ÂA′ = rβ = rΩz. (9.29)

Since, the angle of twist β is small, we approximate the secant length, i.e.,
the length of the straight line between AA′ with its arc length. Consequently,
the x component of the displacement of A is given by,

ux = −AA′ sin(θ) = −ÂA′ sin(θ) = −rΩz sin(θ) = −Ωzy, (9.30)
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Figure 9.10: Displacements in the cross section of a bar subjected to end
twisting moment

where we have used (9.29) and the relation that y = r sin(θ). Similarly, the
y component of the displacement of A is,

ux = AA′ cos(θ) = ÂA′ cos(θ) = rΩz cos(θ) = Ωzx, (9.31)

where as before we used (9.29) and the relation x = r cos(θ). Since, there is
no restraint against displacement along ez direction at any section, all cross
sections is assumed to undergo the same displacement along the z direction
and hence

uz = ψ(x, y), (9.32)

where ψ is a function of x and y only. That is, we have assumed that the
z component of the displacement is independent of the axial location of the
section. Presence of this z component of the displacement is the characteristic
of open sections. It is due to this z component of the displacement the plane
section distorts and is said to warp. Consequently, ψ is called Saint-Venant’s
warping function. Thus, the displacement field for a bar subjected to twisting
moments at the end and is free to warp is given by,

u = −Ωzyex + Ωzxey + ψ(x, y)ez. (9.33)

It can be easily verified that the above displacement field (9.33) satisfies the
displacement boundary condition (9.26).
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Substituting equation (9.33) in the strain-displacement equation (7.1),
the Cartesian components of the strain are computed to be

ε =

 0 0 −Ωy + ∂ψ
∂x

0 0 Ωx+ ∂ψ
∂y

−Ωy + ∂ψ
∂x

Ωx+ ∂ψ
∂y

0

 . (9.34)

For this state of strain, the corresponding Cartesian components of the stress
are obtained from Hooke’s law (7.2) as

σ =


0 0 µ

(
−Ωy + ∂ψ

∂x

)
0 0 µ

(
Ωx+ ∂ψ

∂y

)
µ
(
−Ωy + ∂ψ

∂x

)
µ
(

Ωx+ ∂ψ
∂y

)
0

 . (9.35)

For this stress state, (9.35) to be possible in a body in static equilibrium,
without any body force acting on it, it should satisfy the balance of linear
momentum equations (7.6) which requires that,

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0. (9.36)

Now, we have to find ψ such that equation (9.36) holds along with the pre-
scribed traction boundary conditions (9.20) through (9.24).

Boundary condition (9.20) requires

µ

[
−Ωy +

∂ψ

∂x

]
∂f

∂y
− µ

[
Ωx+

∂ψ

∂y

]
∂f

∂x
= 0, (9.37)

for (x, y) ∈ ∂A. Both the boundary conditions (9.21) and (9.22) yield the
following restriction on ψ,∫

a

µ

[
−Ωy +

∂ψ

∂x

]
da = 0,

∫
a

µ

[
Ωx+

∂ψ

∂y

]
da = 0, (9.38)

On assuming that the bar is homogeneous and appealing to Green’s theorem
(section 2.9.3), equation (9.38) reduces to,∫

a

µ

[
−Ωy +

∂ψ

∂x

]
da = −µΩycA+

∮
c

ψ

∂f
∂y√(

∂f
∂x

)2
+
(
∂f
∂y

)2
ds = 0, (9.39)

∫
a

µ

[
Ωx+

∂ψ

∂y

]
da = µΩxcA−

∮
c

ψ
∂f
∂x√(

∂f
∂x

)2
+
(
∂f
∂y

)2
ds = 0, (9.40)
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where (xc, yc) is the coordinates of the centroid of the cross section. On
assuming that the axis of twisting coincides with the centroid and further
requiring that the origin of the coordinate system coincide with the centroid
of the cross section, equations (9.39) and (9.40) requires,∮

c

ψ
∂f

∂y
ds = 0,

∮
c

ψ
∂f

∂x
ds = 0. (9.41)

Finally, the boundary conditions (9.23) and (9.24) require that∫
a

(xσyz−yσxz)da =

∫
a

µΩ(x2 +y2)da+

∫
a

µ

(
x
∂ψ

∂y
− y∂ψ

∂x

)
da = T. (9.42)

Recognizing that
∫
a
(x2 + y2)da = J , polar moment of inertia equation (9.42)

can be simplified as,

T = µΩJ + µ

∫
a

(
x
∂ψ

∂y
− y∂ψ

∂x

)
da, (9.43)

where we have used the assumption already made that the bar is homoge-

neous. For many cross sections,
∫
a

(
x∂ψ
∂y
− y ∂ψ

∂x

)
da < 0. Thus, the torsional

stiffness1 which would be µJ , in the absence of warping (i.e., ψ = 0), de-
creases due to warping (i.e., when ψ 6= 0). Hence, warping is said to decrease
the torsional stiffness of the cross section. Equation (9.43) is used find Ω.

Experience has shown that it is difficult to find ψ that satisfies the gov-
erning equation (9.36) along with the boundary conditions (9.37) and (9.41).
Hence, we recast the problem using Prandtl stress function.

Stress function formulation

Defining a differentiable function, φ = φ̂(x, y) called the Prandtl stress func-
tion, we relate the components of the stress to this stress function as,

σ =

 0 0 ∂φ
∂y

0 0 −∂φ
∂x

∂φ
∂y
−∂φ
∂x

0

 , (9.44)

1Torsional stiffness is defined as the torque required to cause a unit angle of twist per
unit length.
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so that the equilibrium equations (7.6) are satisfied for any choice of φ.
Now, one can proceed in one of two ways. Follow the standard approach

and find the strain corresponding to the stress state (9.44), substitute the
same in the compatibility conditions and find the governing equation that
φ should satisfy. Here we obtain the same governing equation through an
alternate approach.

Equating the stress states (9.35) and (9.44) as it represents for the same
boundary value problem, we obtain

∂φ

∂y
= µ

[
−Ωy +

∂ψ

∂x

]
, (9.45)

∂φ

∂x
= −µ

[
Ωx+

∂ψ

∂y

]
. (9.46)

Differentiating equation (9.45) with respect to y and equation (9.46) with
respect to x and adding the resulting equations, we obtain

∂2φ

∂x2
+
∂2φ

∂y2
= −2µΩ, (9.47)

where we have made use of the requirement that ∂2ψ
∂x∂y

= ∂2ψ
∂y∂x

. By virtue of

the stress function being smooth enough so that ∂2φ
∂x∂y

= ∂2φ
∂y∂x

, the governing

equation for ψ (9.36) is trivially satisfied.
The boundary condition given in equation (9.37) in terms of the warping

function, ψ is rewritten in terms of the Prandtl stress function, φ using
equations (9.45) and (9.46) as,

∂φ

∂y

∂f

∂y
+
∂φ

∂x

∂f

∂x
= grad(φ) · grad(f) = 0, (9.48)

for (x, y) ∈ ∂A. Since, grad(f) 6= o and its direction changes with the
location on the boundary of the cross section, grad(φ) = o on the boundary
of the cross section. This implies that

φ(x, y) = C0, for (x, y) ∈ ∂A, (9.49)

where C0 is a constant. Since, the stress and displacement fields depend
only in the derivative of the stress potential and not its value at a location, it
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suffices to find this stress function up to a constant2. Therefore, we arbitrarily
set C0 = 0, understanding that it can take any value and that the stress and
displacement field would not change because of this. Hence, equation (9.49)
reduces to requiring,

φ(x, y) = 0, for (x, y) ∈ ∂A. (9.50)

The boundary condition (9.21) and (9.22) for the stress state (9.44) re-
quire ∫

a

∂φ

∂y
da = 0,

∫
a

∂φ

∂x
da = 0. (9.51)

Appealing to Green’s theorem for simply connected domains, the above equa-
tion (9.51) reduces to∫

a

∂φ

∂y
da =

∮
c

φ
∂f

∂x
ds = C0

∮
c

∂f

∂x
ds = 0, (9.52)∫

a

∂φ

∂x
da =

∮
c

φ
∂f

∂y
ds = C0

∮
c

∂f

∂y
ds = 0, (9.53)

where we have used (9.49) and the fact that
∮
c
∂f
∂x
ds = 0 and

∮
c
∂f
∂y
ds = 0 for

closed curves.
Finally, the boundary conditions (9.23) and (9.24) for the stress state

(9.44) yields,

−
∫
a

[
x
∂φ

∂x
+ y

∂φ

∂y

]
da = T. (9.54)

Noting that∫
a

x
∂φ

∂x
=

∫
a

[
∂(xφ)

∂x
− φ
]
da =

∮
c

xφ
∂f

∂y
ds−

∫
a

φda = −
∫
a

φda, (9.55)∫
a

y
∂φ

∂y
=

∫
a

[
∂(yφ)

∂y
− φ
]
da =

∮
c

yφ
∂f

∂x
ds−

∫
a

φda = −
∫
a

φda, (9.56)

where we have used the Green’s theorem for simply connected domain and
equation (9.50). Substituting the above equations in (9.54) we obtain,

T = 2

∫
a

φda. (9.57)

2This means that if φ is a stress function for the given boundary value problem then
φ+C0, where C0 is some constant, will also be an admissible stress function for the same
boundary value problem.
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Thus, we have to find φ such that the governing equation (9.47) has to
hold along with the boundary condition (9.50). Then, we use equation (9.57)
to find the torsional moment required to realize a given angle of twist per
unit length Ω.

Membrane analogy

The governing equation (9.47) along with the boundary condition (9.50) and
(9.57) is identical with those governing the static deflection under uniform
pressure of an elastic membrane in the same shape as that of the member
subjected to torsion. This fact creates an analogy between the torsion prob-
lem and elastic membrane under uniform pressure. This analogy is exploited
to get the qualitative features that the stress function should posses and this
aids in developing approximate solutions. Obtaining the governing equation
for the static deflection of an elastic membrane under uniform pressure and
showing that it is identical to (9.47) is beyond the scope of this lecture notes.
One may refer Sadd [4] for the same.

In the following three sections, we apply the above general framework to
solve problems of bars with specific cross section shapes subjected to end
torsion.

9.3.1 Solid elliptical section

The first cross section shape that we consider is that of an ellipse. That is
we study a bar with elliptical cross section, whose boundary is defined by
the function,

f(x, y) =
x2

a2
+
y2

b2
− 1 = 0, (9.58)

where a and b are constants and we have assumed that the major and minor
axis of the ellipse coincides with the coordinate basis, as shown in the figure
9.11.

Choosing the Prandtl stress function to be,

φ = C

[
x2

a2
+
y2

b2
− 1

]
, (9.59)

where C is a constant, we find that it satisfies the boundary condition (9.50).
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Figure 9.11: Elliptical cross section of a bar

Substituting the stress function, (9.59) in the equation (9.47) we obtain

C = −µΩ
a2b2

a2 + b2
. (9.60)

Using (9.59) and (9.60) in (9.57), twisting moment is obtained as

T = µΩπ
a3b3

a2 + b2
. (9.61)

Corresponding to the stress function (9.59) the shear stresses are com-
puted to be

σxz =
∂φ

∂y
=

2C

b2
y = − T

2Ixx
y, σyz = −∂φ

∂x
=

2C

a2
x =

T

2Iyy
x, (9.62)

where Ixx = πab3/4, Iyy = ba3/4 and we have substituted for the constant,
C from equation (9.60). The variation of these shear stresses over the cross
section is indicated in figure 9.12.

The resultant shear stress in the xy plane is given by,

τ =
√
σ2
xz + σ2

yz =
2T

πab

√
x2

a4
+
y2

b4
. (9.63)

It is clear from equation (9.63) that the extremum shear stress occurs at (0, 0)
or the boundary of the cross section. It can be seen that at (0, 0) minimum
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Figure 9.12: Shear stresses in a bar with elliptical cross section subjected to
end torsion

shear stress occurs, as τ = 0 at this location. At the boundary the extremum
shear stresses would occur at (0,±b) and (±a, 0). Thus, the extremum shear
stresses are τext = 2T/(πab2) at (0,±b) and τext = 2T/(πba2) at (±a, 0). If
a > b, then the maximum shear stress in the elliptical cross section is,

τmax =
2T

πab2
. (9.64)

Substituting (9.59) in equations (9.45) and (9.46) and rearranging we
obtain

∂ψ

∂x
= Ωy +

2C

µb2
y,

∂ψ

∂y
= −

[
Ωx+

2C

µa2
x

]
. (9.65)

Solving the differential equations (9.65) we obtain

ψ(x, y) = T
b2 − a2

πa3b3µ
xy +D0, (9.66)

where D0 is a constant. Since, there is no rigid body translation, we require
that ψ(0, 0) = 0. Hence, D0 = 0. Thus, we find that the section warps into
a diagonally symmetric surface as shown in figure 9.13.

Rearranging the equation (9.61) we can get Ω as a function of torque, T
as

Ω =
T [a2 + b2]

µπa3b3
(9.67)

The entire displacement field, (9.33) for a bar with elliptical cross section is
now known that we have found the warping function (9.66). The deformation
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Figure 9.13: Warping deformation of a elliptical cross section due to end
torsion

of a bar with the elliptical cross section computed using this displacement
field is shown in figure 9.14.

Before concluding this section let us see the error that would have been
made if one analyzes the elliptical section as a closed section. The polar
moment of inertia for the elliptical section could be computed and shown to
be J = πab(a2 + b2)/4. Then, the angle of twist per unit length computed
from (9.17) would be,

Ωcl =
4T

µπab[a2 + b2]
. (9.68)

The ratio of Ωcl/Ω, computed from equations (9.68) and (9.67) is

Ωcl

Ω
=

4a2b2

(a2 + b2)2
< 1. (9.69)

Thus, for a given torque open section twists more.

Next, we examine the shear stresses. If one uses (9.17) to compute the
shear stresses, they would erroneously conclude that the maximum shear
stress occurs at (±a, 0), by virtue of these points being farthest from the
center of twist and the value of this maximum shear stress would be,

τ clmax =
4T

πb[a2 + b2]
(9.70)
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(a) Undeformed elliptical bar (b) Deformed elliptical bar

Figure 9.14: A bar with elliptical cross section subjected to end twisting
moment
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Figure 9.15: Rectangular cross section of a bar

Comparing equations (9.64) and (9.70) we find that

τ clmax
τmax

= 2
ab

a2 + b2
< 1. (9.71)

Thus, closed section underestimates the stresses in the bar.
Hence, from both strength and serviceability point of view assuming the

elliptical cross section to be closed would result in an unsafe design.

9.3.2 Solid rectangular section

Next, we assume that the bar has a rectangular cross section of width 2b and
depth 2h, as shown in figure 9.15. For this section the boundary is defined
by the function,

f(x, y) = (b2 − x2)(h2 − y2). (9.72)

It can be verified that choosing the Prandtl stress function, φ as Cf(x, y)
would not satisfy the governing equation (9.47). Hence, we assume a stress
function of the form,

φ = µΩ[V (x, y) + b2 − x2], (9.73)

where V is a function of (x, y).
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Substituting equation (9.73) in equation (9.47) and simplifying we obtain,

∂2V

∂x2
+
∂2V

∂y2
= 0. (9.74)

Then, the boundary condition (9.50) requires that

V (±b, y) = 0, V (x,±h) = x2 − b2. (9.75)

Thus, we need to solve the differential equation (9.74) subject to the bound-
ary condition (9.75).

Towards this, we seek solution of the form

V = Vx(x)Vy(y), (9.76)

where Vx is a function of x and Vy is a function of y alone. Substituting
the assumed special form for V , (9.76) in equation (9.74) and simplifying we
obtain,

1

Vx

d2Vx
dx2

= − 1

Vy

d2Vy
dy2

= k2, (9.77)

where k is any constant. Recognize that the left hand side of the equation
is a function of x alone and the right hand side is a function of y alone.
Hence, for these functions to be same, they have to be a constant. Solving
the second order ordinary differential equations (9.77) we obtain,

Vx = A cos(kx) +B sin(kx), Vy = C cosh(ky) +D sinh(ky). (9.78)

Consistent with the boundary condition (9.75), we expect the functions Vx
and Vy to be even functions, i.e., Vx(−x) = Vx(x) and Vy(−y) = Vy(y). Hence,

B = D = 0. (9.79)

Substituting (9.79) in the equation (9.78) and the result into equation (9.76)
we obtain,

V = AC cos(kx) cosh(ky) = E cos(kx) cosh(ky), (9.80)

where E is some arbitrary constant. The equation (9.80) on applying the
boundary condition (9.75a), i.e., V (±b, y) = 0 yields that

k =
(2n+ 1)π

2b
, (9.81)
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where n is any integer. Since, the governing equation for V , (9.74) is a
Laplace equation, it is a linear equation. Consequently, if two functions
satisfy the given equation (9.74) then a linear combination of these functions
also satisfies the Laplace equation. So the solution (9.80) can be written as,

V =
∞∑
n=1

En cos

(
(2n+ 1)π

2b
x

)
cosh

(
(2n+ 1)π

2b
y

)
, (9.82)

where En’s are constant. Substituting (9.82) in the boundary condition
(9.75b), i.e., V (x,±h) = x2 − h2 we obtain,

∞∑
n=1

En cosh

(
(2n+ 1)πh

2b

)
cos

(
(2n+ 1)πx

2b

)
= x2 − b2. (9.83)

Now, we have to find the constants En such that for −b ≤ x ≤ b, a linear
combination of cosines approximates the quadratic function on the right hand
side of equation (9.83). Using the standard techniques in fourier analysis we
obtain,

En cosh

(
(2n+ 1)πh

2b

)
=

∫ b

−b
[x2 − b2] cos

(
(2n+ 1)πx

2b

)
. (9.84)

Integrating the above equation and rearranging, we obtain

En =
32b2(−1)n

(2n+ 1)3π3 cosh
(

(2n+1)πh
2b

) . (9.85)

Substituting equation (9.85) in (9.82) and the resulting equation in (9.73),
we obtain

φ = µΩ

(b2 − x2) +
32b2

π3

∞∑
n=0

(−1)n cos
(

(2n+1)πx
2b

)
cosh

(
(2n+1)πy

2b

)
(2n+ 1)3 cosh

(
(2n+1)πh

2b

)
 .
(9.86)

Having found the stress function, we are now in a position to find the shear
stresses and the warping function. First, we compute the stresses as,

σxz =
∂φ

∂y

= µΩ
32b2

π3


∞∑
n=0

(−1)n cos
(

(2n+1)πx
2b

) [
(2n+1)π

2b

]
sinh

(
(2n+1)πy

2b

)
(2n+ 1)3 cosh

(
(2n+1)πh

2b

)
 , (9.87)
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Figure 9.16: Schematic of shear stress distribution in a bar with solid rect-
angular cross section subjected to end torsion

σyz = −∂φ
∂x

= µΩ

2x+
32b2

π3

∞∑
n=0

(−1)n sin
(

(2n+1)πx
2b

) [
(2n+1)π

2b

]
cosh

(
(2n+1)πy

2b

)
(2n+ 1)3 cosh

(
(2n+1)πh

2b

)
 .

(9.88)

Figure 9.16 schematically shows the shear stress distribution in a rectan-
gular cross section along the sides of the rectangle and along the lines x = 0
and y = 0. The shear stress is maximum on the boundary and zero at the
center of the rectangle. The maximum shear stress occurs at the middle of
the long side and is given by,

τmax = σyz(±b, 0) = µΩ

2b+
32b

π2

∞∑
n=0

(−1)n

(2n+ 1)2 cosh
(

(2n+1)πh
2b

)
 , (9.89)

where we have assumed that h ≥ b.

Substituting (9.87) in equation (9.45) and solving the first order ordinary
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Figure 9.17: Warping deformation of a rectangular section due to end torsion

differential equation for ψ we obtain

ψ = −Ω
32b2

π3

∞∑
n=0

(−1)n sin
(

(2n+1)πx
2b

)
sinh

(
(2n+1)πy

2b

)
(2n+ 1)3 cosh

(
(2n+1)πh

2b

) + Ωxy + g(y). (9.90)

Substituting equations (9.88) and (9.90) in equation (9.46) and solving the
first order ordinary differential equation for g we obtain g(y) = D0, a con-
stant. Since, the bar does not move as a rigid body, we want ψ(0, 0) = 0.
Hence, D0 = 0. Consequently, the warping function is,

ψ = −Ω
32b2

π3

∞∑
n=0

(−1)n sin
(

(2n+1)πx
2b

)
sinh

(
(2n+1)πy

2b

)
(2n+ 1)3 cosh

(
(2n+1)πh

2b

) + Ωxy. (9.91)

Figure 9.17 plots the warped rectangular section.
Substituting (9.87) and (9.88) in equation (9.57) we can relate the applied

torque, T to the realized angle of twist per unit length, Ω as

T =
16µΩb3h

3
− 1024µΩb4

π5

∞∑
n=0

1

(2n+ 1)5
tanh

(
(2n+ 1)πh

2b

)
(9.92)

This relation is expressed as

T = µΩC1(2h)(2b)3, (9.93)

where C1 is a non-dimensional parameter which depends on h/b. In the
same spirit, the maximum shear stress, (9.89) could be related to the applied
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Table 9.1: Tabulation of parameters C1 and C2 as a function of h/b

h/b C1 C2

1 0.141 4.80
1.5 0.196 4.33
2.0 0.229 4.06
3.0 0.263 3.74
4.0 0.281 3.54
6 0.299 3.34
10 0.312 3.21
∞ 0.333 3.00

torque as,

τmax = C2
T

(2h)(2b)2
. (9.94)

where C2 is another non-dimensional parameter which depends on h/b. Val-
ues of C1 and C2 for various h/b ratios are tabulated in table 9.1.

Thus, for thin rectangular sections, when h/b tends to ∞,

T = µΩ
wt3

3
, τmax =

3T

wt2
, (9.95)

where we have assumed the section to have a thickness, t = 2b and depth, w
= 2h. It should be mentioned that irrespective of the orientation of the thin
rectangular section, the equation (9.95) remains the same. This is because of
the requirement that h ≥ b. Physically, irrespective of the orientation of the
section, the torsion is resisted by the spatial variation of the shear stresses
through the thickness of the section as shown in figure 9.19.

9.3.3 Thin rolled section

Here we study the problem of end torsion of a bar whose cross section is
narrow and has small curvature such as those shown in figure 9.20. Such
sections are usually made of hot rolled steel and hence are called rolled sec-
tions. Since, the shape across the thickness is similar to that of the thin
rectangular section, excepting at the bent corners, it is assumed that the



324 CHAPTER 9. END TORSION OF PRISMATIC BARS

(a) Undeformed rectangular bar (b) Deformed rectangular bar

Figure 9.18: A bar with rectangular cross section subjected to end twisting
moment
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(a) Thin rectangular section oriented along x direction
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(b) Thin rectan-
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Figure 9.19: Schematic of shear stress distribution in a thin rectangular
section in different orientations
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Figure 9.20: Schematic of shear stress distribution in a thin rolled sections

solution obtained for thin rectangular section holds. In order for the corners
not to change the displacement and stress field from that obtained for a thin
rectangular section, it is required that the radius of curvature of these corners
be large.

Thus, for the angle section shown in figure 9.20a, the torque required to
realize a given angle of twist per unit length and the maximum shear stress
in the section is obtained from (9.95) as

T = µΩ
t3(b1 + b2)

3
, τmax =

3T

(b1 + b2)t2
, (9.96)

where we have treated the entire angle without the 90 degree bend, as a thin
walled rectangular section. In order for the above equations to be reasonable,
(b1 + b2)/t > 10 and the radius of the curvature of the bent corner large.

Similarly, for the I section shown in figure 9.20b, the torque required to
realize a given angle of twist per unit length and the maximum shear stress
in the section is obtained from (9.95) as

T = µΩ
2t3fb1 + t3wh

3
, τmax =

3T

2t2fb1 + t2wh
, (9.97)
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Figure 9.21: Orientation of an equilateral triangle with respect to a given
coordinate basis

where the torsional stiffness due to each of the three plates - the two flange
plates and the web plate - is summed algebraically. This is justified because
the shear stress distribution in each of these plates is similar to that of a thin
rectangular section subjected to torsion, as indicated in the figure 9.20b.
However, comparison of this solution with the exact result for this geometry
is beyond the scope of this notes.

9.3.4 Triangular cross section

Finally, we consider the torsion of a cylinder with equilateral triangle cross
section, as shown in figure 9.21. The boundary of this section is defined by,

f(x, y) = [x−
√

3y + 2a][x+
√

3y + 2a][x− a] = 0, (9.98)

where a is a constant and we have simply used the product form of each
boundary line equation. Assuming that the Prandtl stress function to be of
the form,

φ = K[x−
√

3y + 2a][x+
√

3y + 2a][x− a], (9.99)
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so that the boundary condition (9.50) is satisfied. It can then be verified
that the potential given in equation (9.99) satisfies (9.47) if

K = −µΩ

6a
. (9.100)

Substituting equation (9.99) in (9.57) and using (9.100) we obtain the torque
to be

T =
27

5
√

3
µΩa4 =

3

5
µΩJ, (9.101)

where the polar moment of inertia for the equilateral triangle section, J =
3
√

3a4.

The shear stresses given in equation (9.44) evaluates to

σxz =
µΩ

a
[x− a]y, (9.102)

σyz =
µΩ

2a
[x2 + 2ax− y2], (9.103)

on using equations (9.99) and (9.100). The magnitude of the shear stress at
any point is given by,

τ =
√
σ2
xz + σ2

yz =
µΩ

a

√
(x2 + y2)2 + 4a2(x+ y)2 + 4ax(x2 − 2ay − 3y2).

(9.104)
Since, for torsion the maximum shear stress occurs at the boundary of the
cross section, we investigate the same at the three boundary lines. We begin
with the boundary x = a. It is evident from (9.102) that on this boundary
σxz = 0. Then, it follows from (9.103) that σyz is maximum at y = 0 and this
maximum value is 3aµΩ/2. It can be seen that on the other two boundaries
too the maximum shear stress, τmax = 3aµΩ/2.

Substituting (9.99) in equations (9.45) and (9.46) and solving the first
order differential equations, we obtain the warping displacement as,

ψ =
Ω

6a
y[3x2 − y2], (9.105)

on using the condition that the origin of the coordinate system does not get
displaced; a requirement to prevent the body from displacing as a rigid body.
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Figure 9.22: Example of a multiply connected cross section. Elliptical cross
section with two circular holes.

9.4 Twisting of hollow section

In this section, as in the previous, we consider a bar subjected to twisting
moments at its ends. The bar axis is straight and the shape of the cross
section is constant along the axis. The bar is assumed to have a hollow cross
section, i.e, a multiply connected domain. That is any closed curves in the
cross section cannot be shrunk to a point in the domain itself without leaving
the domain.

Let us assume that the boundary of the cross section is defined by a
function, f(x, y) = 0, the set of points constituting this boundary by ∂Ao,
and the enclosed area by Ao. The boundary of the ith void in the interior
of the cross section is defined by the function gi(x, y) = 0, the set of points
constituting this boundary of the ith void by ∂Ai and the area enclosed by
the void, Ai. Thus, the area of the cross section, Acs is given by

Acs = Ao −
N∑
i=1

Ai, (9.106)

where we have assumed that there are N voids.
Thus, for the cross section shown in figure 9.22, with the boundary of

the cross section in the form of an ellipse centered about origin and oriented
such that the major and minor axis coincides with the ex and ey directions
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respectively and having two circular shaped voids of radius, r centered at
(±xo, 0), the functions f(x, y) and gi(x, y) would be: f(x, y) = x2/a2+y2/b2−
1, g1(x, y) = (x−xo)2+y2−r2 and g2(x, y) = (x+xo)

2+y2−r2. Consequently,
this body is assumed to occupy a region in Euclidean point space, defined by
B = {(x, y, z)|f(x, y) ≤ 0, 0 ≤ Z ≤ L} − {(x, y, z)|f(x, y) ≤ 0, 0 ≤ Z ≤ L}
− {(x, y, z)|f(x, y) ≤ 0, 0 ≤ Z ≤ L} − {(x, y, z)|g1(x, y) ≤ 0, 0 ≤ Z ≤ L}
− {(x, y, z)|f(x, y) ≤ 0, 0 ≤ Z ≤ L} − {(x, y, z)|g2(x, y) ≤ 0, 0 ≤ Z ≤ L},
where L is a constant.

Since, we are interested in the case where in the bar is subjected to pure
end torsional moment, the traction boundary conditions are:

t(en)(∂Ao, z) = o, (9.107)

t(emi )
(∂Ai, z) = o, (9.108)∫

a

t(−ez)(x, y, 0)da = o, (9.109)∫
a

t(ez)(x, y, L)da = o, (9.110)∫
a

(xex + yey) ∧ t(−ez)(z, y, 0)da = −Tez, (9.111)∫
a

(xex + yey) ∧ t(ez)(x, y, L)da = Tez, (9.112)

where

en =
[∂f
∂y

ex − ∂f
∂x

ey]√(
∂f
∂x

)2
+
(
∂f
∂y

)2
, emi =

[∂gi
∂y

ex − ∂gi
∂x

ey]√(
∂gi
∂x

)2
+
(
∂gi
∂y

)2
, (9.113)

and T is a constant. Here en is obtained such that it is in the xy plane,
perpendicular to grad(f) and is a unit vector. Similarly, emi is obtained
such that it is in the xy plane, perpendicular to grad(gi) and is a unit vector.
Recognize that grad(f) gives the tangent vector to the cross section for any
point in ∂Ao and grad(gi) is the tangent vector to the cross section at any
point in ∂Ai. Further, since one end of this body is assumed to be fixed
against twisting but free to displace axially and the other end free to displace
in all directions, the displacement boundary conditions for this problem is,

u(x, y, 0) = uz(x, y)ez, (9.114)
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where uz is any function of x and y. Here we have assumed that the surface
of the body defined by z = 0 is fixed against twisting but free to displace
axially and the other surfaces are free to displace in all directions.

Thus, we find that the boundary value problem is similar to that in the
previous section (section 9.3) except for the additional boundary condition
(9.108). Hence, we assume that the stress is as given in equation (9.44), in
terms of the Prandtl stress function, φ = φ̂(x, y). Following the standard
procedure, as outlined in section 9.3, it can be shown that the stress function
should satisfy,

∂2φ

∂x2
+
∂2φ

∂y2
= −2µΩ, (9.115)

where µ is the shear modulus, and Ω is the angle of twist per unit length.

For the assumed stress state, (9.44), the boundary condition (9.107) re-
quires that grad(φ) · grad(f) = 0 on ∂Ao. Thus,

φ(x, y) = C0, for (x, y) ∈ ∂Ao, (9.116)

where C0 is a constant. As before, since, the stress and displacement fields
depend only in the derivative of the stress potential and not its value at a
location, it suffices to find this stress function up to a constant. Therefore,
we arbitrarily set C0 = 0, understanding that it can take any value and that
the stress and displacement field would not change because of this. Hence,
equation (9.116) reduces to requiring,

φ(x, y) = 0, for (x, y) ∈ ∂Ao. (9.117)

The boundary condition (9.108) requires that grad(φ) · grad(gi) = 0 on
∂Ai. Hence,

φ(x, y) = Ci, for (x, y) ∈ ∂Ai, (9.118)

where Ci’s are constants. Though φ is a constant over all free surfaces, the
value of this constant can differ between distinct free surfaces, i.e., ∂Ai. Also,
recognize that these constants cannot be set to zero, as we have already set
C0 = 0.

The boundary condition (9.109) and (9.110) for the stress state (9.44)
require ∫

a

∂φ

∂y
da = 0,

∫
a

∂φ

∂x
da = 0. (9.119)
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Appealing to Green’s theorem for multiply connected domains, (2.278)
and (2.279), the above equation (9.119) reduces to

∫
a

∂φ

∂y
da =

∮
∂Ao

φ
∂f

∂x
ds−

N∑
i=1

∮
∂Ai

φ
∂gi
∂x

ds

= C0

∮
∂Ao

∂f

∂x
ds−

N∑
i=1

Ci

∮
∂Ai

∂gi
∂x

ds = 0, (9.120)

∫
a

∂φ

∂x
da =

∮
∂Ao

φ
∂f

∂y
ds−

N∑
i=1

∮
∂Ai

φ
∂gi
∂y

ds

= C0

∮
∂Ao

∂f

∂y
ds−

N∑
i=1

Ci

∮
∂Ai

∂gi
∂y

ds = 0, (9.121)

where we have used (9.116) and (9.118) and the fact that
∮
∂Ao grad(f)ds =

0,
∮
∂Ai grad(gi)ds = 0.
Finally, the boundary conditions (9.111) and (9.112) for the stress state

(9.44) yields,

−
∫
a

[
x
∂φ

∂x
+ y

∂φ

∂y

]
da = T. (9.122)

Noting that

∫
a

x
∂φ

∂x
=

∫
a

[
∂(xφ)

∂x
− φ
]
da =

∮
∂Ao

xφ
∂f

∂y
ds−

N∑
i=1

∮
∂Ai

xφ
∂gi
∂y

ds−
∫
a

φda

= −
N∑
i=1

Ci

∮
∂Ai

x
∂gi
∂y

ds−
∫
a

φda = −
N∑
i=1

CiAi −
∫
a

φda, (9.123)

∫
a

y
∂φ

∂y
=

∫
a

[
∂(yφ)

∂y
− φ
]
da =

∮
∂Ao

yφ
∂f

∂x
ds−

N∑
i=1

∮
∂Ai

yφ
∂gi
∂x

ds−
∫
a

φda

= −
N∑
i=1

Ci

∮
∂Ai

y
∂gi
∂x

ds−
∫
a

φda = −
N∑
i=1

CiAi −
∫
a

φda, (9.124)
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Figure 9.23: Hollow elliptical section

where we have used the Green’s theorem for multiply connected domain
(2.278) and (2.279) and equations (9.117) and (9.118). Recognize that from
Green’s theorem,∮

∂Ai
x
∂gi
∂y

ds =

∫
Ai

da = Ai,

∮
∂Ai

y
∂gi
∂x

ds =

∫
Ai

da = Ai, (9.125)

where Ai is the area enclosed by the void.
Substituting the above equations (9.123) and (9.124) in (9.122) we obtain,

T = 2

∫
a

φda+ 2
N∑
i=1

CiAi. (9.126)

Thus, we have to find φ such that the governing equation (9.115) has
to hold along with the boundary conditions (9.117) and (9.118). Then, we
use equation (9.126) to find the torsional moment required to realize a given
angle of twist per unit length, Ω.

9.4.1 Hollow elliptical section

Here we study the torsion of a bar with a hollow elliptical section as shown
in figure 9.23 where the inner boundary is a scaled ellipse similar to that
of the outer boundary. Since, the inner ellipse is a scaled outer ellipse, the
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Prandtl stress function obtained for solid ellipse cross section in section 9.3.1
is a constant at the inner surface. Hence, the boundary condition (9.118)
holds and therefore this stress function

φ = µΩ
a2b2

a2 + b2

[
x2

a2
+
y2

b2
− 1

]
, (9.127)

is a solution to this boundary value problem of twisting of a hollow elliptical
bar. Now, the constant C1, the value of φ at the inner boundary is obtained
as,

C1 = µΩ
a2b2

a2 + b2

[
k2 − 1

]
. (9.128)

Using (9.127) and (9.128) in (9.126), twisting moment is obtained as

T = µΩπ
a3b3

a2 + b2
[1− k4]. (9.129)

Since, the stress function is same as in the case of a solid elliptical section,
the stress distribution is also identical as before. Therefore, the maximum
shear stress occurs at x = 0, y = ±b and is given by,

τmax =
2T

πab2

1

1− k4
. (9.130)

Before concluding this section we observe that this solution scheme can be
applied to other cross sections whose inner boundary coincides with a contour
line of the stress function in the corresponding solid section problem.

9.4.2 Thin walled tubes

In this section, we seek approximate solution to the case when, the bar, in the
form of a thin walled tube is subjected to end torsion. We do not assume that
the cross section of the tube to be of any particular shape. While we assume
that the thickness of the cross section, t is small, we do not assume that it
is uniform. Let the boundary of the cross section be defined by a function,
f(x, y) = 0, the set of points constituting this boundary be denoted by ∂Ao,
and the enclosed area by Ao. The boundary in the interior of the cross
section is defined by the function g1(x, y) = 0, the set of points constituting
this boundary is denoted by ∂Ai and the area enclosed by, Ai. Then the area
of the cross section is Acs = Ao − Ai.
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Figure 9.24: Thin walled section

In order to satisfy the requirement that the lateral surface is taction free,
boundary conditions (9.107) and (9.108), the stress function has to be zero
at the outer surface (9.117) and should be a constant at the inner surface
(9.118). Hence, we assume that the stress function varies linearly through
the thickness of the section. This assumption would be reasonable given that
the thickness of the section is small. Thus,

φ =
C1

t
(ro − r), (9.131)

where C1 is a constant, the value of φ at the inner surface, ro is the radial
distance of the outer boundary from the centroid of the cross section, r is the
radial distance of any point in the cross section. If ri is the radial distance of
the inner boundary from the centroid of the cross section, then t = ro − ri.

For the warping displacement, ψ to be single valued in the thin walled
tube shown in figure 9.24,∮

∂Ai

∂ψ

∂x
dx+

∮
∂Ai

∂ψ

∂y
dy = 0. (9.132)

Substituting equations (9.45) and (9.46) in the above equation,∮
∂Ai

[
1

µ

∂φ

∂y
+ Ωy

]
dx−

∮
∂Ai

[
1

µ

∂φ

∂x
+ Ωx

]
dy = 0. (9.133)
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Using Green’s theorem (2.271) we find that∮
∂Ai

ydx− xdy =

∫
a

2dxdy = 2Ai. (9.134)

Since, the stress function is assumed to vary linearly over the domain, grad(φ)
= −C1/ter, where er is a unit vector normal to the boundary of the cross
section. Consequently,∮

∂Ai

∂φ

∂y
dx−

∮
∂Ai

∂φ

∂x
dy =

∮
∂Ai

grad(φ) · erds = −C1

∮
∂Ai

ds

t
(9.135)

Substituting equations (9.134) and (9.135) in (9.133) we obtain

Ω =
C1

2µAi

∮
∂Ai

ds

t
. (9.136)

Since, φ varies linearly through the thickness of the cross section, using
trapezoidal rule for integration we find that∫

a

φda =
C1

2
A, (9.137)

where A is the area of the cross section. Here it should be pointed out that
trapezoidal rule for integration gives the exact value when the variation is
linear. Now, substituting equation (9.137) in (9.126) we obtain the torque
to be,

T = C1A+ 2C1Ai = 2C1

[
Ai +

A

2

]
= 2C1Ac, (9.138)

where Ac is the area enclosed by the centerline of the cross section. As
a consequence of the section being thin walled, Ai ≈ Ac. Therefore, from
equations (9.136) and (9.138) we obtain,

Ω =
T

4µA2
c

∮
∂Ai

ds

t
. (9.139)

Here it should be recollected that the thickness of the section can vary along
the circumference of the cross section.

Finally, we estimate the shear stress in the cross section. Since, the shear
stress in the cross section is equal to the magnitude of grad(φ), we obtain

τ =
√
σ2
xz + σ2

yz =

√(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

=
C1

t
=

T

2tAc
. (9.140)

Thus, τt is constant throughout the section.
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9.5 Summary

In this chapter, we obtained the stress and displacement fields in a straight,
prismatic bar subjected to end twisting moments. For the case of thick
walled closed sections and thin walled sections of any shape, we obtained an
expression relating the torque with the angle of twist per unit length and
the shear stress with the torque. However, for thick walled open sections,
a procedure was outlined to obtain the stress and displacement fields and
the same illustrated for elliptical, rectangular and triangular shaped cross
sections. In all these cases, the section was assumed to be free to warp, so
that no warping stresses develop. Generalization for the case when warping
is restrained, is not straight forward and is beyond the scope of this lecture
notes.

9.6 Self-Evaluation

1. Knowing that the inner diameter of an annular cylinder is di = 30 mm
and that its outer diameter is do = 40 mm, determine the torque that
causes a maximum shearing stress of 52 MPa in the annular cylinder.

2. Neglecting the effect of stress concentration, determine the largest
torque that may be applied at A in the composite bar shown in fig-
ure 9.25. Assume that the end C is fixed against twisting and the
allowable shear stress is 104 MPa in the 55 mm diameter solid steel rod
BC and 55 MPa in the 40 mm diameter solid brass rod AB.

3. The composite shaft shown in figure 9.26 is to be twisted by applying
a torque T at end A. Knowing that the shear modulus for steel is 77
GPa and for brass is 37 GPa, determine the largest angle through which
end A may be rotated if the following allowable stresses are not to be
exceeded 100 MPa in steel and 50 MPa in brass.

4. The stepped circular shaft, shown in figure 9.27, is rigidly attached to
a wall at E. The diameter of the shaft AC, dAC is 25mm and that of
the shaft CE, dCE is 50mm. Determine the angle of twist of the end A
when the torques at B and D are applied as shown in the figure 9.27.
Let Tb = 150 Nm and Td = 1000 Nm. Assume the shear modulus G =
80 GPa. Neglect stress concentration effects.
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Figure 9.25: Figure for problem 2
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Figure 9.26: Figure for problem 3
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Figure 9.27: Figure for problem 4
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Figure 9.28: Figure for problem 5

5. (a) Determine the reactions for the circular stepped shafts shown in
figure 9.28. Let the diameter of the shaft AC, dAC be 25mm and that
of the shaft CE, dCE be 50mm and the torques, Tb = 400 Nm and Td
= 2000 Nm. (b) Plot the angle of twist diagram for the shaft along its
length. The material parameters for the material with which this shaft
is made are: Young’s modulus, E = 120 GPa and Poisson’s ratio, ν =
1/3. Neglect stress concentration effects.

6. Same torque is applied to two hollow shafts of same length 0.5 m and
made of same material but having cross sections in the shape of T and
C, as shown in figure 9.29. Neglecting the effect of stress concentration,
compare the maximum shearing stress that occurs in these sections and
the angle of twist of the shaft. Assume, tw = t = 6 mm, tf = 12 mm,
b = 25 mm, h = 30 mm. Recognizing that the area of both the cross
sections is same, comment on which section is economical.

7. Verify that the admissibility of the following Prandtl stress function for
a circular shaft with a keyway, as shown in figure 9.30,

φ = K(b2 − r2)

(
1− 2a cos(θ)

r

)
,

where K is a constant. If the stress function is admissible,

(a) Find the constant K

(b) Compute the Cartesian components of the shear stress, σxz and
σyz
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Figure 9.29: Figure for problem 6
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Figure 9.30: Circular shaft centered about (a, 0) with a keyway. Figure for
problem 7
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(c) Show that the resultant shear stresses on the shaft and the keyway
boundaries are given by

τshaft = µΩa

[
b2

4a2 cos2(θ)
− 1

]
, τkeyway = µΩ[2a cos(θ)− b],

where Ω is the angle of twist per unit length and µ is the shear
modulus.

(d) Determine the maximum value of the shear stress in the shaft and
keyway

(e) Show that the maximum value of the keyway shear stress is ap-
proximately twice that of the shear stress in the shaft

(f) Determine the maximum shear stress for a solid shaft of circular
section of radius a, τ solidshaftmax .

(g) Plot the τ keywaymax /τ solidshaftmax , where τ keywaymax is the maximum shear
stress in the keyway, for 0 ≤ b/a ≤ 1 assuming same torque is
applied on both the sections. Show that τ keywaymax /τ solidshaftmax → 2
as b/a → 0. This shows that a small notch would result in the
doubling of the shear stresses in the circular section under same
torsion.

(h) Show that the warping function for the shaft with a keyway is

ψ = −µΩ

2

[
x2 + y2 − 2ax+

2b2ax

x2 + y2
− b2

]
,

where x and y are the coordinates of a typical point in the cross
section.

8. Two tubular thin walled sections shown in figure 9.31 have the same
wall thickness t and the same perimeter and hence b = aπ/2. Neglecting
the stress concentration, find the ratio of the shear stresses if,

(a) Both the sections are subjected to equal twisting moment

(b) Both the sections have the same angle of twist per unit length

Comment on which of these sections is economical.
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Figure 9.31: Sections for problem 8
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Figure 9.32: Sections for problem 9
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9. Two sections, a solid circular section and a hollow rectangular tube
as shown in figure 9.32 are subjected to the same torque, T . If the
two tubes are of same length, L and made of the same material and
differ only in the shape of the cross section, find the thickness of the
rectangular section so that (a) the maximum shear stresses is same in
both the sections (b) angle of twist per unit length is same for these
two sections. Comment on which of these sections is economical.

10. During the early development of the torsion formulation, Navier as-
sumed that there is no warping displacement for any cross section.
Show that although such an assumed displacement field will satisfy all
the required governing differential equations, it would not satisfy the
boundary conditions and hence this is not an acceptable solution.
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Chapter 10

Bending of Curved Beams

10.1 Overview

Till now, we have been studying members that are initially straight. In this
chapter, we shall study the bending of beams which are initially curved. We
do this by restricting ourselves to the case where the bending takes place in
the plane of curvature. This happens when the cross section of the beam is
symmetrical about the plane of its curvature and the bending moment acts in
this plane. As we did for straight beams, we first obtain the solution assuming
sections that are initially plane remain plane after bending. The resulting
relation between the stress, moment and the deflection is called as Winkler-
Bach formula. Then, using the two dimensional elasticity formulation, we
obtain the stress and displacement field without assuming plane sections
remain plane albeit for a particular cross section of a curved beam subjected
to a pure bending moment or end load. We conclude by comparing both
the solutions to find that they are in excellent agreement when the beam is
shallow.

Before proceeding further, we would like to clarify what we mean by a
curved beam. Beam whose axis is not straight and is curved in the elevation
is said to be a curved beam. If the applied loads are along the y direction and
the span of the beam is along the x direction, the axis of the beam should
have a curvature in the xy plane. On the hand, if the member is curved
on the xz plane with the loading still along the y direction, then it is not a
curved beam, as this loading will cause a bending as well as twisting of the
section. Thus, a curved beam does not have a curvature in the plan. Arches

345
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(a) Elevation view: projection in the xy
plane.
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(b) Isotropic view.

Figure 10.1: Schematic of bending of a curved beam

are examples of curved beams.

10.2 Winkler-Bach formula for curved beams

As mentioned before, in this section we obtain the stress field assuming,
sections that are plane before bending remain plane after bending. Conse-
quently, a transverse section rotates about an axis called the neutral axis as
shown in figure 10.1. Let us examine an infinitesimal portion of a curved
beam enclosing an angle ∆φ. Due to an applied pure bending moment M ,
the section AB rotates through an angle δ(∆φ) about the neutral axis and
occupy the position A′B′. SN denotes the surface on which the stress is
zero and is called the neutral surface. Since, the stress is zero in this neutral
surface, the length of the material fibers on this plane and oriented along the
axis of the beam would not have changed. However, fibers above the neutral
surface and oriented along the axis of the beam would be in compression and
those below the neutral surface and oriented along the axis of the beam would
be in tension. Hence, for a fiber at a distance y from the neutral surface, its
length before the deformation would be (rn−y)∆φ, where rn is the radius of
curvature of the neutral surface. The change in length of the same fiber after
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deformation due to the applied bending moment, M would be −y(δ(∆φ)).
Note that the negative sign is to indicate that the length reduces when y is
positive for the direction of the moment indicated in the figure 10.1. Thus,
the linearized strain is given by,

ε = − y(δ(∆φ))

(rn − y)(∆φ)
. (10.1)

It is assumed that the lateral dimensions of the beam are unaltered due
to bending, i.e. the Poisson’s effect is ignored. Hence, the quantity y re-
mains unaltered due to the deformation. Now, to estimate the quantity
δ(∆φ)/(∆φ), we observe from figure 10.1a that

SN = r(∆φ+ δ(∆φ)), (10.2)

where r is the radius of curvature of the neutral axis after bending. However,
by virtue of it being neutral surface, its length is unaltered and therefore

SN = rn∆φ. (10.3)

Equating equations (10.2) and (10.3) and simplifying we obtain

δ(∆φ)

∆φ
=
rn
r
− 1. (10.4)

Substituting equation (10.4) in (10.1) we obtain,

ε = − y

rn − y

[rn
r
− 1
]
. (10.5)

Having obtained the strain, the expression for the stress becomes

σ = −E y

rn − y

[rn
r
− 1
]
, (10.6)

where E is the Young’s modulus and we have appealed to one dimensional
Hooke’s law to relate the strain and the stress.

Since, we assume that the section is subjected to pure bending moment
and in particular no axial load, we require that∫

a

σda = −
∫
a

E
y

rn − y

[rn
r
− 1
]
da = 0, (10.7)
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where we have used (10.6). Since, rn and r are constants for a given section
and r 6= rn, when the beam deforms, for equation (10.7) to hold,∫

a

Ey

rn − y
da = 0. (10.8)

We have to find rn such that (10.8) holds. Observing that y/(rn − y) =
rn/(rn − y)− 1, equation (10.8) can be simplified as

rn

∫
a

E

rn − y
da−

∫
a

Eda = 0. (10.9)

If the section is homogeneous, Young’s modulus is constant over the section
and therefore the above equation can be written as,

rn =
A∫

a
da

rn−y
(10.10)

Assuming the bending moment at the section being studied is M , as
shown in section 8.1, equation (8.9),

M = −
∫
a

yσda, (10.11)

where we have assumed that the origin of the coordinate system is located at
the neutral axis of the section; consistent with the assumption made while ob-
taining the expression for the strain. Substituting equation (10.7) in (10.11)
and rewriting we obtain,

M =
[rn
r
− 1
] ∫

a

E
y2

rn − y
da =

[rn
r
− 1
] ∫

a

E

[
rn

y

rn − y
− y
]
da

=
[rn
r
− 1
] [
rn

∫
a

E
y

rn − y
da−

∫
a

Eyda

]
. (10.12)

It follows from (10.8) that the first integral in the above equation is zero.
Thus, equation (10.12) simplifies to[rn

r
− 1
]

= − M∫
a
Eyda

. (10.13)



10.2. WINKLER-BACH FORMULA FOR CURVED BEAMS 349

Then, combining equation (10.6) and (10.13) we obtain

−
[rn
r
− 1
]

=
M∫

a
Eyda

=
σ

E

rn − y
y

, (10.14)

where rn is obtained by solving (10.9). If the section is homogeneous that is
E is constant over the section equation (10.14) simplifies to,

− E
[rn
r
− 1
]

=
M∫
a
yda

= σ
rn − y
y

, (10.15)

where rn is obtained by solving (10.10). Note that in these equations y is
measured from the neutral axis of the section and the bending moment that
increases the curvature (decreases the radius of curvature) is assumed to be
positive.

Thus, given the moment in the section, using equation (10.14) or (10.15),
we can estimate the stress (σ) distribution in the section and/or the deformed
curvature (r) of the beam. These equations are called Winkler-Bach formula
for curved beams.

Next, we illustrate a technique to find the radius of curvature of the
neutral surface, rn for a homogeneous rectangular section. Consider a rect-
angular section shown in figure 10.2 where ρo denotes the radius of curvature
of the centroid of the cross section, ri the radius of curvature of the topmost
fiber of the cross section and ro the radius of curvature of the bottommost
fiber of the cross section. Let u = rn − y. Now, u is the location of a fiber
from the center of curvature of the section,as indicated in the figure 10.2.
Hence, ∫

a

da

rn − y
=

∫ ro

ri

bdu

u
= b ln

(
ro
ri

)
. (10.16)

Consequently, the value of rn, the radius of curvature of the neutral axis for
a rectangular section as determined from (10.10) is

rn =
bh

b ln
(
ro
ri

) =
h

ln
(
ro
ri

) . (10.17)

Having obtained rn, we would like to obtain the stress distribution in a
curved beam with rectangular section subjected to a moment M . It follows
from equation (10.15) that

σ =
y

rn − y
M∫
a
yda

. (10.18)
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Figure 10.2: Parameters for a rectangular section to compute rn
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Now we need to compute
∫
a
yda with y measured from the neutral axis.

Towards this,∫
a

yda =

∫ ro

ri

(rn − u)bdu = b

[
rn(ro − ri)−

1

2
(r2
o − r2

i )

]
= bh [rn − ρo] ,

(10.19)
where we have used the fact that ro−ri = h and ρo = (ro+ri)/2. Substituting
equation (10.19) in (10.18), we obtain

σ =
My

bh(rn − y)[rn − (ri + ro)/2]
, (10.20)

where rn − ro ≤ y ≤ rn − ri. We compare the qualitative features of this
solution after obtaining the elasticity solution.

10.3 2D Elasticity solution for curved beams

In this section, we obtain the two dimensional elasticity solution for the
curved beam subjected to pure bending and end loading. The cross section
of the beam is assumed to be rectangular of width 2b and depth h. As
the beam is curved, we use cylindrical polar coordinates to formulate and
study this problem. The curved beam is assumed to be the annular region
between two coaxial radially cut cylinders of radius ri and ri + h, i.e, B =
{(r, θ, z)|ri ≤ r ≤ ro, α1 ≤ θ ≤ α2,−b ≤ z ≤ b}, where ri, ro, α1, α2 and b
are constants. Note that here ro = ri + h

10.3.1 Pure bending

The first example that we study, is that of pure bending of a curved beam.
Here the curved beam is assumed to be subjected to end moments as shown
in figure 10.3. The traction boundary conditions for this problem are

(a) The surfaces defined by r = ri and r = ro are traction free.

(b) The surfaces defined by θ = ±α though is subjected to a moment, M
along the z direction, has no net force.
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Figure 10.3: Curved beam subjected to pure bending

Translating these boundary conditions into mathematical statements:

t(er)(ro, θ, z) = t(−er)(ri, θ, z) = o, (10.21)∫
a

t(eθ)(r, α, z)drdz =

∫
a

t(−eθ)(r,−α, z)drdz = o, (10.22)∫
a

(rer + zez) ∧ t(eθ)(r, α, z)drdz = Mez, (10.23)∫
a

(rer + zez) ∧ t(−eθ)(r,−α, z)drdz = −Mez, (10.24)

where {er, eθ, ez} are the cylindrical polar coordinate basis.
The displacement boundary condition for this problem are

(a) The surface defined by θ = 0 undergoes no tangential displacement.

(b) There is no radial displacement of the point with cylindrical polar co-
ordinates (rn, 0, 0), where rn is the radial location on the surface θ = 0
at which σθθ(rn, 0, z) = 0.

The mathematical statements of these conditions are

eθ · u(r, 0, z) = 0, (10.25)

er · u(rn, 0, 0) = 0. (10.26)

Assuming that the state of stress in the curved beam is plane and the
cylindrical polar components of this stress are

σ =

σrr σrθ 0
σrθ σθθ 0
0 0 0

 . (10.27)
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Substituting the above stress (10.27) in the traction boundary conditions
(10.21) through (10.24) we obtain,

σrr(ri, θ, z) = σrr(ro, θ, z) = 0, (10.28)

σrθ(ri, θ, z) = σrθ(ro, θ, z) = 0, (10.29)∫
a

σrθ(r,±α, z)drdz = 0, (10.30)∫
a

σθθ(r,±α, z)drdz = 0, (10.31)∫
a

zσrθ(r,±α, z)drdz = 0, (10.32)∫
a

rσθθ(r,±α, z)drdz = M. (10.33)

Now, we have to find Airy’s stress function, φ that would satisfy the
boundary conditions (10.28) through (10.33) and the bi-harmonic equation.
In this problem we expect the stresses to be such that σ(r, θ, z) = σ(r,−θ, z),
for any θ, i.e. the stress is an even function of θ. Imposing this restriction
that the stress be an even function of θ, on the general periodic solution to
the bi-harmonic solution (7.57), results in requiring that the Airy’s stress
function be independent of θ. Thus, Airy’s stress function is,

φ = a01 + a02 ln(r) + a03r
2 + a04r

2 ln(r), (10.34)

where the constants a0i’s are to be found from the boundary conditions. The
stress field corresponding to this Airy’s stress function, (10.34) found using
(7.53) is

σrr = 2a04 ln(r) +
a02

r2
+ a04 + 2a03, (10.35)

σθθ = 2a04 ln(r)− a02

r2
+ 3a04 + 2a03, (10.36)

σrθ = 0. (10.37)

It can be immediately seen that by virtue of σrθ = 0, boundary conditions
(10.29), (10.30) and (10.32) are trivially satisfied. The boundary condition
(10.28) requires that

2a04 ln(ri) +
a02

r2
i

+ a04 + 2a03 = 0, (10.38)

2a04 ln(ro) +
a02

r2
o

+ a04 + 2a03 = 0. (10.39)
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The boundary condition (10.31) requires that

ro

[
2a04 ln(ro) +

a02

r2
o

+ a04 + 2a03

]
− ri

[
2a04 ln(ri) +

a02

r2
i

+ a04 + 2a03

]
= 0.

(10.40)
By virtue of the terms in the square brackets being same as those in equations
(10.39) and (10.38), equation (10.40) holds if (10.38) and (10.39) are satisfied.
The only remaining boundary condition (10.33) when evaluated mandates
that

a04[r2
o ln(ro)− r2

i ln(ri)]− a02 ln

(
ro
ri

)
+ (a04 + a03)(r2

o − r2
i ) =

M

2b
. (10.41)

Solving equations (10.38), (10.39) and (10.41) for the unknown constants
a0i’s, we obtain

a02 =
M

N
4r2

i r
2
o ln

(
ro
ri

)
, (10.42)

a03 = −M
N

[
r2
o − r2

i + 2(r2
o ln(ro)− r2

i ln(ri))
]
, (10.43)

a04 =
M

N
2[r2

o − r2
i ], (10.44)

where

N = 2b

{
(r2
o − r2

i )
2 − 4r2

i r
2
o

[
ln

(
ro
ri

)]2
}
. (10.45)

Substituting these constants from equation (10.42) through (10.44) in the
expression for the stresses (10.35) through (10.37) the stress field becomes
known.

In figure 10.4 we compare the bending stress (σθθ) obtained using the
Winkler-Bach formula with that obtained using the two dimensional elastic-
ity approach. We find that both these approaches though predict different
expressions for the stress, evaluate to the same values as seen from figure
10.4b. However, differences between these approaches increases as ri/h value
tends to zero as seen from figure 10.4a.

In figure 10.5 we study when critical curvature of the beam above which
the stresses in the beam are not influenced much by the curvature. It seems
that if the curvature of the innermost fiber exceeds 5 times the depth of the
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Figure 10.4: Comparison of the Winkler-Bach formula for the stress in the
curved beams with the two dimensional elasticity solution for beams with
different initial curvatures
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Figure 10.5: Study on the influence of initial curvature of the beam on the
bending stresses developed due to a given moment
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beam with rectangular cross section, one can consider the beam as straight
for practical purposes.

Having obtained the stress field that satisfies the compatibility conditions,
a smooth displacement field corresponding to this stress field can be deter-
mined by following the standard approach of estimating the strains for this
stress field from the two dimensional constitutive relation and then integrat-
ing the resulting strains for the displacements using the strain displacement
relation. On performing these calculations, we find that the cylindrical polar
components of the displacement field are given by

ur =
1

E

[
2(1− ν)(a04r ln(r) + a03r)− (1 + ν)

(a02

r
+ a04r

)]
+ C1 sin(θ) + C2 cos(θ), (10.46)

uθ =
4a04

E
rθ + C1 cos(θ)− C2 sin(θ) + C3r, (10.47)

where Ci’s are constants to be determined from the displacement boundary
conditions, ur is the radial component of the displacement and uθ is the
tangential component of the displacement.

Substituting equation (10.47) in the displacement boundary condition
(10.25) we obtain,

C1 + C3r = 0. (10.48)

For equation (10.48) to hold,

C1 = 0, C3 = 0. (10.49)

In order to satisfy the displacement boundary condition (10.26),

C2 = − 1

E

[
2(1− ν)(a04rn ln(rn) + a03rn)− (1 + ν)

(
a02

rn
+ a04rn

)]
.

(10.50)

10.3.2 Curved cantilever beam under end load

The next example that we study, is that of end loading of a curved cantilever
beam. Here a cantilever beam is assumed to be subjected to end shear force
as shown in figure 10.6. Thus, the displacement boundary condition for this
problem is
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Figure 10.6: Curved cantilever beam subjected to end loading

(a) The surface defined by θ = π
2

undergoes no displacement.

The mathematical statement of this condition is

u(r,
π

2
, z) = o, (10.51)

The traction boundary conditions for this problem are

(a) The surfaces defined by r = ri and r = ro are traction free.

(b) The surface defined by θ = 0 is subjected to a force, −P along the
radial direction.

(c) The surface defined by θ = π
2
, is subjected to a force, P along tangential

direction and to a moment M along the z direction. The value of this
moment M needs to be determined so that the required displacement
boundary conditions are satisfied.
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Translating these boundary conditions into mathematical statements:

t(er)(ro, θ, z) = t(−er)(ri, θ, z) = o, (10.52)∫
a

t(eθ)(r, 0, z)drdz = −Per, (10.53)∫
a

t(−eθ)

(
r,
π

2
, z
)
drdz = Peθ, (10.54)∫

a

(rer + zez) ∧ t(eθ)(r, 0, z)drdz = o, (10.55)∫
a

(rer + zez) ∧ t(−eθ)

(
r,
π

2
, z
)
drdz = −Mez, (10.56)

where {er, eθ, ez} are the cylindrical polar coordinate basis.

Assuming that the state of stress in the curved beam is plane and the
cylindrical polar components of this stress are

σ =

σrr σrθ 0
σrθ σθθ 0
0 0 0

 . (10.57)
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Substituting the above stress (10.57) in the traction boundary conditions
(10.52) through (10.56) we obtain,

σrr(ri, θ, z) = σrr(ro, θ, z) = 0, (10.58)

σrθ(ri, θ, z) = σrθ(ro, θ, z) = 0, (10.59)∫
a

σrθ(r, 0, z)drdz = −P, (10.60)∫
a

σθθ(r, 0, z)drdz = 0, (10.61)∫
a

σrθ

(
r,
π

2
, z
)
drdz = 0, (10.62)∫

a

σθθ

(
r,
π

2
, z
)
drdz = P, (10.63)∫

a

zσrθ(r, 0, z)drdz = 0, (10.64)∫
a

rσθθ(r, 0, z)drdz = 0, (10.65)∫
a

zσrθ

(
r,
π

2
, z
)
drdz = 0, (10.66)∫

a

rσθθ

(
r,
π

2
, z
)
drdz = M. (10.67)

In order to satisfy the traction boundary conditions (10.58) through
(10.67), we chose Airy’s stress function from the general solution (7.57) such
that it contains only the sin(θ) and cos(2θ) terms as,

φ =

[
b11r + b12r ln(r) +

b13

r
+ b14r

3

]
sin(θ)

+
[
a21r

2 + a22r
4 +

a23

r2
+ a24

]
cos(2θ). (10.68)

To proceed further, one has to follow the standard procedure and hence, we
leave it as an exercise to find the stress and displacement field.

10.4 Summary

In this chapter we studied on how to analyze beams with initial curvature.
We obtained the stress field based on the assumption that the plane section
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remain plane after bending. We also obtained two dimensional elasticity
solution which is not based on the assumption that plane sections remain
plane. However, we found that both these solutions predict the same value
of stresses for practically used curved beams.

10.5 Self-Evaluation

1. There are two beams - a straight beam and a curved beam - each of
which is subjected to a pure bending moment, M. Assuming that both
the beams are homogeneous and has a square cross section with side
0.3m and are made of the same material, which is linear elastic and
isotropic, compute the ratio of the maximum tensile stresses experi-
enced in the straight and curved beams. Also, find the ratio of the
maximum compressive stresses experienced in the straight and curved
beams. Assume, the curved beam forms a part of a circle, with the ini-
tial radius of curvature of the center line of the bar, being ρo. Obtain
the value of the ratios as a function of ρo and determine the critical
rhoco below which the stresses would differ by more than 10 percent.

2. A curved beam with a circular center line has the T-section as shown
in figure 10.7. This beam is subjected to pure bending in its plane of
symmetry. Find the tensile and compressive stresses in the extreme
fibers. Assume, b1 = 100 mm, b2 = 20 mm, the radius of curvature of
the innermost fiber, r1 = 80 mm, the outermost fiber, r2 = 180 mm
and r3 = 100 mm.

3. A curved beam with a circular center line has the circular sections as
shown in figure 10.8. Find the stress distribution across this section if
the curved beam is subjected to a pure bending moment, M . Assume
that the initial curvature of the center line of the beam is ρo.
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Figure 10.7: T section. Figure for problem 2
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Figure 10.8: Circular section. Figure for problem 3
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Chapter 11

Beam on Elastic Foundation

11.1 Overview

In some applications such as rail tracks, the member subjected to loads is
supported on continuous foundations. That is the reactions due to external
loading is distributed along the length of the member. Here we study on how
to get the stresses and displacements in these members resting on continuous
foundations. If the dimensions of this member is such that, it is longer
along one of the axis, called the longitudinal axis in comparison with the
dimensions along the other directions, it is called as a beam. If we assume
that the reaction force offered by the continuous support is a function of the
displacement that of the member, the support is called as elastic. A beam
resting on an elastic support is said to be beam on elastic foundation.

In this chapter, we first formulate this problem of beam on an elastic
foundation for a general loading condition. Then, we study the problem
of a concentrated load at the mid point of a beam that is infinitely long.
Appealing to the principle of superposition we obtain the solution to the
problem of a concentrated moment at mid span and uniformly distributed
load of length L, centered about the midpoint of the beam.

11.2 General formulation

In this section, we formulate the boundary value problem of beam on an
elastic foundation. A beam having some cross section, resting on an elastic
support is shown in figure 11.1. We assume that the reaction offered by

363
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y 
x 

Beam 

Elastic Foundation 

Figure 11.1: Schematic of a long beam on elastic foundation

the support at any point is directly proportional to the displacement of that
point along the y direction and is in a direction opposite to the displacement.
Thus, if ∆ is the vertical displacement of a point in the beam, qy the support
reaction per unit width of the beam, then the above assumption that the
reaction force is proportional to the displacement mathematically translates
into requiring

qy = −Ks∆. (11.1)

Assuming the beam to be homogeneous, we obtained the equation (8.41)
which we document here again:

− σxx
(y − yo)

= E
d2∆

dx2
=
Mz

Izz
, (11.2)

where yo is the y coordinate of the centroid of the cross section which can
be taken as 0 without loss of generality provided the origin of the coordinate
system used is located at the centroid of the cross section, E is the Young’s
modulus, (x, y) is the coordinate of the point along the axis of the beam
direction and the y direction, Mz is the z component of the bending moment,
Izz is the moment of inertia of the section about the z axis.

In section 8.1, we integrated the equilibrium equations and obtained equa-
tions (8.18) and (8.25) which we record here:

dMz

dx
+ Vy = 0, (11.3)

dVy
dx

+ qy = 0, (11.4)

where Vy is the shear force along the y direction and qy is the transverse
loading along the y direction. Combining the equations (11.3) and (11.4) we
obtain,

d2Mz

dx2
= qy. (11.5)
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Substituting equation (11.2) in equation (11.5), we obtain

d2

dx2

(
EIzz

d2∆

dx2

)
= qy. (11.6)

Assuming the beam to be homogeneous and prismatic, so that EIzz is con-
stant through the length of the beam, and substituting equation (11.1) in
equation (11.6), we obtain

EIzz
d4∆

dx4
= −Ks∆. (11.7)

Defining,

β2 =

√
Ks

4EIzz
, (11.8)

equation (11.7) can be written as

d4∆

dx4
+ 4β4∆ = 0. (11.9)

The differential equation (11.9) has a general solution:

∆ = exp(−βx)[C1 sin(βx) + C2 cos(βx)] + exp(βx)[C3 sin(βx) + C4 cos(βx)],
(11.10)

where Ci’s are constant to be determined from the boundary conditions.
Having found the deflection, the stress is estimated from (11.2) as

σxx = −E(y − yo)
d2∆

dx2

= −2yEβ2 {exp(−βx)[C2 sin(βx)− C1 cos(βx)]

+ exp(βx)[C3 cos(βx)− C4 sin(βx)]} , (11.11)

where we have assumed that the origin is located at the centroid of the cross
section and hence have set yo = 0.

11.3 Example 1: Point load

The first boundary value problem that we study for the beam on elastic
foundation is when it is subjected to a point load at its mid span as shown
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Figure 11.2: Schematic of a long beam on elastic foundation subjected to
concentrated load at mid span
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Mo 

Figure 11.3: Free body diagram of half the section of long beam on elastic
foundation subjected to concentrated load

in figure 11.2. The origin of the coordinate system is assumed to coincide
with the point of application of the load. The beam length is assumed to
be large enough compared to its lateral dimension that it can be considered
to be infinitely long. (We shall quantify what length could be considered as
infinitely long after we obtain the solution.)

To obtain the solution we section the beam at x = 0, the point of ap-
plication of the concentrated load, as shown in figure 11.3. Since, there is a
concentrated force acting at x = 0, the shear force would be discontinuous
at x = 0 and hence the fourth derivative of the deflection, ∆ does not exist.
Consequently, the governing equation (11.9) is valid only in the domain x > 0
and x < 0 and not at x = 0. Therefore, we segment the beam at x = 0 and
solve (11.9) on each of the segments. Then, we ensure, the differentiability
of the second order derivative of deflection so that the third order derivative
exist. This is required to ensure the existence of shear force at x = 0.

We also expect the deflection to be symmetric about x = 0 that is, ∆(x)
= ∆(−x) and therefore the slope of the deflection should be zero at x = 0,
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i.e.,
d∆

dx

∣∣∣∣
x=0

= 0. (11.12)

By sectioning the beam at x = 0 we find the bending moment and shear
force at this location. Using equation (11.2) we find that

d2∆

dx2

∣∣∣∣
x=0

=
M(0)

EIzz
= − Mo

EIzz
, (11.13)

where Mo is the bending moment at x = 0, acting as shown in the figure
11.3 and the negative sign is to account for the fact that it is hogging. Since,
shear force should exist, the continuity of the bending moment and d2∆

dx2
has

to be ensured. Therefore the value of bending moment at both the segments
of the beam should be the same.

Substituting equation (11.2) in (11.3) and assuming the beam to be ho-
mogeneous and prismatic, we obtain

EIzz
d3∆

dx3
= −Vy. (11.14)

Since, there is a concentrated force at x = 0, Vy(0
+) = −Vy(0−) and the

equilibrium of an infinitesimal element centered about x = 0 requires that
Vy(0

+) − Vy(0
−) = P . Hence, Vy(0

+) = P/2 and Vy(0
−) = −P/2. Thus,

from equation (11.14) we obtain,

d3∆

dx3

∣∣∣∣
x=0+

= −Vy(0
+)

EIzz
= − P

2EIzz
. (11.15)

d3∆

dx3

∣∣∣∣
x=0−

= −Vy(0
−)

EIzz
=

P

2EIzz
. (11.16)

Further, we require that

∆→ 0, as x→ ±∞, (11.17)

since, we expect the effect of the load would be felt only in its vicinity.
To obtain the solution, we first focus on the right half of the beam wherein

x > 0. Then, the requirement (11.17) implies that the constants C3 and C4

in the general solution (11.10) has to be zero; otherwise ∆ → ∞ as x →
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∞. Next, the condition (11.12) requires that C1 = C2 = C0. Finally, the
equation (11.15) tells us that

C0 = − P

8β3EIzz
= − Pβ

2Ks

(11.18)

where to obtain the last equality we have made use of (11.8). Thus, in the
domain, x > 0,

∆ = − Pβ
2Ks

exp(−βx)[cos(βx) + sin(βx)]. (11.19)

Now, we consider the left half of the beam, i.e., x < 0. The requirement
(11.17) implies that the constants C1 and C2 in the general solution (11.10)
has to be zero. Next, the condition (11.12) requires that C3 = −C4 = C5.
Finally, the equation (11.16) tells us that

C5 = − P

8β3EIzz
= − Pβ

2Ks

(11.20)

where to obtain the last equality we have made use of (11.8). Thus, in the
domain, x < 0,

∆ = − Pβ
2Ks

exp(βx)[cos(βx)− sin(βx)]. (11.21)

Thus, the distribution of the reaction from the foundation along the axis
of the beam given in (11.1) evaluates to:

qy = −Ks∆ =

{
Pβ
2

exp(−βx)[cos(βx) + sin(βx)] x > 0
Pβ
2

exp(βx)[cos(βx)− sin(βx)] x < 0
. (11.22)

The variation of the bending moment along the axis of the beam obtained
from (11.2) is:

Mz = EIzz
d2∆

dx2
=

{
− P

4β
exp(−βx)[cos(βx)− sin(βx)] x ≥ 0

− P
4β

exp(βx)[cos(βx) + sin(βx)] x ≤ 0
. (11.23)

The shear force variation along the axis of the beam computed using (11.14)
is:

Vy = −EIzz
d3∆

dx3
=

{
P
2

exp(−βx) cos(βx) x ≥ 0
−P

2
exp(βx) cos(βx) x ≤ 0

. (11.24)
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Figure 11.4: Variation of support reaction, bending moment and shear force
along the axis of the beam on elastic foundation
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Figure 11.5: Schematic of a long beam on elastic foundation subjected to
concentrated moment at mid span

In figure 11.4 we plot the variation of the support reaction, bending mo-
ment and shear force along the axis of the beam. It can be seen from the
figure that though the beam is assumed to be infinitely long the reaction
force, bending moment and shear forces all tend to zero for βx > 5. Hence,
a beam may be considered as long if its length is greater than, 5/β. It can
also be seen from the figure that the maximum deflection, support reaction,
bending moment and shear occurs at z = 0 and these values are,

∆max = − Pβ
2Ks

, qmaxy =
Pβ

2
, Mmax

z = − P
4β
, V max

y =
P

2
. (11.25)

It can be seen from figure 11.4a that the support reaction changes sign.
The support reaction changes sign at a point when qy = 0, i.e., sin(βx) =
− cos(βx) or at x = 3π/(4β). Since, the support reaction is proportional to
the deflection, ∆, this change in sign of the support reaction also tells us
that the beam will uplift at x = ±3π/(4β). Hence, the beams have to be
adequately clamped to the foundation to prevent it from uplifting.

11.4 Example 2: Concentrated moment

The concentrated moment, Mo, is considered to be equivalent to the action
of two concentrated forces, P , equal in magnitude but opposite in direction
and separated by a distance L as shown in the figure 11.5. Thus,

P =
Mo

L
. (11.26)

We obtain the solution to this loading case by superposing the displace-
ment field obtained in the above example for a single point load. Thus, it
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follows from equations (11.17) and (11.19) that the displacement due to the
downward acting force at a distance, L/2 from the origin is,

∆L/2 =


− Pβ

2Ks
exp(−β(x− L/2))[cos(β(x− L/2))

+ sin(β(x− L/2))] x ≥ L/2

− Pβ
2Ks

exp(β(x− L/2))[cos(β(x− L/2))

− sin(β(x− L/2))] x ≤ L/2

. (11.27)

Similarly, the displacement due to the upward acting force at a distance,
−L/2 from the origin is

∆−L/2 =


Pβ
2Ks

exp(−β(x+ L/2))[cos(β(x+ L/2))

+ sin(β(x+ L/2))] x ≥ −L/2
Pβ
2Ks

exp(β(x+ L/2))[cos(β(x+ L/2))

− sin(β(x+ L/2))] x ≤ −L/2

. (11.28)

Since, the displacement is small and the material obeys Hooke’s law, we can
superpose the solutions as discussed in section 7.5.2. Hence, the displacement
under the action of both the forces, ∆ = ∆L/2 + ∆−L/2 evaluates to,

∆ =



Moβ
2KsL

{exp(−β(x+ L/2)) [cos(β(x+ L/2))

+ sin(β(x+ L/2))]− exp(−β(x− L/2))
[cos(β(x− L/2)) + sin(β(x− L/2))]} x ≥ L/2

Moβ
2KsL

{exp(−β(x+ L/2)) [cos(β(x+ L/2))

+ sin(β(x+ L/2))]− exp(β(x− L/2))
[cos(β(x− L/2))− sin(β(x− L/2))]} −L/2 ≤ x ≤ L/2

Moβ
2KsL

{exp(β(x+ L/2)) [cos(β(x+ L/2))

− sin(β(x+ L/2))]− exp(β(x− L/2))
[cos(β(x− L/2))− sin(β(x− L/2))]} x ≤ −L/2

,

(11.29)
where we have used equation (11.26). When L→ 0 and PL→Mo the above
equation (11.29) evaluates to,

∆ =

{
−Moβ2

Ks
exp(−βx) sin(βx) x ≥ 0

−Moβ2

Ks
exp(βx) sin(βx) x ≤ 0

. (11.30)

Having found the displacement, (11.30), the variation of the bending
moment along the axis of the beam obtained from (11.2) is:

Mz = EIzz
d2∆

dx2
=

{
Mo

2
exp(−βx) cos(βx) x ≥ 0

−Mo

2
exp(βx) cos(βx) x ≤ 0

, (11.31)
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Figure 11.6: Schematic of a long beam on elastic foundation subjected to
uniformly distributed load of length L on either side of the mid span

and the shear force variation computed using (11.14) is:

Vy = −EIzz
d3∆

dx3
=

{
Moβ

2
exp(−βx)[cos(βx) + sin(βx)] x ≥ 0

Moβ
2

exp(βx)[cos(βx)− sin(βx)] x ≤ 0
. (11.32)

11.5 Example 3: Uniformly distributed load

Next, we study the problem of an infinite beam on an elastic foundation
subjected to a uniformly distributed load of length L symmetrically on either
side of the origin, as shown in figure 11.6. As before, we apply the principle
of superposition to find the deflection at a point to be

∆ =



− β
2Ks

∫ L/2
−L/2 exp(−β(x− a)) [cos(β(x− a))

+ sin(β(x− a))] qda x ≥ L/2

− β
2Ks

{∫ x
−L/2 exp(−β(x− a)) [cos(β(x− a))

+ sin(β(x− a))] qda

+
∫ L/2
x

exp(β(x− a)) [cos(β(x− a))
− sin(β(x− a))] qda} −L/2 ≤ x ≤ L/2

− β
2Ks

∫ L/2
−L/2 exp(β(x− a)) [cos(β(x− a))

− sin(β(x− a))] qda x ≤ −L/2

.

(11.33)
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Evaluating the integrals in equation (11.33) we obtain

∆ =



− q
2Ks

exp(−β(x+ L/2)) [− cos(β(L/2 + x))

+ cos(β(L/2− x)) exp(βL)] x ≥ L/2
− q

2Ks
{2− cos(β(L/2− x)) exp(−β(L/2− x))

− cos(β(L/2 + x)) exp(−β(L/2 + x))} −L/2 ≤ x ≤ L/2
− q

2Ks
exp(β(x− L/2)) [− cos(β(L/2− x))

+ cos(β(L/2 + x)) exp(βL)] x ≤ −L/2

.

(11.34)
Having found the displacement, (11.34), the variation of the bending moment
along the axis of the beam obtained from (11.2) is:

Mz =



− q
4β2 exp(−β(x+ L/2)) [− sin(β(x+ L/2))

sin(β(L/2− x)) exp(βL)] x ≥ L/2
− q

4β2 [sin(β(L/2− x)) exp(−β(L/2− x))

+ sin(β(L/2 + x)) exp(−β(L/2 + x))] −L/2 ≤ x ≤ L/2
− q

4β2 exp(β(x− L/2)) [sin(β(L/2− x))

+ sin(β(L/2 + x)) exp(βL)] x ≤ −L/2

,

(11.35)
and the shear force variation computed using (11.14) is:

Vy =



q
4β

exp(−β(x+ L/2)) {sin(β(L/2 + x))

− cos(β(L/2 + x))
+[sin(β(L/2− x)) + cos(β(L/2− x))] exp(βL)} x ≥ L/2

q
4β
{exp(−β(L/2− x)) [cos(β(L/2− x))

− sin(β(L/2− x))]
− exp(−β(L/2 + x)) [cos(β(L/2 + x))

− sin(β(L/2 + x))]} −L/2 ≤ x ≤ L/2
q

4β
exp(β(x− L/2)) {sin(β(L/2− x))

− cos(β(L/2− x))
+[sin(β(L/2 + x)) + cos(β(L/2 + x))] exp(βL)} x ≤ −L/2

.

(11.36)

11.6 Summary

In this chapter, we formulated and solved the problem of a concentrated
load acting on a long beam on elastic foundation. Using this solution and
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appealing to the principal of superposition, we solved two problems. One of
the problems is that of a concentrated moment on a long beam on elastic
support. The other problem is that of uniformly distributed load of length
L, on a long beam continuously supported at the bottom. These problem
serve as an illustration of the use of principle of superposition.

11.7 Self-Evaluation

1. A steel beam of a rectangular cross section, 180 mm wide and 280 mm
thick, is resting on an elastic foundation whose modulus of foundation
is 6.5 N/mm2. This beam is subjected to a concentrated anti-clockwise
moment of 0.5 MNm at the center. Determine the maximum deflec-
tion and the maximum bending stresses in the beam. Assume Young’s
modulus, E = 200 GPa and the Poisson’s ratio, ν = 0.3. Also, plot

(a) The deflected shape of the beam

(b) The variation in the bending moment along the axis of the beam

(c) The variation in the shear force along the axis of the beam

Find the length of the beam beyond which it would require clamping
to prevent uplift.

2. Repeat problem - 1, for the case in which the beam is subjected to a
uniformly distributed load of intensity 200 N/mm over a length 500
mm about the center, instead of a concentrated moment.

3. A four-wheel wagon runs on steel rails. The rails have a depth of
140mm; the distance from the top of a rail to its centroid is 70 mm;
and its moment of inertia is 21 ∗ 106mm4. The Young’s modulus of the
rail, E = 210 GPa and the Poisson’s ratio, ν = 0.3. The rail rests on an
elastic foundation with linear spring constant, Ks = 12N/mm2. The
two wheels on each side of the car are spaced 2.50 m center to center
and the distance between the front and rear axle is 13 m. If each
wheel load is 90 kN, determine the maximum deflection and maximum
bending stress on the rail. List the assumptions made in the analysis.

4. Determine the thickness of a square foundation of side 1 m required, if it
were to carry a concentrated load of 1 MN and a concentrated clockwise
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moment of 0.1 MNm. Assume that the foundation rests on an elastic
foundation with spring constant, Ks = 12N/mm2, the Young’s modulus
of the foundation is 20 GPa and that the maximum permissible normal
stresses on the foundation is 10 MPa.
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