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Instructional Objectives 
After reading this chapter the student will be able to 
1. Derive member stiffness matrix of a truss member. 
2. Define local and global co-ordinate system. 
3. Transform displacements from local co-ordinate system to global co-ordinate 

system. 
4. Transform forces from local to global co-ordinate system. 
5. Transform member stiffness matrix from local to global co-ordinate system. 
6. Assemble member stiffness matrices to obtain the global stiffness matrix. 
7. Analyse plane truss by the direct stiffness matrix. 
 
 
24.1 Introduction 
An introduction to the stiffness method was given in the previous chapter. The 
basic principles involved in the analysis of beams, trusses were discussed. The 
problems were solved with hand computation by the direct application of the 
basic principles. The procedure discussed in the previous chapter though 
enlightening are not suitable for computer programming. It is necessary to keep 
hand computation to a minimum while implementing this procedure on the 
computer. In this chapter a formal approach has been discussed which may be 
readily programmed on a computer. In this lesson the direct stiffness method as 
applied to planar truss structure is discussed. 
 
Plane trusses are made up of short thin members interconnected at hinges to 
form triangulated patterns. A hinge connection can only transmit forces from one 
member to another member but not the moment. For analysis purpose, the truss 
is loaded at the joints. Hence, a truss member is subjected to only axial forces 
and the forces remain constant along the length of the member. The forces in the 
member at its two ends must be of the same magnitude but act in the opposite 
directions for equilibrium as shown in Fig. 24.1. 
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Now consider a truss member having cross sectional area A , Young’s modulus 
of material E , and length of the member L . Let the member be subjected to axial 
tensile force as shown in Fig. 24.2. Under the action of constant axial force , 
applied at each end, the member gets elongated by as shown in Fig. 24.2. 

F F
u

 

 
 

The elongation may be calculated by (vide lesson 2, module 1). u
 

AE
FLu =       (24.1)  

   
Now the force-displacement relation for the truss member may be written as, 
 
  

u
L

AEF =      (24.2) 
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F ku=      (24.3) 
 

where 
L

AEk =  is the stiffness of the truss member and is defined as the force 

required for unit deformation of the structure. The above relation (24.3) is true 
along the centroidal axis of the truss member. But in reality there are many 
members in a truss. For example consider a planer truss shown in Fig. 24.3. For 
each member of the truss we could write one equation of the type along 
its axial direction (which is called as local co-ordinate system). Each member has 
different local co ordinate system. To analyse the planer truss shown in Fig. 24.3, 
it is required to write force-displacement relation for the complete truss in a co 
ordinate system common to all members. Such a co-ordinate system is referred 
to as global co ordinate system.   

F ku=

 
 
 

24.2 Local and Global Co-ordinate System 
Loads and displacements are vector quantities and hence a proper coordinate 
system is required to specify their correct sense of direction. Consider a planar 
truss as shown in Fig. 24.4. In this truss each node is identified by a number and 
each member is identified by a number enclosed in a circle. The displacements 
and loads acting on the truss are defined with respect to global co-ordinate 
system xyz . The same co ordinate system is used to define each of the loads and 
displacements of all loads. In a global co-ordinate system, each node of a planer 
truss can have only two displacements: one along x -axis and another along -
axis. The truss shown in figure has eight displacements. Each displacement 

y
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(degree of freedom) in a truss is shown by a number in the figure at the joint. The 
direction of the displacements is shown by an arrow at the node. However out of 
eight displacements, five are unknown. The displacements indicated by numbers 
6,7 and 8 are zero due to support conditions. The displacements denoted by 
numbers 1-5 are known as unconstrained degrees of freedom of the truss and 
displacements denoted by 6-8 represent constrained degrees of freedom. In this 
course, unknown displacements are denoted by lower numbers and the known 
displacements are denoted by higher code numbers. 
 

 
 
To analyse the truss shown in Fig. 24.4, the structural stiffness matrix K  need to 
be evaluated for the given truss. This may be achieved by suitably adding all the 
member stiffness matrices , which is used to express the force-displacement 
relation of the member in local co-ordinate system. Since all members are 
oriented at different directions, it is required to transform member displacements 
and forces from the local co-ordinate system to global co-ordinate system so that 
a global load-displacement relation may be written for the complete truss. 

'k

 
 
24.3 Member Stiffness Matrix 
Consider a member of the truss as shown in Fig. 24.5a in local co-ordinate 
system . As the loads are applied along the centroidal axis, only possible 
displacements will be along -axis. Let the and be the displacements of 
truss members in local co-ordinate system along -axis. Here subscript 1 
refers to node 1 of the truss member and subscript 2 refers to node 2 of the truss 
member. Give displacement at node 1 of the member in the positive  
direction, keeping all other displacements to zero. This displacement in turn 

'' yx
'x 1'u 2'u

..ei 'x

1'u 'x
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induces a compressive force of magnitude 1'u
L

EA  in the member. Thus, 

11 '' u
L

EAq =  and 12 '' u
L

EAq −=  (24.4a) ( ve−  as it acts in the direction for 

equilibrium). Similarly by giving positive displacements of at end 2 of the 

member, tensile force of magnitude  

ve−

2'u

2'u
L

EA is induced in the member. Thus, 

 

21 '" u
L

EAq −=  and 22 '" u
L

EAq =            (24.4b) 

 
Now the forces developed at the ends of the member when both the 
displacements are imposed at nodes 1 and 2 respectively may be obtained by 
method of superposition. Thus (vide Fig. 24.5d) 
 

 
                

1 1' 'EA EAp u 2'u
L L

= −           (24.5a) 

 

2 2' ' 1'
EA EAp u u
L L

= −                          (24.5b) 

 
Or we can write 
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             (24.6a) 

 
{ } [ ]{ }''' ukp =               (24.6b) 

 
Thus the member stiffness matrix is  
 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

11
11

'
L

EAk       (24.7) 

 
This may also be obtained by giving unit displacement at node 1 and holding 
displacement at node 2 to zero and calculating forces developed at two ends. 
This will generate the first column of stiffness matrix. Similarly the second column 
of stiffness matrix is obtained by giving unit displacement at 2 and holding 
displacement at node 1 to zero and calculating the forces developed at both 
ends.  
 
 
24.4 Transformation from Local to Global Co-ordinate 
System. 
 
Displacement Transformation Matrix 
A truss member is shown in local and global co ordinate system in Fig. 24.6. Let 

be in local co ordinate system and ''' zyx xyz  be the global co ordinate system. 
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The nodes of the truss member be identified by 1 and 2. Let  and  be the 
displacement of nodes 1 and 2 in local co ordinate system. In global co ordinate 
system, each node has two degrees of freedom. Thus,  and are the 
nodal displacements at nodes 1 and 2 respectively along 

1'u 2'u

11 ,vu 22 ,vu
x - and - directions. 

Let the truss member be inclined to 
y

x axis by θ  as shown in figure. It is observed 
from the figure that is equal to the projection of  on  axis plus projection of 

 on -axis. Thus, (vide Fig. 24.7) 
1'u 1u 'x

1v 'x
 

θθ sincos' 111 vuu +=             (24.8a) 
 

θθ sincos' 222 vuu +=                     (24.8b) 
  
This may be written as  
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  (24.9) 

 
Introducing direction cosines ;sin;cos θθ == ml the above equation is written as 
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    (24.10a) 

 
Or,          (24.10b) { } [ ] { }uTu ='
 
In the above equation  is the displacement transformation matrix which 
transforms the four global displacement components to two displacement 
component in local coordinate system. 

[ ]T
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Let co-ordinates of node 1 be ( )11, yx and node 2 be ( )22 , yx . Now from Fig. 24.8,  
 

L
xxl 12cos −

== θ       (24.11a) 

L
yym 12sin −

== θ       (24.11b) 

 
and 2

12
2

12 )()( yyxxL −+−=     (24.11c) 
 
Force transformation matrix  

Let be the forces in a truss member at node 1 and 2 respectively 
producing displacements and in the local co-ordinate system 
and ,  be the force in global co-ordinate system at node 1 and 2 
respectively producing displacements  and (refer Fig. 24.9a-d). 

21 ',' pp

1'u 2'u

321 ,, ppp 4p

11 ,vu 22 ,vu
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Referring to fig. 24.9c, the relation between and , may be written as,     1'p 1p
 

θcos'11 pp =                       (24.12a) 
 

θsin'12 pp =              (24.12b) 
  

 
 
Similarly referring to Fig. 24.9d, yields 
 

θcos'23 pp =                       (24.12c) 
 

θsin'24 pp =              (24.12d) 
  
Now the relation between forces in the global and local co-ordinate system may 
be written as 
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p
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θ
θ

    (24.13) 

 
{ } [ ] { }'pTp T=         (24.14) 

 
where matrix {  stands for global components of force and matrix{  are the 
components of forces in the local co-ordinate system. The superscript T  stands 
for the transpose of the matrix. The equation (24.14) transforms the forces in the 
local co-ordinate system to the forces in global co-ordinate system. This is 
accomplished by force transformation matrix

}p }'p

[ ]TT . Force transformation matrix is 
the transpose of displacement transformation matrix.  
 
Member Global Stiffness Matrix 
From equation (24.6b) we have, 
 

{ } [ ] { }''' ukp =  
 
Substituting for { in equation (24.14), we get }'p
 

{ } [ ] [ ] { }'' ukTp T=      (24.15) 
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Making use of the equation (24.10b), the above equation may be written as  
{ } [ ] [ ][ ]{ }uTkTp T '=      (24.16) 
  
{ } [ ] { }ukp =       (24.17) 

 
Equation (24.17) represents the member load displacement relation in global co- 
ordinates and thus [  is the member global stiffness matrix. Thus,   ]k
 

{ } [ ] [ ][ ]TkTk T '=      (24.18) 
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mlmmlm
lmllml
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lmllml

L
EAk    (24.19)  

 
Each component of the member stiffness matrix ijk [ ]k  in global co-ordinates 
represents the force in x -or -directions at the end required to cause a unit 
displacement along 

y i
x− or y −directions at end j . 

 
 
We obtained the member stiffness matrix in the global co-ordinates by 
transforming the member stiffness matrix in the local co-ordinates. The member 
stiffness matrix in global co-ordinates can also be derived from basic principles in 
a direct method. Now give a unit displacement along x -direction at node 1 of the 
truss member. Due to this unit displacement (see Fig. 24.10) the member length 
gets changed in the axial direction by an amount equal to θcos1 =Δl . This axial 
change in length is related to the force in the member in two axial directions by 
 

θcos'2'1 L
EAF =     (24.20a) 
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This force may be resolved along and  directions. Thus horizontal 

component of force  is 

1u 1v

'2'1F θ2
11 cos

L
EAk =     (24.20b) 

Vertical component of force  is '2'1F θθ sincos21 L
EAk =    (24.20c) 

 
The forces at the node 2 are readily found from static equilibrium. Thus,     
 

θ2
1131 cos

L
EAkk −=−=     (24.20d) 

θθ sincos2141 L
EAkk =−=     (24.20e) 

  
The above four stiffness coefficients constitute the first column of a stiffness 
matrix in the global co-ordinate system. Similarly, remaining columns of the 
stiffness matrix may be obtained. 
 
 
24.5 Analysis of plane truss. 
Number all the joints and members of a plane truss. Also indicate the degrees of 
freedom at each node. In a plane truss at each node, we can have two 
displacements. Denote unknown displacements by lower numbers and known 
displacements by higher numbers as shown in Fig. 24.4. In the next step 
evaluate member stiffness matrix of all the members in the global co ordinate 
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system. Assemble all the stiffness matrices in a particular order, the stiffness 
matrix K  for the entire truss is found. The assembling procedure is best 
explained by considering a simple example. For this purpose consider a two 
member truss as shown in Fig. 24.11. In the figure, joint numbers, member 
numbers and possible displacements of the joints are shown.  
 

 
 
The area of cross-section of the members, its length and its inclination with the 
x - axis are also shown. Now the member stiffness matrix in the global co- 
ordinate system for both the members are given by 
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  (24.21a)  

 
On the member stiffness matrix the corresponding member degrees of freedom 
and global degrees of freedom are also shown. 
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Note that the member stiffness matrix in global co-ordinate system is derived 
referring to Fig. 24.11b. The node 1 and node 2 remain same for all the 
members. However in the truss, for member 1, the same node ( node 1 and 2 
in Fig. 24.11b) are referred by 2 and 1 respectively. Similarly for member 2, the 
nodes 1 and 2 are referred by nodes 3 and 4 in the truss. The member stiffness 
matrix is of the order . However the truss has six possible displacements and 
hence truss stiffness matrix is of the order

..ei

44×
66× . Now it is required to put elements 

of the member stiffness matrix of the entire truss. The stiffness matrix of the 
entire truss is known as assembled stiffness matrix. It is also known as structure 
stiffness matrix; as overall stiffness matrix. Thus, it is clear that by algebraically 
adding the above two stiffness matrix we get global stiffness matrix. For example 
the element of the member stiffness matrix of member 1 must go to location 

 in the global stiffness matrix. Similarly  must go to location  in the 
global stiffness matrix. The above procedure may be symbolically written as, 

11
1k

( 3,3 ) )11
2k ( 3,3
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=
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                                                                                 (24.23a)  
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The assembled stiffness matrix is of the order 66× . Hence, it is easy to visualize 
assembly if we expand the member stiffness matrix to 66× size. The missing 
columns and rows in matrices  and are filled with zeroes. Thus,   1k 2k
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

=

000000
000000
00
00
00
00

000000
000000
00
00
00
00

2
222

2
222

22
2

222
2

2

2
222

2
222

22
2

222
2

2

2

2

2
111

2
111

11
2

111
2

1

2
111

2
111

11
2

111
2

1

1

1

mmlmml
mllmll
mmlmml
mllmll

L
EA

mmlmml
mllmll
mmlmml
mllmll

L
EAK

 
                          (24.24) 
 
Adding appropriate elements of first matrix with the appropriate elements of the 
second matrix, 
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If more than one member meet at a joint then the stiffness coefficients of member 
stiffness matrix corresponding to that joint are added.  
 
After evaluating global stiffness matrix of the truss, the load displacement 
equation for the truss is written as, 
 

{ } [ ] { }p K u=      (24.26) 
 
where  is the vector of joint loads acting on the truss, { }p { }u  is the vector of joint 
displacements and  is the global stiffness matrix. The above equation is 
known as the equilibrium equation. It is observed that some joint loads are known 
and some are unknown. Also some displacements are known due to support 
conditions and some displacements are unknown. Hence the above equation 
may be partitioned and written as,  

[ ]K
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   (24.27) 

 
where denote vector of known forces and known displacements 
respectively. And { }  denote vector of unknown forces and unknown 
displacements respectively. 

{ } { }kk up ,
{ }uu up ,

 
Expanding equation 24.27, 
 

[ ] [ ]11 12{ } { } { }k u kp k u k u= +     (24.28a) 

Version 2 CE IIT, Kharagpur 
                                                         



[ ] [ ]21 22{ } { } { }u u kp k u k u= +      (24.28b) 
 
In the present case (vide Fig. 24.11a) the known displacements are and 

. The known displacements are zero due to boundary conditions. Thus,  
543 ,, uuu

6u
 
{ } { }0=ku . And from equation (24.28a), 
  

[ ] }{}{ 11 uk ukp =      (24.29) 
 
Solving   [ ] }{}{ 1

11 ku pku −=
 
where  corresponding to stiffness matrix of the truss corresponding to 
unconstrained degrees of freedom. Now the support reactions are evaluated 
from equation (24.28b). 

[ 11k ]

 
[ ] }{}{ 21 uu ukp =      (24.30) 

 
The member forces are evaluated as follows. Substituting equation (24.10b) 

 in equation (24.6b) { } [ ] { }uTu =' { } [ ]{ }''' ukp = , one obtains 
 

{ } [ ][ ]{ }uTkp '' =       (24.31) 
  
Expanding this equation, 
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Example 24.1 
Analyse the two member truss shown in Fig. 24.12a. Assume EA  to be constant 
for all members. The length of each member is . m5
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The co-ordinate axes, the number of nodes and members are shown in 
Fig.24.12b. The degrees of freedom at each node are also shown. By inspection 
it is clear that the displacement 06543 ==== uuuu .  Also the external loads are 
 

1 25 kN ; 0 kp p= = N .              (1) 
 
Now member stiffness matrix for each member in global co-ordinate system 
is ( )°= 301θ . 
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The global stiffness matrix of the truss can be obtained by assembling the two 
member stiffness matrices. Thus, 
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Again stiffness matrix for the unconstrained degrees of freedom is, 
 

[ ] ⎥
⎦
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⎡
=

5.00
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5
EAK       (5) 

 
Writing the load displacement-relation for the truss for the unconstrained degrees 
of freedom 
 

[ ]11{ } { }k up k u=       (6) 
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Support reactions are evaluated using equation (24.30). 
 

[ ] }{}{ 21 uu ukp =       (9) 
 
Substituting appropriate values in equation (9), 
 

{ }
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The answer can be verified by equilibrium of joint 1. Also, 
 

0553 =++ pp  
 
Now force in each member is calculated as follows, 
 
Member 1:  mLml 5;5.0;866.0 === . 

 
{ } [ ]{ }''' ukp =   
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Member 2:  mLml 5;5.0;866.0 ==−= . 
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Summary 
The member stiffness matrix of a truss member in local co-ordinate system is 
defined. Suitable transformation matrices are derived to transform displacements 
and forces from the local to global co-ordinate system. The member stiffness 
matrix of truss member is obtained in global co-ordinate system by suitable 
transformation. The system stiffness matrix of a plane truss is obtained by 
assembling member matrices of individual members in global co-ordinate 
system. In the end, a few plane truss problems are solved using the direct 
stiffness matrix approach. 
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