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Instructional Objectives 
After reading this lesson, the student will be able to 

1. State and use principle of superposition.  
2. Explain strain energy concept. 
3. Differentiate between elastic and inelastic strain energy and state units of 

strain energy. 
4. Derive an expression for strain energy stored in one-dimensional structure 

under axial load.  
5. Derive an expression for elastic strain energy stored in a beam in bending.  
6. Derive an expression for elastic strain energy stored in a beam in shear. 
7. Derive an expression for elastic strain energy stored in a circular shaft under 

torsion. 
  

  

2.1 Introduction 
In the analysis of statically indeterminate structures, the knowledge of the 
displacements of a structure is necessary. Knowledge of displacements is also 
required in the design of members. Several methods are available for the 
calculation of displacements of structures. However, if displacements at only a 
few locations in structures are required then energy based methods are most 
suitable. If displacements are required to solve statically indeterminate 
structures, then only the relative values of  and are required. If actual 
value of displacement is required as in the case of settlement of supports and 
temperature stress calculations, then it is necessary to know actual values of 

EIEA, GJ

E and . In general deflections are small compared with the dimensions of 
structure but for clarity the displacements are drawn to a much larger scale than 
the structure itself. Since, displacements are small, it is assumed not to cause 
gross displacements of the geometry of the structure so that equilibrium equation 
can be based on the original configuration of the structure. When non-linear 
behaviour of the structure is considered then such an assumption is not valid as 
the structure is appreciably distorted. In this lesson two of the very important 
concepts i.e., principle of superposition and strain energy method will be 
introduced.  

G

 
 
2.2 Principle of Superposition 
The principle of superposition is a central concept in the analysis of structures. 
This is applicable when there exists a linear relationship between external forces 
and corresponding structural displacements. The principle of superposition may 
be stated as the deflection at a given point in a structure produced by several 
loads acting simultaneously on the structure can be found by superposing 
deflections at the same point produced by loads acting individually. This is 
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illustrated with the help of a simple beam problem. Now consider a cantilever 
beam of length L  and having constant flexural rigidity EI subjected to two 
externally applied forces and as shown in Fig. 2.1.  From moment-area 
theorem we can evaluate deflection below , which states that the tangential 
deviation of point from the tangent at point 

1P 2P
C

c A  is equal to the first moment of the 

area of the 
EI
M diagram between A and C about . Hence, the deflection below 

 due to loads and acting simultaneously is (by moment-area theorem), 

C u

C 1P 2P
 
 

 
 

332211 xAxAxAu ++=     (2.1) 

 

where is the tangential deviation of point C with respect to a tangent at u A . 

Since, in this case the tangent at A is horizontal, the tangential deviation of point 
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C is nothing but the vertical deflection atC . 21, xx  and 3x are the distances from 

point C to the centroids of respective areas respectively. 
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After simplification one can write, 
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Now consider the forces being applied separately and evaluate deflection at   
in each of the case. 

C
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where is deflection at C (2) when load  is applied at (2) itself. And, 22u 1P C
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where is the deflection at C (2) when load is applied at 21u (1)B . Now the total 
deflection at C  when both the loads are applied simultaneously is obtained by 
adding   and .  22u 21u
 

     
EI
LP

EI
LPuuu

48
5

3

3
1

3
2

2122 +=+=     (2.6) 

 

Hence it is seen from equations (2.3) and (2.6) that when the structure behaves 
linearly, the total deflection caused by forces nPPP ,....,, 21  at any point in the 
structure is the sum of deflection caused by forces  acting 
independently on the structure at the same point. This is known as the Principle 
of Superposition. 

nPPP ,....,, 21

The method of superposition is not valid when the material stress-strain 
relationship is non-linear. Also, it is not valid in cases where the geometry of 
structure changes on application of load. For example, consider a hinged-hinged 
beam-column subjected to only compressive force as shown in Fig. 2.3(a). Let 
the compressive force P  be less than the Euler’s buckling load of the structure. 
Then deflection at an arbitrary point C  (say)  is zero. Next, the same beam-
column be subjected to lateral load Q with no axial load as shown in Fig. 2.3(b). 
Let the deflection of the beam-column at C  be . Now consider the case when 
the same beam-column is subjected to both axial load and lateral load . As 
per the principle of superposition, the deflection at the centre must be the sum 
of deflections caused by 

1
cu

2
cu

P Q
3
cu

P and when applied individually. However this is not 
so in the present case. Because of lateral deflection caused by Q , there will be 
additional bending moment due to  atC .Hence, the net deflection will be 
more than the sum of deflections  and .   

Q

P 3
cu

1
cu 2

cu
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2.3 Strain Energy 
Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly 
pulled, it deflects by a small amount . When the load is removed from the 
spring, it goes back to the original position.  When the spring is pulled by a force, 
it does some work and this can be calculated once the load-displacement 
relationship is known. It may be noted that, the spring is a mathematical 
idealization of the rod being pulled by a force 

1u

P axially. It is assumed here that 
the force is applied gradually so that it slowly increases from zero to a maximum 
value P . Such a load is called static loading, as there are no inertial effects due 
to motion.  Let the load-displacement relationship be as shown in Fig. 2.5. Now, 
work done by the external force may be calculated as,  
 

)(
2
1

2
1

11 ntdisplacemeforceuPWext ×==     (2.7)   
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The area enclosed by force-displacement curve gives the total work done by the 
externally applied load. Here it is assumed that the energy is conserved i.e. the 
work done by gradually applied loads is equal to energy stored in the structure. 
This internal energy is known as strain energy. Now strain energy stored in a 
spring is 

1 1
1
2

U P= u      (2.8) 
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Work and energy are expressed in the same units. In SI system, the unit of work 
and energy is the joule (J), which is equal to one Newton metre (N.m). The strain 
energy may also be defined as the internal work done by the stress resultants in 
moving through the corresponding deformations. Consider an infinitesimal 
element within a three dimensional homogeneous and isotropic material. In the 
most general case, the state of stress acting on such an element may be as 
shown in Fig. 2.6.  There are normal stresses ( ),  and x y zσ σ σ and shear stresses 

( ),  and xy yz zxτ τ τ acting on the element. Corresponding to normal and shear 
stresses we have normal and shear strains.  Now strain energy may be written 
as, 
 

 
 

1
2

T

v

U dvσ ε= ∫      (2.9) 

 
in which Tσ is the transpose of the stress column vector i.e., 
 

{ } ( ), , , , ,T
x y z xy yz zxσ σ σ σ τ τ τ=  and { } ( ), , , , ,T

x y z xy yz zxε ε ε ε ε ε ε=   (2.10) 
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The strain energy may be further classified as elastic strain energy and inelastic 
strain energy as shown in Fig. 2.7. If the force P  is removed then the spring 
shortens. When the elastic limit of the spring is not exceeded, then on removal of 
load, the spring regains its original shape. If the elastic limit of the material is 
exceeded, a permanent set will remain on removal of load. In the present case, 
load the spring beyond its elastic limit. Then we obtain the load-displacement 
curve  as shown in Fig. 2.7. Now if at B, the load is removed, the spring 
gradually shortens. However, a permanent set of OD  is till retained. The shaded 
area  is known as the elastic strain energy. This can be recovered upon 
removing the load. The area represents the inelastic portion of strain 
energy. 

OABCDO

BCD
OABDO

 

 
 
The area corresponds to strain energy stored in the structure. The area 

 is defined as the complementary strain energy. For the linearly elastic 
structure it may be seen that  

OABCDO
OABEO

 
Area OBC = Area OBE 
 
i.e. Strain energy = Complementary strain energy  
 
This is not the case always as observed from Fig. 2.7. The complementary 
energy has no physical meaning. The definition is being used for its convenience 
in structural analysis as will be clear from the subsequent chapters.  
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Usually structural member is subjected to any one or the combination of bending 
moment; shear force, axial force and twisting moment. The member resists these 
external actions by internal stresses. In this section, the internal stresses induced 
in the structure due to external forces and the associated displacements are 
calculated for different actions.  Knowing internal stresses due to individual 
forces, one could calculate the resulting stress distribution due to combination of 
external forces by the method of superposition. After knowing internal stresses 
and deformations, one could easily evaluate strain energy stored in a simple 
beam due to axial, bending, shear and torsional deformations. 
 
2.3.1 Strain energy under axial load  
Consider a member of constant cross sectional area A , subjected to axial force 
P as shown in Fig. 2.8. Let E be the Young’s modulus of the material. Let the 
member be under equilibrium under the action of this force, which is applied 
through the centroid of the cross section. Now, the applied force P is resisted by 

uniformly distributed internal stresses given by average stress 
A
P

=σ  as shown 

by the free body diagram (vide Fig. 2.8).  Under the action of axial load P  
applied at one end gradually, the beam gets elongated by (say) . This may be 
calculated as follows. The incremental elongation of small element of length 

of beam is given by,  

u
du

dx
 

dx
AE
Pdx

E
dxdu ===

σε      (2.11) 

 
Now the total elongation of the member of length L may be obtained by 
integration 

 

0

L Pu dx
AE

= ∫      (2.12) 
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Now the work done by external loads 1
2

W P= u      (2.13)  

In a conservative system, the external work is stored as the internal strain 
energy. Hence, the strain energy stored in the bar in axial deformation is,  
 

1
2

U P= u      (2.14) 

 
Substituting equation (2.12) in (2.14) we get, 
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2

0 2

L PU dx
AE

= ∫       (2.15) 

 

2.3.2 Strain energy due to bending 
Consider a prismatic beam subjected to loads as shown in the Fig. 2.9. The 
loads are assumed to act on the beam in a plane containing the axis of symmetry 
of the cross section and the beam axis.  It is assumed that the transverse cross 
sections (such as AB and CD), which are perpendicular to centroidal axis, remain 
plane and perpendicular to the centroidal axis of beam (as shown in Fig 2.9). 
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Consider a small segment of beam of length subjected to bending moment as 
shown in the Fig. 2.9. Now one cross section rotates about another cross section 
by a small amount 

ds

θd . From the figure,  
 

ds
EI
Mds

R
d ==

1θ      (2.16) 

   
where R  is the radius of curvature of the bent beam and EI is the flexural rigidity 
of the beam. Now the work done by the moment M  while rotating through angle 
θd will be stored in the segment of beam as strain energy . Hence, dU

θdMdU  
2
1

=       (2.17) 

 
Substituting for θd  in equation (2.17), we get, 
 

ds
EI
MdU

2

2
1

=      (2.18) 

 
Now, the energy stored in the complete beam of span L may be obtained by 
integrating equation (2.18). Thus, 
 

ds
EI

MU
L

 
20

2

∫=       (2.19) 
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2.3.3 Strain energy due to transverse shear 
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The shearing stress on a cross section of beam of rectangular cross section may 
be found out by the relation  
 

ZZbI
VQ

=τ      (2.20) 

 
where  is the first moment of the portion of the cross-sectional area above the 
point where shear stress is required about neutral axis, V is the transverse shear 
force,  is the width of the rectangular cross-section and 

Q

b zzI is the moment of 
inertia of the cross-sectional area about the neutral axis. Due to shear stress, the 
angle between the lines which are originally at right angle will change. The shear 
stress varies across the height in a parabolic manner in the case of a rectangular 
cross-section. Also, the shear stress distribution is different for different shape of 
the cross section. However, to simplify the computation shear stress is assumed 
to be uniform (which is strictly not correct) across the cross section. Consider a 
segment of length  subjected to shear stressds τ . The shear stress across the 
cross section may be taken as  
 

      Vk
A

τ =  

 
 in which A  is area of the  cross-section and is the form factor which is 
dependent on the shape of the cross section. One could write, the deformation 

as 

k

du
 

dsdu  γΔ=      (2.21) 
 

where γΔ is the shear strain and is given by 
 

Vk
G AG
τγΔ = =       (2.22)              

 
Hence, the total deformation of the beam due to the action of shear force is  
 

0

L Vu k ds
AG

= ∫     (2.23) 

 
Now the strain energy stored in the beam due to the action of transverse shear 
force is given by, 
 

2

0

1
2 2

L kVU Vu d
AG

= = ∫ s      (2.24) 
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The strain energy due to transverse shear stress is very low compared to strain 
energy due to bending and hence is usually neglected. Thus the error induced in 
assuming a uniform shear stress across the cross section is very small. 
 
 

2.3.4 Strain energy due to torsion 

 

 
 
Consider a circular shaft of length L  radius R , subjected to a torque T  at one 
end (see Fig. 2.11). Under the action of torque one end of the shaft rotates with 
respect to the fixed end by an angle φd . Hence the strain energy stored in the 
shaft is, 

φTU
2
1

=      (2.25) 
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Consider an elemental length  of the shaft. Let the one end rotates by a small 
amount 

ds
φd  with respect to another end. Now the strain energy stored in the 

elemental length is, 

φTddU
2
1

=      (2.26) 

 
We know that  

GJ
Tdsd =φ      (2.27) 

 
where,  is the shear modulus of the shaft material and  is the polar moment 
of area. Substituting for 

G J
φd  from (2.27) in equation (2.26), we obtain 

 

ds
GJ
TdU

2

2

=      (2.28) 

 
Now, the total strain energy stored in the beam may be obtained by integrating 
the above equation. 

∫=
L

ds
GJ
TU

0

2

2
    (2.29) 

 
Hence the elastic strain energy stored in a member of length s  (it may be 
curved or straight) due to axial force, bending moment, shear force and 
torsion is summarized below. 
 

1. Due to axial force    ds
AE
PU

s

∫=
0

2

1 2
 

 

2. Due to bending           ∫=
s

ds
EI

MU
0

2

2 2
 

 

3. Due to shear               ds
AG

VU
s

∫=
0

2

3 2
 

 

4. Due to torsion             ds
GJ
TU

s

∫=
0

2

4 2
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In this lesson, the principle of superposition has been stated and proved. Also, its 
limitations have been discussed. In section 2.3, it has been shown that the elastic 
strain energy stored in a structure is equal to the work done by applied loads in 
deforming the structure. The strain energy expression is also expressed for a 3-
dimensional homogeneous and isotropic material in terms of internal stresses 
and strains in a body. In this lesson, the difference between elastic and inelastic 
strain energy is explained. Complementary strain energy is discussed. In the 
end, expressions are derived for calculating strain stored in a simple beam due to 
axial load, bending moment, transverse shear force and torsion. 
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Summary 
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