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Instructional Objectives

After reading this chapter the student will be able to

1. Derive member stiffness matrix of a beam element.

2. Assemble member stiffness matrices to obtain the global stiffness matrix for a
beam.

3. Write the global load-displacement relation for the beam.

4. Impose boundary conditions on the load-displacement relation of the beam.

5. Analyse continuous beams by the direct stiffness method.

28.1 Introduction

In the last lesson, the procedure to analyse beams by direct stiffness method has
been discussed. No numerical problems are given in that lesson. In this lesson,
few continuous beam problems are solved numerically by direct stiffness method.
Example 28.1

Analyse the continuous beam shown in Fig. 28.1a. Assume that the supports are
unyielding. Also assume that El is constant for all members.
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Fig. 28.1a

The numbering of joints and members are shown in Fig. 28.1b. The possible
global degrees of freedom are shown in the figure. Numbers are put for the
unconstrained degrees of freedom first and then that for constrained
displacements.
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Figure 28.1b

The given continuous beam is divided into three beam elements Two degrees of
freedom (one translation and one rotation) are considered at each end of the
member. In the above figure, double headed arrows denote rotations and single
headed arrow represents translations. In the given problem some displacements
are zero, i.e., U, =uU, =U; =U; =U, =U, =0 from support conditions.

In the case of beams, it is not required to transform member stiffness matrix from
local co-ordinate system to global co-ordinate system, as the two co-ordinate
system are parallel to each other.
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First construct the member stiffness matrix for each member. This may be done
from the fundamentals. However, one could use directly the equation (27.1)
given in the previous lesson and reproduced below for the sake convenience.
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The degrees of freedom of a typical beam member are shown in Fig. 28.1c.
Here equation (1) is used to generate element stiffness matrix.

Member 1:L =4m, node points 1-2.

The member stiffness matrix for all the members are the same, as the length
and flexural rigidity of all members is the same.

Globald.o.f 6 5 3 1
[ 0.1875 0.375 -0.1875 0.375 |

0.375 1.0 —0.375 0.5
k]=El, @

-0.1875 -0.375 0.1875 -0.375

= w o1 O

| 0.375 0.5 —-0.375 1.0

On the member stiffness matrix, the corresponding global degrees of freedom
are indicated to facilitate assembling.

Member 2: L =4m, node points 2-3.

Globald.o.f 3 1 4 2
[ 0.1875 0375 -0.1875 0375 | 3
[kz]: el 0.375 1.0 -0.375 0.5 1 3)
-0.1875 -0.375 0.1875 -0.375 4
| 0375 0.5 -0.375 10 | 2

Member 3:L =4m, node points 3-4.
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Global d.o.f 4 2 8 7
[ 01875 0375 -0.1875 0375 | 4
0.375 1.0 —-0.375 0.5 2
k*]=El,
-0.1875 -0.375 0.1875 -0.375| 8
| 0.375 0.5 -0.375 10 | 7

(4)

The assembled global stiffness matrix of the continuous beam is of the

order8x8. The assembled global stiffness matrix may be written as,

2.0
0.5
0

~0.375
[K]=EI

7z

0.5
0.375
0

0

0.5
2.0
0.375
0
0
0
0.5
-0.375

0.0
0.375
0.375

—-0.1875
-0.375
—-0.1875
0
0

—-0.375
0
—-0.1875
0.375
0
0
0.375
—-0.1875

0.5
0

-0.375

0
1.0
0.375
0
0

0.375
0
—-0.1875
0
0.375
0.1875
0
0

0 0
0.5 -0.375
0 0
0.375 -0.1875
0 0
0 0
1.0 -0.375
-0.375 0.1875
(5) _

Now it is required to replace the given members loads by equivalent joint loads.
The equivalent loads for the present case is shown in Fig. 28.1d. The
displacement degrees of freedom are also shown in Fig. 28.1d.
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Fig. 28.1 (d) Equivalent joint loads

Thus the global load vector corresponding to unconstrained degree of freedom

{pk}={pl}={_5} (6)
P, 2.33

Writing the load displacement relation for the entire continuous beam,

-5 [ 20 05 | 00 -0375 05 0375 0 0 7 (u
233 05 20 10375 0 0 0 05 -0375] |u,
b, "0 oa7s | 0375 o187 —oas —o187 o o ||u,
D, ~0375 0 . ~0187 0375 0 0 0375 -0187]|u,
oo | ol 05 0 i ~0375 0 10 0375 0 0 | |u
P 0375 0 ' ~0187 0 0375 0187 0O 0 ||y,
D, 0 05 | 0 0375 0 0 10 -0375| |u,
P 0 -0375 0 -0187 O 0 -0375 0187 | |u,
(7)

where {p}is the joint load vector, {u} is displacement vector.

Version 2 CE IIT, Kharagpur



We know thatu, =u, =uy = U,

u,, yields
-5 20 05] (u,
=El,
2.33 05 2.0 |u,
u, 1 2.0
u,| 3.75El,|_05

1 2.977
El,, | 1.909
Thus displacements are,

2977

1909
' El

and u, £

23 Zz

The unknown joint loads are given by,

D, [0 0.375 |
D, ~0375 0
Ps 0.5 0
—El,
D 0.375 0
p, 0 0.5
Ps | 0 -0.375]
0.715
1.116
—1.488
) -1.116
0.955
—-0.715

2.0

1 [~2977
El,, | 1.909

=Uu, =uUy =0. Thus solving for unknowns u; and

|
" lond

(8)

(9)

(10)

(11)
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The actual reactions at the supports are calculated as,

R,] [pf P, 5 0.715 5.716
R,| |pf P, 9 1.116 10.116
R, psF Ps 0 —1.488 —1.489 (12)
= + = + =
R; p6F Ps 0 -1.116 -1.116
R, p7F p, - 2.67 0.955 -1.715
Rg ng Ps 4 -0.715 3.284
Member end actions for element 1
o} 0 01875 0375 -0.1875 0.375] 0 |
G| 0 CE] 0.375 1.0 -0.375 05 1 0 &
q| |0 ~¥l-01875 —0375 01875 —0375/El,| 0
q, 0 i 0.375 05 -0.375 1.0 | —-2977
-1.116
B -1.488 (13)
| 1116
—-2977
Member end actions for element 2
a, 0.1875 0.375 -0.1875 0.375 0
a, ., 0.375 1.0 -0.375 0.5 1 |-2.977
g,  “|-0.1875 -0375 0.1875 -0375|El,| 0
a, 0.375 0.5 —-0.375 1.0 1.909
4.6
2.98
= 14
5.4 (14)
— 4,58

Version 2 CE IIT, Kharagpur



Member end actions for element 3

q, 4.0 0.1875 0.375 -0.1875 0.375 0
q,| | 2.67 LE 0.375 1.0 -0.375 0.5 1 (1.909
d; ] 40 “l-0.1875 -0.375 0.1875 -0.375|El,| O
ad, —2.67 0.375 0.5 —-0.375 1.0 0
4.72
4.58
= 15
3.28 (15)
-1.72
Example 28.2

Analyse the continuous beam shown in Fig. 28.2a. Assume that the supports are
unyielding. Assume EIl to be constant for all members.
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Fig. 28.2a

The numbering of joints and members are shown in Fig. 28.2b. The global
degrees of freedom are also shown in the figure.

The given continuous beam is divided into two beam elements. Two degrees of
freedom (one translation and one rotation) are considered at each end of the
member. In the above figure, double headed arrows denote rotations and single
headed arrow represents translations. Also it is observed that displacements
u, =u, =u; =u, =0 from support conditions.

First construct the member stiffness matrix for each member.

Member 1:L =4m, node points 1-2.
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The member stiffness matrix for all the members are the same, as the length and
flexural rigidity of all members is the same.

Global d.o.f 6 5 3 1
[ 0.1875 0375 -0.1875 0375 ] 6
0.375 1.0 -0.375 0.5 5 1)
[k]=EL,
-0.1875 -0.375 0.1875 -0.375| 3
| 0.375 0.5 -0.375 10 | 1

On the member stiffness matrix, the corresponding global degrees of freedom
are indicated to facilitate assembling.

Member 2: L =4m, node points 2-3.

Global d.o.f 3 1 4 2
[ 0.1875 0375 -0.1875 0.375 | 3
[k2]= 1L 0.375 1.0 -0.375 0.5 1 )
-0.1875 -0.375 0.1875 -0.375 4
| 0375 0.5 -0.375 10 | 2

The assembled global stiffness matrix of the continuous beam is of order6x6.
The assembled global stiffness matrix may be written as,

2 0.5 0 —0.375 0.5 0.375 |
0.5 1.0 0.375 —0.375 0 0
0 0.375 0.375 -0.1875 -0.375 -0.1875
[K]: El z (3)
-0375 -0.375 -0.1875 0.1875 0 0
0.5 0 —-0.375 0 1.0 0.375
. 0.375 0 —-0.1875 0 0.375 0.1875 |

Now it is required to replace the given members loads by equivalent joint loads.
The equivalent loads for the present case is shown in Fig. 28.2c. The
displacement degrees of freedom are also shown in figure.
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Fig. 28.2c Equivalent joint loads

Thus the global load vector corresponding to unconstrained degree of freedom

{pk}={pl}={ ’ } (@)
n,| |6.67

Writing the load displacement relation for the entire continuous beam,
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0 (2 05 0 ~0375 05 0375 ] (u,
6.67 0.5 1.0 0375 -0.375 0 0 u,
- 0 0375 0375 -0.875 -0.375 -01875||u,| (s
D, ~0375 -0375 -0.875 0.1875 0 0 u,
D 0.5 0 ~0.375 0 1.0 0375 | |u,
D | 0.375 0 -01875 0 0375  0.1875 | |u,

We know thatu, =u, =u, =u, =0. Thus solving for unknowns u,and u,, yields
0 20 05| (u,

- El, (6)
6.67 05 1.0] |u,
U, 1 1.0 -05|[ O
u,| L75El,|-05 20 ||6.67

-1905
1
= ()
El,, | 762

—-1.905
u, =
El

Thus displacements are,

and u, :7E'I—62

Y24 Zz

The unknown joint loads are given by,

P [0 0.375 |

P, ~0375 -0375| ; (-1905
Ps Y 0 Elzz{ 7.62 }
P, | 0375 0
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2.857
- 2.14
= (8)
- 0.95
- 0.714
The actual support reactions are,
R, 20 2.857 22.857
R 10 -2.14 7.86
o + - 9)
R,| |-6.67 -0.95 -7.62
R, 10 -0.714 9.286
Member end actions for element 1
a, 10 0.1875 0.375 -0.1875 0.375 0
q, | 6.66 +El 0.375 1.0 -0.375 0.5 1 0
d; ] 10 #1-0.1875 -0.375 0.1875 -0.375 El,, 0
ad, —6.66 0.375 0.5 -0.375 1.0 -1.905
9.285
5.707
- (10)
10.714
—8.565
Member end actions for element 2
a, 10 0.1875 0.375 -0.1875 0.375 0
q4 | 6.66 LE| 0.375 1.0 -0.375 0.5 1 |-1.905
a; ] 10 “?1-0.1875 -0.375 0.1875 -0.375 El, 0
ad, —6.66 0.375 0.5 —-0.375 1.0 7.62
12.14
B 8.565
~17.856
0
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Summary

In the previous lesson the beam element stiffness matrix is derived from
fundamentals. Assembling member stiffness matrices, the global stiffness matrix
is generated. The procedure to impose boundary conditions on the load-
displacement relation is discussed. In this lesson, a few continuous beam
problems are analysed by the direct stiffness method.
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