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Instructional Objectives 
After reading this chapter the student will be able to 

1. Solve statically indeterminate beams of degree more than one. 
2. To solve the problem in matrix notation. 
3. To compute reactions at all the supports. 
4. To compute internal resisting bending moment at any section of the 

continuous beam. 

 
8.1 Introduction 
In the last lesson, a general introduction to the force method of analysis is given. 
Only, beams, which are statically indeterminate to first degree, were considered. 
If the structure is statically indeterminate to a degree more than one, then the 
approach presented in the previous example needs to be organized properly. In 
the present lesson, a general procedure for analyzing statically indeterminate 
beams is discussed.  
 
 
8.2  Formalization of Procedure 
Towards this end, consider a two-span continuous beam as shown in Fig. 8.1a. 
The flexural rigidity of this continuous beam is assumed to be constant and is 
taken as EI . Since, the beam is statically indeterminate to second degree, it is 
required to identify two redundant reaction components, which need be released 
to make the beam statically determinate. 
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The redundant reactions at A  and B  are denoted by  and  respectively. 
The released structure (statically determinate structure) with applied loading is 
shown in Fig. 8.1b. The deflection of primary structure at 

1R 2R

B  and C  due to 
applied loading is denoted by ( )1LΔ  and ( )2LΔ  respectively. Throughout this 
module  notation is used to denote deflection at  redundant due to 
applied loads on the determinate structure. 
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In fact, the subscript 1 and represent, locations of redundant reactions 
released. In the present case 

2
( )1RRA =  and ( )2RRB =  respectively. In the present 

and subsequent lessons of this module, the deflections and the reactions are 
taken to be positive in the upward direction. However, it should be kept in mind 
that the positive sense of the redundant can be chosen arbitrarily. The deflection 
of the point of application of the redundant should likewise be considered positive 
when acting in the same sense. 
For writing compatibility equations at B  and , it is required to know deflection of 
the released structure at 

C
B  and due to external loading and due to redundants. 

The deflection at 
C

B  andC due to external loading can be computed easily. Since 
redundants  and  are not known, in the first step apply a unit load in the 
direction of and compute deflection,  at 

1R 2R

1R 11a B , and deflection, at , as 
shown in Fig.8.1c. Now deflections at 

21a C
B and  of the given released structure 

due to redundant  are, 
C

1R
 

( ) 11111 RaR =Δ      (8.2a)       
     

( ) 12121 RaR =Δ      (8.2b) 
 
In the second step, apply unit load in the direction of redundant and compute 
deflection at 

2R
B (point 1), and deflection at ,  as shown in Fig 8.1d. It may 

be recalled that the flexibility coefficient  is the deflection at  due to unit value 
of force applied at 

12a C 22a
ija i

j . Now deflections of the primary structure (released 
structure) at B  and C  due to redundant  is              2R
 

( ) 21212 RaR =Δ        (8.3a)       
     

( ) 22222 RaR =Δ      (8.3b) 
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It is observed that, in the actual structure, the deflections at joints B  and C  is 
zero. Now the total deflections at B  and C of the primary structure due to applied 
external loading and redundants  and  is, 1R 2R
 

( ) 21211111 RaRaL ++Δ=Δ      (8.4a)    
 

( ) 22212122 RaRaL ++Δ=Δ      (8.4b)    
 
The equation (8.4a) represents the total displacement at B and is obtained by 
superposition of three terms: 
 

1) Deflection at B due to actual load acting on the statically determinate 
structure, 

2) Displacement at B due to the redundant reaction  acting in the positive 
direction at 

1R
B (point 1) and  

3) Displacement at B due to the redundant reaction  acting in the positive 
direction at . 

2R
C

 
The second equation (8.4b) similarly represents the total deflection at . From 
the physics of the problem, the compatibility condition can be written as,  

C

 
( ) 021211111 =++Δ=Δ RaRaL     (8.5a)    

 
( ) 022212122 =++Δ=Δ RaRaL     (8.5b)  

 
The equation (8.5a) and (8.5b) may be written in matrix notation as follows, 
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( ){ } [ ]{ } { }01 =+Δ RAL       (8.6b) 

 
In which, 
 

( ){ } ( )
( )

1
1

2

L
L

L

⎧ ⎫Δ⎪ ⎪Δ = ⎨ ⎬Δ⎪ ⎪⎩ ⎭
; [ ] 11 12

21 22

a a
A

a a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and { } 1

2

R
R

R
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 
Solving the above set of algebraic equations, one could obtain the values of 
redundants, and . 1R 2R
 

{ } [ ] { }LAR Δ−= −1      (8.7) 
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In the above equation the vectors { }LΔ  contains the displacement values of the 
primary structure at point 1 and 2, [ ]A  is the flexibility matrix and {  is column 
vector of redundants required to be evaluated. In equation (8.7) the inverse of the 
flexibility matrix is denoted by 

}R

[ ] 1−A . In the above example, the structure is 
indeterminate to second degree and the size of flexibility matrix is . In 
general, if the structure is redundant to a degree , then the flexibility matrix is of 
the order . To demonstrate the procedure to evaluate deflection, consider 
the problem given in Fig. 8.1a, with loading as given below 

22×
n

nn×

 
wLPww == ;    (8.8a) 

 
Now, the deflection  and ( )1LΔ ( )2LΔ of the released structure can be evaluated 
from the equations (8.1a) and (8.1b) respectively. Then, 
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The negative sign indicates that both deflections are downwards. Hence the 
vector { is given by }LΔ
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The flexibility matrix is determined from referring to figures 8.1c and 8.1d. Thus, 
when the unit load corresponding to  is acting at 1R B , the deflections are, 
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Similarly when the unit load is acting at C , 
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The flexibility matrix can be written as, 
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The inverse of the flexibility matrix can be evaluated by any of the standard 
method. Thus, 
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Now using equation (8.7) the redundants are evaluated. Thus, 
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Hence, wLR
56
69

1 =  and wLR
56
20

2 =       (8.8i) 

 
Once the redundants are evaluated, the other reaction components can be 
evaluated by static equations of equilibrium.    

Example 8.1 
Calculate the support reactions in the continuous beam  due to loading as 
shown in Fig. 8.2a. Assume 

ABC
EI  to be constant throughout. 
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Select two reactions viz, at and ( )1RB ( )2RC  as redundants, since the given beam 
is statically indeterminate to second degree. In this case the primary structure is 
a cantilever beam . The primary structure with a given loading is shown in Fig. 
8.2b.    

AC

 
In the present case, the deflections ( )1LΔ , and ( )2LΔ  of the released structure at 
B and C  can be readily calculated by moment-area method. Thus, 
 

( )
EIL

16.819
1 −=Δ  

and      ( )
EIL

875.2311
2 −=Δ          (1) 

 
For the present problem the flexibility matrix is, 
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In the actual problem the displacements at B and are zero. Thus the 
compatibility conditions for the problem may be written as, 

C

 
( ) 01212111 =Δ++ LRaRa  

               (3) 
( ) 02222121 =Δ++ LRaRa   
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      (5) 

 
 
Substituting the value of E and I in the above equation, 
 

1 10.609kNR =      and 2 3.620 kNR =    
 
Using equations of static equilibrium, 
 

3 0.771 kNR =        and 4 0.755 kN.mR = −   
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Example 8.2 
A clamped beam AB  of constant flexural rigidity is shown in Fig. 8.3a. The beam 
is subjected to a uniform distributed load of  and a central concentrated 
moment . Draw shear force and bending moment diagrams by 
force method. 

kN/mw
2 kN.mM wL=

 

 
 
Select vertical reaction and the support moment ( )1R ( )2R at B  as the 
redundants. The primary structure in this case is a cantilever beam which could 
be obtained by releasing the redundants  and . The  is assumed to be 
positive in the upward direction and  is assumed to be positive in the 
counterclockwise direction. Now, calculate deflection at 

1R 2R 1R

2R
B  due to only applied 

loading. Let be the transverse deflection at ( )1LΔ B  and ( )2LΔ  be the slope at B  
due to external loading. The positive directions of the selected redundants are 
shown in Fig. 8.3b. 
 

Version 2 CE IIT, Kharagpur 
 



 

Version 2 CE IIT, Kharagpur 
 



The deflection  and  of the released structure can be evaluated from 
unit load method. Thus,  

( )1LΔ ( )2LΔ
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The negative sign indicates that ( )1LΔ is downwards and rotation  is 
clockwise. Hence the vector {

( )2LΔ
}LΔ  is given by 
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The flexibility matrix is evaluated by first applying unit load along redundant  
and determining the deflections  and  corresponding to redundants  and 

 respectively (see Fig. 8.3d). Thus, 

1R

11a 21a 1R

2R
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11 =   and 
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Similarly, applying unit load in the direction of redundant , one could evaluate 
flexibility coefficients  and  as shown in Fig. 8.3c. 
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Now the flexibility matrix is formulated as, 
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The inverse of flexibility matrix is formulated as, 
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The redundants are evaluated from equation (8.7). Hence, 
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2

21
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The other two reactions ( and ) can be evaluated by equations of statics. 
Thus, 

3R 4R

6

2

4
wLMR A −==   and wLRR A −==1        (8)  

 
The bending moment and shear force diagrams are shown in Fig. 8.3g and 
Fig.8.3h respectively. 
 
 
Summary 
In this lesson, statically indeterminate beams of degree more than one is solved 
systematically using flexibility matrix method. Towards this end matrix notation is 
adopted. Few illustrative examples are solved to illustrate the procedure. After 
analyzing the continuous beam, reactions are calculated and bending moment 
diagrams are drawn. 
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