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Instructional Objectives: 
 

At the end of this lesson, the student should be able to: 
 

• explain the concept of redistribution of moments in the design of statically 

indeterminate reinforced concrete structures, 

• explain the behaviour of statically indeterminate reinforced concrete 

structures with increasing loads till the collapse of the structures, 

• state the advantages of redistributing the moments in statically 

indeterminate reinforced concrete structures, 

• identify structures when such redistributions are to be made based on the 

analysis of structures,  

• mention the reasons why full redistribution is not allowed in reinforced 

concrete structures, 

• specify the stipulations of IS Codes about the redistribution separately when 

the structure is designed by working stress method and by limit state 

method, 

• apply the theories in solving numerical problems of statically indeterminate 

beams of one or more spans as per the stipulations of IS Code. 

 
15.38.1  Introduction 
  

Statically indeterminate structures made of reinforced concrete like fixed 
ended one span beams, continuous beams and frames are designed considering 
internal forces like bending moment, shear force and axial thrust obtained from 
structural analysis. Either one or several sections of these structures may have 
peak values of the internal forces, which are designated as critical sections. 
These sections are dimensioned and reinforced accordingly. Flexural members, 
however, do not collapse immediately as soon as the loads at a particular section 
cause bending moment exceeding the maximum resisting moment capacity of 
that section. Instead, that section starts rotating at almost constant moment. This 
is known as formation of plastic hinge at that section reaching its maximum 
resisting moment capacity. The section then transfers loads to other sections if 
the applied loads are further increased. This process continues till the structures 
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have plastic binges at sufficient sections to form a failure mechanism when it 
actually collapses. However, significant transfer of loads has occurred before the 
collapse of the structure. This transfer of loads after the formation of first plastic 
hinge at section having the highest bending moment till the collapse of the 
structure is known as redistribution of moments. By this process, therefore, the 
structure continues to accommodate higher loads before it collapses. 

 
The elastic bending moment diagram prior to the formation of first plastic 

hinge and the final bending moment diagram just before the collapse are far 
different. The ratio of the negative to positive elastic bending moments is no 
more valid. The development of plastic hinges depends on the available plastic 
moment capacity at critical sections. It is worth mentioning that the redistribution 
of moment is possible if the section forming the plastic hinge has the ability to 
rotate at constant moment, which depends on the amount of reinforcement 
actually provided at that section. The section must be under-reinforced and 
should have sufficient ductility. 

 
This phenomenon is well known in steel structures. However, the 

redistribution of moment has also been confirmed in reinforced concrete structure 
by experimental investigations. It is also a fact that reinforced concrete structures 
have comparatively lower capacity to rotate than steel structures. Yet, this 
phenomenon is drawing the attention of the designers. Presently, design codes 
of most of the countries allow the redistribution up to a maximum limit because of 
the following advantages: 

 
1) It gives a more realistic picture of the actual load carrying capacity of 

the indeterminate structure. 
 
2) Structures designed considering the redistribution of moment (though 

limited) would result in economy as the actual load capacity is higher 
than that we determine from any elastic analysis. 

 
 
3) The designer enjoys the freedom of modifying the design bending 

moments within limits. These adjustments are sometimes helpful in 
reducing the reinforcing bars, which are crowded, especially at 
locations of high bending moment. 
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15.38.2 Two Span Beam 
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 Let us take up a two-span beam of uniform cross-section, as shown in Fig. 
15.38.1a, with the following assumptions: 
 

a) The ultimate moments of resistance of sections at B and D are  –Mun 
and +Mup, respectively. 

 
b) There will not be any premature shear failure so that the sections can 

attain the respective ultimate moment capacity. 
  

 
c) The moment-curvature relationship for the ductile sections is the 

idealised bilinear as shown in Fig. 15.38.2. It may be noted that for all 
practical purposes only a limited rotation will take place. 

 
d) All sections of the beam have the same constant flexural rigidity up to 

the ultimate moment and moment remains constant at the ultimate 
moment with increasing curvature. 

 
e) The self-weight of the beam is neglected. 
 
The beam is subjected to two point loads of magnitude P each and acting 

at distances of l/2 from the two supports A and C, as shown in Fig. 15.38.1a. The 
elastic bending moment diagram is shown in Fig. 15.38.1b. On increasing the 
loads P, the ultimate moment of resistance Mun of cross-section at B will be 
reached at the support first before reaching at other sections, which is shown in 
Fig. 15.38.1d. The plastic hinge will be formed at the cross-section B (Fig. 
15.38.1c). The two point loads P can still be increased as long as the plastic 
hinge at B will rotate sufficiently. If the cross-section at B is brittle, the load will 
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decrease fast (see Fig. 15.38.2) and the beam will fail suddenly. Hence, the 
beam will not carry any additional load. The cross-section at B has to be ductile 
so that it undergoes rotation at the constant moment of resistance, which will 
enable the beam to carry additional loads. This increase of load will continue until 
the maximum positive moments in the span (at D and E) reach Mup, as shown in 
Fig. 15.38.1f, when plastic hinges will form at D and E also. The three plastic 
hinges at B, D and E will form the collapse mechanism (Fig. 15.38.1e). The 
structure will fail at this stage carrying much higher loads. It is important to note 
that the requirement of equilibrium will be satisfied at all stages, i.e., Mp and Mn , 
during the elastic phase, will follow the equation: 

 
   Mp + 0.5 Mn = Pl/4     (15.1) 
 

 
 

From the structural analysis of the beam of Fig. 15.38.1a, we know that:  
 

   Mn = 6 Pl / 32  and  Mp = 5 Pl / 32. 
 
Substituting these values in Eq. 15.1, we find that the equation is satisfied where 
Pl/4 is the maximum positive moment of a simply supported beam having a load 
P at the centre of the beam. From the above values of Mn and Mp (= 6 Pl/32 and 
5 Pl/32, respectively), we also note that: 
 
     Mn / Mp = 1.2      (15.2) 
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As the loads are increased till the formation of the first plastic hinge at B, this 
ratio of Mn /Mp as 1.2 will be maintained, as shown in Fig. 15.38.3. This phase is 
known as the elastic phase when the bending moments increases with 
increasing loads maintaining the ratio of Mn / Mp  as 1.2. 
 
 With further increase of the loads, the plastic hinge at B will rotate at the 
constant moment Mun and positive moments at D and E will increase as shown in 
Fig. 15.38.3. This phase is known as moment redistribution phase as the loads 
are now transferred to sections, which have less moment. However, the cross-
section at B must have the ability to sustain the required plastic rotation at this 
stage with increasing loads. As the value of Mp is now increasing when Mn is 
remaining constant, the ratio of Mn / Mp will not be 1.2 any more. Thus, in the 
redistribution phase, the additional moments at higher loads are to be 
redistributed to the support and mid-span in such a manner that we get a similar 
equation like Eq. 15.1, i.e. 
 
     Mup + 0.5 Mun =Pl/4     (15.3) 
 
which means that, after the redistribution 
 
     Mun = Mn –M      (15.4) 
 
where M is some amount of moment by which negative moment at the support is 
reduced. From Eqs. 15.3 and 15.4, we have:  Mup = Pl/4 – 0.5 Mun = Pl/4 - 0.5 
(Mn-M)   = (Pl/4 – 0.5 Mn) + 0.5 M = Mp + 0.5 M,  which we get by substituting Mp 
= Pl/4  – 0.5 Mn  from Eq. 15.1. Therefore, we have: 
 
     Mup = Mp + 0.5 M     (15.5) 
 
 Thus, in the moment redistribution, if we reduce some amount M from the 
negative moment Mun at support as in Eq. 15.4, we have to add 0.5 M to the span 
moment Mp to get the Mup as in Eq. 15.5. The redistributed moments Mun and Mup 
satisfy the equilibrium condition of Eq. 15.3. Similar equilibrium condition is also 
satisfied at the elastic stage by the Mn and Mp as in Eq. 15.1. 
 
 The amount of moment M which will be reduced from the negative support 
moment depends on the rotational capacity as per the actual reinforcement 
provided in the cross-section. Furthermore, the deformation of the support should 
be within acceptable limits under service loads. 
 
 In the extreme case, if the negative moment at the support Mun is reduced 
to zero, i.e., M = Mn ,  we have from Eq. 15.5: 
 
     Mup = Mp + 0.5 Mn = Pl/4    (15.6) 
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 That is, the unreinforced central support will crack and the continuous 
beam will behave as two simply supported beams. 
 
 Thus, the choice of the bending moment diagram after the redistribution 
should satisfy the equilibrium of internal forces and external loads. Moreover, it 
must ensure the following: 
 

1. The plastic rotations required at the critical sections should not 
exceed the amount the sections can sustain. 

 
2. The extent of cracking or the amount of deformation should not 

make the performance unsatisfactory under service loads. 
 
 The redistribution of moments is permitted if the analysis of forces and 
moments is done following linear elastic behaviour. Analysis by linear elastic 
behaviour is a logical procedure in the working stress method of design where 
the design concept is based on the assumptions of linear elastic behaviour of 
materials up to the level of recommended safe stresses. However, analysis by 
linear elastic theory and design by the limit state of collapse appear to be 
somewhat contradictory. At the stress levels of 0.87 fy  for steel and 0.67 fck  for 
concrete, the strains are not linearly related. Unfortunately, till now there is no 
such analysis, which takes into account the complex behaviour of reinforced 
concrete just before the collapse. Accordingly, the elastic theory of analysis of 
forces and moments cannot be avoided at present except for the slabs. 
 
 Moreover, unlike steel structures, cross-section forming the first plastic 
hinge in reinforced concrete members undergoes limited rotations, which is 
insufficient for other sections to attain the desired Mup. Therefore, full 
redistribution has been restricted in the design of reinforced concrete members. 
These restrictions and stipulations of IS Codes are taken up in the next section. 
 
 
15.38.3  Recommendations of IS 456 
 
 IS 456 recommends the redistribution of moments during the analysis 
provided the analysis is done by linear elastic theory. Such redistribution of 
moments is not permitted when either simplified analysis is done or coefficients 
of cl.22.5 of IS 456 are used to determine the moments. 
 
 In the working stress method, cl. B-1.2 of IS 456 stipulates that the 
moments over the supports for any assumed arrangement of loading, including 
the dead load moments may each be increased or decreased by not more than 
15 per cent, provided that these modified moments over the supports are used 
for the calculation of the corresponding moments in the spans. 
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 In the limit state of collapse method, cl.37.1 of IS 456 recommends the 
redistribution of the calculated moment in continuous beams and frames 
satisfying the following conditions: 
 

1. Equilibrium between the internal forces and the external loads should be 
maintained. 

 
2. The ultimate moment of resistance provided at any cross-section of a 

member after the redistribution should not be less than 70 per cent of the 
moment at that cross-section obtained from an elastic maximum moment 
diagram covering all appropriate combinations of loads. 

 
3. The elastic moment at any cross-section in a member due to a particular 

combination of loads shall not be reduced by more than 30 per cent of the 
numerically largest moment given anywhere by the elastic maximum 
moment diagram for the particular member, covering all appropriate 
combinations of loads. 

 
4. Cross-sections having moment capacity after redistribution less than that 

of the elastic maximum moment shall satisfy the relationship: 
 
 
    (xu / d) + (δM / 100) ≤ 0.6    (15.7) 
 
where 
 
 xu = depth of the neutral axis, 
 d = effective depth, and  
 δM = percentage reduction in moment. 
 

5. Thirty per cent reduction in moment permitted in 3 above shall be 
restricted to ten per cent for structures in which the structural frames 
provide lateral stability. 

 
 

15.38.4 Explanations of the Conditions Stipulated in IS Code 
 
 The first condition of maintaining the equilibrium between internal forces 
and external loads is explained in sec.15.38.2 taking up a two-span continuous 
beam. For the other conditions, let us use the following notations for the sake of 
brevity: 
 
Mew =  elastic bending moment under working loads, 
Meu = elastic bending moment under design loads i.e., the factored loads 

considering partial safety factor of loads γf, 
Mdu =  design factored moment after redistribution, and  
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δM =   percentage reduction in Meu. 
 
Since γf  = 1.5, we can write 
 
    Meu = 1.5 Mew     
 (15.8) 
 
The second condition of cl.37.1 of  IS 456, as given in sec. 15.38.3 of this lesson, 
is expressed as 
 
    Mdu ≥ 0.7 Meu      (15.9) 
 
 Beeby has reported that the redistribution as given in Eq. 15.8 is possible 
before the lower bound rotation capacity is reached (Beeby, A.W, “The analysis 
of beams in plane frames according to CP 110” Cement and Concrete 
Association, U.K. Development Report No. 1, October 1978). Thus, Eq. 15.9 
ensures the first criterion of the redistribution of moments in reinforced concrete 
structures as given in sec. 15.38.2. Equation 15.9 also satisfies other 
requirements as explained below. 
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 Using the value of Meu from Eq. 15.8 into Eq. 15.9, we have 
 
 
    Mdu ≥ 0.7 (1.5 Mew) ≥ 1.05 Mew  
 (15.10) 
 
 This ensures that the design factored moments are greater than the 
elastic moments everywhere in the structures. Figure 15.38.4 presents three 
bending moment diagrams: (i) elastic moment under working loads (Mew), (ii) 
elastic moment under ultimate loads (Meu) and (iii) design moment under ultimate 
loads (Mdu) of the two-span beam of Fig. 15.38.1a. The moment diagram after 
the redistribution (Mdu) satisfies the condition of Eq. 15.1 such that 
 
    b + 0.5 a = b′ + 0.5 a′    
 (15.11) 
 

Version 2 CE IIT, Kharagpur 
 



However, Mdu diagram is not satisfying the requirement of Eq. 15.10 as in the 
zone GH of length x (Fig.15.38.4), the negative moment after redistribution is 
less than the negative moment under working loads. To satisfy Eq. 15.10, the 
bending moment in the zone should be as per Mew. 
 
We now take up the fourth condition of cl.37.1 of IS 456 and given in sec. 15.38.3 
of this lesson, which is expressed in Eq. 15.7 as  
   
    (xu/d) + (δM / 100) ≤ 0.6    (15.7) 
 
This equation ensures that the cross-section of the member is under-reinforced, 
as explained below. 
 
 
 Allowing the maximum redistribution of thirty per cent as per the third 
condition of sec. 15.38.3, we have δM/100 = 0.3. Substituting this in Eq. 15.7, we 
get xu/d ≤0.3. For (δM/100) less than thirty per cent, the corresponding xu/d can 
be determined from Eq. 15.7. The values of xu,max/d for the three grades of steel 
are given in Table 3.2 of Lesson 5. It is easy to verify that permitting the 
redistribution of thirty per cent, the cross-sections remain under-reinforced. This 
ensures low amount of steel reinforcement to have smaller value of xu which will 
give higher value of the rotation φ as the rotation φ = 0.0035/xu. 
 
 It is evident, therefore, that for the analysis of determining the values of 
bending moments after the redistribution, bending moment envelopes are to be 
drawn satisfying the requirements discussed above. This is explained with the 
help of illustrative examples in the next section. 
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15.38.5 Illustrative Examples 
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Problem 1. Draw the design bending moment diagram of the beam of Fig. 
15.38.5a, clamped at both ends and carrying ultimate uniformly 
distributed load of 24 kN/m with full redistribution of 30 per cent as 
per IS 456. 

 
Solution 1. 
 
Step 1:  Elastic bending moment diagram 
 
  The beam (Fig.15.38.5a) is statically indeterminate. The elastic 

bending moment diagram is shown in Fig. 15.38.5b. The negative 
and positive moments at the supports (A and B) and mid-span (C), 
respectively, are: 

 
  MA = MB  =  - w l  / 12 = - 24 (8) (8) / 12 =  - 128 kNm B

2

  MC  =  + w l2/24  =  + 24 (8) (8) / 24 =  + 64 kNm 
 
  The distance x where the bending moment is zero is obtained by 

taking moments of forces of the free body diagram (Fig. 15.38.5c) 
about D after determining the vertical reaction at A. 

 
  Vertical reaction at A, VA =  24 (8) / 2 = 96 kN. At section D, Mx = 

96x – 128 – 12x2. So, the value of x when Mx = 0 is obtained from 
96x – 128 – 12x2 = 0 or, 3x2 – 24x + 32 = 0. The solution of the 
equation is x =1.69 m and 6.31 m. 

 
Step 2.  Redistributed bending moment diagram 
 
  From Fig.15.38.5e, the maximum negative moment at A after the 

full redistribution of 30 per cent = 0.7 (128) = 89.6 kNm. So, the 
maximum positive moment at the mid-span C =  w l2 / 8 – 89.6 = 
102.4 kNm. The vertical reaction at A is: VA = 96 kN. 

 
  The point of inflection, i.e., the point where bending moment is 

zero, is obtained by taking moment of forces about E of the free 
body diagram shown in Fig. 15.38.5d. Thus, we have:  96x – 12x2 – 
89.6 = 0, which gives x = 1.08 m and 6.92 m. The bending moment 
diagram after the redistribution is shown in Fig. 15.38.5e. 

 
Step 3.  Envelope of bending moment diagrams 
 
  At x =1.08 m, the elastic bending moment is Mx = 96x – 128 – 12x2 

= - 38.32 kNm, which becomes 0.7 (- 38.32) = - 26.824 kNm after 
the redistribution. The envelope of the bending moment diagram is 
shown in Fig. 15.38.5f. 
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Problem 2. Draw the design bending moment diagram of the beam of Fig. 
15.38.6a, clamped at both ends and carrying two point loads of 30 
kN each at distances of 3 m from the supports. Assume full 
redistribution of 30 per cent as per IS 456. 

 
Solution 2. 
 
 
Step 1.  Elastic bending moment diagram 
 
  The beam (Fig.15.38.6a) is statically indeterminate. The elastic 

bending moment diagram is shown in Fig. 15.38.6b. The negative 
and positive moments at the supports (A and B) and at mid-span 
(E), respectively, are: 

 
  MA = MB = - 2 P l/9 = -2 (30) (9)/ 9 = - 60 kNm 
  ME = 90 – 60 = 30 kNm. 
 
  Vertical reaction at A = VA = 30 kN 
 
  Taking moment of all the forces about F at a distance of x (0 ≤ x ≤ 3 

m) from A of the free body diagram shown in Fig. 15.38.6c, we 
have 30 x – 60 = 0, which gives x = 2 m, where the bending 
moment is zero. 

 
 
Step 2.  Redistributed bending moment diagram 
 
  Redistributed negative moment at A = 0.7 (60) =  42 kNm 
  Redistributed positive moment at E = 90 - 42 =  48 kNm 
 
  The point of zero moment (point G) is obtained by taking moments 

of forces about G of the free body diagram shown in Fig. 15.38.6d, 
when x ≤ 0 ≤ 3 m; gives 30x – 42 = 0. Therefore, x = 1.4 m. 

 
  The redistributed moment diagram is shown in Fig. 15.38.6e. 
 
 
Step 3.  Envelope of bending moment diagram 
 
  At G when x = 1.4 m, elastic moment = 30(1.4) – 60 = - 18 kNm. 

The redistributed moment at G = 0.7 (-18) = -12.6 kNm. The 
envelope of the bending moment diagrams is shown in Fig. 
15.38.6f. 
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Problem 3. Draw envelope of the design moments of the two-span continuous 

beam shown in Fig. 15.38.7a, carrying characteristic live load of 35 
kN/m in addition to its characteristic self-weight. The cross-section 
of the beam is 300 mm × 700 mm. 

 
Solution 3. The two-span continuous beam of Fig. 15.38.7a is statically 

indeterminate and the method of moment distribution is employed 
for the analysis. Clause 22.4.1 of IS 456 stipulates the 
arrangements of live loads, which are: 

 
1) Design dead load on all spans with full design imposed loads on 

two adjacent spans to get the maximum negative moment over 
the support, and 

 
2) Design dead load on all spans with full design imposed loads on 

alternate spans to get the maximum span moment (positive 
moment).  

 
In this case of two-span continuous beam, therefore, we have the 
following three load cases: 
 

(i) For the maximum negative moment at the support B, 
both the spans are loaded with self-weight and live 
loads, 
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(ii) For the maximum positive moment in span AB, only 
the span AB is loaded with live load and self-weight of 
the beam in both the spans, and 

 
(iii) For the maximum positive moment in span BC, only 

the span BC is loaded with live loads and self-weight 
of the beam in both the spans.  

 
However, we are considering only cases (ii) and (iii) as they are the 

mirror image of each other.   
 
Step 1.  Evaluation of design loads 
   
  Characteristic dead load of the beam = (0.3) (0.7) (25) = 5.25 kN/m. 

Therefore, the design dead load with γf  = 1.5 is (1.5) (5.25) = 7.875 
kN/m. The design live load = 1.5 (35) = 52.5 kN/m. 

 
Step 2.  Load case (i): Elastic bending moment diagram 
 
  Figure 15.38.7b shows the load case (i) of the beam. The 

calculations of the moment distribution are presented in Table 15.1. 
Figure 15.38.7c presents the elastic bending moment diagram and 
Fig. 15.38.7d presents the free body diagram and the calculations 
of determining the reactions. The final values of the vertical 
reactions are:  VA = + 181.125 kN,  VB1 = + 301.875 kN, VB2 = + 
301.875 kN and VC = +181.125 kN (+ means upward). Shear force 
is zero at D (x = 3 m), where the moment is 271.6875 kNm, 
obtained from the following equations: 

 
(a) 181.125 – 60.375 x = 0 gives x = 3 m, and  
(b) Mx (at x = 3.0 m) = 181.125 (3) – 60.375 (3) (3) /2 = 271.6875 

kNm. 
At point E (mid-span), Mx = 181.125 (4) – 60.373 (4) (4)/2 = 241.5 
kNm. 
At point G, where x = 6 m, the bending moment is zero as obtained 
from equation 181.125x – 30.1875x2 = 0. 
 
For the span BC, the bending moment diagram is the mirror image 
of the bending moment diagram of span AB due to symmetrical 
beams and loadings. 

 
                                 Table 15.1 Moment Distribution for Load Case (i) 
 

Joint A B C 
Member AB BA BC CB 
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D.F 1.0 0.5 0.5 1.0 
F.E.M + 322.0 - 322.0 + 

322.0 
- 322.0 

Balance moment - 322.0 - - + 322.0 
Carry over moment - - 161.0 + 

161.0 
- 

Total balanced moment 0 - 483.0 + 
483.0 

0 

 
Note: D.F. = Distribution Factors; F.E.M = Fixed End Moments 
 
Step 3.  Load Case (i): Redistributed bending moment diagram 
 
  Redistributed moment at support B = 0.7 (483) = 338.1 kNm. 

Vertical reaction at A = 199.2375 kN (Fig. 15.38.7f). 
 
  Shear is zero at F where x = 3.3 m as obtained from: 199.2375 – 

60.375 x = 0. 
 
  Maximum bending moment at F (x = 3.3 m) is: 199.2375 (3.3) - 

60.375 (3.3) (3.3) /2 = 328.742 kNm. 
 
  At the mid-span E (x = 4 m), the moment is 60.373 (8) (8) / 8 – 

338.1 /2 = 313.95 kNm. 
 
  Moment is zero at H where x = 6.6 m is obtained from: 199.2375 x 

– 60.373 x2/2 = 0. 
 
  Calculations for the span BC are not performed due to symmetrical 

loadings. The redistributed bending moment diagram is shown in 
Fig. 15.38.7e. 
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Step 4.  Load Case (ii): Elastic bending moment diagram 
 
  This load case is for the maximum positive moment in span AB. 

The design loads consist of factored dead load and factored live 
load = 1.5 (5.25 + 35) = 60.375 kN/m for the span AB. For the span 
BC, we consider only the dead load with a load factor of one only. 
So, the load in span BC is 5.25 kN/m. The loads are shown in Fig. 
15.38.8a. Bending moments are determined by moment distribution 
method and presented in Table 15.2. Bending moment diagram is 
shown in Fig. 15.38.8b and the vertical reactions are shown in Fig. 
15.38.8c. 

 
                                            Table 15.2 Moment Distribution for Load Case (ii) 
 

Joint A B C 
Member AB BA BC CB 
D.F 1.0 0.5 0.5 1.0 
F.E.M + 322.0 - 322.0 + 28.0 - 28.0 
Balanced Moment - 322.0 + 147.0 + 147.0 + 28.0 
Carry over Moment - - 161.0 + 14.0 - 
Balanced Moment  - + 73.5 + 73.5 - 
Total Moment 0.0 - 262.5  + 262.5 0.0 

 
Note: D.F. = Distribution Factors, F.E.M = Fixed End Moments 
 
  Final values of the reactions are: VA = + 208.6875 kN, VB1 = + 

274.3125 kN, VB2 =  + 53.8125 kN and VC =  - 11.8125 kN (+  
means upward). 

 
  In the span AB, shear force is zero at I where x = 3.46 m and the 

maximum moment is 360.666 kNm, obtained from the following 
equations: 

 
(a) 208.6875 – 60.375 x = 0, gives x = 3.46 m and  
(b) Mx (at x = 3.46 m) = 208.6875 (3.46) – 60.375 (3.46) (3.46)/2 = 

360.666 kNm. 
 
At point E (mid-span), Mx = 208.6875 (4) – 60.375(4) (4)/(2) = 
351.75 kNm. 
The bending moment is zero at J (x = 6.91 m), obtained from the 
equation 208.6875 x – 60.375 (x2/2) = 0 where 0 ≤ x ≤ 8 m in the 
span AB. In the span BC, the bending moment is zero only at C (x 
= 8 m from B), as obtained from the equation: - 262.5 – 5.25 (x2/2) 
+ 53.8125 x = 0, where 0 ≤ x ≤ 8 m in the span BC. The other value 

Version 2 CE IIT, Kharagpur 
 



of x where the negative moment is zero is x = 12.5 m. This point is 
outside the span 8m of BC. Thus, the bending moment is negative 
in the whole span BC. 

 
Step 5.  Load case (ii): Redistributed bending moment diagram 
 
  While redistributing the moments for the load case (ii), we have to 

take care of the static equilibrium of span AB regarding the 
redistributed moments. Figure 15.38.7d shows that the redistributed 
positive moment is the maximum at F (x = 3.3 m) and the value is 
328.742 kNm. The maximum redistributed negative moment is 
338.1 kNm at B. So, let us reduce the elastic bending moment at F 
(x = 3.3 m) to 328.742 kNm for the load case (ii) also. It should be 
checked if this reduction is within the maximum limit of 30 per cent 
or not. 

 
  Elastic bending moment at F (x = 3.3 m) for the load case (ii) = VA x 

– wx2/2 = 208.6875 (3.3) – 60.375 (3.3) (3.3)/2 = 359.93 kNm (Fig. 
15.38.8b). Hence, the reduction of 359.93 kNm to 328.742 kNm is 
(100) (359.93 – 328.742) / 359.93 = 8.665 per cent, which is within 
the limit of 30 per cent. 

 
  To have the redistributed moment at F = 328.742 kNm, the 

magnitude of VA is determined from the equation:  
 
  VA (3.3) – w (3.3) (3.3)/2 = 328.742 kNm, which gives VA = 199.237 

kN. 
 
  At F where x = 3.3 m, the shear force = 199.237 – 60.375 (3.3) = 0. 

Therefore, the moment at F is the maximum positive redistributed 
moment of magnitude = 328.742 kNm. 

 
  At B where x = 8 m, the redistributed moment for the load case (ii) 

is obtained from: (199.237) (8) – 60.375 (8) (8) / 2 = - 338.1 kNm, 
which is the same moment at B in the load case (i). 

 
  At E, (mid-span) where x = 4 m, the moment is: (199.237) 4 – 

60.375 (4) (4)/2 = 313.95 kNm. The value of x where the 
redistributed bending moment = 0, in the span AB, is obtained from: 
199.37 x – 60.375 (x2/2) = 0, which gives x = 6.6 m. 

 
  For the span BC, the redistributed negative moment is – 338.1 

kNm, as obtained in the span AB for this load case. The vertical 
reaction VB2 in the span BC is (5.25) (4) + 338.1/8 = 63.2625 kN. 
The location of the point where the moment is zero in the span BC 
is obtained from the equation:  – MB - wx2/2 + VB2 x = 0 or – 338.1 – 

Version 2 CE IIT, Kharagpur 
 



5.25 (x2/2) + 63.2625 x = 0, which gives x = 8 m. The other value of 
x where moment is zero is 16.1 m (outside the span BC). 
Therefore, the redistributed moment is negative in the entire span 
BC. The redistributed bending moment diagram is shown in Fig. 
15.38.8d and calculations of reaction are shown in Fig. 15.38.8e. 

 
  As mentioned earlier, the load case (iii) is not separately taken up 

since it is the mirror image of load case (ii). 
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Step 6.  Superimposition of the elastic bending moment 
diagrams 

 
  The envelope of the positive and negative bending moments of 

elastic analyses is to be prepared considering all three load cases 
from Figs. 15.38.7c and 15.38.8b. The bending moment diagram 
for the third load case is the mirror image of Fig. 15.38.8b. The 
positive moment is to be taken from the diagram of span AB of Fig. 
15.38.8b for both the spans as that is more than the values of Fig. 
15.38.7c. 

 
  For the negative moment in span BC, the diagram for the load case 

(i) will intersect that of the load case (ii). Similarly, for the negative 
moment in span AB, the diagram of load case (i) will intersect that 
of load case (iii). Due to the mirror image, the point of intersection is 
determined for span BC only. 

 
  For the load case (i) in span BC, the bending moment at a distance 

of x from the support B is given by: 
 
    Mx = - 483 + 301.875 x – 60.375 (x2/2) 
 
  Similarly, for the load case (ii) in span BC, the bending moment at a 

distance of x from the support B is given by: 
 
    Mx = - 262.5 + 53.8125 x – 5.25 (x2/2) 
       
  We can find the value of x, where these two negative moments are 

the same by equating the two expressions: 
 
   - 483 + 301.875x – 60.375 (x2/2) = - 262.5 + 53.8125x – 5.25 

(x2/2) 
 
  or  27.5625 x2 – 248.0625 x + 220.5 = 0 
 
  The values of x are 1.0 m and 8.0 m. So, at a distance of 1.0 m 

from the support B, the two negative moments intersect. The value 
of the moment is obtained from either of the two equations, which 
comes out to be 211.3125 kNm. Accordingly, Fig 15.38.9a presents 
the envelope of the elastic bending moment diagrams making use 
of symmetry of the load in the two spans. 
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Step 7.  Superposition of redistributed bending moment 
diagrams 

 
  The procedure is exactly the same as in Step 6. The positive 

bending moment diagram is taken from that of span AB of load 
case (ii) and the negative moment envelope is obtained combining 
the negative bending moments of span BC for the two load cases. 
In this redistributed negative moments, there is no intersection of 
the diagram as in Step 6. Accordingly, Fig. 15.38.9b presents the 
envelope of the redistributed bending moments using symmetry of 
the loads in the two spans. 

 
 
15.38.6 Practice Questions and Problems with Answers 
 
Q.1: Explain the concept of redistribution of moments in statically indeterminate 

reinforced concrete structures. 
 
A.1: Paragraphs 1 and 2 of sec. 15.38.1 
 
Q.2: Mention three advantages of considering the redistribution of moments for 

the design of statically indeterminate reinforced concrete structures. 
 
A.2: Paragraph 3 of sec. 15.38.1 
 
Q.3: State the assumptions of considering the redistribution of moments in the 

design of statically indeterminate reinforced concrete structures. 
 
A.3: Paragraph 1 of sec. 15.38.2 
 
Q.4: What are the recommendations of IS 456 regarding the redistribution of 

moment in the design of statically indeterminate structures employing 
working stress and limit state methods? 

 
A.4: Section 15.38.3 is the full answer. 
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Q.5: Solve Problem 1 of sec. 15.38.5 (Fig. 15.38.5a) when the redistribution is 

limited to 20 per cent. 
 
A.5: Step 1 is the same as that of Problem 1 of sec. 15.38.5. Please refer to 

Figs. 15.38.5b and c for the elastic bending moment diagram and 
free body diagram, respectively. 

 
 Step 2. Redistributed bending moment diagram and envelope of 

moment diagrams. 
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 Maximum negative moment at A after the redistribution of 20 per cent = 
0.8 (-128) = - 102.4 kNm. So, the maximum positive moment at the mid-span   C 
= 192-102.4 =  89.6 kNm (Please refer to Fig. 15.38.10b). VA = 96 kN. 
   
 The point of inflection is obtained from: 96 x – 12x2 – 102.4 = 0, which 
gives x = 1.27 m (Fig. 15.38.10a). At x = 1.27 m, elastic moment = 96x – 12x2 – 
128 = - 25.435 kNm. The redistributed moment at E (x = 1.27 m) = 0.8 (- 25.435) 
=  - 20.35 kNm. 
 

The redistributed bending moment diagram is shown in Fig. 15.38.10b and 
the envelope of the moment diagram is shown in Fig. 15.38.10c. 
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15.38.8 Test 38 with Solutions 

 
Maximum Marks = 50 Maximum Time = 30 

minutes 
 
TQ.1: Mention three advantages of considering the redistribution of moments for 

the design of statically indeterminate reinforced concrete structures. 
(10 marks) 

A.TQ.1:  Paragraph 3 of sec. 15.38.1 
 
TQ.2: What are the recommendations of IS 456 regarding the redistribution of 

moment in the design of statically indeterminate structures employing 
working stress and limit state methods? 

(10 marks) 
A.TQ.2: Section 15.38.3 is the full answer 
 

 
 
TQ.3: Solve Problem 2 of sec. 15.38.5 (Fig. 15.38.6a) considering the 

redistribution up to (a) 20 per cent and (b) 10 per cent, separately. 
(30 marks) 
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A.TQ.3: Step 1 is the same as that of Problem 2 of sec. 15.38.5. Please 
refer to Figs. 15.38.6b and c for the elastic bending moment diagram and 
free body diagram, respectively. 

 
 Step 2. Redistributed bending moment diagram (20 per cent 

redistribution) and envelope of the moment diagrams 
 
 Redistributed negative moment at A =  0.8 (- 60) = - 48 kNm. 
 Redistributed positive moment at E = 90 – 48 =  42 kNm 
 
 The point of zero moment (point G) is obtained by taking moment of forces 

of the free body diagram about G, shown in Fig. 15.38.11a, when 0 ≤ x ≤3 
m, gives 30x – 48 = 0 or x = 1.6 m. The redistributed moment diagram is 
shown in Fig. 15.38.11b. 

 
 At G where x = 1.6 m, the elastic moment = 30 (1.6) – 60 = - 12kNm. 

Therefore, the redistributed moment at G = 0.8 (-12) = - 9.6 kNm. The 
envelope of the moment diagrams is shown in Fig. 15.38.11c. 

 
 

 
 Step 3. Redistributed bending moment diagram (10 per cent 

redistribution) and envelope of the moment diagrams. 
 
  Redistributed negative moment at A = 0.9 (- 60) = - 54 kNm. 
  Redistributed positive moment at E = 90 - 54 = 36 kNm. 
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 The point of zero moment (point G) is obtained by taking moment of forces 

about G of free body diagram shown in Fig. 15.38.12a, when 0 ≤ x ≤ 3 m, 
gives 30x – 54 =  0, or x = 1.8 m. The redistributed moment diagram is 
shown in Fig. 15.38.12b. 

 
 At G, where x = 1.8 m, the elastic moment = 30 (1.8) – 60 = - 6 kNm. 

Therefore, the redistributed moment at G = 0.9 (- 6) = - 5.4 kNm. The 
envelope of the moment diagrams is shown in Fig. 15.38.12c. 

 
15.38.9  Summary of this Lesson 
 

 This lesson explains the concept of redistribution of moments in statically 
indeterminate reinforced concrete structures designed either by the 
working stress or by the limit state methods. The behaviour of such 
structures with increasing loads after reaching the respective design loads 
is important to understand the inclusion of redistribution of moments. The 
advantages of such inclusion are mentioned in this lesson. The formations 
of first plastic hinge and subsequently other plastic hinges leading to the 
formation of collapse mechanism will not only increase the load carrying 
capacity of the structure but also help the designer to have flexibility in 
reducing or increasing moments to a limited extent. By this, the detailing of 
reinforcement helps to avoid congestion of the bars at sections having 
high moments. Due to the limited rotation capacities of reinforced concrete 
cross-sections, the reductions / additions of moments are somewhat 
restricted, which are also explained as stipulated in IS 456. Several 
numerical problems are solved for the purpose of illustration considering 
full or partial redistribution in clamped or two-span continuous beams 
taking up different combinations of dead and live loads. Understanding the 
illustrative examples and solving the practice and test problems will help in 
utilising the redistribution to get the advantages in designing statically 
indeterminate reinforced concrete structures.     
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