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Instructional Objectives: 
 

At the end of this lesson, the student should be able to: 
 

• define a slender column, 
 
• give three reasons for its increasing importance and popularity, 

 
• explain the behaviour of slender columns loaded concentrically, 

 
• explain the behaviour of braced and unbraced single column or a part of 

rigid frame, bent in single or double curvatures, 
 

• roles and importance of additional moments due to P-  effect and 
moments due to minimum eccentricities in slender columns, 

Δ

 
• identify a column if sway or nonsway type,  

 
• understand the additional moment method for the design of slender 

columns, 
 

• apply the equations or use the appropriate tables or charts of SP-16 for 
the complete design of slender columns as recommended by IS 456. 

 
 
 
11.27.1   Introduction 
 

 Slender and short are the two types of columns classified on the basis of 
slenderness ratios as mentioned in sec.10.21.5 of Lesson 21. Columns having 
both lex/D and ley/b less than twelve are designated as short and otherwise, they 
are slender, where lex and ley are the effective lengths with respect to major and 
minor axes, respectively; and D and b are the depth and width of rectangular 
columns, respectively. Short columns are frequently used in concrete structures, 
the design of such columns has been explained in Lessons 22 to 26, loaded 
concentrically or eccentrically about one or both axes. However, slender columns 
are also becoming increasingly important and popular because of the following 
reasons: 
 
 (i)    the development of high strength materials (concrete and steel), 
 

(ii) improved methods of dimensioning and designing with rational and 
reliable design procedures, 
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(iii) innovative structural concepts – specially, the architect’s expectations 
for creative structures. 

 
 Accordingly, this lesson explains first, the behaviour of slender elastic 
columns loaded concentrically. Thereafter, reinforced concrete slender columns 
loaded concentrically or eccentrically about one or both axes are taken up. The 
design of slender columns has been explained and illustrated with numerical 
examples for easy understanding. 
 
 
 
10.27.2  Concentrically Loaded Columns 
 
 It has been explained in Lessons 22 to 26 that short columns fail by 
reaching the respective stresses indicating their maximum carrying capacities. 
On the other hand, the slender or long columns may fail at a much lower value of 
the load when sudden lateral displacement of the member takes place between 
the ends. Thus, short columns undergo material failure, while long columns may 
fail by buckling (geometric failure) at  a critical load or Euler’s load, which is much 
less in comparison to that of short columns having equal area of cross-section. 
The buckling load is termed as Euler’s load as Euler in 1744 first obtained the 
value of critical load for various support conditions. For more information, please 
refer to Additamentum, “De Curvis elasticis”, in the “Methodus inveiendi Lineas 
Curvas maximi minimive proprietate gaudentes” Lausanne and Geneva, 1744. 
An English translation of this work is given in Isis No.58, Vol.20, p.1, November 
1933. 
 
 The general expression of the critical load Pcr at which a member will fail 
by buckling is as follows: 
 
 Pcr  =  π2EI /(kl)2

 
where E is the Young’s modulus I is the moment of inertia about the axis of 
bending, l is the unsupported length of the column and k is the coefficient whose 
value depends on the degree of restraints at the supports. Expressing moment of 
inertia I = Ar2, where A is the area of cross-section of the column and r is the 
radius of gyration, the above equations can be written as, 
 
 Pcr  =  π2EA /(kl/r)2       
 (10.62) 
 
Thus, Pcr of a particular column depends upon kl/r or slenderness ratio. It is worth 
mentioning that kl is termed as effective length le of the column. 
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 Figures 10.27.1 and 2 show two elastic slender columns having hinge 
supports at both ends and fixed supports against rotation at both ends, 
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respectively. Figure 10.27.3 presents a column of real structure whose end 
supports are not either hinged or fixed. It has supports partially restrained against 
rotation by the top and bottom beams. Each of the three figures shows the 
respective buckled shape, points of inflection PIs (points of zero moment), the 
distance between the PIs and the value of k. All the three columns, having 
supports at both ends, have the k values less than one or at most one. By 
providing supports at both ends, one end of the column is prevented from 
undergoing lateral movement or sidesway with respect to the other end. 
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However, cantilever columns are entirely free at one end, as shown in 
Fig.10.27.4. Figure 10.27.5 shows another type of column, rotationally fixed at 
both ends but one end can move laterally with respect to the other. Like that of 
Fig.10.27.3, a real column, not hinged, fixed or entirely free but restrained by top 
and bottom beams, where sideway can also take place. Each of these three 
figures, like those of Figs.10.27.1 to 3, presents the respective buckled shape, 
points of inflection (PIs), if any, the distance between the PIs and the value of k. 
All these columns have the respective k values greater than one or at least one. 
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Figures 10.27.7 and 8 present two reinforced concrete portal frames, a 
typical reinforced concrete rigid frame. Columns of Fig.10.27.7 are prevented 
from sidesway and those of Fig.10.27.8 are not prevented from sidesway, 
respectively, when subjected to concentric loadings. The buckled configuration of 
the frame, prevented from sidesway (Fig.10.27.7) is similar to that of Fig.10.27.3, 
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except that the lower ends of the portal frame are hinged. One of the two points 
of inflection (PIs) is at the lower end of the column, while the other PI is slightly 
below the upper end of the column, depending on the degree of restraint. The 
value of k for such a frame is thus less than 1. The critical load is, therefore, 
slightly more than Pcr of the hinge-hinge column of Fig.10.27.1. The buckled 
configuration of the other portal frame of Fig.10.27.8, where sidesway is not 
prevented, is similar to the column of Fig.10.27.4 when it is made upside down, 
except that the upper end is not fixed but partially restrained by the supporting 
beam. In this case, the value of k exceeds 2, depending on the degree of 
restraint. One of the two PIs is at the bottom of the column. The critical load of 
the column of Fig.10.27.8 is much less than that of the column of Fig.10.27.1. 
 
Table 10.14: Critical loads in terms of Pcr of hinge-hinge column and effective 
lengths le = kl  of elastic and reinforced concrete columns with different boundary 
conditions and for a constant unsupported length l  
 
Sl. 
No. 

Support conditions Critical load  
Pcr

Effective length  
le = kl 

Fig. No. 

(A) Elastic single columns 
1. Hinged at both ends, no 

sidesway 
Pcr l 10.27.1 

2. Fixed against rotation at 
both ends – no sidesway 

4Pcr 0.5 l 10.27.2 

3. Partially restrained 
against rotation by top 
and bottom cross-
beams, no sidesway 

Between Pcr 
and 4Pcr

l > kl > l/2 10.27.3 

4. Fixed at one end and 
entirely free at other end 
– sidesway not 
prevented  

0.25 Pcr 2 l, one PI is on 
imaginary 
extension 

10.27.4 

5. Rotationally fixed at both 
ends – sidesway not 
prevented 

Pcr l, one PI is on 
imaginary 
extension 

10.27.5 

6. Partially restrained 
against rotation at both 
ends – sidesway not 
prevented 

Between zero 
and slightly 

less than Pcr * 

l < kl < α  10.27.6 

(B) Reinforced concrete columns 
7. Hinged portal frame – no 

sidesway 
> Pcr kl < l 10.27.7 

8. Hinged portal frame – 
sidesway not prevented 

<< Pcr kl > 2 l 10.27.8 

 
Notes:  1.  Buckled shapes are half sine wave between two points of inflection 
(PIs). 
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            2. * The critical load is slightly less than Pcr of hinge-hinge column 

(Sl.No.1), when cross-beams are very rigid compared to columns, i.e., 
the case under Sl.No.6 approaches the case under Sl.No.1. 

 
           The critical load is zero when cross-beams are very much 

flexible compared to columns, i.e., the case under Sl.No.6 approaches 
to hinge-hinge column of Sl.No.1, allowing sidesway. In that case, it 
becomes unstable and hence, carries zero load. 

 

 
 

 Table 10.14 presents the critical load in terms of that of hinge-hinge 
column Pcr and effective lengths le (equal to the distance between two points of 
inflection PIs = kl) of elastic and reinforced concrete columns for a constant value 
of the unsupported length l. 
 
 The stress-strain curve of concrete, as shown in Fig.1.2.1 of Lesson 2, 
reveals that the initial tangent modulus of concrete Ec is much higher than Et 
(tangent modulus at higher stress level). Taking this into account in Eq.10.62, 
Fig.10.27.9 presents a plot of buckling load Pcr versus kl/r. It is evident from the 
plot that the critical load is reducing with increasing slenderness ratio. For very 
short columns, the limiting factored concentric load estimated from Eq.10.39 of 
Lesson 24 will be found to be less than the critical load, determined from 
Eq.10.62. The column, therefore, will fail by direct crushing and not by buckling. 
We can also find out the limiting value of kl/r when the crushing load and the 
buckling load are the same. The (kl/r)lim is shown in Fig.10.27.9. The limiting 
value of kl/r also indicates that a column having kl/r more than (kl/r)lim will fail by 
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buckling, while columns having any value of kl/r less than (kl/r)lim will fail by 
crushing of concrete. 
 
 The following are the observations of the discussions about the 
concentrically loaded columns: 
 
 1. As the slenderness ratio kl/r increases, the strength of concentrically 
loaded column decreases. 
 
 2. The effective length of columns either in single members or parts of 
rigid frames is between 0.5l and l, if the columns are prevented from sidesway by 
bracing or otherwise. The actual value depends on the degree of end restraints. 
 
 3. The effective length of columns either in single members or parts of 
rigid frames is always greater than one, if the columns are not prevented from 
sidesway. The actual value depends on the degree of end restraints. 
 
 4. The critical load of braced frame against sidesway is always 
significantly larger than that of the unbraced frame. 
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10.27.3  Slender Columns under Axial Load and Uniaxial 
Moment 
 
(A) Columns bent in single curvature 
 
 Figure 10.27.10a shows a column bent in single curvature under axial load 
P less than its critical load Pcr with constant moment Pe. The deflection profile 
marked by dotted line is due to the constant moment. However, there will be 
additional moment of Py at a distance z from the origin (at the bottom of column) 
which will deflect the column further, as shown by the solid line. The constant 
moment Pe and additional moment Py are shown in Fig.10.27.10b. Thus, the 
total moment becomes 
 
 M  =  Mo + Py   =  P(e + y)      
 (10.63) 
 
The maximum moment is P(e + Δ ) at the mid-height of the column. This, we can 
write 
 
 Mmax  =  Mo + P   =  P(e + Δ Δ )     
 (10.64) 
 
This is known as  P - Δ  effect. 
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Figure 10.27.11a shows another column whose bending is caused by a 

transverse load H. The bending moment at a distance z from the origin (bottom 
of the column) is Hz/2 causing deflection of the column marked by dotted line in 
the figure. The axial load P, less than its critical load Pcr, causes additional 
moment resulting in further deflection, marked by solid line in the figure. This 
additional deflection produces additional moment of Py at a section z from the 
origin. The two bending moment diagrams are shown in Fig.10.27.11b. Here 
again, the total moment is 
 
 M  =  Mo + Py  =  Hz/2 + Py      
 (10.65) 
 
The maximum moment at the mid-height of the column is  
 
 Mmax  =  Mo,max + P   =  Hl/4 + PΔ Δ      
 (10.66) 
 
 The total moment in Eqs.10.63 and 10.65 consists of the moment Mo that 
acts in the presence of P and the additional moment caused by P (= Py). The 
deflections  y can be computed from yo, the deflections without the axial load 
from the expression 
 
 y  =  yo[1/{1 – (P/Pcr)}]      
 (10.67) 
 
From Eq.10.64, we have 
 
 Mmax  =  Mo + P   =  MΔ o + PΔ o[1/{1 – (P/Pcr)}]   
 (10.68) 
 
Equation 10.68 can be written as 
 

 1  (     
1 - (

cr
max o

cr

P / P )M M
P / P )
ψ+

=      

 (10.69) 
 
where  ψ  depends on the type of loading and generally varies between 0.20. 
Since P/P

±
cr is always less than one, we can ignore ψ (P/Pcr) term of Eq.10.69, to 

have 
 
 Mmax  =  Mo/{1 – (P/Pcr)}      
 (10.70) 
 
where 1/{1 – (P/Pcr)} is the moment magnification factor. In both the cases above 
(Figs.10.27.10 and 11), a direct addition of the maximum moment caused by 
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transverse load or otherwise, to the maximum moment caused by P gives the 
total maximum moment as that is the most unfavourable situation. However, this 
is not the case for situation taken up in the following.  
 
(B)  Columns bent in double curvature 
 

 
 Figure 10.27.12a shows a column subjected to equal end moment of 
opposite signs. From the moment diagrams Mo and Py (Figs.10.27.12b and c), it 
is clear that though Mo moments are maximum at the ends, the Py moments are 
maximum at some distance from the ends. The total moment can be either as 
shown in d or in e of Fig.10.27.12. In case of Fig.10.27.12d, the maximum 
moment remains at the ends and in Fig.10.27.12e, the maximum moment is at 
some distance from the ends, where Mo is comparatively smaller than Mo max at 
the ends. Accordingly, the total maximum moment is moderately higher than Mo 

max. 
 
 From the above, it is evident that the moment Mo will be magnified most 
strongly if the section of Mo max coincides with the section of maximum value of y, 
as in the case of column bent in single curvature of Figs.10.27.10 and 11. 
Similarly, if the two moments are unequal but of same sign as in Fig.10.27.10, 
the moment Mo will be magnified but not so much as in Fig.10.27.10. On the 
other hand, if the unequal end moments are of opposite signs and cause bending 
in double curvature, there will be little or no magnification of Mo moment.  
 
 This dependence of moment magnification on the relative magnitudes of 
the two moments can be expressed by modifying the earlier Eq.10.70 as  
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 Mmax  =  Mo Cm/{1 – (P/Pcr)}      
 (10.71) 
 
where Cm   =  0.6 + 0.4(M1/M2)  ≥   0.4     
 (10.72) 
 
The moment M1 is smaller than M2 and M1/M2 is positive if the moments produce 
single curvature and negative if they produce double curvature. It is further seen 
from Eq.10.72 that  Cm = 1, when M1 = M2 and in that case, Eq.10.71 becomes 
the same as Eq.10.70. 
 
 For the column of Fig.10.27.12a, the deflections caused by Mo are 
magnified when axial load P is applied. The deflection can be obtained from  
 
 y  =  yo [1/{1 – (P/4Pcr)}]      
 (10.73) 
 

 
(C)  Portal frame laterally unbraced and braced 
 
 Here, the sidesway can occur only for the entire frame simultaneously. A 
fixed portal frame, shown in Fig.10.27.13a, is under horizontal load H and 
compression force P. The moments due to H and P and the total moment 
diagrams are shown in Fig.10.27.13b, c and d, respectively. The deformations of 
the frame due to H are shown in Fig.10.27.13a by dotted curves, while the solid 
curves are the magnified deformations. It is observed that the maximum values 
of positive and negative Mo are at the ends of the column where the maximum 
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values of positive and negative moments due to P also occur. Thus, the total 
moment shall be at the ends as the two effects are fully additive. 
 

 
 Figure 10.27.14a shows a fixed portal frame, laterally braced so that no 
sidesway can occur. Figures 10.27.14b and c show the moments Mo and due to 
P.  It is seen that the maximum values of the two different moments do not occur 
at the same location. As a result, the magnification of the moment either may not 
be true or shall be small. 
 
(D) Columns with different slenderness ratios 
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 Figure 10.27.15 shows the interaction diagram of P and M at the mid-
height section of the column shown in Fig.10.27.10. Three loading paths OA, OB 
and OC are also shown in the figure for three columns having the same cross-
sectional area and the eccentricity of loads but with different slenderness ratios. 
The three columns are loaded with increasing P and M (at constant eccentricity) 
up to failure. The loading path OA is linear indicating Δ  = 0, i.e., for a very short 
column. It should be noted that Δ  should be theoretically zero only when either 
the effective length or the eccentricity is zero. In a practical short column, 
however, some lateral deflection shall be there, which, in turn will cause 
additional moment not more than five per cent of the primary moment and may 
be neglected. The loading path OA terminates at point A of the interaction 
diagram, which shows the failure load Psc of the short column with moment Msc = 
Psc e. The short column fails by crushing of concrete at the mid-height section. 
This type of failure is designated as material failure, either a tension failure or a 
compression failure depending on the location of the point A on the interaction 
curve. 
 
 The load path OB is for a long column, where the deflection  caused by 
increasing value of P is significant. Finally, the long column fails at load P

Δ
lc and 

moment Mlc = Plc(e + ). The loading path OB further reveals that the secondary 
moment P

Δ
lcΔ  is comparable to the primary moment Plc e. Moreover, the failure 

load and the primary moment of the long column Plc and Plc e, respectively, are 
less than those of the short column (Psc and Psc e, respectively), though both the 
columns have the same cross-sectional areas and eccentricities but different 
slenderness ratios. Here also, the mid-height section of the column undergoes 
material failure, either a compression failure or a tension failure, depending on 
the location of the point B on the interaction diagram. 
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 The loading path OC, on the other hand, is for a very long column when 
the lateral deflection  is so high that the slope of the path dP/dM at C is zero. 
The column is so slender that the failure is due to buckling (instability) at a 
comparatively much low value of the load P

Δ

cr, though this column has the same 
cross-sectional area and the eccentricity of load as of the other two columns. 
Such instability failure occurs for very slender columns, specially when they are 
not braced. 
 
 The following points are summarised from the discussion made in 
sec.10.27.3. 
 
 1. Additional deflections and moments are caused by the axial 
compression force P in columns. The additional moments increase with the 
increase of  kl/r, when other parameters are equal. 
 
 2. Laterally braced compression members and bent in single curvature 
have the same or nearby locations of the maxima of both Mo and Py. Thus, being 
fully additive, they have large moment magnification. 
 
 3. Laterally braced compression members and bent in double curvature 
have different locations of the maxima of both Mo and Py. As a result, the 
moment magnification is either less or zero. 
 
 4. Members of frames not braced laterally, the maxima of Mo and Py 
mostly occur at the ends of column and cause the maximum total moment at the 
ends of columns only. Additional moments and additional deflections increase 
with the increase of kl/r. 
 
10.27.4  Effective Length of Columns 
 
 Annex E of IS 456 presents two figures (Figs.26 and 27) and a table 
(Table 26) to estimate the effective length of columns in frame structures based 
on a research paper, “Effective length of column in multistoreyed building” by 
R.H. Wood in The Structural Engineer Journal, No.7, Vol.52, July 1974. Figure 
26 is for columns in a frame with no sway, while Fig.27 is for columns in a frame 
with sway. These two figures give the values of k (i.e., le/l) from two parameters 

21  and ββ  which are obtained from the following expression: 
 
       
 (10.74) 

    /    ∑ ∑ ∑+= bcc KKKβ

 
where Kc and Kb are flexural stiffnesses of columns and beams, respectively. The 
quantities 21  and ββ  at the top and bottom joints A and B, respectively, are 
determined by summing up the K values of members framing into a joint at top 
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and bottom, respectively. Thus 21  and ββ  for the frame shown in Fig.10.27.16 are 
as follows: 
 

 
 1β   =  (Kc + Kct)/(Kc + Kct + Kb1 + Kb2)    
 (10.75) 
 
 2β   =  (Kc + Kcb)/(Kc + Kcb + Kb3 + Kb4)    
 (10.76) 
 
 However, assuming idealised conditions, the effective length in a given 
plane may be assessed from Table 28 in Annex E of IS 456, for normal use. 
 
10.27.5  Determination of Sway or No Sway Column 
 
 Clause E-2 of IS 456 recommends the stability index Q to determine if a 
column is a no sway or sway type. The stability index Q is expressed as: 
 
 Q  =  P∑ u /HuΔ u hz      
 (10.77) 
 
where ∑ Pu  =  sum of axial loads on all columns in the storey, 
         =  elastically computed first-order lateral deflection, uΔ
 Hu         =  total lateral force acting within the storey, and 
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 hz          =  height of the storey.   
  
 The column may be taken as no sway type if the value of Q is  0.4, 
otherwise, the column is considered as sway type. 

≤

 
10.27.6  Design of Slender Columns 
 
 The design of slender columns, in principle, is to be done following the 
same procedure as those of short columns. However, it is essential to estimate 
the total moment i.e., primary and secondary moments considering P-  effects. 
These secondary moments and axial forces can be determined by second-order 
rigorous structural analysis – particularly for unbraced frames. Further, the 
problem becomes more involved and laborious as the principle of superposition 
is not applicable in second-order analysis. 

Δ

 
 However, cl.39.7 of IS 456 recommends an alternative simplified method 
of determining additional moments to avoid the laborious and involved second-
order analysis. The basic principle of additional moment method for estimating 
the secondary moments is explained in the next section. 
 
10.27.7  Additional Moment Method 
 
 In this method, slender columns should be designed for biaxial 
eccentricities which include secondary moments (Py of Eq.10.63 and 10.65) 
about major and minor axes. We first consider braced columns which are bent 
symmetrically in single curvature and cause balanced failure i.e.,  Pu = Pub. 
 
(A) Braced columns bent symmetrically in single curvature and undergoing 
balanced failure 
 
 For braced columns bent symmetrically in single curvature, we have from 
Eqs.10.63 and 10.65, 
 
 M  =  Mo + Py  =  Mo + P ea  =  Mo + Ma    
 (10.78) 
 
where P is the factored design load Pu, M are the total factored design moments 
Mux and Muy about the major and minor axes, respectively; Mo are the primary 
factored moments Moux and Mouy about the major and minor axes, respectively; 
Ma are the additional moments Max and May about the major and minor axes, 
respectively and ea are the additional eccentricities eax and eay along the minor 
and major axes, respectively. The quantities Mo and P of Eq.10.78 are known 
and hence, it is required to determine the respective values of ea, the additional 
eccentricities only.  
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 Let us consider the columns of Figs.10.27.10 and 11 showing  as the 
maximum deflection at the mid-height section of the columns. The column of 
Fig.10.27.10, having a constant primary moment M

Δ

o, causes constant curvature 
φ , while the column of Fig.10.27.11, having a linearly varying primary moment 
with a maximum value of Mo max at the mid-height section of the column, has a 
linearly varying curvature with the maximum curvature of φ max at the mid-height 
section the column. The two maximum curvatures can be expressed in terms of 
their respective maximum deflection Δ  as follows: 
 
 The constant curvature (Fig.10.27.10)    
 (10.79) 

2
max /8    elΔ=φ

 
 The linearly varying curvature (Fig.10.27.11)  
 (10.80) 

2
max /12    elΔ=φ

 
where le are the respective effective lengths kl of the columns. We, therefore, 
consider the maximum φ  as the average value lying in between the two values of 
Eqs.10.79 and 80 as 
 
         
 (10.81) 

2
max /10    elΔ=φ

 
 Accordingly, the maximum additional eccentricities  ea, which are equal to 
the maximum deflections Δ , can be written as 
 
 ea  =    =         
 (10.82) 

Δ  /10 2
elφ
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 Assuming the column undergoes a balanced failure when Pu = Pub, the 
maximum curvature at the mid-height section of the column, shown in 
Figs.10.27.17a and b, can be expressed as given below, assuming (i) the values 
of cε  = 0.0035, stε  = 0.002 and  Dd /′  = 0.1, and (ii) the additional moment 
capacities are about eighty per cent of the total moment. 
 
 φ   =  eighty per cent of {(0.0035 + 0.002)/0.9D} (see Fig.10.27.17c) 
 
or φ   =  1/200D        
 (10.83) 
 
Substituting the value of φ  in Eq.10.82, 
 
 ea  =  D(le/D)2/2000       
 (10.84) 
 
Therefore, the additional moment Ma can be written as, 
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 Ma  =  Py  =  PΔ   =  Pea  =  (PD/2000) (le/D)2   
 (10.85) 
 
Thus, the additional moments Max and May about the major and minor axes, 
respectively, are: 
 
 Max  =  (PuD/2000) (lex/D)2      
 (10.86) 
 
 May  =  (Pub/2000) (ley/b)2      
 (10.87) 
 
where Pu   =  axial load on the member,  
 
 lex   =  effective length in respect of the major axis, 
 
 ley   =  effective length in respect of the minor axis, 
 
 D   =  depth of the cross-section at right angles to the major axis, and 
 
 b    =  width of the member. 
 
Clause 39.7.1 of IS 456 recommends the expressions of Eqs.10.86 and 87 for 
estimating the additional moments Max and May for the design. These two 
expressions of the additional moments are derived considering the columns to be 
braced and bent symmetrically undergoing balanced failure. Therefore, proper 
modifications are necessary for different situations like braced columns with 
unequal end moments with the same or different signs, unbraced columns and 
columns causing compression failure i.e., when Pu > Pub. 
 
(B)  Braced columns subjected to unequal primary moments at the two 
ends 
 
 For braced columns without any transverse loads occurring in the height, 
the primary maximum moment (Mo max of Eq.10.64), with which the additional 
moments of Eqs.10.86 and 87 are to be added, is to be taken as: 
 
 Mo max  =  0.4 M1 + 0.6 M2      
 (10.88) 
 
and further  Mo max  ≥   0.4 M2       
 (10.89) 
 
where M2 is the larger end moment and M1 is the smaller end moment, assumed 
to be negative, if the column is bent in double curvature. 
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 To eliminate the possibility of total moment Mu max becoming less than M2 
for columns bent in double curvature (see Fig.10.27.12) with M1 and M2 having 
opposite signs, another condition has been imposed as 
 
 Mu max    M≥ 2        
 (10.90) 
 
 The above recommendations are given in notes of cl.39.7.1 of IS 456. 
 
(C)  Unbraced columns 
 
 Unbraced frames undergo considerable deflection due to P-  effect. The 
additional moments determined from Eqs.10.86 and 87 are to be added with the 
maximum primary moment M

Δ

o max at the ends of the column. Accordingly, we 
have 
 
 Mo max  =  M2 + Ma       
 (10.91) 
 
The above recommendation is given in the notes of cl.39.7.1 of IS 456. 
 
(D)  Columns undergoing compression failure (Pu > Pub) 
 
 It has been mentioned in part A of this section that the expressions of 
additional moments given by Eqs.10.86 and 10.87 are for columns undergoing 
balanced failure (Fig.10.27.17). However, when the column causes compression 
failure, the e/D ratio is much less than that of balanced failure at relatively high 
axial loads. The entire section may be under compression causing much less 
curvatures. Accordingly, additional moments of Eqs.10.86 and 10.87 are to be 
modified by multiplying with the reduction factor k as given below: 
 
(i)   For Pu > Pubx:  kax  =  (Puz – Pu)/(Puz – Pubx)    
 (10.92) 
 
(ii)  For Pu > Puby:  kay  =  (Puz – Pu)/(Puz – Puby)    
 (10.93) 
 
with a condition that kax and kay should be ≤  1    
 (10.94) 
 
where Pu  =  axial load on compression member 
 
 Puz  is given in Eq.10.59 of Lesson 26 and is, 
 
 Puz  =  0.45 fck Ac + 0.75 fy Ast   …  (10.59) 
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 Pubx, Puby  =  axial loads with respect to major and minor axes, 
respectively, corresponding to the condition of maximum compressive strain of 
0.0035 in concrete and tensile strain of 0.002 in outermost layer of tension steel. 
 
 It is seen from Eqs.10.92 and 10.93 that the values of k (kax and kay) vary 
linearly from zero (when Pu = Puz) to one (when Pu = Pub). Since Eqs.10.92 and 
10.93 are not applicable for Pu < Pub, another condition has been imposed as 
given in Eq.10.94. 
 
 The above recommendations are given in cl.39.7.1.1 of IS 456. 
 
 The following discussion is very important for the design of slender 
columns. 
 
 Additional moment method is one of the methods of designing slender 
columns as discussed in A to D of this section. This method is recommended in 
cl.39.7 of IS 456 also. The basic concept here is to enhance the primary 
moments by adding the respective additional moments estimated in a simple way 
avoiding laborious and involved calculations of second-order structural analysis. 
However, these primary moments under eccentric loadings should not be less 
than the moments corresponding to the respective minimum eccentricity, as 
stipulated in the code. Hence, the primary moments in such cases are to be 
replaced by the minimum eccentricity moments. Moreover, all slender columns, 
including those under axial concentric loadings, are also to be designed for 
biaxial bending, where the primary moments are zero. In such cases, the total 
moment consisting of the additional moment multiplied with the modification 
factor, if any, in each direction should be equal to or greater than the respective 
moments under minimum eccentricity conditions. As mentioned earlier, the 
minimum eccentricity consideration is given in cl.25.4 of IS 456. 
 
10.27.8  Illustrative Example 
 
 The following illustrative example is taken up to explain the design of 
slender columns. The example has been solved in step by step using (i) the 
equations of Lessons 21 to 27 and (ii) employing design charts and tables of SP-
16, to compare the results. 
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Problem 1: 
 
 Determine the reinforcement required for a braced column against 
sidesway with the following data: size of the column  =  350 x 450 mm 
(Fig.10.27.18); concrete and steel grades = M 30 and Fe 415, respectively; 
effective lengths lex and ley = 7.0 and 6.0 m, respectively; unsupported length l = 8 
m; factored load Pu = 1700 kN; factored moments in the direction of larger 
dimension = 70 kNm at top and 30 kNm at bottom; factored moments in the 
direction of shorter dimension = 60 kNm at top and 30 kNm at bottom. The 
column is bent in double curvature. Reinforcement will be distributed equally on 
four sides. 
 
Solution 1: 
 
Step 1:  Checking of slenderness ratios 
 
 lex/D  =  7000/450  =  15.56 > 12, 
 
 ley/b  =  6000/350  =  17.14  >  12. 
 
Hence, the column is slender with respect to both the axes. 
 
Step 2: Minimum eccentricities and moments due to minimum 

eccentricities (Eq.10.3 of Lesson21) 
 
 ex min =  l/500 + D/30  =  8000/500 + 450/30  =  31.0  >  20 mm  
 
 ey min =  l/500 + b/30  =  8000/500 + 350/30  =  27.67  >  20 mm 
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 Mox (Min. ecc.)  =  Pu(ex min)  =  (1700) (31) (10-3)  =  52.7 kNm 
 
 Moy (Min. ecc.)  =  Pu(ey min)  =  (1700) (27.67) (10-3)  =  47.04 kNm 
 
Step 3:  Additional eccentricities and additional moments  
 
Method 1:  Using Eq. 10.84 
 
 eax  =  D(lex/D)2/2000  =  (450) (7000/450)2/2000  =  54.44 mm 
 
 eay  =  b(lex/b)2/2000  =  (350) (6000/350)2/2000  =  51.43 mm 
 
 Max  =  Pu(eax)  =  (1700) (54.44) (10-3)  =  92.548 kNm 
 
 May  =  Pu(eay)  =  (1700) (51.43) (10-3)  =  87.43 kNm 
 
Method 2:  Table I of SP-16 
 
For lex/D  =  15.56, Table I of SP-16 gives: 
 
 eax/D  =  0.1214, which gives  eax = (0.1214) (450)  =  54.63 mm 
 
For ley/D  =  17.14, Table I of SP-16 gives: 
 
 eay/b  =  0.14738, which gives  eay = (0.14738) (350)  =  51.583 mm 
 
 It is seen that values obtained from Table I of SP-16 are comparable with 
those obtained by Eq. 10.84 in Method 1. 
 
Step 4:  Primary moments and primary eccentricities (Eqs.10.88 and 89) 
 
 Mox  =  0.6M2 – 0.4M1  =  0.6(70) – 0.4(30)  =  30 kNm, which should be  ≥  
0.4 M2 (= 28 kNm).   Hence, o.k. 
 

Moy  =  0.6M2 – 0.4M1  =  0.6(60) – 0.4(30)  =  24 kNm, which should be  ≥  
0.4 M2 (= 24 kNm).   Hence, o.k. 
 
Primary eccentricities: 
 
 ex  =  Mox/Pu  =  (30/1700) (103)  =  17.65 mm 
 
 ey  =  Moy/Pu  =  (24/1700) (103)  =  14.12 mm 
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Since, both primary eccentricities are less than the respective minimum 
eccentricities (see Step 2), the primary moments are revised to those of Step 2. 
So,  Mox = 52.7 kNm and Moy = 47.04 kNm. 
 
Step 5:  Modification factors 
 
 To determine the actual modification factors, the percentage of 
longitudinal reinforcement should be known. So, either the percentage of 
longitudinal reinforcement may be assumed or the modification factor may be 
assumed which should be verified subsequently. So, we assume the modification 
factors of 0.55 in both directions. 
 
Step 6:  Total factored moments 
 

Mux  =  Mox + (Modification factor) (Max)  =  52.7 + (0.55) (92.548)  
 
        =  52.7 + 50.9  =  103.6 kNm 

 
 

Muy  =  Moy + (Modification factor) (May)  =  47.04 + (0.55) (87.43)  
 
        =  47.04 + 48.09  =  95.13 kNm 

 
Step 7:  Trial section (Eq.10.61 of Lesson 26) 
 
 The trial section is determined from the design of uniaxial bending with Pu 
= 1700 kN and Mu = 1.15 . So, we have M2/122 )  ( uyux MM + u = (1.15){(103.6)2 + 
(95.13)2}1/2 = 161.75 kNm. With these values of Pu (= 1700 kN) and Mu (= 161.75 
kNm), we use chart of SP-16 for the Dd /′  = 0.134. We assume the diameters of 
longitudinal bar as 25 mm, diameter of lateral tie = 8 mm and cover = 40 mm, to 
get   = 40 + 8 + 12.5 = 60.5 mm. Accordingly, d ′ Dd /′  = 60.5/450 = 0.134 and 

 = 60.5/350 = 0.173. We have: bd /′
 
 Pu/fck bD  =  1700(103)/(30)(350)(450)  =  0.3598 
 
 Mu/fck bD2  =  161.75(106)/(30)(350)(450)(450)  =  0.076 
 
We have to interpolate the values of  p/fck  for  Dd /′  = 0.134 obtained from 
Charts 44 (for  = 0.1) and 45 (Dd /′ Dd /′  = 0.15). The values of p/fck are 0.05 
and 0.06 from Charts 44 and 45, respectively. The corresponding values of p are 
1.5 and 1.8 per cent, respectively. The interpolated value of p for  = 0.134 
is 1.704 per cent, which gives A

Dd /′
sc = (1.704)(350)(450)/100 = 2683.8 mm2. We 

use 4-25 + 4-20 (1963 + 1256 = 3219 mm2), to have  p provided = 2.044 per cent 
giving p/fck = 0.068. 
 
Step 8:  Calculation of balanced loads Pb
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 The values of Pbx and Pby are determined using Table 60 of SP-16. For 
this purpose, two parameters k1 and k2 are to be determined first from the table. 
We have p/fck = 0.068,  = 0.134 and Dd /′ bd /′  = 0.173. From Table 60, k1 = 
0.19952 and k2 = 0.243 (interpolated for Dd /′  = 0.134) for Pbx. So, we have: 
Pbx/fckbD = k1 + k2 (p/fck) = 0.19952 + 0.243(0.068) = 0.216044, which gives Pbx = 
0.216044(30)(350)(450)(10-3) = 1020.81 kN. 
 
 Similarly, for Pby:   = 0.173, p/fbd /′ ck = 0.068. From Table 60 of SP-16, k1 
= 0.19048 and k2 = 0.1225 (interpolated for bd /′  = 0.173). This gives Pby/fckbD = 
0.19048 + 0.1225(0.068) = 0.19881, which gives Pby = 
(0.19881)(30)(350)(450)(10-3) = 939.38 kN. 
 
 Since, the values of Pbx and Pby are less than Pu, the modification factors 
are to be used. 
 
Step 9:  Determination of Puz
 
Method 1:  From Eq.10.59 of Lesson 26 
 
 Puz  =  0.45 fck Ag + (0.75 fy – 0.45 fck) Asc
 
        =  0.45(30)(350)(450) + {0.75(415) – 0.45(30)}(3219)  =  3084.71 kN 
 
Method 2: Using Chart 63 of SP-16 
 
 We get Puz/Ag = 19.4 N/mm2 from Chart 63 of SP-16 using p = 2.044 per 
cent. Therefore, Puz = (19.4)(350)(450)(10-3) = 3055.5 kN, which is in good 
agreement with that of Method 1. 
 
Step 10:  Determination of modification factors 
 
Method 1:  From Eqs.10.92 and 10.93 
 
 kax  =  (Puz – Pu)/(Puz – Pubx)  …  (10.92)   
 
or kax  =  (3084.71 – 1700)/(3084.71 – 1020.81)  =  0.671 and 
 

kay  =  (Puz – Pu)/(Puz – Puby)  …  (10.93)   
 
or kay  =  (3084.71 – 1700)/(3084.71 – 939.39)  =  0.645 
 
 The values of the two modification factors are different from the assumed 
value of 0.55 in Step 5. However, the moments are changed and the section is 
checked for safety. 
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Method 2:  From Chart 65 of SP-16 
 
 From Chart 65 of SP-16, for the two parameters, Pbx/Puz = 
1020.81/3084.71 = 0.331 and Pu/Puz = 1700/3084.71 = 0.551, we get kax = 0.66. 
Similarly, for the two parameters, Pby/Puz = 939.38/3084.71 = 0.3045 and Pu/Puz =  
0.551, we have kay = 0.65. Values of kax and kay are comparable with those of 
Method 1. 
 
Step 11:  Total moments incorporating modification factors 
 
 Mux  =  Mox (from Step 4) + (kax) Max (from Step 3) 
 
         =  52.7 + 0.671(92.548)  =  114.8 kNm 
 
 
 Muy  =  Moy (from Step 4) + kay (May) (from Step 3) 
 
         =  47.04 + (0.645)(87.43)  =  103.43 kNm. 
 
Step 12:  Uniaxial moment capacities 
 
 The two uniaxial moment capacities Mux1 and Muy1 are determined as 
stated: (i) For Mux1, by interpolating the values obtained from Charts 44 and 45, 
knowing the values of Pu/fckbD = 0.3598 (see Step 7), p/fck = 0.068 (see Step 7), 

 = 0.134 (see Step 7), (ii) for MDd /′ uy1, by interpolating the values obtained from 
Charts 45 and 46, knowing the same values of Pu/fckbD and p/fck as those of (i) 
and  = 0.173 (see Step 7). The results are given below: Dd /′
 
(i)   Mux1/fckbD2  =  0.0882 (interpolated between 0.095 and 0.085) 
 
(ii)  Muy1/fckbb2  =  0.0827 (interpolated between 0.085 and 0.08) 
 
So, we have, Mux1 = 187.54 kNm and Muy1 = 136.76 kNm. 
 
Step 13:  Value of  nα  
 
Method 1:  From Eq.10.60 of Lesson 26 
 
 We have Pu/Puz = 1700/3084.71 = 0.5511. From Eq.10.60 of Lesson 26, 
we have nα  = 0.67 + 1.67 (Pu/Puz) = 1.59. 
 
Method 2: Interpolating the values between (Pu/Puz) = 0.2 and 0.6 
 
 The interpolated value of  nα  = 1.0 + (0.5511 – 0.2)/0.6 = 1.5852. Both the 
values are comparable. We use nα  = 1.5852. 
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Step 14:  Checking of column for safety 
 
Method 1: From Eq.10.58 of Lesson 26 
 
 We have in Lesson 26: 
 
  1    )/(  )/( 11 ≤+ nn

uyuyuxux MMMM αα   …  (10.58) 
 
 Here, putting the values of Mux, Mux1, Muy, Muy1 and nα , we get: 
(114.8/187.54)1.5452 + (103.43/136.76)1.5852 = 0.4593 + 0.6422 = 1.1015. Hence, 
the section or the reinforcement has to be revised. 
 
Method 2: Chart 64 of SP-16 
 
 The point having the values of (Mux/Mux1) = 114.8/187.54 = 0.612 and 
(Muy/Muy1) = 103.43/136.76 = 0.756 gives the value of Pu/Pz more than 0.7. The 
value of Pu/Puz here is 0.5511 (see Step 13). So, the section needs revision. 
 
 We revise from Step 7 by providing 8-25 mm diameter bars (= 3927 mm2, 
p = 2.493 per cent and p/fck = 0.0831) as the longitudinal reinforcement keeping 
the values of b and D unchanged. The revised section is checked furnishing the 
repeated calculations from Step 8 onwards. The letter R is used before the 
number of step to indicate this step as revised one. 
 
Step R8:  Calculation of balanced loads Pb
 
 Table 60 of SP-16 gives k1 = 0.19952, and k2 = 0.243. We have p/fck = 
0.0831 now. So, Pbx  =  {0.19952 + (0.243)(0.0831)} (30)(350)(450)(10-3)  =  
1038.145 kN. Similarly, k1 = 0.19048, k2 = 0.1225 and p/fck = 0.0831 give Pby  =  
{0.19048 + (0.1225)(0.0831)} (30)(350)(450)(10-3)  =  948.12 kN.  
 
 The values of Pbx and Pby are less than Pu (= 1700 kN). So, modification 
factors are to be incorporated. 
 
Step R9:  Determination of Puz (Eq. 10.59 of Lesson 26) 
 
 Puz = 0.45(30)(350)(450) + {0.75(415) – 0.45(30)}(3927) = 3295.514 kN. 
 
Step R10:  Determination of modification factors (Eqs.10.92 and 10.93) 
 
 kax  =  (3295.514 – 1700)/(3295.514 – 1038.145)  =  0.707 
 
 kay  =  (3295.514 – 1700)/(3295.514 – 948.12)  =  0.68 
 
Step R11:  Total moments incorporating modification factors 
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 Mux  =  52.70 + 0.707(92.548)  =  118.13 kNm 
 
 Muy  =  47.04 + 0.68(87.43)  =  106.49 kNm 
 
Step R12:  Uniaxial moment capacities 
 
 Using Charts 44 and 45 for Mux1 and Charts 45 and 46 for Muy1, we get (i) 
the coefficient 0.1032 (interpolating 0.11 and 0.10) and (ii) the coefficient 0.0954 
(interpolating 0.1 and 0.09) for Mux1 and Muy1, respectively.  
 
 Mux1  =  (0.1032)(30)(350)(450)(450)(10-6)  =  219.429 kNm 
 
 Muy1  =  (0.0954)(30)(450)(350)(350)(10-6)  =  157.77 kNm 
 
Step R13:  Value of  nα  (Eq.10.60 of Lesson 26) 
 
 Pu/Puz  =  1700/3295.514  =  0.5158 which gives  
 
 nα   =  1 + (0.5158 – 0.2)/0.6  =  1.5263 
 
Step R14:  Checking of column for safety (Eq.10.58 of Lesson 26) 
 
 (118.13/219.424)1.5263 + (106.49/157.77)1.5263  =  0.3886 + 0.5488  =  
0.9374 < 1.0 
 
 Hence, the revised reinforcement is safe. The section is shown in 
Fig.10.27.18. 
 
 
10.27.9  Practice Questions and Problems with Answers 
 
Q.1:  Define a slender column. Give three reasons for its increasing importance 

and popularity. 
             
A.1:    See sec. 10.27.1. 
 
Q.2:   Explain the behaviour of a slender column subjected to concentric loading. 

Explain Euler’s load. 
 
A.2: See sec.10.27.3. 
 
Q.3: Choose the correct answer. 
 

(A) As the slenderness ratio increases, the strength of concentrically 
loaded column: 

          (i)  increases     (ii)  decreases 
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 (B)   For braced columns, the effective length is between 
 
          (i) l and 2l  (ii) 0.5l and 2l  (iii)  0.5l and l 
 
 (C)   The critical load of a braced frame is  
 
         (i)  always larger than that of an unbraced column 
 
        (ii)  always smaller than that of an unbraced column 
 
        (iii) sometimes larger and sometimes smaller than that of an unbraced 
column 
 
A.3: A. (ii),   B. (iii),   C. (i) 
 
Q.4: Explain the behaviour of slender columns under axial load and uniaxial 

bending, bent in single curvature. 
 
A.4: Part (A) of sec. 10.27.3. 
 
Q.5: Explain the behaviour of slender columns under axial load and uniaxial 

bending, bent in double curvature. 
 
A.5: Part (B) of sec. 10.27.3. 
 
Q.6: Explain the behaviour of columns in portal frame both braced and 
unbraced. 
 
A.6: Part (C) of sec. 10.27.3. 
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Q.7: Check the column of Fig.10.27.19, if subjected to an axial factored load of 

Pu = 1500 kN only when the unsupported length of the column = l = 8.0 m,  
lex = ley = 6.0 m, D = 400 mm, b = 300 mm, using concrete of M 20 and 
steel grade in Fe 415. 

 
A.7: Solution: 
 
Step 1:  Slenderness ratios 
 
 Lex/D  =  6000/400  =  15  > 12 
 
 Ley/b  =  6000/300  =  20  > 12 
 
The column is slender about both the axes. 
 
Step 2: Minimum eccentricities and moments due to minimum 

eccentricities (Eq.10.3 of Lesson 21) 
 
 ex min  =  l/500 + D/30  =  8000/500 + 400/30  =  29.33 mm > 20 mm 
 
 ey min  = 8000/500 + 300/30  =  26 mm > 20 mm 
 
 Mx due to min. ecc.  =  Pu (ex min)  =  1500(29.33)  =  43.995 kNm 
 
 My due to min. ecc.  =  Pu (ey min)  =  1500(26.0)   =  39.0 kNm 
 
Step 3:  Primary moments 
 
 Since the column is concentrically loaded, the primary moments are zero. 
Therefore, the additional moments must be greater than the respective moments 
due to minimum eccentricity. 
 
Step 4:  Additional eccentricities and moments (Eq.10.84) 
 
 eax  =  D(lex/D)2/2000  =  400(6000/400)2/2000  =  45 mm  >  ex min (= 29.23 
mm) 
 
 eay  =  b(ley/b)2/2000  =  300(6000/300)2/2000  =  60 mm  >  ey min (= 26 
mm) 
 
Step 5:  Calculation of balance loads Pbx and Pby
 
 Given Asc = 3927 mm2 (8 bars of 25 mm diameter give  p = 3.2725 per 
cent. So,   p/fck = 0.1636. Using 8 mm diameter lateral tie, d ′  = 40 + 8 + 12.5 = 
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60.5 mm giving /D = 60.5/400 = 0.15125 d ′ ≅  0.15 and d ′ /b = 60.5/300 = 0.2017 
 0.20. ≅

 
 From Table 60 of SP-16, we get k1 = 0.196 and k2 = 0.061. Thus, we 
have: 
 
 Pbx  =  {0.196 + (0.061)(0.1636)}(20)(300)(400)(10-3) = 494.35 kN 
 
 Similarly, for Pby: k1 = 0.184 and k2 = -0.011, we get 
 
 Pby  =  {0.184 - (0.011)(0.1636)}(20)(300)(400)(10-3) = 437.281 kN 
 
 Since, Pbx and Pby are less than Pu (= 1500 kN), modification factors are to 
be incorporated. 
 
Step 6:  Determination of Puz (Eq.10.59 of Lesson 26) 
 
 Puz  =  0.45(20)(300)(400) + {0.75(415) – 0.45(20)}(3927)(10-3)  =  2266.94 
kN 
 
Step 7:  Determination of modification factors 
 
 kax = (2266.94 – 1500)/(2266.94 – 494.35)  =  0.433  and 
 
 kay = (2266.94 – 1500)/(2266.94 – 437.281)  =  0.419 
 
Step 8:  Additional moments and total moments  
 
 Max  =  1500(0.433)(45)  =  29.2275 kNm 
 
 May  =  1500(0.419)(60)  =  37.71 kNm 
 
 Since, primary moments are zero as the column is concentrically loaded, 
the total moment shall consist of the additional moments. But, as both the 
additional moments are less than the respective moment due to minimum 
eccentricity, the revised additional moments are: Max = 43.995 kNm and May = 
39.0 kNm, which are the total moments also. 
 
 Thus, we have: 
 
 Mux = 43.995 kNm, Muy = 39.0 kNm and Pu = 1500 kN. 
 
Step 9:  Uniaxial moment capacities  
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 We have, Pu/fck bD = {1500/(20)(300)(400)}(1000) = 0.625, p/fck = 0.1636 
and /D = 0.15 for Md ′ ux1; and d ′ /b = 0.2 for Muy1. The coefficients are 0.11 (from 
Chart 45) and 0.1 (from Chart 46) for Mux1 and Muy1, respectively. So, we get,  
 
 Mux1  =  0.11(20)(300)(400)(400)(10-6)  =  225.28 kNm, and 
 
 Muy1  =  0.1(20)(300)(300)(400)(10-6)  =  72.0 kNm 
 
Step 10:  Value of  nα  (Eq.10.60 of Lesson 26) 
 
 Here, Pu/Puz  =  1500/2266.94  =  0.6617. So, we get 
 
 nα  = 1.0 + (0.4617/0.6)  =  1.7695 
 
Step 11:  Checking the column for safety (Eq.10.58 of Lesson 26) 
 
    1    )/(  )/( 11 ≤+ nn

uyuyuxux MMMM αα

 
 Here, (43.995/225.28)1.7695 + (39.0/72.0)1.7695  =  0.0556 + 0.3379  =  
0.3935  <  1 
 
 Hence, the column is safe to carry  Pu = 1500 kN. 
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11.27.11  Test 27 with Solutions 
 
Maximum Marks  =  50,     Maximum Time  =  30 minutes 
 
Answer all questions. 
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TQ.1: Determine the primary, additional and total moments of the column shown 
in Fig.10.27.20 for the three different cases:  

 
 (i)  When the column is braced against sidesway and is bent in single 
curvature. 
 
 (ii)  When the column is braced against sidesway and is bent in double 
curvature. 
 
 (iii)  When the column is unbraced. 
 
 Use the following data: Pu = 2000 kN, concrete grade = M 20, steel grade 
= Fe 415, unsupported length l = 8.0 m, lex = 7.0 m, ley = 6.0 m, Asc = 6381 mm2 
(12-25 mm diameter bars), lateral tie = 8 mm diameter @ 250 mm c/c, d  = 60.5 
mm, D = 500 mm and b = 400 mm. The factored moments are: 70 kNm at top 
and 40 kNm at bottom in the direction of larger dimension and 60 kNm at top and 
30 kNm at bottom in the direction of shorter dimension. 

′

 
A.TQ.1:  Solution 
 
 The following are the common steps for all three cases. 
 
Step 1:  Slenderness ratios 
 
 lex/D = 7000/500 = 14 > 12 and  ley/b = 6000/400 = 15 > 12 
 
The column is slender about both axes. 
 
Step 2: Minimum eccentricities and moments due to minimum 

eccentricities (Eq.10.3 of Lesson 21) 
 
 ex min  =  l/500 + D/30  =  8000/500 + 500/30  =  32.67 mm > 20 mm, and  
 
 ey min  =  l/500 + b/30  =  8000/500 + 400/30  =  29.34 mm > 20 mm 
 

Mx (min. ecc.)  =  2000(32.67)(10-3)  =  65.34 kNm, and 
 
 My (min. ecc.)  =  2000(29.34)(10-3)   =  58.68 kNm 
 
 
Step 3:  Additional eccentricities and moments due to additional 
eccentricities (Eq.10.84) 
 
 eax  =  D(lex/D)2/2000  =  500(7000/500)2/2000  =  49 mm  >  ex min (= 32.67 
mm) 
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 eay  =  b(ley/b)2/2000  =  400(6000/400)2/2000  =  45 mm  >  ey min (= 29.34 
mm) 
 
 Max  =  Pu(eax)  =  (2000)(49)(10-3)  =  98 kNm, and 
 
 May  =  Pu(eay)  =  (2000)(45)(10-3)  =  90 kNm 
 
 
Step 4:  Calculation of balanced loads 
 
 Using d ′ /D = 0.121 and p/fck = 3.1905/20 = 0.159525 in Table 60 of SP-
16, we have k1 = 0.20238 and k2 = 0.2755 (by linear interpolation). This gives  
 
 Pbx  =  {0.20238 + 0.2755(0.159525)}(20)(400)(500)(10-3) = 983.32 kN 
 
 Similarly, d /b = 0.15125 and p/f′ ck = 0.159525 in Table 60 of SP-16 gives 
k1 = 0.1957 and k2 = 0.198625 (by linear interpolation). So, we get 
 
 Pby  =  {0.1957 + 0.198625(0.159525)}(20)(400)(500)(10-3) = 909.54 kN 
 
 Both Pbx and Pby are smaller than Pu (= 2000 kN). Hence, modification 
factors are to be incorporated. 
 
Step 5:  Calculation of Puz (Eq.10.59 of Lesson 26) 
 
 Puz  = 0.45 fck Ag + (0.75 fy – 0.45 fck) Asc  
 

       =  0.45(20)(400)(500) + {0.75(415) – 0.45(20)}(6381)  =  3728.66 kN 
 
Step 6:  Modification factors and revised additional moments (Eqs.10.92 
and 10.93) 
 
 kax = (3728.66 - 2000)/(3728.66 – 983.32)  =  0.6297,  and 
 
 kay = (3728.66 - 2000)/(3728.66 – 909.54)  =  0.6132 
 
The revised additional moments are: 
 
 Max  =  98(0.6297)  =  61.71 kNm, and 
 
 May  =  90(0.6132)  =  55.19  kNm 
 
Now, the different cases are explained. 
 
Case (i):  Braced column in single curvature 
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 Primary moments = 0.4 M1 + 0.6 M2, but should be equal to or greater 
than 0.4 M2 and moment due to minimum eccentricities. So, we get, 
 
 Mox  =  largest of 58 kNm, 28 kNm and 65.34 kNm = 65.34 kNm 
 
 Moy  =  largest of 48 kNm, 24 kNm and 58.68 kNm = 58.68 kNm 
 
 Additional moments are Max = 61.71 kNm and May = 55.19 kNm 
(incorporating the respective modification factors). 
 
 Total moments  =  Mux  =  Mox + Max  =  65.34 + 61.71  =  127.05 kNm > 
65.34 kNm (moment due to minimum eccentricity), and 
 
 Muy  =  Moy + May  =  58.68 + 55.19  =  113.87 kNm > 58.68 kNm (moment 
due to minimum eccentricity). 
 
Case (ii):  Braced column in double curvature 
 

Primary moments = - 0.4 M1 + 0.6 M2, but should be equal to or greater 
than 0.4M2 and the moment due to minimum eccentricity. So, we get, 
 
 Mox  =  largest of 26 kNm, 28 kNm and 65.34 kNm = 65.34 kNm 
 
 Moy  =  largest of 24 kNm, 24 kNm and 58.68 kNm = 58.68 kNm 
 
 Additional moments are Max = 61.71 kNm and May = 55.19 kNm  
 
 Final moments  =  Mux  =  Mox + Max  =  65.34 + 61.71  =  127.05 kNm > 
65.34 kNm (moment due to minimum eccentricity), and 
 
 Muy  =  58.68 + 55.19  =  113.87 kNm > 58.68 kNm (moment due to 
minimum eccentricity). 
 
Case (iii):  Unbraced column 
 

Primary moments = M2 and should be greater than or equal to moment 
due to minimum eccentricity.  
 
 Mox  =  70 kNm > 65.34 kNm (moment due to minimum eccentricity), and 
 
 Moy = 60 kNm > 58.68 kNm (moment due to minimum eccentricity).  
 
 Additional moments are Max = 61.71 kNm and May = 55.19 kNm  
 
 Final moments  =  Mux  =  Mox + Max  =  70.0 + 61.71  =  131.71 kNm > 
65.34 kNm (moment due to minimum eccentricity), and 
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 Muy  =  Moy + Max  =  60.0 + 55.19  =  115.19 kNm > 58.68 kNm (moment 
due to minimum eccentricity). 
 
 
10.27.12  Summary of this Lesson 
 

This lesson mentions the reasons of increasing importance and popularity 
of slender columns and explains the behaviour of slender columns loaded 
concentrically or eccentrically. The role of minimum eccentricity that cannot be 
avoided in any practical column is explained for slender columns. The moments 
due to minimum eccentricities in both directions should be taken into account for 
a slender column loaded concentrically as it should be designed under biaxial 
bending. On the other hand, the given primary moments are also to be checked 
so that they are equal to or greater than the respective moments due to minimum 
eccentricity for all slender columns. 
 
 Both braced and unbraced columns, bent in single or double curvatures, 
are explained. The importance of modification factors of the additional moments 
due to P-Δ  effect is explained. Effective lengths and important parameter to 
determine the slenderness ratios are illustrated for different types of support 
conditions either in single column or when the column is a part of rigid frames. 
Additional moment method, a simple method for the design of slender columns, 
is explained, which is recommended in IS 456. Numerical problems in illustrative 
example, practice problem and test questions will help in understanding and 
applying the method for the design of slender columns, as stipulated in IS 456. 
Direct computations from the given equations as well as use of design charts and 
tables of SP-16 are illustrated for the design. 
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