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Instructional Objectives: 
 
At the end of this lesson, the student should be able to: 
 

• identify the regions where the beam shall be designed as a flanged and 
where it will be rectangular in normal slab beam construction,  

 
• define the effective and actual widths of flanged beams, 

 
• state the requirements so that the slab part is effectively coupled with the 

flanged beam, 
 
• write the expressions of effective widths of T and L-beams both for 

continuous and isolated cases, 
 

• derive the expressions of  C, T and Mu for four different cases depending 
on the location of the neutral axis and depth of the flange. 

 
5.10.1 Introduction 
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 Reinforced concrete slabs used in floors, roofs and decks are mostly cast 
monolithic from the bottom of the beam to the top of the slab. Such rectangular 
beams having slab on top are different from others having either no slab 
(bracings of elevated tanks, lintels etc.) or having disconnected slabs as in some 
pre-cast systems (Figs. 5.10.1 a, b and c). Due to monolithic casting, beams and 
a part of the slab act together. Under the action of positive bending moment, i.e., 
between the supports of a continuous beam, the slab, up to a certain width 
greater than the width of the beam, forms the top part of the beam. Such beams 
having slab on top of the rectangular rib are designated as the flanged beams - 
either T or L type depending on whether the slab is on both sides or on one side 
of the beam (Figs. 5.10.2 a to e). Over the supports of a continuous beam, the 
bending moment is negative and the slab, therefore, is in tension while a part of 
the rectangular beam (rib) is in compression. The continuous beam at support is 
thus equivalent to a rectangular beam (Figs. 5.10.2 a, c, f and g). 
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 The actual width of the flange is the spacing of the beam, which is the 
same as the distance between the middle points of the adjacent spans of the 
slab, as shown in Fig. 5.10.2 b. However, in a flanged beam, a part of the width 
less than the actual width, is effective to be considered as a part of the beam. 
This width of the slab is designated as the effective width of the flange. 
 
5.10.2  Effective Width 
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5.10.2.1  IS code requirements 
 
 The following requirements (cl. 23.1.1 of IS 456) are to be satisfied to 
ensure the combined action of the part of the slab and the rib (rectangular part of 
the beam). 
 
(a)  The slab and the rectangular beam shall be cast integrally or they shall be 
effectively bonded in any other manner. 
 
(b)  Slabs must be provided with the transverse reinforcement of at least 60 per 
cent of the main reinforcement at the mid span of the slab if the main 
reinforcement of the slab is parallel to the transverse beam (Figs. 5.10.3 a and 
b). 

 

 
 
 The variation of compressive stress (Fig. 5.10.4) along the actual width of 
the flange shows that the compressive stress is more in the flange just above the 
rib than the same at some distance away from it. The nature of variation is 
complex and, therefore, the concept of effective width has been introduced. The 
effective width is a convenient hypothetical width of the flange over which the 
compressive stress is assumed to be uniform to give the same compressive 
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force as it would have been in case of the actual width with the true variation of 
compressive stress.  
 
5.10.2.2  IS code specifications 
 
 Clause 23.1.2 of IS 456 specifies the following effective widths of T  and  
L-beams: 
 
(a) For T-beams, the lesser of 
  
 (i)    bf  =  lo/6  +  bw  +  6 Df
 
 (ii)  bf  =  Actual width of the flange 
 
(b) For isolated T-beams, the lesser of 
 

 (i)  bf  =  w
o

o b
/bl

l
    

4    )(
+

+
 

 
 (ii) bf  =  Actual width of the flange 
 
(c)  For  L-beams, the lesser of 
 
 (i)    bf  =  lo/12  +  bw  +  3 Df
 
 (ii)  bf  =  Actual width of the flange 
 
(d) For isolated L-beams, the lesser of 
 

 (i)  bf  =  w
o

o b
/bl

l
    

4    )(
  5.0

+
+

 

 
 (ii) bf  =  Actual width of the flange 
 
where bf  =  effective width of the flange, 
 
           lo  =  distance between points of zero moments in the beam, which is the 

effective span for simply supported beams and 0.7 times the effective 
span for continuous beams and frames, 

 
 bw =  beadth of the web, 
 
 Df =  thickness of the flange, 
 
and   b  =  actual width of the flange. 
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5.10.3  Four Different Cases 
 
 The neutral axis of a flanged beam may be either in the flange or in the 
web depending on the physical dimensions of the effective width of flange  bf, 
effective width of web  bw, thickness of flange Df and effective depth of flanged 
beam d (Fig. 5.10.4). The flanged beam may be considered as a rectangular 
beam of width  bf  and effective depth  d  if the neutral axis is in the flange as the 
concrete in tension is ignored. However, if the neutral axis is in the web, the 
compression is taken by the flange and a part of the web.  
 

 
 
 All the assumptions made in sec. 3.4.2 of Lesson 4 are also applicable for 
the flanged beams. As explained in Lesson 4, the compressive stress remains 
constant between the strains of 0.002 and 0.0035. It is important to find the depth 
h of the beam where the strain is 0.002 (Fig. 5.10.5 b). If it is located in the web, 
the whole of flange will be under the constant stress level of 0.446 fck. The 
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following gives the relation of  Df  and  d  to facilitate the determination of the 
depth h where the strain will be 0.002. 
 
 From the strain diagram of Fig. 5.10.5 b: 
 

 
u

u

x
 - hx

    
0035.0
002.0

=  

 

or 3    0 43
7u

h .
x

= =                       

(5.1) 
 
when ,  we get max ,    uu xx =
 

 dddxh u  0.197  and   0.205  , 0.227      
7
3    max , == , for  Fe 250, Fe 415 and Fe 

500, respectively. In general, we can adopt, say 
 
 h/d  =  0.2            (5.2) 
 
The same relation is obtained below from the values of strains of concrete and 
steel of Fig. 5.10.5 b. 
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x
d - x
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or 
c

cst   
    

ε
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=
ux

d            (5.3) 

 
Dividing Eq. 5.1 by Eq. 5.3 
 

 
0.0035  

0.0015    
st +

=
εd

h            (5.4) 

 
Using      (0.87   )  0.002st y sf / Eε = +   in Eq. 5.4, we get  h/d = 0.227, 0.205 and 
0.197 for Fe 250, Fe 415 and Fe 500 respectively, and we can adopt   h/d = 0.2 
(as in Eq. 5.2). 
 
 Thus, we get the same Eq. 5.2 from Eq. 5.4,   
 
 h/d  =  0.2            (5.2) 
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 It is now clear that the three values of  h  are around 0.2 d  for the three 
grades of steel. The maximum value of  h  may be  Df, at the bottom of the flange 
where the strain will be 0.002, if  Df /d = 0.2. This reveals that the thickness of the 
flange may be considered small if Df /d does not exceed 0.2 and in that case, the 
position of the fibre of 0.002 strain will be in the web and the entire flange will be 
under a constant compressive stress of 0.446  fck . 
 
 On the other hand, if Df   is >  0.2 d, the position of the fibre of 0.002 strain 
will be in the flange. In that case, a part of the slab will have the constant stress 
of 0.446  fck where the strain will be more than 0.002. 
 
 Thus, in the balanced and over-reinforced flanged beams (when  

), the ratio of Dmax ,  uu xx = f /d  is important to determine if the rectangular stress 
block is for the full depth of the flange (when Df /d does not exceed 0.2) of for a 
part of the flange (when Df /d > 0.2). Similarly, for the under-reinforced flanged 
beams, the ratio of Df /xu  is considered in place of Df /d. If Df /xu does not exceed 
0.43 (see Eq. 5.1), the constant stress block is for the full depth of the flange. If 
Df /xu > 0.43, the constant stress block is for a part of the depth of the flange. 
 
 Based on the above discussion, the four cases of flanged beams are as 
follows: 
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(i) Neutral axis is in the flange (xu < Df ), (Fig. 5.10.6 a to c) 
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(ii) Neutral axis is in the web and the section is balanced (xu = xu,max > 

Df), (Figs. 5.10.7 and 8 a to e)  
 
 It has two situations: (a) when Df /d does not exceed 0.2, the 
constant stress block is for the entire depth of the flange (Fig. 5.10.7), and 
(b) when Df /d > 0.2, the constant stress block is for a part of the depth of 
flange (Fig. 5.10.8). 
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(iii) Neutral axis is in the web and the section is under-reinforced (xu,max 
> xu > Df), (Figs. 5.10.9 and 10 a to e)  
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 This has two situations: (a) when Df /xu does not exceed 0.43, the 
full depth of flange is having the constant stress (Fig. 5.10.9), and (b) 
when Df /xu > 0.43, the constant stress is for a part of the depth of flange 
(Fig. 5.10.10). 

 
(iv) Neutral axis is in the web and the section is over-reinforced (xu > 

xu,max> Df), (Figs. 5.10.7 and 8 a to e)  
 
 As mentioned earlier, the value of xu is then taken as xu,max when 
xu> xu,max. Therefore, this case also will have two situations depending on 
Df /d not exceeding 0.2  or  >  0.2 as in (ii) above. The governing 
equations of the four different cases are now taken up. 

 
5.10.4  Governing Equations 
 
 The following equations are only for the singly reinforced T-beams. 
Additional terms involving  Mu,lim, Mu2,  Asc ,  Ast1  and  Ast2 are to be included from 
Eqs. 4.1 to 4.8 of  sec. 4.8.3 of Lesson 8 depending on the particular case. 
Applications of these terms are explained through the solutions of numerical 
problems of doubly reinforced T-beams in Lessons 11 and 12. 
 
5.10.4.1  Case (i): When the neutral axis is in the flange (xu < Df ), (Figs. 
5.10.6 a to c) 
 
 Concrete below the neutral axis is in tension and is ignored. The steel 
reinforcement takes the tensile force (Fig. 5.10.6). Therefore, T and L-beams are 
considered as rectangular beams of width  bf  and effective depth  d. All the 
equations of singly and doubly reinforced rectangular beams derived in Lessons 
4 to 5 and 8 respectively, are also applicable here. 
 
5.10.4.2  Case (ii): When the neutral axis is in the web and the section is 
balanced (xu,max > Df ), (Figs. 5.10.7 and 8 a to e) 
 
(a) When  Df /d  does not exceed  0.2, (Figs. 5.10.7 a to e)  
 
 As explained in sec. 5.10.3, the depth of the rectangular portion of the 
stress block (of constant stress = 0.446 fck) in this case is greater than Df (Figs. 
5.10.7 a, b and c). The section is split into two parts: (i) rectangular web of width 
bw and effective depth d, and (ii) flange of width (bf - bw) and depth Df  (Figs. 
5.10.7 d and e). 
      
Total compressive force  =  Compressive force of rectangular beam of width  bw 
and                                            depth  d  +  Compressive force of rectangular 
flange of width (bf - bw) and depth  Df . 
 
Thus, total compressive force 
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 C  =  0.36 fck  bw  xu, max  +  0.45  fck (bf - bw) Df       (5.5) 
 
(Assuming the constant stress of concrete in the flange as  0.45  fck in place of  
0.446 fck ,as per G-2.2 of IS 456), and the tensile force 
 
 T  =  0.87  fy  Ast           (5.6) 
 
The lever arm of the rectangular beam (web part) is (d - 0.42 xu, max) and the 
same for the flanged part is (d - 0.5  Df ). 
 
So, the total moment =  Moment due to rectangular web part + Moment due to 
rectangular flange part 
 
or Mu  =  0.36  fck bw xu, max (d - 0.42 xu, max ) + 0.45  fck (bf - bw) Df (d - Df /2) 
 
or Mu  =  0.36(xu, max /d){1 - 0.42( xu, max/d)} fck bw d2 + 0.45  fck(bf - bw) Df(d - Df 
/2) 
              (5.7) 
Equation 5.7 is given in G-2.2 of IS 456. 
 
(b)  When Df /d  >  0.2, (Figs. 5.10.8 a to e) 
 
 In this case, the depth of rectangular portion of stress block is within the 
flange (Figs. 5.10.8 a, b and c). It is assumed that this depth of constant stress 
(0.45  fck) is yf, where 
 
 yf  =  0.15 xu, max + 0.65  Df,  but not greater than  Df        
(5.8) 
 
The above expression of yf  is derived in sec. 5.10.4.5. 
 
 As in the previous case (ii a), when Df /d  does not exceed 0.2, equations 
of  C, T  and Mu are obtained from Eqs. 5.5, 6 and 7 by changing Df  to  yf. Thus, 
we have (Figs. 5.10.8 d and e) 
 

C  =  0.36 fck  bw  xu, max  +  0.45  fck (bf - bw) yf       (5.9) 
 
 T  =  0.87  fy  Ast          
(5.10) 
 
The lever arm of the rectangular beam (web part) is (d - 0.42 xu, max ) and the 
same for the flange part is (d - 0.5  yf ). Accordingly, the expression of  Mu is as 
follows:   
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 Mu  =  0.36(xu, max /d){1 - 0.42( xu, max/d)} fck bw d2 + 0.45  fck(bf - bw) yf(d - yf 
/2) 
             
(5.11) 
 
5.10.4.3  Case (iii): When the neutral axis is in the web and the section is 
under-reinforced (xu >  Df ), (Figs. 5.10.9 and 10 a to e)  
 
(a) When Df / xu does not exceed  0.43, (Figs. 5.10.9 a to e) 
 
 Since Df does not exceed  0.43 xu   and  h (depth of fibre where the strain 
is 0.002) is at a depth of 0.43 xu, the entire flange will be under a constant stress 
of 0.45 fck (Figs. 5.10.9 a, b and c). The equations of  C, T  and Mu  can be 
written in the same manner as in sec. 5.10.4.2, case (ii a). The final forms of the 
equations are obtained from Eqs. 5.5, 6 and 7 by replacing  xu, max by xu. Thus, 
we have (Figs. 5.10.9 d and e) 
 

C  =  0.36 fck  bw  xu  +  0.45  fck (bf - bw) Df          
(5.12) 
 
 T  =  0.87  fy  Ast          
(5.13) 
 
 Mu  =  0.36(xu /d){1 - 0.42( xu /d)} fck bw d2 + 0.45  fck(bf - bw) Df (d - Df /2)   
(5.14) 
 
(b) When Df / xu >  0.43, (Figs. 5.10.10 a to e) 
 
 Since  Df  >  0.43 xu   and  h (depth of fibre where the strain is 0.002) is at 
a depth of   0.43 xu, the part of the flange having the constant stress of 0.45  fck is 
assumed as  yf  (Fig. 5.10.10 a, b and c). The expressions of yf , C, T  and  Mu  
can be written from Eqs. 5.8, 9, 10 and 11 of sec. 5.10.4.2, case (ii b), by 
replacing  xu,max by xu. Thus, we have (Fig. 5.10.10 d and e) 
 
 yf  =  0.15 xu +  0.65  Df,  but not greater than  Df      
(5.15) 
 

C  =  0.36 fck  bw  xu  +  0.45  fck (bf - bw) yf          
(5.16) 
 
 T  =  0.87  fy  Ast          
(5.17) 
 
 Mu  =  0.36(xu /d){1 - 0.42( xu /d)} fck bw d2 + 0.45  fck(bf - bw) yf (d - yf /2)   
(5.18) 
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5.10.4.4  Case (iv):  When the neutral axis is in the web and the section is 
over-reinforced (xu >  Df ), (Figs. 5.10.7 and 8 a to e) 
 
 For the over-reinforced beam, the depth of neutral axis  xu  is more than   
xu, max  as in rectangular beams. However, xu  is restricted up to  xu,max. Therefore, 
the corresponding expressions of   C, T  and  Mu  for the two situations (a) when 
Df / d does not exceed 0.2  and (b)  when Df / d >  0.2  are written from Eqs. 5.5 
to 5.7 and 5.9 to 5.11, respectively of sec. 5.10.4.2 (Figs. 5.10.7 and 8). The 
expression of yf for (b) is the same as that of Eq. 5.8. 
 
(a)  When  Df /d  does not  exceed 0.2 (Figs. 5.10.7 a to e) 
 
 The equations are:  
 
 C  =  0.36 fck  bw  xu, max  +  0.45  fck (bf - bw) Df       (5.5) 
 
 T  =  0.87  fy  Ast           (5.6) 
 
 Mu  =  0.36(xu, max /d){1 - 0.42( xu, max/d)} fck bw d2 + 0.45  fck(bf - bw) Df(d - Df 
/2) 
              (5.7) 
 
(b)  When Df /d  >  0.2 (Figs. 5.10.8 a to e) 
 
 yf  =  0.15 xu, max + 0.65  Df,  but not greater than  Df        
(5.8) 
 

C  =  0.36 fck  bw  xu, max  +  0.45  fck (bf - bw) yf       (5.9) 
 
 T  =  0.87  fy  Ast          
(5.10) 
 
 Mu  =  0.36(xu, max /d){1 - 0.42( xu, max/d)} fck bw d2 + 0.45  fck(bf - bw) yf(d - yf 
/2) 
             
(5.11) 
 
 It is clear from the above that the over-reinforced beam will not have 
additional moment of resistance beyond that of the balanced one. Moreover, it 
will prevent steel failure. It is, therefore, recommended either to re-design or to 
go for doubly reinforced flanged beam than designing over-reinforced flanged 
beam. 
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5.10.4.5 Derivation of the equation to determine yf , Eq. 5.8, Fig. 5.10.11 
 

 
 
 Whitney's stress block has been considered to derive Eq. 5.8. Figure 
5.10.11 shows the two stress blocks of IS code and of Whitney. 
 
 yf  =  Depth of constant portion of the stress block when Df /d  >  0.2.  As yf   
is a function of   xu  and  Df  and let us assume 
 
 yf   =  A  xu  +  B  Df            
(5.19) 
 
where  A  and  B  are to be determined from the following two conditions: 
 
 (i)   yf   =   0.43  xu ,  when  Df  =  0.43  xu        
(5.20) 
 
 (ii)  yf   =   0.8 xu ,     when  Df  =  xu           
(5.21) 
 
Using the conditions of Eqs. 5.20 and 21 in Eq. 5.19, we get  A  =  0.15  and  B  =  
0.65. Thus, we have 
 
 yf   =   0.15 xu  +  0.65  Df             
(5.8) 
 
 
5.10.5   Practice Questions and Problems with Answers  
 
Q.1:  Why do we consider most of the beams as T or L-beams between the 

supports and rectangular beams over the support of continuous span? 
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A.1:  Sec. 5.10.1,  first paragraph. 
 
Q.2:  Draw cross-section of a beam with top slab and show the actual width and 

effective width of the T-beam. 
 
A.2:  Fig. 5.10.2 b. 
 
Q.3:  State the requirements with figures as per IS 456 which ensure the 

combined action of the part of the slab and the rib of flanged beams. 
 
A.3:  Sec. 5.10.2.1(a) and (b), Figure 5.10.3 (a and b). 
 
Q.4:  Define “effective width” of flanged beams.  
 
A.4:  Effective width is an imaginary width of the flange over which the 

compressive stress is assumed to be uniform to give the same 
compressive force as it would have been in case of the actual width with 
the true variation of compressive stress (Fig. 5.10.4 of text). 

 
Q.5:  Write the expressions of effective widths of T  and  L-beams and isolated 
beams.  
 
A.5:  Sec. 5.10.2.2. 
 
Q.6:  Name the four different cases of flanged beams. 
 
A.6:  The four different cases are:  
 
 (i)   When the neutral axis is in the flange (xu < Df) (discussed in sec. 
5.10.4.1). 
 

(ii) When the neutral axis is in the web and the section is balanced (xu,max > 
Df). It has two situations: (a) when Df /d does not exceed 0.2 and (b) 
when  Df /d > 0.2 (discussed in sec. 5.10.4.2). 

 
(iii) When the neutral axis is in the web and the section is under-reinforced 

(xu,max > xu > Df). It has two situations: (a) when  Df /xu does not exceed 
0.43 and (b) when  Df /xu > 0.43 (discussed in sec. 5.10.4.3). 

 
(iv) When the neutral axis is in the web and the section is over-reinforced 

(xu > xu,max> Df). It has two situations: (a) when  Df /d does not exceed 
0.2 and (b) when  Df /d > 0.2 (discussed in sec. 5.10.4.4). 

 
Q.7:  (a) Derive the following equation: 
 
 yf  =  0.15 xu,max + 0.65 Df
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 (b) State when this equation is to be used.  
             
            (c) What is the limiting value of  yf ? 
 
A.7:  (a) For derivation of the equation, see sec. 5.10.4.5.  
 
            (b) This equation gives the depth of flange over which the stress is 

constant at 0.45 fck (i.e. strain is more than 0.002) when the neutral axis is 
in web. This occurs when  Df /d  >  0.2 for balanced beam and when  Df /xu  
>  0.43 for under-reinforced beams.  

 
            (c) Limiting value of  yf  is  Df. 
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5.10.7  Test 10 with Solutions  
 
Maximum Marks = 50,      Maximum Time = 30 minutes 
 
Answer all questions. 
 
TQ.1:   Why do we consider most of the beams as T or L- beams between the 

supports and rectangular beams over the support of continuous span? 
(5 marks) 

A.TQ.1: Sec. 5.10.1,  first paragraph. 
  

TQ.2: Define “effective width” of flanged beams.  
(5 marks) 

A.TQ.2: Effective width is a convenient hypothetical width of the flange over 
which the compressive stress is assumed to be uniform to give the same 
compressive force as it would have been in case of the actual width with 
the true variation of compressive stress (Fig. 5.10.4 of text).    

  
TQ.3:  State the requirements with figures as per IS 456 which ensure the 

combined action of the part of the slab and the rib of flanged beams. 
(10 marks) 

A.TQ.3: Sec. 5.10.2.1(a) and (b), Figure 5.10.3 (a and b). 
 
TQ.4:  Write the expressions of effective widths of T  and  L-beams and isolated 
beams.  

(10 marks) 
A.TQ.4: Sec. 5.10.2.2. 
 
TQ.5:  Name the four different cases of flanged beams. 

(10 marks) 
A.TQ.5: The four different cases are  
 
 (i)   When the neutral axis is in the flange (xu < Df) (discussed in sec. 
5.10.4.1). 
 

(ii) When the neutral axis is in the web and the section is balanced. It has 
two situations: (a) when Df /d does not exceed 0.2 and (b) when  Df /d 
> 0.2 (discussed in sec. 5.10.4.2). 
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(iii) When the neutral axis is in the web and the section is under-
reinforced. It has two situations: (a) when  Df /xu does not exceed 0.43 
and (b) when  Df /xu > 0.43 (discussed in sec. 5.10.4.3). 

 
(iv) When the neutral axis is in the web and the section is over-reinforced. 

It has two situations: (a) when  Df /d does not exceed 0.2 and (b) when  
Df /d > 0.2 (discussed in sec. 5.10.4.4). 

 
TQ.6:  (a) Derive the following equation: 
 
 yf  =  0.15 xu,max + 0.65 Df
 
 (b) State when this equation is to be used.  
             
            (c) What is the limiting value of  yf ? 

(5 + 3 + 2 = 10 marks) 
A.TQ.6: (a) For derivation of the equation, see sec. 5.10.4.5.  
 
            (b) This equation gives the depth of flange over which the stress is 

constant at 0.45 fck (i.e. strain is more than 0.002) when the neutral axis is 
in web. This occurs when  Df /d  >  0.2 for balanced beam and when  Df /xu  
>  0.43 for under-reinforced beams.  

 
            (c) Limiting value of  yf  is  Df. 

 
5.10.8 Summary of this Lesson  
 
 This lesson illustrates the practical situations when slabs are cast 
integrally with the beams to form either T and L-beams or rectangular beams.  
The concept of effective width of the slab to form a part of the beam has been 
explained. The requirements as per IS 456 have been illustrated so that the 
considered part of the slab may become effective as a beam. Expressions of 
effective widths for different cases of T and L-beams are given. Four sets of 
governing equations for determining C, T and Mu are derived for four different 
cases. These equations form the basis of analysis and design of singly and 
doubly reinforced T and L- beams. 
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