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Module 5 

Lecture 1 

Flow through unsaturated soils 

 

The flow of water in soils is governed by the total head, as mentioned earlier, which is 

expressed as 

H = hg + hm + ho 

 where hg is the gravitational head, hm the matric suction head, and ho the osmotic suction 

head. In the absence of gravitational head (horizontal flow) and the presence of solute in 

soils, matric suction head controls the flow of water in soils. Flow through soils can be 

either steady state or unsteady state (transient) depending on the type of soil and the 

boundary conditions. Steady-state flow is a time invariant flow as shown in the Fig. 5.1. 

 
Fig. 5.1 Conceptual illustration describing the steady state heat conduction in solids 

 

A metallic object is heated at two ends by maintaining two different, but constant 

temperatures. Conduction of heat in the object is governed by Fourier’s law. The heat 

distribution in the object can be measured by sensors (thermometers) placed along the 

length of the object as shown in figure #. It can be observed that the heat distribution with 

space becomes constant and time-independent after certain time. This state is called the 

steady state. Similarly, the steady state and transient flows take place in saturated soils. 

However, can the steady state flow take place in unsaturated soils? The answer to this 

question is affirmative. Steady state flows can take place in unsaturated soils when a 

constant matric suction head values are maintained at the boundaries as shown in the Fig. 

5.2a – 5.2b.  
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Fig. 5.2a Steady state infiltration through a horizontal soil column 

 
Fig. 5.2b Steady state evaporation through top layers of the soil 

 

The steady state flow can takes place in a partially saturated soil column when the flow 

boundaries are time invariant as shown in Fig. 5.#a. As it was shown in Fig. 5.#b, a 

steady state flow can takes place in soils situated between the ground water table and top 

surface due to the evaporation. Similarly, it is also possible to maintain a constant water 

content ( < s) in unsaturated soils by applying low hydraulic gradient across the soil 

sample. For example, consider a pore structure in a soil as shown in the Fig. 5.3. 

 

 
Fig. 5.3. Illustration of pore water channel in a partly saturated soil 
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Application of small gradients can drive the water flow through the thick water films in 

the pore space, but the gradients may not be sufficient to drive the air pockets out of the 

system (saturation). Therefore, a constant (time-independent) flows take place in 

unsaturated soils with water contents less that the saturation.  

 

The head distribution in steady state is linear which can be easily verified. The Darcy’s 

law for steady flow through saturated soils can be written as 

s s

dh
q k i k

dx
       (5.1) 

The head distribution can be obtained by rearranging the terms and integrating along the 

flow length 

0 0

x h

sq dx k dh    (5.2) 

Therefore, 

s

q
h x

k
   
 

 (5.3) 

which describes a linear relationship between the head and the spatial distance. However, 

what is the head (i.e., matric suction head) distribution in unsaturated soils? It is 

important to qualitatively distinguish the difference in the head distribution in saturated 

and unsaturated soils. The head distribution in steady state unsaturated soils is evaluated 

and analyzed in these lectures. 

 

Horizontal steady-state flow 

Consider a one-dimensional and steady flow through a homogeneous soil column as 

shown in the Fig. 5.4.  
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Fig. 5.4. Illustration of 1D steady-state flow through unsaturated soils 

Flow through unsaturated soils is assumed to be described by modified Darcy’s law 

which is expressed as 

  
dh

q k h
dx

  (5.4) 

where k is the hydraulic conductivity expressed in functional form for unsaturated soils, h 

is the total energy potential (total head), and x is the distance measured in the direction of 

flow. The total energy potential is sum of the matric suction head and the elevation head 

i.e., hm + x in the absence of solute.  

If we assume that the Gardner’s (1958) functional form for the hydraulic conductivity is 

valid 

 The Darcy’s law for steady flow in unsaturated soils may be written as 

   exp m
s m

dh
q k h

dx
 (5.5) 

where a is the fitting parameter related to air entry head (1/cm). Integrating the above 

expression and imposing the boundary condition results 

   
0 0

exp
mhx

s m mq dx k h dh  (5.6) 

which gives to 





 
  

 

1
ln 1m

s

q x
h

k
 (5.7) 

which is a non-linear distribution when a non-linear functional relationship is assumed 

for hydraulic conductivity.  
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Similarly, one can also assume a simple linear relationship (Richards, 1931) for hydraulic 

conductivity and derive the expression for head distribution. The hydraulic conductivity 

function by Richards (1931) is given as 

mk a bh    (5.8) 

The discharge flux can be expressed by 

  m
m

dh
q a bh

dx
     (5.9) 

After simplification and integration, 

       
2

0 0
2

mhx

m
m m m

bh
q dx a bh dh ah  (5.10) 

which can be expressed in the quadratic form as 

  
2

0
2

m
m

bh
ah qx  (5.11) 

which is has two solutions (roots) as shown below 

    21
2mh a a bqx

b
 (5.12) 

Substituting the lower boundary (x = 0, h = 0) provides the correct root which is 

    21
2mh a a bqx

b
 (5.13) 

which is a non-linear distribution. 

Therefore, the head distribution in unsaturated soils is non-linear irrespective of the 

functional form assumed for hydraulic conductivity. 
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Lecture 2 

 

Example problem on steady state horizontal flow: 

Steady water flow is taking place in a horizontal column. The time-invariant boundary 

conditions are given in Fig. 5.5.  

 

Fig. 5.5. Problem description on flow through a horizontal column 

Find out the head distribution along the column length when the following functional 

relationships are assumed for hydraulic conductivity 

(i)  exps mk k h   

where ks = 0.1 cm/day and a = 0.001/cm 

(ii) mk a bh   

where a = 8 cm/day, b = 0.02/day 

Solution: 

(i)  The suction head distribution can be expressed as (from eq. 5.7) 





 
  

 

1
ln 1m

s

q x
h

k
 

where hydraulic conductivity is assumed to vary  exps mk k h . 

It can be observed that the discharge flux is required to estimate the suction head 

distribution. It can be estimated by integrating the flux in the entire column. Therefore, 
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 


  
100 360

0 0

exp 0.001s m mq dx k h dh  

after solving, 

q = 0.302 cm/day 

Therefore,   1000ln 1 0.00302mh x  

Considering the similar approach, 

(ii) The suction head distribution is     21
2mh a a bqx

b
 (eq. 5.13) when 

mk a bh  is used. The flux can be obtained by solving 

 


   
100 360

0 0

8 0.02 m mq dx h dh  

which gives, q = 15.84 cm/day 

Therefore,     50 8 64 0.6336mh x  

The head distribution by both the methods and the functional relationships for the 

conductivity are given in Fig. 5.6a-5.6b. 

 

Fig. 5.6a. Suction head distribution in the horizontal column by different methods 
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Fig. 5.6b. Assumed hydraulic conductivity functional relationships 

The head distribution is completely different by both the methods due to the wide 

variation in the assumed conductivity relationships. The conductivities vary in several 

orders by the assumed relationships. The discharge fluxes got adjusted to satisfy the 

boundary conditions. Therefore, a correct hydraulic conductivity functional relationship 

is required for estimating an accurate head distribution. 

Vertical steady state flow 

The driving force for vertical flows in unsaturated soils is the combination of gravity and 

the suction head. The gravity, therefore, has a subsequent influence on the spatial 

distribution of the suction head. In case of one-dimensional vertical flow the governing 

flow equation can be written as 

 
   

 
1mdh

q k
dz

  (5.14) 

where z is the spatial distance. The suction head distribution can be obtained by 

rearranging the terms as 

1
mdh

dz
q k

 


 (5.15) 

Integration of the equation Eq. (5.10) and substitution of the boundary conditions: 

 hm = 0 at z = 0 and hm = h at z = Z gives  
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 
 


 


0

1

1

mh

mZ dh
q k

 (5.16) 

which can be solved to obtain the profiles of the matric suction head, hm, or total head if 

the steady flux q, the soil-water characteristic curve, and the hydraulic conductivity 

function are known. The solution can be obtained numerically if we write the above 

equation in discrete form as shown in the following equation 

 

 1 1

n
m i

j i

h
z

q k






 


  (5.17) 

where n is the number of discrete data points selected from the SWCC and hydraulic 

conductivity function. 

Rate of capillary rise 

The concept of capillary rise in unsaturated soils was described in the earlier modules. 

The rate of capillary rise can be appreciated after going through the flow through 

unsaturated soils in this module. Terzaghi in his infamous work (1943) provided a simple 

relationship for rate of capillary rise in soils. Terzaghi assumed that Darcy’s law is valid 

for describing the steady flow through unsaturated soils which can be expressed as 

  sq k i  

where the hydraulic conductivity of the wetting front is assumed to be described by ks. 

Further, the gradient is assumed to be 
 

 
 

ch z
z

 where hc is the capillary rise as shown in 

the following figure #.  

### 

Therefore, the discharge flux becomes 

 
   

 

c
s

h z
q k

z
 

or 

 
   

 

c
s

h zdz
n k

dt z
 

solving the equation for z results, 
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 
  

 
 

s

c

kz
dz dt

h z n
 

which can be simplified to 

 
   

 
  

s
c

c

kdz
dz h dt

h z n
 

Therefore, 

     ln s
c c

k t
z h h z c

n
 

where c is the constant of integration. The constant can be obtained by substituting the 

initial condition (i.e., t = 0 and z = 0) which is 

    
     

    
lnc c

s c c

nh h z
t

k t h z h
  (5.18) 

which is an implicit expression describing the rate of rise. However, the assumption of 

using ks for unsaturated conductivity causes the predicted rate of capillary rise a higher 

value. If we assume Gardner’s (1958) expression for describing the hydraulic 

conductivity function the following closed-form expression can be obtained (Lu and 

Likos, 2004) 

  


 

 
   

   
 

1
1

0 0

ln
! 1

s j sj jm
js c c

c
j s c

k t h z h
h

n j j s h z
  (5.19) 

which assumes the Terzaghi’s equation if the index m is set to zero. 

  



NPTEL – Civil Engineering – Unsaturated Soil Mechanics 

Joint initiative of IITs and IISc – Funded by MHRD                                                                   Page 11 of 18 

 

Lecture 3 

Transient flow 

 

The flow of water in unsaturated soils may vary both spatially and temporally due to 

several factors. Time dependent changes in the boundary conditions (infiltration-

evaporation) can significantly influence the flow mechanism. Such changes are 

accounted by the theoretical models by considering these changes in terms of boundary 

conditions for the soil domain. Other effects due to soil hydraulic characteristics are 

captured in the governing equation.  

The governing one-dimensional, transient flow equation in soils can be expressed as 

 w
w

q

x t

 



 

 
  (5.20) 

where  is the density of water (kg/m3) and q is the water flux (m/s) in the x direction. 

In case of flow through saturated soils, the volumetric water content is equal to the 

porosity, n, of the soil. After combining the Eq. (5.20) with Darcy’s equation and writing 

n for   gives 

2

2

h h
D

x t

 


 
 (5.21) 

where h is the total head, D the hydraulic diffusivity (m2/s), which is equal to sS k , and Ss 

the specific storage. The specific storage is defined as  

 s w s wS g n     (5.22) 

where s is the bulk compressibility of soil (m2/N) and w the compressibility of pore 

water (m2/N).  

The flow through unsaturated soils can be described using the Darcy’s law as 

  1m
m

h
k h

z z t

    
   

    
 (5.23) 

where the additional term added to suction gradient is the gradient due to elevation. 

Using the chain rule, 

  1m m
m

m

h h
k h

z z h t

     
   

     
 (5.24) 
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where mh  is the slope of the soil water characteristic curve, which is called specific 

moisture capacity, C. As SWCC is non-linear, C is expressed as a function of matric 

suction head. The resulting equation is called Richards’ equation which is written as 

   1m m
m

h h
k h C

z z t


     
   

    
 (5.25) 

The Richards’ equation may often be expressed in terms of volumetric water content as 

shown in the following equation 

   D k
z z t

 
 

   
     

 (5.26) 

The solution to Richards’ equation with appropriate boundary and initial conditions 

provides the spatial and temporal distribution of matric suction or moisture content in the 

soil. As implied, three characteristic functions are required for the solution of Eq. (5.25). 

The function  C  imposes the existence of smooth and well-defined soil-water 

characteristic curve. The following figures, Fig. 5.7-5.8, illustrate the nature of specific 

moisture capacity function for a well-defined and smooth SWCC. 

 

Fig. 5.7. Smooth and well-defined SWCC 
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Fig. 5.8. Specific moisture capacity function for the SWCC defined in Fig. 5.2. 

It is interesting to note that the magnitude of specific moisture capacity reaches a 

maximum value of 0.0025 cm-1 at volumetric water content value 0.3. This reflects the 

fact that for each unit change in matric suction, the change in volumetric water content is 

0.0025. It is a simple exercise to compare with the specific moisture capacity functions 

for coarse and fine-grained soils having contrasting pore size distributions. The relatively 

sharp maximum will be observed in case of coarse grained soils due to their narrow pore 

size distribution, where the majority of the pores are drained over a narrow range of 

suction. 

Transient horizontal flow 

The transient moisture flow through an initially dry unsaturated soil column was analyzed 

by analytical solutions several decades ago by assuming the suction head gradient in the 

soil beyond the wetting front is assumed to be zero in both space and time. Thus, the 

water content and corresponding hydraulic conductivity of the soil beyond the wetting 

front can be assumed are constant in both space and time. Figure 5.9 illustrates the 

conceptual problem. 
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Fig. 5.9. Conceptual transient horizontal infiltration problem (After, Lu and Likos, 2004) 

The infiltration rate can be predicted using the Darcy’s first law which states 

s

dh
q k

dx
    

which can be written as 

  0ini
s ini s

h hdx
k

dt x
 

 
    

 
 

where hini is the suction head at the wetting front, h0 the head (h0 ≥ 0) behind the wetting 

front, ks the hydraulic conductivity behind the wetting front, which is often assumed to be 

equal to the saturated hydraulic conductivity. After integrating over the wetting front, 

0

0 0

x t

ini
s

h h
xdx k dt

x

 
   

 
   

After the simplification, 

 

 
  

 

02 ini
s

s ini

h hx
k

t
  (5.26) 

However, most soils do not exhibit such sharp wetting front behavior. The partial 

differential equation given in 5.19 has to be solved for accurate prediction of moisture 

distribution in soils by numerical methods.  
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Lecture 4 

 

Determination of water diffusivity: 

A simple approach is given in some textbooks (Refer: Lu and Likos, 2004; Rumynin, 

2012*) using “Boltzmann transformation” for flow through horizontal columns. This 

transformation allows the partial differential equation to transform into the ordinary 

differential equation. The governing equation for horizontal flows can be written as 

 
 


   

     
D

t x x  (5.28) 

where the boundary conditions are (x=0, t) =  s and (x=∞, t) = 0. The independent 

variables of this equation (i.e., x, t) can be transformed into variable  by the following 

substitution 

   ,x t     (5.29) 

where x t  is the Boltzmann transformation. Replacing the independent variables in 

eq. 5.28 with   results the following ordinary differential equation 

 3

2

1

2

Dd d d

x d d dt t

  

  

 
   

 
  

after simplification, 

  0
2

d d d
D

d d d

  


  

 
  

 
 (5.30) 

where td  is substituted for dx  and 2 32x d   is substituted for dt. The boundary 

conditions transform into 

   0 ;  s ini           (5.31) 

The integration of the governing equation yields the determination of water diffusivity 

function using the following expression 

   
1

2

s

ini

d
D d

d



 


   


     (5.32) 

which can be solved simple iteration methods. 
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Transient vertical infiltration 

The following figure (Fig. 5.10) illustrates the conceptual problem of one-dimensional 

vertical infiltration through unsaturated soil column. Both suction and gravity play a role 

in the wetting front advancement in this case. The time of infiltration can be obtained a 

similar approach used for the horizontal case as shown below: 

 s ini s

dz dh
q k

dt dz
       

  0 0 1ini ini
s ini s s

h z h h hdz
k k

dt z z z
 

    
        

   
 

Solving for infiltration rate 

  00 0

 

1

t z

s

inis ini

k dz
dt

h h

z

 


  
 

 

   

The integration yields the following solution 

 
 

 

 
0

0

0

 ln
inis

ini

s ini ini

z h hk
t z h h

h h 

  
       

 (5.33) 

which is very similar to what Terzaghi (1943) had derived for the rate of capillary rise. It 

appears that this derivation had inspired Terzaghi for his derivation. 
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Fig. 5.10. Conceptual transient vertical infiltration problem (after, Lu and Likos, 2004) 

The wetting front for downward infiltration advances nonlinearly as against the 

horizontal flow due to the negligible effect of gravity. Due to this reason, vertical 

infiltration advances faster as compared to the horizontal infiltration in coarse-grained 

soils. 

Accurate prediction of water flow through unsaturated soils is possible with the current 

computational advancement. The Richards’ equation can be numerically solved by 

considering appropriate hydraulic characteristic functions as shown below.  

The Richards’ equation for vertical infiltration through a homogeneous soil can be 

written as 

  1mh
k

t z z




     
    

    
  

which can be approximated using the finite-difference numerical technique using the grid 

shown in Fig. 5.11 as 

 
 

 
 1

1 2 1 2

1 2 1 2

1
1 1

n n
m i m ii i

i i

h h
k k

t z z z

  
 


 

 

     
        

       
    
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Fig. 5.11. A finite difference reference grid 
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
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which can be solved along with proper boundary and initial conditions. 
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