
Transportation Systems Engineering 3. Traffic Stream Models

Chapter 3

Traffic Stream Models

3.1 Overview

To figure out the exact relationship between the traffic parameters, a great deal of research

has been done over the past several decades. The results of these researches yielded many

mathematical models. Some important models among them will be discussed in this chapter.

3.2 Greenshield’s macroscopic stream model

Macroscopic stream models represent how the behaviour of one parameter of traffic flow changes

with respect to another. Most important among them is the relation between speed and density.

The first and most simple relation between them is proposed by Greenshield. Greenshield

assumed a linear speed-density relationship as illustrated in figure 3:1 to derive the model. The

equation for this relationship is shown below.

v = vf −

[

vf

kj

]

.k (3.1)

where v is the mean speed at density k, vf is the free speed and kj is the jam density. This

equation ( 3.1) is often referred to as the Greenshield’s model. It indicates that when density

becomes zero, speed approaches free flow speed (ie. v → vf when k → 0). Once the relation

between speed and flow is established, the relation with flow can be derived. This relation

between flow and density is parabolic in shape and is shown in figure 3:3. Also, we know that

q = k.v (3.2)

Now substituting equation 3.1 in equation 3.2, we get

q = vf .k −

[

vf

kj

]

k2 (3.3)

Dr. Tom V. Mathew, IIT Bombay 3.1 February 19, 2014



Transportation Systems Engineering 3. Traffic Stream Models

density (k)

sp
ee

d
 u

kjam

uf

k0

Figure 3:1: Relation between speed and density
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Figure 3:2: Relation between speed and flow
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Figure 3:3: Relation between flow and density 1

Similarly we can find the relation between speed and flow. For this, put k = q

v
in equation 3.1

and solving, we get

q = kj.v −

[

kj

vf

]

v2 (3.4)

This relationship is again parabolic and is shown in figure 3:2. Once the relationship between

the fundamental variables of traffic flow is established, the boundary conditions can be derived.

The boundary conditions that are of interest are jam density, free-flow speed, and maximum

flow. To find density at maximum flow, differentiate equation 3.3 with respect to k and equate

it to zero. ie.,

dq

dk
= 0

vf −

vf

kj

.2k = 0

k =
kj

2

Denoting the density corresponding to maximum flow as k0,

k0 =
kj

2
(3.5)

Therefore, density corresponding to maximum flow is half the jam density. Once we get k0, we

can derive for maximum flow, qmax. Substituting equation 3.5 in equation 3.3

qmax = vf .
kj

2
−

vf

kj

.

[

kj

2

]2

= vf .
kj

2
− vf .

kj

4

=
vf .kj

4
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Thus the maximum flow is one fourth the product of free flow and jam density. Finally to get

the speed at maximum flow, v0, substitute equation 3.5 in equation 3.1 and solving we get,

v0 = vf −
vf

kj

.
kj

2

v0 =
vf

2
(3.6)

Therefore, speed at maximum flow is half of the free speed.

3.3 Calibration of Greenshield’s model

In order to use this model for any traffic stream, one should get the boundary values, especially

free flow speed (vf ) and jam density (kj). This has to be obtained by field survey and this is

called calibration process. Although it is difficult to determine exact free flow speed and jam

density directly from the field, approximate values can be obtained from a number of speed and

density observations and then fitting a linear equation between them. Let the linear equation

be y = a + bx such that y is density k and x denotes the speed v. Using linear regression

method, coefficients a and b can be solved as,

b =
n

∑n

i=1
xiyi −

∑n

i=1
xi.

∑n

i=1
yi

n.
∑n

i=1
xi

2
− (

∑n

i=1
xi)2

(3.7)

a = ȳ − bx̄ (3.8)

Alternate method of solving for b is,

b =

∑n

i=1
(xi − x̄)(yi − ȳ)

∑n

i=1
(xi − x̄)2

(3.9)

where xi and yi are the samples, n is the number of samples, and x̄ and ȳ are the mean of xi

and yi respectively.

Numerical example

For the following data on speed and density, determine the parameters of the Greenshield’s

model. Also find the maximum flow and density corresponding to a speed of 30 km/hr.

k v

171 5

129 15

20 40

70 25
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x(k) y(v) (xi − x̄) (yi − ȳ) (xi − x̄)(yi − ȳ) (xi − x̄2)

171 5 73.5 -16.3 -1198.1 5402.3

129 15 31.5 -6.3 -198.5 992.3

20 40 -77.5 18.7 -1449.3 6006.3

70 25 -27.5 3.7 -101.8 756.3

390 85 -2947.7 13157.2

Solution Denoting y = v and x = k, solve for a and b using equation 3.8 and equation 3.9.

The solution is tabulated as shown below. x̄ = Σx
n

= 390

4
= 97.5, ȳ = Σy

n
= 85

4
= 21.3. From

equation 3.9, b = −2947.7
13157.2

= -0.2 a = y − bx̄ = 21.3 + 0.2×97.5 = 40.8 So the linear regression

equation will be,

v = 40.8 − 0.2k (3.10)

Here vf = 40.8 and
vf

kj
= 0.2. This implies, kj = 40.8

0.2
= 204 veh/km. The basic parameters of

Greenshield’s model are free flow speed and jam density and they are obtained as 40.8 kmph

and 204 veh/km respectively. To find maximum flow, use equation 3.6, i.e., qmax = 40.8×204

4
=

2080.8 veh/hr Density corresponding to the speed 30 km/hr can be found out by substituting

v = 30 in equation 3.10. i.e, 30 = 40.8 - 0.2 × k Therefore, k = 40.8−30

0.2
= 54 veh/km.

3.4 Other macroscopic stream models

In Greenshield’s model, linear relationship between speed and density was assumed. But in

field we can hardly find such a relationship between speed and density. Therefore, the validity

of Greenshield’s model was questioned and many other models came up. Prominent among

them are Greenberg’s logarithmic model, Underwood’s exponential model, Pipe’s generalized

model, and multi-regime models. These are briefly discussed below.

3.4.1 Greenberg’s logarithmic model

Greenberg assumed a logarithmic relation between speed and density. He proposed,

v = v0 ln
kj

k
(3.11)

This model has gained very good popularity because this model can be derived analytically.

(This derivation is beyond the scope of this notes). However, main drawbacks of this model is

that as density tends to zero, speed tends to infinity. This shows the inability of the model to

predict the speeds at lower densities.
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Figure 3:4: Greenberg’s logarithmic model
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Figure 3:5: Underwood’s exponential model

3.4.2 Underwood’s exponential model

Trying to overcome the limitation of Greenberg’s model, Underwood put forward an exponential

model as shown below.

v = vf .e
−k
k0 (3.12)

where vfThe model can be graphically expressed as in figure 3:5. is the free flow speed and ko

is the optimum density, i.e. the density corresponding to the maximum flow. In this model,

speed becomes zero only when density reaches infinity which is the drawback of this model.

Hence this cannot be used for predicting speeds at high densities.
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Figure 3:6: Shock wave: Stream characteristics

3.4.3 Pipes’ generalized model

Further developments were made with the introduction of a new parameter (n) to provide for a

more generalized modeling approach. Pipes proposed a model shown by the following equation.

v = vf

[

1 −

(

k

kj

)n]

(3.13)

When n is set to one, Pipe’s model resembles Greenshield’s model. Thus by varying the values

of n, a family of models can be developed.

3.4.4 Multi-regime models

All the above models are based on the assumption that the same speed-density relation is

valid for the entire range of densities seen in traffic streams. Therefore, these models are

called single-regime models. However, human behaviour will be different at different densities.

This is corroborated with field observations which shows different relations at different range

of densities. Therefore, the speed-density relation will also be different in different zones of

densities. Based on this concept, many models were proposed generally called multi-regime

models. The most simple one is called a two-regime model, where separate equations are used

to represent the speed-density relation at congested and uncongested traffic.

3.5 Shock waves

The flow of traffic along a stream can be considered similar to a fluid flow. Consider a stream of

traffic flowing with steady state conditions, i.e., all the vehicles in the stream are moving with

a constant speed, density and flow. Let this be denoted as state A (refer figure 3:6. Suddenly

due to some obstructions in the stream (like an accident or traffic block) the steady state

characteristics changes and they acquire another state of flow, say state B. The speed, density

and flow of state A is denoted as vA, kA, and qA, and state B as vB, kB, and qB respectively.

The flow-density curve is shown in figure 3:7. The speed of the vehicles at state A is given

by the line joining the origin and point A in the graph. The time-space diagram of the traffic
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stream is also plotted in figure 3:8. All the lines are having the same slope which implies that

they are moving with constant speed. The sudden change in the characteristics of the stream

leads to the formation of a shock wave. There will be a cascading effect of the vehicles in the

upstream direction. Thus shock wave is basically the movement of the point that demarcates

the two stream conditions. This is clearly marked in the figure 3:7. Thus the shock waves

produced at state B are propagated in the backward direction. The speed of the vehicles at

state B is the line joining the origin and point B of the flow-density curve. Slope of the line AB

gives the speed of the shock wave (refer figure 3:7). If speed of the shock-wave is represented

as ωAB, then

ωAB =
qA − qB

kA − kB

(3.14)

The above result can be analytically solved by equating the expressions for the number vehicles

leaving the upstream and joining the downstream of the shock wave boundary (this assumption

is true since the vehicles cannot be created or destroyed. Let NA be the number of vehicles

leaving the section A. Then, NA = qB t. The relative speed of these vehicles with respect to

the shock wave will be vA − ωAB. Hence,

NA = kA (vA − ωAB) t (3.15)

Similarly, the vehicles entering the state B is given as

NB = kA (vB − ωAB) t (3.16)

Equating equations 3.15 and 3.16, and solving for ωAB as follows will yield to:

NA = NB

kA (vA − ωAB) t = kB (vB − ωAB) t

kA vA t − kA ωAB t = kB vB t − kBωAB t

kAωAB t − kBωAB t = kA vA − kB vB

ωAB (kA − kB) = qA − qB

This will yield the following expression for the shock-wave speed.

ωAB =
qA − qB

kA − kB

(3.17)

In this case, the shock wave move against the direction of traffic and is therefore called a

backward moving shock wave. There are other possibilities of shock waves such as forward

moving shock waves and stationary shock waves. The forward moving shock waves are formed

when a stream with higher density and higher flow meets a stream with relatively lesser density
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and flow. For example, when the width of the road increases suddenly, there are chances for a

forward moving shock wave. Stationary shock waves will occur when two streams having the

same flow value but different densities meet.

3.6 Macroscopic flow models

If one looks into traffic flow from a very long distance, the flow of fairly heavy traffic appears

like a stream of a fluid. Therefore, a macroscopic theory of traffic can be developed with the

help of hydrodynamic theory of fluids by considering traffic as an effectively one-dimensional

compressible fluid. The behaviour of individual vehicle is ignored and one is concerned only

with the behaviour of sizable aggregate of vehicles. The earliest traffic flow models began by

writing the balance equation to address vehicle number conservation on a road. In fact, all

traffic flow models and theories must satisfy the law of conservation of the number of vehicles

on the road. Assuming that the vehicles are flowing from left to right, the continuity equation

can be written as
∂k(x, t)

∂t
+

∂q(x, t)

∂x
= 0 (3.18)

where x denotes the spatial coordinate in the direction of traffic flow, t is the time, k is the

density and q denotes the flow. However, one cannot get two unknowns, namely k(x, t) by

and q(x, t) by solving one equation. One possible solution is to write two equations from two

regimes of the flow, say before and after a bottleneck. In this system the flow rate before and

after will be same, or

k1v1 = k2v2 (3.19)

From this the shock wave velocity can be derived as

v(to)p =
q2 − q1

k2 − k1

(3.20)

This is normally referred to as Stock’s shock wave formula. An alternate possibility which

Lighthill and Whitham adopted in their landmark study is to assume that the flow rate q is

determined primarily by the local density k, so that flow q can be treated as a function of only

density k. Therefore the number of unknown variables will be reduced to one. Essentially this

assumption states that k(x,t) and q (x,t) are not independent of each other. Therefore the

continuity equation takes the form

∂k(x, t)

∂t
+

∂q(k(x, t))

∂x
= 0 (3.21)

However, the functional relationship between flow q and density k cannot be calculated from

fluid-dynamical theory. This has to be either taken as a phenomenological relation derived from
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the empirical observation or from microscopic theories. Therefore, the flow rate q is a function

of the vehicular density k; q = q(k). Thus, the balance equation takes the form

∂k(x, t)

∂t
+

∂q(k(x, t))

∂x
= 0 (3.22)

Now there is only one independent variable in the balance equation, the vehicle density k. If

initial and boundary conditions are known, this can be solved. Solution to LWR models are

kinematic waves moving with velocity
dq(k)

dk
(3.23)

This velocity vk is positive when the flow rate increases with density, and it is negative when

the flow rate decreases with density. In some cases, this function may shift from one regime to

the other, and then a shock is said to be formed. This shock wave propagate at the velocity

vs =
q(k2) − q(k1)

k2 − k1

(3.24)

where q(k2) and q(k1) are the flow rates corresponding to the upstream density k2 and down-

stream density k1 of the shock wave. Unlike Stock’s shock wave formula there is only one

variable here.

3.7 Summary

Traffic stream models attempt to establish a better relationship between the traffic parameters.

These models were based on many assumptions, for instance, Greenshield’s model assumed a

linear speed-density relationship. Other models were also discussed in this chapter. The models

are used for explaining several phenomena in connection with traffic flow like shock wave. The

topics of further interest are multi-regime model (formulation of both two and three regime

models) and three dimensional representation of these models.
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