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17.1 Introduction

If one looks into traffic flow from a very long distance, the flow of fairly heavy traffic appears

like a stream of a fluid. Therefore, a macroscopic theory of traffic can be developed with the

help of hydrodynamic theory of fluids by considering traffic as an effectively one-dimensional

compressible fluid. The behaviour of individual vehicle is ignored and one is concerned only

with the behaviour of sizable aggregate of vehicles. The earliest traffic flow models began by

writing the balance equation to address vehicle number conservation on a road. In fact, all

traffic flow models and theories must satisfy the law of conservation of the number of vehicles

on the road.
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17.2 Model framework

17.2.1 Assumptions

The traffic flow is similar to the flow of fluids and the traffic state is described based on speed,

density and flow. However the traffic flow can be modelled as a one directional compressible

fluid. The two important assumptions of this modelling approach are:

• The traffic flow is conserved, or in other words vehicles are not created or destroyed. The

continuity or conservation equation can be applied.

• There is one to one relationship between speed and density as well as flow and density.

The difficulty with this assumption is that although intuitively correct, in some cases this can

lead to negative speed and density. Further, for a given density there exists many speed values

are actually measured. These assumptions are valid only at equilibrium condition, that is, when

the speed is a function of density. However, equilibrium can be rarely observed in practice and

therefore hard to get Speed-density relationship. These are some of the limitations of continuous

modelling. The advantages of the continuous modelling are:

• Better than input output models because flow and density are set as a function of time

and distance.

• Compressibility: ie., flow is assumed to be a function of density.

• Solving the continuity equation (or flow conservation equation) and the state equation

(speed-density and flow-density) are basic traffic flow equations (q = k.v). By using the

equation that define q, k, and v at any location x and time t, we can evaluate the system

using measures of effectiveness such as delays, travel time etc.

17.2.2 Formulation

Assuming that the vehicles are flowing from left to right, the continuity equation can be written

as
∂k(x, t)

∂t
+

∂q(x, t)

∂x
= 0 (17.1)

where x denotes the spatial coordinate in the direction of traffic flow, t is the time, k is the

density and q denotes the flow. However, one cannot get two unknowns, namely k(x, t) by

and q(x, t) by solving one equation. One possible solution is to write two equations from two
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regimes of the flow, say before and after a bottleneck. In this system the flow rate before and

after will be same, or

k1v1 = k2v2 (17.2)

From this the shock wave velocity can be derived as

v(to)p =
q2 − q1

k2 − k1

(17.3)

This is normally referred to as Stock’s shock wave formula. An alternate possibility which

Lighthill and Whitham adopted in their landmark study is to assume that the flow rate q is

determined primarily by the local density k, so that flow q can be treated as a function of only

density k. Therefore the number of unknown variables will be reduced to one. Essentially this

assumption states that k(x,t) and q (x,t) are not independent of each other. Therefore the

continuity equation takes the form

∂k(x, t)

∂t
+

∂q(k(x, t))

∂x
= 0 (17.4)

However, the functional relationship between flow q and density k cannot be calculated from

fluid-dynamical theory. This has to be either taken as a phenomenological relation derived from

the empirical observation or from microscopic theories. Therefore, the flow rate q is a function

of the vehicular density k; q = q(k). Thus, the balance equation takes the form

∂k(x, t)

∂t
+

∂q(k(x, t))

∂x
= 0 (17.5)

Now there is only one independent variable in the balance equation, the vehicle density k. If

initial and boundary conditions are known, this can be solved. Solution to LWR models are

kinematic waves moving with velocity
dq(k)

dk
(17.6)

This velocity vk is positive when the flow rate increases with density, and it is negative when

the flow rate decreases with density. In some cases, this function may shift from one regime to

the other, and then a shock is said to be formed. This shock wave propagate at the velocity

vs =
q(k2) − q(k1)

k2 − k1

(17.7)

where q(k2) and q(k1) are the flow rates corresponding to the upstream density k2 and down-

stream density k1 of the shock wave. Unlike Stock’s shock wave formula there is only one

variable here.
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(1) (2)

N2N1

q1 q2

∆x

17.2.3 Derivation of the Conservation equation

Consider a unidirectional continuous road section with two counting station. Let N1 : number

of cars passing (1) in time ∆t; q1 : the flow; N2 : number of cars passing (2) in time ∆t; and

q2 : the flow; Assume N1 > N2, then queuing between (1) and (2)

q1 =
N1

∆t
, q2 =

N2

∆t

∆q = q2 − q1 =
N2 − N1

∆t
=

−∆N

∆t

Note that q2 < q1 and therefore ∆q is negative. Therefore,

∆N = −∆q.∆t (17.8)

Similarly (k2 > k1),

∆k = k2 − k1 =
N1 − N2

∆x
=

+∆N

∆x
,

Therefore

∆N = ∆k∆x

From the above two equations:

∆k ∆x + ∆q ∆t = 0

Dividing by ∆t ∆x
∆k

∆t
+

∆q

∆x
= 0

Assuming continuous medium (ie., taking limits) limt→0

∂q

∂x
+

∂k

∂t
= 0
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If sink or source is considered
∂q

∂x
+

∂k

∂t
= g(x, t)

where, g(x, t) is the generation or dissipation term (Ramp on and off). Solution to the above

was proposed by Lighthill and Whitham (1955) and Richard (1956) popularly knows as LWR

Model.

17.3 Analytical Solution

17.3.1 Formulation

The analytical solution, popularly called as LWR Model, is obtained by defining the relationship

between the fundamental dependant traffic flow variable (k and q) to the independent variable

(x and t). However, the solution to the continuity equation needs one more equation: by

assuming q = f(k) , ie., q = k.v. Therefore:

∂q

∂x
+

∂k

∂t
= 0, becomes

∂f(k)

∂k
+

∂k

∂t
= 0

∂k

∂t
+

∂(k.v)

∂x
= 0

∂k

∂t
+

∂[k.f(k)]

∂x
= 0, v = f(k)

Therefore,

∂[k.f(k)]

∂x
=

∂k

∂x
.f(k) + k.

∂f(k)

∂x

=
∂k

∂x
f(k) + k.

df

dk
.
∂k

∂x

=
∂k

∂x

[

f(k) + k.
df

dk

]

Continuity equation can be written as

∂k

∂t
+

∂k

∂x

[

f(k) + k.
df

dk

]

= 0
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where f(k) could be any function relating density and speed. Eg: Assuming the Greenshield’s

linear model:

v = vf −

vf

kj

k

Therefore, f(k) + k
df(k)

dk
= vf −

vf

kj

k + k
−vf

kj

= vf − 2
vf

kj

k

Therefore,
∂k

∂t
+

∂k

∂x

[

vf − 2
vf

kj

k

]

= 0 (17.9)

The equation 17.9 is first order quasi-linear, hyperbolic, partial differential equation (a special

kind of wave equation).

17.3.2 Method of Characteristics

Consider k(x, t) at each point of x and t, and ∂k
∂t

+ ∂k
∂x

[f(k) + df

dk
k] = 0 in the total derivative of

k along a curve which has slope ∂x
∂t

= f(k) + df

dk
k. ie., Along any curve in (x, t), consider x, k

as function of t.

x0 x

(k)

t

Total derivative of k will be

dk

dt
=

∂k

∂t
+

∂k

∂x
.
dx

dt

=
∂k

∂t
+

∂k

∂x

[

f(k) +
df

dk
k

]

At the solution, dk
dt

= 0, k is constant along the curve, f(k) + k. df

dk
is constant along the curve.

That is,

x(t) = x0 +

[

dx

dt

]

t

= x0 +

[

f(k) + k.
dt

dk

]

t
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Note that the solution is to construct some curve e so that: (a) kt+c(k).kx is the total derivative

of k along the curve (ie., directional derivative) and (b) slope of the curve dx
dt

= c(k). We know

k(x, t). Therefore directional derivative k(x, t) along t

dk(x, t)

dt
=

∂k

∂t
+

dx

dt
.
∂k

∂x

=
∂k

∂t
+

[

f(k) + k.
df

dk

]

∂k

∂x

= 0

ie.,
dk

dt
= 0

That is k is constant along the curve e or dx
dt

= f(k) + k df

dk
is constant along curve e. Therefore

e must be straight line.

x(t) = x0 +

[

f(k) + k.
df

dk

]

t

If k(x, 0) = k0 is initial condition

x(t) = x0 +

[

f(k0) + k0.
df

dk

∣

∣

∣

∣

k=k0

]

t

This function is plotted below along with a fundamental q-k diagram.

17.3.3 Inference

1. Density k is constant along characteristic lines

2. Characteristic lines are straight lines emanating from the boundaries of x − t plane

3. The slope of the characteristic line is

dx

dt
= f(k) + k.

df

dk
≡

dq

dk

ie., Characteristic curve has the slope equal to the tangent of the flow density curve.

4. When two Characteristic lines intersect (ie., 2 k values at a given x,t) shock waves are

generated; and characteristic line terminate.

5. Shock wave represent mathematical discontinuity ie., abrupt changes to k, q, v.

6. Speed of the Shock wave is ratio of the time storage rate to space storage rate; that is:

vw =
qd − qu

kd − kv

.
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A

wave velocity

wave velocity

B

k = 0 kB kA kj

k

q = kv = k(vf −
vf

kj
k)

dq
dk

= vf − 2
vf

kj
k ∼= dx

dt

Characteristic lines

A

B
Shockwave

uw = dx
dt

∼= dq
dx

x

t

Vehicle trajectories

x

t

17.4 Conclusion

The advantages of the continuous modelling is that it gives good insight into the understanding

of the behaviour of traffic. It can also be applied to platoon movement, signal control, etc.

Finally, it also paves the way for the development of higher order models. However, it also

has some serious limitations. The first one is the difficulty in getting solutions for realistic

problems(initial boundary conditions). Second, the q − k and u − k relationship are complex.

It may also cause unrealistic abrupt changes in the system. Finally acceleration-deceleration

characteristics are not directly modelled in the system.
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