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Chapter 18

Cell Transmission Models

18.1 Introduction

Models are necessary to simulate the real world scenario to some extent, or in some cases,

they can even provide the exact scenario. Characteristics of traffic changes with time, place,

human behavior etc. The models in traffic engineering are necessary to predict the behavior

of traffic in proper planning and design of the road network. The models can be microscopic

and macroscopic. In the present chapter, a macroscopic model has been discussed known as

cell transmission model which tries to simulate the traffic behavior.

In the classical methods to explain macroscopic behaviour of traffic, like hydrodynamic

theory, differential equations need to be solved to predict traffic evolution. However in situations

of sudden high density variations, like bottle-necking, the hydrodynamic model calls for a shock

wave (an ad-hoc). Hence these equations are essentially piecewise continuous which are difficult

to solve. Cell transmission models are developed as a discrete analogue of these differential

equations in the form of difference equations which are easy to solve and also take care of high

density changes.

In this lecture note the hydrodynamic model and cell transmission model and their equiv-

alence is discussed. The cell transmission model is explained in two parts, first with only a

source and a sink, and then it is extended to a network. In the first part, the concepts of

basic flow advancement equations of CTM and a generalized form of CTM are presented. In

addition, the phenomenon of instability is also discussed. In the second segment, the network

representation and topologies are established, after which the model is discussed in terms of a

linear program formulation for merging and diverging.
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18.2 Single source and sink CTM model

18.2.1 Basic Premise

The cell transmission model simulates traffic conditions by proposing to simulate the system

with a time-scan strategy where current conditions are updated with every tick of a clock. The

road section under consideration is divided into homogeneous sections called cells, numbered

from i = 1 to I. The lengths of the sections are set equal to the distances travelled in light

traffic by a typical vehicle in one clock tick. Under light traffic condition, all the vehicles in a

cell can be assumed to advance to the next with each clock tick. i.e,

ni+1(t + 1) = ni(t) (18.1)

where, ni(t) is the number of vehicles in cell i at time t. However, equation 18.1 is not reasonable

when flow exceeds the capacity. Hence a more robust set of flow advancement equations are

presented in a later section.

18.2.2 Flow Advancement Equations

First, two constants associated with each cell are defined, they are: (i) Ni(t) which is the

maximum number of vehicles that can be present in cell i at time t, it is the product of the

cell’s length and its jam density. (ii) Qi(t) : is the maximum number of vehicles that can flow

into cell i when the clock advances from t to t + 1 (time interval t), it is the minimum of the

capacity of cells from i− 1 and i. It is called the capacity of cell i. It represents the maximum

flow that can be transferred from i − 1 to i. We allow these constants to vary with time to be

able to model transient traffic incidents. Now the flow advancement equation can be written

as, the cell occupancy at time t + 1 equals its occupancy at time t, plus the inflow and minus

the outflow; i.e.,

ni(t + 1) = ni(t) + yi(t) − yi+1(t) (18.2)

where, ni(t + 1) is the cell occupancy at time t + 1, ni(t) the cell occupancy at time t, yi(t)

is the inflow at time t, yi+1(t) is the outflow at time t. The flows are related to the current

conditions at time t as indicated below:

yi(t) = min [ni−1(t), Qi(t), Ni(t) − ni(t)] (18.3)

where, ni−1(t): is the number of vehicles in cell i − 1 at time t, Qi(t): is the capacity flow into

i for time interval t, Ni(t) - ni(t): is the amount of empty space in cell i at time t.
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Figure 18:1: Flow advancement

18.2.3 Boundary conditions

Boundary conditions are specified by means of input and output cells. The output cell, a sink

for all exiting traffic, should have infinite size (NI+1 = ∞) and a suitable, possibly time-varying,

capacity. Input flows can be modeled by a cell pair. A source cell numbered 00 with an infinite

number of vehicles (n00(O) = ∞) that discharges into an empty gate cell 00 of infinite size,

N0(t) = ∞. The inflow capacity Q0(t) of the gate cell is set equal to the desired link input flow

for time interval t + 1.

18.2.4 Equivalence with Hydrodynamic theory

Consider equations 18.2 & 18.3, they are discrete approximations to the hydrodynamic model

with a density- flow (k-q) relationship in the shape of an isoscaled trapezoid, as in Fig.18:2.

This relationship can be expressed as:

q = min [vk, qmax, v(kj − k)], for 0 ≤ k ≤ kj, (18.4)

Flow conservation is given by,
∂q(x, t)

∂x
=

∂k(x, t)

∂t
(18.5)

To demonstrate the equivalence of the discrete and continuous approaches, the clock tick set

to be equal to ∂t and choose the unit of distance such that v∂t = 1. Then the cell length is 1,

v is also 1, and the following equivalences hold: x ≡ i, kj ≡ N , qmax ≡ Q, and k(x, t) ≡ ni(t)

with these conventions, it can be easily seen that the equations 18.4 & 18.3 are equivalent.

Equation 18.6 can be equivalently written as:

yi(t) − yi+1(t) = −ni(t) + ni+1(t + 1) (18.6)

This represents change in flow over space equal to change in occupancy over time. Rearranging

terms of equation 18.7 we can arrive at equation 18.3, which is the same as the basic flow

advancement equation of the cell transmission model.

Dr. Tom V. Mathew, IIT Bombay 18.3 February 19, 2014



Transportation Systems Engineering 18. Cell Transmission Models

ka

qmax

vkj/2

-v

kb

Figure 18:2: Flow-density relationship for the basic cell-transmission model
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Figure 18:3: Flow-density relationship for the generalized CTM

18.3 Generalized CTM

Generalized CTM is an extension of the cell transmission model that would approximate the

hydrodynamic model for an equation of state that allows backward waves with speed w ≤ v

(see Fig. 18:3 ). This is a realistic model, since on many occasions speed of backward wave will

not be same as the free flow speed.

yi(t) = min [ni−1(t), Qi(t), w/v{Ni(t) − ni(t)}] (18.7)

A small modification is made in the above equation to avoid the error caused due to numerical

spreading. Equation 18.7 is rewritten as

yi(t) = min [ni−1(t), Qi(t), α{Ni(t) − ni(t)}] (18.8)

where, α = 1 if ni−1(t) ≤ Qi(t), and α = w/v if ni−1(t) > Qi(t).
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18.3.1 Numerical example

Consider a 1.25 km homogeneous road with speed v = 50 kmph, jam density kj = 180 veh/km

and qmax = 3000 veh/hr. Initially traffic is flowing undisturbed at 80% of capacity: q =

2400 veh/hr. Then, a partial lane blockage lasting 2 min occurs on 1/3rd of the distance from

the end of the road. The blockage effectively restricts flow to 20% of the maximum. Clearly, a

queue is going to build and dissipate behind the restriction. After 2 minutes, the flow in cell

3 is maximum possible flow. Predict the evolution of the traffic. Take one clock tick as 30

seconds.

Solution The main purpose of cell transmission model is to simulate the real traffic conditions

for a defined stretch of road. The speed and cell length is kept constant and also the cell lengths

in cell transmission model. The solution has been divided into 4 steps as follows:

Step 1: Determination of cell length and number of cells Given clock tick, t =

30sec = 1/120th of an hour. So, cell length = distance travelled by vehicle in one clock tick

= v × t = 50 × (1/120) ≈ 5/12 km. Road stretch given = 1.25 km. Therefore, no of cells =

1.25/(5/12) = 3 cells

Step 2: Determination of constants (N & Q) N = maximum number of vehicles that

can be at time t in cell i, = cell length x jam density, = 180 x (5/12) = 75 vehicles, Q =

maximum number of vehicles that can flow into cell I from time t to t+1, = 3000 x (1/120) =

25 vehicles. Now, to simulate the traffic conditions for some time interval, our main aim is to

find the occupancies of the 3 cells (as calculated above) with the progression of clock tick. This

is easily showed by creating a table. First of all, the initial values in the tables are filled up.

Step 3: Determination of cell capacity in terms of number of vehicles for various

traffic flows. For 20% of the maximum = 600 × (1/120) vehicles. For 80% of the maximum =

2400 × (1/120) vehicles.

Step 4: Initialization of the table The table has been prepared with source cell as a

large capacity value and a gate is there which connects and regulates the flow of vehicles from

source to cell 1 as per the capacity of the cell for a particular interval. The cell constants (Q

and N) for the 3 cells are shown in the table. Note that the sink can accommodate maximum

number of vehicles whichever the cell 3 generates. Q3 is the capacity in terms of number of

vehicles of cell 3 . The value from H5 to H7 (i.e 5) corresponds to the 2min time interval with 4

clock ticks when the lane was blocked so the capacity reduced to 20% of the maximum (i.e. 600

× (1/120) vehicles). After the 2 min time interval is passed vehicles flows with full capacity

in cell 3. So the value is 25 (i.e 3000 × (1/120) vehicles).

Step 5: Computation of Occupancies Simulation need not be started in any specific
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Source(00) Gate(0) Cell1 Cell2 Cell3 Cell4

Q 20 25 25 25

N 999 75 75 75 999

Time Q3

1 999 20 20 20 20 5

2 999 20 5

3 999 20 5

4 999 20 5

5 999 20 25

6 999 20 25

7 999 20 25

8 999 20 25

9 999 20 25

10 999 20 25

11 999 20 25

12 999 20 25

13 999 20 25

14 999 20 25

15 999 20 25

16 999 20 25

17 999 20 25

18 999 20 25

Table 18:1: Entries at the start of the simulation.
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Q=25,N=75 Q=25,N=75 Q=5,N=75

t=1 20
20

20
5

20

35t=2

t=1

t=2

2020 20
20 20

20

Q=20,N=75 Q=25,N=75 Q=25,N=75

order, it can be started from any cell in the row corresponding to the current clock tick. Now,

consider cell circled (cell 2 at time 2) in the final table. Its entry depends on the cells marked

with rectangles. By flow conservation law: Occupancy = Storage + Inflow - Outflow. Note

that the Storage is the occupancy of the same cell from the preceding clock tick. Also outflow

of one cell is equal to the inflow of the just succeeding cell. Here, Storage = 20. For inflow use

equation 18.3 Inflow= min [20,min(25,25),(75-20)]= 20. Outflow= min [20,min(25,5),(75-20)]=

5. Occupancy= 20+20-5=35. Now, For cell 1 at time 2, Inflow= min [20,min(25,25),(75-20)]=

20, Outflow= min [20,min(25,25),(75-20)]= 20, Occupancy= 20+20-20=20. Now, For cell 3 at

time 2, Inflow= min [20, min (25,5),(75-20)]= 5. Outflow= 20 (:.sink cell takes all the vehicles

in previous cell) Occupancy= 20+5-20=5. Similarly, rest of the entries can be filled and the

final result is shown in Table below. From the table it can be seen that the occupancy i.e. the

number of vehicles on cell 1 and 2 increases and then decreases simulating the effect of lane

blockage in cell 3 on cell 1 and cell 2. The lane blockage lasts 2 minutes in this problem, after

that there is no congestion taken into account. So as the time passes by, the occupancy in cell

1 and cell 2 also gets reduced.

t=1

t=2

2020 20
20

Q=25,N=75Q=25,N=75 Q=5,N=75

5

5
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Source(00) Gate(0) Cell 1 Cell 2 Cell 3 Cell 4

Q 20 25 25 25

N 999 75 75 75 999

Time Q3

1 999 20 20 20 20 5

2 999 20 20 35 5 5

3 999 20 20 50 5 5

4 999 20 20 65 5 5

5 999 20 30 70 5 25

6 999 20 45 50 25 25

7 999 20 40 50 25 25

8 999 20 35 50 25 25

9 999 20 30 50 25 25

10 999 20 25 50 25 25

11 999 20 20 50 25 25

12 999 20 20 45 25 25

13 999 20 20 40 25 25

14 999 20 20 35 25 25

15 999 20 20 30 25 25

16 999 20 20 25 25 25

17 999 20 20 20 25 25

18 999 20 20 20 20 25

Table 18:2: Final entries simulating the traffic
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 |Λ−1(j)| = 0 |Λ(j)| = 1

Figure 18:4: Source Cell

18.3.2 Numerical example

Consider a 1.25 km homogeneous road with speed v = 50 kmph, jam density kj = 180 veh/km

and qmax = 3000 veh/hr. Initially traffic is flowing undisturbed at 80% of capacity: q = 2400

VPH. Then, a partial lane blockage lasting 2 min occurs l/3 of the distance from the end of

the road. The blockage effectively restricts flow to 20% of the maximum. Clearly, a queue is

going to build and dissipate behind the restriction. Predict the evolution of the traffic. Take

one clock tick as 6 seconds.

Solution This problem is same as the earlier problem, only change being the clock tick.

This problem has been solved in Excel. The simulation is done for this smaller clock tick; the

results are shown in Fig. 18:3 One can clearly observe the pattern in which the cells are getting

updated. After the decrease in capacity on last one-third segment queuing is slowly building up

and the backward wave can be appreciated through the first arrow. The second arrow shows

the dissipation of queue and one can see that queue builds up at a faster than it dissipates.

This simple illustration shows how CTM mimics the traffic conditions.

18.4 CTM: Network Traffic

18.4.1 General

As sequel to his first paper on CTM, Daganzo (1995) published first paper on CTM applied to

network traffic. In this section application of CTM to network traffic considering merging and

diverging is discussed. Some basic notations: (The notations used from here on, are adopted

from Ziliaskopoulos (2000)) Γ−1 = Set of predecessor cells. Γ = Set of successor cells.

18.4.2 Network topologies

The notations introduced in previous section are applied to different types of cells, as shown in

Figures 18:4, 18:5 & 18:6. Some valid and invalid representations in a network are shown in

Fig 18:10 & Fig 18:9.
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clock tick 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4 4 4 4 4 4 4 4 4 6 4 4 4 4 4

2 4 4 4 4 4 4 4 4 4 7 1 4 4 4 4

3 4 4 4 4 4 4 4 4 4 10 1 1 4 4 4

4 4 4 4 4 4 4 4 4 5 13 1 1 1 4 4

5 4 4 4 4 4 4 4 4 6 14 1 1 1 1 4

6 4 4 4 4 4 4 4 4 9 14 1 1 1 1 1

7 4 4 4 4 4 4 4 4 12 14 1 1 1 1 1

8 4 4 4 4 4 4 4 4 14 14 1 1 1 1 1

9 4 4 4 4 4 4 4 5 14 14 1 1 1 1 1

10 4 4 4 4 4 4 4 8 14 14 1 1 1 1 1

11 4 4 4 4 4 4 6 11 14 14 1 1 1 1 1

12 4 4 4 4 4 4 7 14 14 14 1 1 1 1 1

13 4 4 4 4 4 4 10 14 14 14 1 1 1 1 1

14 4 4 4 4 4 5 13 14 14 14 1 1 1 1 1

15 4 4 4 4 4 6 14 14 14 14 1 1 1 1 1

16 4 4 4 4 4 9 14 14 14 14 1 1 1 1 1

17 4 4 4 4 4 12 14 14 14 14 1 1 1 1 1

18 4 4 4 4 5 14 14 14 14 14 1 1 1 1 1

19 4 4 4 4 8 14 14 14 14 14 1 1 1 1 1

20 4 4 4 4 11 14 14 14 14 14 1 1 1 1 1

21 4 4 4 6 14 14 14 14 14 14 1 1 1 1 1

22 4 4 4 7 14 14 14 14 14 10 5 1 1 1 1

23 4 4 4 10 14 14 14 14 10 10 5 5 1 1 1

24 4 4 4 13 14 14 14 10 10 10 5 5 5 1 1

25 4 4 8 14 14 14 10 10 10 10 5 5 5 5 1

26 4 4 9 14 14 10 10 10 10 10 5 5 5 5 5

27 4 4 12 14 10 10 10 10 10 10 5 5 5 5 5

28 4 8 14 10 10 10 10 10 10 10 5 5 5 5 5

29 4 7 10 4 10 10 10 10 10 10 5 5 5 5 5

30 4 4 10 4 10 10 10 10 10 10 5 5 5 5 5

31 4 4 10 4 10 10 10 10 10 10 5 5 5 5 5

32 4 4 10 4 10 10 10 10 10 10 5 5 5 5 5

33 4 4 10 4 10 10 10 10 10 10 5 5 5 5 5

34 4 4 9 4 10 10 10 10 10 10 5 5 5 5 5

Table 18:3: Illustration of traffic simulation in CTM
Dr. Tom V. Mathew, IIT Bombay 18.10 February 19, 2014



Transportation Systems Engineering 18. Cell Transmission Models

|Λ(j)| = 0|Λ−1(j)|=1

Figure 18:5: Sink Cell

Cell j

|Λ−1(j)| = 1 |Λ(j)| = 1

Figure 18:6: Ordinary Cell

Cell j

|Λ−1(j)| > 1 |Λ(j)| = 1

Figure 18:7: Merging Cell

Cell j

|Λ−1(j)| = 1 |Λ(j)| > 1

Figure 18:8: Diverging Cell

k
k

Figure 18:9: Invalid representations
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Figure 18:10: Valid representations

E_{k}

B_{k}
k

Figure 18:11: Ordinary Link

18.4.3 Ordinary link

Consider an ordinary link with a beginning cell and ending cell, which gives the flow between

two cells is simplified as explained below.

yk(t) = min(nBk(t), min[QBk(t), QEk(t)], δEk[NEk(t) − nEk(t)]) (18.9)

where, δ = w/v. yk(t) is the inflow to cell Ek in the time interval (t,t + 1). Defining the

maximum flows that can be sent and received by the cell i in the interval between t to t + 1 as

SI(t) = min(QI, nI), and RI(t) = min(QI , δI , [NI − nI ]). Therefore, yk(t) can be written in a

more compact form as: yk(t) = min(SBk, REk). This means that the flow on link k should be

the maximum that can be sent by its upstream cell unless prevented to do so by its end cell. If

blocked in this manner, the flow is the maximum allowed by the end cell. From equations one

can see that a simplification is done by splitting yk(t) in to SBk and REk terms. ’S’ represents

sending capacity and ’R’ represents receiving capacity. During time periods when SBk < REk

the flow on link k is dictated by upstream traffic conditions-as would be predicted from the

forward moving characteristics of the Hydrodynamic model. Conversely, when SBk > REk, flow

is dictated by downstream conditions and backward moving characteristics.

18.4.4 Merging and Diverging

Consider two cells merging, here we have a beginning cell and its complimentary merging into

ending cell, the constraints on the flow that can be sent and received are given by equation 18.10

and equation 18.10.

yk(t) ≤ SBk; yck(t) ≤ SCkyk(t) + yck(t) ≤ REk (18.10)
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where, SI(t) = (QI , nI), and RI(t) = (QI , δI, [NI − nI ]). A number of combinations of yk(t) +

yck(t) are possible satisfying the above said constraints. Similarly for diverging a number of

possible outflows to different links is possible satisfying corresponding constraints, hence this

calls for an optimization problem. Ziliaskopoulos (2000), has given this LP formulations for

both merging and diverging, this has been discussed later

18.5 CTM Software - NETCELL

• NETCELL is a freeway network simulation program based on the cell transmission model

developed by Cay ford, Lin and Daganzo.

• It consists of two components,

– NETCELL

– NETVIEW(a graphical post-processor)

• This is a free software and can be downloaded from the link below http://www.ce.berkeley.edu/ da-

ganzo/software and data.htm

• NETCELL is a macroscopic simulation program in which vehicle quantities are treated as

continuous variables. Vehicles are advanced in a way consistent with the hydrodynamic

theory of traffic flow.

18.6 Conclusion

18.6.1 Summary

• CTM is a discrete approximation of hydrodynamic model. System evolution is based on

difference equations.
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• Unlike hydrodynamic model, it explains the phenomenon of Instability.

• Lesser the time per clock tick lesser are the size of cells and more accurate results would

be obtained. But a compromise is needed between accuracy and computational effort.

Largest possible cell size which would sufficiently give the details needed must be chosen.

• CTM has many applications in DTA, NDP, traffic operations, emergency evacuations etc.

• There is a vast scope for improvement and applications of this model.

18.6.2 Advantages and applications

• CTM is consistent with hydrodynamic theory, which is a widely used model for studying

macroscopic behavior of the traffic.

• It is simple and sufficiently accurate for planning purposes.

• CTM can be used to provide ”real time” information to the drivers.

• CTM has been used in developing a system optimal signal optimization formulation.

• CTM based Dynamic Traffic Assignment have shown good results.

• CTM has its application in Network Design Problems.(NDP)

18.6.3 Limitations

• CTM is for a ”typical vehicle” in network traffic, work is needed for the multi-modal

representation of traffic.

• Cell length cannot be varied. For this the methods like Modified Cell Transmission Model

is to be used.

• CTM is largely deterministic, stochastic variables are needed to be introduced to represent

the random human behavior.
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