
Transportation Systems Engineering 20. Discrete Simulation Models

Chapter 20

Discrete Simulation Models

20.1 Introduction

In the field of traffic flow modelling, microscopic simulation involves the detailed models that

describe the behaviour of individual vehicles so it is always a time consuming and a complex

process. So, approximately a decade ago new microscopic models have been developed and

they are based on Cellular Automata programming. The main advantage was an efficient and

fast performance when used in computer simulations, due to their rather low accuracy on a

microscopic scale. These so-called traffic cellular automata (TCA) are dynamical systems that

are discrete in nature, in the sense that time advances with discrete steps and space is coarse-

grained (e.g., the road is discretised into cells of 7.5m wide, each cell being empty or containing

a vehicle).

A Cellular Automata is an n-dimensional array of simple cells where each cell may be in

any one of k-states. At each tick of the clock a cell will change its state based on the states of

the cells in a local neighborhood. Typically, the rule for updating the state does not change

over time, and is applied to the whole grid simultaneously. Due to its simplicity the CA rules

are used to solve the complex behaviour. Through the use of powerful computers, these models

can encapsulate the complexity of the real world traffic behavior and produces clear physical

patterns that are similar to those we see in everyday life. One more advantage of cellular

automata models is their efficiency in showing the clear transition from the moving traffic to

jamming traffic. CA models have the distinction of being able to capture micro-level dynamics

and relate these to macro level traffic flow behavior.

20.2 Cellular Automata

20.2.1 Components of Cellular Automata

There are four components, which play a major role in cellular automata.

Dr. Tom V. Mathew, IIT Bombay 20.1 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

Figure 20:1: Physical environment as different types of cells

i−1 i i+1

Figure 20:2: Neighbourhoods of the present cell i

The physical environment

The term physical environment indicates the physical platform on which CA is computed. It

normally consists of discrete lattice of cells with rectangular, hexagonal etc shown in Fig. 20:1.

All these cells are equal in size. They can be finite or infinite in size and its dimensionality can

be 1 (a linear string of cells called an elementary cellular automaton or ECA).

The cells states

Every cell can be in a particular state where typically an integer can determine the number of

distinct states a cell can be in, eg (binary state). Generally, the cell is assigned with an integer

value or a null value based upon its state. The states of cells collectively are called as “Global

configuration”. This convention clearly indicates that states are local and refer to cells, while

a configuration is global and refers to the whole lattice.

The cells’ neighbourhoods

The future state of a cell is mainly dependent on its state of its neighbourhood cell, so neighbour-

hood cell determines the evolution of the cell. So generally, the lattices vary as one-dimensional

and two-dimensional. In one dimensional lattice, the present cell and the two adjacent cells

forms its neighbourhoods (shown in Fig. 20:2), whereas in the context of two dimensional

lattice there are four adjacent cells which acts as the neighbourhoods. Therefore, it is clear

that as the dimensionality increases the no of adjacent cells also increases.

Dr. Tom V. Mathew, IIT Bombay 20.2 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

A local transition rule

This rule (also called function) acts upon a cell and its direct neighbourhood, such that the

cell’s state changes from one discrete time step to another (i.e., the system’s iterations). The

CA evolves in time and space as the rule is subsequently applied to all the cells in parallel.

Typically, the same rule is used for all the cells (if the converse is true, then the term hybrid

CA is used). When there are no stochastic components present in this rule, we call the model

a deterministic CA, as opposed to a stochastic (also called probabilistic) CA.

20.2.2 Road and physical environment

When the cellular automaton analogy is applied to vehicular road traffic flows, the physical

environment of the system represents the road on which the vehicles are been driving. In a

general single-lane setup for traffic cellular automata, this layout consists of a one-dimensional

lattice that is composed of individual cells (our description here mainly focuses on unidirec-

tional, single-lane traffic). Every cell either can be empty, or occupied by exactly one vehicle.

We use the term single-cell models to describe these systems. Multi-cell models are those mod-

els, where the vehicle has a possibility to span several consecutive cells. Because vehicles move

from one cell to another, TCA models are also called particle-hopping models.

An example of the tempo-spatial dynamics of such a system is depicted in the below Fig.4,

where two consecutive vehicles i and j are driving on a one-dimensional lattice. Here we assume

T = 1 s and X = 7.5m, corresponding to speed increments of V =X/T =27 km/h. The spatial

discretisation corresponds to the average length a conventional vehicle occupies in a closely jam

packed (and as such, its width is neglected), whereas the temporal discretisation is based on a

typical driver’s reaction time and we implicitly assume that a driver does not react to events

between two consecutive time steps.

20.2.3 Vehicle movements

In traffic stream, the movement of the individual vehicles is described by means of a rule

set that reflects the car-following and lane-changing behaviour of a traffic cellular automaton

evolving in time and space. The TCAs local transition rule actually comprises this set of rules.

These rules are applied to all the vehicles in parallel (where in that case it is called as parallel

update). Therefore, in a classic setup, the system’s state is changed through synchronous

position updates of all the vehicles.

For each vehicle, the new speed is computed, after which its position is updated according

to this speed and a possible lane-change manoeuvre. Note that there are other ways to perform

Dr. Tom V. Mathew, IIT Bombay 20.3 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

this update procedure, e.g., a random sequential update. It is assumed that a driver does not

react to events between consecutive time steps. For single-lane traffic, we assume that vehicles

act as anisotropic particles, i.e., they only respond to frontal stimuli. So typically, the car-

following part of a rule set only considers the direct frontal neighbourhood of the vehicle to

which the rules are applied.

The radius of this neighbourhood should be taken large enough such that vehicles are able

to drive collision-free. In most cases, this radius is equal to the maximum speed a vehicle can

achieve, expressed in cells per time step. From a microscopic point of view, the process of a

vehicle following its predecessor is typically expressed using a stimulus-response relation. This

response is the speed or the acceleration of a vehicle in TCA models. A vehicle’s stimulus is

mainly composed of its speed and the distance to its leader, with the response directly being a

new (adjusted) speed of the vehicle.

20.2.4 Mathematical notations

CA model represents a discrete dynamic system, consisting of four ingredients namely, the

physical environment denoted as (£), the set of possible states denoted as (Σ), the associated

neighbourhood cells of ith cell represented as (Ni) and the set of the possible future update

cells is denoted by the notation (δ). So the CA is the function of the four ingredients and is

formulated mathematically as CA = (£, Σ, N, δ). The physical environment (£) is a discrete

lattice with the neighbourhood of radius 1 in normal case where as it changes with the user

based upon his usage of the different cells sizes. The set of possible states denoted as (Σ) takes

the values as (0,1) where 1 indicates the presence of vehicle in the cell or 0 for the empty

condition. So, for every time step t the ith cell of a lattice has a state i(t) which belongs to Σ.

In normal case of one-dimensional, lattice the neighbourhood cells of i are Ni = i − 1, i, i + 1,

where (i− 1) is the left hand side cell and (i+1) is the right hand side cell. The set of possible

future update cells is represented as i − 1(t), i(t), i + 1(t) → i(t + 1), where left hand side are

the present cell and the neighbourhood cells and the right hand side part is the state of the cell

i at time t + 1.

Converting between TCA and real world units seems straightforward, as we only need

to suitably multiply with or divide by the temporal and spatial discretisation ∆T and ∆X,

respectively. The conversions for the macroscopic traffic stream characteristics densities, flows,

and space-mean speeds, as well as the microscopic vehicle speed, are as follows:

k = k′ ∗ 1000/∆X (20.1)

q = q′ ∗ 3600/∆T (20.2)

v = v′ ∗ 3.6 ∗ ∆X/∆T (20.3)

Dr. Tom V. Mathew, IIT Bombay 20.4 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

where k′, v′, q′ are the values of density, speed, flow in the units of CA, and k, q, v are the real

world values of density, flow and speed.

The length of our cell is 7.5 m and if our stretch of road is 1000m (i.e., 1 km) then the

no of cells in CA turns out to be 1000/7.5 =133.333 cells. So, for a single cell model if the

density turns out to be “one unit” (i.e., one vehicle per cell) then in the real world its density

(Kj) is 1*1000/7.5 = 133vehicles/km as per the equation. 20.1. The speed increment of the

vehicles is the ratio of distance and time. In our case the distance is the length of one cell and

time interval is one unit (sec) so the speed in km/hr is 7.5*3600/1000 =27km/hr as per the

equation. 20.3.

20.2.5 Wolfram 184 rule

In this section, we shall discuss about the Wolfram rule 184, which is used to determine the

new state of the cell. In a single lane highway, rule 184 is used as a simple model for traffic

flow and it forms the basis for many cellular automaton models of traffic flow.

In this model, vehicles move in a single direction, stopping and starting depending on the

vehicles in front of them. The number of vehicles remains unchanged throughout the simulation.

Because of this application, Rule 184 is sometimes called the “traffic rule”. Rule 184 in a simpler

way can be understood as a system of particles moving both leftwards and rightwards through

a one-dimensional medium. The rule set for Rule 184 is described as; At each step, if a cell

with value 1 has a cell with value 0 immediately to its right, the 1 moves rightwards leaving a

0 behind. A 1 with another 1 to its right remains in place, while a 0 that does not have a 1 to

its left stays a 0. This description is most apt for the application to traffic flow modeling.

The truth table for rule 184 is shown in Table. 20:1. The operation of the rule is easily

summarized as: “if the center cell is at state zero, shift the state of the left neighbor into the

center cell, else shift the state of the right neighbor into the center cell” (equation. 20.4).

σt+1

i =











σt
i−1 : σt

i = 0

σt
i+1 : σt

i = 1 (20.4)

The first three columns are the neighborhood and the rightmost column is the state of the

center cell that results from applying the transition function on the neighborhood.

The name for this rule, Rule 184, is the Wolfram code describing the state in the Fig. 20:3:

the bottom row of the figure, 10111000, when viewed as a binary number, is equal to the

decimal number 184. All 8 possible configurations for the local neighbourhood are sorted in

descending order, expressing the local transition rule (i, t) as explained by Fig. 20:3.

Dr. Tom V. Mathew, IIT Bombay 20.5 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

Table 20:1: Operation of Wolfram rule 184

St
i−1 St

i St
i+1 St+1

i

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

00011101

1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 0 ∗ 20

128 + 0 + 32 + 16 + 8 + 0 + 0 + 0 = 184

Figure 20:3: New state of each cell as a function of the previous state

20.2.6 Single cell models

Till now we have discussed the physical and mathematical aspects of cellular automata and TCA

models in particular, we shall now focus on single-cell models. As explained before each cell can

either be empty, or is occupied by exactly one vehicle all vehicles have the same length li =1

cell. Traffic is also considered homogeneous, so all vehicles characteristics are assumed the same.

In earlier section, 2.5 we had discussed the wolfram rule 184 which is actually a deterministic

model but in the realistic traffic scenario there is stochastic term coming into picture so Wolfram

rule proved to inefficient in explaining such cases and hence stochastic models are have been

emerged. In the subsequent sections, we look at such stochastic TCA models (accompanied

by their suggested abbreviations). In summary, Wolfram’s rule 184 (CA-184) falls under the

deterministic model and the stochastic models have emerged when Nagel with the help of

Schreckenberg proposed a TCA model which is the well known cellular automata in the traffic

perspective.

Models that allow for the spontaneous emergence of phantom jams are called stochastic

models. In 1992, Nagel and Schreckenberg proposed a TCA model that was able to reproduce

several characteristics of real-life traffic flows, e.g., the spontaneous emergence of traffic jams.

Their model is called the NaSch TCA, but is more commonly known as the Stochastic traffic

Dr. Tom V. Mathew, IIT Bombay 20.6 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

cellular automaton (STCA).

20.2.7 Stochastic Cellular Automata (STCA)

We shall now discuss stochastic TCA models (i.e., these are probabilistic CAs) that allow for the

spontaneous emergence of phantom jams. All these models explicitly incorporate a stochastic

term in their equations, in order to accomplish this kind of real-life behaviour.

In 1992, Nagel and Schreckenberg proposed. A TCA model that was able to reproduce

several characteristics of real-life traffic flows, e.g., the spontaneous emergence of traffic jams.

Their model is called the NaSch TCA, but is more commonly known as the stochastic traffic

cellular automaton (STCA). It explicitly includes a stochastic noise term in one of its rules,

which we present in the same fashion as those of the previously discussed deterministic TCA

models. The space is divided into cells (cell may contain vehicle or can be empty). The length of

a cell is the minimum space headway available between vehicles in times of jam, and numerically

it is reciprocal of jam density and is set to 7.5 m(Kj=133veh/km).

The STCA then comprises the following three rules (note that in Nagel and Schreckenberg’s

original formulation, they decoupled acceleration and braking, resulting in four rules). Here we

shall discuss about the NaSch model based upon its rules. There are four rules, mainly rules

for acceleration, rules of deceleration, rules for randomization and lastly the vehicle updation

step.

Step 1: Rule for acceleration

if(vn < vmax), then vn −→ min(vn + 1, vmax) (20.5)

This step reflects the general tendency of the drivers to drive as fast as possible without crossing

the maximum speed limit. If the present speed is smaller than the desired maximum speed, the

vehicle is accelerated. The desired speed vmax can be assumed to be distributed by a statistical

distribution function where the values of vmax are only allowed to be 1, 2,..., 5 cell/∆t.

Step 2: Rule for deceleration

if(dn ≤ vn), then vn −→ min(vn, dn − 1) (20.6)

This step ensures that the driver doest collide with any vehicle ahead of him so that deceleration

is applied to those vehicles which may collide. If the present speed is larger than the gap in the

front, set v = gap. This rule avoids rear end collisions between vehicles. Note that here a very

unrealistic braking rule allowing for arbitrarily large decelerations is involved. This rule forces

minimum time headway of ∆t s.

Dr. Tom V. Mathew, IIT Bombay 20.7 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

velocity

2 1 1 0

Step 3: Rule for randomization

if(vn > 0), then vn −→ max(vn − 1, 0) (20.7)

This step of randomization takes into account the different behavioral patterns of the individual

drivers, especially, overreaction while slowing down and nondeterministic acceleration where

overreaction while slowing down will be mostly responsible for the formation of traffic jams.

This rule introduces a random element into the model. This randomness models the uncer-

tainties of driver behavior, such as acceleration noise, inability to hold a fixed distance to the

vehicle ahead. Fluctuations in maximal speed, and assign different acceleration values to differ-

ent vehicles. If present velocity of a vehicle is greater than zero then the velocity of the vehicle

reduces by a single unit with a probability Pbrake. This rule has no theoretical background

and is introduced quite heuristically.

Step 4: Vehicle updation

xn −→ xn + vn (20.8)

After the above three steps the position of vehicles are updated according to their respective

velocities. Even changing the precise order of the steps of the update rules stated above would

change the properties of the model.

Numerical Example

Assume a single lane stretch road divided into 8 cells and vehicles are present in the first, third,

sixth, seventh cells with 2, 1, 1, 0 as their velocities respectively. Apply the rules of cellular

automata.

Solution Apply the CA rules (equation. 20.5 - 20.8) in a sequential way as per the require-

ments of acceleration, deceleration, randomization and vehicle updation. The rules are applied

step wise as shown below.

Solution Step 1: Acceleration stage (according to equation. 20.5)

if(vn < vmax), then vn −→ min(vn + 1, vmax)

Dr. Tom V. Mathew, IIT Bombay 20.8 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

3 2 2 1

1 2 0 1

Here the velocity of the present vehicle is 2 where the maximum velocity is 5 so the vehicle gets

accelerated and acquires the new velocity based upon the min of the (present velocity (2) +1,

or the maximum velocity).

• First vehicle: (2 < 5) so min(2 + 1, 5) = 3. Similarly applying the same rule for the rest

of the vehicles the velocities acquired are as follows.

• Second vehicle: (1 < 5) so min(1 + 1, 5) = 2

• Third vehicle: (1 < 5) so min(1 + 1, 5) = 2

• Fourth vehicle: (0 < 5) so min(0 + 1, 5) = 1

Step 2: Deceleration stage (according to equation. 20.6)

if(dn ≤ vn), then vn −→ min(vn, dn − 1)

In this step the vehicle decelerates if it doest find enough gap ahead of it in its lane. The new

velocity of the first vehicle is 3 where as the gap ahead of it 2 so it needs to decelerate by an

amount of gap minus one i.e., (2-1)=1.

• First vehicle : (2 3) , min (2-1, 3) = 1

Similarly applying it to remaining vehicles the updated velocities are obtained and are

shown below.

• Second vehicle : (3 > 2), no deceleration.

• Third vehicle : (1 < 2), (1 − 1, 2) =0

• Fourth vehicle : (2 > 1), no deceleration.

Dr. Tom V. Mathew, IIT Bombay 20.9 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

0 2 0 1

0 2 0 1

Step 3: Randomization stage (according to equation. 20.7)

if(vn > 0), then vn −→ max(vn − 1, 0)

This step is generally a randomly applied rule for a particular number of vehicles in a set of

total n vehicles. This number depends upon the probability ratio p that the user defines. But

in our case as we are working with a limited number of vehicles so we cannot use the probability

function so for the simplicity of the rule we shall apply this rule (additional deceleration) to all

the those vehicles which undergo deceleration stage. So in our case the first vehicle undergoes

randomization stage and acquires a new velocity of 0.

• First vehicle : (1 > 0), max(1 − 1, 0) = 0

Step 4: Vehicle updation: (according to equation. 20.8)

xn −→ xn + vn

The velocity of the first vehicle after undergoing the three rules has been reduced from two to

zero, so the position of the vehicle is not changed in the next time step.

• First vehicle : Xn = 1 + 0 = 1

Similarly applying the rule to the rest of the vehicles in the same way will obtained the

following results as below.

• Second vehicle :Xn = 3 + 2 = 5

• Third vehicle : Xn = 6 + 0 = 6

• Fourth vehicle :Xn = 7 + 1 = 8

The figure below gives the reader a clear overview if all the four stages at a glance.

Dr. Tom V. Mathew, IIT Bombay 20.10 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

0 2 0 1

0 2 0 1

1 2 0 1

3 2 2 1

2 1 1 0

Deceleration
stage

Vehicle
updation

Randomization

Actual
position

Acceleration
stage

20.2.8 Limitations

• Every model has some limitations and as such this cellular automata for single lane traffic

has also some limitations which are stated below.

• A single lane model doesn’t suit the realistic traffic where it has vehicle types of different

velocities. So here in single lane model if such vehicles are entertained the result is the

platooning effect and the average velocity of the stream becomes the velocity of slow

moving velocity.

• So, two lane models are introduced to meet the requirement and four more additional

rules are included for the exchange of vehicles between the lanes.

20.3 Lane changing

The concept of lane changing came into picture with the disadvantage of the single lane model of

unexplained realistic traffic conditions. The reason behind this disadvantage is that a realistic

traffic is usually composed of vehicle types of different desired velocities.

The presence of such vehicles will result in platooning effect. The generic two lane model is

the combination of two parallel single lane models with periodic boundary conditions with some

additional rules as stated in the below sections. The update step is split into two sub-steps. In

Dr. Tom V. Mathew, IIT Bombay 20.11 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

first sub-step the exchange of vehicles in the two lanes, take place according to the new rule

set. Vehicles are moved only sideways. They do not advance in one go. However, in reality

this does not happen and this is step is also not seen. This step has a meaning when it is

coordinated with the second step. In the second step, the independent single-lane updates on

both lanes according to the single lane update rules.

20.3.1 STCA models of two lane traffic:

Nagatani has formulated an oversimplified model for two-lane traffic. There are some assump-

tions in this model, one of which is that the maximum allowable speed of each vehicle is

identical. Therefore, the model turns out to be a homogeneous type model and hence cannot

explain heterogeneous traffic consisting of different types of vehicles. Some of the notations,

which will be used to indicate the gaps in the lanes, are

• ∆Xf
p (n) = gaps in front of nth vehicle in its present lane.

• ∆Xf
o (n) = gaps in front of nth vehicle in other lane.

• ∆Xb
o(n) =gap in the other lane behind the site.

All lane-changing rules consist of two parts: Trigger criterion (“Do I want to change the lane”)

and Safety criterion (“Is it safe if I change the lane”). Once if both the criteria are fulfilled,

the vehicle will change the lane.

In a two lane model proposed by Rickert, a vehicle changes its lane with a probability p,

provided there is not enough gap in the current lane in front of the vehicle, if the gap in the

front of the vehicle in the target lane is adequate, if it is possible without collision and finally

when the lane changing activity doesn’t block someone else’s way. The above sentences are

formulated in form of rules from equations. 20.9 to 20.11

• The vehicle does not find enough gap in its current lane ahead of it.

∆Xf
p (n) < V (n) + 1 (20.9)

• The gap in the target lane ahead of it is adequate.

∆Xf
o (n) > V (n) + 1 (20.10)

• No collision takes place (i.e.,The cell where the vehicle is intending to change should be

empty)

Dr. Tom V. Mathew, IIT Bombay 20.12 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

1 1

1 1 2 1

Figure 20:4: CA Example

2 2

2 2 3 2

Figure 20:5: CA Example

• It should not block some others way.

∆Xb
o(n) > Vmax (20.11)

Rules 9 and 10 are called the trigger criterion and the rule 11 is called the safety criterion.

These rules are applicable for both left to right and right to left lane changes and it changes

the lane with probability.

Numerical Example

Assume a two-lane road divided into nine cells in each of its lane. In first lane vehicles are

present in first (1), third (1), fourth (2), eight (1) cells and in second lane vehicles are present

in fifth (1) and sixth (1) cells. The numbers in the brackets indicate the present velocities of

the respective velocities. Apply the lane changing rules and determine which vehicles fulfilled

the lane changing requirements.

Solution Initially the solution starts with the acceleration stage of the vehicles, where the

vehicles are applied with the acceleration rule (equation. 20.5). In the acceleration stage, a

single unit increase in every vehicle, which possesses a velocity less than the maximum velocity.

So stage of the vehicles after the acceleration are shown in the Fig. 20:5. Lane changing is

required for L1(1), L1(2), L2(1) where “L1(1)” indicates number in the subscript as its lane

number and the superscript as it vehicle number in respective lanes.

Rule 1: ∆Xp
p (n) < V (n)+ 1 The first vehicle has a velocity two and the gap ahead of it in

its current lane is 2 so according to the rule (velocity +1 > gap). Therefore, the vehicle satisfied

the rule so that it can change the lane. L1(1) = (2 < 2 + 1) . . . satisfied. Similarly checking

Dr. Tom V. Mathew, IIT Bombay 20.13 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

for all the other vehicles. L1(2) = (1 < 2 + 1) . . . satisfied, L2(1) = (1 < 2 + 1) . . . satisfied.

The term gap is generally referred in two different ways, where it is explained as the distance

between bumper to bumper of the vehicles. The other way to state, the term gap is the number

of empty cells in front of a vehicle”. Here in the present discussion it is taken as the earlier one

but anyways it depends on the reader of choosing it where a slight modification (i.e., addition

of ± 1on the other side of the equations).

Rule 2 : (∆Xf
o (n) > V (n) + 1) (as per the rule 10) The velocity of the first vehicle is

two and the gap in the target lane ahead of it is four so the rule (gap (target lane) > velocity

+ one) is satisfied for the first vehicle. L1(1) = (4 > 2 + 1) . . . satisfied. Similarly checking

for other vehicles also will obtain the following results. L1(2) = (2 6> 2 + 1) . . . rejected, and

L2(1) = (34 6> 2 + 1) . . . rejected.

Rule 3: No collision of vehicles is observed as per the pattern given.

Rule 4: (∆Xb
o(n) > Vmax) (as per the rule 11)

The maximum velocity of any vehicle is given as four and the gap behind the first vehicle

in the target lane is five which is greater than the maximum velocity so the vehicle satisfied

the rule and subjected to lane change. L1(1) = (5 > 4). Therefore the first vehicle in the first

lane satisfied all the four rules.

20.3.2 Limitations

In real world traffic the vehicles dont have unique velocities but it was an assumption in the

model. So the vehicles are further divided into two types of different Vmax, namely Vfmax, Vsmax,

corresponding to fast vehicles and a slow vehicles. Introduction of “symmetric two lane model”

for inhomogeneous traffic.

20.4 Extensions

20.4.1 Types of updates

There are two types

Sequential update : This updating procedure considers each cell in the lattice one at a

time. If all cells are considered consecutively, two updating directions are possible, left-to-right

and right-to-left. There is also a third possibility, called random sequential update. Under this

scheme and with N particles in the lattice, each time step is divided in N smaller sub steps.

Dr. Tom V. Mathew, IIT Bombay 20.14 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

3 2 1

2 1 2

t

v

Figure 20:6: Without randomization

3 2 1

2 2

v

t

0

Figure 20:7: With randomization

At each of these sub steps, a random cell (or vehicle) is chosen and the CA rules are applied

to it.

Parallel update: This type of update is the classic update procedure generally used in all

the models. For a parallel update, all cells in the system are updated in one and the same time

step. Compared to a sequential updating procedure, this one is computationally more efficient

(note that it is equivalent to a left-to-right sequential update).

20.4.2 Effect of Randomization

The Fig. 20:6 shows the updation without randomization and the Fig. 20:7 is with randomiza-

tion where an extra deceleration is observed in second vehicle and then updation.

20.4.3 Totally asymmetric simple exclusion principle

The simple exclusion process is a simplified well-known particle transport model from non-

equilibrium statistical mechanics, defined on a one-dimensional lattice. In the case of open

boundary conditions (i.e., the bottleneck scenario), particles enter the system from the left side

at an entry rate α , move through the lattice, and leave it at an exit rate β. The term ‘simple

Dr. Tom V. Mathew, IIT Bombay 20.15 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

v

1 2 1α
δ γ

β

Figure 20:8: Total asymmetric exclusion process

Global density [vehicles/cell]

TASEP (vMax = 1)
TASEP (vMax = 5)

CA−184 (vMax = 1)
STCA (vMax = 1, p = 0.1)

G
lo

ba
l s

pa
ce

−m
ea

n
sp

ee
d

[c
el

ls
/ti

m
e

st
ep

]

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

Figure 20:9: Speed-density relation

exclusion’ refers to the fact that a cell in the lattice can only be empty, or occupied by one

particle.

When moving through the lattice, particles move one cell to the left with probability, and

one cell to the right with probability γ. When γ = δ, the process is called the symmetric simple

exclusion process (SSEP); if γ = δ then it is called the asymmetric simple exclusion process

(ASEP). Finally, if we set γ = 0 and δ = 1, the system is called the totally asymmetric simple

exclusion process (TASEP). If we consider the TASEP as a TCA model, then all vehicles move

with Vmax = 1 cell/time step to their direct right-neighbouring cell, on the condition that this

cell is empty. The process is shown in the below Fig. 20:8.

20.4.4 Comparisons

The above Fig. 20:9 gives a differentiation between four types of models and interestingly it is

observed that the TASEP with Vmax = 1 has a trend of the Greenshield model and following a

Dr. Tom V. Mathew, IIT Bombay 20.16 February 19, 2014

Transportation Systems Engineering 20. Discrete Simulation Models

G
lo

ba
l f

lo
w

 [v
eh

ic
le

s/
tim

e
st

ep
]

Global density [vehicles/cell]

CA−184 (vMax = 1)
STCA (vMax =1, p = 0.1)
TASEP (vMax =5)
TASEP (vMax = 1)

10.80.60.40.20
0

0.1

0.2

0.3

0.4

0.5

0.45

0.35

0.25

0.15

0.05

Figure 20:10: Flow density relation

linearity in the speed-density relation. The same trend is also observed in the below Fig. 20:10

flow density curve.

20.5 References

1. Sven Maerivoet and Bart De Moor. Cellular automata models of road traffic, 2005.

2. K Nagel and M Schreckenberg. A cellular automaton model for freeway traffic. France,

1992.

3. M Rickert, K Nagel, M Schreckenberg, and A Latour. Two lane traffic simulations using

cellular automata. 1996.

4. Debashish Chowdhury Ludger Santen and Andreas Schadschneider. Statistical physics

of vehicular traffic and some related systems, 2000.

5. Andreas Schadschneider. Statistical physics of traffic flow, 2000.

6. Christopher Stone and Larry Bull. Solving the Density Classification Task Using Cellular

Automaton 184 with Memory. Complex Systems Publications,Inc., 2009.

Dr. Tom V. Mathew, IIT Bombay 20.17 February 19, 2014

