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Partial ACF

Partial ACF

We learnt earlier that correlation-based measures su↵er from confounding, i.e., the

common influence of a third extraneous variable can cause two variables to appear as

correlated.

The correlation between two observations of a series (or two di↵erent series) is most likely

to su↵er from confounding because the intermediate samples can introduce an apparent

correlation due to propagated e↵ects. While this phenomenon holds for any random

process, it becomes particularly important for auto-regressive processes.

We understand the issue of confounding in ACF by revisiting the ACF of an AR(1) process.
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ACF of an AR(1) process

Recall the ACF of an AR(1) process v[k] = �d1v[k � 1] + e[k] from equation (??),

⇢vv[l] = (�d1)
|l|

The ACF suggests that v[k] and v[k � l] are correlated whereas the governing di↵erence

equation for the process clearly shows that only two successive samples v[k] and v[k� 1]

directly influence each other.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 3



Partial ACF

ACF of an AR(1) process

Q: What is the cause of this apparent correlation between samples separated by las

L > 1?

A: The cause for this apparent correlation is the propagated e↵ect. For instance, the

di↵erence equation of the process can be re-written as

v[k] = �d1(�d1v[k � 2] + e[k � 1]) + e[k] = d21v[k � 2]� d1e[k � 1] + e[k]

Thus v[k � 2] appears to influence v[k] indirectly through v[k � 1]. The same

argument can be extended to explain correlation at other lags as well.

How do we ensure ACF measures direct correlations only?
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Conditioned ACF: Partial ACF

To measure the direct correlation between v[k � l] and v[k] we should account for the

possible propagated e↵ects of the intermediate variables {v[k � l + 1, · · · , v[k � 1]}.

The procedure is illustrated for l = 2. The idea is to remove the presence of v[k � 1] in

both v[k] and v[k � 2] followed by a correlation between the respective residuals. The

resulting correlation is known as partial auto-correlation function (PACF)
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Partial ACF

Remarks:

I Partial ACF is analogous to “partial derivative” where only the e↵ects w.r.t. a

specific variable are evaluated.

I As we learnt earlier, computing partial correlation (or any other measure) is known

as conditioning in signal processing

I The partial ACF measures direct correlation whereas the ACF measures total

correlation
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Procedure to compute PACF
1. Obtain the best predictor for v[k] using v[k � 1]. Denote the associated residuals

by ⌘[k]

v̂[k|v[k � 1]] = ↵1v[k � 1]; ⌘[k] = v[k]� ↵?
1v[k � 1]

2. Obtain the best “predictor” for v[k � 2] using v[k � 1]. Denote the associated

residuals by ⌘[k � 2]

v̂[k � 2|v[k � 1]] = �1v[k � 1]; ⌘[k � 2] = v[k � 2]� �?
1v[k � 1]

where ↵?
1 and �?

1 are the optimal estimates of ↵1 and �1 respectively.

3. Compute �vv[2] = corr(⌘[k], ⌘[k� 2]) to obtain the PACF of the series v[k] at lag 2

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 7



Partial ACF

Procedure to compute PACF . . . contd.

The optimal estimates of ↵1 and �1 are obtained in such a way that ⌘[k] and ⌘[k� 2] do

not contain any (linear) e↵ects of v[k � 1], i.e.,

corr(⌘[k], v[k � 1]) = 0 corr(⌘[k � 2], v[k � 1]) = 0

These are also the conditions of optimality for the least squares technique. Thus, ↵?
1 and

�?
1 are the LS estimates.

↵?
1 = ⇢vv[1] �?

1 = ⇢vv[1]
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General procedure

The general procedure to obtain PACF is given below.

1. Obtain the best predictors for v[k] and v[k � l] using

{v[k � 1], v[k � 2], · · · , v[k � l + 1]}. Denote the associated residuals by ⌘[k] and

⌘[k � l] respectively

⌘[k] = v[k]�
l�1X

j=1

↵?
jv[k � j] ⌘[k � l] = v[k � l]�

l�1X

j=1

�?
j v[k � l + j]

where the ? denote the optimal values (least squares) estimates.

2. Compute �vv[l] = corr(⌘[k], ⌘[k � l]) to obtain the PACF at lag l
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Alternative procedure

The PACF coe�cient at any lag p, �vv[p] can be shown to be the last

coe�cient of an AR(p) model fit to the series v[k]

1. Fit an AR(l) model at each lag l.

2. Determine the PACF at any lag l as the last coe�cient of that model.

A recursive algorithm due to Durbin and Levinson is used in practice to compute �vv[p]

using the coe�cient at l = p� 1 and the ACF coe�cients.
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Remarks

I The “prediction” of v[k � l] using future values is known as backcasting

I The PACF at lag l = 0 is not defined. However, to be consistent with ACF, PACF

at lag l = 0 maybe set to unity.
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PACF of an AR(1) process

Problem: Find the PACF of an AR(1) process: v[k] = �d1v[k � 1] + e[k] at lags

l = 1, 2

Solution: The PACF coe�cient at lag l = 1 is the ACF at lag l = 1 itself since there is

no intermediate variable. The direct correlation at lag l = 1 is the same as

total correlation.

Thus,

�vv[1] = ⇢vv[1] = (�d1)
|l| (1)
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PACF of an AR(1) process

To compute the PACF at lag l = 2, recall from the procedure

�vv[2] = corr(v[k]� ↵?
1v[k � 1], v[k � 2]� �?

1v[k � 1])

=
cov(v[k]� ⇢vv[1]v[k � 1], v[k � 2]� ⇢vv[1]v[k � 1])p
var(v[k]� ⇢vv[1]v[k � 1])var(v[k � 2]� ⇢vv[1]v[k � 1])

=
⇢[2]� ⇢[1]

1� ⇢[1]2
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PACF of an AR(1) process . . . contd.

I For an AR(1) process, ⇢[l] = (�d1)|l|, thereby �vv[2] = 0

I At a later stage, it will be shown that �vv[l] = 0 for all lags l � 2 for an AR(1)

process

The PACF for an AR(1) process falls o↵ abruptly to zero 8|l| > 2.

Note: For an MA(1) process, �vv[1] = �c1(1 + c21)/(1 + c41 � c21)
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Theoretical PACF: Examples
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Remarks

I The PACF of a WN process is zero at all lags (like the ACF)

I PACF of an MA(1) process dies down exponentially (somewhat analogous to the

behaviour of ACF for an AR(1) process)

I The notion of PACF can be extended to handle negative lags as well. For

stationary processes, PACF is symmetric like the ACF
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Summary

In this chapter, we learnt / obtained

I The concepts and definitions of ACVF and ACF

I Insights into the concepts of white noise and its potnntial use in describing

stationary random processes

I That the ACF is a measure of predictability of a given series in a linear sense

I The CCF measures the linear dependence between two shifted series and it is very

useful in delay estimation and other signal processing applications
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Summary . . . contd.

I Partial ACF accounts for possible confounding in the ACF, particularly for

auto-regressive processes

I The PACF and ACF measures are duals of each other

I
ACF decays exponentially for an AR process while the PACF falls o↵ abruptly after

an appropriate lag for the same process

I
The above behaviour is reversed for the case of an MA process
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