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Classical Time-Series Model

Once a time-series is realized as predictable, the search for a suitable mathematical model

is carried out. Classical approaches in the early days rested on the philosophy that a series

is made up of three components

Time-Series = Trend + Seasonal Component + Stationary component

The trend and seasonal components could be combined into a single component under

the banner of deterministic component.
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Classical Approach . . . contd.

Several e�cient non-parametric and semi-parametric methods were subsequently devel-

oped to realize such a decomposition. The trend usually contains a polynomial type of

trend while the seasonal component captures the periodic characteristics, if any.

Extracting the deterministic portions of a series is not trivial, but can be e↵ectively carried

out with suitable regression, smoothing and filtering operations.

Note: The seasonal component is usually a deterministic periodic signal, and assumed to be

uncorrelated with the non-seasonal component.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 3



Models for Stationary Linear Processes

Modern Approach

In 1970s, a new approach to modelling the seasonal (including the non-stationary and

trend components) was introduced.

Unlike the models based on additive approach, multiplicative models were postulated.

These are more generic in the nature because they take into account the correlation be-

tween seasonal and non-seasonal (stationary) components, and also model the integrating

(random walk) e↵ects.

The resulting models are known as seasonal ARIMA (SARIMA) models.
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Models for Stationary Processes
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Models for stationary processes

The stationary component, by virtue of definition, cannot be purely explained by a math-

ematical model but requires the assistance of statistics.

It turns out that a large class of stationary stochastic processes, specifically

linear processes, can be explained by mathematical models (convolution /

di↵erence equation) driven by forcing functions that are random in nature.

In fact, the forcing function is the white-noise sequence.
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Spectral Factorization

The existence of such descriptions (for linear random processes) is centered around a

milestone result known as the spectral factorization theorem.

The ability to represent v[k] as WN passing through a linear filter, is possible if and

only if the spectral density (TBD later) of v[k] satisfies certain mild conditions.
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Absolute convergence of ACVF

While we shall discuss the conditions on spectral density later, it is obvious that the

spectral density function (SDF), denoted by �(!) itself should exist in the first place.

Postponing the formal definition of SDF, at this juncture it is useful to recall from the

discussion on non-negative definiteness that the SDF is related to the ACVF through the

Fourier transform,

�(!) =
1

2⇡

1X

l=�1

�[l]e�j!l (1)
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ACVF should be absolutely convergent

Clearly, for the SDF to exist, and hence the linear representation of the stationary

process, the ACVF should be absolutely convergent

1X

l=�1

�[l] < 1 (2)

Interpretation
For a stationary process to possess a linear filter representation, its ACVF should decay

with lag.

I A periodic stationary process, i,e., a harmonic process, does not lend itself to a

linear representation!
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Models and Predictors

Developing a model is as good as developing a predictor. There exists a one-on-

one equivalence between a model and a predictor. When the predictor is accompanied by

a description of the prediction error (what has gone unpredicted), the result is a model.

�

�

⌧

�

For stochastic signals, there exists no model that can accurately predict them. However,

an optimal model is expected to result in a prediction error that o↵ers no further scope

for prediction. Therefore, the prediction errors associated with an optimal model

should possess the properties of a white-noise series.
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Basic idea

Any (stationary) random process can be thought of as consisting of a predictable portion

plus an unpredictable component.

v[k] = v̂[k] + e[k] (3)

where v̂[k] represents the predictable portion and e[k] the unpredictable ideal random

process, i.e., the white-noise process or in general the i.i.d. process.
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Remarks

I The second term in (3) is an indispensable component of any random process because

when it is absent, v[k] condenses to a deterministic process.

I On the other hand, the first term can be absent, in which case, v[k] has white-noise

characteristics.
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Prediction approach to developing models

Given P past observations of the process, the modeling objective is to develop a predictor

v̂?[k] that leaves nothing predictable in the prediction error. In other words, the prediction

error

✏[k] = v[k]� v̂?[k] (4)

should have either white-noise or i.i.d. characteristics.
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Conditional expectation: the optimal predictor

Recalling a key result, the best predictor of v[k] is its conditional expectation given its

past,

v̂?[k] = E(v[k]|{v[k � 1], v[k � 2], · · · , v[k � P ]}) (5)

I In general, the conditional expectation is a non-linear function of the past obser-

vations.

I Further, the conditional expectation in (5) is quite di�cult to evaluate since the joint

p.d.f. of past observations needs to be known.
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Linear-time invariant models

If the observations follow a joint Gaussian distribution, the conditional

expectation in (5) can be replaced by a linear model. (why?)

Replacing the RHS of (5) with a linear function yields,

v̂?[k] =
PX

i=1

(�di)v[k � i] (6)

=) v[k] +
PX

i=1

div[k � i] = e[k] (7)

The model in (7) is known as the auto-regressive model of order P .
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Remarks

I The negative sign on the coe�cients is introduced to have a positive sign on the

coe�cients of the di↵erence equation for v[k].

I When the true process does not satisfy the (joint) Gaussianity assumption, the linear

predictor is sub-optimal, but is at least mathematically tractable and implementable.

I The di↵erence equation in (6) shares strong similarities with that of a de-

terministic LTI system - the key di↵erence is that the forcing function is

stochastic.
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LTI representation
Equation (7) can be re-written in terms of the transfer function operator.

Example
Suppose that v[k] can be modeled as an AR process of first-order, i.e., by (7) with

P = 1 (as determined by the sharp cut-o↵ in PACF at lag l = 1),

v[k] + d1v[k � 1] = e[k] (8)

Bringing in the shift-operator, we can express (8) using the transfer function operator

v[k] = H(q�1)e[k] where H(q�1) =
1

1 + d1q�1
(9)
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LTI representations and white-noise

The white noise, thus, acts as a fictitious input that drives the random process. It is,

however, endogenous, i.e., intrinsic to the process.

Recall the two other roles of WN in time-series analysis:

I As a benchmark for testing predictability: The series (prior to model

development) and the residuals (post modelling) are tested for “whiteness.”

I As an integral element of time-series models: Every random process contains

an element of unpredictability, i.e., the WN as its basic element.
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Linear representations

STATIONARY

ABS. CONV. ACVF

PALEY-WIENER

STATIONARY

SDF-EXISTING

PALEY-WIENER

GAUSSIAN PROCESSES

Linear representations exist only for

stationary, SDF-existent,

Paley-Wiener condition satisfying

and yield optimal predictions for

Gaussian processes.
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Linear Random Processes

Linear Random Process
Any stationary process is said to be linear if and only if it can be represented as

v[k] =
1X

n=�1
hne[k � n] 8k where e[k] ⇠ WN(0, �2

e) (10a)

and
1X

n=�1
|hn| < 1 (10b)

Implication: Any (weakly) stationary process can be represented as the weighted influ-

ences of the past & present (n � 0) and future (n < 0) shock waves.
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Remarks

I The condition of absolute convergence (of {hn}) is required for the convergence of

the infinite sum in (10a) with probability one.

I A weaker requirement is that

X

n

|hn|2 < 1 (11)

which guarantees that the sum converges in the mean square sense.

I The WN process driving force for the linear process is replaced by an I.I.D. process

in certain schools of thought, especially, in non-linear time-series analysis.
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Further remarks

I We usually restrict ourselves to causal processes, i.e., series with n � 0

I With the backshift operator notation, we have

v[k] = H(q�1)e[k] where H(q�1) =
1X

n=�1
hnq

�n (12)

I The transfer function operator H(q�1 can be thought of as a “linear filter”, which

filters the shock waves to produce the series x[k].

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 22



Models for Stationary Linear Processes

Comparison with convolution form

The model in equation (10) has a striking similarity with the convolution form for deter-

ministic processes. Comparing

y[k] =
n=1X

n=�1
g[n]u[k � n] v[k] =

1X

n=�1
hne[k � n]

we can draw a few useful analogies
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Comparison with LTI deterministic processes

I The coe�cient hn has the some role to play as g[n]

I Stability of an LTI system requires absolute convergence of g[n] Stationarity

requires absolute convergence of the coe�cients hn

I Thus, hn can be thooght of as the impulse response coe�cient of H(q�1)

A marked di↵erence between these two forms is that while the input for

deterministic systems is known to the user, the input in the stochastic case is

fictitious, unknown, random but with known ACF.
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Comparison with LTI descriptions . . . contd.

I Just as G(q�1) =
1X

n=�1
g[n]q�n acts as a filter, so does H(q�1) =

1X

n=�1
hnq

�n

I It is possible to re-write the infinitely long convolution form for deterministic LTI

systems in two di↵erent forms:

I FIR form (the impulse response dies down exactly after M instants)

I Di↵erence equation (regressive) form (whenever the IR can be parametrized)

I The FIR form is known as the Moving Average form (of finite-order) while the

di↵erence equation form is known as the Auto-Regressive form
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Modelling viewpoints

1. Time-series modelling is concerned with the estimation of H(q�1) and

variance of e[k] given the series v[k]

I
Note that e[k] is fictitious input with specific, but unknown, statistical properties

I
This is one of the prime di↵erences between modelling of linear stationary

stochastic and LTI deterministic processes.
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Modelling viewpoints . . . contd.

2. The model in (12) is not unique in the sense that ↵H(q�1) and �2
e/↵

2 also o↵er

an equally suitable description of to this process.

An easy way to resolve this non-uniqueness is by fixing the leading coe�cient of

the polynomial H(q�1) be unity. Stated otherwise,

h0 = 1 (13)
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Modelling viewpoints . . . contd.

3. Even with the fixation of h0 = 1, we are presented with the problem of estimating

infinite unknowns hn, n = 1, 2, · · · .

There are two di↵erent ways of overcoming this issue:

i. Assume that the process is described by a finite number of IR coe�cients, i.e.,

h[n] =

8
<

:
cn, 1  n  M, cn < 1

0, n > M
(14)

leading to the class of Moving Average models.
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Dealing with infinite unknowns

ii. Parametrize h[.] in terms of finite number of unknowns (parameters).

For e.g.,

h[n] = ↵1�
n
1 OR h[n] =

PX

i=1

↵i�
P
i (15)

leading to the class of di↵erence equation form or the Auto-Regressive

models.
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