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Classical Time-Series Model

Once a time-series is realized as predictable, the search for a suitable mathematical model

is carried out. Classical approaches in the early days rested on the philosophy that a series

is made up of three components

Time-Series = Trend + Seasonal Component + Stationary component

The trend and seasonal components could be combined into a single component under

the banner of deterministic component.
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Models for Non-Stationary Processes

Classical Approach . . . contd.

Several e�cient non-parametric and semi-parametric methods were subsequently devel-

oped to realize such a decomposition. The trend usually contains a polynomial type of

trend while the seasonal component captures the periodic characteristics, if any.

Extracting the deterministic portions of a series is not trivial, but can be e↵ectively carried

out with suitable regression, smoothing and filtering operations.

Note: The seasonal component is usually a deterministic periodic signal, and assumed to be

uncorrelated with the non-seasonal component.
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Modern Approach

In 1970s, a new approach to modelling the seasonal (including the non-stationary and

trend components) was introduced.

Unlike the models based on additive approach, multiplicative models were postulated.

These are more generic in the nature because they take into account the correlation be-

tween seasonal and non-seasonal (stationary) components, and also model the integrating

(random walk) e↵ects.

The resulting models are known as seasonal ARIMA (SARIMA) models.
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Non-stationarities

ARMA models are capable of representing almost all classes of (linear) stationary pro-

cesses. On the other hand, there are several processes that exhibit non-stationarities, of

which there are numerous variants.

We shall focus on two popular types, mean and variance non-stationary processes.

In addition, the series may contain periodicities and seasonalities. We shall study such

processes in greater detail later.
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Mean non-stationarities

Among the mean non-stationary processes, we have again two types:

1. Deterministic trends (polynomial functions of time)

2. Stochastic trends, esp. random walk type (integrating e↵ects)

We shall, be largely concerned with integrating type non-stationarities, since these

are frequently encountered across di↵erent disciplines.
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Handling non-stationarities

There are primarily two ways of handling non-stationarities:

1. Eliminating trends by first fitting polynomial models to the series and working with

the residuals.

2. Including integrating e↵ects in the model by suitable di↵erencing of the data

It turns out the second class of methods can also handle trends of polynomial types. A

single degree of di↵erencing eliminates a trend of first-order.
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Exogenous e↵ects

If the non-stationarities are due to external signals (exogenous e↵ects), then those

e↵ects have to be removed first by fitting a deterministic model between the exogenous

signals and then fitting a time-series model to the residuals. Else the deterministic and

time-series models can be jointly estimated as well. This is the crux of system

identification.
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Fitting trends

Trends in series can be eliminated by two di↵erent approaches:

1. By fitting a trend using polynomial fits

2. Estimating the trend by the use of suitable filters
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Example

Consider developing a model for the following series

v[k] = ↵0 + ↵1k| {z }
m[k]

+w[k] ↵0,↵1 2 R

where v[k] is a zero-mean stationary process

Then, the linear trend (in time) can be estimated by fitting a straight line using a

least squares method.
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Example . . . contd.

Alternatively,

E(v[k]) = E(↵0 + ↵1k + w[k]) + E(w[k]) = ↵0 + ↵1k

Thus, the deterministic component (trend) is the average of the series v[k]. To put this

observation into practice, we replace the theoretical average with an estimate.

The filtering approach essentially uses this idea to extract the trend.
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Estimating trends using filters

1. Smoothing with a two-sided finite moving average filter

m̂[k] =
1

2M + 1

MX

j=�M

v[k � j] (1)

I
This moving average filter assumes linear trend over the interval [k �M,k +M ] and

that the average of the remaining terms is close to zero

I
The filter provides us, therefore, with an estimate of the linear trend
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Estimating trends using filters . . . contd.

2. A “clever” choice of filter can be used to eliminate polynomial trends. The Spencer

15-point MA filter can be used to estimate polynomial trends of degree 3.

Spencer’s filter coe�cients:

aj = 0, |j| > 7, aj = a�j , |j|  7

a0 a1 a2 a3 a4 a5 a6 a7

74/320 67/320 46/320 21/320 3/320 �5/320 �6/320 �3/320
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