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Introduction to Random Processes

Opening remarks

A prime goal of TSA is prediction (forecasting). Therefore, it is important to test for

predictability of a series prior to any model development exercise.

Predictability is a generic term and can largely depend on what model is being consid-

ered for prediction. Most of the established theory revolves around linear models for

predictions, which serve a large number of applications.

Recall that covariance (or correlation) is a measure of linear dependence between two

random variables. We shall now apply this concept to two observations of a series

so as to test for linear dependence within that series.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 2



Introduction to Random Processes

Auto-covariance function (ACVF)

The auto-covariance function (ACVF) is defined as the covariance between two obser-

vations of a series, v[k1] and v[k2]

�vv[k1, k2] = E((v[k1]� µk1)(v[k2]� µk2)) (1)

where µki is the mean of the process at ki instant.

Note: We have switched our notation from x[k] to v[k] and used v[ki] to indicate both

the observation as well as the associated RV.
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Introduction to Random Processes

ACVF of stationary processes

For stationary processes, recall that the mean remains invariant and the distribution is

only a function of the time di↵erence or lag, l = k1 � k2. Consequently,

ACVF of a stationary process
The auto-covariance function of a stationary process is only a function of the lag l

between two observations,

�vv[l] = E((v[k]� µv)(v[k � l]� µv)) (2)

where µv = E(v[k]) is the mean of the stationary process
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Introduction to Random Processes

Properties of the ACVF

I �vv[l] measures (only) the linear dependence between v[k] and v[k � l].

I As with covariance, ACVF is a symmetric measure, i.e.,

�vv[l] = �vv[�l] (3)

I It lacks directionality, i.e., �vv[l] does not provide the direction of dependence

I It is a↵ected by confounding, i.e., �vv[l] includes the e↵ects of other observations

that can commonly influence v[k] and v[k � l]

I The value of ACVF depends on the units in which the series is expressed.
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Introduction to Random Processes

Auto-correlation function (ACF)

In order to address the unboundedness and sensitivity to choice of units, the auto-

correlation function (ACF) is introduced.

⇢vv[l] =
�vv[l]

�vv[0]
(4)

Remark: The ACF possesses all characteristics of correlation.
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Introduction to Random Processes

Properties of ACF

I It reaches a maximum value of 1 at lag 0 - the dependency of a sample on itself is

normalized to unity.

I In fact, it is bounded like the correlation

�1  ⇢vv[l]  1 (5)

The equality occurs if and only when v[k] = ↵v]k � l], ↵ 2 R, i.e., for a purely

linear deterministic process
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Introduction to Random Processes

ACFs of some real series

0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
C

F

Lags

(a) Temperature

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
A

C
F

Lags

(b) Wind speed

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
C

F

Lags

(c) ECG

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
C

F

Lags

(d) Swiss SMI

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 8



Introduction to Random Processes

The decay rates for ACF depends on the series under analysis.

By examining the ACF we obtain useful insights into the nature of correlation

and the type of model that can be possibly built.
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Introduction to Random Processes

Interpreting ACF in predictions
Consider the linear forecast of a series at k2 = k + l given information only at k1 = k

v̂[k + l|v[k]] = ↵v[k] (6)

Then, the optimal value of ↵ in the sense of

min
↵

E
�
(v[k + l]� v̂[k + l|v[k]])2

�
= min

↵
E
�
(v[k + l]� ↵v[k])2

�

is

↵? = ⇢vv[l]

Thus, the ACF at any lag l is the optimal coe�cient of the linear model in (6)
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Introduction to Random Processes

Discovering signatures from ACF

Methods for development / estimating time-series models implicitly or explicitly involve

inverse mapping of the estimated ACF to the model parameters.

Therefore, it is important to ensure that this inverse mapping produces mathematically

meaningful and correct models. For instance, can we start from any symmetric function

and expect it to be the ACF of a stationary random process? The answer is NO.
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Introduction to Random Processes

Non-negative definiteness

An important property that a function to qualify as the ACF is that of the property of

non-negative definiteness.

Definition
A sequence �[.] is said to be non-negative definite if it satisfies

nX

i=1

nX

j=1

ai�[|i� j|]aj � 0 8 ai, aj 2 R , n > 0 (7)
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Introduction to Random Processes

Non-negative definiteness of ACF

Theorem
The ACVF of a stationary process is non-negative definite.

Proof: Consider a process y[k] =
nX

i=1

aiv[k � i + 1] = aTv, where v[.] is an observation of a

random stationary process and ai 2 R. Then

var(y[k]) = E
�
(y[k] � µy)(y[k] � µy)

T
�

= E
�
aT (v � µv)(v � µv)Ta

�

= E
�
aT�na

�

=
nX

i=1

nX

j=1

ai�[i � j]aj � 0

�n =

2

664

�vv[0] · · · �vv[n � 1]
.

.

. · · ·
.

.

.

�vv[1 � n] · · · �vv[0]

3

775
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Introduction to Random Processes

White-noise process

One of the most important uses of ACF is in the definition of an ideal random process,

which is the backbone of (linear) random process theory.

White-noise process

The white-noise process e[k] is a stationary uncorrelated random process,

⇢ee[l] =

(
1 l = 0

0 l 6= 0
(8)
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Introduction to Random Processes

White-noise process . . . contd.

I It is an unpredictable (in the linear

sense) stationary process.

I The ACF of a white-noise process

has an impulse-like shape. For any

process with predictability, the ACF

deviates from this shape.

�[l]

1

0 l

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 15



Introduction to Random Processes

White-noise process

The white-noise (WN) process is useful in two important ways:

1. It is the benchmark process for test of predictability

2. As a fictitious input (driving force) to a random process for modelling purposes

Observe that the definition of WN does not impose any conditions on the distribution -

the only requirements are stationarity and uncorrelated properties
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Introduction to Random Processes

WN processes

In principle, therefore we can conceive Gaussian WN, Uniform WN and so on. The most

commonly assumed one is the Gaussian WN (GWN).

Remark: A variety of random number generators can generate GWN and UWN processes.

These are pseudo-random number generators in the sense that they lose their randomness

when the initial condition (seed) is known.
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Introduction to Random Processes

Independence

One can extend the definition of uncorrelated process to an independent process, which

demands that all higher-order moments of the joint pdf to be zero.

I.I.D. process
An identical, independent process is that process which is absolutely unpredictable

(using any non-linear model).

I Note: A Gaussian white-noise process is an i.i.d process as well.

I In practice, it is very di�cult to test for independence whereas it is quite easy to

test for the absence of correlation.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 18



Introduction to Random Processes

ACF and time-series modelling
To quickly recap, ACF:

I Provides means of testing for predictability in a series.

I Facilitates definition of the ideal random process (white-noise process).

Taking a step further, we now move to the stage of using ACF for determining what

type (order and structure) of linear model is suitable for a given series. To be

able to do so, it is important to study the behaviour of ACF for di↵erent processes.

Using the map between ACF and the associated random process, we would like to

make an “intelligent” guess of the form of the model.
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Introduction to Random Processes

General linear random process

The general model for a linear random stationary process is given by the convolution

form

v[k] =
1X

n=�1
h[n]e[k � n], e[k] ⇠ GWN(0, �2

e),
X

n

|h[n]| < 1 (9)

Typically one sets n � 0 (for causality) and h[0] = 1 (for uniqueness). A formal treatment

of the above model appears later.

Remark: Another definition that requires e[k] to be an i.i.d. process is also widely used.
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Introduction to Random Processes

Types of linear random processes

Depending on what one assumes further about the sequence of coe�cients h[n], (9)

specializes to two types of processes:

1. Moving Average (MA) process

2. Auto-regressive (AR) process

and mixed models, i.e, auto-regressive, moving average (ARMA) models.

We shall now study the ACF signatures of the above two processes.
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Introduction to Random Processes

ACF of a Moving Average (MA) process

MA(1) process

The MA process of first-order, i.e., MA(1) arises when h[1] = c1 and

h[n] = 0, n 6= 0, 1.

v[k] = e[k] + c1e[k � 1]

where e[k] ⇠ GWN(0, �2
e) and c1 is a finite constant.

I The current state contains the previous shock wave plus an unpredictable part e[k]

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 22



Introduction to Random Processes

Theoretical ACF of an MA(1) process

The theoretical ACF is obtained using the definition in (2)

�vv[l] = E((v[k]� µv)(v[k � l]� µvs))

= E((e[k] + c1e[k � 1])(e[k � l] + c1e[k � l � 1]))

= E(e[k]e[k � l]) + c1E(e[k]e[k � l � 1])

+ c1E(e[k � 1]e[k � l]) + c21E(e[k � 1]e[k � l � 1])

= �ee[l] + c1�ee[l + 1] + c1�ee[l � 1] + c21�ee[l]
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Introduction to Random Processes

ACVF of an MA(1) process . . . contd.

Using the definition of WN process in (8), the ACVF of the MA(1) process is

�vv[l] =

8
><

>:

(1 + c21)�
2
ee l = 0

c1�
2
ee l = ±1

0 l = ±2,±3, · · ·
(10)
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Introduction to Random Processes

ACF of an MA(1) process . . . contd.
Thus, we can write the ACF of an MA(1) process as

⇢vv[l] =

8
>><

>>:

1 l = 0
c1

(1 + c21)
l = ±1

0 |l| � 2

(11)

The ACF of an MA(1) process has a sharp cut-o↵ after lag l = 1 (the order of

the MA(1) process)
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Introduction to Random Processes

ACF of an MA(1) process . . . contd.
ACF of a Moving Average (1) process

Lags

1

-20 -10 0 10 20

I Observe that the ACF is

independent of the

variance of the WN process

I Since ⇢vv[l] = 0, |l| � 2,

one cannot predict the

process beyond one

time-step.
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Introduction to Random Processes

General observations

I The ACF is symmetric and bounded above in magnitude by unity for all values of

c1 (verify).

I Suppose that the coe�cient on e[k] was c0 instead of unity. The ACVF is then

given by

�vv[l] =

8
>>><

>>>:

(c20 + c21)�
2
e , l = 0

c1c0�
2
e , |l| = 1

0, |l| � 2

(12)
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Introduction to Random Processes

From a modelling viewpoint, we have two equations and three unknowns (c0, c1 and

�2
e). We have, therefore, an underdetermined problem. This is resolved by fixing any

one of these unknowns. A reasonable and meaningful choice is to set c0 = 1 (why?)

Further, recall

Not any symmetric function that is bounded above in magnitude by unity, qualifies to

be the ACF of a random stationary process.
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Introduction to Random Processes

Non-negative definiteness

Non-negative definiteness of a symmetric, bounded sequence �[.] guarantees the

existence of a stationary random process with �[.] as its ACVF.

Problem: For what values of c does the function f [l] =

8
>>><

>>>:

1, l = 0

c, l = ±1

0, otherwise

qualify to be

the ACF of a stationary process?
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Introduction to Random Processes

Non-negative definiteness

Solution: f [l] can be the ACF of a stationary process if and only if |c|  1/2. Why?

The given function resembles the ACF of an MA(1) process. Then, only

when |c|  1/2, an MA(1) process with real coe�cient exists.

Alternatively, if |c| > 1/2, then f [l] is not positive definite. See this by

choosing a = [1,�1, 1,�1, · · · ] in the definition of non-negative definiteness.

The test sum yields n� 2(n� 1)c, which is not positive for all

n > 0, c > 1/2.
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Introduction to Random Processes

Alternative method for testing n.n.d.

Theorem (Bochner)

Any absolutely summable real-valued sequence �[l], l 2 Z is non-negative definite if

and only if its Fourier transform

�(!) =
1

2⇡

1X

l=�1

�[l]e�j!l (13)

is non-negative valued at all !, i.e., �(!) � 0, 8!.

I It is su�cient to restrict the frequency range to [0, 2⇡) (why?).]
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