
Introduction to Random Processes

Non-stationary process

Example
Consider the random signal x[k] = A cos(!k + �), where � is a random variable with

uniform distribution in [0, ⇡]. The mean of this signal (process) is

E(x[k]) = E(A cos(!k + �)) = A

Z
⇡

0

cos(!k + �)f(�) d� =

A

⇡

Z
⇡

0

cos(!k + �) d�

= �2A

⇡

sin(!k)

which is a function of time. Thus, the process is non-stationary.
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Introduction to Random Processes

Order stationarity in distribution

A stochastic process is said to be N

th-order stationary (in distribution) if the joint

distribution of N observations is invariant to shifts in time,

F

Xk1
,··· ,XkN

(x1, · · · , xN

) = F

XT+k1
,··· ,XT+kN

(x1, · · · , xN

) 8T, k1, · · · , kN 2 Z+ (2)

where X

k1 , · · · , XkN are the RVs associated with the observations at k = k1, · · · , kN ,
respectively and x1, · · · , xN

are any real numbers.
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Introduction to Random Processes

Special cases

1. First-order stationarity in distribution:

F

Xk1
(x1) = F

Xk1+T
(x1) 8T, k1 2 Z+ (3)

Every observation should fall out of the same distribution.

2. Second-order stationarity in distribution:

F

Xk1
,Xk2

(x1, x2) = F

Xk1+T ,Xk2+T
(x1, x2) 8T, k1, k2 2 Z+ (4)

The distribution depends only on the time-di↵erence k2 � k1.
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Introduction to Random Processes

Relaxation of strict stationarity

The requirement of strict stationarity is similar to the strict requirement of time-invariance

or linearity (in deterministic processes), which are also academically convenient assump-

tions, but rarely satisfied in practice.

In reality, rarely will we find a process that satisfies the strict requirements of stationarity

defined above.

A weaker requirement is that certain key statistical properties of interest such as mean,

variance and a few others at least, remain invariant with time
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Introduction to Random Processes

Weak stationarity
A common relaxation, is to require invariance up to second-order moments.

Weak or wide-sense or second-order stationarity
A process is said to be weakly or wide-sense or second-order stationary if:

i. The mean of the process is independent of time, i.e., invariant w.r.t. time.

ii. It has finite variance.

iii. The auto-covariance function of the process

�

xx

[k1, k2] = cov(X
k1 , Xk2) = E((X

k1 � µ1)(Xk2 � µ2)) (5)

is only a function of the “time-di↵erence” (lag l = k2 � k1) but not the time.
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Introduction to Random Processes

On wide-sense stationarity (WSS)

Q: Under what conditions is the weak stationarity assumption justified?

Where linear models are concerned, the optimal parameter estimates are fully

determined by the first- and second-order properties of the joint p.d.f.

Example
For a stationary process, suppose a linear predictor of the form

x̂[k] = �d1x[k � 1]� d2x[k � 2]

is considered. Determine the optimal (in the m.s. prediction error sense) estimates.
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Introduction to Random Processes

Gaussian WSS process

A WSS multivariate Gaussian process is also strictly stationary.

Why?

I A joint Gaussian distribution is completely characterized by the first two moments.

Therefore, when the first two moments remain invariant, the joint pdf also remains

invariant.
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Introduction to Random Processes

Non-stationarities

Just as with non-linearities, there are di↵erent types of non-stationarities, for e.g., mean

non-stationarity, variance non-stationarity, and so on. It is useful to categorize them, for

working purposes, into two classes:

1. Deterministic: Polynomial trend, variance non-stationarity, periodic, etc.

2. Stochastic: Integrating type, i.e., random walk, heteroskedastic processes, etc.

We shall be particularly interested in two types of non-stationarities, namely, trend-type

and random walk or integrating type non-stationarities.
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Introduction to Random Processes

Trend-type non-stationarity

A suitable mathematical model for such a process is,

x[k] = µ

k

+ w[k] (6)

where µ

k

is a polynomial function of time and w[k] is a stationary process.

For example, a linear trend is modeled as µ
k

= a+ bk.
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Introduction to Random Processes

Trend type non-stationarity . . . contd.

I When the removal of a trend (e.g., linear ,quadratic) results in stationary residuals,

the process is said to be trend non-stationary.

I Trends may be removed by either fitting a suitable polynomial (parametric approach)

or by applying an appropriate smoothing filter (non-parametric approach).
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Introduction to Random Processes

Example: Trend-type non-stationarity

I A linear trend is fit to the series.

I Residuals show variance type

nonstationarity. This is typical of a

growth series.

I Two approaches:

1. Trend fit + transformation OR

2. Advanced models known as GARCH

(generalized auto-regressive

conditional heteroskedastic) models.
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Introduction to Random Processes

Integrating type non-stationarity

One of the most commonly encountered non-stationary processes is the random walk

process (special case of Brownian motion).

The simplest random walk process is an integrating process,

x[k] =

kX

n=0

e[k] (7)

where e[k] is the (unpredictable) white-noise a↵ecting the process at the k

th instant.
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Introduction to Random Processes

Integrating processes

I At any instant the signal is the accumulation of all shock-wave like changes from

the beginning. Hence the name integrating.

I It is also known as a di↵erence stationary process because

x[k]� x[k � 1] = e[k] (8)
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Introduction to Random Processes

Example

I Non-stationarity can be easily

discerned by a visual inspection.

I The di↵erenced series appears to be

stationary.

I In general, a single degree of

di↵erencing is capable of removing a

linear trend, two degrees removes

quadratic trends and so on.
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Introduction to Random Processes

Caution

Despite its capability in handling a wide range of stationarities, the di↵erencing

approach also has potentially a few detrimental e↵ects.

I Excessive or unnecessary di↵erencing can lead to spurious correlations in the

series.

I Amplification of noise, i.e., decrease in SNR in system identification.
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Introduction to Random Processes

Ergodicity

When the process is stationary, the second requirement on the time-series stems from

the fact that in practice we work with only a single record of data.

Estimates computed from averages of time (or other domain) samples should serve as suit-

able representatives of the theoretical statistical properties, which are defined as averages

in the outcome space (ensemble).

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 29



Introduction to Random Processes

Ergodicity: Formal statement
Ergodicity
A process is said to be ergodic if the (time averaged) estimate converges to the true

value (statistical average) when the number of observations N ! 1.

Examples
1. A stationary i.i.d. random process is ergodic (by the strong LLN)

1

N

NX

k=1

x[k]

a.s.�! E(X

k

) as N ! 1 (9)

2. A process such that x[k] = A, 8k, s.t.E(A) = 0. Is it ergodic?
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Remarks

I We can speak of ergodicity only when the process is stationary!

I
Loose interpretation: given su�cient time, the process would have

unravelled nearly all possibilities that exist at any time instant (regardless

of the starting point),

I Ergodicity is not necessarily a characteristic of the process, but can also be of the

experiment that is carried out to obtain the time-series.

I Ergodicity is di�cult to verify in practice; however, can be ensured by a careful

experimentation, particularly through a proper selection and configuration of

sensors and instrumentation.
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