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Estimation of spectral densities

Learning Goals

In this lecture, we focus on the estimation of spectral densities for stochastic signals. We

shall learn the following:

» Blackman-Tukey and Daniell’'s method
» Welch's averaged periodogram

» Parametric methods
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Recap.

The lack of consistency in periodogram estimator can be explained from three viewpoints:

i. The infinitely-long ACVF is approximated by a finite-length estimated ACVF and
the error in ACVF estimates increases with the lag (leads to Blackman-Tukey
estimators).

ii. The true p.s.d. is a smooth function of frequency, whereas the estimated one is
erratically fluctuating (leads to smoothers).

iii. The true p.s.d. is an average property, whereas the estimated one is from a single
realization (leads to Welch's average periodogram estimators).
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Recap: Methods for improvement

Method

Summary

Reference

Blackman-Tukey

Fourier transformation of smoothed, truncated autoco-

variance function

Chatfield, 1975

Smoothed peri- | Estimate periodogram by DFT of time series; Smooth | Bloomfield, 2000

odogram periodogram with modified Daniell filter

Welch's method Averaged periodograms of overlapped, windowed seg- | Welch, 1967
ments of a time series

Multi-taper method | Use orthogonal windows (OtapersO) to get approxi- | Percival and

(MTM) mately independent estimates of spectrum; combine | Walden, 1993
estimates

Singular  spectrum | Eigenvector analysis of autocorrelation matrix to elimi- | Vautard and

analysis (SSA) nate noise prior to transformation to spectral estimates | Ghil, 1989

Maximum  entropy | Parametric method: estimate acf and solve for AR | Kay, 1988
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Non-parametric estimators

As remarked earlier, two classes of spectral estimators exist:

1. Non-parametric methods:
» 1 No model is required to be fit to data.
» 1 No major assumptions about the data sequence are made
» Two assumptions are implicit though: (1) Autocorrelation dies out after N and (2)
Data is periodic with period N
» An important goal is to obtain a consistent estimate
» Reduction in variance is achieved at the cost of decrease in resolution

» | Spectral leakage and limited resolution (1/N) are issues
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Parametric estimators

Parametric estimators offer certain striking advantages, but caution has to be exercised.

2. Parametric methods:

» 1 Eliminate the need for windows. Therefore, no leakage issues arise

» 1 Provide better frequency resolution than FFT-based methods

» | Require a model-based description of the stochastic process

» Autocorrelation need not go to zero after N. The auto-correlation sequence can be

computed from the model
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NON-PARAMETRIC ESTIMATORS OF PSD
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Method of smoothing the spectrum

Basic Idea
At each frequency w;, estimate the true density by smoothing the periodogram 4(.) in

the vicinity of w;.

Underlying philosophy: The true p.s.d. is constant over a small band of frequencies.
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Method of smoothing

Assuming that the spectral density is constant over a band of L = 2M + 1 frequencies
(bandwidth of B,, ~ L/N), the optimal estimate is the simple average,

1 M
vav Cdn - Z IP)UU T - Zm:Z_M PUU [n o m] (1)
Taking it further

The foregoing ideas can be generalized to the weighted-averaged smoother.

M
Vvv wn Z W wm vv wm) = Z W[m]IP’w[n — m] s.t. Z W[m =
m=—M m
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Procedure

1. Subtract mean and detrend time series

» Removal of mean is essential to remove the generally dominant DC component

» Detrending (removal of trends) is necessary to remove any seasonal / linear trends
2. Compute discrete Fourier transform (DFT)
3. Compute the (raw) periodogram

4. Smooth the periodogram to obtain 42 (w,,)

» Use an appropriate window to smooth the spectrum
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Choosing the window

Window should be symmetric, non-increasing and have unity sum of coefficients.

» The modifed Daniell-kernel places half weights at the end points, while the remaining

are distributed uniformly. For example, when M = 1, the weights are

1 1
Wil = =W[; W2 =3 (2)
4 2
» Excessive smoothing (larger L) can be detrimental to the spectral resolution while

insufficient smoothing can result in higher variance

» A weighted average can be formed by applying the kernel repeatedly to obtain
smoother estimates = convolution of the periodogram with convolution of kernels.
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Properties of the smoothed estimator

Asymptotic properties of the smoothed periodogram under two important assumptions (i)

the bandwidth B is small, i.e., L < N and (ii) the underlying spectral density is roughly
constant over this bandwidth.

1. Variance:

VW), wp=wm=w#0,1/2
LJT/[lcovﬁ/D<wn)aﬁ/D(wm)) = 2’72(“})7 W = Wy, = 0,1/2 (3)
0, In—m| > L
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Properties of Daniell smoother ... contd.

2. Distribution:

2LM’S/D (QJ)
Y(w)

where Ly, = < i WQ[m]) :

3. Consistency is guaranteed, i.e., as L — 00, N — 0o, L/N — 0, var(y2(w)) — 0.
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Properties of Daniell smoother ... contd.

» The bandwidth of the spectral window can be defined as

L
B, =-2 5
v (5)

Thus, the Daniell smoother has v = 2N B,, degrees of freedom.
» The window length L = 2M + 1 is usually chosen such that L < N/2.

» The decrease in variance comes at the price of increase in bias due to flattening of the

spectral density. Pure-tone or very narrowband spectra are smeared as a result.

» The modified Daniell-kernel has less spectral leakage compared to the regular rectangular

kernel (simple averaging).
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Example in R

Series: soi
‘Smoothed Periodogram

# Data from 'astsa ' library by Shumway and Stoffer §§:
soi = scan("data/soi.dat") E: /U S P N
# Use modified Daniell 's filter for smoothing IV 02 03 o4 os
soi.per = spec.pgram(soi ,span=c(7,7),taper=0,log="no’) pangreueney
# Can also use kernel routine to generate filter Smootien esogram
kf = kernel( ' modified.daniell",c(3,3)) 17
# Repeat for recruitment series §§:/ \
.51 VA S s s
bancwisi = 0.0528

» The modified Daniell filter applies the regular Daniell filter (of equal weights) twice.

» Observe how the peaks in the SOI and recruitment series have smoothed out.

» Smoothing comes at the cost of loss in resolution (bandwidth)
Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis
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Blackman-Tukey Method: Smoothing the ACF

Basic Idea
Window the sample ACVF before applying the Fourier transform in (77?)

B-T estimate
A weighted ACVF-based estimator is therefore used:

N-1

. 1 . w
WD =5 D wlllowlle™! ©)
I=—(N—1)

where w].] is the lag window function used for smoothing the ACF.

A
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Remarks

N-1 .

D@ = > wllealle ! = [ PEOWE-¢) de U

I=—(N—-1) -

where W (.) is the Fourier transform of the lag window w|]

M

W(w)= > wlle /™

l=—M

» Weighting the ACF with the lag window is equivalent to convolution of the “raw”

periodogram with the spectrum of the window.

» Establishes the equivalence between B-T estimator and Daniell's smoother!

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis
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Window function for B-T estimator

The lag window w(l] is required to satisfy a set of conditions for the power spectral

estimate to be real and non-negative valued

1. Symmetric: w[—I] = wll]. Necessary for obtaining real-valued p.s.d. estimate.
2. Non-increasing with |l|: 0 < w[l] < w|0].
3. Unity at center. w[0] = 1. From its relationship to the smoothing window, this is

akin to the unity sum requirement on W (w) stated in (2).
4. Non-negative DTFT: W(w) >0, |w| < .
The fourth requirement is only a sufficient, but not a necessary condition.

A rectangular window satisfies all the three conditions but violates the fourth one. On

the other hand, a Bartlett (triangular) window satisfies all the four requirements.
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Asymptotic properties of the B-T estimator

Under the conditions M — oo as N — oo and M/N — 0, we have the following:

1. Asymptotically unbiased estimator: E(YBT(w)) ~ v(w)

2. Variance of the estimator oc 1/N (consistency),

( 2
7 (w)
—, Wp=wp,=w#0,1/2
5 y= w01/
cov(3°T (wn), " (wp)) = § 97 (fu), wn = w, =0,1/2
NB,
L0, In—p| > L
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Asymptotic properties of the B-T estimator

3. Asymptotic distribution:

M

~Asx*(v),  whererv =2N/ ( Z w2[m]> — 2N B, (8a)

m=—M

v4/(BT)

¥(w)

(w)

4. As M increases, variance |, but frequency resolution | as well!
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Bartlett’s Method: Averaged Periodogram

Basic idea
Divide the data of length NV into K non-overlapping segments of length L, i.e.,

N = KL, and take the simple average of the respective K periodograms.

where P (w) is the periodogram estimate in the i*" segment.
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Bartlett’s method

» Slicing of data amounts to generating artificial realizations keeping in view the re-

quirement of the p.s.d. definition.
» Variance as well as frequency resolution drop by a factor of K,

» As K increases, variance reduces, but once again at the cost of loss in frequency

resolution!
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Welch’s method

Basic idea
Same as that of Bartlett's approach, but with two changes: (i) taper the segmented

data and (ii) allow overlapping of segments.

() = 2 349 wn) (10)
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Welch’s method ... contd.

The quantity 4% (w,) is the modified periodogram estimate of the i" segment,

2

h
[y

1
CwL

40 (w,) = PSD(w[k]v®[k]) = w[kJo) ket

0

(11)

>
|

and C'is a normalization factor to account for loss in power due to tapering

all

Co= 23 u?lH] (12)
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Remarks

v

Windowing the segment improves the raw estimate in each segment.

v

Overlapping of segments provides two advantages over Bartlett method: (i) for a
fixed length L, more segments can be obtained, (ii) for a fixed number of segments
K, we can have longer segments.

v

In principle, O can take on values between 0 (Bartlett method) to (L — 1). Welch,
(1967) recommends a 50% overlap, O = L/2, for which K =2N/L — 1.

For 50% overlap, the asymptotic variance of the estimator is:

v

var(3en)) = £ (en) = 97 n) (13)

» Welch recommends the use of Welch (Hann like) or a Parzen window.
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Example: PSD estimation using N-P methods

PSD Estimation of WN

A series consisting of N = 1024 observations of a Gaussian white-noise is generated.

Power spectral density estimates using four different estimators (i) raw periodogram, (ii)

WOSA, (iii) B-T and (iv) MTM are computed and shown in Figure 1.

i. Welch's method: L =128, O = L/2; Hann window; 256-point FFT.
ii. B-T estimator: ACVF truncated to |I| = 127, Bartlett window; 256-point FFT
ii. Multi-tapering method: NW = 4; 256-point FFT.

The averaged / modified periodogram estimates are a clear improvement over the

periodogram. The dashed line represents the theoretical p.s.d. of a unit variance GWN.

v

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis
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Example: PSD estimation

Periodogram Welch Method

B-T Method Multi-taper Method

05 05

04 04

Qo 03 Qo 03
7] 7]

Qo2 2 02

0.1 0.1

0 0

0 1 2 3 o 1 2 3
® ®

Figure 1: Estimation of PSD of a GWN process using

non-parametric methods

...contd.

» The performance of Welch
and B-T estimators are
comparable. Incidentally these
estimates are better than
those offered by MTM.

» However, these observations
should not be used to draw

any general conclusions.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis
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Parametric method for PSD estimation

Parametric method of estimating spectrum is a straightforward approach based on the

time-series modelling of the given time-series.

Procedure

1. Estimate a time-series model H(g™!) for the process from the given data.

2. Compute the spectral density function of the time-series v[k] as

2

Yoo(w) = | ()P 5E (14)
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Parametric method for PSD estimation ... contd.

Arun K.

Usually, an AR model of suitably high-order is fit to the time-series.

Remember that this AR model is only an intermediary - meaning, the ultimate aim
is to arrive at a spectral estimate and hence we are not particularly concerned about

the accuracy of the model

AR models are the natural choice because they can be estimated easily whereas MA

model estimation will invariably involve a non-linear optimization problem
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Comparing methods: Example in R

PSD estimate of WN - Periodogram

Direct SDF

T
0.0 041 02 03 04
FREQUENCY (Hz)

0.5

Wosa SDF

(a) Periodogram

Arun K. Tangirala (IIT Madras)

PSD estimate of WN - Welch method Blocksize = 128

T T T T
0.0 0.1 0.2 03 0.4 05

FREQUENCY (Hz)

Wosa SDF

(b) WOSA, M=128

Applied Time-Series Analysis

PSD estimate of WN - Welch method Blocksize = 256

T T T T
0.0 0.1 0.2 0.3 04 05

FREQUENCY (Hz)

(c) WOSA, M=256

30
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Comparing methods: Example in R

Lag window SDF

PSD estimate of WN - Blackman-Tukey Method

T T
0.0 0.1 0.2 03 04 05
FREQUENCY (Hz)

PSD

Arun K. Tangirala (IIT Madras)

(d) B-T

PSD estimate of WN - Parametric method

0.0

T T
0.4 0.2 03 04 05
FREQUENCY (Hz)

Applied Time-Series Analysis

(e) Parametric
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Comparing methods: Example in R

>

>

Arun K.

As the block size increases, Welch's method gives lesser smoothing
When block size = sample size, WOSA returns the periodogram estimate

In all non-parametric methods, there is an inherent trade-off between bias (frequency

resolution) and variance (of p.s.d. estimates)

Each method has a tuning parameter (block size, window type, order, etc.) There-

fore, comparison should be done very carefully.

Parametric estimators are superior to the non-parametric ones, but quite sensitive to
the TS model.

Always advisable to examine both parametric and non-parametric estimates.
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Comparing methods: Example in R

... contd.

ek = rnorm(1000) # GWN

library (sapa)

ek.psd <— SDF(ek,method="direct’') # Periodogram
plot(ek.psd, yscale="linear ')

# WOSA, Block = 128

ek.psd <— SDF(ek,method="wosa', K blocksize=128)
plot (ek.psd, yscale="linear’)

# WOSA, Block = 256

ek.psd <— SDF(ek,method="wosa', K blocksize=256)
plot(ek.psd, yscale="linear’)

# B-T estimator

ek.psd <— SDF(ek,method="lag_window' 6 taper.=taper(type='parzen
plot(ek.psd, yscale="linear’)

# Parametric estimate of PSD

ek.psd <— spec.ar(plot=F)

plot (ek.psd$freq ,ek.psd$spec)

",n.sample=1000))

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis
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Estimation of cross-spectral density

The cross-spectral density, like the auto-spectral density, is estimated using averaged
periodogram methods. A procedure for computing the CPSD follows:
1. Divide the sequences y and uy into K overlapping segments, each of length L.

2. Compute the c.p.s.d. for the respective pair of segments, y* and u®” via DFT:

L—

> YO, ) U™ (wy), n=0,1,---,L—1  (15)

k=0

=

| =

’7352 (wn) =

where Y (w,) and U (w,) are the standard L—point DFTs of the respective

windowed segments.
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Estimation of CPSD ...contd.

3. Compute the averaged c.p.s.d as in Welch's periodogram:

u(n) = = 3 30(en) (16)
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Estimation of Coherence

The coherence function was defined previously as the normalized cross-spectral density.

Estimation of coherence is, however, carried out by averaging estimates across segments.

X Fyu(wn)
Ry (Wn) = :

— 1
NI CAECN (1)

where the cross- and auto-spectral densities using the averaged periodogram method.

If a single segment is used, coherence estimates take on unity values at all frequencies, which

is clearly a misleading result. It is also necessary to use a non-parametric method. The use of
a parametric method also results in unity coherence at all frequencies.
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Summary

» Periodogram is an inefficient estimator of the p.s.d. of a stochastic signal
» For a deterministic signal, it is a very good and natural estimator.
» Spectral leakage is an issue that arises due to finite-length effects.
» Remedy: Either use large sample sizes or apply tapered windows to data.

» Smoothed / Averaged periodogram methods induce the consistency property at the

cost of losing out on the ability to resolve frequencies.
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Summary ... contd.

» Parametric methods have several advantages (e.g., do not suffer from spectral
leakage and have very fine resolution) over their non-parametric counterparts.
However, they should be used cautiously.

» Cross-spectral density and coherence for stochastic signals should only be estimated
using averaged periodogram methods and not using the raw periodogram.

» Parametric estimators also exist for estimating CPSD and coherence, but are not

discussed here.
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