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Motivation & Overview

Time-Series

A time-series simple refers to an ordered collection of data (usually in time)

» e.g., yearly wages, annual production, daily temperature, hourly satellite images
» Measurements could be a function of other dimensions (e.g., frequency, space)
» Data may be collected at regular or irregular intervals

» Many variables could be recorded simultaneously (multivariate data)
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Examples

Time-series can exhibit different features
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More examples

Time-Series Plots Power Spectra (normalized)

Variables

3-D Satellite Image of
Canadian weather condition
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Time-series could be multivariate, multidimensional and also transformed into
another domain
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Systematic analysis of time-series data

Data inspection (Missing values, outliers) & Data pre-processing

Visualization (Graphical) Trend removal, accounting for non-stationarities
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Applications

Geosciences & Meteorology Business and Finance

(weather forecasting, climatic trends, (Econometrics)
seasonal effects) (stock market analysis, business

forecasting)

Random
signal processing
(communication

theory, estimation
theory, filtering)

Astrophysics, Medicine

A Engineering applications A
Physics, Demography, - - (monitoring of lab
Chemometrics and several (disturbance modelling, robust variables, epidemic

other areas c‘ontrc.)l, sxstem analysis, clinical
identification) decisions)
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Challenges in time-series analysis

RANDOMNESS & UNCERTAINTY

1. Lack of a precise mathematical function to describe the process of interest (leading
to a probabilistic framework)

2. To be able to draw inferences on the ensemble from a single realization

3. Estimation of “unknowns” from (uncertain) observations / knowns.
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Sources of uncertainty and randomness

1. Uncertainty in process knowledge:
» Process characteristics are seldom known accurately and/or completely. e.g.,

atmospheric process, roll of a die, grade of a student, etc.
» From a prediction point of view, therefore, only outcomes with chances can be

stated at best.
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Uncertainty and randomness ... contd.

2. Uncertainty in measurements:
» Every sensor introduces its characteristics into measurements. Hence, in reality
Observation = Truth + Perception (of the sensor)
» Sensor characteristics are usually not fully understood and therefore have to be

treated as random variables

3. Unknown causes: In several situations, the causal variables are unknown and/or

known, but cannot be measured or quantified.
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The “realization” challenge

A time-series is an ordered collection of random variables. Therefore, a single time-series

is one of the many possible combinations.

A single time-series is said to be a realization of the random process.

The collection of all possible realizations is said to be the ensembile.
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Example: Liquid level measurement

Consider measuring liquid level in a storage tank. Neglecting all other losses, the level is
constant. A single time-series (record) is a consequence of using one sensor to observe

the process. Readings from three different sensors are shown (true value shown in red).
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The “realization” challenge ... contd.

In practice, we have only a single realization. The challenge is to be able to
infer the truth from this single realization.

Two questions that repeatedly arise:

1. How good are the estimates (of model parameters, statistical properties, etc.) from

a single realization?

2. Is a single estimate sufficient?
Example: The average reading from sensor 1 is 3.005 and from sensor 3, is 2.996. What

can we say about the true level?
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A unifying question

Under what conditions can the inferences drawn from a single record of data be

meaningful and useful?

1. Stationarity: Invariance property of the process w.r.t. time (or space).

2. Ergodicity: Ability to replace ensemble averages with time (or spatial) averages.
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Approaches in TSA

Approaches depend on objective:

1. Forecasting: The most prevalent objective of TSA - applies to every field.

» Tests for within-series and across-series predictability - auto-correlation and
cross-correlation functions.

» Develop difference equation models relating present to past - “auto-regressive”
models.

» Imagine the series to be a result of an unpredictable shock wave passing through a
filter - “moving average’ models.

» Build mixed models that can also include other effects such as trends, random walk
non-stationarities, etc. - (seasonal) ARIMA models.
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Approaches in TSA ... contd.

2. Detection of periodicities: A common goal of many engineering, meteorological,
astronomical and biomedical applications.
» Frequency-domain or spectral representations - extensive use of Fourier
transforms (other transforms are also used in advanced analysis)

» Notion of a “random periodic process”

It is necessary to distinguish between a
periodic deterministic and periodic random process
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Periodic processes

» Periodic deterministic process
» Accurately predictable after one period.
e,g., ideal spring-mass system without any damping/friction and excited with an
impulse
» Periodic random process (harmonic processes):
» The process has an underlying periodicity coupled with some randomness
» Randomness could be in amplitude and/or in phase (if the signal is viewed as a sum
of sine waves)
» The power spectrum / power spectral density is a powerful concept that
allows us to study both these classes in a single framework.
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Estimation

Estimators are at the heart of TSA. They produce estimates of “unobserved” or

“hidden” quantities / variables from observations.

We shall learn how to:

» Characterize “goodness” of estimators
» Estimate statistical properties / parameters / signals

» Report estimation results and test hypotheses (on random processes)
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Scope of this course

Course deals with largely basic and a few advanced concepts. The objective is to equip

the learner with foundations of time-series analysis and estimation.

v

Linear random processes

v

Stationary and non-stationary processes.

v

Mostly univariate and to a lesser extent, bivariate analysis
Time-domain predictive models (ARMA, ARIMA and SARIMA models)

» Frequency-domain (spectral) analysis (deterministic and stochastic)

v

v

Estimation theory (MoM, LS, MLE and Bayesian estimators and their properties)
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A few remarks

Emphasis is on concepts rather than on the rigour.

v

Idea is to introduce and illustrate ideas first through examples.

v

v

Student is expected to take this first-level treatment to a higher level by self-inquiry.

TSA requires both theory and skill, i.e., it is both a science and an art.

v

A computational tool is indispensable to a good understanding and practice.

v
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R: Software for TSA

R® is an integrated software package for data manipulation, calculation and graphical

display

v

Powerful graphical (plotting) and statistical analysis tools.

v

An expression language and like many other languages, case sensitive

R provides the user with a very wide range of data structures (objects)

v

» Symbolic, vector, array, expressions, functions, lists, data frames, factors, ...

» Each such data object can have attributes, names, dimensions, classes, etc.

v

Writing user-defined and specialized add-on packages is easy

v

Use of RStudio® makes the use of R easy and useR-friendly!
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