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Recap

I Correlation structure (predictability) of stationary processes is characterized by the

auto-covariance function.

I A linear random process representation can be constructed only if the spectral

density exists and if it satisfies the Wiener-Paley condition.

I Parametrization of the IR sequence (or the ACVF) of a linear random process leads

to MA(M), AR(P ) or ARMA processes.

I Trend non-stationarities are handled by applying suitable filters

I Seasonalities are detected by peaks in “spectral” plots.
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Motivation

I What is meant by spectral density?

I Stationary processes with periodic ACVFs do not have a linear convolution form -

how do we describe them?

I How do we define periodic random processes?

I Is there a method to detect periodicities embedded in noise?

I Is it possible to construct a unified spectral representation for a stationary random

process?
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Frequency-domain analysis

Frequency-domain characterizations of processes, also known as spectral

representations o↵er a powerful framework for both a theoretical and practical analysis

of random processes

The term “spectral representation” stems from the term “spectrum” which, in signal

analysis stands for a function of energy/power in the frequency domain.
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What does a spectral representation mean?
Spectral representation provides a decomposition of the power / energy of the process in

the frequency-domain.

In understanding this topic, we shall seek answers to several questions:

I What is the mathematical definition of spectrum?

I Is there a di↵erence between energy and power of a signal?

I What is the utility of a spectral decomposition?

I What does spectral representation mathematically look like?

I Can any random process be given a spectral representation?

I What are the connections between time-domain and (frequency) spectral

representations of a process?

I . . .
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Fourier transform is the main tool

The main tool for carrying out a frequency-domain analysis of signals / processes is the

Fourier transform.

I In order to understand the various aspects of Fourier transforms and its

applications to signal analysis, it is useful to first gain an understanding of how

deterministic processes are treated in the frequency domain.

I Further, we shall categorize deterministic signals into four classes, namely,

continuous-time and discrete-time, periodic and aperiodc signals.

I It is important to first understand quantities such as energy, power and their

densities in the context of signal analysis.
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Energy signal
Energy
The energy of a continuous-time signal x(t) and a discrete-time signal x[k] are,

respectively, defined as,

E

xx

=

Z 1

�1
|x(t)|2 dt ; E

xx

=

1X

�1
|x[k]|2 (1)

A signal with finite energy, i.e., 0 < E

xx

< 1 is said to be an energy signal

a.

aThe squared modulus is introduced to accommodate complex-valued signals.

Examples: exponentially decaying signals, all finite-duration bounded amplitude signals
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Power signal

Power
The average power of a continuous-time signal x(t) and a discrete-time signal x[k] are,

respectively, defined as,

P

xx

= lim

T!1

1

2T

Z
T

�T

|x(t)|2 dt ; P

xx

= lim

N!1

1

2N + 1

k=NX

k=�N

|x[k]|2 (2)

A signal with finite power, i.e., 0 < P

xx

< 1 is said to be a power signal.
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Power signal . . . contd.

Examples: periodic signals, random signals

All finite-duration (and amplitude) signals have P

xx

= 0. In general, any energy signal is

not a power signal and vice versa. However, it is possible that a signal is neither an

energy nor a power signal.
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Energy Density

Equation (1) gives rise to the idea of an energy density in time. Drawing analogies with

probability density function and densities in mechanics, the quantity

S

xx

(t) = |x(t)|2 (3)

is termed as the energy density per unit time. It can also be thought of as an “instanta-

neous” power.
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Energy density: Example
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Power Density

Similarly, the power density in time can be defined as

�

xx

(t) =

|x(t)|2

T

(4)

I For the discrete-time case, the energy and power density in time are not

defined since the time domain is not a continuum. The distribution functions exist

nevertheless.
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Power density . . . contd.

On the other hand, we can think of energy and power densities of d.t. signals in a

transform domain, provided that the new domain is continuous and that the

transform is energy / power preserving.

This is the basis for defining spectral densities of c.t. and d.t. signals in the Fourier

(frequency) domain.

The energy / power densities in frequency domain share a strong connection with the

time-domain characteristics (properties) of the signal, specifically the covariance

functions.
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Cross-covariance function

The cross-covariance function (CCVF) is a measure of the linear dependence

between two time-lagged (random or deterministic) signals.

I Based on the notion of covariance, a quantity that measures the linear dependence

between two zero-lagged deterministic signals (or two random variables).

I A normalized version known as, cross-correlation function (CCF), is more

suitable for analysis since it is invariant to the choice of units (for signals).

Caution: It is a common practice in signal processing to use the alternative terms

cross-correlation and normalized cross-correlation, for CCVF and CCF, respectively.
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CCVF for periodic signals

The cross-covariance function between two zero-mean, periodic deterministic signals

x

p

[k] and y

p

[k] with a (least) common period N

p

is defined as

�

xpyp [l] =

1

N

p

Np�1X

k=0

x

p

[k]y

p

[k � l] (5)
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CCVF for periodic signals

I The (normalized) cross-correlation function is defined as

⇢

xpyp [l] =

�

xpyp [l]p
�

xpxp [0]�ypyp [0]

(6)

I Observe that by setting x

p

= y

p

and l = 0 in (5), we obtain the average power of

the periodic signal.
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CCVF for aperiodic signals

The cross-covariance function between two aperiodic deterministic, energy signals x[k]

and y[k] is defined as

�

xy

[l] =

1X

k=�1

x[k]y[k � l] (7)
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CCVF for aperiodic signals

As before,

I The (normalized) cross-correlation function is defined as

⇢

xy

[l] =

�

xy

[l]p
�

xx

[0]�

yy

[0]

(8)

I Observe that by setting x = y and l = 0 in (7), we obtain the energy of the

aperiodic signal.
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Properties and uses of CCVF

The CCVF has a few, but very useful, properties and is one of the most widely used

time-domain signal analysis tools:

I The CCVF measures the linear dependence between x[k] and time-shifted y[k] (by

l samples). This property is used in testing linear relationships between two signals.

I It is asymmetric, i.e., �
xy

[l] 6= �

xy

[�l] (Why?).

The asymmetric property is used in estimating time-delays between signals

(by searching for peaks in the CCFs).

I The CCVF specializes to auto-covariance function (ACVF) for univariate signals,

which is a widely used tool for periodicity detection and echo cancellation.
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Auto-covariance functions

The ACVFs of periodic and (finite-energy) aperiodic deterministic signals are,

respectively,

�

xpxp [l] =

1

N

p

Np�1X

k=0

x

p

[k]x

p

[k � l]; �

xx

[l] =

1X

k=�1

x[k]x[k � l] (9)
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Auto-covariance functions . . . contd.

I Unlike the CCVF, the ACVF is a symmetric function.

I As before, normalized versions can be defined to obtain the respective ACFs.

I The ACF inherits the characteristics of the signal. For instance, the ACVF

of a periodic signal is also periodic with the same period.

�

xpxp [l +N

p

] = �

xpxp [l] (10)
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Example: Periodic signal

x

p

[k] = cos(2⇡fk) =) �

xpxp [l] =

1

2

cos(2⇡fl)
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(a) Snapshot of the cosine
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(b) ACVF of the cosine
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Example: Aperiodic signal

x[k] =

8
<

:
e

↵k

, k � 0 ,↵ < 0

0, k < 0

=) �

xx

[l] =

e

↵l

1 � e

2↵
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(c) Exponential signal
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Fourier World (Series & Transforms)
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Transform: Synthesis and Analysis

Every transform consists of a

i. Synthesis equation: Mathematical imagination of how the signal is possibly

constructed from a family of building blocks (atoms).

ii. Analysis equation: Allows us to determine “which” members of the family have

participated in the signal synthesis through a decomposition.

Qs: Which atoms (functions)? Is the decomposition unique, Is perfect recovery possible?
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Transforms: Analysis and Filtering

The motivation of every transform is ease of analysis in the new domain.

The type of transform and approach depends on the objective:

I Analysis: Starting with signal decomposition, one proceeds to energy / power

decomposition.

I Filtering: Signal is decomposed, operation(s) is / are performed in the transform

domain and finally (a modified signal is) reconstructed using the synthesis equation.

A mix of both may be required in several applications.
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Fixed vs. Adaptive Basis

When the building blocks are fixed a priori and independent of the signal, the transform

is said to be built on fixed basis.

Examples: Fourier, Wavelet transforms.

On the other hand, when these building blocks are derived from data, the transform is

said to work with adaptive basis.

Examples: Wigner-Ville distributions, Principal component analysis.
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General ideas

I Idea: Breakdown a signal into weighted combinations of sinusoids with di↵erent

frequencies:

I Similar to expressing signals as a combination of impulses

I Significance

I Weights or coe�cients are in general complex

I Magnitude of weights give the energy or power of that frequency component in the

signal - Spectral Analysis

I Angle of coe�cients give how much each sinusoid (at that frequency) in the signal

is aligned with respect to the basis sinusoids. Useful in time-delay or lag estimation.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 28



Fourier Transforms for Deterministic Processes References

Correlation perspective

Every transform of a signal can be viewed as a correlation of that signal with the

analyzing function. The coe�cient of transform is the “amount” of correlation or

similarity of that signal with the analyzing (basis) function.
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Remarks

I The breaking down of a signal is equivalent to finding the best set of sinusoids that

can explain the pattern in that signal.

I In Fourier analysis, each analyzing function is a (complex) sinusoid of a certain

frequency.

I The coe�cient at each frequency is a measure of similarity between the signal and

the sinusoid

I The complex sinusoid is chosen so as to capture shift and magnitude in a

convenient manner
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Continous-time Fourier Series (CTFS)
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Continuous-time periodic signals: Synthesis equation

Idea: A continuous-time periodic signal with fundamental period T0 = 1/F0 is expressed

as a (linear) weighted combination of (positive and negative) harmonics:

x(t) =

1X

n=�1
c

n

e

j2⇡nF0t (Fourier Series) (11)

Note: The summation in (11) includes both negative and positive frequencies!
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Continuous-time Fourier series: Analysis equation

The coe�cient c
n

, is in general a complex quantity, and is calculated as:

c

n

=

1

T

p

Z

Tp

x(t)e

�j2⇡nF0t
dt =

hx(t), ej2⇡nF0ti[0,Tp]

hej2⇡nF0t
, e

j2⇡nF0ti[0,Tp]
(12)

I Generally useful in theoretical analysis of signals and systems
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Continuous-time Fourier series

Variant Synthesis / analysis Parseval’s relation (power decomposition)

and signal requirements

Fourier

Series

x(t) =
1X

n=�1
c

n

e

j2⇡nF0t
P

xx

=
1

T

p

Z
Tp

0
|x(t)|2 dt =

1X

n=�1
|c
n

|2

c

n

, 1

T

p

Z

Tp

x(t)e�j2⇡nF0t
dt x(t) is periodic with fundamental period T

p

=

1/F0
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Why do negative frequencies come in?

I The need for including negative frequencies is purely mathematical. Consider, for

e.g.,

sin(2⇡F0t) =
1

2j

(e

j2⇡F0t � e

�j2⇡F0t
)

Observe that two exponentials, one with a positive frequency F0 and the other with

a negative frequency �F0 are required to explain a sinusoid

I The corresponding coe�cients are c1 (k = 1) and c�1 are 1
2j and � 1

2j

I In general, Fourier series / transform involves expressing any signal as addition and

subtraction of cosines / sines.
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Power spectrum

Fourier series (and transform) is concerned with a signal decomposition, but gives rise

to a more important result - the power (spectral) decomposition of the signal.

I A periodic signal has infinite energy, but finite power given by

P

xx

=

1

T

p

Z
Tp

0

|x(t)|2 dt

Using the signal decomposition in a Fourier series, we can break up the average power

into contributions from respective frequencies
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Power spectral decomposition of CT periodic signals

The average power can be broken up as

P

xx

=

1

T

p

Z
Tp

0

|x(t)|2 dt =

1X

n=�1
|c

n

|2 (Parseval’s relation) (13)

I
P

n

= |c
n

|2 is the contribution by the n

th harmonic and hence known as the power

spectral density or simply power spectrum

I The power in a periodic signal exists only at discrete frequencies. Hence

the power spectrum is also known as line spectrum.
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Power and phase spectrum: Remarks

I Since c

n

= |c
n

|ej✓n , c0 represents the average component of the signal

I The power spectral density plot is independent of (or blind to) the phase

I
Two signals having two di↵erent phases but same strengths will have identical

power spectral densities

I For a real-valued signal, c⇤
n

= c�n

=) Power spectrum of any measurement is

symmetric

I As T
p

! 1, x(t) becomes an aperiodic signal and frequency spacing tends to zero.

I Phase: ✓
n

= \c
n

. A plot of ✓
n

vs. n shows how each frequency component is

aligned w.r.t the basis functions
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Example
The Fourier series representation of the periodic square wave

x(t) =

8
<

:
1, 0  t  1/2

�1, 1/2 < t  1

(14)

with period T

p

= 1 is given by the coe�cients

c

n

=

1

T

p

Z 1

0

x(t)e

�j2⇡nt
dt =

Z 1/2

0

e

�j2⇡nt
dt �

Z 1

1/2

e

�j2⇡nt
dt

= j sin

⇣
n⇡

2

⌘
sin c

⇣
n⇡

2

⌘
e

�jn⇡
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Example contd.
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I Line spectrum is plotted as a function of the harmonic index. Observe that it is

symmetric and that only odd harmonics contribute to the signal.

I The signal decomposition shown above is purely mathematical.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 40



Fourier Transforms for Deterministic Processes References

Existence of Fourier series

I The coe�cients c
n

exist i↵ the signal x(t) is absolutely convergent in [0, T

p

], i.e.,

x(t) 2 L

1
(0, T

p

).

I On the other hand, the series converges to x(t) if it is continuous and of bounded

variation in [0, T

p

]. For discontinuous signals with finite extrema and finite number

of discontinuities, the series converges to the average value of the left and right

limits . This is termed as the Gibbs phenomenon

I Su�ciency conditions for any function f(t) to possess a Fourier series expansion

was established by Dirichlet and are popularly known as Dirichlet conditions

(Priestley, 1981).
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Existence of Fourier series

I A weaker requirement is that x(t) has a finite 2-norm in the interval (0, T
p

). Then,

the summation

x

M

(t) =

MX

n=�M

c

n

e

�j2⇡nF0t (15)

converges to x(t) in the MS sense, i.e.,

lim

M�!1

Z
(x(t) � x

M

(t))

2
dt = 0 (16)
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Continuous-time Fourier Transform (CTFT)
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Opening remarks

I The signals of interest are continuous-time, aperiodic signals.

I Aperiodic signals can be viewed as a limiting case of periodic signals with infinite

(practically very large) period, i.e., T
p

! 1.

I Consequently, the spacing on frequency axis, 4F = F0 = 1/T

p

now shrinks to

zero, leading to a continuum of frequencies.

I The class of deterministic aperiodic signals under consideration are finite 1-norm

and finite (2-norm) energy signals. Why?

I The line (power) spectrum is, therefore, replaced by an energy spectral density.
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CT aperiodic signals: Synthesis equation

The aperiodic signal is imagined to be synthesized as

x(t) =

Z 1

�1
X(F )e

j2⇡Ft

dF (Fourier Synthesis) (17)
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Fourier transform: Analysis equation

The “coe�cient” X(F ) is computed using the analysis equation,

X(F ) , F{x(t)} =

Z 1

�1
x(t)e

�j2⇡Ft

dt (Fourier Analysis) (18)

I The result X(F ) is known as the Fourier transform of x(t), and has a similar

interpretation as of c
n

, the Fourier coe�cient in Fourier series.

I As with Fourier series, the transform is useful in theoretical analysis of signals and

systems.
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Continuous-time Fourier transform

Variant Synthesis / analysis Parseval’s relation (energy decomposition)

and signal requirements

Fourier

Transform

x(t) =

Z 1

�1
X(F )ej2⇡Ft

dF E

xx

=

Z 1

�1
|x(t)|2 dt =

Z 1

�1
|X(F )|2 dF

X(F ) ,
Z 1

�1
x(t)e�j2⇡Ft

dt x(t) is aperiodic;

Z 1

�1
|x(t)| dt < 1 or

Z 1

�1
|x(t)|2 dt < 1 (finite energy, weaker re-

quirement)
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Conditions for existence of Fourier transform

I The Fourier transform is guaranteed to exist if the signal x(t) is absolutely

integrable, Z 1

�1
|x(t)| dt < 1

I For the signal to be recovered uniquely (or the average value at points of

discontinuity), x(t) should have bounded variation at all points.
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Conditions for existence of Fourier transform . . . contd.

I A weaker and a mathematically useful requirement is that the 2-norm of the signal

be finite, i.e., x(t) 2 L2. Almost all finite energy signals have a Fourier transform.

I The theory of generalized functions relaxes some of the above restrictions and also

allows us to compute Fourier transforms of idealized functions, e.g., impulse.

(Antoniou, 2006; Lighthill, 1958).
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Energy spectral decomposition

The signal decomposition by Fourier transform can be shown to yield an energy decom-

position in the frequency domain by virtue of Parseval’s result.

E

xx

=

Z 1

�1
|x(t)|2 dt =

Z 1

�1
|X(F )|2 dF (Energy decomposition) (19)
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Energy spectral density

I Thus, energy is preserved by the transform. A more general result is the

preservation of inner products.

I The quantity |X(F )|2 is a continuous function of the frequency and can be given

the interpretation of an energy spectral density.

I Alternatively, |X(F )|2dF measures the energy contributions of the frequency

components within the band (F, F + dF ) to the total energy of the signal.
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Example 1: Finite duration pulse

The Fourier transform of the finite duration rectangular pulse signal

x(t) = A⇧

✓
t

T

◆
=

8
<

:
A |t| < T/2

0 otherwise

is given by

X(F ) =

Z
T/2

�T/2

Ae

�j2⇡Ft

dt = A

 
e

�j2⇡Ft

�j2⇡F

����
T/2

�T/2

!
= AT

sin(⇡FT )

⇡FT

= AT sinc(⇡FT )

Thus, the finite-duration pulse has an infinitely long Fourier transform.
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Example 1 contd.
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(e) Energy density in time

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (cycles/time)

E
n

e
rg

y
 d

e
n

s
it

y

(f) Energy spectral density

Finite-duration signal has an infinitely-spread energy density in frequency.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 53



Fourier Transforms for Deterministic Processes References

Example 2: Finite duration complex sine

When x(t) =

8
<

:
Ae

j2⇡F0t |t| < T/2

0 otherwise

Therefore, X(F ) = AT sinc(⇡(F � F0)T )
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Longer finite-duration sine wave
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I Longer duration results in narrower frequency

spread (bandwidth)
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Duration and Bandwidth are tied together

All finite-duration signals have Fourier transforms that are infinitely long and vice

versa. The fundamental duration-bandwidth principle places a lower bound on

the product of the energy spreads in both domains

�

2
t

�

2
F

� 1/4 (20)

where the spreads �2
t

and �

2
F

are the second-order central moments of the energy densities

in time and frequency, respectively (Cohen, 1994)

I The quantities �

t

and �

F

are known as the duration and bandwidth, respectively. This

result has profound implications in the joint time-frequency analysis of signals.
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Fourier-Stieltjes transform

The Fourier-Stieltjes transform fuses the Fourier series and transform into a single

integral.

The basic idea is to re-write (17) by introducing dX(F ) = X(F )dF as

x(t) =

Z 1

�1
e

j2⇡Ft

dX(F ) (21)

Equation (21) is known as Fourier-Stieltjes transform.
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Fourier-Stieltjes transform

In order to accommodate periodic functions, i.e., the Fourier series, we allow dX(F ) to

be piecewise continuous, specifically, an impulse train function so that

dX(F ) =

8
<

:
c

n

, F = F

n

, n 2 Z

0, elsewhere

It facilitates frequency-domain representations for signals (functions) that are neither

periodic nor absolutely integrable, but have bounded amplitudes, e.g., random signals.
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