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Contents of Lecture

In this lecture, we shall:

I Learn the di↵erent techniques for estimating AR models

I Briefly discuss methods for estimating MA models

I Learn how to estimate ARMA and ARIMA models
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Estimation of AR models
AR models result in linear predictors - therefore a linear OLS method su�ces. The linear

nature of the AR predictors also attracts a few other specialized methods.

The historical nature and the applicability of this topic is such that numerous texts and

survey/tutorial articles (references) dedicated to this topic have been written. We shall

only discuss four popular estimators, namely

i. Yule-Walker method

ii. LS / Covariance method

iii. Modified covariance method

iv. Burg’s estimator

We shall also briefly discuss the maximum likelihood estimator.
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Estimation of auto-regressive models

The AR estimation problem is stated as follows. Given N observations of a stationary

process {v[k]}, k = 0, · · · , N � 1, fit an AR(P ) model.

v[k] =
PX

j=1

(�dj)v[k � j] + e[k] (1)

One of the first methods used to estimate AR models was the Yule-Walker method. This

method belongs to the class of MoM estimators. It is also one of the simplest to use.

However, the Y-W method is known to produce poor estimates when the true poles are

close to the unit circle.
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Yule-Walker method
Idea: The second-order moments of the bivariate p.d.f. f(v[k], v[k� l]), i.e., the ACVFs

of an AR(P ) process are related to the parameters of the model as,
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Y-W method . . . contd.

Thus, the Y-W estimates of the AR(P ) model and the innovations variance �2
e are

✓̂ = �⌃̂�1
P �̂P

�̂

2
e = �̂

2
v + �̂T

P ✓̂ = �̂

2
v � �̂T

P ⌃̂
�1
P �̂P

(2a)

(2b)

provided ˆ

⌃P is invertible, which is guaranteed so long as �[0] > 0.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 6



Estimation of Time-Series Models References

Y-W method
The matrix ˆ

⌃P is constructed using the biased estimator of the ACVF

�̂[l] =
1

N

N�1X

k=l

(v[k]� v̄)(v[k � l]� v̄) (3)

The Y-W estimates can be shown as the solution to the OLS minimization

ˆ✓YW = arg min

✓

N+P�1X

k=0

"2[k] (4)

where "[k] = v[k]� v̂[k|k � 1] = v[k]�
PX

i=1

(�di)v[k � i]
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Y-W Method: Remarks

The summation in (4) starts from k = 0 and runs up to k = N + P � 1. In order to

compute the prediction errors from k = 0, · · · , P � 1 and k = N, · · · , N + P � 1, the

method pads p zeros to both ends of the series.

This approach is frequently referred to as pre- and post-windowing of data.
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Properties of Y-W estimator

The Y-W estimates, in general, enjoy good asymptotic properties:

1. For a model of order P , if the process {v[k]} is also AR(P ), the parameter

estimates asymptotically follow a multivariate Gaussian distribution

p
N(✓ � ✓0)

d�! N
�
0, �2

e�
�1
P

�
(5)

In practice, the theoretical variance and covariance matrix are replaced by their

respective estimates.
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Properties of Y-W estimator . . . contd.

2. The 95% CI for the individual parameter ✓i0 are approximately constructed as

ˆ✓i ±
1.96�̂ep

N
(

ˆ

⌃

�1
P )

1/2
ii (6)

3. Further, if {v[k]} is an AR(P0) process and an AR model of order P > P0 is fit to

the series, then the coe�cients in excess of the true order are distributed as

p
N✓l ⇠ AN(0, 1) 8l > P0 (7)

To verify this fact, consider fitting an AR(P ) model to a white-noise process, i.e.,

when P0 = 0. Then ⌃P = �2
eI.
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Properties of Y-W estimators . . . contd.

4. Recall that the last coe�cient of an AR(P ) model is the PACF coe�cient �PP of

the series. By the present notation,

�ll = �dl = �✓l (8)

It follows from the above property that if the true process is AR(P0), the 95%

significance levels for PACF estimates at lags l > P0 are

�1.96p
N

 ˆ�ll 
1.96p
N

(9)
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Properties of Y-W estimator . . . contd.
5. From (5) it follows the Y-W estimates of an AR model are consistent.

6. The Y-W estimator su↵ers from a drawback. It may produce poor (high

variability) estimates when the generating auto-regressive process has poles close to

unit circle. The cause is the poor conditioning of the auto-covariance matrix ˆ

⌃P

for such processes combined with the bias in the ACVF estimator. The e↵ects of

the latter (bias) always prevail, but are magnified when ˆ

⌃P is poorly conditioned.

7. The D-L algorithm facilitates recursive Y-W estimation without having to invert
ˆ

⌃P .

8. The Toeplitz structure of ˆ⌃P and the biased ACVF estimator guarantee that the

resulting model is stable and minimum phase.
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Example

Y-W method
A series consisting of N = 500 observations of a random process is given. Fit

an AR(2) model using the Y-W method.

Solution: The variance and ACF estimates at lags l = 1, 2 are computed to be

�̂[0] = 7.1113, ⇢̂[1] = 0.9155, ⇢̂[2] = 0.7776 respectively. Plugging in these estimates

into (2a) produces

ˆ✓ =

"
ˆd1
ˆd2

#
= �

"
1 0.9155

0.9155 1

#�1 "
0.9155

0.7776

#
=

"
�1.258

0.374

#
(10)
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Example

The estimate of the innovations variance can be computed using (2b)

�̂2
e = 7.1113 +

h
0.9155 0.7776

i "�1.258

0.374

#
= 0.9899 (11)

The errors in the estimates can be computed from (5) by replacing the theoretical

values with their estimated counterparts.

⌃✓̂ = 0.9899

"
1 0.9155

0.9155 1

#�1

=

"
0.0017 �0.0016

�0.0016 0.0017

#
(12)

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 14



Estimation of Time-Series Models References

Example . . . contd.

Consequently, approximate 95% C.I.s for d1 and d2 are [�1.3393,�1.1767] and

[0.2928, 0.4554] respectively.

Compare the estimates and C.I.s with the respective true values used for simulation

d1,0 = �1.2; d20 = 0.32; �2
e = 1 (13)

Note: The Y-W estimator is generally used when the data length is large and it is known a

priori that the generating process has poles well within the unit circle. In general, it is used to

initialize other non-linear estimators.
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Least squares / Covariance method

The least squares method obtains the estimate as

ˆ✓LS = arg min

✓

N�1X

k=p

"2[k] (14)

Comparing with the standard linear regression form, we have

'[k] =
h
�v[k � 1] · · · �v[k � P ]

iT
; ✓ = d =

h
d1 · · · dP

iT
(15)
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Least squares / Covariance method . . . contd.

Using the LS solution, we have

ˆ✓LS =

ˆdLS = (�

T
�)

�1
�

Tv =

✓
1

N � P
�

T
�

◆�1✓
1

N � P
�

Tv

◆

where � =

h
'[P ] '[P + 1] · · · '[N � 1]

iT

v =

h
v[P ] v[P + 1] · · · v[N � 1]

iT

(16a)

(16b)

(16c)
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LS / COV method . . . contd.

A careful examination of (16a) suggests that it can be written as a MoM estimate

ˆ✓ = �ˆ

⌃

�1
P �̂P (17)

where ˆ

⌃P , 1

N � P
�

T
� =

2

64
�̂vv[1, 1] �̂vv[1, 2] · · · �̂vv[1, P ]

...
... · · · ...

�̂vv[P, 1] �̂vv[P, 2] · · · �̂P [P, P ]

3

75 (18)

�̂P , 1

N � P
�

Tv =

2

64
�̂vv[1, 1]

...

�̂vv[P, 1]

3

75 (19)
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LS / COV method . . . contd.

where the estimate of the ACVF is given by

�̂vv[l1, l2] =
1

N � P

N�1X

n=P

v[n� l1]v[n� l2] (20)

Observe that ˆ

⌃P is a symmetric matrix by virtue of (20). Due to the equivalence above,

the method is also known as the covariance method.
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Modified covariance method
The modified covariance (MCOV) method stems from a modification of the objective

function in the LS approach. It minimizes the sum squares of both forward and backward

prediction errors, "F and "B respectively.

ˆ✓LS = arg min

✓

 
N�1X

k=p

"2F [k] +
N�p�1X

k=0

"2B[k]

!
(21)

By a change of summation index, the objective function can also be written as

N�1X

k=p

"2F [k] +
N�p�1X

k=0

"2B[k] =
N�1X

k=p

("2F [k] + "2B[k � P ]) (22)
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MCOV method . . . contd.

The backward prediction error is defined in a similar way as the forward version:

"B[k] = v[k]� v̂[k|{v[k + 1], · · · , v[k + P ]}] = v[k]�
PX

i=1

(�di)v[k + i] (23)

Thus, the objective in the MCOV method is to minimize

N�1X

k=p

2

4
 
v[k] +

PX

i=1

div[k � i]

!2

+

 
v[k � P ] +

PX

i=1

div[k � P + i]

!2
3

5 (24)
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MCOV method . . . contd.

The solution to this optimization problem is of the same form as from the LS/COV

method but by replacing the auto-covariance estimate with the one given below.

ˆ✓MCOV = �ˆ

⌃

�1
P �̂P

�̂vv[l1, l2] =
N�1X

k=p

(v[k � l1]v[k � l2] + v[k � P + l1]v[k � P + l2])

ˆ

⌃P,ij = �̂[i, j]; �̂P,i = �̂[i, 1], i = 1, · · · , P ; j = 1, · · · , P

(25a)

(25b)

(25c)

Note: The covariance matrix ⌃̂P is no longer Toeplitz and therefore a recursion algorithm such

as the D-L method cannot be applied.
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Properties of covariance estimators

1. In both the LS and MCOV methods, the regressor '[k] and the prediction error are

constructed from k = P to k = N � 1 unlike in the Y-W method. Thus, the LS

and the MCOV methods do not pad the data.

2. The asymptotic properties of the covariance (LS) and the MCOV estimators are,

however, identical to that of the Y-W estimator.

3. Unfortunately, stability of the resulting models is not guaranteed while

using the covariance-based estimators. Moreover, the covariance matrix does

not possess a Toeplitz structure, which is disadvantageous from a computational

viewpoint.
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Example

Estimating AR(2) using LS and MCOV
For the series of the example illustrating Y-W method, estimate the

parameters using the LS and MCOV methods.

Solution: The LS and MCOV methods yield, respectively,

ˆd1 = �1.269; ˆd2 = 0.3833 ˆd1 = �1.268; ˆd2 = 0.3827

which only slightly di↵er among each other and the Y-W estimates.

The standard errors in both estimates are identical to those computed in the Y-W case

by virtue of the properties discussed above.
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Burg’s estimator

Burg’s method (Burg’s reference) minimizes the same objective as the MCOV method

except that it aims at incorporating two desirable features:

i. Stability of the estimated AR model

ii. A D-L like recursion algorithm for parameter estimation.

The key idea is to employ the reflection coe�cient (negative PACF coe�cient)-

based AR representation. Therefore, the reflection coe�cients p, p = 1, · · · , P
are estimated instead of the model parameters. Stability of the model is guaranteed by

requiring the magnitudes of the estimated reflection coe�cients to be each less than

unity.
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Burg’s method . . . contd.
The optimization problem remains the same as in the MCOV method.

ˆ✓Burg = arg min

p

N�1X

k=p

("2F [k] + "2B[k � P ]) (26)

In order to force a D-L like recursive solution, the forward and backward prediction errors

associated with a model of order p are re-written as follows:

"(p)F [k] = v[k] +
pX

i=1

div[k � i] =
h
v[k] · · · v[k � p]

i "
1

✓(p)

#
(27)

"(p)B [k � p] = v[k � p] +
pX

i=1

div[k � p+ i] =
h
v[k] · · · v[k � p]

i "
¯✓(p)

1

#
(28)
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Burg’s method . . . contd.

Then, using D-L algorithm, we have

✓(p)
=

"
✓(p�1)

+ p
¯✓(p�1)

p

#
(29)

from where the following recursive relations can be obtained:

"(p)F [k] = "(p�1)
F [k] + p"

(p�1)
B [k � p] (30)

"(p)B [k � p] = "(p�1)
B [k � p] + p"

(p�1)
F [k] (31)
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Burg’s method . . . contd.

Inserting the recursive relations into the objective function and solving

̂?
p = �2

N�1X

n=p

"(p�1)
F [n]"(p�1)

B [n� p]

N�1X

n=p

⇣
("(p�1)

F [n])2 + ("(p�1)
B [n� p])2

⌘ (32)

Stability of the estimated model can be verified by showing that the optimal reflection

coe�cient in (32) satisfies |p|  1, 8p.
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Burg’s method . . . contd.

The estimates of the innovations variance are also recursively updated as:

�̂2(p)
e = �̂2(p�1)

e (1� ̂2
p) (33)

Given that the reflection coe�cients are always less than unity in magnitude, the innova-

tions variance is guaranteed to decrease with increase in order.
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Burg’s estimation procedure

A basic procedure for Burg’s algorithm thus follows:

Burg’s method

1. Set p = 0 and ✓(0)
= 0 so that the forward and backward prediction errors are

initialized to "(0)F [k] = v[k] = "(0)F [k].

2. Increment the order p by one and compute p+1 using (32).

3. Update the parameter vector ✓(p+1) using (29).

4. Update the prediction errors for the incremented order using (27) and (28)

5. Repeat steps 2-4 until a desired order p = P .
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Properties of Burg’s estimator
Asymptotic properties of optimal estimates of p are not trivial to derive. The following

is a summary of facts from extensive studies by several researchers:

1. The bias of Burg’s estimates are as large as those of the LS estimates, but lower

than those of the Yule-Walker, especially when the underlying process is

auto-regressive with roots near the unit circle.

2. The variance of ̂p for models with orders p � P0 is given by

var(̂p) =

8
><

>:

1� 2
p

N
, p = P0

1

N
, p > P0

(34)
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Properties of Burg’s estimator . . . contd.

Note that the case of p > P0 is consistent with the result for the variance of the PACF

coe�cient estimates at lags l > P0 given by (7).

3. The innovations variance estimate is asymptotically unbiased, again when the

postulated order is at least equal to the true order

E(�̂2
e) = �2

e

⇣
1� p

N

⌘
, p � P0 =) lim

N!1
E(�̂2

e) = �2
e (35)

4. All reflection coe�cients for orders p � P0 are independent of the lower order

estimates.
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Properties of Burg’s estimator . . . contd.

5. By the asymptotic equivalence of Burg’s method with the Y-W estimator, the

distribution and covariance of resulting parameter estimates are identical to that

given in (5). The di↵erence is in the point estimate of ✓ and the estimate of the

innovations variance.

6. Finally, a distinct property of Burg’s estimator is that it guarantees stability of

AR models.
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Example

Simulated AR(2) series
For the simulated series considered in the previous examples, obtain Burg’s

estimates of the model parameters.

Solution:

ˆd1 = �1.267; ˆd2 = 0.3827

which are almost identical to the MCOV estimates.

Once again given the large sample size, the asymptotic properties can be expected to be

identical to those of previous methods.
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Estimation of AR models using MLE

We shall illustrate now the estimation of AR models using MLE through an example.

Estimating parameters of an AR(1) model
Given N observations yN of a random process, fit a first-order AR model.

v[k] = �d1v[k � 1] + e[k], e[k] ⇠ N (0, �2
e)

Thus, the parameters to be estimated are ✓ =

h
d1 �2

e

iT
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Example: MLE for AR models . . . contd.
Solution:

1. Density function: The joint p.d.f. of vN is not the product of the marginals

since {v[0], v[1], · · · , v[N � 1]} forms a correlated series.

Fortunately, the conditioned series y[k]|y[k � 1] is uncorrelated. Why?

v[k]|v[k � 1] = �d1v[k � 1] + e[k]|v[k � 1] (v[k � 1] is fixed)

v[k � 1]|v[k � 2] = �d1v[k � 2] + e[k � 1]|v[k � 2] (v[k � 2] is fixed)

Therefore, corr(v[k|v[k � 1]], v[k � 1|v[k � 2]]) = corr(e[k], e[k � 1]) = 0.

Subsequently, applying k = 1 onwards and invoking Bayes rule, we have

f(vN |✓) = f(v[0])f(v[1]|v[0]) · · · f(v[N � 1]|v[N � 2]) = f(v[0])⇧N�1
k=1 f(v[k]|v[k � 1])
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Example: MLE for AR models . . . contd.
Noting that e[k] is a Gaussian, v[k] is also a Gaussian. Further,

E(v[0]) = 0; var(v[0]) =
�2
e

1� d21
8 k  0

E(v[k]|v[k � 1]) = �d1v[k � 1] = v̂[k|k � 1]

var(v[k]|v[k � 1]) = �2
e

The corresponding density functions are therefore,

f(v[0]) =

p
1� d21p
2⇡�2

e

exp

✓
�1

2

v2[0](1� d21)

�2
e

◆

f(v[k]|v[k � 1]) =

1p
2⇡�2

e

exp

✓
�1

2

(v[k]� v̂[k|k � 1])

2

�2
e

◆
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Example: MLE for AR models . . . contd.

Putting together the foregoing expressions, we finally have the log-likelihood function

L(✓|vN) = const.+
1

2

ln(1� d21)�
N

2

ln �2
e �

1

2

v2[0](1� d21)

�2
e

� 1

2

N�1X

k=1

(v[k]� v̂[k])2

�2
e

= const.+
1

2

ln(1� d21)�
N

2

ln �2
e �

1

2

v2[0](1� d21)

�2
e

� 1

2�2
e

N�1X

k=1

✏2[k]

| {z }
LS obj. fun.

(36a)
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Example: MLE for AR models . . . contd.
Notice that once again the LS objective function is contained in the MLE formulation.

The main di↵erence is that MLE takes into account the randomness of the first

observation while the LSE takes it to be fixed.

Introduce as in Shumway and Sto↵er, 2006, two quantities

Sc(d1) =
N�1X

k=1

(v[k]� v̂[k])2 (conditional sum squares) (37)

Su(d1) = v2[0](1� d21) +
N�1X

k=1

(v[k]� v̂[k])2 (unconditional sum squares) (38)
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Example: MLE for AR models . . . contd.

so that (36) can be written as

L(d1, �
2
e) = const.+

1

2

ln(1� d21)�
N

2

ln �2
e �Su(d1, �

2
e) (39)

The conditional sum is minimized by the ordinary least squares estimator, whereas the

unconditional sum is minimized by the weighted least squares estimator.
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Example: MLE for AR models . . . contd.

The log-likelihood is obviously non-linear in the unknowns. No closed-form expression is

available for the optimal estimate of d1. However, the optimal estimate of innovations

variance can be computed explicitly from (39) as follows:

@L(d1, �2
e)

@�2
e

= 0 =) �̂2
e,ML =

Su(
ˆd1,ML)

N
(40)

where ˆd1,ML and �̂2
e,ML have their obvious meanings.
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Numerical example

For a given process data, let us estimate the parameters using MLE. The process used

for simulation is also an AR(1) generating N = 500 observations.

v[k]� 0.7v[k � 1] = e[k] e[k] ⇠ N (0, 1)

Setting up the log-likelihood function and solving for the resulting optimization problem

yields,

ˆd1,ML = �0.701; �̂2
e,ML = 1.002 (41)

Note that the ML estimates are local optima whereas the LS estimates are unique.
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R code for computing the ML estimates
1 # Genera te data

2 vk <� ar ima . s im (model= l i s t ( orde r=c ( 1 , 0 , 0 ) , a r =0.7) , n=500)

3

4 # Set up the log� l i k e l i h o o d f u n c t i o n

5 n e g l o g l <� f u n c t i o n ( dpar , s igmae ) {
6 N = l eng th ( vk )

7 pred e r r = vk [ 2 :N] � (�dpar ) ⇤vk [ 1 :N�1]

8 l o g l = 0 .5 ⇤ ( l og (1 � dpar ˆ2) � N⇤ l og ( s igmae ˆ2) � vk [ 1 ] ˆ 2 ⇤ (1 � dpar ˆ2)/ s igmae ˆ2 �
9 sum ( pred e r r ˆ2)/ s igmae ˆ2)

10 r e t u r n (� l o g l )

11 }
12 # Est imate u s i n g the ’ mle2 ’ r o u t i n e o f the ’ bbmle ’ package

13 l i b r a r y ( bbmle )

14 t h e t aha t <� mle2 ( n eg l o g l , s t a r t= l i s t ( dpar=�0.4 , s igmae =0.5))

15 summary ( t h e t aha t )

16 # Compare w i th r e s u l t s from ’ a r . mle ’

17 t h e t a armle <� a r . mle ( vk , orde r .max=1, a i c=F)
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Remarks

I The ML approach to estimating a general AR(P ) model is now a straightforward

extension of the illustrated AR(1) example.

I The main di↵erence is that the joint p.d.f. would be conditioned on the first P

observations.

I Importantly, the log-likelihood would still contain the sum-square prediction errors

(from k = P to k = N � 1).

I Similar notions of CSS and UCSS (or CSS-ML) apply.
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Estimation of MA models

The problem of estimating an MA model is more involved than that of the AR parameters

primarily because the predictor is non-linear in the unknowns.

With an MA(M) model the predictor is

v̂[k|k � 1] = c1e[k � 1] + · · ·+ cMe[k �M ], k � M (42)

wherein both the parameters and the past innovations are unknown. The past

innovations are a non-linear function of the model parameters.
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Estimation of MA models . . . contd.

Thus, the non-linear least squares (NLS) estimation method and the MLE are popularly

used for estimating MA models. Both these methods require a proper initialization in

order to get out of local minima.

Four popular methods for obtaining preliminary estimates are briefly discussed. For details,

read (Brockwell, 2002).
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Preliminary estimates of MA models

1. Method of moments: Same as Y-W method, but now the equations are

non-linear. Only invertible solutions are accepted.

2. Durbin’s estimator: Idea is to first generate the innovation sequence by a

high-order AR model. Subsequently, re-write the MA(M) model as

v[k]� ê[k] =
MX

i=1

ciê[k � i] (43)

where ê[k] = ˆD(q�1
)v[k] is the estimate obtained from the AR model.

Note: The order of the AR model used for this purpose can be selected in di↵erent

ways, for e.g., using AIC or BIC. A simple guideline recommends P = 2M .
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Preliminary estimates of MA models . . . contd.

3. Innovations algorithm: It is similar to the D-L algorithm for AR models. The key

idea is to use the innovations representation of the MA model by recalling that the

white-noise sequences are also theoretically the one-step ahead predictions.

Defining c0 ⌘ 1

v[k] =
MX

i=0

cie[k � i] =
MX

i=0

ci(v[k]� v̂[k|k � 1]) (44)
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Preliminary estimates of MA models . . . contd.

A recursive algorithm can be then constructed.

i. Set m = 0 and �̂2
e,0 = �̂2

v .

ii. Compute

ĉm,m�j = (�̂2
e,m)

�1

 
�vv[m� j]�

j�1X

i=0

ĉj,j�iĉm,m�i�̂
2
e,i

!
, 0  j < m (45)

iii. Update the innovations variance �̂2
e,m = �̂2

v �
M�1X

j=0

ĉ2m,m�j�̂
2
e,j

iv. Repeat steps (ii) and (iii) until a desired order m = M .
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Preliminary estimates of MA models . . . contd.

4. Hannan-Rissanen’s method: The approach is similar to that of Durbin’s

estimator. However, the di↵erence is that the parameters are estimated from a

linear least-squares regression of v[k] on estimated past innovations:

v̂[k] =
MX

i=1

ciê[k � i], k � M (46)

The past terms of ê[k] are obtained as the residuals of a su�ciently high AR (p )

model. The parameter estimates can be further updated using an additional step,

but it can be usually avoided.
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Estimation of ARMA models

Given a set of N observations {v[0], v[1], · · · , v[N � 1]} of a process, estimate the

P 0
= P + M parameters ✓ =

h
d1 · · · dP c1 · · · cM

iT
of the ARMA(P,M)

model

v[k] +
PX

j=1

djv[k � j] =
MX

i=1

cie[k � i] + e[k] (47)

and the innovations variance �2
e . It is assumed without loss of generality that the

generating process is zero-mean.
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Estimation of ARMA models . . . contd.

I With the nonlinear LS method, typically a Gauss-Newton method is used. Analytical

expressions are used to compute the gradients (of the predictor) at each iteration.

I In the MLE approach, the likelihood function is set up using the prediction error (innova-

tions) approach and a nonlinear optimization solver such as the G-N method is used.

I Any one of the four methods discussed earlier for MA models can be used to initialize the

algorithms. The Y-W method is the standard choice.

See Shumway and Sto↵er, 2006; Tangirala, 2014 for a theoretical discussion of the NLS and

MLE algorithms, i.e., how to evaluate the gradients for the former or set up the likelihood

functions for the latter.
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NLS and ML estimators of ARMA models
The parameter estimates of an ARMA(P,M) model obtained from the unconditional, conditional least

squares and the ML estimators initialized with the MoM are asymptotically consistent. Further,

p
N(✓̂ � ✓0) ⇠ AN

�
0,�

2
eS(✓0)�1

�
(48)

The (P +M)⇥ (P +M) covariance matrix S is given by

S =

"
E(xPx

T
P ) E(xPw

T
M )

E(wMx

T
P ) E(wMw

T
M )

#
(49)

where xP and wM are constructed from two auto-regressive processes

xP =
h
x[k � 1] x[k � 2] · · · x[k � P ]

iT
; x[k] =

1

D(q�1)
e[k] (50)

wM =
h
w[k � 1] w[k � 2] · · · w[k �M ]

iT
; w[k] =

1

C(q�1)
e[k] (51)
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Remarks

I The block diagonals S11 (P ⇥ P ) and S22 (M ⇥M) are essentially the auto-covariance

matrices of x[k] and w[k] respectively, while the o↵-diagonals are the matrices of

cross-covariance functions between x[k] and w[k].

I A few special cases are discussed

1. AR(1): For this case, S is a scalar. Using (49),

S = E(x[k � 1]x[k � 1]) = �

2
e/(1� d

2
1) =) var(d̂1) = (1� d

2
1) (52)

2. MA(1): Using (49),

S = E(w[k � 1]w[k � 1]) = �

2
/(1� c

2
1) =) var(ĉ1) = (1� c

2
1) (53)
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Procedure to fit an ARMA model

1. Carry out a visual examination of the series. Inspect the data for “outliers”, drifts,

significantly di↵ering variances, etc.

2. Perform the necessary pre-processing of data (e.g., removal of trends,

transformation) to obtain a stationary series.

3. For pure AR models, use PACF and likewise for pure MA models, use ACF for

estimating the orders. For ARMA models, a good start is an ARMA(1,1) model.
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Procedure to fit an ARMA model

4. I For AR models, use the MCOV or Burg’s method with the chosen order. If the

purpose is spectral estimation, then prefer the MCOV method.

I For MA and ARMA models, generate preliminary estimates (typically using the Y-W

or the H-R method) with the chosen orders. Use these preliminary estimates with

an MLE or NLS algorithm to obtain “optimal” estimates.

5. Subject the model to a quality (diagnostic) check. If the model passes all the

checks, then accept this model. Else work towards an appropriate model order until

satisfactory results are obtained.
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Steps for building an ARIMA model
Procedure
1. Examine/test the series for integrating type non-stationarity using visual inspection

of the series and/or the ACF plots and the unit root tests (e.g., Dickey-Fuller,

Phillips-Perron tests). If the series exhibits strong evidence for unit roots, then an

ARIMA model can be fit after following steps 2 and 3 below.

I Unit root tests have to be performed with care and should be corroborated with

visual observations of the series as well as the ACF/PACF plots.

2. If there is a strong evidence (additionally) for trend type non-stationarities, remove

them by fitting polynomial functions to the series (using OLS method for example)

and work with the residuals of this fit. Denote these by w[k].
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Steps for building an ARIMA model . . . contd.

3. If the residuals (or the series in the absence of trends) are additionally known to

contain growth e↵ects, then a logarithmic transformation is recommended. Call the

resulting series as w̃[k] or ṽ[k] as the case maybe.

4. Determine the appropriate degree of di↵erencing d (by a visual or statistical testing

of the di↵erenced series).

5. Fit an ARMA model to rdw̃[k] or rdṽ[k] (or to the respective untransformed

series if step 3 is skipped).
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Seasonal ARIMA models
In general, seasonal e↵ects need not be periodic but can have a stationary process like

characteristics operating at the seasonal scale.

SARIMA Model
If d and D are nonnegative integers, then {v[k]} is a seasonal ARIMA(p, d,m) ⇥
(P,D,M) process with period s, if the di↵erenced series

w[k] = (1� q�1
)

d
(1� q�s

)

Dv[k]

is a causal ARMA process defined by

D(q�1
)Ds(q

�s
)v[k] = C(q�1

)Cs(q
�s
)e[k], e[k] ⇠ N (0, �2

e)
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Remarks

I A seasonal ARIMA process has two sub-phenomena evolving at two di↵erent scales,

one at the regular (observed) scale and another at the seasonal (to be usually deter-

mined from data).

I E.g.: sales of clothes / sweets in a city, temperature changes in the

atmosphere.

I The SARIMA model essentially is a multiplicative type model (as compared to the

classical or Holt-Winters forecasting model).

I It takes into account the “interaction” of the seasonal scale phenomenon with that

of the regular scale. In contrast, additive models do not take this “interaction” into

account.
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R commands

Listing 1: R commands for simulating and fitting SARIMA models
1 # S imu l a t i n g ARIMA and SARIMA models

2 ar ima . sim , s imu l a t e . Arima ( from f o r e c a s t )

3 # Non�pa r ame t r i c a n a l y s i s

4 ac f , pacf , t s d i s p l a y ( f o r e c a s t ) , pe r iodogram (TSA) , s t l , Ho l tWin t e r s

5 # Tes t s f o r u n i t r o o t s ( i n t e g r a t i n g e f f e c t s )

6 ad f . t e s t ( t s e r i e s ) , kps s . t e s t ( t s e r i e s )

7 # Es t ima t i ng AR models

8 ar , a r . yw , a r . o l s , a r . burg , a r . o l e

9 # Es t ima t i ng (S)ARIMA models

10 ar ima , Arima ( from f o r e c a s t ) ,

11 # P r e d i c t i n g and p l o t t i n g

12 p red i c t , f o r e c a s t ( f o r e c a s t ) , t s . p l o t
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Summary

I AR models are much easier to estimate than MA models because they give rise to

linear predictors

I A variety of methods are available to estimate AR models - popular ones being the

Yule-Walker, LS / COV, modified covariance and Burg’s method.

I Among the four methods, Y-W and Burg’s method guarantee stability, but the

latter is better for processes with poles close to unit circle.

I MCOV method is preferred when AR models are used in spectral estimation.

I ML methods are generally not used for estimating AR models because the

improvement achieved is marginal
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Summary

I ARMA (and MA) models give rise to non-linear optimization algorithms, which in

turn require preliminary estimates.

I Initial guesses are generated by less-e�cient methods (e.g., Y-W, H-R estimators).

I NLS and ML estimators both yield asymptotically similar ARMA model estimates.

I The “best” ARMA model is almost always determined iteratively, but in a

systematic manner.
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