
Introduction to Random Processes

ACVGF

Then, one could write the general linear model in (9) as

v[k] =
1X

n=�1
h[n]q�ne[k] = H(q�1) (15)

where H(q�1) =
1X

n=�1
h[n]q�n (16)

is known as the transfer function operator
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Introduction to Random Processes

Auto-covariance generating function

ACVGF
The auto-covariance generating function is defined as

g�(z) =
1X

l=�1

�vv[l]z
�l (17)

where z is a variable.
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Introduction to Random Processes

ACVGF . . . contd.

The key use of this ACVF generating function stems from the fact that it can be computed

directly from the MA representation of the random process.

v[k] = H(q�1)e[k] (18)

=) g�(z) = �2
eH(z�1)H(z) (19)

where H(z�1) is obtained by replacing the operator q�1 in H(q�1) with the variable z�1
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Introduction to Random Processes

Example: ACVF of an MA(2) process

Problem: Compute the ACVF of an MA(2) process

v[k] = e[k] + h1e[k � 2] + h2e[k � 2]

Solution: First observe that

H(q�1) = 1 + h1q
�1 + h2q

�2

To compute the ACVF, construct the ACVGF by computing the product

g�(z) = �2
eH(z�1)H(z) = �2

e(1 + h1z
�1 + h2z

�2)(1 + h1z + h2z
2)

= �2
e(h2z

�2 + (h1 + h1h2)z
�1 + (1 + h2

1 + h2
2) + (h1 + h1h2)z + h2z

2)

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 36



Introduction to Random Processes

ACVGF of an MA(2) process

Comparing with equation (17) and reading o↵ the coe�cients of z�l, we obtain

�vv[l] =

8
>>>>>>>>>>><

>>>>>>>>>>>:

(1 + h2
1 + h2

2)�
2
e , l = 0

(h1 + h1h2)�2
e , l = 1

h2�
2
e , l = 2

0, |l| � 3

(20)

Thus, as expected, the ACVF of an MA(2) process vanishes at all lags |l| > 2 ⇤
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Introduction to Random Processes

Auto-Regressive (AR) processes: ACF

The second class of processes that we consider are the auto-regressive (AR) processes

For illustration, consider a first-order, i.e., AR(1) process:

v[k] = �d1v[k � 1] + e[k] (21)

where e[k] is the zero-mean GWN process of variance �2
e and d1 is a finite constant.

I The current state is a linear function of the past state plus the unpredictable e[k]

I Assume |d1| < 1 (a condition required for stationarity of v[k])
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ACF of an AR(1) process . . . contd.

The theoretical ACF can be now obtained using the definition in (2)

Observe that µe = 0 =) µv = 0.

�vv[l] = E(v[k]v[k � l])

= �d1E(v[k � 1]v[k � l]) + E(e[k]v[k � l])

= �1�vv[l � 1] + �ev[l]

where �ev[l] is the cross-covariance function, i.e., the covariance between e[k] and v[k� l]

(see the definition of CCVF shortly)
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Introduction to Random Processes

ACF of an AR(1) process . . . contd.

I By symmetry property of �vv[l], it is su�cient to work out the derivation for l � 0.

To complete the derivation, we first evaluate �ev[l] for l � 0.

I A careful examination of (21) reveals that v[k� l] contains e↵ects of only past e[k].

By definition of WN, therefore, �ev[l] = 0, l > 0.
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Introduction to Random Processes

ACF of an AR(1) process . . . contd.
To obtain �ev[0], multiply both sides of (21) with e[k] and take expectations on both

sides to yield,

E(e[k]v[k]) = �d1E(e[k]v[k � 1]) + E(e[k]e[k])

= �2
e

using the same arguments as above. Thus, we have the following set of equations

�vv[0] = �d1�vv[�1] + �ev[0]

= �d1�vv[1] + �2
e

�vv[1] = �d1�vv[0]
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Introduction to Random Processes

ACF of an AR(1) process . . . contd.

Solving equations for �vv[0] and �vv[1] simultaneously gives

�vv[0] =
�2
e

1� d21
⇢vv[l] = (�d1)|l| 8 |l| � 1

(22)
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ACF of an AR(1) process . . . contd.

I Shown adjacent is the plot of

the ACF of an AR(1) process

with d1 = �0.5

I In general wheenver |d1| < 1,

we have that

The ACF of an AR(1) process

exhibits exponential decay

ACF of an Auto-Regressive (1) process

Lags

1
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Summary

I The ACF measures linear dependencies between observations of a time-series

I For a stationary process, the ACF is a symmetric function

I The ACF coe�cients at any lag determine the optimal linear model for x[k] in

terms of its past.

I For an MA(M) process, the ACF abruptly vanishes after lags |l| > M .

I For an AR(P ) process, the ACF dies down only exponentially.

I
The ACF satisfies the same di↵erence equation as the random process itself
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