Introduction to Random Processes

ACVGF

Then, one could write the general linear model in (9) as

Zh “elk] = H(q™) (15)

n=—oo

where |H(q') = Z hinlg™" (16)

n—=——oo

is known as the transfer function operator
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Introduction to Random Processes

Auto-covariance generating function

ACVGF

The auto-covariance generating function is defined as

o

6 (2)= 3 onlllz (17)

l=—o00

where z is a variable.
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Introduction to Random Processes

ACVGF . ..contd.

The key use of this ACVF generating function stems from the fact that it can be computed

directly from the MA representation of the random process.

vlk] = H(q )e[k] (18)
= |9s(2) = 02 H (2 ")H(2) (19)

where H(z7!) is obtained by replacing the operator ¢! in H(g™') with the variable 2!
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Introduction to Random Processes

Example: ACVF of an MA(2) process

Problem: Compute the ACVF of an MA(2) process
v[k] = elk] + hielk — 2] + hoelk — 2]

Solution: First observe that
H(g Y =14 hiqg ' + hog?

To compute the ACVF, construct the ACVGF by computing the product

9,(2) = 02H(z 7Y H(2) = 02(1 + hyz™' + hez ) (1 + hyz + ho2?)
= 02(haz 2 4 (h1 + haho)z™" + (14 13 + h3) + (h1 + haiha)z 4 ho2®)

o
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Introduction to Random Processes

ACVGF of an MA(2) process

Comparing with equation (17) and reading off the coefficients of 2!, we obtain
(1+h2+h)o?, 1=0

(hl —|— hlhg)O'g, l = 1

Tu|l] = 4 (20)
h,QO'z, [ =2
0, 1| >3
\
Thus, as expected, the ACVF of an MA(2) process vanishes at all lags |/| > 2 O
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Introduction to Random Processes

Auto-Regressive (AR) processes: ACF

The second class of processes that we consider are the auto-regressive (AR) processes

For illustration, consider a first-order, i.e., AR(1) process:
vlk] = —dyvlk — 1] + e[k] (21)
where ¢[k] is the zero-mean GWN process of variance o2 and d; is a finite constant.

» The current state is a linear function of the past state plus the unpredictable e[k]

» Assume |d;| < 1 (a condition required for stationarity of v[k])
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Introduction to Random Processes

ACF of an AR(1) process ... contd.

The theoretical ACF can be now obtained using the definition in (2)

Observe that p, = 0 = p, = 0.

owll] = E(v[kjv[k —1])
= —di E(v[k — 1]v[k —1]) + E(e[k]v[k —1])
— ¢1avv [l - 1] + Oev [l]

where 0,,[l] is the cross-covariance function, i.e., the covariance between e[k] and v[k —]
(see the definition of CCVF shortly)
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Introduction to Random Processes

ACF of an AR(1) process ... contd.

» By symmetry property of o,,[l], it is sufficient to work out the derivation for [ > 0.

To complete the derivation, we first evaluate o.,[l] for [ > 0.

» A careful examination of (21) reveals that v[k — [| contains effects of only past ¢[k].

By definition of WN, therefore, o, [l] = 0,1 > 0.
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Introduction to Random Processes

ACF of an AR(1) process ... contd.

To obtain o.,[0], multiply both sides of (21) with e[k] and take expectations on both
sides to yield,

E(e[k]v[k]) = —d1E(e[kjv[k — 1]) + E(e[kle[k])

_ 2
=0,

using the same arguments as above. Thus, we have the following set of equations

0u[0] = —d10p[—1] + 0, [0]
= —dyoy[1] + o2
Tw|l] = —d10y,[0]
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Introduction to Random Processes

ACF of an AR(1) process

Solving equations for ,,[0] and o,,[1] simultaneously gives

... contd.

0.2
7wol0] - &
pooll] = (=d) ¥ I >1
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Introduction to Random Processes

ACF of an AR(1) process

» Shown adjacent is the plot of
the ACF of an AR(1) process
with d; = —0.5

» In general wheenver |d;| < 1,
we have that

The ACF of an AR(1) process

exhibits exponential decay
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Summary

» The ACF measures linear dependencies between observations of a time-series

v

For a stationary process, the ACF is a symmetric function

v

The ACF coefficients at any lag determine the optimal linear model for x[k] in
terms of its past.

v

For an MA(M) process, the ACF abruptly vanishes after lags |I| > M.

v

For an AR(P) process, the ACF dies down only exponentially.

» The ACF satisfies the same difference equation as the random process itself
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