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MLE and Bayesian estimators

Introduction

We now turn to a fundamentally different approach to the estimation problem. Unlike the
LS method, this estimator assumes the data to be generated by a probabilistic mechanism,

possibly combined with some dynamics.

The key idea is to reverse “guess”’ the probability function that is “most likely” to have
generated the given observations with or without prior knowledge of the parameters. In
the former case, we are led to maximum likelihood estimators while in the latter we

encounter Bayesian estimation methods.
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Likelihood

The concept of likelihood is closely related to that of conditional probability (Bayesian
ideas), but is not identical to it.

For any probabilistic event associated with a RV Y, we can compute the probability
Pr(y; <Y < y2) given its probability density function f(y|@), where 6 is the parameter
vector characterizing the density function. Now the situation is that we are given a set
of observations yny = {y[0], y[1],--- ,y[N — 1]} and we are interested in “guessing” or
estimating (i) the form of the density function (model) and (ii) the parameters of that

function.

Obviously there exist infinite possibilities for 8 for a chosen f(y|@). A criterion is required
to select the optimal parameters.
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Maximum likelihood approach

Fisher, (1922) proposed that the optimal parameter is that one which maximizes the
probability of occurrence of y in the range yy to yny + dy. We are not maximizing
probability here, but rather asking which p.d.f. (or parameter vector) would

have made yy most likely.

From these ideas takes birth the concept of likelihood function [(6|yy). Essentially,
given the observations yy, the p.d.f. f(yn;0) is simply a function of the parameters 6.
The likelihood function that we wish to maximize is proportional to the p.d.f. since the
probability of the observation set taking values within an interval dy is proportional to

the p.d.f. That is to say,

[(Blyn) x f(y|6) (1)
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Maximum likelihood estimation

For computational reasons, we make two choices:

1. Neglect the proportionality constant in (1), so that
[Olyn) = f(y]0) (2)

2. Maximize the log-likelihood L(8|yn) = Ini(8|yn) instead of the likelihood function,

because it makes the problem numerically tractable.

Then, the ML estimator of @ given observations Zy = {yy Uux}.

Oy = arg mein -Ini(Blyn) or Oy, = arg mein -L(6|Zy) (3)

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 5



MLE and Bayesian estimators

MLE procedure

A three-step procedure for the formulation and solution to a general ML estimation from
N observations of a process y[k]| is described next.

It is useful to imagine the observations to be made up of a stochastic term v[k] and/or
a deterministic component z[k].

ylk] = @[k] + v[k] (4)

» In certain texts, the deterministic component is also said to be the conditional mean
since E(y[k]) = x[k] whenever v[k] is zero-mean.

» In TSA, z[k] = 0 (or constant) for stationary signals.
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MLE procedure

1. Assume a density function: Assume a suitable density function f(v) for the
stochastic component (typically a Gaussian).

2. Construct the likelihood function: Postulate a model (mostly dynamic) for the
deterministic component (wherever applicable). Putting together the models for
x[k] and v[k], construct the density function of y and hence the likelihood for 8.

3. Solve the optimization problem: Set up the optimization problem with any
additional constraints that may be have to be placed. Solve it using a suitable
algorithm (typically a numerical solver).
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Remarks

» In order to carry out the last step, i.e., to determine the optimum, the density
function should satisfy the regularity conditions.

» When the p.d.f. is not regular, the derivative of the likelihood does not exist and
the optimum has to be determined by inspection. An example of this case is the

estimation of parameters of a uniform density function.

» Further, since MLE is a non-linear optimization problems, multiple solutions may
exist. It is then necessary to verify that the solution indeed corresponds to the

minimum by evaluating the second-derivative.

» Finally, as with any estimation technique, compute the errors in the resulting esti-
mates.
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Example 1: MLE of mean and variance

Mean and Variance estimation of a GWN process

Given N observations of a constant signal corrupted with noise,

y[k] = c + e[k] (5)

estimate the the steady-state value ¢ and the variance of the measurement noise o2
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Example ... contd.

Solution:
1. Density function for ¢[k|: e[k] ~ GWN(0, 0?)

T
2. Likelihood function for y[k]: We have two unknowns to estimate, 6 = [c 02}

[(Blyn) = f(yn|0) (6)

Given that e[k] is Gaussian, y[k] also follows a Gaussian distribution with

BGHIO) =c =02 —> f(ylk]) = — exp(—lw) 7)
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Example 1: MLE ... contd.
Therefore,
1 1 = (y[k] — )
= (O|lyn) = Wexp (-5 2 yg—g>

3. Optimization problem: The objective function to be minimized is then

N-1

N N 1 kl — ¢)2

L(07YN) = —ll'll<) = -5 111(271') — E].HO'S = 5 Z (y[]a—2)
k=0 e
LS ol;jr. fun.
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Example 1: MLE ... contd.

Setting the gradients of the objective w.r.t. ¢ and o2 to zero, we obtain:

=

oL _
oec

0 (y[k]—C):(),

2
0 e

L
oL _o. Xy UWl-9_, (10)

2 2 4
0o? 20?2 o

e
I

1 N-1 1 N—-1
~ _ = kl = 7 ~2 - El— @ 2 11
twL = ;y[ | =5 Gt =% kzo(y[ ) (11)
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Example 1: MLE ... contd.

A time-series consisting of N = 200 observations from a GWN process of mean =1

and variance o = 2 is obtained. The ML estimates of the statistical parameters are

Estimates: fm. = 1.0467(£0.1287); 6w = 1.8203(+0.0910)
95% C.ls:  p € (0.7923,1.3012); o € (1.6619,2.0237)

where the values in parentheses are the 10 standard errors in the respective estimates.
» The last term of the MLE objective function can be easily recognized as the sum

square (prediction) errors in the LS formulation.

» Unlike the LS problem, MLE gives rise to a set of non-linear normal equations.

Fortunately, in this case, a closed-form solution exists
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Remarks on Example 1

1. The ML and LS estimates of ¢ coincide. In general, the ML and LS estimates of
linear models coincide when the observation errors are Gaussian white noise.

2. Estimate of variance differs slightly from the general unbiased estimator. The
factor of 1/N in place of 1/(N — 1) in (11) makes it statistically biased, but
asymptotically unbiased. On the same note, the ML estimate of variance is
relatively more efficient than the LS estimate.

3. The variance of ¢ and o? estimates are given by

. ol . 2(N —1)
var(éuy) = var(g) = W; var(aiML) = TO’? (12)
Thus, the estimators are mean-square consistent.
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Remarks ... contd.

4. ML estimator, although being biased, achieves the Cramer-Rao bound
asymptotically. To realize this for the problem studied above, observe from (12)

2
var(62 ) & N ol (for large N) (13)

5. It can be shown that the ML estimate of o, is

2

(y[/f] —7)? (14)

OeML =

1
N

£
Il

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 15



MLE and Bayesian estimators ~ References

Remarks on MLE: ...contd.

6. The asymptotic distribution of the ML estimates are
VN (& = cp) ~ AsN(0, 02); VN(6% — 02) ~ AsN(0,20%)  (15)

Note that the finite sample distribution of 2 is a x? with N degrees of freedom.
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Remarks on MLE: ...contd.

7. One of the advantages of ML formulation is that heteroskedastic errors, i.e.,
var(e[k]) = o2 can be naturally accommodated. Assuming the knowledge of o7,
the ML estimate of 8 = c is,

T

ylk]

CMLE = CwWLS = N_1 ) (16)
2
o Tk

Thus, the ML formulation also encompasses the WLS problem.
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Remarks

» The variance of the innovations estimated by ML approach is theoretically lower than
that by the OLS, but it is a biased estimate. However, the estimate is asymptotically
unbiased.

» In the OLS approach, the variance is estimated after estimating p model parameters.
Thus effectively only N — p degrees of freedom are available. In contrast, the ML
approach estimates the model parameters and innovations variance jointly, resulting
in lower variance.

» ML estimates are consistent and asymptotically efficient under some fairly mild con-
ditions
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Computing the MLE

The non-linear optimization problem of the MLE can be solved using Newton-Raphson

and Gauss-Newton methods. In addition three other algorithms are also widely used.

1. Fisher’s scoring method: Originally proposed by Fisher, it is a variant of the
Newton-Raphson method, which replaces the computationally intensive Hessian

calculations of the N-R method by their expected values

2. Polytope method: Unlike the gradient search approach, the idea here is to use a
heuristic direct-search method for parameter updates Nelder and Mead, 1965. This

is also known as the simplex method (different from the one in linear programming).
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Computing the MLE ... contd.

3. EM algorithm: The Expectation-Maximization algorithm formalized by Dempster,
Laird, and Rubin, 1977 is an iterative methodology consisting of two steps known
as the expectation E and maximization M steps, typically used for setting up the
complete data likelihood from incomplete data.

A known problem with the EM algorithm is that it does not necessarily converge to

the ML estimate. However, its advantages usually outweigh the drawbacks.

For technical details, see Shumway and Stoffer, 2006 and Garthwaite, Jolliffe, and Jones,
2002.
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Asymptotic properties of ML estimators

Suppose that the observation vector constitutes a random sample (GWN or i.i.d.) y
and that the true joint p.d.f. f(y;0y) satisfies the regularity conditions. Then the ML

estimator has certain attractive asymptotic properties:

1. Consistency: The ML estimate converges in probability to the true parameter,

O - 0, (17)
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Properties of ML estimators ... contd.

2. Asymptotic normality:
(O — 65) —5 N(0,To(0)71) (18)

where I(8) is the Fisher's information matrix (or the inverse of Cramer-Rao’s
lower bound) evaluated at the true point 8 = 6.

3. Asymptotic efficiency: A corollary of the above property is that the ML estimator
asymptotically achieves the Cramer-Rao’s lower bound.

lim 3, = Io(8) " (19)

N—o00
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Properties of ML estimators ... contd.

4. Asymptotically unbiased: ML estimators can in general produce biased estimates
(with the exception of a few cases). As N — oo, this bias goes to zero.

5. Invariance: Suppose ¢ = g(@) for some appropriate one-to-one function g(.), then
a remarkable property of the ML estimator is that

QSML = g(éML) (20)

Although these properties are listed under restrictive conditions, they hold in general for
dynamic systems as well (see Ljung, 1999).
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Bayesian estimation

The Bayesian estimators, named in honour of Rev. Bayes (Bayes, 1763; Stigler, 1982)
deviate significantly from the classical methods discussed until now in the assumption
they make on the parameter.

Parameters of interest @ are random with some a priori knowledge f(0).
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Remarks

» Since deterministic variables are limiting cases of random variables, the ML approach
is naturally contained in these methods (we shall show shortly that MLE is mathe-

matically the equivalent of Bayesian under some conditions).

» Strictly speaking, it is not the parameter that is random. The randomness is “im-
parted” due to the uncertainty in our knowledge of the parameter (both prior to and
post estimation).
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Basic ldea

Prior to the experiment we have a (large) uncertainty in parameters, and post
experiment (and data analysis), this uncertainty should (hopefully) shrink.

|

The starting point is therefore, the conditional p.d.f., written using Bayes’ rule:

fOlyn)f(yn) = f(yn|0)f(0)
fyn|6)£(6)

i) (21)

= f(Olyn) =
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Posterior and Prior p.d.f.s

» The quantity f(6|yy) is also known as the posterior distribution of @ since it is
being computed after the observations have been obtained.

» Its companion is f(@), known as the prior distribution or density. This contains the
user’'s knowledge of the parameters prior to using the data.

The role of observed data y is to reduce the uncertainty in the prior information or
improve our knowledge of the parameter 6.
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The posterior p.d.f.

Given an observation set yy (evidence), the denominator is a fixed quantity, allowing us

to write

f(6lyn) = C[f(yn|0)/(6) (22)

(Posterior) (Likelihood)(Prior)
The constant C'is usually adjusted such that f(8]y) is a legitimate p.d.f.

Once f(B]y) is obtained, the “full” information of @ is available, which can be used in J

whichever way required.
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Estimation using the posterior p.d.f

» Thus, we do not have a single estimate unlike with LS or MLE, but a range of

estimates characterized by the posterior.

» The estimator directly gives the distributional characteristics through f(8]y), in con-
trast to the previously studied estimators where the distribution of 0 is constructed

after computing 0 through some approximations.

» The point estimates can be obtained by evaluating different properties of the p.d.f.

f(0]y).
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Point estimates and their optimality

» Further, these point estimates are optimal in the sense that they minimize a risk
function R(e€g) = E(C(€q)), which is the averaged user-defined cost function.

0 = arg meinR(e) = arg moinE(C(e)g) (23)
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Bayesian estimate

Three popular choice of cost functions associated with three related properties of the

p.d.f. are discussed below:

1. Bayesian estimate, E(0|y): This is the estimate that minimizes the cost function
Cl(eg) =116 — 643 (24)
In other words, it is the MMSE of 8 and also the mean of f(8]y).

Osn = E(0)y) = arg min £((6 — 6,)*) (25)
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Bayesian estimate ... contd.

The support comes from the classical result in prediction theory, which states that given

a random variable Y, the best prediction of an unknown X is its conditional expectation
in the minimum MSE sense.

The estimate is computed using the definition of conditional expectation (22),

E(Oly) = / 67 (6ly) d6 (26)
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MAP estimate

2. MAP estimate: The associated cost function is

O, |Eg| <9
Cleg) = (27)
1, leg| >0

This leads to the maximum a posteriori estimate , which is essentially the mode of

f(8ly):

éMAP = arg mgX f(0ly) = arg mgX f(y]6)f(0) (28)

or Ouap = arg max (In f(y|6) +1n f(9)) (29)

The estimate is also known a the hit-or-miss estimate.
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Remarks on MAP estimate

» When all values of 8 are equally likely a priori, i.e., f(0) = o, € RT, the Bayesian

estimate specializes to MLE.

» On the other hand, choosing a Gaussian prior with mean & = 0 (or a non-zero

fixed point) and variance ——1,,,, gives an MLE with regularization term (see
note below). Owing to this fact, the MAP estimator is also known as penalized

likelihood estimator.

Note: Regularization is an optimization scheme where the estimation algorithm penalizes
the optimizer for including more parameters than necessary by adding a penalty term to

the objective function. This penalty term is usually some norm of 6.
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Median estimate
2. Median estimate: As the name suggests, it is the median of the posterior.

éMedian = Medmn(f(o‘Y)) (30)
The associated cost function is the absolute value of the error.

C(eo) = |eo| (31)
For a Gaussian posterior, the mean, median and mode coincide.

Among the three estimators, the MMSE is the most preferred because of its
quadratic objective function, however it is one of the most difficult to com-

pute.
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Example: Bayesian estimation of mean

We revisit the problem of estimating the mean of a signal from its measurements:
ylk] = ¢+ elk], e[k] ~ N(0,07) (32)

Unlike in the case of OLS and MLE, assume some prior knowledge of # = ¢, the uncer-
tainty in which is described by a Gaussian p.d.f.:

10) = e (547 (33)
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Bayesian estimation of mean ... contd.

Then the posterior is

N-1
(ylk] — 6)*
foly) = ¢ 1 ex ooy 2
Y (2mo2)1/2(2ma2)N/2 P 202 202

where the constant C'is adjusted such that [ f(f]y) df = 1.
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Bayesian estimation of mean

The exponent of the posterior p.d.f. can be re-written as:

. contd.

(1 N Ng NPTk
2 \o? o? o2 20?2 202 202
It is possible to show that the posterior p.d.f. is Gaussian:
1 1(0—p)?

fOly) < N, 0%) =

exp <——

2

5—2

\V2mo2

A

2

_ A _
where [i = pgjy, 62 = 0 and
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Bayesian estimation of mean ... contd.
_ 1 _ pe Ny _
2 . _ 2
(o} :ﬁ’ ,u—(o_—g—f—o_—g)O' (36)
o2 o?

The quantity i is the Bayesian estimate of ¢, defined in (26) and the & is the standard

error in this estimate.
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Bayesian estimation of mean ... contd.

Numerical illustration: Assume that N = 100, . = 0,02 = 4 and that the variance
of the GWN is known to be 02 = 2. The prior and the posterior p.d.f.s resulting from
taking into account N = 1, 10, 100 observations are shown.

Prior and posterior p.d.f.s
0.03 T T

—Prior

; After N=1
el N
odl : , Observe how the data improves the
S gors) | highly uncertain prior knowledge to
oot} ] a much more precise estimate.
0.005] ’.: "
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Remarks

1. The Bayes estimate of ¢ is E(c|y) = ji. Expressing this estimate in a weighted
form provides valuable insights into the workings of the Bayesian method.
2

[\

o o
7 o— . 1 _ Tl h - =___¢ 37
p=op.+ (1 —a)y where a 3= 571 No? (37)

Thus, the approach gives us a weighted estimate of the prior mean (i.e., no data)

and sample mean (i.e., no prior).

41
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Remarks ... contd.

2. The Bayesian estimate is statistically biased, but asymptotically unbiased.

N&?

E(7) # 1 lim B(g) = lim 6% + lim ~2 E(@) =u  (38)

N—o0 N%ooag N—o0 0’3

3. The core philosophy of Bayesian estimation is that the data improves the prior
estimate or knowledge of 8. This fact is established clearly in (40). Since 8 > 0 for
finite N, 6% < o2
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Remarks ... contd.

4. The variance of the Bayesian estimate is a harmonic average of the variances in the
estimates from two sources, namely, prior and data, respectively. Introducing

2 Uncertainty in @ a priori

= (02/N) N Uncertainty in 0 from data

we have
a2 1
o2 pf+1 ° (40)
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Remarks ... contd.

5. The Bayesian estimate has a lower variance than that with a non-informative prior
such as MLE or LSE:

2
o
52 < ﬁe (41)
Moreover, it is a consistent estimator
lim 6% = 0 (42)
N—o0
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Closing Remarks

» Computation of the posterior can present some serious challenges depending on the
choice of the (likelihood) density f(y|@) and the prior.

» The burden is significantly reduced if the likelihood and prior form a
combination such that the posterior also falls in the family of prior

distributions. Then, the combination is said to form a conjugate prior.

» Some well-known conjugate pairs include (Gaussian, Gaussian) (Gaussian,
Gamma), (Gaussian, Wishart), (Multinomial, Dirichlet), etc. (Kay, 1993;
Ogunnaike, 2010).

In practice, it is important to choose the prior that is appropriate for the situation
rather than going by mathematical or computational convenience.
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Closing Remarks

» The core philosophy of Bayesian estimation is that the data improves the prior
estimate or knowledge of 6.

» The Bayesian estimator is consistent, but a biased (asymptotically unbiased)
estimator (for small samples).

» The estimates have a lower variance than from estimators with a

non-informative prior such as in MLE or LSE
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Summary

» Maximum likelihood estimation technique estimates the parameters such that the
likelihood function is maximized

» The likelihood function is proportional to the p.d.f. of y.

» MLE is superior to and contains the LS and WLS approaches, but computationally

more demanding
» MLE gives asymptotically consistent and efficient estimates

» The small sample performance of MLE may be inferior to that of other classical

estimators.
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Summary ... contd.

» Bayesian estimators work with posterior conditional p.d.f f(8]y), which is
constructed from f(y) and the prior knowledge of parameters

» They appeal to a larger class of problems and contain the ML estimator. Being

superior to MLE, they are computationally more demanding.
» Naturally yield interval estimates, i.e., distribution characteristics of ]

» Point estimates can be obtained by evaluating the properties of the posterior p.d.f.,
popular ones being: (i) Bayes estimate (mean or the MMSE) (ii) Median and (iii)
MAP (penalized MLE)
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