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Learning Goals

In this lecture, we shall closely examine the following

I Periodogram

I Spectral leakage and modified periodogram

I Window functions for improving spectral leakage

I Periodogram as an estimator of p.s.d. of stochastic signals
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Recap

I Periodic signals have only line spectra. Densities do not exist

I Aperiodic finite-energy signals only have energy densities. However, due to the way

DFT is computed, one ends up treating the signal as periodic.

I An ad hoc density, known as the periodogram, for analyzing periodic deterministic

signals embedded in noise is often used:

Two questions:

Q1: Does the periodogram correctly detect the frequencies in a deterministic signal?

Q2: How good is the periodogram as an estimator of PSD for stochastic signals?
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Periodogram for analyzing spectra of deterministic signals

The main tool is the periodogram.

The periodogram obtained from N samples of a signal x[k] is defined as
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where X[n] = X(f
n

) is the nth DFT coe�cient (of x[k]).

I Issues: (i) spectral leakage due to finite-length e↵ects, (ii) limited resolution.

I Remedies: Use modified periodogram (to minimize leakage)
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Finite-length e↵ects: Spectral leakage

The periodogram of a sinusoidal signal x[k] = A sin(2⇡f0) peaks at the true frequency

f0 only if the data record contains complete cycles of the sinusoid. If the data

record contains incomplete cycles, the spectrum does not peak at the right frequency

and also leaks to neighbouring frequencies.

Q: Why?
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Finite-length e↵ects . . . contd.

Two viewpoints can be o↵ered:

1. DFT implies periodic extension of the signal. When the cycles are incomplete,

discontinuities occur at the borders. Alternatively,

2. Any finite-duration sequence can be treated as an infinite sequence viewed through

a window of finite length. Mathematically, this may be written as x̃[k] = x[k]w[k]

where x̃[k] is the length-L finite duration sequence, x[k] is the infinite sequence

and w[k] is the rectangular window of length L

w[k] =

(
1, 0  k  L� 1

0, otherwise
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E↵ect of finite-duration: Distortion

I From the properties of FT we know that multiplication in time is equivalent to

convolution in frequency domain:

F {x̃[k] = x[k]w[k]} ⌘ X̃(!) = X(!) ?W (!) =
1

2⇡

Z
⇡

�⇡

X(✓)W (! � ✓) d✓

where X(.) and W (.) are the Fourier Transforms of the infinite sequence and the window

functions respectively

I From above, it follows that the spectral estimate we obtain is a distorted version

of the true spectrum (convolution causes distortion)

I The distortion disappears when the window (signal) length is infinite
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An Example
Suppose we have N = 100 and N = 109 observations of x[k] = sin(2⇡f0k), f0 = 0.04

cycles/sample.
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(a) N = 100 (integer cycles)
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(b) N = 109 (fractional cycles)

Spectral leakage occurs

primarily when the signal

has not completed an

integer no. of cycles in

the data record
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Spectral Leakage

I The peak in the spectrum should have occurred at f = 0.04 cycles/sample

I The corresponding bin is 1 + 0.04
4f

= 5.36 where 4f = 1/109 is he frequency

resolution. Now, there is no such bin as 5.36 (bins are integers)!

Note: the zero frequency corresponds to first bin

I Consequently, the power “leaks out” to surrounding bins

I The additional smearing that is observed is due to the windowing

I In general, therefore, spectral leakage occurs due to:

1. Windowing (convolution of the true spectrum)

2. Lack of exactly matching basis function in the set of N basis functions {e�j2⇡k/N}
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Overcoming spectral leakage

I Spectral leakage can be mitigated by windowing the data, thereby reducing border

e↵ects.

I Common windows w[k] (0  n  N � 1)

I Rectangular: w[k] = 1

I Hanning: w[k] = 0.53836� 0.46164 cos
⇣
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I Gaussian: w[k] = e
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where �  0.5

I Each window o↵ers a di↵erent trade-o↵ between leakage and e↵ective 4f .

I The rectangular window has an excellent resolution but poor leakage characteristics
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Window functions
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Frequency response of window function
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Which window to choose?

Signal characteristics Window features

Strong interfering components distant from the frequency

of interest

High side lobe roll-o↵ rate

Strong interfering components near the frequency of in-

terest

Low maximum side lobe level

Two or more components very near to each other. Very narrow main lobe

Amplitude accuracy of a component is more important

than the actual frequency

Wide main lobe

Flat or broadband spectrum Rectangular window

I The Hanning window o↵ers a satisfactory trade-o↵ between 4f and spectral leakage.
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Example 1: Reduction in spectral leakage
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(a) With Hanning
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(b) With Blackman
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(c) Hanning windowed

signal
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(d) Blackman windowed

signal

I Spectral leakage has clearly diminished with the use of window functions.

I However, the power has been re-distributed among the two frequencies nearest to

f0 = 0.04
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Key point

Ideally, for zero leakage, it is necessary to have a window such that W (!) = �(!).

Unfortunately this cannot be satisfied by any window function of finite length owing

to the duration-bandwidth principle .

A function that is perfectly localized in frequency is spread infinitely in time and

vice versa.

Essentially, it is impossible to have a window that is perfectly localized in both time and

frequency! Thus, finite-length windows will always result in distortion.
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Estimation of PSD for stochastic signals
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PSD for stochastic signals: Recap

I A spectral density exists for all stationary signals whose ACVF is absolutely

convergent. Three definitions of p.s.d. may be recalled:
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The first two definitions lead to non-parametric estimators while the last definition pro-

duces a parametric estimator
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Periodogram as an estimator of PSD for stochastic

signals

I The estimation problem is di↵erent from that of deterministic signals because the

spectral density is an average property whereas in practice, only a single realization

is available

I Consequently the periodogram yiueld a very poor estimate of the p.s.d of a

stochastic signal

I The primary concern is that the periodogram is not a consistent

estimator of the spectral density for random signals.
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Properties of periodogram estimator

I For a general linear stationary process with i.i.d. driving source and rapidly

decaying ACVF, the following asymptotic results hold:

1. lim
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E(P(!
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5. Estimates at two di↵erent frequencies are independent.
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Example: Periodogram of WN process
It is desired to estimate the p.s.d. of a (zero-mean, unit-variance) GWN using a data set

containing N = 250 observations of the process.
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Top panel: Periodograms from

a single realization with N = 250

and N = 2000 observations

Middle panel: Averaged

periodograms from 1000

realizations

Bottom panel: Distribution of
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Example . . . contd.
Increasing N does not improve the quality of periodogram. However, averaging across realiza-

tions, as expected does bring the estimate closer to the truth.

The estimated parameters of a fitted �(a, b) distribution at ! = 0 and ! 6= 0 are

!0 â ˆb ˆvar(�̂(.))

0 0.495 2.142 0.0571

0.4⇡ 0.962 2.148 0.0288

in close agreement with the theoretical expectations a(0) = 0.5, b(0) = 2, var(�̂(0)) = 0.0507

and a(0.4⇡) = 1, b(0.4⇡) = 2, var(�̂(0.4⇡)) = 0.0253, respectively.

The correlation coe�cient between the PSD estimates at two di↵erent frequencies !1 = 0.15⇡

and !2 = 0.4⇡ is found to be 0.015, a negligibly low value,
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Estimation of p.s.d . . . contd.

The lack of consistency can also be explained from three viewpoints:

i. The infinitely-long ACVF is approximated by a finite-length estimated ACVF and

the error in ACVF estimates increases with the lag (leads to Blackman-Tukey

estimators).

ii. The true p.s.d. is a smooth function of frequency, whereas the estimated one is

erratically fluctuating (leads to smoothers).

iii. The true p.s.d. is an average property, whereas the estimated one is from a single

realization (leads to Welch’s average periodogram estimators).
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Methods for improvement
Method Summary Reference

Blackman-Tukey Fourier transformation of smoothed, truncated autoco-

variance function

Chatfield, 1975

Smoothed peri-

odogram

Estimate periodogram by DFT of time series; Smooth

periodogram with modified Daniell filter

Bloomfield, 2000

Welch’s method Averaged periodograms of overlapped, windowed seg-

ments of a time series

Welch, 1967

Multi-taper method

(MTM)

Use orthogonal windows / tapers to get approximately

independent estimates of spectrum; combine estimates

Percival and

Walden, 1993

Singular spectrum

analysis (SSA)

Eigenvector analysis of autocorrelation matrix to elimi-

nate noise prior to transformation to spectral estimates

Vautard and

Ghil, 1989

Maximum entropy

(MEM)

Parametric method: estimate acf and solve for AR

model parameters; AR model has theoretical spectrum

Kay, 1988
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Summary

I Periodogram is a very good and natural estimator for deterministic signals.

I Spectral leakage is an issue that arises due to finite-length e↵ects.

I Remedy: Either use large sample sizes or apply tapered windows to data.

I Periodogram is an inconsistent estimator of the p.s.d. of a stochastic signal.

I Smoothed / Averaged periodogram methods induce the consistency property at the

cost of losing out on the ability to resolve frequencies.
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