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Time-Series

A time-series simple refers to an ordered collection of data (usually in time)

I e.g., yearly wages, annual production, daily temperature, hourly satellite images

I Measurements could be a function of other dimensions (e.g., frequency, space)

I Data may be collected at regular or irregular intervals

I Many variables could be recorded simultaneously (multivariate data)
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Examples
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(b) Wind speed
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(c) Swiss SMI
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(d) ECG

Time-series can exhibit di↵erent features

I Non-stationarity (e.g., trend, random

walk)

I Oscillatory (periodicity)

I Seasonality

I Non-linearity
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More examples
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Examples of time-series
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Time-series could be multivariate, multidimensional and also transformed into

another domain
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Systematic analysis of time-series data
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Applications
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Challenges in time-series analysis

Randomness & Uncertainty

1. Lack of a precise mathematical function to describe the process of interest (leading

to a probabilistic framework)

2. To be able to draw inferences on the ensemble from a single realization

3. Estimation of “unknowns” from (uncertain) observations / knowns.
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Sources of uncertainty and randomness

1. Uncertainty in process knowledge:

I Process characteristics are seldom known accurately and/or completely. e.g.,

atmospheric process, roll of a die, grade of a student, etc.

I From a prediction point of view, therefore, only outcomes with chances can be

stated at best.
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Uncertainty and randomness . . . contd.

2. Uncertainty in measurements:

I Every sensor introduces its characteristics into measurements. Hence, in reality

Observation = Truth + Perception (of the sensor)

I Sensor characteristics are usually not fully understood and therefore have to be

treated as random variables

3. Unknown causes: In several situations, the causal variables are unknown and/or

known, but cannot be measured or quantified.
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The “realization” challenge

A time-series is an ordered collection of random variables. Therefore, a single time-series

is one of the many possible combinations.

A single time-series is said to be a realization of the random process.

The collection of all possible realizations is said to be the ensemble.
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Example: Liquid level measurement
Consider measuring liquid level in a storage tank. Neglecting all other losses, the level is

constant. A single time-series (record) is a consequence of using one sensor to observe

the process. Readings from three di↵erent sensors are shown (true value shown in red).

Sensor 1 Sensor 2 Sensor 3
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The “realization” challenge . . . contd.

In practice, we have only a single realization. The challenge is to be able to

infer the truth from this single realization.

Two questions that repeatedly arise:

1. How good are the estimates (of model parameters, statistical properties, etc.) from

a single realization?

2. Is a single estimate su�cient?

Example: The average reading from sensor 1 is 3.005 and from sensor 3, is 2.996. What

can we say about the true level?
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A unifying question

Under what conditions can the inferences drawn from a single record of data be

meaningful and useful?

1. Stationarity: Invariance property of the process w.r.t. time (or space).

2. Ergodicity: Ability to replace ensemble averages with time (or spatial) averages.
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Approaches in TSA

Approaches depend on objective:

1. Forecasting: The most prevalent objective of TSA - applies to every field.

I Tests for within-series and across-series predictability - auto-correlation and

cross-correlation functions.

I Develop di↵erence equation models relating present to past - “auto-regressive”

models.

I Imagine the series to be a result of an unpredictable shock wave passing through a

filter - “moving average” models.

I Build mixed models that can also include other e↵ects such as trends, random walk

non-stationarities, etc. - (seasonal) ARIMA models.
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Approaches in TSA . . . contd.

2. Detection of periodicities: A common goal of many engineering, meteorological,

astronomical and biomedical applications.

I Frequency-domain or spectral representations - extensive use of Fourier

transforms (other transforms are also used in advanced analysis)

I Notion of a “random periodic process”

It is necessary to distinguish between a

periodic deterministic and periodic random process
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Periodic processes

I Periodic deterministic process

I Accurately predictable after one period.

e,g., ideal spring-mass system without any damping/friction and excited with an

impulse

I Periodic random process (harmonic processes):

I The process has an underlying periodicity coupled with some randomness

I Randomness could be in amplitude and/or in phase (if the signal is viewed as a sum

of sine waves)

I The power spectrum / power spectral density is a powerful concept that

allows us to study both these classes in a single framework.
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Estimation

Estimators are at the heart of TSA. They produce estimates of “unobserved” or

“hidden” quantities / variables from observations.

We shall learn how to:

I Characterize “goodness” of estimators

I Estimate statistical properties / parameters / signals

I Report estimation results and test hypotheses (on random processes)
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Scope of this course

Course deals with largely basic and a few advanced concepts. The objective is to equip

the learner with foundations of time-series analysis and estimation.

I Linear random processes

I Stationary and non-stationary processes.

I Mostly univariate and to a lesser extent, bivariate analysis

I Time-domain predictive models (ARMA, ARIMA and SARIMA models)

I Frequency-domain (spectral) analysis (deterministic and stochastic)

I Estimation theory (MoM, LS, MLE and Bayesian estimators and their properties)
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A few remarks

I Emphasis is on concepts rather than on the rigour.

I Idea is to introduce and illustrate ideas first through examples.

I Student is expected to take this first-level treatment to a higher level by self-inquiry.

I TSA requires both theory and skill, i.e., it is both a science and an art.

I A computational tool is indispensable to a good understanding and practice.
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R: Software for TSA
Rr is an integrated software package for data manipulation, calculation and graphical

display

I Powerful graphical (plotting) and statistical analysis tools.

I An expression language and like many other languages, case sensitive

I R provides the user with a very wide range of data structures (objects)

I Symbolic, vector, array, expressions, functions, lists, data frames, factors, . . .

I Each such data object can have attributes, names, dimensions, classes, etc.

I Writing user-defined and specialized add-on packages is easy

I Use of RStudior makes the use of R easy and useR-friendly!

Arun K. Tangirala Applied Time-Series Analysis 20



Motivation & Overview References

Bibliography

Box, G. E., G. M. Jenkins, and G. C. Reinsel (2008). Time Series Analysis: Forecasting and

Control. New York, USA: John Wiley & Sons, Inc.

Brockwell, P. (2002). Introduction to Time-Series and Forecasting. New York, USA: Springer-

Verlag.

Hamilton, J. D. (1994). Time Series Analysis. Princeton, NJ, USA: Princeton University Press.

Priestley, M. B. (1981). Spectral Analysis and Time Series. London, UK: Academic Press.

Shumway, R. and D. Sto↵er (2006). Time Series Analysis and its Applications. New York, USA:

Springer-Verlag.

Tangirala, A. K. (2014). Principles of System Identification: Theory and Practice. Boca Raton,

FL, USA: CRC Press, Taylor & Francis Group.

Arun K. Tangirala Applied Time-Series Analysis 21


