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Method of Moments

Based on the moments of the joint density function of the observations.

Basic Idea
Develop relationships between the parameters and theoretical moments. Assume that

sample versions of the moments also satisfy these relations.
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MoM . . . contd.

GivenN observations {y[1], · · · , y[N ]}, where y[k] is described by a distribution F (y[k];✓),

we set up the equations

gi(✓) = Mi(f) = E(Y i) =

Z
yi dF =

Z
yif(y) dy i = 1, · · · , p (1)

where gi(✓) is an ith function of the parameters and Mi(f) is the ith moment.

Set up as many equations as the parameters and substitute theoretical moments with

sample moments.
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Example: Estimation of mean by MoM
Mean
This is the simplest example. The parameter of interest is ✓ = µ. We choose the first

moment to set up the relation.

Theoretical relation: µ = M1(f) = E(Y ) =
R
yf(y) dy

Sample version:

µ̂ =
1

N

N�1X

k=0

y[k] (2)

which is obtained by replacing the ensemble average with the sample average.

The estimator is the sample mean!
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Example: Estimation of mean and variance by MoM

Now apply the MoM to estimate mean and variance of a random process from N obser-

vations yN .

Mean and variance

Here we have two parameters of interest ✓ =
h
µ �2

iT
. To set up two equations, we

use the first two moments of the p.d.f.

Theoretical relations:

µ = M1(f) =

Z
yf(y) dy; �2 + µ2 = M2(f) =

Z
y2f(y) dy (3)
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Example . . . contd.

Sample version: Replace the theoretical averages with sample averages

µ̂ =
1

N

N�1X

k=0

y[k] �̂2 + µ̂2 =
1

N

N�1X

k=0

y2[k] (4)

Solving for variance, we obtain

�̂2
y =

1

N

N�1X

k=0

(y[k]� ȳ)2 (Sample variance) (5)
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MoM: Remarks

I The method of moments does not give rise to a unique estimator. A change of

moment conditions produces a di↵erent estimator.

I MoM estimators built from certain moment conditions, as we shall observe later,

are identical to least squares estimators.

I In the identification literature, MoM leads to the so-called correlation methods.

I A common application of MoM is in the estimation of time-series models,

specifically the AR models, which results in the popular Yule-Walker method.

I MoM estimators are generally used to initialize other estimation methods because

by themselves they are known to produce ine�cient estimates.
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Generalized MoM

In the early 1980s and the years to follow, several researchers (Hall, 2005; Hansen,

1982) generalized the ideas in MoM to arrive at generalized method of moments (GMM)

estimators. These are increasingly used in econometrics (Ogaki, 1993). GMM can be used

to handle a variety of situations, such as uncertainties in both explanatory variables and

measurements, partial knowledge of the model, more moment conditions than parameters,

etc.

Further, it can be shown that under certain conditions, GMM is equivalent to the LS and

MLE methods. These estimators are known to be asymptotically consistent.

A method belonging to this class that is popularly used in identification is the instru-

mental variable method (and its extended version).
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Least Squares Methods

The idea underlying the method of least squares , as intuitive as it appears today, was

first published at least two centuries ago. The grass roots of this method are in the fields

of astronomy, where a data-driven approach using the least-squares principle was used to

predict the trajectory of an asteroid.

Numerous variants and generalizations of the least-squares approach have been proposed,

studied and applied. Today it is an indispensable tool in all data-driven approaches to

prediction, modelling, control, monitoring, etc.
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Least Squares Methods

The LS method can be presented in di↵erent ways depending on the context. We shall

present it as a method to obtain the best functional approximation for a given signal or

a vector.

We study the generic problem, known as regression in statistics. Adaptations to specific

estimation problems shall be discussed at appropriate places.
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Sample LS problem

The LS method can be formulated for the case where observations of signals are available

(known as the sample LS problem) or in terms of the actual signals itself (known as

the theoretical LS problem). We shall study the former.

Problem Statement

Given N observations of a variable y =
h
y[0] · · · y[N � 1]

i
, obtain the best

prediction (or approximation) of y using m explanatory variables (or regressors)

'i[k], i = 1, · · · , p such that the predictions ŷ[k] are collectively at a minimum distance

from y.
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Remarks

I All predictions should be collectively at a minimum distance, not merely a single

prediction from the respective observations.

I The explanatory variables '’s could be any known variable that is believed to contain

information on y
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Linear (Ordinary) least squares

The statement of the problem is complete only with a specification of “how” the predic-

tions are made. The entity that does this job is called a model. When a linear model is

used, we have the linear least squares problem.

The prediction (approximation) equation from a linear model is given by,

ŷ[k] =
pX

i=1

✓i'i[k] = '
T [k]✓ (6)

where ✓ is the vector of parameters that have to be optimized.
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Linear (Ordinary) least squares
Introduce the quantities

� =
h
'[0] '[1] · · · '[N � 1]

iT
; Z = y [ � (7)

The optimization problem can thus be written

min
✓

JN(Z,✓) = ||y � ŷ||22 = (y � ŷ)T (y � ŷ)

s.t. ŷ = �✓

The OLS problem can be solved in di↵erent ways. We shall make use of the well-known

projection theorem in approximation theory to solve the problem.
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Solution to the OLS problem
Theorem (Projection Theorem)
Let C be a closed subspace of the Hilbert space H and let y be an element in H. Then, y

can be uniquely decomposed into two parts

y = ŷ + " (8)

where ŷ belongs to C and " is orthogonal to C, i.e., " is orthogonal to every regressor and,

therefore, ŷ. This decomposition is unique in the sense that it minimizes the distance between

y and any other vector w in C,

||y � ŷ||2  ||y �w||2 8 w 2 C (9)

with the equality holding only when w = ŷ.

Proof: See Brockwell and Davis, 1991; Luenberger, 1969.
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Remarks

I The vector ŷ is said to be the projection of y onto the C (or the bases spanning

C) and is denoted by PCy.

I The essence of projection theorem is that the residuals of a Euclidean distance

minimization approach are orthogonal to the explanatory variables (inner

products are zero).

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 16



Method of Moments and LS estimators References

Solving the OLS problem
In order to apply the projection theorem, recognize that the basis vectors are the regressors

and that the residuals are given by " = y � ŷ. Then, by virtue of the theorem,

h'i, "i = 0 =) 'T
i (y � �✓) = 0 i = 1, · · · , p (10)

All the p equations can be jointly written as

�T (y � �✓) = 0

yielding the familiar solution

✓̂?
LS

= (�T�)�1�Ty (11)
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Predictions and Residuals
The optimal prediction of y and the associated residuals are:

ŷ
LS

= �✓̂?
LS

= �(�T�)�1�Ty = Py (12)

"
LS

= y � ŷ
LS

= (I� �(�T�)�1�T )y = P?y (13)
where

P = �(�T�)�1�T and P? = I�P (14)

are said to be the projection matrix and its orthogonal complement respectively. The

latter name is due to the fact that

PP? = P?P = 0 (15)
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Matrix inversion perspective

The LS estimator can be thought of as a solution to a set of linear overdetermined

equations since p unknowns are being estimated from N equations while forcing the

prediction ŷ to match y

y ⇡ �✓ (16)

Pre-multiplying both sides by �T yields

�Ty = (�T�)✓ (17)

These are known as the normal equations.
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Pseudo-inverse
Now introduce the pseudo-inverse

�† = (�T�)�1�T (18)

so that the LS solution can be written as

✓̂?
LS

= �†y (19)

I Strictly speaking, we are solving y = �✓ + ". Imposing �T" = 0 eliminates the

errors and also sets up the exact set of equations in (17).

I The reason for terming �† as the pseudo-inverse is apparent from a comparison

with the case of exact set of equations.

I The quantity �† is also known as the Moore-Penrose inverse of �.

MATLAB: pinv (uses SVD), Phi \ y (uses QR factorization)
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Equivalence of OLS with MoM

From the projection theorem, it is somewhat evident that the OLS estimate of ✓ in the

linear regression is equivalent to the method of moments estimate.

The equivalence comes from the theoretical LS estimator:

⌃''✓ = ⌃'Y =) ✓?
LS

= ⌃�1
''⌃'Y (20)

where the ⌃ stands for covariance matrix.

Replacing the theoretical covariances by the sample versions gives rise to the

sample LS estimator in (11) as well as the MoM estimator.
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Including a constant term
A constant term (intercept term, or a non-zero mean) can be accommodated in the

regression model by simply appending the regressor with a vector of ones as seen below.

y[k] = 'T [k]✓ + � =
h
'[k] 1

iT
"
✓

�

#
(21)

Interestingly, the LS estimate of the constant term � can be obtained sequentially by first

obtaining ✓̂
LS

followed by,

�̂
LS

= ȳ � '̄T ✓̂
LS

(22)

where ȳ and '̄ are the sample means of y[k] and the regressors respectively.
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Goodness of LS fits
Having estimated the parameters, we would like to assess how good the estimated model

is? Specifically,

1. How well has the model (of the specified structure) explained (predicted) the

output? For a given structure and data, the quality of prediction solely depends on the

estimation algorithm. We shall focus on this question at present, beginning with the

popular R2 measure.

2. Is there a need to refine the chosen model structure? This is a broader question,

which requires the use of model diagnostic measures, specifically pertaining to residual

analysis. The primary tools are cross-correlation of residuals with inputs, auto-correlation

of residuals, and cross-validation.
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R2 measure

The R2 measure is a goodness-of-fit index. It gives a bird’s eye view of how well the

model has explained the variations in the data. Its definition is based on an important

feature of LS estimation:

N�1X

k=0

(y[k]� ȳ)2

| {z }
sum square total (SST)

=
N�1X

k=0

(ŷ[k]� ȳ)2

| {z }
sum square predictions (SSP)

+
N�1X

k=0

"2[k]

| {z }
sum square errors (SSE)

(23)
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R2 measure . . . contd.

The total variance of the output is broken up into two additive terms - the variance

explained by the model and the variance of the residuals.

Coe�cient of determination R2

R2 , SSP

SST
= 1�

NX

k=0

"2[k]

N�1X

k=0

(y[k]� ȳ)2
= 1� ||ŷ � y||22

||y � ȳ||22
(24)
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Remarks on the use of R2 measure

1. From (24) and (23) it follows that 0  R2  1.

2. The concept of R2 can also be used with other model fitting methods. However, if

the method does not fulfill (23), R2 can be greater than unity.

3. Interestingly, it can be shown that

R2 = corr2(y[k], ŷ[k]) (25)

4. It is necessary to include a constant term in the model (one in the regression

vectors) to correctly compute R2 as a measure of fit.

5. The R2 metric does not reveal anything about the unexplained portion i.e.,

whether the residuals carry any predictable characteristics.
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Adjusted R2

6. R2 has a poor sensitivity with respect to inclusion (or exclusion) of additional

regressors. Thus, it cannot be used to determine overfits.

7. An adjusted R2 that is based on the mean square is introduced for this purpose:

R̄2 = 1� SSE/(N � p)

SST/N � 1
= 1� N � 1

N � p
(1�R2) (26)

The factors (N � 1) and (N � p) denote the d.o.f. of SST and SSE, respectively.

8. The modified measure can assume negative values unlike the classical R2.

9. It measures the balance between prediction bias and the variability of estimates.

10. In practice, sophisticated measures based on information theory such as AIC and

SIC are employed.
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Properties of LS estimator
In order to evaluate the properties of any parameter estimator, we first assume a de-

scription for the “true” process that generates the measurements, known as the data

generating process (DGP).

DGP for linear regression
The process is assumed to be linear with additive noise

DGP: y[k] = 'T [k]✓0 + ⇠[k] (27)

where ✓0 is the true parameter vector, 'T [k] is the regressor and ⇠[k] contains the

unobserved stochastic terms that collectively represents the e↵ects of unmeasured

disturbances and noise. It is also conventional to call ⇠[k] as the equation error.
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Prediction error

The prediction error or the residual incurred in using a LS estimate of ✓ is

"[k] = y[k]� ŷ[k] = y[k]�'T [k]✓̂ = 'T [k]✓̃ + ⇠[k] (28)

where ✓̃ is the parameter estimation error, given by

✓̃ = ✓0 � ✓̂ = ✓0 � (�T�)�1�T (�✓0 + ⇠) = (�T�)�1�T⇠ (29)

I Observe that the prediction error for a given data is never equal to the

equation error ⇠[k] but additionally contains contributions from the “di↵erence”

between the true and estimated parameters.
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Properties of the OLS estimator
The properties are listed without proofs. For most of the properties listed, two di↵erent

cases for �, namely, deterministic and stochastic are considered.

1. Bias:

I Deterministic �: The estimator is unbiased if E(⇠[k]) = 0.

I Stochastic �: The LS estimator is unbiased whenever the noise term ⇠[k] in the

process is uncorrelated to the regressors.

To understand the above result, recall that E(✓̃) = E�(E(✓̃|�)).

E(✓̃|�) = E((�T�)�1�T ⇠|�) = (�T�)�1�TE(⇠|�) (30)

Therefore, E(⇠|�) = 0 =) E(✓̃|�) = 0 =) E(✓̃) = 0 (31)
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Properties of the OLS estimator

2. Variance: Remember that we are estimating p parameters and hence we speak of

a variance-covariance matrix ⌃✓̂. Assuming unbiasedness, variance ⌘ MSE.

⌃✓̂|� = E((✓̂ � ✓0)(✓̂ � ✓0)T |�) = (�T�)�1�T⌃⇠�(�
T�)�1 (32)

I White observation errors: ⌃⇠ = �2
eIN⇥N .

⌃✓̂ = �2
e(�

T�)�1 (33)

I The variance above is the Cramer-Rao bound for all unbiased estimators of the

linear regression model - therefore OLS is e�cient when ⇠[k] is white.
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Estimation of variance

I To be able to use (33), we need an estimate of �2
e . An unbiased estimator is:

�̂2
e =

N�1X

k=0

"2[k]

N � p
=

SSE

N � p
Note: The SSE has (N � p) d.o.f. (34)

I Further,

E(�̂2
e) = �2

e (Unbiased) (35a)

E((�̂2
e � �2

e)
2) =

2�2
e

N � p
(Consistent) (35b)

(N � p)
�̂2
e

�2
e

d! �2
N�p (35c)
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E�ciency of OLS estimator . . . contd.

3. E�ciency: As remarked earlier, the OLS estimator has the lowest variance among

all estimators of the linear regression model when the equation error ⇠[k] of the

generating process is GWN.

A variant of the LS technique known as the weighted least squares (WLS) (to be

discussed shortly), produces e�cient estimates even when ⇠[k] is coloured.
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Consistency of the OLS estimator

4. Consistency: The OLS estimates converge (in the sense of probability) to the true

value provided

i. The covariance of regressors is E('[k]'T [k]) = ⌃'' is invertible

ii. The regressors are uncorrelated with equation errors, E('[k]⇠[k]) = 0.

Mean square consistency is guaranteed when ⇠[k] is white with deterministic �.
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Distribution of the OLS estimates

5. Distribution: The requirements depend on the nature of errors, i.e., whether they

are Gaussian or not, but the end result remains the same.

i. Gaussian errors: The conditional distribution of the estimates is Gaussian. This is

easy to establish, because a linear combination of Gaussian distributed RVs produces

a RV with Gaussian distribution.

✓̂ = �†y ⇠ ⇠ N (0,⌃⇠) =) ✓̂|� ⇠ N (✓0,�
2
e(�

T�)�1) (36)

ii. Non-Gaussian errors: In this case too, the estimates follow a Gaussian distribution by

virtue of the CLT. This holds even when the equation error is coloured and for

deterministic / stochastic regressors. However, this is an asymptotic property.
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Distribution of OLS estimates

If ⇠[k] are independent and identically distributed (i.i.d.) with mean zero and variance

�2 and the regressors are “well-behaved”, then

✓̂
d�! N

✓
✓0,

�2

N
⌃�1

''

◆
(37)

I By well-behaved regressors it is meant that

(i) �T� is of full rank as N ! 1
(ii) No single observation shall dominate the data.

I In practice, the distribution properties are computed by replacing the theoretical quantities

with their corresponding sample versions,

✓̂
d�! N �

✓0, �̂
2(�T�)�1

�
(38)
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Distribution of a function of parameters
In many situations, the actual parameters of interest may be a function g(✓).

Distribution of a function of estimates

If g(✓̂) is a set of continuous and continuously di↵erentiable functions of ✓̂, then under

the conditions of Theorem 36,

g(✓̂)
d�! N

✓
g(✓0),⌦

✓
�2

N
⌃�1

''

◆
⌦T

◆
(39)

where ⌦ = dg/d✓ is the Jacobian of the functions g w.r.t. the parameter vector.

I In practice, the theoretical variance is replaced by the asy. version: ⌦̂(�̂2(�T�)�1)⌦̂T
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Confidence Intervals from LS estimates
When the conditions for (37) are met, the (standardized) individual parameter estimates have

a standard normal distribution,

✓̂i � ✓i0p
�2
eSii

⇠ N (0, 1) (40)

where Sii is the ith diagonal element of (�T�)�1.

I When �2
e is replaced by its estimator in (34), ✓̂i has a Student’s t-distribution,

I The 100(1� ↵)% confidence interval for ✓i0 is therefore,

✓̂i � t1�↵/2,N�p

p
�̂2
eSii  ✓i0  ✓̂i + t1�↵/2,N�p

p
�̂2
eSii (41)

where t1�↵/2,N�p is the critical value of the t-distribution with (N � p) d.o.f.

I For large N , t-distribution tends to a Gaussian. The 99% C.I. for ✓i0 is approximately

✓̂i � 2.58
p
�̂2
eSii  ✓i0  ✓̂i + 2.58

p
�̂2
eSii (42)
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Remarks

I In deriving the properties of the LS estimator, we have assumed that the

functional form of the process has been “rightly” specified. In practice, this

rarely holds since the real process is far more complex than the one in (27).

I In practice, we turn these requirements to as that of obtaining white

residuals, which is tested by applying whiteness tests on residuals.

I The sample size N in all the above expressions should be treated as the size of

e↵ective observations used for estimation, which depends on the problem in hand.

I When fitting AR(P ) models, one sacrifices the first P observations, thus the

e↵ective sample size is N � P .
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Computing the OLS estimate
The theoretical expression for computing the OLS estimate is not amenable for compu-

tation since an inverse is involved.

I In fact,

cond(�T�) = cond2(�)

where cond(.) is the condition number, which makes the normal equations more ill-

conditioned than the rectangular set of equations.

I Problems are compounded when �T� is singular, at least up to working numerical preci-

sion.

To circumvent these problems, two numerically e�cient methods are widely used. In both

methods, the idea is to estimate in a “transformed” space.
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QR factorization for OLS

1. QR factorization: A QR factorization of � is carried out.

�P = Q

 
R1

0

!
(43)

where the orthogonal permutation matrix P is p⇥ p, orthogonal factor Q is N ⇥N and

the upper triangular matrix R1 is p⇥ p. Since � is full rank, R1 is non-singular.

Observations are projected on to the Q space and partitioned. QTy =

 
z1

z2

!
where

z1 : Rp⇥p and z2 : RN�p⇥p.

The solution can be shown to be,

✓ = (�T�)�1�Ty = R�1
1 z1; where ✓̄ = P✓ (44)

which is obtained by back substitution. Note that ✓̄ is merely re-ordered ✓.

The case of rank deficient � can also be handled. For details, see Golub and Loan, 1996.

MATLAB: \,qr
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SVD for OLS
2. SVD: In this method, a SVD factorization of the regressor matrix, � = USVT is

performed. Observations and parameters are projected on to the U and V spaces

respectively.

(y � �✓)T (y � �✓) =
rX

i=1

(�i⇠i � uT
i y)

2 +
NX

i=r+1

(uT
i y)

2; ⇠ , VT✓ (45)

If � is of rank r (rank deficient), (p� r) transformed parameters are set arbitrarily

⇠i =

8
><

>:

uT
i y

�i

, i = 1, · · · , r
arbitrary, i = r + 1, · · · , p

(46)
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SVD for OLS contd.

A (1-norm) minimizing solution is to set the “free” ⇠i = 0, i = r + 1, · · · , p. The

resulting optimal parameter estimates ✓̂ are,

✓ = V⇠ =
rX

i=1

uT
i y

�i

vi (47)

This is also the solution given by pseudo-inverse. MATLAB: pinv, svd
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Summary

I Method of Moments provides elementary means of estimating parameters by

developing a map of ✓ to the theoretical moments M(f(y)).

I f(y) not required. Theoretical moments are replaced by sample versions.

I Not unique and usually give ine�cient estimates

I Generalized MoM can give consistent and e�cient estimates.
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Summary . . . contd/

I Least Squares estimators optimize parameters such that they minimize the

squared distance between ŷ and y.

I Ubiquitous in estimation. Conceptually simple and have several nice

interpretations

I With linear predictors, unique solutions are obtained

I Solution does not require any probabilistic assumptions on data

I Produces asymptotically consistent and normally distributed estimates.

I Give e�cient estimates of linear models when observation errors are white

I Computations carried out using QR and SVD factorizations.
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Variants

There exist several variants of least squares methods:

I Weighted (Generalized) least squares

I Partial least squares

I Total least squares

I Non-linear least squares

I . . .
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Weighted LS: Motivation
A useful generalization of OLS ascribes di↵erent level of “importance” to each observation

by means of weights w[k]. There are several compelling reasons for such a formulation:

1. Error in each observation has a di↵erent variance, i.e., heteroskedastic errors. Samples

with “more” errors in them are less reliable than those with “less” errors (e..g., error

changes with operating conditions, data containing outliers, etc.)

2. Observation errors are coloured (recall that OLS is e�cient only when ⇠[k] is GWN)

3. Recent samples to be given more importance than the past for model adaptation. The

weights are then termed as forgetting factors.

4. Data obtained from di↵erent sensors may have di↵erent error characteristics or a set of

observations from a single sensor may exhibit di↵erent SNR.
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WLS
The general statement of the problem is as follows.

min
✓

(y � �✓)TW(y � �✓) (48)

where W is a positive definite weighting matrix. By definition therefore, W is symmet-

ric. When W = IN⇥N , we recover the OLS formulation.

I The cost function in (48) is also known as the Mahalanobis distance (Mahalanobis,

1936), and is conventionally written as a weighted squared-norm ||y � �✓||W.

I The WLS formulation in (48) is also known as the generalized least squares (GLS),

wherein the case of diagonal W is the weighted least-squares problem.

The WLS problem can be cast as an OLS problem on scaled data.
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Solution to the WLS problem
Since W is positive-definite, we can perform a Cholesky factorization:

W = CTC (49)

Then, the objective function in (48) can be re-written as

(y � �✓)TCTC(y � �✓) (50)

Now, introduce scaled observations and regressors,

yS = Cy; �S = C� (51)
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The WLS solution
The WLS problem can be then cast into an OLS formulation

min
✓

(yS � �S✓)
T (yS � �S✓) (52)

From the OLS solution, we thus have the WLS estimator

✓̂
WLS

= (�T
S�S)

�1�T
SyS = (�TW�)�1�TWy (53)

I Scaling the data amounts to scaling the observation errors as well,

⇠S = C⇠ (54)
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Remarks

I The scaled errors have the covariance matrix ⌃⇠S = C⌃⇠CT . For a special choice

of C we can render ⌃⇠S = I, o↵ering certain advantages.

I Diagonal elements of W represent the importance given to each observation, while

the o↵-diagonal elements account for the importance given to correlation in the

errors. To see this, re-write the objective function as

(y � �T✓)TW(y � �T✓) = trace((y � �T✓)TW(y � �T✓))

I Cross-terms in W handle temporally correlated equation errors.

I The WLS method is a special case of the GMM and the MLE.
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Choice of weights

How to choose the weights matrix W?

The answer depends on the application / criterion.

i. Model updation: W is a diagonal matrix of forgetting factors

ii. E�cient estimates: The goal here is to achieve minimum var(✓̂
WLS

).

⌃✓̂(W) = var(✓̂
WLS

) = (�TW�)�1�TW⌃⇠W�(�TW�)�1 (55)
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Choice of weights for e�cient estimates

The optimal weighting matrix is the inverse of the covariance of equation

errors,

W
opt

= ⌃�1
⇠ (56)

With this choice, the variance of the WLS estimator is

⌃✓̂(Wopt

) = (�TW
opt

�)�1 = (�T⌃⇠�)
�1 (57)

The result is nicely understood in systems with heteroskedastic errors, as we shall observe next.
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Heteroskedastic errors
When ⇠[k] is heteroskedastic (changing variance),

⌃⇠ = E(vvT ) =

2

66664

�2
1 0 · · · 0

0 �2
2 · · · 0

...
...

. . .
...

0 0 · · · �2
N

3

77775
=) W

opt

= ⌃�1
v =

2

66664

1/�2
1 0 · · · 0

0 1/�2
2 · · · 0

...
...

. . .
...

0 0 · · · 1/�2
N

3

77775

The WLS objective function can then be expanded as

(y � �✓)TW(y � �✓) =
NX

k=1

(y[k]�'T [k]✓)2/�2
k (58)

Higher the error variance, lower is the reliability of that sample, implying WLS attaches

lower importance to those samples with more error.
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Example: Heteroskedastic errors
Sensor fusion: Steady-state estimation

Temperature measurements of a reactor at steady-state from 10 thermocouples that

have di↵erent, but known error characteristics (variability).

Sensor 1 2 3 4 5 6 7 8 9 10

Meas. (�C) 61.2 64.3 59.1 64.1 63.8 62.9 58.2 60.7 61.5 63.7

Variance 0.36 2.25 1.69 0.25 0.49 2.89 3.2 1.4 1.2 2.7

where the readings have already been adjusted for calibration.

Estimate the steady-state temperature from these ten di↵erent

measurements.
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Example . . . contd.

Solution: Assume that the error across sensors are uncorrelated. Then using (56), the

optimal weighting is

W
opt

= ⌃�1
⇠ =

2

66664

1/�2
1 0 · · · 0

0 1/�2
2 · · · 0

...
...

. . .
...

0 0 · · · 1/�2
10

3

77775

Further, note that '[k] = 1 for this example.
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Example: Heteroskedastic errors . . . contd.
The WLS estimate of the average and its error variance are then given by,

µ̂WLS = (�TW�)�1�TWy =

NX

k=1

y[k]

�2
k

NX

k=1

1

�2
k

= 62.6086;

var(µ̂) = (�TW�)�1 =
1

NX

k=1

1

�2
k

= 0.0805

where k indicates the sensor index for this example.
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Example: Heteroskedastic errors . . . contd.

Compare corresponding results from OLS

µ̂OLS =
1

N

NX

k=1

y[k] = 61.95; var(µ̂) = (�T�)�1�T⌃v�(�
T�)�1 =

NX

k=1

�2
k

N2
= 0.1643

(59)

The widths of confidence intervals for the average correspondingly would be

proportional to 2�µ̂, i.e., 0.2835 and 0.4053 respectively.
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Remarks
I WLS is used for estimating parameters of equation error models with coloured

observation errors (e.g., ARMA models)

I The optimal weights are generally unknown since ⌃⇠ is not known a priori.

Therefore, the general practice is to use an iterative method.

I Alternatively, propose a model for the errors or its variance and jointly estimate the

parameters of this model as well as the regression equation. This has strong

semblance to likelihood methods.

I The weighted least squares with non-diagonal weights is commonly known as

generalized least squares method

I Statistical tests for heteroskedasticity are available. Popular among these are

White’s test, and the Park, Glesjer, and Breusch-Pagan-Godfrey tests.

See Yan and Su, 2009 and Carroll and Rupert, 1988 for additional reading.
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Non-linear Least Squares

The OLS and its variants discussed until this point were formulated using linear predictors

(models). A practically useful generalization is the method of non-linear least squares

(NLS), which handles non-linear models.

The NLS problem statement:

min
✓

JN(✓,y,') =
1

N
||y � ŷ(✓,')||22 s.t. ŷ(✓,') = s(✓,') (60)

where s(.) is a known (or user-specified) non-linear transformation, y is the N ⇥ 1

observation vector and ' is the set of explanatory variables as usual.

Note: For simplicity, we shall use ŷ in place of ŷ(✓,').
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Solution to the NLS
The optimal solution is once again obtained by setting r✓J = 0:

✓? = sol


g(✓) , r✓J = � 1

N

@ŷ

@✓

T

(y � ŷ) = 0

�
(61)

I As in OLS, an orthogonality condition governs the optimum

I No closed-form and unique solution unlike in OLS

I dim(✓) 6= dim(')

I Only a numerical solution and local optimum can be obtained
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Solution to NLS problem . . . contd.

Several methods are available, all of which make use of an iterative search.

✓(i+1) = ✓(i) � ⌘id
(i) (62)

where d(i) is the direction of change in the parameter space, and ⌘i is the step length
that controls the amount of change.

I Newton-Raphson

I Gauss-Newton

I Steepest descent, Levenberg-Marquardt, Quasi-Newton, Trust region
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Newton-Raphson method

The N-R method is based on the following choice of direction and step change:

d(i) = gi; ⌘i = (H(i))�1 (63)

where gi = (r✓J)(i) is the Jacobian and H(i) = r2J✓=✓(i) is the p⇥ p Hessian.
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Shortcomings of N-R method

I Computation of a matrix inverse and the Hessian is involved at each iteration

I Positive-definiteness of Hessian is not guaranteed, meaning, objective function is not

bound to decrease after every iteration.

The modified N-R method overcomes these drawbacks by modifying an additional factor

in the step length:

✓(i+1) = ✓(i) � ↵i(H
(i))�1gi (64)

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 64



Method of Moments and LS estimators References

Gauss-Newton method
The Gauss-Newton method employs an OLS on a first-order approximation of the non-

linear predictor at each iteration:

ŷ(✓) ⇡ ŷ(✓(i)) + (✓)|✓=✓(i)(✓ � ✓(i)) (65)

where  is made up of the gradients of the predictor

 (k,✓) , r✓ŷ(k,✓) =
@ŷ(k,✓)

@✓
=


@ŷ[k]

@✓1
· · · @ŷ[k]

@✓p

�T

 (✓) = r✓ŷ =
h
 (0,✓)  (1,✓) · · ·  (N � 1,✓)

iT

(66)

(67)
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G-N Method . . . contd.
The choices of step length and search direction for the G-N method are:

d(i) =  (✓(i))T (y � ŷ(✓(i))) ⌘i = ( (✓(i))T (✓(i)))�1 (68)

I It can be shown that this approach is equivalent to a N-R method with a suitable

approximation of the Hessian.

H(✓) = r�
✓

1

N
 (✓)T "(✓)

◆

=
1

N
( (✓)T (✓))� 1

N
((r✓ )

T"(✓)

⇡ 1

N
( (✓)T (✓)) =) ⌘ =

1

N
H�1 (69)
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Gauss-Newton method . . . contd.

I The approximation in (69) can have very slow to zero convergence rate when the

residuals are large. To circumvent this problem, a damped Gauss-Newton method is

often employed:

✓(i+1) = ✓(i) � µi( (✓
(i))T (✓(i)))�1 (✓(i))T"i (70)

where the damping factor µi is adjusted such that JN decreases with every iteration.

See Bates and Watts, 1988 and Seber and Wild, 1989 for additional reading.
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Special cases

Non-linear regressions specialize to simpler problems when the predictors assume certain

special forms. Three such situations are discussed below:

1. Linear in parameters: In this case, the predictor has the form

ŷ[k] = f('[k])✓ (71)

The parameters can be estimated using an OLS algorithm with regressors now as

functions of explanatory variables.
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Special cases . . . contd.
2. Linear via transformation: The non-linear relationship between y and ' is linear

in a transformed domain

A classical example arises in physical chemistry, where the goal is to estimate the

Arrhenius constant from kinetics data

kr = e�Ea/RT =) ln kr = � Ea

RT

I In the transformation approach, it is important to understand that the error

characteristics are also transformed. In the example above, the errors (in rate

constants) are also log-transformed, which can have a serious influence on the

properties of the parameter estimates.
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Special cases . . . contd.

3. Pseudo-linear regression: This is the case when the predictor has a linear

regression form, but the regressors are implicit functions of ✓

ŷ[k] = 'T [k,✓]✓ (72)

These forms are widely encountered in the prediction expressions and estimation of

ARMA models.
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Algorithmic aspects of NLS estimation algorithms

i. Gradient computation: Gradients can only be numerically computed in general.

Analytical expressions for carrying out these calculations exist only for select predictor

forms. Fortunately, the parametric model forms fall into this category.

ii. Initial guess: Preliminary guesses of parameters can range from random to estimates

from other methods. NLS algorithms can be very sensitive to initial guesses. Therefore, it

is always recommended to take any prior information and physical knowledge of the

process into account while feeding the initial guess.

iii. Stopping criteria: The influence of this factor is relatively less significant on the final

estimate. Typical stopping criteria include a combination of tolerance specifications on (a)

decrease in J, (b) gradient of objective function r✓J and (c) change in ✓̂ across two

successive iterations.
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Asymptotic properties of NLS estimators

Analyzing the properties of NLS estimators is not trivial due to the complexity of the

associated algorithms. Presenting these details is beyond the scope of the course. Only

the salient results are stated below.

Once again, the data generating process is assumed to be

y[k] = s(✓,'[k]) + ⇠[k] (73)
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Asymptotic properties of NLS . . . contd.

Standard assumptions:

i. Identifiability: The requirement is that s(✓1,') = s(✓2,') , ✓1 = ✓2.

ii. Di↵erentiable functional form: Necessary for the existence of gradients, and even for

a solution to exist.

iii. Correlation between gradient and disturbance converges to zero at the optimum.

iv. Stochastic nature of ⇠[k]: The disturbance is conditionally zero-mean,

homoscedastic, zero temporal correlation and has finite second-order moments.

v. Explanatory variables are exogenous: Implies corr('[k], ⇠[k]) = 0.
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Consistency

Theorem

Under the conditions of

1. Compact parameter space: The space ⇥ to which ✓ belongs is closed and bounded.

2. Convergence of the objective function:

JN(✓,�)
p�! J(✓) 8✓ (should be continuous and di↵erentiable)
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Consistency of NLS estimators . . . contd.

3. Continuity of J(✓): The objective function is continuous and di↵erentiable on the

parameter space ⇥.

4. Unique minimum of J(✓): The obj. fun. J(✓) has a unique minimum at ✓0.

the LS estimator of the parameters ✓ 2 ⇥ of the non-linear regression model is weakly

consistent

✓̂?
NLS

p�! ✓0 (74)

See Amemiya, 1985 and Greene, 2012 for proofs and further reading.
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Asymptotic normality

The NLS estimates asymptotically follow a Gaussian distribution regardless of the actual

distribution of the noise term ⇠[k], provided the following conditions are met:

i.
1

N
 (✓0)

T (✓0)
p�! ⌃0

 (positive definite covariance matrix)

ii.
1p
N
 (✓0)

Tv
d�! N (0, �2

e⌃
0
 ) (zero correlation between pseudo-regressors and

disturbance)

With these assumptions: ✓̂
NLS

⇠ AsN
✓
✓0,

�2
e

N
(⌃0
 )

�1

◆
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Estimation of �2
e

A consistent estimator of �2
e is given by

�̂2
e =

1

N
||y � ŷ(✓̂,')||22 (75)

analogous to the linear LS case.

Note: In practice, the pseudo-regressor is evaluated at the estimated parameter instead of ✓0.

See Greene, 2012 for a detailed presentation of this topic.
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Remarks
I Observe the strong resemblance between the conditions for optimum, consistency

and asymptotic normality of OLS and NLS estimators.

I All results should be expected to carry forward analogously once the similarity of

the regressor � and pseudo-regressor  (✓0) is recognized.

I Hypothesis testing of parameters from the NL regression is more involved. Popular

ones include Wald and Lagrange multiplier tests (Greene, 2012; Yan and Su, 2009)

I Small sample behaviour of the NLS estimator is in general di↵erent and is di�cult

to analyze

I Modern ways of computing the statistical properties of the estimate involve the use

of bootstrapping approaches such as Monte-Carlo simulations and surrogate

data methods.
Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 78



Method of Moments and LS estimators References

Summary

I Weighted LS estimators extend the use of OLS to the case of auto-correlated and

heteroskedastic errors.

I WLS produces e�cient estimates when the optimal weighting is the inverse of ⌃v,

the covariance matrix of v

I Non-linear least squares estimators do not have closed-form expressions. They

require iterative algorithms, which only yield local minima.

I The gradient of the predictor takes the role of the regressor in the linear LS

formulation.

I NLS estimators are asymptotically consistent and e�cient under “similar”

conditions as those for OLS
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