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Learning Goals

In this lecture, we shall learn the following concepts / topics:

I Goodness of estimators

I Fisher information

I Bias and Variance

I E�ciency and C-R Inequality

I Mean Square Error and MMSE

I Consistency

I Distribution of estimates
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Goodness of estimators

In the previous lecture, we discussed the quality of an estimator and preliminaries on a

few measures of goodness (or the performance of an estimator), e.g., bias, variance.

Of particular interest are the e�ciency (related to variance) and consistency (concerned

with convergence of estimates).

Metrics characterize the estimator; however, remember that a fundamental require-

ment for obtaining a good estimate is that the data should be informative (with

respect to the parameters).
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Fisher information

Fisher introduced the notion of information in a data through a series of works by and some

existing results. Intuitively, larger the information index is, the “better” the estimator is.

The Fisher information (FI) (Fisher, 1922, 1950) is based on the likelihood function of

the given data.

The likelihood function stems from the notion of conditional probability, i.e., the proba-

bility of observing an event within the vicinity of given data.
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Likelihood function

The probability of obtaining data within the vicinity of y
N

is given by (with some abuse

of notation)

Pr(y
N

< Y < y
N

+ dy
N

) = f(y
N

|✓)dy
N

/ f(y
N

|✓) (1)

For a given y
N

, the probability is solely a function of ✓. Fisher’s argument (and the likes

of it) rests on the maximum likelihood premise that

Among all possible values of ✓, the one that maximizes the probability, i.e., the one that

renders the event most likely is the winner!
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Likelihood function
The likelihood function (of ✓) is, therefore (for continuous RVs), defined as

l(✓,y) = f(y;✓) (or f(y|✓)) (2)

where y is the vector of N observations.

I The fundamental di↵erence between l(✓|y) and f(y|✓) is that the former is a func-

tion of a deterministic vector ✓, while the latter is a function of the random vector

y (given ✓).

I Likelihood function belongs to the world of statistics while the p.d.f. belongs to the

world of probability!

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 6



Fisher’s Information and Properties of Estimators References

Fisher information . . . contd.
Fisher’s information quantifies “how informative” a vector of observations is about a

parameter ✓ (or ✓). It rests on the following quantities (assume single parameter):

l(✓,y) = f(y; ✓) (or f(y|✓)) (likelihood function)

L(✓,y) = ln l(✓,y) (log-likelihood function)

S(✓;y) =
@

@✓
ln f(y; ✓) =

@

@✓
L(✓,y) (score function)

(3)

(4)

(5)

where y is the set of observations and ✓ is the parameter to be estimated.

Further assume that the p.d.f. is regular =) (i) @L/@✓ exists and is finite and (ii) the

operations of integration w.r.t. y and di↵erentiation w.r.t. ✓ can be interchanged.
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Fisher information . . . contd.
FI measures the variability in sensitivity of likelihood, i.e., the score function, across the

outcome space (of y).

The Fisher information of a parameter ✓ in y is defined as

I(✓) = var(S) = E

 ✓
@L

@✓

◆2
!

(6)

Under the regularity assumption, it can be shown that

µ
S

= E(S|✓) = 0, var(S|✓) = E(S2
) = E

 ✓
@L(y, ✓)

@✓

◆2
!

(7)
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Fisher information . . . contd.

Since

E

 ✓
@L

@✓

◆2
!

= �E

✓
@2L

@✓2

◆
(8)

the information can also be computed as

I(✓) = �E

✓
@2L

@✓2

◆
= �E

✓
@S

@✓

◆
(9)

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 9



Fisher’s Information and Properties of Estimators References

Example 1: Information about mean and variance

Consider the case of estimating mean µ and variance �2 of a random signal.

Mean and variance
Given that a stationary signal y[k] ⇠ N (µ, �2

), determine (i) I(µ) and (ii) I(�2
) in a

single observation.

1. The log-likelihood function (assuming �2 is known) is

L(µ;Y ) = ln f(y|µ) = �1

2

ln(2⇡�2
)� 1

2

(y � µ)2

�2
(10)
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Example 1 . . . contd.

The Fisher information on ✓ = µ using (9) is then

I(µ) = �E

✓
@2L

@✓2

◆
=

1

�2
(11)

Thus, we have a meaningful result. As the variance (spread of possible outcomes)

decreases, the information on µ in a single sample increases.
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Example 1 . . . contd.

2. Now, ✓ = �2. The information contained in a single observation is

I(�2
) = �E

✓
@2L

@✓2

◆
= �E(

1

2�4
� (y � µ)2

�6
) =

1

2�4
(12)
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Example 1 . . . contd.
3. On the other hand, if the parameter of interest is the standard deviation ✓ = �, the

information contained is

I(�) = �E

✓
@2L

@✓2

◆
= �E(

1

�2
� 3

(y � µ)2

�4
) =

2

�2
(13)

Thus, I(�2
) 6= (I(�))2. The information is not commutative with respect to a

functional of the parameter �(✓).

In general, the FI I(�(✓)) is related to I(✓) through

I(✓) =

✓
d�

d✓

◆2

I(�(✓)) (14)
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Fisher information: General case
Generalizing (9) to the case of p ⇥ 1 parameter vector ✓ contained in N observations,

the information matrix results:

I
ij

(✓) = cov(S
i

, S
j

) = E(S
i

(Y
N

)S
j

(Y
N

)) = �E

✓
@2

@✓
i

@✓
j

L(✓;y
N

)

◆
i, j = 1, · · · , p

(15)
where S

i

is the ith score statistic,

S
i

=

@

@✓
i

ln f(Y
N

|✓) (16)

where f(Y
n

|✓) is the joint p.d.f. of the N observations y.

Think: What do the o↵-diagonal elements signify?
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Example 2: Estimating µ, �2 from N observations

Information in N observations
Compute the information contained in N samples of a GWN process y[k] ⇠ N (µ, �2

)

w.r.t.: (i) ✓ = µ and �2 is known, (ii) ✓ = �2 and (iii) ✓ =

h
µ �2

i
T

.

Solution: For all the three cases,

f(Y
N

|(µ, �2
)) =

N�1Y

k=0

1

�
p
2⇡

exp

✓
�(y[k]� µ)2

2�2

◆
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Example 2: . . . contd.

Information in N observations
1. Constructing the log-likelihood from f(✓;y

N

) gives

S(✓;y
N

) =

N�1X

k=0

(y[k]� µ)

�2

Applying (15), I(µ) = �E

✓
@S

@✓

◆
=

N

�2
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Example 2 . . . contd.

2. For this case, S(✓;y
N

) = � N

2�2
+

1

2�2

N�1X

k=0

(y[k]� µ)2

Applying (15), I(�2
) = �@S

@✓
=

N

2�4

3. Denote ✓1 = µ and ✓2 = �2, ✓ =

h
✓1 ✓2

i
T

The log-likelihood function is

L(✓;y
N

) = c� N

2

ln ✓2 �
1

2✓2

N�1X

k=0

(y[k]� ✓1)
2 (17)
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Example 2 . . . contd.

The information matrix is thus

I(✓) = �E

0

BB@

2

664

@2L

@✓21

@2L

@✓1@✓2
@2L

@✓2@✓1

@2L

@✓22

3

775

1

CCA =

2

64
N

�2
0

0

N

2�4

3

75 (18)

Thus, the estimates of mean and variance of a WN process do not a↵ect each other,

i.e., these parameters can be estimated individually.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 18



Fisher’s Information and Properties of Estimators References

Remarks

I The Fisher information is a localized version (in the parameter space) of the more

general Kullback-Leibler information (KLI) in the vicinity of the true parameters.

The KLI measures the information loss incurred in approximating a true probability

distribution with a model distribution.

I Information is leveraged on two factors: (i) the number and type of unknown(s) that

have to be estimated and (ii) how these unknown(s) enter the model. Implications

of these results are felt in model estimation and in input design.

I From the examples, we learn that by increasing the sample size, the increase in

information is proportional. However, this is not the case when the observations are

correlated. In fact, for that case I
N

(✓) < NI1(✓).
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