
Fourier Transforms for Deterministic Processes References

Discrete-time Fourier Series (DTFS)

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 59



Fourier Transforms for Deterministic Processes References

Opening remarks

The Fourier series representation for discrete-time signals has some similarities with that

of continuous-time signals. Nevertheless, certain di↵erences exist:

I Discrete-time signals are unique over the frequency range f 2 [�0.5, 0.5) or
]! 2 [�⇡, ⇡) (or any interval of this length).

I The period of ?a discrete-time signal is expressed in samples.
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Discrete-time signals

I A discrete-time signal of fundamental period N can consist of frequency

components f =

1

N

,

2

N

, · · · , (N � 1)

N

besides f = 0, the DC component

I Therefore, the Fourier series representation of the discrete-time periodic signal

contains only N complex exponential basis functions.
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Fourier series for d.t. periodic signals

Given a periodic sequence x[k] with period N , the Fourier series representation for x[k]

uses N harmonically related exponential functions

e

j2⇡kn/N
, k = 0, 1, · · · , N � 1

The Fourier series is expressed as

x[k] =

N�1X

n=0

c

n

e

j2⇡kn/N (22)
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Fourier coe�cients and Parseval’s relation

The Fourier coe�cients {c
n

} are given by:

c

n

=

1

N

N�1X

k=0

x[k]e

�j2⇡kn/N (23)

Parseval’s result for discrete-time signals provides the decomposition of power in the

frequency domain,

P

xx

=

1

N

N�1X

k=0

|x[k]|2 =
N�1X

n=0

|c
n

|2 (24)
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Power (Line) Spectrum

Thus, we have the line spectrum in frequency domain, as in the continuous-time case.

P

xx

[n] , P

xx

(f

n

) = |c
n

|2, n = 0, 1, · · · , N � 1 (25)

I The term |c
n

|2 denotes therefore the power associated with the n

th frequency

component

I The di↵erence between the results in the c.t. and d.t. case is only in the restriction

on the number of basis functions in the expansion.
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Remarks

I The Fourier coe�cients {c
n

} enjoy the conjugate symmetry property

c

n

= c

?

N�n�1 n 6= 0, N/2 (assuming N is even) (26)

I The Fourier coe�cients {c
n

} are periodic with the same period as x[k]

I
The power spectrum of a discrete-time periodic signal is also, therefore, periodic,

P

xx

[N + n] = P

xx

[n] (27)

I The range 0  n  N � 1 corresponds to the fundamental frequency range

0  f

n

=

n

N

 1� 1
N
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Example: Periodic pulse

The discrete-time Fourier representation of a periodic signal x[k] = {1, 1, 0, 0} with

period N = 4 is given by,

c

n

=

1

4

3X

k=0

x[k]e

�j2⇡kn/4
=

1

4

(1 + e

�j2⇡n/4
) n = 0, 1, 2, 3

This gives the coe�cients

c0 =
1

2

; c1 =
1

4

(1� j); c2 = 0; c3 =
1

4

(1 + j)

Observe that c1 = c

?

3.
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Power spectrum and auto-covariance function

The power spectrum of a discrete-time periodic signal and its

auto-covariance function form a Fourier pair.

P

xx

[n] =

1

N

N�1X

l=0

�

xx

[l]e

�j2⇡ln/N

�

xx

[l] =

N�1X

l=0

P

xx

[n]e

j2⇡ln/N

(28a)

(28b)
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Discrete-time Fourier Series

Variant Synthesis / analysis Parseval’s relation (power decomposition)

and signal requirements

Discrete-

Time

Fourier

Series

x[k] =
N�1X

n=0

c

n

e

j2⇡kn/N
P

xx

=
1

N

N�1X

k=0

|x[k]|2 =
N�1X

n=0

|c
n

|2

c

n

, 1

N

N�1X

k=0

x[k]e�j2⇡kn/N
x[k] is periodic with fundamental period N
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Discrete-time Fourier Transform (DTFT)
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Opening remarks

I The discrete-time aperiodic signal is treated in the same way as the continuous-time

case, i.e., as an extension of the DTFS to the case of periodic signal as N !1.

I Consequently, the frequency axis is a continuum.

I The synthesis equation is now an integral, but still restricted to f 2 [�1/2, 1/2) or
! 2 [�⇡, ⇡).
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Discrete-time Fourier transform (DTFT)

The synthesis and analysis equations are given by:

x[k] =

Z 1/2

�1/2

X(f)e

j2⇡fk
df =

1

2⇡

Z
⇡

�⇡

X(!)e

j!k

d! (Synthesis)

X(f) =

1X

k=�1

x[k]e

�j2⇡fk (DTFT)

(29)

(30)
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DTFT

Remarks

I The DTFT is unique only in the interval [0, 1) cycles/ sample or [0, 2⇡) rad/sample.

I The DTFT is periodic, i.e., X(f + 1) = X(f) or X(! + 2⇡) = X(!) (Sampling

in time introduces periodicity in frequency)

I Further, the DTFT is also the z-transform of x[k], X(z) =

P1
k=�1 x[k]z

�k,

evaluated on the unit circle z = e

j!
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Existence conditions

I The signal should be absolutely convergent, i.e., it should have a finite 1-norm

1X

k=�1

|x[k]| <1 (31)

I A weaker requirement is that the signal should have a finite 2-norm, in which case

the signal is guaranteed to only converge in a sum-squared error sense.

I Essentially signals that exist forever in time, e.g., step, ramp and exponentially

growing signals, do not have a Fourier transform.

I On the other hand, all finite-length, bounded-amplitude signals always have

a Fourier transform.
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Energy conservation

Energy is preserved under this transformation once again due to Parseval’s relation:

E

xx

=

1X

k=�1

|x[k]|2 =
Z 1/2

�1/2

|X(f)|2 df =

1

2⇡

Z
⇡

�⇡

|X(!)|2 d! (32)
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Energy spectral density

Consequently, the quantity

S

xx

(f) = |X(f)|2; S

xx

(!) =

|X(!)|2

2⇡

(33)

qualifies to be a density function, specifically as the energy spectral density of x[k].

Given that X(f) is periodic (for real-valued signals), the spectral density of a

discrete-time (real-valued) signal is also periodic with the same period.
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Example: Discrete-time impulse

The Fourier transform of a discrete-time impulse x[k] = �[n] (Kronecker delta) is

X(f) = F{�[n]} =

1X

k=�1

�[k]e

�j2⇡fk
= 1 8f (34)

giving rise to a uniform energy spectral density

S

xx

(f) = |X(f)|2 = 1 8f (35)
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Example: Discrete-time impulse
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Example: Discrete-time finite-duration pulse
Compute the Fourier transform and the energy density spectrum of a finite-duration

rectangular pulse

x[k] =

(
A, 0  k  L� 1

0 otherwise

Solution: The DTFT of the given signal is

X(f) =

1X

k=�1

x[k]e

�j2⇡fk
=

L�1X

k=0

Ae

�j2⇡fk
= A

1� e

�j2⇡fL

1� e

�j2⇡f

S

xx

(f) = A

21� cos(2⇡fL)

1� cos 2⇡f
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Example: Discrete-time impulse contd.

−10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

A
m

p
li
tu

d
e

(i) Finite-duration pulse

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

10

20

30

40

50

60

70

80

90

100

Frequency (cycles/sample)

E
n

e
rg

y
 s

p
e
c
tr

a
l 
d

e
n

s
it

y

(j) Energy spectral density

Finite-length pulse and its energy spectral density for A = 1, L = 10.
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Energy spectral density and auto-covariance function

The energy spectral density of a discrete-time aperiodic signal

and its auto-covariance function form a Fourier pair.

S

xx

(f) =

1X

l=�1

�

xx

[l]e

�j2⇡lf

�

xx

[l] =

Z 1/2

�1/2

S

xx

(f)e

j2⇡fl
df

(36a)

(36b)
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Cross-energy spectral density

In multivariable signal analysis, it is useful to define a quantity known as cross-energy

spectral density,

S

x2x1(f) = X2(f)X
?

1 (f) (37)

The cross-spectral density measures the linear relationship between

two signals in the frequency domain, whereas the auto-energy spectral

density measures linear dependencies within the observations of a signal.
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Cross energy spectral density . . . contd.

When x2[k] and x1[k] are the output and input of a linear time-invariant system

respectively, i.e.,

x2[k] = G(q

�1
)x1[k] =

n=1X

n=�1
g[n]x1[k � n] = g1[k] ? x1[k] (38)

two important results emerge

S

x2x1(f) = G1(e
�j2⇡f

)S

x1x1(f); S

x2x2(f) = |G1(e
�j2⇡f

)|2S
x1x1(f) (39)
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Discrete-time Fourier Transform

Variant Synthesis / analysis Parseval’s relation (energy decomposition)

and signal requirements

Discrete-

Time

Fourier

Transform

x[k] =

Z 1/2

�1/2
X(f)ej2⇡fk df E

xx

=
1X

k=�1
|x[k]|2 =

Z 1/2

�1/2
|X(f)|2 df

X(f) ,
1X

k=�1
x[k]e�j2⇡fk

x[k] is aperiodic;
1X

k=�1
|x[k]| <1 or

1X

k=�1
|x[k]|2 <1 (finite energy, weaker

requirement)
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Summary

It is useful to summarize our observations on the spectral characteristics of di↵erent

classes of signals.

i. Continuous-time signals have aperiodic spectra

ii. Discrete-time signals have periodic spectra

iii. Periodic signals have discrete (line) power spectra

iv. Aperiodic (finite energy) signals have continuous energy spectra

Continuous spectra are qualified by a spectral density function.
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Spectral Distribution Function

In all cases, one can define an energy / power spectral distribution function, �(f).

For periodic signals, we have step-like power spectral distribution function,

For aperiodic signals, we have a smooth energy spectral distribution function,

where one could write the spectral density as,

S

xx

(f) = d�(f)/df or �

xx

(f) =

Z
f

�1/2

S

xx

(f) df (40)

.
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Properties of DTFT
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Linearity property

1. Linearity:

If x1[k]
F�! X1(!) and x2[k]

F�! X2(!) then

a1x1[k] + a2x2[k]
F�! a1X1(f) + a2X2(f)

The Fourier transform of a sum of discrete-time (aperiodic) signals is the respective

sum of transforms.
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Shift property
2. Time shifting:

If x1[k]
F�! X1(!) then

x1[k �D]

F�! e

�j2⇡fD
X1(f)

I Time-shifts result in frequency-domain modulations.

I Note that the energy spectrum of the shifted signal remains unchanged

while the phase spectrum shifts by �!k at each frequency.

Dual:

A shift in frequency X(f � f0) corresponds to modulation in time,

e

j2⇡f0k
x[k].
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Time reversal

3. Time reversal:

If x[k]
F�! X(!), then x[�k] F ! X(�f) = X

?

(f)

If a signal is folded in time, then its power spectrum remains unchanged; however,

the phase spectrum undergoes a sign reversal.

Dual: The dual is contained in the statement above.
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Scaling property

4. Scaling:

If x[k]
F�! X(!) (or x(t)

F�! X(F )),

then x


k

s

�
F�! X(sf) (or x

✓
t

s

◆
F�! X(sF ))

If X(F ) has a center frequency F

c

, then scaling the signal x(t) by a factor
1

s

results in shifting the center frequency (of the scaled signal) to
F

c

s

Note: For real-valued functions, it is more appropriate to refer to |X(F )|,
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Example: Scaling a Morlet wave
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Convolution

5. Convolution Theorem: Convolution in time-domain transforms into a product in

the frequency domain.

Theorem

If x1[k]
F�! X1(!) and x2[k]

F�! X2(!) and

x[k] = (x1 ? x2)[k] =

1X

n=�1
x1[n]x2[k � n]

then X(f) , F{x[k]} = X1(f)X2(f)

This is a highly useful result in the analysis of signals and LTI systems or linear

filters.
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Product

6. Dual of convolution: Multiplication in time corresponds to convolution in

frequency domain.

x[k] = x1[k]x2[k]
F�!

Z 1/2

�1/2

X1(�)X2(f � �) d�

I This result is useful in studying Fourier transform of windowed or finite-length

signals such as STFT and discrete Fourier transform (DFT).
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Correlation theorem

7. Correlation Theorem (Wiener-Khinchin theorem for deterministic signals)

Theorem

The Fourier transform of the cross-covariance function

�

x1x2 [l] is the cross-energy spectral density

F{�
x1x2 [l]} =

1X

l=1

�

x1x2 [l]e
�j2⇡fl

= S

x1x2(f) = 2⇡S

x1x2(!)

x[k]

Sxx(f)�xx[l]

X(f)

x
[k

]�
x
[�

k
]

X
(f

)X
�
(f

)

Deterministic
Energy Signal

Spectral
Density

Fourier 
Transform

ACVF

F

F
Wiener-Khinchin

Theorem

|XN (fn)|2

limN�
�

Magnitude-squared DFT

I This result provides alternative way of computing spectral densities (esp.

useful for random signals)
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Discrete Fourier Transform (DFT) and

Periodogram
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Opening remarks

I Signals encountered in reality are not necessarily periodic.

I Computation of DTFT, i.e., the Fourier transform of discrete-time aperiodic

signals, presents two di�culties in practice:

1. Only finite-length N measurements are available.

2. DTFT can only be computed at a discrete set of frequencies.
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Computing the DTFT: Practical issues

I Can we compute the finite-length DTFT, i.e., restrict the summation to the extent

observed?

I Or do we artificially extend the signal outside the observed interval? Either way

what are the consequences?

I Some form of discretization of the frequency axis, i.e., sampling in frequency is

therefore inevitable.

When the DTFT is restricted to the duration of observation and evaluated on a

frequency grid, we have the Discrete Fourier Transform (DFT)
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Sampled finite-length DTFT: DFT

DFT
The discrete Fourier transform of a finite length sequence x[k], k = 0, 1, · · · , N � 1 is

defined as:

X(f

n

) =

N�1X

k=0

x[k]e

�j2⇡fnk
, (41)

The transform derives its name from the fact that it is now discrete in both time and

frequency.

Q: What should be the grid spacing (sampling interval) in frequency?
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Main result

For signal x[k] of length N

l

, its DTFT X(f) is perfectly recoverable from its sampled

version X(f

n

) if and only if the frequency axis is sampled uniformly at N
l

points in

[�1/2, 1/2), i.e., i↵

4f =

1

N

l

or 4! =

2⇡

N

l

(42)

See Proakis and Manolakis, (2005) for a proof.
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N-point DFT

The resulting DFT is known as the N -point DFT with N = N

l

. The associated analysis

and synthesis equations are given by

X[n] , X(f

n

) =

N�1X

k=0

x[k]e

�j

2⇡
N nk

n = 0, 1, · · · , N � 1

x[k] =

1

N

N�1X

n=0

X[n]e

j

2⇡
N kn

k = 0, 1, · · · , N � 1

(43a)

(43b)
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Unitary DFT

It is also a common practice to use a factor 1/
p
N on both (43a) and (43b) to achieve

symmetry of expressions.

X[n] =

1p
N

N�1X

k=0

x[k]e

�j2⇡fnk
f

n

=

n

N

, n = 0, 1, · · · , N � 1

x[k] =

1p
N

N�1X

n=0

X[n]e

j2⇡fnk
k = 0, 1, · · · , N � 1

(44a)

(44b)

The resulting transforms are known as unitary transforms since they are norm-preserving,

i.e., ||x[k]||22 = ||X[n]||22.
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Reconstructing X(f ) from X [n]
The reconstruction ofX(f) from itsN -point DFT is facilitated by the following expression

(Proakis and Manolakis, 2005):

X(f) =

N�1X

n=0

X

✓
2⇡n

N

◆
P

✓
2⇡f � 2⇡n

N

◆
N � N

l

(45)

where P (f) =

sin(⇡fN)

N sin(⇡f)

e

�j⇡f(N�1)

I Equation (45) has very close similarities to that for a continuous-time signal x(t)

from its samples x[k] (Proakis and Manolakis, 2005).

I Further, the condition N � N

l

is similar to the requirement for avoiding aliasing.
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Consequences of sampling the frequency axis
When the DTFT is evaluated at N equidistant points in [�⇡, ⇡], one obtains

X

✓
2⇡

N

n

◆
=

1X

k=�1
x[k]e�j2⇡nk/N

n = 0, 1, · · · , N � 1

=
1X

l=�1

lN+N�1X

k=lN

x[k]e�j2⇡nk/N

=
N�1X

k=0

1X

l=�1
x[k � lN ]e�j2⇡nk/N (46)

Now, define x

p

[k] =

1X

l=�1

x[k � lN ], with period N

p

= N .
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Equivalence between DFT and DTFS

Then (46) appears structurally very similar to that of the coe�cients of a DTFS:

Nc

n

=

N�1X

k=0

x

p

[k]e

�j2⇡nk/N (47)

The N -point DFT X[n] of a sequence x

N

= {x[0], x[1], · · · , x[N � 1]} is equivalent to

the coe�cient c
n

of the DTFS of the periodic extension of x
N

. Mathematically,

X[n] = Nc

n

, c

n

=

1

N

N�1X

k=0

x[k]e

�j

2⇡
N kn (48)
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Putting together · · ·

An N -point DFT implictly assumes the given finite-length signal to be periodic

with a period equal to N regardless of the nature of the original signal.

I The basis blocks are cos(2⇡

k

N

n) and sin(2⇡

k

N

n) characterized by the index n

I The quantity n denotes the number of cycles completed by each basis block

for the duration of N samples

I DFT inherits all the properties of DTFT with the convolution property replaced by

circular convolution.
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DFT: Summary
Definition
The N-point DFT and IDFT are given by

X[n] =

N�1X

k=0

x[k]e

�j2⇡kn/N
; x[k] =

1

N

N�1X

n=0

X[n]e

j2⇡kn/N

I Introducing W

N

= e

j2⇡/N , the above relationships are also sometimes written as

X[n] =

N�1X

k=0

x[k]W

�kn

N

; x[k] =

1

N

N�1X

n=0

X[n]W

kn

N
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Points to remember

I The frequency resolution in DFT is equal to 1/N or 2⇡/N . Increasing the

length artificially by padding with zeros does not provide any new

information but can only provide a better “display” of the spectrum

I DFT is calculated assuming that the given signal x[k] is periodic and therefore it is

a Fourier series expansion of x[k] in reality!

I In an N-point DFT, only N/2 + 1 frequencies are unique. For example, in a

1024-point DFT, only 513 frequencies are su�cient to reconstruct the original

signal.
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DFT in practice: FFT

I The linear transformation relationships are useful for short calculations.

I In 1960s, Cooley and Tukey developed an e�cient algorithm for fast computation

of DFT which revolutionized the world of spectral analysis

I This algorithm and its subsequent variations came to be known as the Fast Fourier

Transform (FFT), which is available with almost every computational package.

I The FFT algorithm reduced the number of operations from N

2 in regular DFT to

the order of N log(N)

I FFT algorithms are fast when N is exactly a power of 2

I Modern algorithms are not bounded by this requirement!

R: fft
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Power or energy spectral density?

I Practically we encounter either finite-energy aperiodic or stochastic (or mixed)

signals, which are characterized by energy and power spectral density, respectively.

I However, the practical situation is that we have a finite-length signal

x

N

= {x[0], x[1], · · · , x[N � 1]}.
I Computing the N -point DFT amounts to treating the underlying infinitely long

signal x̃[k] as periodic with period N .

Thus, strictly speaking we have neither densities. Instead DFT always implies a

power spectrum (line spectrum) regardless of the nature of underlying signal!
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Periodogram: Heuristic power spectral density
The power spectrum P

xx

(f

n

) for the finite-length signal x
N

is obtained as

P

xx

(f

n

) = |c
n

|2 = |X[n]|2

N

2
(49)

A heuristic power spectral density (power per unit cyclic frequency), known as the peri-

odogram, introduced by Schuster, (1897), for the finite-length sequence is used,

P
xx

(f

n

) , PSD(f
n

) =

P

xx

(f

n

)

4f

= N |c
n

|2 = |X[n]|2

N

(50)

Alternatively, P
xx

(!

n

) =

1

2⇡N

|X[n]|2 (51)
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Routines in R

Task Routine Remark

Convolution convolve,

conv

Computes product of DFTs followed by in-

version (conv from the signal package)

Compute IR impz Part of the signal package

Compute FRF freqz Part of the signal package

DFT fft Implements the FFT algorithm

Periodogram spec.pgram,

periodogram

Part of the stats and TSA packages, respec-

tively
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