
Fisher’s Information and Properties of Estimators References

Bias

One of the foremost expectations of an estimator is that it gives accurate estimates.

Definition

An estimator ˆ✓ is said to be accurate or unbiased if and only if

µ
✓̂

= E(

ˆ✓) = ✓0 (19)

In plain language, the average of estimates across the records should yield the true value.

The di↵erence 4ˆ✓ = E(

ˆ✓)� ✓0 is said to be the bias of that estimator.
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Example: Unbiased estimator

Example

The sample mean estimator ȳ =

1

N

N�1X

k=0

y[k] is unbiased since

E(ȳ) = E

 
1

N

N�1X

k=0

y[k]

!
=

1

N

N�1X

k=0

E(y[k]) = µ (20)

assuming y[k] to be stationary.
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Remarks

I The averaging in (19) is across all possible records of data and not along time.

From this viewpoint, the definition has limited practical value since it is extremely

rare to obtain multiple records of data.

I Unbiasedness is nevertheless a useful requirement for comparing performance of

two estimators.

An unbiased estimator is desirable. However, what is generally more important is the

spread of estimates when di↵erent realizations are presented. This is measured by the

variance of the estimator.
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Variance of estimators

Definition

The variance of an estimator (estimate) is defined as

�2
✓̂

= E((

ˆ✓ � µ
✓̂

)

2
) = E((

ˆ✓ � E(

ˆ✓))2) (21)

I Observe that the definition is w.r.t the average of the estimator, µ
✓̂

and not with

respect to its true value, ✓0. When the estimator is unbiased, E(

ˆ✓) = ✓0.

I The square root of the variance in (21) is the standard error in an estimate.

I It is obviously desirable to have the variance of estimate much lower than that in the

data itself.
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Remarks

The variance expression is useful in many di↵erent ways:

i. Computation of error in estimates.

ii. Constructing confidence regions for the true parameters.

iii. Design of experiments, i.e., knowing how experimental factors can be adjusted to

achieve more reliable (precise) estimates.
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Example: Variance

Variance of sample mean
Using Definition 3,

�2
ȳ

= E((ȳ � E(ȳ))2) = E

0

@
 

1

N

N�1X

k=0

y[k]� µ
y

!2
1

A
= E

0

@
 

1

N

NX

k=1

(y[k]� µ
y

)

!2
1

A

=

1

N2
E

 
NX

k=1

(y[k]� µ
y

)

2

!
+

1

N2
E

 
NX

n=1

NX

m=1,m 6=n

(y[n]� µ
y

)(y[m]� µ
y

)

!

=

1

N2

 
NX

k=1

E(y[k]� µ
y

)

2

!
+

1

N2

 
NX

n=1

NX

m=1,m 6=n

E(y[n]� µ
y,n

)(y[m]� µ
y,n

)

!
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Example . . . contd.

The summand in the second term can be easily recognized as the ACVF y[k].

When the signal is WN, i.e.,

y[k] = c+ e[k], e[k] ⇠ GWN(0, �2
e

)

the variability of sample mean is

�2
ȳ

=

�2
y

N
=

�2
e

N
(22)
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Remarks

I var(ȳ) / �2
y

(for a fixed sample size). Intuitively this is a meaningful result.

However, we have no control over this factor.

I var(ȳ) / 1/N,=) �2
ȳ

! 0 as N ! 1. This is an interesting result and also a

good feature of the estimator. Thus, we are able to shrink the variability (and the

error) in the estimate by collecting more samples.

I As we shall shortly learn, (unbiased) estimators that possess this feature are known

to be consistent.

I The true mean has no bearing on the variability (of the sample mean), which is

again a sensible result.
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Variance of vector of parameters

When ˆ✓ is a p⇥ 1 vector, we have a variance-covariance matrix,

Var( ˆ✓) = ⌃✓̂ = E((

ˆ✓ � E(

ˆ✓))( ˆ✓ � E(

ˆ✓))T )

=

2

666664

�2
✓̂1

�
✓̂1✓̂2

· · · �
✓̂1✓̂p

�
✓̂2✓̂1

�2
✓̂2

· · · �
✓̂2✓̂p

...
...

...
...

�
✓̂p✓̂1

�
✓̂p✓̂2

... �2
✓̂p

3

777775
(23)
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Remarks

I It is a symmetric matrix with the o↵-diagonal elements reflecting the error incurred

in estimating a pair of parameters jointly.

I
A diagonal ⌃✓̂ connotes that the parameters can be estimated on an

individual basis. In practice, the trace(⌃✓̂) and the diagonal elements of

⌃✓̂ find wider utility.
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Minimum Variance Unbiased Estimator (MVUE)

Definition

An estimator ˆ✓(Z) is said to be minimum variance unbiased estimator (MVUE) if and

only if

C1. E(

ˆ✓) = ✓0 (unbiased)

C2. var(ˆ✓)  var(ˆ✓
i

) 8i satisfying C1 (least variance)

I The class is restricted to unbiased since biased estimators can always be tuned to

have lower variance by sacrificing the bias. Then the comparison becomes di�cult.

I The e�ciency of an estimator is used to measure how well it performs relative to an

unbiased estimator that has the least variance.
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Comparing two estimators: E�ciency

Formally, the e�ciency of an estimator ˆ✓ is defined as

E�ciency(ˆ✓) = ⌘
✓̂

=

var(ˆ✓?)

var(ˆ✓)
(24)

where ˆ✓?(y) has theoretically the lowest variance among all estimators.
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Remarks

I The Cramer-Rao’s inequality dictates the bound (on achievable variance) and also

stipulates the condition under which such an estimator exists.

I An estimator that achieves this lower bound is said to be the most e�cient or fully

e�cient.

I When it is not possible to find an e�cient estimator, relative e�ciency is used.

Relative e�ciency (%) = 100⇥
�2
✓̂1

�2
✓̂2

(25)

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 32



Fisher’s Information and Properties of Estimators References

Bias, Variance and E�ciency

µ
�̂

•✓0

!"#$%&'(#$
)*'"+$*,

x x
x

xxx
x

x
●

!"#$

✓̂(i)

Bias is the distance between the center

of estimates and the true value, while

the variance is a measure of spread

around its own center.

f(✓̂1)

f(✓̂2)

✓0

The estimator ˆ✓1 has lesser spread than ˆ✓2, and

is therefore relatively more e�cient. It produces

estimates that have a higher probability (than

those of ˆ✓2) of being closer to ✓0.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 33



Fisher’s Information and Properties of Estimators References

Most e�cient estimator

In seeking the most e�cient estimator, it is important to answer the question: what is

the minimum variance achievable by any unbiased estimator? The celebrated C-R

inequality answers this question.
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Cramer-Rao inequality

Theorem

Suppose

ˆ✓(y) is an unbiased estimator of a single parameter ✓. Then, if the p.d.f.

f(y; ✓) is regular, the variance of any unbiased estimator is bounded below by I(✓))�1

var(

ˆ✓(y)) � (I(✓))�1 (26)

where I(✓) is the information measure in (6) (or (9)). Further, an estimator

ˆ✓?(y) that

can achieve this lower bound exists if and only if

S(Y
N

, ✓) = I(✓)(ˆ✓?(y)� ✓) (27)

Then,

ˆ✓?(y) is the most e�cient estimator of ✓.
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Cramer-Rao lower bound

The C-R inequality gives us:

i. Lowest variance achievable by any unbiased estimator

ii. Means of deriving that most e�cient estimator, if it exists.

The role of Fisher information introduced earlier is clear now.

Larger the information on ✓ in a given data, lower is the variability and hence the error

in ˆ✓.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 36



Fisher’s Information and Properties of Estimators References

Existence of e�cient estimator

An alternative form of the condition of existence of an e�cient estimator can be given.

From (27), the MVUE that achieves the C-R bound exists if and only if

S(Y
N

, ✓)

I(✓)
+ ✓ (28)

is independent of ✓ (su�ciency) and only dependent on the observations y.
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Example: C-R bound

E�cient estimator of mean
Consider the standard problem of estimating the mean of a GWN process

y[k] ⇠ N (µ, �2
) from N observations. Find the most e�cient estimator of µ.

Solution: Recall from (1)

I(µ) =
N

�2
=) var(µ̂) � (I(µ))�1

=

�2

N
(29)
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Example: C-R bound . . . contd.

To determine the existence of an estimator that achieves this minimum, construct (28)

S(y, ✓)

I(✓)
+ ✓ =

N�1X

k=0

(y[k]� µ)

N
+ µ =

1

N

N�1X

k=0

y[k] (30)

which is only dependent on the observations y.

This is none other than the sample mean! In a previous example, we showed that the

variance of this estimator is indeed �2/N . Thus, we conclude that the sample mean is

the most e�cient estimator of the mean of a GWN.
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Existence of an e�cient estimator

Whether it is possible to arrive at an e�cient estimator depends on two factors:

1. The parameter ✓, or in general, its function g(✓). For e.g., in the case of

exponentially distributed WN, it turns out that there exists an e�cient estimator if

1/� is estimated instead of �.

In parametric modelling, this means that the form of parametrization, i.e., how the

parameters enter the model, has an important say in estimation and the estimate.

2. The probabilistic characteristics of the observed data. In reality, it is di�cult to know

the p.d.f. a priori. Then, the existence of an e�cient estimator depends on the

assumed density function.
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Mean Square Error

The mean square error (MSE) of an estimator is its variance with reference to its true

value ✓0.

Definition
The MSE of an estimator is defined as

MSE(ˆ✓) = E(||ˆ✓ � ✓0||22) = E(

pX

i=1

(

ˆ✓
i

� ✓
i0)

2
) (31)

A classical result in estimation relates the bias, variance and MSE.
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MSE . . . contd.

Theorem

For any estimator

ˆ✓, the following identity holds

MSE(

ˆ✓) = trace(⌃

✓̂

) + ||4ˆ✓||22 (32)

Proof:

E(||ˆ✓ � ✓0||22) = E(tr((

ˆ✓ � ✓0)(ˆ✓ � ✓0)
T

))

= tr(E((

ˆ✓ � ✓0)(ˆ✓ � ✓0)
T

))

= tr(E((

ˆ✓ � E(

ˆ✓))(ˆ✓ � E(

ˆ✓)T )) + tr(E((E(

ˆ✓)� ✓0)(E(

ˆ✓)� ✓0)
T

))

+ 2tr(E((

ˆ✓ � E(

ˆ✓))(E(

ˆ✓)� ✓0)
T

))

= trace(⌃

✓̂

) + ||4ˆ✓||22
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MSE . . . contd.

The last identity comes about by recognizing the first term as the trace of Var(ˆ✓) and

that E(

ˆ✓ � ✓0) is a deterministic quantity. Consequently the expectation on the second

term disappears

tr(E((E(

ˆ✓)� ✓0)(E(

ˆ✓)� ✓0)
T

)) = tr(4ˆ✓4ˆ✓T ) = tr(4ˆ✓T4ˆ✓) = ||4ˆ✓||22

and the third term vanishes to zero.
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MSE . . . contd.

1. For unbiased estimators, 4ˆ✓ = 0, therefore MSE and ⌃

✓̂

are identical.

2. Since both terms on the RHS of (32) are positive-valued, estimators that have

small MSE naturally require good accuracy and precision.

3. When MSE(ˆ✓) ! 0 as N ! 1, the estimator is said to be consistent.

4. It is ideally desirable to build an estimator ˆ✓ with minimum mean square error. The

MMSE problem can be set up by assuming the parameter ✓ to be a random

variable. Therefore, this is useful in a Bayesian estimation framework. The

resulting estimator, as it turns out is the conditional expectation E(✓|y).
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Minimum Mean Square Error estimator

Theorem
The MMSE estimator of ✓ given y is the conditional expectation

ˆ✓MMSE(Y ) = E(✓|Y ) (33)

As in the case of MVUE, the form of MMSE could be non-linear or linear. For practical

reasons, linear MMSE estimators are more popular. In fact, when ✓ and y follow a joint

Gaussian distribution, the linear MMSE is also the optimal MMSE.
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Asymptotic bias

Statistical unbiasedness is a desirable property; however, it is not necessarily the most

desirable property. A biased estimator is also considered acceptable provided the bias

vanishes for very large samples. For this purpose, asymptotic unbiasedness is defined.

Definition
An estimator is said to be asymptotically unbiased if

lim

N!1
4ˆ✓ = 0 i.e., lim

N!1
E(

ˆ✓) = ✓0 (34)

I Asymptotic bias is a large sample property. Therefore it is of little interest in situa-

tions concerning small samples.
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Asymptotic bias . . . contd.

A standard estimator of variance

�̂2
y

=

1

N

N�1X

k=0

(y[k]� ȳ)2 (35)

where ȳ is the sample mean, is a biased estimator of �2
y

but is asymptotically unbiased.

I A statistically biased estimator can achieve a variance lower than that of a MVU

estimator. However, the variance is no longer a measure for comparing the

performance of such estimators since in principle one can shrink the variance to an

arbitrarily low (non-zero) value by increasing the bias to a very large value.

I Thus, a better universal metric is the MSE.
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Consistency

An important and desirable large sample property is consistency, which examines the

convergence of ˆ✓ to ✓0 as N ! 1.

An estimator is said to be consistent if ˆ✓ (a RV) converges to ✓0 (a fixed value).

Di↵erent forms of consistency arise depending on the notion of convergence one uses:

1. In probability:

ˆ✓
N

p�! ✓0 i↵ lim

N!1
Pr(|ˆ✓

N

� ✓0| � ") = 0, 8" > 0.

2. In mean square sense:

ˆ✓
N

m.s.�! ✓0 i↵ lim

N!1
E((

ˆ✓
N

� ✓0)
2
) = 0.

3. Almost sure convergence:

ˆ✓
N

a.s.�! ✓0 i↵ ˆ✓
N

�! ✓0 w.p.1

Order of implication: Almost sure =) Mean square =) Probabilistic
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Convergence of sequences of random variables

Definition
A sequence of real numbers {x

n

} is a realization of the sequence of random variables

{X
n

} if x
n

is a realization of the RV X
n

.

Sequences of RVs on a sample space ⌦

{X
n

} is a sequence of random variables on a sample space ⌦ if all the RVs belonging to

the sequence are mappings from ⌦ to R.

One can then have i.i.d or stationary or weakly stationary sequences, etc.
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Pointwise convergence

The requirement is that there exist a random variable to which all possible sequences

converge on ⌦.

Pointwise convergence
Let {X

n

} be a sequence of random variables defined on a sample space ⌦. Then it is

pointwise convergent to a random variable X if and only if {X
n

(!)} converges to X(!)

for all ! 2 ⌦. X is called the pointwise limit of the sequence and denoted as

X
n

pointwise�! X (36)
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Example: PC

Let ⌦ = {blue, red} be the sample space with two sample points. Suppose {X
n

} is a

sequence of RVs such that

X
n

(!) =

8
><

>:

2

n
, ! = blue

2 +

1

n
, ! = red

Then the sequence converges to a random variable

X(!) =

8
<

:
0, ! = blue

2, ! = red
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Convergence in probability

Idea: The sequence gets very close to a RV X with “high probability”.

Convergence in probability
Let {X

n

} be a sequence of random variables defined on a sample space ⌦ and ✏ be a

strictly positive number. Then, {X
n

} is said to be convergent in probability if and only if

lim

n!1
Pr(|X

n

�X| > ✏) = 0 (37)

and denoted by

X
n

p�! X or plim
n�!1

X
n

= X (38)
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Example

Consider a sequence of RVs X
n

=

✓
1 +

1

n

◆
X, where X on ⌦ = {0, 1} is a discrete

RV with p.m.f.

p
X

(X) =

8
<

:

1
5 , x = 1,

4
5 , x = 0

Then |X
n

�X| = 0 when X = 0 (with probability 4/5) and |X
n

�X| = 1
n

when

X = 1 (with prob. 1/5). Therefore,

Pr(|X
n

�X|  ✏) =

8
<

:

4

5

, n < 1
✏

1, n � 1
✏
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Mean square convergence

Idea: The sequence gets very close to a RV X in a “squared distance” sense.

Convergence in mean-square
Let {X

n

} be a sequence of random variables defined on a sample space ⌦. Then, {X
n

}
is said to be convergent in mean-square sense if and only if there exists a RV (with

finite variance), such that

n
n!1

E
⇥
(X

n

�X)

2
⇤
= 0 (39)

i.e., in the sense of a distance metric. The convergence is denoted by

X
n

m.s.�! X (40)
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Example

Consider a sequence of RVs X
n

=

1

n

N�1X

k=0

x[k], where x[k]’s are uncorrelated random

variables with mean µ and variance �2.

Then, the sequence {X
n

} converges to a random variable µ in the mean square sense

since

E((X
n

� µ)2) =
�2

n
=) lim

n!1

�2

n
= 0 (41)
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Almost sure convergence

Almost sure convergence is relaxed version of pointwise convergence except that it does

accommodate points in ⌦ where the sequence does not converge.

However, the points ! 2 ⌦ on which {X
n

(!)} does not converge pointwise to X(!)

should be zero-probability events.

In other words, sequences should converge over an interval (of arbitrarily finite

length) in ⌦ unlike at every point that is required in pointwise convergence.

Then, we write

X
n

a.s.�! X (42)
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Example: a.s. convergence

Consider a sample space ⌦ = [0, 1] and a sequence {X
n

(!)} constructed on ⌦ as

X
n

(!) =

8
<

:
1, ! = 0

1
n

, ! 6= 0

(43)

Examine if the sequence a.s. converges to a (constant) random variable X(!) = 0.

Deduce that lim

n!1
X

n

(!) =

8
<

:
1, ! = 0

0, otherwise
. Note that Pr(! = 0) = 0.

Clearly X
n

converges to the given random variable X(!) except for the event ! = 0,

which is a zero-probability event. Hence, X
n

(!) converges to X(!) almost surely.
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Example 1: Consistency

Sample mean
The sample mean estimator for a WN process has the MSE

MSE(ȳ) = var(ȳ) =
�2
e

N
(44)

This is obviously a m.s. consistent estimator since its MSE ! 0 as N ! 1.
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Example 1: Consistency

Sample variance
The biased estimator of the variance of a random process was shown to be earlier

asymptotically unbiased. For a GWN process with variance �2
e

, this estimator is known

to have a variance

var(�̂2
N

) =

2(N � 1)�4
e

N2
(45)

Therefore, it is mean-square consistent.
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Remarks

I Consistency essentially guarantees that increasing the number of observations takes

us “closer” to the true value. Therefore, it is practically one of the most important

properties of an estimator.

I There are several estimators that are not consistent. A popular one is the

periodogram, which estimates the power spectral density of a signal.

I For biased estimators, mean square consistency also implies asymptotic

unbiasedness because

MSE(ˆ✓) = bias2 + var(ˆ✓)
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Running summary

To recap the key points until now:

I The goodness (accuracy, precision, etc.) of an estimate depends on two factors: (i)

information content in the data and (ii) properties of the estimator

I Information content is measured by Fisher’s information, which is based on the

likelihood function. It is a measure of the quality of a given dataset w.r.t.

estimating ✓ and is regardless of the form of ˆ✓.

I Six properties of an estimator are usually important: bias, variance, e�ciency, mean

square error, asymptotic bias and consistency.

I E�ciency and consistency are the two most important criteria
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Running summary . . . contd.

To recap the key points until now:

I C-R inequality gives us the lowest variability (error) that can be achieved by an

unbiased estimator. The bound is the inverse of FI.

I Whenever it becomes di�cult to estimate or design a 100% e�cient estimator or

even a MVUE, a best linear unbiased estimator is sought.

I Consistency guarantees convergence of the estimate to the true value
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Motivation

Up to this point we studied metrics for quantifying the goodness of data and estimators.

Now we raise an important question:

Given an observation vector y and a point estimate ˆ✓ what can be said about the true

value ✓0?
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Interval estimates and hypothesis testing

Two related problems are:

1. Confidence intervals: What is the interval in which the true value resides? Only

intervals are sought since the true value cannot be estimated precisely.

2. Hypothesis testing: Given ˆ✓ how do we test claims on the true parameters?

To be able to answer the above questions it is necessary to determine the probability

distribution of an estimate.
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Introductory remarks

The distribution of estimate generally depends on three factors:

1 Randomness in observations: It is a crucial factor since it is the “feed” to the

estimator. It is the source of uncertainty in estimate.

2 Form of estimator: When the estimator is linear (e.g., sample mean, BLUE estimator)

the transformation of the f(y;✓) can be easily studied. Non-linear estimators

naturally pose a challenge, except under very special conditions.

3 Sample size: A large body of estimation literature is built on the large sample size

assumption. Small sample sizes not only a↵ect the distribution but also the

consistency property of an estimator!
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Multiplication by

p
N

Distributions are quite often stated for
p
N(

ˆ✓ � ✓0) (or at times
p
N ˆ✓

N

) instead of ˆ✓
N

itself. This is because asymptotically (

ˆ✓
N

� ✓0) converges to a constant (mostly zero),

whereas
p
N(

ˆ✓ � ✓0) converges to a random variable with a meaningful distribution.

Example
From the previous sections, we know that the sample mean is a consistent estimator of

the mean. This means ȳ
N

� µ
y

converges to zero as N ! 1. On the other hand,p
N(ȳ

N

� µ
y

) converges to a random variable with mean zero and finite variance.

E(

ˆ✓
N

) = µ
y

; var(ȳ) =
�2
y

N
=) (ȳ � µ

y

)

m.s.�! 0

but,
p
N(ȳ � µ

y

)

m.s.�! �2
y
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Convergence in distribution

In order to study the asymptotic distributional properties of an estimator, it is necessary

to first understand the notion of convergence in distribution of a sequence of RVs.

Definition
A sequence of random variables {X

N

}, each possessing a distribution function F (x
N

)

converges in distribution if the sequence of those distributions {F (x
N

)} (sometimes

written as F
N

(x)) converges to a distribution function F (x). The random variable X

associated with F (x) is said to be the limit in distribution of the sequence, indicated as

X
n

d�! X (46)

Note that the theorem speaks of convergence of distributions, not the RVs themselves.
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Central Limit Theorem

The CLT is one of the most celebrated and landmark results in estimation theory. Historically

it is nearly seven decades old and has undergone several modifications. The basic version due

to Lindeberg and Levy is as follows.

Theorem (Central Limit Theorem)

The uniformly weighted sum of N independent and identically distributed (i.i.d.) random

variables {X
n

, n = 1, · · · , N}

X̄ =
NX

n=1

X
n

N
(47)

converges in distribution as

p
N

✓
X̄ � µ

�

◆
d�! N (0, 1) (48)

where it is assumed that the following holds:

E[X
n

] = µ < 1, var(X
n

) = �2 < 1, 8n = 1, · · · , N (49)
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CLT . . . contd.

I The conditions of independence and identical distributions are not heavily restrictive.

Versions of CLT which place some minor additional requirements on the moments

or the autocorrelation functions are also available.

I Generalizations and extensions to other random objects such as matrices and poly-

topes are available.

I Note that the sum is none other than the sample mean of the N random variables.

I It is also conventional to state that the distribution of ¯X is asymptotically normal or

simply write as

p
N(

¯X � µ) ⇠ AN (0, �2
) (50)

I Sums of transformed RVs that have more symmetric distributions and have lighter

tails converge to normal distributions faster than the raw variables.
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Limitations

I The CLT provides us with a tool for deriving distributions of parameter estimates from

linear estimators with known distributional properties of the data. Many standard

results on distributions of estimators such as sample mean, sample variance, linear

least squares estimates can be derived through CLT.

I However, when the estimator is a complicated function of the observations, further

simplifying approximations or the use of modern (Monte-Carlo) methods such as

bootstrapping or surrogate data analysis have to be employed.
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Confidence regions

The term “confidence region” essentially refers to the interval containing the true value

with < 100% confidence. Ideally one would like to have a narrow interval with maxi-

mum confidence. However, these are conflicting requirements because a higher degree of

confidence is associated with a wider band.

The procedure for constructing a confidence interval is a two-step process.

Step 1: Construct a probabilistic interval for the error ˆ✓
N

� ✓0 using the knowledge of

the distribution (or density) of ˆ✓
N

, the bias and variance properties and the

specified degree of confidence 100(1� ↵)%.

Step 2: Convert this probabilistic interval into a confidence region for ✓0 by an algebraic

manipulation.
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Confidence interval for mean

Assume that the sample mean ȳ is used as an estimator of the mean µ
y

from a single

record of data.

Goal: To obtain a confidence region for µ
y

Assume that �2
y

is known. Invoking CLT,
p
N

✓
ȳ � µ

y

�
y

◆
⇠ N (0, 1)
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Confidence interval for mean . . . contd.

From the properties of a Gaussian distribution,

�1.96 
p
N
ȳ � µ

y

�
y

 1.96 (with 95% probability)

=) µ
y

2 [ȳ � 1.96p
N
�
y

, ȳ +
1.96p
N
�
y

] (with 95% confidence) (51)

The 100(1�↵)% CI for the mean is obtained by replacing 1.96 with ⇣
c

such that Pr(⇣ >

⇣
c

) = ↵/2 (using the standard Gaussian distribution).
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Interpretation

The confidence interval (CI) should be interpreted with care. Consider the case of a

95% CI for mean. Suppose that we have 1000 records of data, from each of which we

can obtain an estimate ȳ(i), i = 1, · · · , 1000, from each of which a 95% C.I. can be

constructed. Then, out of 1000 such CIs, roughly 950 intervals would have correctly

captured the true mean.
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Simulation example

In one such simulation study, it turns out that 51 intervals do not contain the true value

µ0 = 0 as shown below.
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Remarks

I The width of the CI is only dependent on the standard error in the estimate

�
y

/
p
N . In general, the width depends on the variability of the process and

the sample size (for a consistent estimator)

I Narrower the width of the interval at a fixed ↵, better is the estimator. A

consistent estimator produces zero-width CI asymptotically.

I For correlated processes, the CI has to be re-derived because var(ȳ) is influenced by

the correlation structure.
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Confidence intervals

1. Mean: Small sample, variance unknown.

µ
y

2 [ȳ � t
↵/2(N � 1)�̂

y

, ȳ + t
↵/2(N � 1)�̂

y

] (with 95% confidence) (52)

2. Variance: Gaussian population, random samples

(n� 1)S2

�2
↵/2,n�1

 �2  (n� 1)S2

�2
1�↵/2,n�1

(53)

One-sided: Lower and upper confidence bounds

(n� 1)S2

�2
↵,n�1

 �2, �2  (n� 1)S2

�2
1�↵,n�1

(54)
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Remarks . . . contd.

Several standard texts on statistics present the theory of hypothesis testing and confidence

interval construction (see Johnson, 2011; Ogunnaike, 2010).

For non-linear estimators, modern empirical methods are used to obtain the distributions

of estimates via the generation of surrogate data or pseudo-population. Monte-Carlo

simulations and boostrapping methods are increasingly being used for this purpose.
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Hypothesis testing

Once the distributional properties of an estimator are known, it is possible to answer the

two questions raised earlier, i.e., pertaining to hypothesis testing and confidence interval

construction. Both are in fact related problems.

Hypothesis testing involves a statistical test for a claim made by the analyst with

regards to the properties of the process of interest or model parameters using the

observations as an evidence.

Examples:

I Average temperature of a reactor is at a specified value.

I Model parameters are truly zero.

I The given series is white (unpredictable)
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Procedure for hypothesis testing

A hypothesis test typically consists of the following steps.

1. Formulate the null hypothesis H0 based on the postulate or the claim. Choose an

appropriate alternate hypothesis H
a

.

2. Choose an appropriate statistic ⇣ for the test. The statistic is generally a linear or

non-linear function of the parameter(s) involved in the hypothesis.

3. Compute the test statistic from the given observations. Denote this by ⇣
o

.

4. Make a decision. Retain or discard the null hypothesis by applying a certain

criterion to the observed statistic (three di↵erent approaches).

No hypothesis test can result in a perfect decision!
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Errors in hypothesis testing

Any hypothesis test is marred by two errors - Type I and II errors. Typically, the first

type, known as the ↵ risk or the significance level is specified.

Decision �!
Truth #

Fail to Reject H0 Reject H0

H0 True Correct Decision

Probability: 1 � ↵

Type I Error

Probability (Risk): ↵

H
a

True Type II Error

Risk: �

Correct Decision

Probability: 1 � �

One of the two errors has to be specified for making a decision in hypothesis testing. It

is a common practice to specify the ↵ risk.
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Graphical understanding: One sample test for mean

Acceptance(region((

Two(–(tailed(test(

N(0,1)(

Cri9cal(region(
α/2(

0( !(

α/2(
Cri9cal(region(

(a) Two tailed test

Acceptance(region((

Cri.cal(region(

Lower(–(tailed(test(

N(0,1)(

!(=(0(

α(

(b) Lower-tailed test

Cri$cal(region(

Upper(–(tailed(test(

N(0,1)(

!(=(0(

α(

(c) Upper-tailed test

The ↵ risk (probability of making Type I error) depends on the type of alternate

hypothesis and the sampling distribution of the statistic.
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Decision making in hypothesis testing

There are three di↵erent approaches to making decisions in hypothesis testing, all of

which lead to the same result.

1. Critical value approach: Determine a critical value (for a given risk) and

compare the observed statistic against it.

2. p-value method: Determine the probability of obtaining a value more extreme

than the observed and compare this probability against a user-specified value (risk).

3. Confidence interval approach: Construct the confidence region (for a given risk)

and determine if the postulated value falls within the region.
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p-value

The p-value is the probability of observing a more extreme value of the statistic than the

observed value.

I It is computed under the null hypothesis being held to be true.

I The sign or the direction of the extreme value depends on the alternate hypothesis

just as the way the critical value does.

I The p-value computation is fairly straightforward. For example, in an upper tail

test, the p-value is the Pr(⇣ � ⇣
o

). If the p-value  ↵, then H0 is rejected.
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Example: Hypothesis testing

An engineer measures the (controlled) temperature of a reactor over a period of 3 hours

at a sampling interval of T
s

= 15 sec. The sample average of the N = 720 readings is

calculated to be ȳ = 90.1826�C. Based on this observation, the engineer claims that the

temperature is at its set-point T0 = 90

�C on the average.

To test this claim, the formal hypothesis test is set up as follows.

H0 : µy

= 90 H
a

: µ
y

6= 90 two-tailed test
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Example: Hypothesis testing . . . contd.

Assume that the temperature series has white-noise characteristics. Then we know that

for the large sample case,

p
N

✓
¯Y � µ

�

◆
d�! N (0, 1)

An appropriate test statistic suited for the purpose is therefore,

Z =

ȳ � µ0

�/
p
N

(55)

where µ0 is the true value assumed in H0. For the example, µ0 = T0 = 90

�C. Assume

that � is known to be 2�C. Then the observed statistic is z0 = 2.45.
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Example . . . contd.

Decision making
i. Critical value approach: The critical value at ↵ = 0.05 is z

c

= 1.96. Since

z
o

> z
c

, the null hypothesis is rejected.

ii. p-value approach: The Pr(|Z| > z0 = 2.45) = 0.0143 < ↵ = 0.05. Hence H0

stands rejected in favour of H
a

.

iii. C.I. approach: The 100(1� ↵) C.I. for the average temp. is (90.0365, 90.3287),

which does not include the postulated value. Hence H0 stands rejected in favour of

H
a

.

On the average the temperature is not at its set-point, i.e., the engineer’s claim that

H0 : µ = 90

� (set-point), stands rejected in favour of the alternate hypothesis.
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Remarks

I How would you adjust the significance level just enough so that H0 is not rejected?

I
Note: The assumption of known � can be relaxed. It can be estimated � from

data, in which case ⇣ has a t-distribution with ⌫ = N � 1 degrees of freedom.
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Confidence intervals in Hypothesis testing

In a general situation, the C.I. approach for testing hypothesis (all three forms) is as

follows :

Procedure
1. Specify the significance level.

2. Depending on the hypothesis, construct the appropriate C.I. and apply the test

2.1 Two-sided: 100(1�↵/2)% C.I. If postulated value is not within the C.I., reject H9.

2.2 One-sided: Reject H0 if the postulated value is greater or lesser than the bound,

for the upper- and lower-tailed test, respectively.
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Summary

I The end goal of an estimation exercise is to arrive at an interval estimate or a

confidence region for the true value

I Distributions of estimates provide the necessary information to move from a point

to an interval estimate

I The distributional properties also facilitate hypothesis testing, which involves a sys-

tematic and statistical way of testing the claims related to a process and/or a model

I Arriving at distributions is non-trivial, but the CLT comes to the rescue for linear

estimators

I The case of non-linear estimation is more complicated and calls for the use of modern

tools such as Monte-Carlo simulations and Bootstrapping methods.
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