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Learning Goals

In this lecture, we focus on the estimation of spectral densities for stochastic signals. We

shall learn the following:

I Blackman-Tukey and Daniell’s method

I Welch’s averaged periodogram

I Parametric methods
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Recap.

The lack of consistency in periodogram estimator can be explained from three viewpoints:

i. The infinitely-long ACVF is approximated by a finite-length estimated ACVF and

the error in ACVF estimates increases with the lag (leads to Blackman-Tukey

estimators).

ii. The true p.s.d. is a smooth function of frequency, whereas the estimated one is

erratically fluctuating (leads to smoothers).

iii. The true p.s.d. is an average property, whereas the estimated one is from a single

realization (leads to Welch’s average periodogram estimators).
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Recap: Methods for improvement

Method Summary Reference

Blackman-Tukey Fourier transformation of smoothed, truncated autoco-

variance function

Chatfield, 1975

Smoothed peri-

odogram

Estimate periodogram by DFT of time series; Smooth

periodogram with modified Daniell filter

Bloomfield, 2000

Welch’s method Averaged periodograms of overlapped, windowed seg-

ments of a time series

Welch, 1967

Multi-taper method

(MTM)

Use orthogonal windows (ÒtapersÓ) to get approxi-

mately independent estimates of spectrum; combine

estimates

Percival and

Walden, 1993

Singular spectrum

analysis (SSA)

Eigenvector analysis of autocorrelation matrix to elimi-

nate noise prior to transformation to spectral estimates

Vautard and

Ghil, 1989

Maximum entropy

(MEM)

Parametric method: estimate acf and solve for AR

model parameters; AR model has theoretical spectrum

Kay, 1988
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Non-parametric estimators

As remarked earlier, two classes of spectral estimators exist:

1. Non-parametric methods:

I " No model is required to be fit to data.
I " No major assumptions about the data sequence are made

I Two assumptions are implicit though: (1) Autocorrelation dies out after N and (2)

Data is periodic with period N

I An important goal is to obtain a consistent estimate

I Reduction in variance is achieved at the cost of decrease in resolution

I # Spectral leakage and limited resolution (1/N) are issues
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Parametric estimators

Parametric estimators o↵er certain striking advantages, but caution has to be exercised.

2. Parametric methods:

I " Eliminate the need for windows. Therefore, no leakage issues arise

I " Provide better frequency resolution than FFT-based methods

I # Require a model-based description of the stochastic process

I Autocorrelation need not go to zero after N . The auto-correlation sequence can be

computed from the model
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Non-parametric estimators of PSD

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 7



Estimation of spectral densities References

Method of smoothing the spectrum

Basic Idea
At each frequency !i, estimate the true density by smoothing the periodogram �̂(.) in

the vicinity of !i.

Underlying philosophy: The true p.s.d. is constant over a small band of frequencies.
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Method of smoothing

Assuming that the spectral density is constant over a band of L = 2M + 1 frequencies

(bandwidth of Bw ' L/N), the optimal estimate is the simple average,

�̂D
vv(!n) =

1

L

MX

m=�M

Pvv(!n � !m) =
1

L

MX

m=�M

Pvv[n�m] (1)

Taking it further
The foregoing ideas can be generalized to the weighted-averaged smoother.

�̂D
vv(!n) =

MX

m=�M

W (!m)Pvv(!n � !m) =
MX

m=�M

W [m]Pvv[n�m] s.t.
X

m

W [m] = 1
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Procedure

1. Subtract mean and detrend time series

I
Removal of mean is essential to remove the generally dominant DC component

I
Detrending (removal of trends) is necessary to remove any seasonal / linear trends

2. Compute discrete Fourier transform (DFT)

3. Compute the (raw) periodogram

4. Smooth the periodogram to obtain �̂D
vv(!n)

I Use an appropriate window to smooth the spectrum
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Choosing the window

Window should be symmetric, non-increasing and have unity sum of coe�cients.

I The modifed Daniell-kernel places half weights at the end points, while the remaining

are distributed uniformly. For example, when M = 1, the weights are

W [1] =
1

4
= W [3]; W [2] =

1

2
(2)

I Excessive smoothing (larger L) can be detrimental to the spectral resolution while

insu�cient smoothing can result in higher variance

I A weighted average can be formed by applying the kernel repeatedly to obtain

smoother estimates ⌘ convolution of the periodogram with convolution of kernels.
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Properties of the smoothed estimator

Asymptotic properties of the smoothed periodogram under two important assumptions (i)

the bandwidth B is small, i.e., L ⌧ N and (ii) the underlying spectral density is roughly

constant over this bandwidth.

1. Variance:

L�1
M cov(�̂D(!n), �̂

D(!m)) =

8
>>><

>>>:

�2(!), !n = !m = ! 6= 0, 1/2

2�2(!), !n = !m = 0, 1/2

0, |n�m| > L

(3)
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Properties of Daniell smoother . . . contd.

2. Distribution:

2LM �̂D(!)

�(!)
⇠ As �2(2LM) (4)

where LM =

 
MX

m=�M

W 2[m]

!�1

.

3. Consistency is guaranteed, i.e., as L ! 1, N ! 1, L/N ! 0, var( ˆ�D(!)) ! 0.
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Properties of Daniell smoother . . . contd.

I The bandwidth of the spectral window can be defined as

Bw =
LM

N
(5)

Thus, the Daniell smoother has ⌫ = 2NBw degrees of freedom.

I The window length L = 2M + 1 is usually chosen such that L ⌧ N/2.

I The decrease in variance comes at the price of increase in bias due to flattening of the

spectral density. Pure-tone or very narrowband spectra are smeared as a result.

I The modified Daniell-kernel has less spectral leakage compared to the regular rectangular

kernel (simple averaging).
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Example in R

# Data from ’ a s t s a ’ l i b r a r y by Shumway and S t o f f e r

s o i = scan ( ” data/ s o i . dat ” )

# Use mod i f i e d Dan i e l l ’ s f i l t e r f o r smooth ing

s o i . pe r = spec . pgram ( so i , span=c ( 7 , 7 ) , t a p e r =0, l og=’ no ’ )

# Can a l s o use k e r n e l r o u t i n e to g en e r a t e f i l t e r

k f = k e r n e l ( ’ mod i f i e d . d a n i e l l ’ , c ( 3 , 3 ) )

# Repeat f o r r e c r u i tmen t s e r i e s
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I The modified Daniell filter applies the regular Daniell filter (of equal weights) twice.

I Observe how the peaks in the SOI and recruitment series have smoothed out.

I Smoothing comes at the cost of loss in resolution (bandwidth)
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Blackman-Tukey Method: Smoothing the ACF

Basic Idea
Window the sample ACVF before applying the Fourier transform in (??)

B-T estimate
A weighted ACVF-based estimator is therefore used:

�̂(BT)
vv (!n) =

1

2⇡

N�1X

l=�(N�1)

w[l]�̂vv[l]e
�!nl (6)

where w[.] is the lag window function used for smoothing the ACF.
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Remarks

�̂(BT )(!) =
N�1X

l=�(N�1)

w[l]�̂vv[l]e
�!nl =

Z ⇡

�⇡

P(⇠)W (! � ⇠) d⇠ (7)

where W (.) is the Fourier transform of the lag window w[l]

W (!) =
MX

l=�M

w[l]e�j2⇡l!

I Weighting the ACF with the lag window is equivalent to convolution of the “raw”

periodogram with the spectrum of the window.

I Establishes the equivalence between B-T estimator and Daniell’s smoother!
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Window function for B-T estimator

The lag window w[l] is required to satisfy a set of conditions for the power spectral

estimate to be real and non-negative valued

1. Symmetric: w[�l] = w[l]. Necessary for obtaining real-valued p.s.d. estimate.

2. Non-increasing with |l|: 0  w[l]  w[0].

3. Unity at center: w[0] = 1. From its relationship to the smoothing window, this is

akin to the unity sum requirement on W (!) stated in (2).

4. Non-negative DTFT: W (!) � 0, |!|  ⇡.

The fourth requirement is only a su�cient, but not a necessary condition.

A rectangular window satisfies all the three conditions but violates the fourth one. On

the other hand, a Bartlett (triangular) window satisfies all the four requirements.
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Asymptotic properties of the B-T estimator

Under the conditions M ! 1 as N ! 1 and M/N ! 0, we have the following:

1. Asymptotically unbiased estimator: E(�̂(BT)(!)) ⇡ �(!)

2. Variance of the estimator / 1/N (consistency),

cov(�̂BT(!n), �̂n
D(!p)) =

8
>>>>><

>>>>>:

�2(!)

NB̃w

, !n = !p = ! 6= 0, 1/2

2
�2(!)

NB̃w

, !n = !p = 0, 1/2

0, |n� p| > L
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Asymptotic properties of the B-T estimator

3. Asymptotic distribution:

⌫�̂(BT)(!)

�(!)
⇠ As �2(⌫), where ⌫ = 2N/

 
MX

m=�M

w2[m]

!
= 2NB̃w (8a)

4. As M increases, variance #, but frequency resolution # as well!
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Bartlett’s Method: Averaged Periodogram

Basic idea
Divide the data of length N into K non-overlapping segments of length L, i.e.,

N = KL, and take the simple average of the respective K periodograms.

�̂B(!n) =
1

K

KX

i=1

P(i)(!n) (9)

where P(i)(!) is the periodogram estimate in the ith segment.
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Bartlett’s method

I Slicing of data amounts to generating artificial realizations keeping in view the re-

quirement of the p.s.d. definition.

I Variance as well as frequency resolution drop by a factor of K,

I As K increases, variance reduces, but once again at the cost of loss in frequency

resolution!
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Welch’s method

Basic idea
Same as that of Bartlett’s approach, but with two changes: (i) taper the segmented

data and (ii) allow overlapping of segments.

�̂W (!n) =
1

K

KX

i=1

�̂(i)(!n) (10)
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Welch’s method . . . contd.

The quantity �̂(i)(!n) is the modified periodogram estimate of the ith segment,

�̂(i)(!n) = PSD(w[k]v(i)[k]) =
1

CwL

�����

L�1X

k=0

w[k]v(i)[k]e�j!nk

�����

2

(11)

and C is a normalization factor to account for loss in power due to tapering

Cw =
1

L

L�1X

k=0

w2[k] (12)
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Remarks

I Windowing the segment improves the raw estimate in each segment.

I Overlapping of segments provides two advantages over Bartlett method: (i) for a

fixed length L, more segments can be obtained, (ii) for a fixed number of segments

K, we can have longer segments.

I In principle, O can take on values between 0 (Bartlett method) to (L� 1). Welch,

(1967) recommends a 50% overlap, O = L/2, for which K = 2N/L� 1.

I For 50% overlap, the asymptotic variance of the estimator is:

var(�̂W(!n)) '
9

8K
�2(!n) =

16N

9L
�2(!n) (13)

I Welch recommends the use of Welch (Hann like) or a Parzen window.
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Example: PSD estimation using N-P methods

PSD Estimation of WN
A series consisting of N = 1024 observations of a Gaussian white-noise is generated.

Power spectral density estimates using four di↵erent estimators (i) raw periodogram, (ii)

WOSA, (iii) B-T and (iv) MTM are computed and shown in Figure 1.

i. Welch’s method: L = 128, O = L/2; Hann window; 256-point FFT.

ii. B-T estimator: ACVF truncated to |l| = 127, Bartlett window; 256-point FFT

iii. Multi-tapering method: NW = 4; 256-point FFT.

The averaged / modified periodogram estimates are a clear improvement over the

periodogram. The dashed line represents the theoretical p.s.d. of a unit variance GWN.
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Example: PSD estimation . . . contd.
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Figure 1: Estimation of PSD of a GWN process using

non-parametric methods

I The performance of Welch

and B-T estimators are

comparable. Incidentally these

estimates are better than

those o↵ered by MTM.

I However, these observations

should not be used to draw

any general conclusions.
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Parametric method for PSD estimation

Parametric method of estimating spectrum is a straightforward approach based on the

time-series modelling of the given time-series.

Procedure
1. Estimate a time-series model H(q�1) for the process from the given data.

2. Compute the spectral density function of the time-series v[k] as

�vv(!) = |Ĥ(e�j!)|2 �
2
e

2⇡
(14)
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Parametric method for PSD estimation . . . contd.

I Usually, an AR model of suitably high-order is fit to the time-series.

I Remember that this AR model is only an intermediary - meaning, the ultimate aim

is to arrive at a spectral estimate and hence we are not particularly concerned about

the accuracy of the model

I AR models are the natural choice because they can be estimated easily whereas MA

model estimation will invariably involve a non-linear optimization problem
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Comparing methods: Example in R
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(b) WOSA, M=128
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Comparing methods: Example in R
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(d) B-T
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(e) Parametric
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Comparing methods: Example in R

I As the block size increases, Welch’s method gives lesser smoothing

I When block size = sample size, WOSA returns the periodogram estimate

I In all non-parametric methods, there is an inherent trade-o↵ between bias (frequency

resolution) and variance (of p.s.d. estimates)

I Each method has a tuning parameter (block size, window type, order, etc.) There-

fore, comparison should be done very carefully.

I Parametric estimators are superior to the non-parametric ones, but quite sensitive to

the TS model.

I Always advisable to examine both parametric and non-parametric estimates.
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Comparing methods: Example in R . . . contd.

ek = rnorm (1000) # GWN

l i b r a r y ( sapa )

ek . psd <� SDF( ek , method=’ d i r e c t ’ ) # Per iodogram

p l o t ( ek . psd , y s c a l e=’ l i n e a r ’ )

# WOSA, Block = 128

ek . psd <� SDF( ek , method=’ wosa ’ , b l o c k s i z e =128)

p l o t ( ek . psd , y s c a l e=’ l i n e a r ’ )

# WOSA, Block = 256

ek . psd <� SDF( ek , method=’ wosa ’ , b l o c k s i z e =256)

p l o t ( ek . psd , y s c a l e=’ l i n e a r ’ )

# B�T e s t ima t o r

ek . psd <� SDF( ek , method=’ l a g window ’ , t a p e r .= t ap e r ( type=’ pa rzen ’ , n . sample=1000))

p l o t ( ek . psd , y s c a l e=’ l i n e a r ’ )

# Paramet r i c e s t ima t e o f PSD

ek . psd <� spec . a r ( p l o t=F)

p l o t ( ek . psd$ f r eq , ek . psd$ spec )
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Estimation of cross-spectral density

The cross-spectral density, like the auto-spectral density, is estimated using averaged

periodogram methods. A procedure for computing the CPSD follows:

1. Divide the sequences yN and uN into K overlapping segments, each of length L.

2. Compute the c.p.s.d. for the respective pair of segments, y(i) and u(i) via DFT:

�̂(i)
yu(!n) =

1

L

L�1X

k=0

Y (i)(!n)U
(i),?(!n), n = 0, 1, · · · , L� 1 (15)

where Y (i)(!n) and U (i)(!n) are the standard L�point DFTs of the respective

windowed segments.
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Estimation of CPSD . . . contd.

3. Compute the averaged c.p.s.d as in Welch’s periodogram:

�̂yu(!n) =
1

K

KX

i=1

�̂(i)
yu(!n) (16)
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Estimation of Coherence

The coherence function was defined previously as the normalized cross-spectral density.

Estimation of coherence is, however, carried out by averaging estimates across segments.

̂yu(!n) =
�̂yu(!n)p

�̂yy(!n)�̂uu(!n)
(17)

where the cross- and auto-spectral densities using the averaged periodogram method.

If a single segment is used, coherence estimates take on unity values at all frequencies, which

is clearly a misleading result. It is also necessary to use a non-parametric method. The use of

a parametric method also results in unity coherence at all frequencies.
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Summary

I Periodogram is an ine�cient estimator of the p.s.d. of a stochastic signal

I For a deterministic signal, it is a very good and natural estimator.

I Spectral leakage is an issue that arises due to finite-length e↵ects.

I Remedy: Either use large sample sizes or apply tapered windows to data.

I Smoothed / Averaged periodogram methods induce the consistency property at the

cost of losing out on the ability to resolve frequencies.
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Summary . . . contd.

I Parametric methods have several advantages (e.g., do not su↵er from spectral

leakage and have very fine resolution) over their non-parametric counterparts.

However, they should be used cautiously.

I Cross-spectral density and coherence for stochastic signals should only be estimated

using averaged periodogram methods and not using the raw periodogram.

I Parametric estimators also exist for estimating CPSD and coherence, but are not

discussed here.
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