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Introductory Remarks

I In practice, measurements always contain a stochastic component. Whether a deter-

ministic component is present or not depends on the application and the assumptions

made by the user.

I The signal-to-noise ratio (SNR) is a measure of the proportions in which these two

components are present with respect to the variance of the signal.

I It is important to know if a particular estimation method is appropriate for the

signal of interest since some methods (e.g., periodogram) are best suited only for

deterministic signals while some others only for random signals.
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Estimation of mean

Two widely used estimators of mean are the sample mean and the sample median.

Sample mean:

ȳ =

N�1X

k=0

↵ky[k] where ↵k =
1

N
, 8 k (1)
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Sample mean: Properties

I It is the MoM and OLS estimator. It is also the MLE when y[k] ⇠ GWN(µ, �2
).

I The estimator is unbiased when y[k] is stationary.

I Under the stationarity assumption for {y[k]},

var(ȳ) = �2
ȳ =

1

N

N�1X

l=�(N�1)

✓
1� |l|

N

◆
�yy[l] (2)

I Sample mean is a consistent estimator of the mean for stationary y[k].

I It is the most e�cient estimator when {y[k]} is Gaussian white. For correlated

processes, a WLS estimate or MLE with a knowledge of �yy[l] should be used.
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Distribution of sample mean
The CLT establishes the asymptotic distribution of ȳ under fairly general conditions.

Theorem
If {y[k]} has a linear stationary representation

y[k] = µy +

1X

n=�1
h[n]w[k � n] under w[k] ⇠ i.i.d.(0, �2

w) (3)

then,

ȳ ⇠ As.N (µ,
�

N
) where � =

1X

l=�1

✓
1� |l|

N

◆
�yy[l] (4)
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Distribution of sample mean

I For example, when y[k] is WN, (4) specializes to ȳ ⇠ AsN (µ, �2/N), a known

result. From where the large sample 100(1� ↵)% C.I. can be constructed

ȳ � z↵/2
�p
N

< µ < ȳ + z↵/2
�p
N

(5)

where z↵/2 is the critical value satisfying Pr(Z > z↵/2 = ↵/2) and Z ⇠ N (0, 1).

I When � is unknown, the sample standard deviation may be used.

I In the small sample case (N  50), the standardized sample mean t = (ȳ �
µ)/(�̂/

p
N) is known to follow a Student’s t-distribution only when y[k] ⇠ GWN.

The critical values in the C.I. are then replaced with those from t-distribution.
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Sample Median
The sample median is the middle (or a pseudo-middle) value of the ordered observations,

ys = sort(y); ys[0] � ys[2] � · · · � ys[N � 1]

y̆ , Sample Median(y) =
N�1X

i=0

↵iys[i] (6)

where ↵i =

8
>>><

>>>:

1, i = N+1
2 (odd N);h

1
2

1
2

i
, i = N

2 ,
N
2 + 1 (even N)

0, otherwise

(7)

I Thus, sample median and sample mean can both be viewed as weighted estimators
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Properties of sample median
I It is the optimal estimate of mean in the 1-norm sense,

y̆ = arg

(
min

c

N�1X

k=0

|y[k]� c|
)

Statistically it minimizes E(|Y � c|) (when this expectation exists).

I It is an unbiased estimator of the mean whenever the density f(y) is symmetric. It

is also an unbiased estimator of the median, but w/o any restrictive assumptions.

I The sample median is asymptotically normal

y̆ ⇠ N (µ,
1

4Nf 2
(m)

) where m is the true median and f(.) is the p.d.f.. (8)
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Properties of sample median

I Relatively, median is a less e�cient estimator of µ than the sample mean for

Gaussian distributions. The asymptotic relative e�ciency is about 2/⇡ = 0.6366.

I However, the situation is reversed when the signal belongs to other

distributions. For example, with a Laplace distribution, the median is fully

e�cient.

I The lower e�ciency of the sample median is balanced by its high robustness. It

has a maximum breakdown point (Huber and Ronchetti, 2009) of 0.5, making it

ideally suitable for estimating mean from data corrupted by outliers.

I The sample median is a strongly consistent estimator of the population

median whenever {y[k]} is i.i.d.
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Estimation of variance: Sample variance
Two versions of sample variance estimators are:

�̂2
N�1 =

1

N � 1

N�1X

k=0

(y[k]� ȳ)2; �̂2
N =

1

N

N�1X

k=0

(y[k]� ȳ)2 (9)

Properties of sample variance

I The estimators �̂2
N�1 and �̂2

N are the OLS and ML (as well as MoM) estimators of the

true variance �2 respectively.

I The ML estimator is biased, while the OLS estimator is unbiased. Needless to add, both

are asymptotically unbiased.
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Properties of sample variance
I The variance of each of these estimators when {y[k]} is WN is given by

var(�̂2
N�1) =

2�4

(N � 1)

2
; var(�̂2

N) =
2(N � 1)�4

N2
(10)

I Thus, both estimators are consistent, but the ML estimate has a lower standard

error and is e�cient. Asymptotically they are equally e�cient.

I The ML estimator is used more in practice. It is also commensurate with the widely

used version of ACVF estimator (to be shortly introduced).

I
Distribution: When {y[k]} is Gaussian white, the normalized estimate has a �2

distribution with N � 1 degrees of freedom:
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Properties of sample variance . . . contd.

I Distribution: N �̂2
N

�2
⇠ �2

N�1

A 100(1� ↵) C.I. for �2 can thus be derived,

N �̂2

�2
N�1,1�↵/2

< �2 <
N �̂2

�2
N�1,↵/2

(11)

Due to the nature of the �2 distribution, the C.I. is not symmetric

I When the distribution of {y[k]} is non-normal, the above results approximately

hold good provided the deviation from Gaussianity is not too serious.
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Other estimators of spread: Range
Three other estimators of spread (standard deviation) are the range, mean absolute

deviation and the median absolute deviation.

1. Range: The range is simply defined as,

R = |maxy �miny| (12)

I For a normal distribution, R ⇡ 6 when N is large. The interquartile range

(IQR), is a fairly robust estimator of �.

I For a normal distribution, the estimate of standard deviation is given by

�̂ = IQR/1.34898 (13)

where the correction factor is applied to obtain an unbiased estimate of �.
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Other estimators of spread: µAD

2. Mean absolute deviation (µAD): The theoretical definition is

�1 , µAD = E(|Y � µ)| (14)

I The µAD is viewed as a more “natural” way of expressing the spread of a

random variable than the standard deviation.

I Closed-form expressions for �1 do not generally exist, but expressions for the

ratio �1/� do exist.
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µAD . . . contd.

I A commonly used estimator of µAD is

ˆ�1,y =
1

N

N�1X

k=0

|y[k]� ȳ| (15)

I A correction factor is usually necessary to obtain an unbiased estimate of the regular

scale parameter �. For normally distributed data,

�̂1 = 1.253ˆ�1 (16)

I The resulting estimator is more robust than the standard sample variance.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 15



Estimation of Time-Domain Properties References

Other estimators of spread: MAD

3. Median absolute deviation: (MAD): The definition of MAD is same as µAD,

with the mean replaced by median in theory as well as in estimation.

ˆ�2,y , MAD(y) =
1

N

N�1X

k=0

|y[k]� y̆| (17)

As with µAD, a correction factor is usually necessary. Once again, for normally

distributed data, we have that

�̂2 = 1.4826ˆ�2 (18)
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Properties of MAD

I This estimate is more robust than the µAD.

I Further, �̂2
p�! � with an asymptotic distribution N (µ, �2

).

I The e�ciency of MAD is low for data falling out of a Gaussian distribution, standing

at 37%.

I An alternative measure by Rousseeuw and Croux, 1993 uses the first quartile of all

interpoint distances to give 82% e�ciency at normal distribution, which is more than

a notch higher than that of MAD.

See Pham-Gia and Hung, 2001 for a nice exposition on µAD and MAD.
Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 17



Estimation of Time-Domain Properties References

Estimation of correlation
Computation of correlation requires covariance estimates.

A standard way of estimating covariance between two signals y[k] and u[k] is through

�̂yu =

1

N

N�1X

k=0

(y[k]� ȳ)(u[k]� ū) (19)

The correlation estimate (a.k.a. Pearson’s correlation coe�cient) is then given by

⇢̂yu =

�̂yu

�̂y�̂u
(20)
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Estimation of correlation . . . contd.

The covariance and correlation matrices are constructed accordingly:

ˆ

⌃ =

"
�̂2
y �̂yu

�̂uy �̂2
u

#
; ⌅ =

"
1 �̂yu

⇢̂uy 1

#
(21)
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Properties of sample correlation coe�cient

I The sample correlation coe�cient is an asymptotically unbiased and consistent

estimator of the correlation ⇢yu.s

I Distribution: The distribution of ⇢̂ is a rather complicated problem to handle.

When y[k] and u[k] have a joint Gaussian distribution, an exact expression

involving beta and hypergeometric functions is available (Pearson, 2011).
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Properties of sample corr. coe↵. . . . contd.

I Given the complicated nature of the result, typically approximate expressions for the

first four moments are computed. Among these we are interested in the first two:

E(⇢̂yu) ⇡ ⇢� ⇢(1� ⇢2)

2(N + 6)

; var(⇢̂yu) ⇡
(1� ⇢2)2

N + 6

(22)

Observe that the variance of the estimate is maximum when ⇢ = 0, i.e., when the

variables are actually uncorrelated.
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Properties of sample corr. coe↵. . . . contd.

I Under the bivariate Gaussian assumption, when the true correlation between the

signals is ⇢ = 0, the estimate is known to have a near normal distribution.

⇢̂yu
d�! N (0, 1/N) (23)

Thus, the 95% and 99% significance levels for correlation are ±1.96/
p
N and

±2.58/
p
N respectively.
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Properties of sample corr. coe↵. . . . contd.

I When the true ⇢yu 6= 0, Fisher’s transformation produces a transformed coe�cient

with approximately normal distribution, under the large sample approximation and

bivariate Gaussian assumption.

F⇢̂ =
1

2

ln

✓
1 + ⇢̂

1� ⇢̂

◆
⇠ N (µF , �

2
F ) (24)

where µF =

1

2

ln

✓
1 + ⇢

1� ⇢

◆
; �2

F =

1

N � 3

(25)
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R commands

Listing 1: R commands for estimating mean, variance and covariance
1

2 # Computing mean

3 mean , median , mode

4

5 # Computing v a r i a n c e and s t anda rd d e v i a t i o n

6 var , sd , cov , cor , range , IR , mad( y , c e n t e r=median ( y ) )
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Estimation of CCVF

The estimate of the CCVF �yu[l] between two signals y and u is the cross-covariance

estimate between y[k] and u[k � l].

�̂yu[l] =
1

N

N�l�1X

k=l

(y[k]� ȳ)(u[k � l]� ū) l � 0 (26)

I For negative lags, use �yu[l] = �uy[�l].

I The maximum lag up to which �̂yu[l] can be evaluated is |l
max

| = N � 1.

I Observe that the estimate in (26) simplifies to the ML estimate of variance in (9).
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Estimation of CCF

An estimate of the CCF is obtained by simply normalizing the CCVF estimate,

⇢̂yu[l] =
�̂yu[l]p

�̂yy[0]�̂uu[0]
(27)

Properties
The estimator in (27) is asymptotically unbiased and consistent. This is expected a

correlation estimate is underlying (27).
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Properties of CCF estimator

In TSA, we are primarily interested in, (i) whiteness of residuals (or a given series) and

(ii) lack of correlation between residuals and (lagged) inputs.

Thus, the following is required to be known:

1. Variability (or standard error) in ⇢̂yu[l] when the true correlation is

⇢yu[l] = 0, 8l. This is useful in drawing the significance levels for CCF (ACF)

estimates.

2. Correlation between estimates at two di↵erent lags, again when the true

correlation function is zero. This becomes useful in interpreting the CCF (ACF)

plots.
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Properties of CCF estimator

A general result is given in Brockwell and Davis, 1991; Shumway and Sto↵er, 2006. We

shall only study the case when the true correlation is zero and present the salient points.

I The significance levels for correlation estimates when one of the signals is

hypothesized to be white are given as below:

⇢̂yu[l] ⇠ As.N (0, 1/N) (28)

=) 100(1� ↵)% sig. level for ⇢̂yu[l] = ±
z↵/2p
N

(29)
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Properties of CCF estimator . . . contd.

I If neither signal is known to be white, then one or both have to be

pre-whitened to be able to use the results.

Pre-whitening: Given any series, the process first involves fitting a su�ciently

high-order time-series model (preferably AR because of the ease of estimation) to

the given series. The residuals of the resulting model is the pre-whitened series.
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Example: Testing for zero cross-correlation

Zero cross-correlation test
Consider two signals that are theoretically uncorrelated, but individually auto-correlated:

y[k] =
1

1� 1.1q�1
+ 0.28q�1

e1[k] (AR(2)); u[k] =
1

1� 0.8q�1
e2[k] (AR(1))

e1[k] ⇠ N (0, 1); e2[k] ⇠ N (0, 1); �eq1e2 [l] = 0, 8l

We compute ⇢yu[l] from N = 512 observations as shown in Figure ??.
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Example: . . . contd.
Although the series are truly uncorrelated, blindly applying the significance levels

without considering the auto-correlation structure of the individual series can lead to

erroneous conclusions.
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Example: . . . contd.
Pre-whitening both the series followed by a CCF testing reveals the correct underlying

relationship between the two signals y[k] and u[k].
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Estimation of Auto-correlation function

Estimating ACF is a special case of the CCF. Therefore, the estimator and its properties

simply inherit from that for the cross-correlation function.

Estimator:

⇢̂yy[l] =
�̂yy[l]

�̂yy[0]
; �̂yy[l] =

1

N

N�l�1X

k=l

(y[k]� ȳ)(y[k � l]� ȳ), l � 0 (30)

As in the case of CCF, the maximum lag up to which the ACF can be computed is

|l
max

| = N � 1.
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Estimation of ACF . . . contd.

By virtue of the preceding result, we have that, for a Gaussian white-noise signal,

⇢̂yy[l] ⇠ AsN (0, 1/N)

=) 100(1� ↵)% sig. level for ⇢̂yy[l] = ±
z↵/2p
N

(31)

(32)

The above result forms the basis for a test of whiteness (test of predictability).
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Tests of whiteness

Testing a given series for whiteness (zero temporal correlation) characteristics is an im-

portant step in TSA and identification. The hypothesis under examination is:

H0 : ⇢[l] = 0, 8l 6= 0, Ha : ⇢[l] 6= 0, for some non-zero lags

Several methods are available for this purpose. For a detailed discussion, refer to Brock-

well, 2002. We discuss two prominently used methods:
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Tests of whiteness

1. Sample auto-correlation test: The setup for this test directly follows from (32).

For a given series, compute the ACF estimates up to a maximum lag, say l = 20.

Then, reject H0 if at the ACF exceeds the 100(1� ↵)% significance level in (32).

For instance, the 95% significance levels are ±1.96
p
N .

A matter of concern in implementing this test is that the probability of

|⇢̂[l]| > 1.96
p
N at a given lag depends on ⇢̂[l] at other lags.

See Box, Jenkins, and Reinsel, 2008 for a clear illustration of this test.
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Portmanteau test

2. Box-Ljung-Pierce test: Or the portmanteau test. This method is superior to the

above test because it collectively examines the ACF estimates over a range of lags.

Under H0, the sample ACF coe�cients possess a Gaussian distribution; therefore

the sum-squared estimates follow a �2 distribution.

With this basic idea, the following statistic is constructed:

Q = N(N + 2)

LX

l=1

⇢̂2yy[l]

N � l
(33)
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Example: Whiteness test

Whiteness test of a series

Given N = 512 observations of a series, whose snapshot if displayed in Figure 1, we

would like to test for its whiteness.

The sample ACF and the significance levels are shown in Figure 2. Based on the sample

ACF test, the null hypothesis that the given series is white is rejected at ↵ = 0.05

significance level since the ACF is outside the 95% significance band at least at one

non-zero lag.
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Example: Whiteness test . . . contd.
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Figure 1: Snapshot of the series
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Figure 2: Sample ACF
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Example: Whiteness test . . . contd.

The BLP Q statistic (with L = 20) for the given series is 250.6922, a value much higher

than the critical value of 31.41 obtained from the �2
20,↵/2 distribution where ↵ = 0.05.

Thus, the null hypothesis that the series is white is rejected at ↵ = 0.05 significance

level.

The ACF plot is in fact suggestive of a MA(2) model for the series. However, such

guesses should be confirmed with a more rigorous analysis.
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R commands

Listing 2: R commands for estimating cross- and auto-correlation
1

2 # Computing ACF and PACF

3 acf , pac f

4

5 # Computing CCF

6 c c f

7

8 # B�L Whiteness t e s t

9 Box . t e s t
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