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Moving Average (MA) representations
The moving average representation of order M has the following form

v[k] =
MX

n=1

cne[k � n] + e[k] (16)

whose transfer function operator form is

v[k] = H(q�1)e[k], H(q�1) = 1 +
MX

n=1

cnq
�n (17)

In an MA(M) representation, the current “state” of the process is presumed to be

an averaged e↵ect of M past shock waves plus an uncertainty
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Remarks

I From a forecasting perspective, e[k] is the unpredictable part of v[k].

I The finite-order MA process is always stationary so long as the {h[.]} are

finite

I The infinite-order MA process is stationary only when {h[n]} is absolutely

convergent

I The MA(M) process is also known as M -correlated process.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 31



Models for Stationary Linear Processes

ACF of MA processes

To determine whether an MA representation is suitable for a given time-series, it is

important to study the statistical properties of an MA(M) process and check whether

the statistical properties of the given series has a similar structure as well.

The most useful property of interest is the ACF, since it characterizes predictability.

The ACF of finite-order MA process has a special characteristic that not only re-

veals whether an MA representation is suited for a given series but also facilitates

determination of the order of the MA model
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Example: ACF of an MA(1) process

Problem: Determine the ACF of a MA(1) process: v[k] = e[k] + h1e[k � 1]

Solution: The solution was derived previously:

⇢vv[l] =

8
>>><

>>>:

1 l = 0

h1
(1 + h21)

l = ±1

0 |l| � 2

(18)

with �vv[0] = (1 + h21)�
2
ee

The ACF of an MA(1) process abruptly vanishes after |l| > 1 (the order of the process)
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ACF of an MA(M) process

In general, it is true that the ACF of an MA(M) process dies out abruptly from lag

l = M+1 onwards. For this reason, the MA(M) process is known as anM -correlated

process.

The observation above can be established by working with the auto-covariance gener-

ating function, which also facilitates easy computation of the ACVF for any MA process

given the transfer function operator H(q�1)
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Mapping the ACF of MA model and its parameters

Now, we address an important question which is concerned with the estimation of MA

models for a given series.

Can any MA model with finite-valued coe�cients be used to represent a stationary

process?

The answer to this question depends on the uniqueness of mapping between the ACF and

model parameters, regardless of whether we explicitly use the relation or not.

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 35



Models for Stationary Linear Processes

Multiple MA models for the same ACF

Example
Recall the ACF of an MA(1) process v[k] = e[k] + c1v[k � 1]:

⇢vv[l] =

8
>><

>>:

1 l = 0
h1

(1 + c21)
l = ±1

0 |l| � 2

Given ACF, what is the estimate of c1?
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Example . . . contd.

By solving the quadratic equation using ⇢[1] one obtains two roots that are

reciprocals of each other. By inspection, it is easy to observe that both c1 and 1/c1
produce the same ACF.

Two MA models produce the same ACF
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Invertibility of MA models . . . contd.

Remark
In general, for a given ACF there will always exist two MA models, one with zeros

outside the unit circle and another with zeros inside the unit circle.

Which model should be chosen?

To answer this question, we turn to forecasting, the usual end-use of a model.

The requirement is that the chosen model should produce stable predictions.
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Predictions with MA models

Example
Consider the prediction of an MA(1) process: v[k] = e[k] + c1e[k � 1] given

measurements upto k

Denoting the predictions with a hat, we can write

v̂[k + 1|k] = c1e[k]

since e[k + 1] is unpredictable given any amount of information in the past. The shock

wave e[k] can be, however, theoretically recovered from the measurements up to k.
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Predictions with MA models

To realize this, observe

e[k] = v[k]� c1e[k � 1]

= v[k]� c1v[k � 1] + c21e[k � 2]

= v[k] +
1X

n=1

(�c1)
nv[k � n] (19)

For the infinite sum on the RHS to converge, |c1| < 1.

Thus, to produce stable predictions, it is important to select the model with |c1| < 1 ⇤

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 40



Models for Stationary Linear Processes

Alternative viewpoint

Observe that we could re-write the MA model for v[k] as a recovery equation for e[k]:

e[k] + c1e[k � 1] = v[k] (20)

where v[k] is the input to the process and e[k] is the response.

I Notice that the recovery process is an AR(1) process.

I We know from prior knowledge that stationarity of an AR(1) process is guaranteed

if and only if |c1| < 1.

I Therefore, for stable forecasts, one requires |c1| < 1.
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Formal setup

From a formal viewpoint, we are seeking an inverse model

e[k] = H̃(q�1)v[k] =
1X

m=0

h̃[m]v[k �m] (21)

such that

H̃(q�1)H(q�1) = 1 (22)

and e[k] is stationary.
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Inverse noise model
It can be shown formally that the inverse is (if it is meaningful),

H̃(q�1) = H�1(q�1) (23)

i.e., h̃[.] are the coe�cients of series expansion of H�1(q�1).

Example
Compute the inverse of the MA(1) model and state the conditions of existence.

H(q�1) = 1 + c1q
�1 =) H�1(q�1) = (1 + c1q

�1)�1

= 1� c1q
�1 + c21q

�2 � c31q
�3 + · · ·

Therefore, h̃[m] = (�c1)m, m � 0 and the inversion is meaningful only if |c1| < 1.
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Re-writing the prediction equation

For a general linear stationary process, the one-step ahead prediction equation as

v̂[k|k � 1] =

 1X

n=1

h[n]q�n

!
e[k] (24)

= (H(q�1)� 1)e[k] (25)

= (H(q�1)� 1)H�1(q�1)v[k] (26)

where we have used the commutativity property of the shift operators. We have thus,

v̂[k|k � 1] = (1�H�1(q�1))v[k] (27)
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Remarks

Equation (27) appears awkward in the sense that v[k] is “apparently” required to predict

v[k]! However,

Observe that the leading coe�cient in the inverse of noise model is unity. This

is always the case (since we have fixed h0 = 1).

Thus, the first term in the expansion of (27) is no earlier than v[k � 1].
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Invertibility of MA models

Definition
An MA(M) process is said to be invertible if and only if all the roots of H(z�1)

(which is obtained by replacing q�1 by z�1) of the characteristic equation

H(z�1) = 1 +
MX

n=1

cnz
�n (28)

reside outside the unit circle (in terms of z�1)

Remark: Naturally, if the roots are computed in terms of the variable z, the roots should

reside within the unit circle
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Running summary

I Linear random processes can be expressed as infinitely weighted linear combinations

of future, present and past shock waves (WN process).

I Descriptions for linear random processes have very strong similarities to that of

stable LTI deterministic processes

I Identification (modelling) demands that we place certain restrictions on the TS

model (leading coe�cient to unity).

I The infinite unknowns are handled by making certain assumptions on the IR

coe�cients.
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Running summary

I The MA(M) model takes birth when it is assumed that h[n] = 0, 8n > M .

I MA(M) processes are equivalent to FIR models. They are characterized by ACFs

that abruptly vanish at lags exactly after |l| > M

I Among the possible MA representations for a process, we admit only invertible MA

models

I Invertible models are those whose zeros reside outside the unit circle.
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Auto-Regressive Processes

We explore now the other approach to handling infinite unknowns, which does not

subscribe to the abrupt drop of h[.]. but rather parametrizes h[.] so that it decays

according to some function (why decay?).

Examples:

i. h[k] = ↵1�
k
1, |�1| < 1,↵ 2 R,

ii. h[k] = ↵1�
k
1 + ↵2�

k
2, |�1|, |�2| < 1,↵1,↵2 2 R.

Now we show that under the above parametrization, the convolution model in (10a)

manifests as a di↵erence equationmodel, more popularly known as the auto-regressive

model.
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Parametrization of IR coe�cients �! DE models
Assume that h[n] = ↵1�

n
1 , |�1| < 1,↵ 2 R. Plugging this parametrization into the

general linear model of (10a) and writing the equation at two successive instants yields,

v[k] = ↵1

1X

n=0

�n
1e[k � n]

v[k � 1] = ↵1

1X

n=0

�n
1e[k � 1� n]

A simple algebraic manipulation yields a di↵erence equation form for v[k],

v[k]� �1v[k � 1] = ↵1e[k] (29)
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The AR(1) model

Introducing d1 = ��1 and absorbing ↵1 into e[k] (why?), we have from (29), the

first-order auto-regressive AR(1) model,

v[k] + d1v[k � 1] = e[k] , |d1| < 1 (30)

I The process is explained purely using its immediate past and hence the name. The

uncertainty term e[k] is an integral part of the model.

I It is easy to see that �1 is the root of the characteristic equation of (30).

I The mapping between the DE form and parametrization is unique.
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AR Representations
Extending the foregoing idea to the general parametrization

h[k] =
PX

j=1

↵j�
k
j , |�j| < 1,↵j 2 R, j = 1, · · · , P (31)

yields the AR(P ) model

v[k] +
PX

j=1

djv[k � j] = e[k] (32)

where �j’s are the roots (for z) of the characteristic equation of (32) and dj’s are such

that these roots are inside the unit circle.
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AR(P ) models
The transfer function operator form is,

v[k] = H(q�1)e[k], where H(q�1) =
1

1 +
PX

j=1

djq
�j

(33)

In an AR(P ) representation, the current “state” of the process is modelled as an

averaged e↵ect of its P past “states” plus an uncertainty

I Once again, the parametrization in (31) and the AR(P ) model in (32) are uniquely

mapped.
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Stationary AR processes
The stationarity condition can be derived by using either the equivalence of AR and MA

processes or by invoking the analogy of stable deterministic processes.

Stationarity of AR(P ) process
A general AR(P ) process (see Shumway and Sto↵er (2000) for proof),

v[k] +
PX

j=1

djv[k � j] = e[k]

is causal & stationary if and only if the polynomial

D(z�1) = 1 +
PX

j=1

djz
�j = ⇧P

j=1(1� �jz
�1) = 0 (34)

has all roots {1/�j}Pj=1 (i.e.,in terms of z�1) outside the unit circle.
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Stationarity of AR processes

I It is important to remember that the constraint is NOT on the coe�cients, but on

the roots of the polynomial D(z�1).

I
If the roots are computed in terms of z, then the requirement is that all the roots

should reside within the unit circle.
I

The condition is identical to that of a stable LTI deterministic process described by

di↵erence equation coe�cients {dj}

I An alternative definition of a causal stationary AR process is that it possesses an

equivalent causal invertible MA representation.
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Causality & Stationarity

The foregoing result guarantees causal and stationary representations. Causality is an

essential clause there since non-stationary processes can still be given an AR

representation such that (34) is satisfied, but one which is non-causal.
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Causality & Stationarity . . . contd.
Example: Explosive AR(1) process
Consider an AR(1) process, with |d1| > 1. Clearly the series is explosive (v[k] grows

unbounded). However, we could re-write the series as follows:

v[k � 1] = (�d1)
�1v[k] + d�1

1 e[k]

= (�d1)
�2v[k + 1]� (�d1)

�2e[k + 1]� (�d1)
�1e[k]

=) v[k] =
�1X

j=�1

(�d1)
je[k � j] =

1X

j=1

(�1/d1)
je[k + j]

Thus, an explosive series can be still given a linear stationary representation

since the coe�cients of the series are absolutely convergent!
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Causality & Stationarity . . . contd.

However, the series is non-causal (future shock waves a↵ect the process at present)

In other words, looking at an explosive series “backwards” in time can make it look

stationary. However, since non-causal models are of little use in forecasting (non-causal

models are used in smoothing time-series), we exclude those AR models that give rise to

explosive series and hereafter, understand causal models as stationary.
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ACF of AR processes
The suitability of an AR model for a given linear stationary process is determined by the

ACF signature of the process.

Example: ACF of an AR(1) process
The AR(1) process v[k] = �d1v[k � 1] + e[k], |d1| < 1 has the ACF

�vv[0] =
�2
e

1� d21
⇢vv[l] = (�d1)|l| 8 |l| � 1

Remark: In contrast to an MA(1) process, the ACF of an AR(1) process has an expo-

nential decay.
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ACF of a general AR(P ) process

For a general AR(P ) process,

v[k] =
PX

j=1

(�dj)v[k � j] + e[k] (35)

the ACF can be derived by first invoking the definition

�vv[l] = E(v[k]v[k � l]) =
PX

j=1

�dj�vv[l � j] + �ev[l], with �ev[l] =

8
<

:
�2
e l = 0

0 l > 0

The ACVF of an AR process satisfies the same di↵erence equation as the original process
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General solution to the ACVF of an AR(P ) process
Then, writing the ACVF equations separately at lags l = 0 and l > 0 produces

�vv[0] +
PX

j=1

dj�vv[j] = �2
e (36)

�vv[l] +
PX

j=1

dj�vv[l � j] = 0, l > 0 (37)

The general solution to the ACVF is the solution to the di↵erence equation above

�vv[l] = �1�
l
1 + �2�

l
2 + · · ·+ �P�

l
P 8l > 0, (38)

where {��1
j }Pj=1 are the roots of the CE of (35) and the constants are obtained by solving

(36) and (37).
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Yule-Walker equations

Equations (36) - (37) are known as Yule-Walker equations named after Yule and Walker

who discovered these relationships.

AR(2) process
When P = 2, the equations are (dropping the subscripts on �)

�[0] + d1�[1] + d2�[2] = �2
e

�[1] + d1�[0] + d2�[1] = 0

�[2] + d1�[1] + d2�[0] = 0

=)

2

64
1 d1 d2

d1 (1 + d2) 0

d2 d1 1

3

75

2

64
�[0]

�[1]

�[2]

3

75 =

2

64
�2
e

0

0

3

75
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Example: Y-W equations . . . contd.

The solution is given by

�[0] =
�2
e

1� d21 � d22
; ⇢[1] = � d1

1 + d2
; ⇢[2] = �d2 +

d21
1 + d2

Observe that we could use the Y-W equations to also estimate the model, i.e., the

coe�cients and �2
e given the ACVFs. This is the basic idea underlying a popular method

for the estimation of AR models.
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Yule-Walker equations

Estimating the parameters of an AR(2) process
When P = 2, with the parameters treated as unknowns, the equations are

"
1 ⇢[1]

⇢[1] 1

#"
d1

d2

#
=

"
�⇢[1]

�⇢[2]

#
=)

"
d1

d2

#
=

"
1 ⇢[1]

⇢[1] 1

#�1 "
�⇢[1]

�⇢[2]

#

I Observe that we have used only two of the three Y-W equations to estimate

the coe�cients w/o the knowledge of �2
e .

I The other equation is useful in computing the variance of the driving force �2
e .
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Yule-Walker equations for an AR(P ) process

The Y-W equations and the theoretical estimates of the model coe�cients for a generic

stationary AR(P ) process are given by:

2

66664

�[0] �[1] · · · �[P � 1]

�[1] �[0] · · · �[P � 2]
...

... · · · ...

�[P � 1] �[P � 2] · · · �[0]

3

77775

2

66664

d1

d2
...

dP

3

77775
=

2

66664

�[1]

�[2]
...

�[P ]

3

77775

=) ⌃Pd = ��P
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Y-W method for estimating an AR(P ) model

It follows that

d = �⌃�1
P �P (39)

In practice, the theoretical values are replaced with their respective estimates, resulting

in the Yule-Walker estimates of the coe�cients.

d̂ = �⌃̂�1
P �̂P (40)

We shall study this method in greater detail in the context of model estimation.
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Exponential decay of ACF of AR processes

Recall that unlike for MA processes, ACF does not provide a distinct signature for

determining the order of an AR process.

I Propagative e↵ects present in AR processes prevent the ACF from detecting the

“direct” correlation.

I Any stationary AR process can be re-written as an invertible infinite-order MA

process, thereby resulting in an ACF that theoretically vanishes at infinity lag.
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Determining the order of AR processes

Two possible solutions:

A. Fit AR models of successively increasing orders (guesses) until we hit upon the

“true” order.

B. Discount for the propagative e↵ects to uncover the true order.

It turns out both these options are identical to using PACF for determining the

order.
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Successively increasing orders method

1. Fit AR(p) models of successively increasing orders p = 1, · · · , P
max

(user-defined),

v[k] =
pX

j=1

�pjv[k � j] + e[k] (41)

2. Collect the last coe�cient �pp, ; j = 1, · · · , P0 of each model that is fit.

3. The value of p after which �pp persistently remains at zero is the true order of the

AR process.
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Order determination . . . contd.

Underlying philosophy: When an AR(p) model is fit to an AR(P0) process,

�pp = 0 8p > P0 (42)

The AR models of successively increasing orders can be estimated using Y-W equations

(or a least squares method) in a computationally e�cient manner using the

Durbin-Levinson’s algorithm:
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Durbin-Levinson’s algorithm
1. Fit the best AR model of first order. The optimal estimate is:

�11 = ⇢[1]

2. The coe�cients of AR(p) models of orders p � 2 can be recursively computed as

�p+1,p+1 =

⇢[p+ 1]�
pX

j=1

�pj⇢[p+ 1� j]

1�
pX

j=1

�pj⇢[j]

�p+1,j = �pj � �p+1,p+1�p,p�j+1 j = 1, · · · , p

Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 71



Models for Stationary Linear Processes

Connections with PACF

Comparing the method of computing PACF with the method of using models of succes-

sively increasing orders, with minimal e↵ort it is easy to show that the PACF coe�cient

at lag l = p is the last coe�cient of the AR(p) model

PACF coe�cient at lag p is �pp :

Thus, one can use the Durbin-Levinson’s algorithm to recursively compute PACF

coe�cients of di↵erent lags, as well as to estimate the model coe�cients.
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Sample PACF calculations using D-L algorithm

PACF computation
Problem: Compute the PACF of a stationary process at lags l = 1, 2

Solution: The PACF at lag l = 1 is the coe�cient of the AR(1) model

�11 = ⇢[1]

At lag l = 2, using the D-L algorithm,

�22 =
⇢[2]� �11⇢[1]

1� �11⇢[1]
=

⇢[2]� ⇢[1]2

1� ⇢[1]2

Observe that for an AR(1) process, �22 = 0

This procedure can be continued to compute PACF at higher lags.
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Equivalence between AR and MA representations

An invertible MA process possesses an equivalent stationary AR representation and vice

versa - a stationary AR process possesses an invertible MA representation.
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Example: AR and MA representations

Problem: Find a stationary AR representation of an invertible MA(1) process:

v[k] = e[k] + 0.6e[k � 1]

Solution: The AR representation can be found by either recursively substituting for

past values of e[k] in terms of v[k] or by a long division of the MA

polynomial (provided the inverse converges).

We shall use the latter method. Existence of inverse is guaranteed by the

invertibility of the MA model.
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Example: AR and MA representations

v[k] = (1 + 0.6q�1)e[k]

=) (1 + 0.6q�1)�1v[k] = e[k]

(1� 0.6q�1 + 0.36q�2 � ...)v[k] = e[k]

) v[k] =
1X

j=1

(�0.6)jv[k � j] + e[k]

Thus, the equivalent AR process is theoretically an infinite-order
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Interesting and important observation

Parametrizing the IR coe�cients {h[.]} of the linear random process in (10a) is

equivalent to parametrizing the ACVF of the stationary process.

Parametrizing ACVF in turn amounts to parametrizing the spectral density

function of the process!
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ARMA representations
In reality, several processes have mixed e↵ects, i.e., both MA and AR e↵ects, or it is

that we require a fusion of both to explain the process in a parsimonious manner:

For this purpose, we turn to a more general representation that contains mixed e↵ects.

This is the auto-regressive moving-average (ARMA(P,M)) representation

v[k] = H(q�1)e[k]

H(q�1) =
C(q�1)

D(q�1)
=

1 +
MX

i=1

ciq
�i

1 +
PX

j=1

djq
�j

(43a)

(43b)
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On ARMA representations

ARMA models that are both invertible and stationary are allowable representations

for causal, stationary processes

I ARMA processes simplify to AR or MA models depending on whether C(q�1) = 1

and D(q�1) = 1 respectively

I An ARMA process can always be given an equivalent AR or MA representation. In

either case, the resulting models are of infinite-order
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ACF of an ARMA process

There are primarily two di↵erent ways in which one can calculate the theoretical ACF of

a ARMA(P,M) process:

A. Convert the given ARMA process to a MA process and use existing results

I
Write the di↵erence equation in MA series (will be of infinite order)

B. Write the di↵erence equations for the ACF.

I
The first K set of equations for lags l = 0, · · · ,K � 1 where K = max(P,M + 1)

are linear in the ACVFs. They have to be solved simultaneously

I
The second set of equations are the recursive relations like those that arise in AR

process. These are solved recursively for lags l = K,K + 1, · · ·
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On the order determination of ARMA processes

Neither the ACF nor PACF can provide a practically useful distinct signature

to determine the order of the numerator and denominator polynomials

In practice, one uses information-theoretic measures such as Akaike’s Information Criterion

(AIC), Bayesian (Schwartz) Information Criterion (BIC) or a machine-learning metric

such as Minimum Description Length (MDL) to determine the appropriate order.
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Choice of representation

A commonly encountered question is: which form to choose? - MA or AR or ARMA?

I There is no definitive answer since all forms are inter-convertible. A few guidelines,

however, exist primarily from an estimation point of view
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Which model?

I No model is a true description of the process!

I A model only provides an approximate abstraction of the process evolution with

time (or space, frequency, etc.)

I Keep the model as simple as and whenever possible (principle of parsimony)

Choose that model description which contains few parameters without com-

promising significantly on the quality and predictive ability of the model

I Over-parametrized model implies more parameters to estimate and hence larger

error =) lower reliability of the model (we give a theoretical proof later)
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Commands in R

Commands Functionality

ts, as.ts Create time-series objects

ARMAacf Theoretical ACF and PACF for a given ARMA model

acf2AR Derive an AR model for a given ACF

arima.sim Simulate AR(I)MA models

acf, pacf ACF and PACF estimates with plots

arima, ar Estimate AR(I)MA and AR models, respectively
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