
Models for Non-Stationary Processes

Estimating trends using filters . . . contd.

3. Exponential smoothing of data to estimate the trend m[k]

m̂[k] = ↵v[k] + (1� ↵)m̂[k � 1], k = 2, · · · , n
m̂[1] = v[1]

The choice of ↵ has to be fine tuned according to the trend.

4. Smoothing by elimination of high-frequency components of the series

I
A spectral analysis of the data can be carried out to determine the cut-o↵ frequency

Note: When seasonality/periodicity is present, an additional procedure has to be followed that

eliminates seasonality prior to trend estimation.
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Method of di↵erencing

Consider the same series as earlier

v[k] = ↵0 + ↵1k| {z }
m[k]

+w[k] ↵0,↵1 2 R

Construct the di↵erenced series

v[k]� v[k � 1] = (1� q�1)v[k] = ↵1 + w[k]

Introducing r = 1 � q�1, we can thus observe that the di↵erenced series rv[k] is a

non-zero mean stationary process
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Models for Non-Stationary Processes

Method of di↵erencing

It is easy to observe that polynomials of dth degree can be eliminated by di↵erencing d

times, i.e.,

Di↵erenced series rdv[k] is free of all polynomial trends up to degree d

However, as we will see shortly, di↵erencing introduces a non-invertible zero in the

di↵erenced series!

Note: The operator rd should not be confused with the other operator rd = 1 � q�d

that is often used to eliminate seasonal e↵ects.
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Integrating processes

A pure integrating type stochastic process is de-

scribed by

v[k] = v[k � 1] + e[k] (2)

where e[k] is the usual WN.

I
For the process (2) above, the series

rv[k] = (1� q�1)v[k] = e[k] is indeed

stationary.

Simulated Process: x[k] = x[k-1] + e[k]

Time

x
k
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Sample path of an I(1) process
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Integrating type process . . . contd.

The integrating process in (2) is also an AR(1) process, but with the pole on the unit

circle.

An alternative representation of (2) is

v[k] =
1X

j=0

e[k � j] (3)

Thus, this is an MA process of infinite-order. The coe�cients of this model, expectantly,

do not satisfy the condition of absolute convergence.

Note: The representation in (3) also explains the name for the process.
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ARIMA models

The method of di↵erencing followed by an ARMA representation of the di↵erenced series

is a common approach to model non-stationary processes of the integrating type.

The resulting representation gives rise to an ARIMA(P, d,M) model:

rdv[k] =
C(q�1)

D(q�1)
e[k] (4)

where

rdv[k] = (1� q�1)dv[k] (5)
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ARIMA models . . . contd.
For the original series, the transfer function is therefore

H(q�1) =

1 +
MX

i=1

ciq
�i

(1� q�1)d(1 +
PX

j=1

djq
�j)

(6)

I The quantities P and M have their usual meaning as in ARMA models

I The parameter d refers to the order of integrating e↵ect

I Best remembered as an ARMA model on a series that is di↵erenced d times

I ARIMA models necessarily have d poles on the unit circle
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ARIMA models . . . contd.
A more general ARIMA representation is

rdv[k] = µd +
C(q�1)

D(q�1)
e[k] (7)

I The constant ↵d can originate from the presence of a polynomial trend of the form
Pd

i=0 µik
i in v[k].

I Thus, when an ARIMA model with a constant is fit to a given series, it is

understood implicitly that v[k] has a polynomial trend of degree d with or without

integrating e↵ects.

We shall mostly work with (4)
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Method of di↵erencing vs. polynomial fits

I Filtering approach: Estimates the trend followed by the development of an

ARMA model for the stationary residuals

I Di↵erencing approach: In contrast, eliminates the trend implicitly and fits an

ARMA model.
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Method of di↵erencing vs. polynomial fits

I Further, the di↵erencing approach, i.e., an ARIMA model fixes one of the poles of

the model to the unit circle irrespective of whether the actual process has a pole on

the unit circle or not. This has its own merits and demerits:

I
Merit: Estimation of “stationary” poles, but close to unit circle, can result in

models with confidence regions containing non-stationary models. By forcing the

pole to the unit circle a priori, this situation is avoided.

I
Demerit: A stationary process with slowly decaying ACFs acquires a non-stationary

representation.
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Deterministic trends and di↵erencing

I Removal of linear or polynomial trends by curve fitting seems to be the preferable

way of detrending. However, it is not without its shortcomings.

I Major di�culty: Inability to distinguish between trends and incomplete cycles of

very low frequencies (Granger, 1966; Granger and Hatanaka, 1964).

I Alternative: Use MA and exponential filters to extract trends (Brockwell, 2002;

Chatfield, 2004)).
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ACF and PACF of an integrating process

ACF estimates exhibit a very slow decay for integrating type process.

This characteristic can be understood by examining the theoretical ACF of an AR(1)

process,

⇢[l] = (�d1)
|l| (8)

As d1 approaches unity, the decay is very slow. In the limiting case d1 ! 1, the ACF

approaches a constant.
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ACF and PACF of an integrating process

I The exact behavior of the estimates is more complicated, but it tends to have the

characteristics of the theoretical ACF for large samples.

I It follows that the PACF of this process has a single non-zero coe�cient at lag l = 1

with a value tending to unity.
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Example

Simulated Process: x[k] = x[k-1] + e[k]

Time

x
k
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(a) Integrating series
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(b) ACF of I(1) series

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
A

C
F

Lags

(c) PACf of I(1) series

The ACF and PACF estimates agree with the theoretical observations made earlier.

Note: The slow decay in the ACF estimate is also the characteristic of a trend stationary

process.
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Di↵erencing: Remarks

The di↵erencing operation truly serves its purpose only when the process has a pole

location exactly at unity.

This requirement cannot be expected to hold for a general process.

Is di↵erencing a series worth the risk?

I Estimation of “stationary” poles, but close to unit circle, can result in models with

confidence regions containing non-stationary models. By forcing the pole to the unit

circle a priori, this situation is avoided.

I Side e↵ect: a stationary process with slowly decaying process acquires a non-stationary

representation.
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Case for di↵erencing: Example
Consider N = 400 samples of a stationary process: H(q�1) =

1

1� 0.96q�1
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(b) PACF of series
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(c) PACF of di↵. series

The ACF shows a slow decay indicating possible random walk behavior, as confirmed by

the PACF.
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Example . . . contd.

Suppose we fit an AR(1) model to the series,

Ĥ(q�1) =
1

1� 0.9745
0.011

q�1
(9)

The pole location of the estimated (nominal) model is at 0.97, which is close to but

within the unit circle.
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Example . . . contd.

I However, the 99% confidence interval for the parameter d1 is given by �0.9745±0.03

(we shall learn later how to compute CI).

I Thus, one of the possible models in the model set has a pole location outside the

unit circle. Clearly, this does not agree with the observed series.

I On the other hand, the I(1) model is better suited for the series since at least it is

not explosive, if not stationary.
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Overdi↵erencing

Suppose that the series, or the di↵erenced series v[k], is white. Di↵erencing v[k] yields,

rv[k] = vd[k] = e[k]� e[k � 1] = (1� q�1)e[k] (10)

A spurious correlation is thus observed in vd[k] at lag l = 1. Once again, we have that

an artificial non-invertible zero is introduced in the di↵erenced series.

Use the di↵erencing approach cautiously and perform appropriate tests before

developing an ARIMA model.
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Tests for overdi↵erencing

Simple test for overdi↵erencing

Variance test
When var(rd(v[k])) > var(v[k]), overdi↵erencing has occurred

It is a conservative approach for correlated series.

Unit root in the MA polynomial
The basic idea is that an overdi↵erenced series contains a zero at unity (or several

zeros). See (Brockwell, 2002, Chapter 6) for more details.
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Tests for unit roots (in the AR polynomial)

A few di↵erent tests for the presence of poles at unity are available:

1. Augmented Dickey-Fuller (ADF) test (Said and Dickey, 1984)

2. Philip-Perron (PP) test (Phillips and Perron, 1988)

3. Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test (Kwiatkowski et al., 1992)

The KPSS test can be used also for detecting unit roots in presence of deterministic

trends.

More e�cient unit root tests are available. See Elliot, Rothenberg, and Stock, (1996)

and Ng and Perron, (2001).
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Estimating an ARIMA model
Simulated series, ACF and PACF shown below. Goal is to estimate a suitable ARIMA

model.
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(b) ACF of the series
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(c) PACF of the series

ACF and PACF suggest presence of integrating e↵ect(s). Nevertheless, we explore both

routes, i.e., fitting an ARMA and ARIMA model.
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ARIMA Modelling: FItting an ARMA model

First possibility is to build a model for the series as is, based on the signatures shown by

the PACF plot, which suggests an AR(3) model.

The estimated AR(3) model is:

Ĥ1(q
�1) =

1

1� 1.844
(±0.03)

q�1 + 1.082
(±0.06)

q�2 � 0.2249
(±0.03)

q�3
; �̂2

e = 0.9617 (11)
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ARIMA modelling: Analysis of the ARMA model

I Model passes the residuals test as

shown in the adjacent figure.

I Parameter estimates are reliable (low

errors).
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ACF of AR(3) (original series) residuals

Thus, this model is satisfactory in all respects.
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ARIMA modelling example: Di↵erencing the series
The di↵erenced series vd[k] = rv[k], its ACF and PACF are shown below.
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(b) ACF of vd
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(c) PACF of vd

The PACF suggests an AR(2) model for vd[k]. For comparison purposes, we estimate an

ARMA(1,1) model, which is also characterized by two parameters.
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ARIMA Modelling: Di↵erencing approach

The estimated AR(2) and the ARMA(1,1) models are, respectively:

Ĥ(q�1) =
1

1� 0.821
(±0.03)

q�1 + 0.243
(±0.03)

q�2
, �̂2

e = 0.9769

Ĥ(q�1) =
1 +

(±0.04)

0.364q�1

1� 0.467
(±0.04)

q�1
. �̂2

e = 0.9814
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ARIMA Modelling: Di↵erencing approach . . . contd.
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(e) ACF of ARMA(1,1) (di↵. se-
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ARIMA modelling example . . . contd.

I Both models pass the whiteness test and have reliable parameter estimates.

I However, we shall accept the AR(2) model because it has unique estimates.

Thus, a suitable ARIMA model for the series is:

Ĥ2(q
�1) =

1

(1� q�1)(1� 0.821
(±0.03)

q�1 + 0.243
(±0.03)

q�2)
(12)
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ARIMA modelling example . . . contd.

I Incidentally the model in (11) for the original (un-di↵erenced) series (11) and the one

in (12) for the di↵erenced series are of the same order. The distinguishing feature is

the pole locations of these two models, as given below

Poles(Ĥ1) : 0.9625, 0.4185± j0.2344

Poles(Ĥ2) : 1, 0.4104± j0.2732

I The nominal poles of Ĥ1 are all stable, thus corresponding to a stationary model

whereas one of the nominal poles of Ĥ2 is on the unit circle. Which model is

preferable?
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ARIMA modelling example . . . contd.

The deciding factor is the confidence region for each of those models.

I One of the possible models in the model set of Ĥ1 has poles located at

1.0324, 0.4283± j0.3438 (the model with coe�cients d̂i + 3�̂di). An explosive

model appears in the confidence region, which is not acceptable.

I The model set associated with Ĥ2 does not possess this shortcoming.

In light of these arguments, Ĥ2(q�1) is selected as the suitable model.
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The underlying process

Data generating model:

H(q�1) =
1 + 0.3q�1

(1� 0.97q�1)(1� 0.54q�1)
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Variance non-stationarities

Variance non-stationarities (heteroskedasticity) are of di↵erent kinds.

I The ARIMA model can handle series with variance that is proportional to time.

I There are, however, other types of variance non-stationarities:

I For example, variance can change as a deterministic function of the mean.

I Alternatively, it could be a complicated function of the series.

Approaches to handle heteroskedasticity include building ARMA models on variance

stabilizing transformed series or to use the more versatile ARCH and GARCH

models.
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Variance stabilizing transformation

Several processes exhibit a property whose variance changes with the level.

�2
k = Ch(µk) (13)

Objective: Find a transformation g(y[k]) s.t. the transformed series has a constant

variance.

Use a first-order approximation for g(.) using Taylor’s-series expansion

g(y[k]) ⇡ g(µk) + (y[k]� µk)g
0(µk) (14)

and demand that �2
k be a constant.
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Solution

The solution is given by

g0(µk) =
1p
h(µk)

(15)

A more general transformation was suggested by Box and Cox (1964):

y�[k] =

8
<

:

(y[k])� � 1

�
, � 6= 0

ln(y[k]), � = 0
(16)

where � is the transformation parameter - user-specified or optimized by an algorithm.
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Box-Cox transformation

� Transformation

�1.0 1/v[k]

�0.5 1/
p
v[k]

0.0 ln(v[k])

0.5
p
v[k]

1.0 v[k] (no transformation)

I Valid only for positive-valued series.

I Transformations can aid in even improving

the approximation of non-Gaussian

distribution with a Gaussian one.

I However, they can also result in violations

of Gaussian distribution and other

assumptions!
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Summary

I Trend-type (with seasonal) non-stationarities are handled by explicitly fitting a

deterministic component (either through polynomial fit or by applying a suitable

filter) followed by an ARMA modelling of the residual.

I Integrating e↵ects are modelled by fitting ARIMA models, which is equivalent to

fitting an ARMA model to the di↵erenced series.

I Overdi↵erencing can introduce non-invertible zeros in the model.

I Integrating e↵ects (or slowly decaying nature of stationary processes) are detected

by slowly decaying ACFs, or more rigorously by unit root tests.

I Heteroskedastic series are handled by either variance stabilizing transformations or

through ARCH / GARCH models.
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