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IntroductionIntroductionIntroductionIntroduction

 Ordinary Differential Equations
◦ States vary in either time or one spatial dimension

 Partial Differential Equations Partial Differential Equations
◦ States vary in:
 Time and space; or
 More than one spatial dimensions

In other words, PDEs represent systems with 
two or more independent variables



An ExampleAn ExampleAn ExampleAn Example

 A conducting rod

 A conducting blockg



An ExampleAn ExampleAn ExampleAn Example

 A conducting rod
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 A conducting block
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Plug Flow ReactorPlug Flow ReactorPlug Flow ReactorPlug Flow Reactor

 Steady State Model

◦ Model:    A
A
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◦ Initial Condition: 00 CC xA 

 Unsteady Model
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◦ Model:
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Typical PDEs of InterestTypical PDEs of InterestTypical PDEs of InterestTypical PDEs of Interest

 First order PDEs
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 Second order PDEs
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Linear if (A to G) are functions of x and y only

Homogeneous if G = 0



OverviewOverviewOverviewOverview

 Classification of PDEs

 Method of Lines
◦ Convert PDEs to ODEsConvert PDEs to ODEs

 Finite Difference
◦ Convert to (non )linear equations◦ Convert to (non-)linear equations



Parabolic PDEsParabolic PDEsParabolic PDEsParabolic PDEs

 When B2 – 4AC = 0
 Example: Transient Axial Dispersion Reactor
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◦ Typically observed when diffusive/conductive terms 
are present or dominant in the system



Parabolic PDEs: Solution MethodsParabolic PDEs: Solution MethodsParabolic PDEs: Solution MethodsParabolic PDEs: Solution Methods

 Forward in Time, Central in Space (FTCS)
◦ Apply forward difference in time: O(∆t)
◦ Apply central difference in space: O(∆x2)
◦ PDE Algebraic:   Solve using NR / Gauss-Siedel

 Crank-Nicholson Method (semi-implicit)( p )
◦ Apply “Midpoint Method” in time
◦ O(∆t2) accurate and more stable

 Method of Lines
◦ Central difference in space:  PDE  ODEs in time◦ Central difference in space:  PDE  ODEs in time



Hyperbolic PDEsHyperbolic PDEsHyperbolic PDEsHyperbolic PDEs

 When B2 – 4AC > 0
 “Wave-like” solution which evolves in one (or 

more) “characteristic” directions
 Example: Transient PFR
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◦ Typically observed when convective terms  are 
dominant in the system



Hyperbolic PDEs: Solution MethodsHyperbolic PDEs: Solution MethodsHyperbolic PDEs: Solution MethodsHyperbolic PDEs: Solution Methods
 Forward in Time, Central in Space (FTCS)
◦ Unstable and hence not used

 “Upwind Difference”p
◦ Apply forward difference in time:   O(∆t)
◦ Apply backward difference in space: O(∆x)
◦ PDE Algebraic:   Solve using NR / Gauss-Siedel

 Crank-Nicholson Method Crank-Nicholson Method
◦ Semi-implicit, higher accuracy and better stability

 Method of Lines
◦ Upwind difference in space:  PDE  ODEs in time



Elliptic PDEsElliptic PDEsElliptic PDEsElliptic PDEs

 When B2 – 4AC < 0
 Solution depends on both boundaries
 Example: Heat conduction in a slab
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◦ Solution depends on all boundary conditions and the 
PDEs need to be solved simultaneously

 yx

PDEs need to be solved simultaneously.



Elliptic PDEs: Solution MethodsElliptic PDEs: Solution MethodsElliptic PDEs: Solution MethodsElliptic PDEs: Solution Methods
 Central difference in all the directions
◦ Accuracy:   O(∆x2),  O(∆y2)
◦ PDE Algebraic:   Solve using NR / Gauss-Siedel

◦ Conceptually simple, but implementation is tedious 
and difficult because all equations are solved q
simultaneously.



Overview of this ModuleOverview of this ModuleOverview of this ModuleOverview of this Module

 Classification of PDEs

 Method of Lines
◦ Convert PDEs to ODEsConvert PDEs to ODEs

 Finite Difference
◦ Convert to (non )linear equations◦ Convert to (non-)linear equations


