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Introduction

e Ordinary Differential Equations

o States vary in either time or one spatial dimension

* Partial Differential Equations

o States vary in:
Time and space; or

More than one spatial dimensions

In other words, PDEs represent systems with
two or more independent variables




An Example

* A conducting rod
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Plug Flow Reactor

e Steady State Model

> Model:

o |nitial Condition:

e Unsteady Model

> Model:

o |nitial Conditions:



Typical PDEs of Interest

e First order PDEs
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e Second order PDEs
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Linear if (A to G) are functions of X and y only

Homogeneous if G = 0



Overview

e Classification of PDEs

e Method of Lines
o Convert PDEs to ODEs

e Finite Difference

> Convert to (non-)linear equations



Parabolic PDEs

e WhenB2—-4AC =0

* Example: Transient Axial Dispersion Reactor
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o Typically observed when diffusive/conductive terms

are present or dominant in the system



Parabolic PDEs: Solution Methods

e Forward in Time, Central in Space (FTCY)
> Apply forward difference in time: O(At)

> Apply central difference in space: O(Ax?)
> PDE =» Algebraic: Solve using NR / Gauss-Siedel

* Crank-Nicholson Method (semi-implicit)
> Apply “Midpoint Method” in time

> (9(At?) accurate and more stable

* Method of Lines
> Central difference in space: PDE =» ODEs in time



Hyperbolic PDEs

e WhenB2—-4AC >0

* “Wave-like” solution which evolves in one (or
more) “characteristic’ directions

e Example: Transient PFR

> Typically observed when convective terms are
dominant in the system



Hyperbolic PDEs: Solution Methods

e Forward in Time, Central in Space (FTCY)

o Unstable and hence not used

» “Upwind Difference”
> Apply forward difference in time: O(At)

> Apply backward difference in space:  ((Ax)
> PDE =» Algebraic: Solve using NR / Gauss-Siedel

e Crank-Nicholson Method

> Semi-implicit, higher accuracy and better stability

* Method of Lines
> Upwind difference in space: PDE =» ODEs in time



Elliptic PDEs

* When B2-4AC <0
* Solution depends on both boundaries

» Example: Heat conduction in a slab
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> Solution depends on all boundary conditions and the
PDEs need to be solved simultaneously.



Elliptic PDEs: Solution Methods

e Central difference in all the directions
> Accuracy: O(Ax?), O(Ay?)
> PDE =» Algebraic: Solve using NR / Gauss-Siedel

> Conceptually simple, but implementation is tedious
and difficult because all equations are solved
simultaneously.



Overview of this Module

e Classification of PDEs

e Method of Lines
o Convert PDEs to ODEs

e Finite Difference

> Convert to (non-)linear equations



