Module 3:

“Convective” heat and mass transfer

Lecture 28:

Application of Mises Transformation to
the problem of Mass Transfer from a

sphere in Creeping (Stokes) flow
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Stokes flow Re = =% << 1( No momentum boundary layer)
%

High Sc >> 1, valid for thin mass transfer boundary layer

Also assume constant physical and transport properties (Use pseudo-steady state to find time of

dissolution)

Sphere of soluble material
Fig. 1

Convective-diffusion equation in spherical coordinates
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Assumptions: constant physical properties, no volume reactions, axis symmetry
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Stream function for Stokes Flow

Fig. 2
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Since r = y+a and y < a, eqn. (2) yields

__3 2 52
y=-=v,y sin" 0 3)

4

Then vy =—— W o1 WV _3, Ving (4)

rsind oy asinf dy 2 " a

At small values of y (y << a), indicates thin boundary layer, so curvature effects can be neglected,

or

o’c__2ac .
57 >> o (in eqn. (1))
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Using eqn. (4) into eqn. (1) in terms of variables (v, 0)

1% _ pasing-2- (asin <9v‘9)ﬁ
a 06 oy oy

Expressing vy in terms of y, one finds

oc 9 .. 3 0 oc

— | =Da"sin” 0\/3v, —| \|-v — 5
(c’ij : 8!//( Wﬁw] )
Set t = Da*/3v, J.sinz 0d6 eqn. (5) turns into

ac_a(Facj ©)

a oy oy

Boundary conditions (deposition)

c=0 at y =0 (at the surface where y =0)
c=c, at y —>—-o (asy—>o)

c=c, at =0, y =0 (atthe leading edge A)
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Fig. 3

Equation (6) can be solved by a combination of variables (similarity transformation)

n= _Z—IZ, then eqn. (6) becomes
4

2, _df o)

30dp dn\Mdn

Setting z = \/; yields

de 3 de_

+ 0 7
dz* 4Z dz D

Integration and use of boundary conditions yield
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4
9
or
4
9
c=c—°Iexp(—iz3jdz (8)
0

o]

The surface flux is

o @ _ Dc, ( 3v, jm sin & 9)
e oy, 115\4Da® (e_siHZH)w
2

0 £(6)
o 1
/2 (2/x)"
T 0

Hence the flux is highest at the point of incidence (6 = 0) decreases with 6 and becomes zero at 6 =

.

The diffusion layer thickness is
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. 13
Nl Y 1.15(0—5“1229] b )
S= Yly=0 _ [ a j

Dc, - sin @ 3v,

As 0 increases 0 increases and at 6 = 7, d—o0

In practice d never reaches infinity and

#0

y y=0,0=n

At large values of 0 (close to m) analysis is breaks down because boundary layer is not thin.
However, there is no significant effect of the region around 0 = & on the total mass transfer rate to

the particle.

N, :INyds :2ﬁa2INy sin@ do
0

(10)
N, =7.98¢,D*v,"*a"?
Arranging dimensionless numbers in eqn. (10), we get
_ 13 ¢ /3
Sh=0.635Re” Sc (11)

Sh=0.635Pe"

Where
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D D
Re = 224

1%
Se=2

D

Equation (11) is valid for Pe —oo. For very small Pe, diffusive transport dominates, and the

[P

governing equation becomes Laplace’s equation. The concentration profile has only ‘r

dependence on this case.

c=c, (l—gj
r

The diffusional flux to the surface is

_Dg,
a

N and Sh =1

Combination with eqn. (11) yields
Sh=1+0.635Pe'” (11)

which reduces to the correct limits at Pe >> 1 and Pe << 1
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