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Module 2 :  

“Diffusive” heat and mass transfer 

 

Lecture 18:  

Melting and Solidification (An 

example of Moving Boundary 

problem) 
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Melting and solidification find application in the geophysical sciences, industrial forming 

operations such as casting and laser drilling; latent heat energy storage system; and 

pharmaceutical processing. 

Melting and solidification processes can be classified as 

1. One-region 

2. Two –region 

3. Multiple-region 

The classification depends on the properties of phase change material (PCM) involved 

and the initial conditions. For a single component PCM, melting or solidification occurs 

at a single temperature. For example, pure water melts at a uniform temperature of 0 oC, 

while pure n-Octadecane melts at 28 oC. 

For the melting (or solidification) process, if the initial temperature, Ti of the PCM, 

equals the melting point, Tm, the temperature in the solid phase remains uniformly equal 

to the melting point throughout the process. In this case only the temperature distribution 

in the liquid (solid) phase needs to be determined. Thus, the temperature of only one-

phase is unknown and the problem is called a one-region problem.  

For the melting process, if the initial temperature of PCM, Ti, is below the melting point 

of the PCM, Tm, (or above, for solidification), the temperature distribution of both the 

liquid and the solid phase must be determined; which is called as a two-region problem. 
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(a) Melting (T0>Tm)    (b) Solidification (T0<Tm)
  

Fig.1. One-region melting and solidification 

 

(a) Melting (T0>Tm>Ti)    (b) Solidification (T0<Tm<Ti) 

Fig.2. Two-region melting and solidification 

 

Example 

Let’s assume that the x>0 is filled with liquid at temperature T2. At time t=0 the surface 

temperature is lowered to T1 (below melting point Tp) and is maintained constant 
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thereafter. The solid-liquid interface starts moving. At some later time t, the region 

x<X(t) is occupied by liquid with property k1, α1, ρ1, p1C
∧

. The region x> X (t) is 

occupied by liquid with property k2, α2, ρ2, p2C
∧

. 

 

The governing equations are 

2
1 1
2

1 1

1 1 1

1 0

with t =T  at x =0

t t
x tα
∂ ∂

− =
∂ ∂          (17.1) 
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and 

2
2 2
2

2 2

2 2 2

1 0

with t =T  at x

t t
x tα
∂ ∂

− =
∂ ∂

→∞

        (17.2) 

When going from liquid to solid state there is a change in density, hence we can write 

1 2

2 1

X
X

ρ β
ρ

= =           (17.3) 

At the interface t1 = t2= Tp at x1= X1(t) or x2=X2(t) 

If QL is the latent heat of fusion of the material, an energy balance at the interface gives 

 
1 1 2 2

1 2 1 2
1 2 1 2

1 2
L L

x X x X

t t dX dXk k Q Q
x x dt dt

ρ ρ
= =

⎛ ⎞ ⎛ ⎞∂ ∂
− = =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

    (17.4) 

Assuming solution of the form  

( ) 1
1 1

1

 
4p p
xt T T T A erf

tα

⎛ ⎞
− = − + ⎜ ⎟⎜ ⎟

⎝ ⎠
       (17.5) 

( ) 2
2 2

2

 
4p p
xt T T T B erfc

tα

⎛ ⎞
− = − + ⎜ ⎟⎜ ⎟

⎝ ⎠
       (17.6) 

which satisfy the conditions at x1=0 and x2→∞ 

Requiring t1 =t2 =Tp at the interface yields 
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1
1

1

 
4p
XT T A erf

tα

⎛ ⎞
− = ⎜ ⎟⎜ ⎟

⎝ ⎠
        (17.7) 

2
2

2

 
4p
XT T B erfc

tα

⎛ ⎞
− = ⎜ ⎟⎜ ⎟

⎝ ⎠
        (17.8) 

Since these equations must hold for all values of X1 and X2, these must be proportional 

to t . 

Thus we can write 

1

2

X K t

X K t

β=

=
          (17.9) 

where K is a constant to be determined 

Using eqn.(17.5), (17.6) and (17.9) into eqn. (17.4), we get 

 
2 2 21 2 1

1 21 2

exp exp4 4 2
LAk Bk Q KK K ρ ββ

α απα πα
⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

             (17.10) 

Also using eqn. (17.7) and (17.8) into eqn.(17.10), we get 

( ) ( )
2 2 2

1 1 2 1 2
1 2 1

1 2
1 2

exp exp4 4
2

2 2

p
L

K KT T k T T k Q K

K Kerf erfc

β
α α ρ β

βπα πα
α α

⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠− =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

            (17.11) 

Eqn. (17.11) can be solved numerically for the determination of K. 
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After determining K value constants A and B can be found from eqns. (17.7-17.9). 

The temperature distribution thus can be given as 

Solid: 11

1

1

4
1

4

p

p

xerf
tt T

T T Kerf

α

β
α

⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠= −

− ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

                 (17.12) 

Liquid: 22

2

2

4
1

4

p

p

xerfc
tt T

T T Kerfc

α

α

⎛ ⎞
⎜ ⎟⎜ ⎟− ⎝ ⎠= −

− ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

                 (17.13) 

For the water-ice system β = 1.09 and  

( )1 1
2

1

2 p

L

T T k
K

Q ρ β
−

≅                    (17.14) 

Since β>1 (i.e. density of ice is less than that of water) a slower freezing time is 

calculated if the change in density is considered (i.e. if the assumption β=1 is not made) 

Special Case 

When the liquid is initially at the melting point i.e. Tq = Tp, eqn. (17.11) simplifies to  
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( )
2 2

1 1
1 1

1
1

exp 4
2

2

p
L

KT T k
Q K

Kerf

β
α ρ β

βπα
α

⎛ ⎞− −⎜ ⎟
⎝ ⎠ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

 


