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Definition of Fluid: Fluids and solids can be differentiated and explained qualitatively on 

the basis of molecular structure, but a more specific distinction is based on how they 

deform under the action of an external force. Specifically, a fluid is defined as a 

substance that deforms continuously when acted on by a shearing stress of any 

magnitude. This shearing stress (force/unit area) is created whenever a tangential force 

acts on a surface. When metals such as steel are acted on by a shearing stress, they will 

initially deform, but they will not continuously deform. However common fluids such as 

water, oil and air satisfy the definition of fluid, which is, they will flow when acted on by 

a shearing stress. 

 

 Newton’s second law: It states that the net force on a body is equal to rate of change of 

its linear momentum in an inertial frame of reference. As the fluid moves form one point 

to another, it experiences an acceleration or deceleration. According to Newton’s second 

law of motion, the net force acting on the fluid particle under consideration must equal its 

mass times its acceleration. 

aF m=           (1.5) 

 

Definition of an Inviscid fluid: An inviscid fluid is defined as one that has zero viscosity 

and can support no shear stress. 
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         In practice, there are no inviscid fluids, since every fluid support shear stresses 

when it is subjected to a rate of strain displacement. For many flow situations the viscous 

effects are relatively small as compared with other effects, although in some 

circumstances they are very important. Let’s assume that fluid motion is governed by 

pressure and gravity forces only, and examine Newton’s second law as it applies to a 

fluid particle in the form: 

 

Application of Newton’s Second Law to a Fluid 

(Net pressure force on a particle) + (net gravity force on a particle) =  

(Particle mass) × (particle acceleration) 

To apply Newton’s law of motion to a fluid, we must define an appropriate coordinate 

system in which to describe the motion. In general, the motion will be three- dimensional 

and unsteady so that three space coordinates and time are needed to describe it.  

Here if we consider all the forces mentioned above and in addition to that viscous forces, 

then   

 

( ) ρgρρ
t

+•∇−∇−•−∇=
∂
∂ τPUUU        (1.6a) 

where g is acceleration due to gravity, P is pressure and τ  is the second order stress 

tensor defined later (in equation 1.8). 

( ) ( )body on the acting  forces of Sum body a of  momentum of change of rate Time =
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             Equation (1.6a) is the Microscopic Momentum Balance equation for the fluid. 

The terms represent: The rate of increase of momentum per unit volume of fluid. 

• term on left, time rate of change of momentum at a point;  

• first term on right, change of momentum due to convective velocity into or from 

the point; 

• second term on right, change of momentum due to the pressure forces; 

• third term on right, change of momentum due to the action of viscous forces; and 

• fourth term on right, change of momentum due to the gravitational forces 

 Using equation (1.4), equation (1.6a) can be written as: 

[ ] ρgτP
Dt
DU

+•∇−−∇=ρ          (1.6b) 

Here, =
Dt
DUρ Product of mass per unit volume and acceleration = The rate of change of 

momentum per unit volume. 

 

Newton’s Law of Viscosity 

In equation (1.6), let us insert Newton’s law of viscosity, then we obtain 

( )U xdy
dμ τ yx −=  (for 1-D flow)       (1.7) 
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Equation (1.7) relates the flux of momentum and the velocity gradient and is known as 

Newton’s law of Viscosity. According to this law, the shear stress between adjacent fluid 

layers is proportional to the negative value of the velocity gradient between the two 

layers. Figure 1.4 illustrates the motion of two layers placed one above the other. The 

minus sign shows the momentum flows from the higher velocity to the lower velocity. 

The constant of proportionality, µ is the viscosity of the fluid and has the unit of Ns/m2 or 

Poise. 

 

Fig.1.4. Layers of fluid flowing one above the other 

 

Figure 1.4 shows that the two layers are separated by a distance dy and the lower layer is 

moving at a velocity u and the upper layer moving at a velocity u+du. When the upper 

layer of fluid is moving faster than the lower layer, the deformation produces the shear 

stress yxτ  proportional to velocity gradient. The fast moving layer exerts a force which 

tends to decelerate the faster moving layer, as if layers are rubbed against one another 

like the successive cards in a deck which is being spread.  
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Stress Tensor: 

Also keep in mind that the stress tensor is symmetric i.e., tττ = (where

τ  τ t oftranspose= ), as a result of the law of conservation of angular momentum 

(Newton’s third law). 

For complete definition of Newtonian fluids, the components of the stress tensor are 

( )U
U

k •∇−+
∂

∂
−=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
μ

3

2

x
μ2xxτ x        (1.8a) 
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U
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∂

∂
−=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
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3
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τ y        (1.8b) 
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with k = 0, where k - Bulk Viscosity  
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Navier-Stokes Equation: 

We have shown before that for an Incompressible fluid, 0=•∇ U  

If the viscosity µ is spatially invariant, we obtain the Navier-Stokes Equation by 

inserting equation (1.8) into eqn. eqn. (1.6b). The Navier-Stokes equation for an 

Incompressible Isotropic fluid is given by 

gP
Dt
D

U
U ρμ ρ 2 +∇+−∇=         (1.9) 

 

 

Mechanical Energy Balance Equation: 

Taking the scalar product of equation (1.6) with U , we obtain: 

  ( ) [ ]( ) ( )gρ
2
1ρ 2 •+•∇•−∇•−=⎟

⎠
⎞

⎜
⎝
⎛

UUUU τP
Dt
D

    (1.10) 

Equation (1.10) can be expanded to read as 

( ) ( ) [ ]( ) ( ) ( )gPP UUUUUU •+∇−−••∇−•∇−−•∇−=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂ ρ:ττρ

2
1

t
2     (1.11) 

Equation (1.11) is the Microscopic Mechanical Energy Balance Equation. It is in the 

Lagrangian frame of reference and describes the rate of change per unit volume of kinetic 

energy as one follows the fluid motion. In equation (1.11)  
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 First term on RHS gives rate of work done per unit volume by pressure 

forces 

 Second  term on RHS represents rate of reversible conversion to internal 

energy per unit volume 

 Third term on RHS represents rate of work done per unit volume by 

viscous forces 

 Fourth term on RHS represents rate of irreversible conversion to internal 

energy per unit volume 

 Fifth term on RHS represents rate of work done per unit volume by 

gravitational forces. 

  

Typical Boundary Conditions on the momentum equation (given by equation (1.9)): 

I. No-slip at the wall: This boundary condition says that the fluid in contact with 

the wall will have the same velocity as the velocity of the wall. Often the 

walls are not moving, so the fluid velocity is zero. In drag flows, the velocity 

of the wall is finite and the fluid velocity is equal to the wall velocity.  
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Fig.1.5. No slip condition at the wall 

 A fluid flowing over stationary surface comes to complete stop at the surface 

because of the no-slip condition. The flow region adjacent to the wall in which 

viscous effects (and thus the velocity gradients) are significant is called the 

boundary layer.  Mathematically, for No slip condition we can write, 

( ) wallV=  wallat theu
 

II. Symmetry: In some cases there is a plane of symmetry. Since the velocity 

field is the same on either side of the plane of symmetry, the velocity must go 

through a minimum or a maximum at the plane of symmetry. Thus, the 

boundary condition to use is that the first derivative of the velocity is zero at 

the plane of symmetry. Figure 1.6 below shows the symmetrical planes. 

Mathematically, it can be expressed as 

0
x
u

symmetry of plane at the
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂
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Fig.1. 6. Plane of symmetry 

 

III. Stress Continuity: When a fluid forms one of the boundaries of the flow, the 

stress is continuous from one fluid to another. Thus for a viscous fluid in 

contact with an inviscid (zero or very low viscosity fluid), this means that at 

the fluid-fluid boundary, the stress in the viscous fluid is same as the stress in 

inviscid fluid. Since the inviscid fluid can support no shear stress (zero 

viscosity), this means that the stress is zero at the interface. The boundary 

condition between a fluid such as a polymer and air, for example, would be 

that the shear stress in the polymer at the interface would be zero.  

( ) 0
interface at the

=jkτ  

Alternatively, if two viscous fluids meet and form a flow boundary, this same                     

boundary condition will require that the stress in one fluid equals the stress in the other at 

the interface.  

( )( ) ( )( )
interface at the

2 
interface at the

1   fluidjkfluidjk ττ =
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Such conditions occur at the interface and are of the result of interfacial stress. Most 

common example of interfacial stress is surface tension. 

 

Fig.1.7. Stress continuity at the interface 

At the interface of the two fluids, surface tension implies in a pressure jump across the 

interface. 

 

IV. Velocity Continuity- when a fluid forms one of the boundaries of the flow as 

described above, the velocity is also continuous from one fluid to another. 

( )( ) ( )( )
interface at the

2 
interface at the

1   fluidpfluidp vv =  


