Module 3:

“Convective” heat and mass transfer

Lecture 21:

Convective Transport: Fluid Flow to a

Rotating Disk (in an infinite mass of

fluid)
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Consider the rotating disk in represented in cylindrical coordinates (r, 0, y) in Fig. 1 that rotates
with an angular velocity of ®. v;, v, v, are the fluid velocities along the r, 0, z, directions

respectively.
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Fig. 1 Coordinates and velocity components for the rotating disk system.

Assumptions used for modelling the momentum transport in the fluid surrounding the

rotating disk

1. Disk is of infinite radius (no edge effects)
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2. Surrounding fluid is an incompressible, Newtonian fluid with constant .

3. Flow is steady state and axisymmetric

Now we write the equation of continuity for mass conservation and the Navier-Stokes equations

for momentum conservation in 1, r, 0, z, directions in Cylindrical Co-ordinates.
Continuity equation for mass conservation:
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Navier —Stokes equations for momentum conservation (r-component)
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Navier —Stokes equations for momentum conservation (0-component)

600

ot

ov

+Ur

2 ov 2
+V[a(1 a(wr)j+ 1 0% 200 oy

822

NPTEL, IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering



Navier —Stokes equations for momentum conservation (z-component)
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In the above equation P is the dynamic pressure.

VP = Vp - pg ©®)
Dynamic  Thermodynaic  Hydrostatic
Pressure Pressure Pressure

Von Karman separation of variables

The solution can be of the form of v, =rg(z), v, =rf (z), v,=h(z), P=p(z)

r

If these expressions are substituted into the equation, above, one obtains

2f+h'=0
f2—g’>+hf'=of"
2fg+hg'=0vg"
phh'+P'= uh"

(6)

where prime (') denotes differentiation w.r.t z
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Boundary conditions are derived from the fact that

v, =1Q, v, =0, v, =0 on the surface of the disk and v, =0, v, =0 far away from the surface

r

h=f=0,g=Qatz=0
Hence
f=g=0atz—>w

Also P needs to be specified at the same point.

Let’s define dimensionless variables

J =Z\/§’ P:MP, ngrQG, Ur:rQF, v, = rOH
L

JF+H'=0 7
F*-G’+HF'=F" ®)
2FG +HG'=G" ©)
HH'4P'=H" (10)

WithH=F=0,G=1at J=0

F=G=0atJ > x

System (7)-(10) can be solved numerically to obtain F, H and G (See fig. 1).

Having H, P' can be obtained from (10) as
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P:P(O)+H'—%H2 (11)

For small distance, from the disk

H :—0.51023J2+§J3—0.10267J4+ ..... (12)

For large distances from the disk
H =—-0.88447+2.112exp(—0.88447J ) +..... (13)

These expressions are useful, since the normal velocity Vv, is important for calculating the rate of
heat or mass transfer to the rotating disk. The fact that v, #V, (r) has important consequences

for heat or mass flux uniformity along the disk surface (see fig. below)
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Fig.2 Velocity profile for a rotating disk.
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