Module 2 :

“Diffusive” heat and mass transfer

Lecture 13:

Semi-infinite Slab with time-
varying surface temperature:

Theory
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Let us consider a semi-infinite slab (bounded only by one face),

initially at a temperature Ti;.

TR

Let
O=T(y,y)-Ti Convection
with T, = initial temperature = Const. Ta y

Fig. 13.1 Heat transfer in Semi-

infinite solids

The one-dimensional unsteady-state heat conduction equation is

given by
2
2 _,28 s

with I.C. and B.Cs,

6(y,0)=0
Q(O,t) = ¢(t) and
0(00,'[):0

Equation (13.1) can be solved by Laplace transform; however, let’s use another approach.

NPTEL, IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering



Duhamel’s Superposition Principle

IfT=F (X, Y, Z,t) represents the temperature at (X, y, z) at a time t in a solid in which the

initial temperature is zero, while its surface is kept at temperature unity [or, in the case of

convection from the surface, while convection takes place into a medium at temperature

unity], then the solution of the problem when the surface is kept at temperature ¢(t) [or,

in the case of convection, while takes place into a medium at temperature ¢(t) ], is given

byT=j¢(/1)§F(x,y,z,t—/1)d/1 (13.2)

¢{2)

Fig.13.2 A series of step functions

Returning to the problem of semi-infinite slab with time-varying surface temperature,

We have seen that for the case of € =1 at y=0, the solution is eqn.(11.14)
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. j e de (13.3)
y

Then the solution to the problem defined above with

6|, =¢(t) is given as

t
0
:_[¢(/1)a¢9(y,t—/1)dﬂ

0

with
, (13.4)
Q(y,t—l):ﬁ J. e_gzdé
4az/t—},)

In this case
0 2 y? 0 y
CE(yt-4)= ¢
a ) \/;exp{ 40!(t—/1))5{\/4a(t—/1)] (13.5)

(Using Leibnitz rule and eqn(13.4))

Leibnitz’s rule
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Leibnitz’s integral rule is useful in differentiation of a definite integral whose limits are

the functions of the differential variable, which is given as

b(t)
f
a(t)

%d f(b(t),t)%(tt)— f (a(t),t)

9
ot

At._.,—\

a(t)

It is also known as differentiation under the integral sign.

Simplifying eqn. (13.5), we get

y? (13.6)
Y
drar(t—A) ( 4“(t—/1)J

Therefore, the solution to our problem is

% da (13.7)

= u wehave (t—1)= y

y -
Ja4a(t-2) Aoy’

Setting

Therefore eqn. (13.7) becomes

_2

T

¢(t— Z,;J e du (13.8)

foms
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Note

erfC(x)=1-erf (x)

i erfC(x)= ilerfC(x):TerfC(f)dgg

i"erfC (x) = [i"erfC(&)d¢  n=234....

X

Supplement to Duhamel’s Superposition Principle

000 T
Fig 13.3 Variation of Surface temperature according to ¢(t)

One-dimensional unsteady-state conduction in a medium with constant thermal

diffusivity and without any heat generation in x-direction is described by

o T
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Since governing equation is linear, individual solutions can be superimposed. Then

T =¢(0)F(x t)+(¢(z,)-4(0))F(x t-7,)

Denote

¢(Tk)_¢(7k _1)=A¢k

T, — T = AT,

Then equation (11.13) becomes

T(x )=4(0)F (x )+ 3 F (x t—rk)(i—fjArk

)
k=1

In the limit of Az, — 0, eqn.(13.11) can be written as

T(x t)=¢(0)F(x t)JrlF(x1 t—7)¢(r)dr

On integration by parts

t t

T(x 1)=g(0)F (5 t)+| F(x, t-r)g(<)]

0

. 0 0
Since E(F(Xl t—z‘)):—a(F(x1 t—7)) we have

(13.10)

(13.11)

(13.12)

(13.13)
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t

T(x t)=F(x 0)¢(t)+j¢(r)§(F(Xl t-))dr (13.14)

0

IfF(x 0)=0

t 13.1
T(% t)=[#(2) 2 F(x t-2) d2 (13.15)

Equation (13.15) is again in the same form as discussed above in Duhamel’s

Superposition Principle. This can be solved in a similar way by evaluating % F (x1 t— /1)

with the help of Leibnitz rule to get the final solution.
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