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Module 2 :  

“Diffusive” heat and mass transfer 

 

Lecture 7: 

 Heat Transfer in Extended surfaces 

(Fins) 
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“Diffusive” Heat and Mass Transport  

 Heat conduction in a cooling Fin 

Fins: Heat flow mainly depends on three factors (1) area of the surface (2) temperature 

difference and (3) the convective heat transfer coefficient. Rate of heat transfer can be increased 

by enhancing any one of these factors. Out of these, the base surface area is limited because of 

the design of the object; temperature difference depends on process and having process 

limitations. The only choice appears to be the convection heat transfer coefficient and this can 

not be increased beyond a certain value. Thus the possible option is to increase the base surface 

area by the extended surfaces also known as fins. 

 Fins are thus used whenever the available surface area is found insufficient to transfer 

required quantity of heat with available temperature gradient and heat transfer coefficient. In the 

case of fins the direction of heat transfer by convection is perpendicular to the direction of 

conduction heat flow. 

 Some of the examples of the use of extended surfaces are in cylinder heads of air cooled 

engines and compressors and on electric motor bodies. In radiators and air conditioners, tubes 

with circumferential fins are normally used to increase the heat flow. Electronic chips cannot 

function without using fins to dissipate heat generated. Fins with different shapes are in use. 

These are (i) Plate fins of constant sectional area (ii) Plate fins of variable sectional area (iii) 

Annular of circumferential fins with constant thickness (iv) Annular fins of variable thickness (v) 
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Pin fins with constant sectional area and (vi) Pin fins with variable sectional area. Fig.(7.1) 

shows fins with different geometrical patterns.    
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Mathematical Model for Heat Transfer in Fins 

A simplified model for heat transfer through rectangular fin with constant surface area is shown 

in fig. (7.2). The surface of the slab from which heat is to be dissipated to the surrounding fluid, 

is extended by a fin on it. Heat is transferred from the surface to the fin from at its base by 

conduction. This heat is mainly convected to the surrounding fluid over the fin surface (it may 

radiate also). The assumptions made are,      

Assumption  

1. Temperature (T) varies along the length of the fin (Z-direction) only 

2. Negligible heat loss from the edge and from the end 

3. Constant thermal conductivity k and heat transfer coefficient h 

4. Steady state 

5. Heat transfer by radiation is neglected 

 



 

 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering 
 

 

5 

 

Fig. 7.2 Heat transfer through Fin of rectangular profile 

 

 

The Conservation Equation can be derived using 

1. Differential shell balance 

2. Starting from General Conservation equation 

 

1. Differential Shell Balance 

The heat flux per unit area over a specified region is given as 
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Heat flux in at Z – Heat flux out at Z+ΔZ – Heat flux out due to convection=0   

( ) ( ) ( ) 0TTz2hWBW2qBW2q azz =−Δ−− Δ+ zzz       (7.1) 

where 2B is the fin thickness and W is the width of the fin. 

( )a
z TT

B
h

dz
dq

−=−           (7.2) 

But, Rate of heat transfer is given by 

dz
dTq z k−=

                                                                                                                        
(7.3) 

Inserting equation (7.3) into (7.2), we get 

( )a2

2

TT
B
h

dz
Td

−=
k           (7.4) 

 where h is the heat transfer coefficient and k is the thermal conductivity.
 

 

2. General Conservation Equation 

The analysis can be done by considering the energy balance for small elemental volume of a 

length Δz as shown in fig. (7.2). For this case the applicable energy equation in terms of 

temperature T is 
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•∧

+∇= QTk 
Dt
DTC p

2ρ          (7.5) 

where 
•

Q  is the rate of heat generation 

Note: equation (7.5) holds for solids with constant ρ and k  

The heat balance under steady state condition is given by 

Heat conducted in at Z – Heat conducted out at Z+ΔZ  

                                                                          – Heat convected over the surface of element= 0 

According to assumption (3), i.e. constant k and also considering constant surface area (not 

influenced by temperature), hence for the steady state condition, equation (7.5) yields 

0QT2 =+∇
•

k           (7.6) 

If we were to solve the 2-D fin problem (in x and z) then 0=
•

Q and the heat transfer coefficient 

would enter through the boundary condition. But, by assuming 1-D transport, the heat loss due to 

h will enter as a volumetric sink, as 
•

− Q , in the energy balance. [Note that 
•

Q  is a source in 

equation (7.5)]. The heat removal rate will then be given by 

( )aTT
B
h

−−=
•

Q
          (7.7)

 

where  
B
1  is the surface-to-volume ratio 
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Put equation (7.7) in equation (7.6), so we get 

( ) 0TT
B
h

dz
Td

a2

2

=−−
k

          (7.8) 

 

 

Boundary Conditions: 

at z = 0  T = Tw 

at z = L ( )(2) assumption see edge, from lossheat  No 0
dz
dT

=  

Non-dimensional equation and B.Cs 

Define   
aw

a

TT
TT

θ
−
−

=  ,
L
z

=J ,  
B

2

k
hLN =  

After inserting non-dimensional quantities and algebraic manipulations, equation (7.8) becomes 

2
2

2

d      
d

with the flollowing B.Cs. 

N
J
θ θ=

         (7.9) 
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( ) 0

1

At 1 θ 1  and 

dAt 0 0
d

J

J

J

J
J
θ
=

=

⎫= ⇒ =
⎪
⎬⎛ ⎞= ⇒ =⎜ ⎟ ⎪

⎝ ⎠ ⎭

          (7.10) 

The general solution to eqn. (7.7) is 

1 2
NJ NJC e C eθ −= +           (7.11) 

Using B.C.s given in eqn. (7.10) in eqn. (7.11), and ( ) ( )
Utilizing Cosh x = ,  we get

2

x xe e−+
  

( )
N

JN
cosh 

1  cosh −
=θ           (7.12) 

In this model the heat convected through tip of the fin is neglected. The error due o this can be 

minimized by increasing the length by ΔL equal to B (half the thickness) where 2B is the 

thickness of the fin. In case of circular fin ΔL is equal to D/4.    

 


