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Module 1 :  

The equation of “continuity” 

 

Lecture 4:  

Fourier’s Law of Heat Conduction  
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Fourier’s Law of Heat Conduction 

According to Fourier’s law, the rate of heat flow, q , through a homogeneous solid is directly 

proportional to the area A, of the section at the right angles to the direction of the heat flow, and 

to the temperature difference T∇  along the path of heat flow. Mathematically, it can be written 

as   

Tk ∇−=   q            (2.17) 

Fourier’s law of heat conduction is an empirical relationship based on observation. Equation 

(2.16) holds for isotropic media. k is the thermal conductivity. The figure shown below 

illustrates the Fourier law of heat conduction.  

 

Fig.2.3 Heat flow through a homogeneous (isotropic) solid 

Heat Conduction 

Heat transfer by conduction involves transfer of energy within a bulk material without any 

motion of the material as a whole. Conduction takes place when a temperature gradient exist in a 
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solid (or stationary fluid) medium. Energy is transferred from the more energetic to the less 

energetic molecules when neighboring molecules collide.  

 

Thermal conductivity 

Thermal conductivity (k) is the intrinsic property of a material which relates its ability to conduct 

heat. Thermal conductivity is defined as the quantity of heat (Q) transmitted through a unit 

thickness (x) in a direction normal to a surface of unit area (A) due to a unit temperature gradient 

(∆T) under steady state conditions and when the heat transfer is dependant only on temperature 

gradient. So mathematically it can be written as 

dT
dx•

=
q

k  (W/m K)         (2.18) 

where =q  Rate of heat flow 

For non-isotropic media, T q ∇•−= k  , where k  is the thermal conductivity tensor. 

 

Viscous Dissipation Function 

A function used to take into account the effect of the forces of viscous friction on the motion of a 

mechanical system. The dissipation function describes the rate of decrease of mechanical energy 

of the system. It is used, commonly, to allow for the transition of energy of ordered motion to the 

energy of disordered motion (ultimately to thermal energy). For Newtonian fluids, the 

term: ( ) Uμ :τ U Φ=∇− , where UΦ is the viscous dissipation function. 
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In rectangular coordinates we can write it as 
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            (2.19) 

Under most circumstances the term Uμ Φ  can be neglected. It may be important in high speed 

boundary layer flow, where velocity gradient are large. 

 

Special Forms of the energy equation 

General assumptions 

a) Neglect viscous dissipation 

b) Assume constant thermal conductivity  k 

 

Ideal gas 

An ideal gas is defined as one in which all collisions of atoms or molecules are perfectly elastic 

and in which there are no intermolecular attractive forces. In such a gas, all the internal energy is 

in the form of kinetic energy and any change in the internal energy is accompanied by a change 

in temperature. 
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       An ideal gas can be characterized by three state variables: absolute pressure (P), volume (V) 

and absolute temperature (T). The relationship between them may be deduce from the kinetic     

theory of gases and is called the Ideal Gas Law, which is given as 

 

    (2.20)  

where n is the number of moles of a gas and R is the Universal Gas Constant which is equal to 

8.314 J/mol K.  

  

I. Fluid at constant volume 

For ideal gas, 
T
Ρ

T
Ρ

V
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        (2.21)  

Inserting equation (1.22) into equation (2.16) and neglecting viscous effects, then for 

ideal gas we get 

( )
•∧

+•∇∇= QT-Ρk 
Dt
DTC Uv

2ρ        (2.22) 

 

II. Fluid at Constant Pressure 

At constant pressure, 0=dP

 

and maintaining all other conditions same as the 

previous case (I) we get 

nRTPV =
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•∧

+∇= QTk 
Dt
DTC p

2ρ         (2.23) 

III. Fluid with density independent of temperature 

According to Continuity equation, we can write ( ) 0=•∇ U , and maintaining all other 

conditions same as the previous case (II) we get 

•∧

+∇= QTk 
Dt
DTC p

2ρ         (2.24) 

 

IV. Solids 

The density may be considered constant and ( ) 0=•∇ U .Then (1.27) yields 

•∧

+∇=
∂
∂ QTk 

t
TC p

2ρ        (2.25) 

Typical Boundary Conditions on the Energy equation 

For heat transfer problems, there are five types of boundary condition at the solid surfaces that 

are pertinent. 

I. Initial Condition: At t=0 ( ) ( )zyx ,,0Tz,0y,x,T =→  

Constant Surface Heat Flux: Here dependant variable (T) and its normal derivative 

are specified. k is the material thermal conductivity.  
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Fig.2.4 heat transfer through composite wall 

It is also known as Neumann Condition. 

II. Here, Convection coefficient (h) is prescribed at the surface. In this B.C., dependant 

variable (T) and its normal derivative are connected by an algebraic equation. This 

type of B.C. is known as Robin Mixed B.C. This is also an example of flux type 

B.C. This type of  B.Cs. are encountered in solid-fluid problems    

    

Fig.2.5 heat transfer at the fluid-solid interface 

III. Given temperature (may be a function of time) or given flux at a surface. It can be 

given as 
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0
t
T
=

∂
∂    (for steady state condition) 

IV. Here normal derivative of the dependant variable is specified at the plane surface or 

at the wall. 

 

Fig.2.6 heat transfer through insulated walls 

V. In this, normal derivative of the dependant variable is defined for cylindrical or 

spherical geometry. 

 

Fig.2.7 heat transfer through walls of cylinder or sphere 


