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 Module 4 : Nonlinear elasticity
 Lecture 22 : Neo-Hookean Elasticity

 
The Lecture Contains

Neo-Hookean elasticity

“Large Elastic Deformations of Isotropic Materials. I. Fundamental Concepts” by R.
S. Rivlin, Phil. Trans. Roy. Soc. London, 1948, 240, 459-490.
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 Module 4 : Nonlinear elasticity
 Lecture 22 : Neo-Hookean Elasticity

  

Neo-Hookean elasticity:

Let the new position of the point is given in terms of the deformations as 
 in the strained state. Consequently, the particle which was

on a given curve in the unstarined state, now belongs to a different curve in the strained state. If 
be a differential element in the original curve, then direction cosines of a tangent at any point on it are

. Direction cosines of a tangent on an elemental arc  in the strained curve are 

. Then,    

(22.1)

However, the direction cosines are                                    

(22.2)

From the expressions of equation 1,                                        

(22.3)

Noting that

we have the following eqn, 

(22.4)
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where are the following,                                        

(22.5)

We thus obtain the general expressions for the components of strain in terms of the gradients of
displacements.
 



Objectives_template

file:///D|/Dr.AK%20Ghatak/Dr.AK%20Ghatak/mechanics_soft_matrial/lecture22/22_3.html[4/26/2013 3:52:48 PM]

 Module 4 : Nonlinear elasticity
 Lecture 22 : Neo-Hookean Elasticity

  

The left hand side of 22.4 is a constant and the r.h.s. signifies an ellipsoid. It has the property that in

any direction, the length of its radius is inversely proportional to . 

Such an ellipsoid is called the reciprocal strain ellipsoid:

Elements of length, which are parallel to the axes of the reciprocal strain ellipsoid in the un-deformed
state becomes parallel to the strain ellipsoid in the deformed state. Such elements having lengths 

in the undeformed state, have lengths ,  and  respectively in the deformed state,

where, ,   are the principal extensions and ,  and  are the roots of the

equation:
                       

(22.6)

An element of volume  situated at  in the undeformed state has a volume in the

deformed state, where,

(22.7)

For an incompressible material, the volume of an element in the deformed and undeformed states are

equal, so that . Notice that the quantities ,  and  are

invariant.The stress strain relationship for an incompressible material:
Hooke’s law,
 

,etc.

 
(22.8)

,etc.

, 

, , 

neo-Hookean law:

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///D|/Dr.AK%20Ghatak/Dr.AK%20Ghatak/mechanics_soft_matrial/lecture22/22_3.html[4/26/2013 3:52:48 PM]

 ,   
(22.9)
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 Module 4 : Nonlinear elasticity
 Lecture:22 : Neo-Hookean Elasticity

  

For a pure homogeneous deformation, suppose that are the lengths in the deformed state

of linear elements parallel to the axes  and  respectively which have unit lengths in the

undeformed state. Then by making  successively  and , we see that

 and  

 and (22.10)

Simple extension:
Consider the simple extension along x axis of a, incompressible neo-Hookean material for whom the
stress-strain relations take the form:

 

(22.11)

Since , we have  and  which gives,

(22.22)

 

Simple shear:

 i.e .  

 and (22..13)

Thus shearing stresses alone can not maintain a state of simple shear in the material. If the stresses 

and  are zero, then the stresses  ; and if , then . Thus

two possible stress systems which can maintain a simple shear:

(i) A shearing stress  in the plane together with a normal stress  parallel to the 

axis.

(ii) A shearing stress in the plane together with two normal stresses of magnitude 

parallel to the  and  axes.
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 Module 4 : Nonlinear elasticity
 Lecture 22 : Neo-Hookean Elasticity

  

The stored energy function

Consider a cubic element having unit edges is strained in such a way that in deformed state it is a
cuboid having edges parallel to the axes of strain ellipsoid with lengths  and  respectively.

Then due to incompressibility,

(22.14)

Then the work done in straining the material quasi-statically is  which can be worked out by

considering the stresses which act on the deformed element .

 and  

and (22.15)

The element is subjected to three mutually perpendicular forces ,  and which are given by 

,  and ,. Here ,  and  are the areas on which

the stresses ,  and  act. Using the expression for , ,  and the incompressibility

relation we have,

,   and (22.16)

Work done in straining an element of volume   to  is

(22.17)

Hence the work done in straining the material quasi-statically from dimension  to 

 is

(22.18)

For an ideal rubber like material the elastic modulus  is given as  where  is the number
of segments per unit volume,  is the Boltzmann’s constant and  is the absolute temperature.
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