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Entropic elasticity

As mentioned earlier, far more chain configurations have end-to-end displacement close to the mean
value of  than to the chain contour length . From statistical thermodynamics, it can be shown

that entropy is proportional to the logarithm of the number of configurations:

(36.1)

so that maximum entropy occurs for  and it decreases as the chain is

stretched from its equilibrium length. For free joined chains, the configurations all have vanishing
energy, so that the Helmhotz free energy of a chain is defined as,  . Thus with increase in

F, e.g. the chain is stretched, S decreases, i.e. work must be done to stretch the chain and it is
elastic by virtue of its entropy. The force of retraction arising from the entropy change is

(36.2)

Thus the effective spring constant of the chain is be found out  where,  for a

three dimensionally oriented chain. Thus the expression for spring constant is obtained as,

(36.3)

It should be noted that  increases with temperature which can be readily verified in experiments.
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Highly stretched chain

The Gaussian probability distribution is a good description of chain behavior at small displacements
from equilibrium. It shows that the force required to produce an extension x in the end-to-end distance
is

(36.4)

which can be written as,

(36.5)

                       
However if the segments of the chain are individually inextensible, the force required to extend the

chain should diverge as the chain approaches its maximum extension, . Such a divergence is

not predicted by equation 36.4, signifying that the Gaussian distribution becomes increasingly
inaccurate and finally invalid as the chain is stretch to its contour length. The force-extension for rigid
freely jointed rods can be obtained analytically. This solution has the form,

(36.6)

where  is the Langevin function given as,

(36.7)

Note that x is the projection of the end-to-end displacement in the direction of the applied force. For

small values of f, equation 36.6 reduces to Gaussian expression in equation 14.59. For very large

value of f the Langevin function tends to 1, so that x asymptotically approaches .

Although, the force-extension data derived from the freely jointed rod model gives reasonably
accurate data for bio-polymers, its main drawback lies in the assumption of the chain segments being
rigid. Actually, for bio-polymers like microtubules, DNA, the filaments are continuously flexible, so that
they are better described by the worm-like-chain (WLC) model. The following relation describes a
nearly accurate description of the WLC model which has been very useful in describing the extension
of DNA,

(36.8)
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Elasticity of a crosslinked network

We have so far deduced the extensional force required to stretch a single chain by a distance x. Now,
we will consider not a single chain but a network of chains in which the chains are permanently
connected in certain randomly distributed joints. This kind of network occurs for rubber like materials
in which the crosslinkages are introduced by vulcanization of the rubber. When the rubber material is
deformed by applying some external stress, it alters the positions of these crosslinkages and thus
internal state of the network. The states of the network can be represented by a system of vectors
connecting neighboring crosslinking points. Let us mark the volume elements surrounding each
crosslinking point as 1, 2, 3 … Then the number of vectors terminating each volume element can be

represented by vi so that the total number v of chains remain constant . Each such chain

can assume number of configurations by altering the intervening portion while its end-to-end
displacement vector remain unaltered. The relative number of such configurations for a chain having
vector terminating to i-th cell with co-ordinates  are . Hence this quantity for

vi number of such chains is . Then the probability for the entire network to be found at

a particular configuration is obtained by finding the product of all such probability over all the volume
elements,

(36.9)

The entropy of the network is then found as

(36.10)

                                                                   
Since the cross-linkages are introduced in random manner in the undeformed state of the network,
the number of chains vi terminating in the i-th volume element can be written as,

(36.11)
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Elasticity of a crosslinked network

Now say the network is elongated in the z direction by a factor . Then assuming that the relative
positions of the network junctions change according to the macroscopic dimension of the sample, the

z co-ordinate of each joint alters by a factor  and the x and  y co-ordinates alter by . Thus the

volume remains constant. To say it somewhat differently a junction which possess a new position

z after stretching, actually was in  before stretching and its x and  y co-ordinates were  and  

. Using these new co-ordinates, the expression for the probability  from equation 35.16 can

be written as

(36.12)

Then from equations 36.10 and 36.11, replacing the summation sign by integral sign, the expression
for entropy is obtained as.

(36.13)

The above integral has been estimated for change of entropy because of passing from undeformed to
deformed state:

(36.14)

Then entropic contribution to the elastic force can be obtained as,

(36.15)

Where L0 is the initial length of the sample. Thus we obtain a new law relating force of extension and

the extent of extension.
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