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 Module 4 : Nonlinear elasticity
 Lecture 39 : Network with six-fold symmetry at non-zero temperature (contd...)

 
The Lecture Contains

Network with six-fold symmetry at non-zero temperature (contd...)

Network with four-fold symmetry

“Mechanics of the Cell” by David Boal, Cambridge University Press, 2002,
Cambridge, UK
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 Module 4 : Nonlinear elasticity
 Lecture 39 : Network with six-fold symmetry at non-zero temperature (contd...)

  

Network with six-fold symmetry at non-zero temperature (contd from
lecture 38)

In other word, the fluctuation of the spring increases with temperature. It is not however clear how the
network would appear at non-zero temperature as the length of the springs and the area of the
plaquette would have considerable variations. Molecular dynamic simulation computes many such

configurations. Interestingly it predicts that the area of the network  decreases in the temperature

range  0 to 0.2, implying that the network has a negative coefficient of thermal expansion at

this temperature range. At higher temperature  increases linearly with temperature  with

slope equal to . In contrast to area, the elastic modulii of the network vary weakly with temperature

from their temperature value.
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 Module 4 : Nonlinear elasticity
 Lecture 39 : Network with six-fold symmetry at non-zero temperature (contd...)

  

Network with four-fold symmetry

The free energy density of deformation of a network with four-fold symmetry has already been derived
as

(39.1)

This equation suggests that when  and , , which is called pure

shear. Similarly, we can have , so that , which is called simple shear.

We can have also  and , leading to  which is known as area

compression. Thus, it is possible that for same , the network can deform in either of all these
three different ways. In other words, without any other constraint, the network can have degenerate
states. Notice that the network has 2 springs and 1 vertex per rectangular unit called plaquette, so
that when each spring stretches by equal amount from unstressed length  to , the enthalpy per

vertex is obtained as

(39.2)

The spring length  that minimizes  is obtained as

(39.3)

Equation 39.3 suggests that the spring length and the area per vertex of the plaquette diverges for

(39.4)

because beyond this critical value the tension term dominates. Under positive pressure, the fourfold
network collapses because all plaquettes have the same energy 
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 Module 4 : Nonlinear elasticity
 Lecture 39 : Network with six-fold symmetry at non-zero temperature (contd...)

  

Network with four-fold symmetry (contd...)

Following the procedure described earlier, the area modulus of the network can be related to the
stresses network as,

,      (39.5)

Notice that  vanishes at zero  implying that the spring energy of the network under simple shear

deformation vanishes under zero tension. That is the plaquette is not stable under simple shear mode
of deformation.

The square plaquette approximation also implies that the area of the plaquette at zero temperature is 
 at . However, in practice this estimation does not appear to be correct, in fact, in

molecular simulation too this value is calculated to be . Further difference is observed with the

elastic modulii of the network. This difference is actually linked to the degeneracy of the system at low
stress. The square form is the largest area of the plaquette while the system can explore many other
configurations. An estimation of the area per vertex can be made at low temperature condition in
which the springs can be assumed to have lengths very close to :

(39.6)

Here the plaquette is in the form of a parallelogram with the angle between adjacent sides  which

varies from  to . The mean area is estimated to be  which corroborates very well with that

calculated from rigorous MD simulation.
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 Module 4 : Nonlinear elasticity
 Lecture 39 : Network with six-fold symmetry at non-zero temperature (contd...)

  

Network with four-fold symmetry (contd...)

Question is can we now extend these ideas for non-zero temperature. More relevant question is can
we sample the configurations of any one plaquette in such a manner that it resembles the average
configuration of the whole network.

The approach to do this is the following: We consider that the plaquettes assume shapes of
parallelograms with one side fixed at zero temperature length . Thus the parallelogram assumes

different shapes as one vertex as it samples different co-ordinates in two dimensional space. In
essence we are talking about a mean field model in which the behavior of plaquettes are identical to
each other and also to that of the network. In reality the plaquettes are not independent, rather
correlated locally, something which is missing in our approach. Furthermore, the following approach
will not consider the more general quadrilateral shapes that would appear with rise in temperature,
nor the length of the fixed side will remain constant.

In any case, our network consists of  plaquettes,  vertices and  springs, so that each

plaquette consists of 1 vertex, and 2 springs, one of length  and the other one of length . Then

the potential energy of the plaquette is written as,

(39.7)

Then the corresponding Boltzmann factor can be written as

(39.8)

Where, we have introduced two variables,  and . Then the probability of finding

the chain at a length between  and  and orientation between angles θ and  can be

written as . However, energy does not depend on θ, hence, the

probability distribution is,

(39.9)

The ensemble average  of the plaquette can be estimated from the sides of the parallelogram as

, where,

(39.10)

The final value of the integration can be obtained as
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(39.11)

The average area per vertex is obtained as,

(39.12)

This estimation of  from mean field approach corroborates very well with the MD simulation

results.
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