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Module 4 : Nonlinear elasticity

Lecture 22 : Neo-Hookean Elasticity

The Lecture Contains

B Neo-Hookean elasticity

“Large Elastic Deformations of Isotropic Materials. |. Fundamental Concepts” by R.
S. Rivlin, Phil. Trans. Roy. Soc. London, 1948, 240, 459-490.
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Module 4 : Nonlinear elasticity
Lecture 22 : Neo-Hookean Elasticity

Neo-Hookean elasticity:

Let the new position of the point is given in terms of the deformations as
x' =x+u., ¥ =y+v., z =z+w in the strained state. Consequently, the particle which was

on a given curve in the unstarined state, now belongs to a different curve in the strained state. If 4=
be a differential element in the original curve, then direction cosines of a tangent at any point on it are

EEE Direction cosines of a tangent on an elemental arc ;; in the strained curve are
ds ds ds
dlxtu)] dly+v] dlz+w

(x+u) dl+v) dle+w) |

de, de ds,

.::t’l[x+u]l_ ds dx+dudx+dudy+duciz
ds, dey\ds dxde dvds dzds

db»+v1:j_s[d_y+@ﬁ+d_vd_r+@ﬁ]
1

(22.1)
s, ds  drxds dyds drds
.:i’l[x+w]_.:fs dx+dwdx+dwdy+cfwdz
e, dey\ds dxds dy ds dzods
However, the direction cosines are
{= E = .:;!"_y , n= E
ds ds ds 922
_daty) _dl+y) _de+w) (222)
' ds; " ds, ' e,
From the expressions of equation 1,
s it it e
4 = Hl+— [+m—+n—
c:t'sl dx dy dz
cfs dv dv dv
By = f—+ml+—|+n— (22.3)
dsl dx ay dz
AN PN [1+"f_w]
c:t'sl dx dy
Noting that
Pawm®+n® =1, Bt +n] =1

we have the following eqn,

4 2
(?] = (1426, ¥ + (1428, bn® + (14 22 J0® + 22 mnt 28,00+ 28, 0m (22.4)
=
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where £, ...are the following,

22 +(2) (2]
£ =—+—9[—| +| =—| +| —
a2 |hdx ox ox
GRS RE]
Ep=—+=3—| +=—| *|=—
& 2|\ ing the
S CRHR)
=3 2|la Az o (22.5)
o _Ow v duidu viv owiw
Ty e dE
o P % Oudu vk Owiw
T & Ok i Sx
By Pu Pudu vy Awow
£ =t —t——+——+——
Vot v iy dy xodv

We thus obtain the general expressions for the components of strain in terms of the gradients of
displacements.
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Module 4 : Nonlinear elasticity

Lecture 22 : Neo-Hookean Elasticity

The left hand side of 22.4 is a constant and the r.h.s. signifies an ellipsoid. It has the property that in

any direction, the length of its radius is inversely proportional to ﬁ
s

Such an ellipsoid is called the reciprocal strain ellipsoid:
2 2 2
(426, 0 + {420 2 + (14 26 )" + 26, 7 + 26, zx 4 26 2y =1

Elements of length, which are parallel to the axes of the reciprocal strain ellipsoid in the un-deformed
state becomes parallel to the strain ellipsoid in the deformed state. Such elements having lengths 4z

in the undeformed state, have lengths Al,:;‘g, ;12,;1‘5 and ﬂ?ds respectively in the deformed state,

where, 4, =1, A, -1 A; —1 are the principal extensions and .z, ,%3 and A_f are the roots of the

equation:
1+2e,, — A £ T
Ex 1+ 2¢,, - & £e  |=0 (22.6)
£, £y 1+2g - 2

An element of volume 4~ situated at {x,y,z) in the undeformed state has a volume [~ in the

deformed state, where,

1+, w, i,
T=| v, 1+v, Vg (22.7)
W, w, 1+ w,

For an incompressible material, the volume of an element in the deformed and undeformed states are

1 1 1 P
+_2+E and /11},2},3 are

equal, so that+= 1. Notice that the quantities ,af+,1§+}.l,§, 77
1 2

invariant.The stress strain relationship for an incompressible material:
Hooke’s law,

o = lE[(l"'Ume —aft, +t,+, ) et
£y =%{1+a}zm,etc.

2 2y, +e =0, g=1/2 (22.8)

1
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neo-Hookean law:
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3 3 3
(22.9)

1+2£H=%[zﬂ—p]

4| Previous Next||p

file:///ID)/Dr.AK%20Ghatak/Dr.AK %20Ghatak/mechanics_soft_matrial/lecture22/22_3.html[4/26/2013 3:52:48 PM]



Objectives_template

Module 4 : Nonlinear elasticity

Lecture:22 : Neo-Hookean Elasticity

For a pure homogeneous deformation, suppose that 4,, 4,, 4; are the lengths in the deformed state
of linear elements parallel to the axes X, and F respectively which have unit lengths in the
undeformed state. Then by making 7, #2, # successively {1,0,0), ([j,l,[j) and (U,D,l}, we see that

d=1+28,,, A =1+28, and & =1+2¢
AxX r ZZ

.cx.f:gﬂf +P,zﬂ,=§ﬂ§+f’ and zzz=§ﬂ§ +F (22.10)

Simple extension:
Consider the simple extension along x axis of a, incompressible neo-Hookean material for whom the
stress-strain relations take the form:

zﬂzgﬂf + Pty :Eﬂé +P=iy =

by =bpy =ty =1 (22.11)

: E1
Since 4, 4,4, =1, we have A, =2,=1/,/4, and F= _EI which gives,

B, 1
b = E 1~ ﬂ,_ (22.22)
1

Simple shear:

y=w=0I1€.u, =u, =v, =v,=v, =W, =W, =w, =

i X > = ¥ » =
£ :§[1+u§)+ Pty =t =§+P, by =0tp = %ux and ¢, =0 (22..13)

Thus shearing stresses alone can not maintain a state of simple shear in the material. If the stresses
4

1 .,
f}:v and t. are zero, then the stressesf, . = g Euz ;andiff = (0, then f’:»? =t = _Eux . Thus
two possible stress systems which can maintain a simple shear:
(i) A shearing stress 1 Hy_ inthe xz—plane together with a normal stress 1 Euﬁ parallel to the
3 3

X —axis.

(i) A shearing stress l i, in the xz— plane together with two normal stresses of magnitude

%Euf; parallel to the ¥ and z axes.
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The stored energy function

Consider a cubic element having unit edges is strained in such a way that in deformed state it is a
cuboid having edges parallel to the axes of strain ellipsoid with lengths 3 , 4, and A, respectively.
Then due to incompressibility,

A =1 (22.14)

Then the work done in straining the material quasi-statically is & which can be worked out by
considering the stresses which act on the deformed element 4, = .4, = 4, .

sﬂzgﬁf + P b :§A§+P and { = —E + P

and ¢y =gy =ty =10 (22.15)

The element is subjected to three mutually perpendicular forces J A and £ which are given by

FEtmhi, Fripghi and f=: A4, Here LA, 4.4, and 3 1, are the areas on which

the stresses Exer By and o act. Using the expression for Eyer By By and the incompressibility
relation we have,
; 1 P P
fr ,Fi +F|— ;i'-l ——Eﬂl f;.——Eﬂ.z +/1— and fg-—Eﬂg +Z (22.16)
1 2

Work done in straining an element of volume A x4, x4, to {4 +d4)=({4, +d4 =4, +44) is

f15%+f35%+f35%—— (454 + 4, 5@+A35ﬂ3]+?[;‘ f f} (22.17)

Hence the work done in straining the material quasi-statically from dimension 1131 to 4 x4, x4,
is

W=%E[T{%MHT{WQHT{M@]+P[I%+T%+T%]

_ %E(ﬂf+ﬂ§+ﬂ§—3)

(22.18)

For an ideal rubber like material the elastic modulus & is given as 3pf-T where Ar is the number
of segments per unit volume, i is the Boltzmann's constant and T is the absolute temperature.
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