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 Module 4 : Nonlinear elasticity
 Lecture 37 : Six fold Network in 2D

 
The Lecture Contains

Six fold Network in 2D

Four Fold symmetry

Network of Springs

“Mechanics of the Cell” by David Boal, Cambridge University Press, 2002,
Cambridge, UK
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 Module 4 : Nonlinear elasticity
 Lecture 37 : Six fold Network in 2D

 

We have derived earlier the following general relation of strain tensor  in terms of the rate of

change of displacement vector  with position vector 

(37.1)

The subscripts  and k represent the axes in Cartesian coordinates. In two dimension there are

four components of  and in three dimension there are nine components. It was shown earlier that 

 is symmetric with respect to the indices i and j. We derived also that for small deformation we can

neglect the last term in equation 37.1 yielding

(37.2)

                                 
Using Hooke’s law, the stress components was related to the strains as;

(37.3)

In which  are called the material constants, elastic modulii. The corresponding

expression for strain energy density is a quadratic function of strain tensor components and hence
can be written as,

(37.4)

Symmetry considerations greatly reduce the number of independent constants from  for three
dimension and  for two dimension to much smaller numbers, minimum number of constants

being required for isotropic systems for which all directions are equivalent. For example, since  is

symmetric for exchange between i and j,  is symmetric for pair exchange between i and j, k and

l, so that,

(37.5)

Further since product  are symmetric for interchange of indices ij and kl, so that

(37.6)

These two symmetry conditions decreases the number of constants to 21 for three dimension and 6
for two dimensions. For 2D, these constants are,

,

 ,
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 ,

 ,
 and 

(37.7)

Symmetry in the material can further reduce the number of constants. We will now discuss two
dimensional elastic networks with four fold and six fold symmetry to demonstrate this fact.
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 Module 4 : Nonlinear elasticity
 Lecture 37 : Six fold Network in 2D

 

Six fold networks in 2D

Figure 37.1 shows a two dimensional network which has six fold rotational symmetry through the
vertices. We analyze this problem by changing the coordinate system from Cartesian coordinates
x and y to complex coordinates  and . Then the free energy  contains

terms . Now a rotation about the origin of the x, y coordinate by an angle  changes the

coordinates from  to  and , in other word from  to 

  . Since six fold symmetry implies that the modulii remain

unchanged because of rotation of the axis through   i.e.  and 

. Only non-zero components of  that remains unchanged by this

transformation are those which contains equal number of times  and  because 

. Only two components of  satisfy this symmetry  and . The

change in free energy density can be then written as

(37.8)

                                 
Which contains results from four combinations involving  and two combinations involving .

We can replace the strain components  by those in the Cartesian components in which we use

components of tensor transform as products of the corresponding coordinates. Since,

 ,

 and
(37.9)

we can write,

 ,
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(37.10)

From equation 37.8, the expression for energy density can be written as,

(37.11)

We can relate the  to modulii to more common forms of modulii, e.g. area compression modulus 

 and shear modulus :

     (37.12)

Hence, equation 37.11 changes to

(37.13)

Equation 37.13 is very similar to that for isotropic deformation implying that in two dimension, both
isotropic materials and six fold symmetry are represented by two different elastic modulii.
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 Module 4 : Nonlinear elasticity
 Lecture 37 : Six fold Network in 2D

 

Four fold symmetry

In this case the number of independent is reduced from 6 by the condition that the relation remains
independent of the co-ordinate inversions:  and . Since, components of a tensor
transform as products of the corresponding co-ordinates, the component of  with odd number of

x and  y should change sign. Hence these components should vanish because stress-strain should
not change sign due to single inversion. Secondly, upon clock-wise rotation by an angle of  about

an axis with four-fold symmetry yields  and , implying . Thus these

symmetry considerations result in three different modulii:  and . Combining these

modulii three different constants are defined:

(37.14)  (pure shear)
  (simple shear)

The expression for energy density can be written as:

(37.15)
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 Module 4 : Nonlinear elasticity
 Lecture 37 : Six fold Network in 2D

 

Network of Springs

Let us assume that our system behaves as a harmonic spring and can therefore be represented as a
spring network with appropriate symmetry. We can then define a microscopic quantity spring constant 

 for each spring which can finally yield the elastic modulii of the network. Let us consider the

systems with six-fold symmetry as presented in figure below.  Let the network be stretched slightly
from its equilibrium position, so that the initial and final length of each springs are  and 

 respectively, then the potential energy of each spring can be written as

(37.16)

 

We can then estimate the potential energy density of the network. Consider the above triangular unit,
the number of vertices is 1 while the number of springs is 3 which results in potential energy for each

vertex as . The network area per vertex is ,

so that the potential energy density per unit area of the network deformed to a small extent from the
equilibrium configuration is defined as

(37.17)

Notice that the deformations are uniform along x and y directions respectively, so that we can write

the normal components of the strain tensors in terms of  and :

(37.18)

The displacement along y  is independent of position along x, so that the shear components can be

written as . Use of these expressions for the strain tensor in the energy expression of

equation 32.13 yield,

(37.19)

Comparing equation 37.19 and 37.17 we obtain the area compression modulus in terms of the spring
constant of individual springs,

(37.20)
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A similar analysis yields also the expressions for shear modulus. Suppose the network is sheared so
that the vertex of a triangle at a particular layer is displaced to the right, say by a distance  resulting
in increase in its left arm by a distance  and shortening of the length of its right arm by a

distance . Since the bottom arm remains undeformed the total potential energy is written as

(37.21)

The energy density per unit area is then obtained by dividing the above quantity by the area of the
network:

(37.22)

Since we are considering pure shear, the normal components of the strain tensor are zero, i.e. 

. The shear components can be estimated as . Using

these expressions in equation 37.13, we obtain,

(37.23)

which when compared with equation 32.22, yields,

                                                            
(37.23)
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