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 Module 4 : Nonlinear elasticity
 Lecture 40 : Three dimesional networks

 
The Lecture Contains

Three dimensional networks

Entropic networks

“Mechanics of the Cell” by David Boal, Cambridge University Press, 2002,
Cambridge, UK
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Three dimensional networks

We will consider here free energy of deformation of both isotropic materials in three dimension and
those with four-fold symmetry. We have shown earlier that in a generalized situation, a three
dimensional system under stress is characterized by  number of elastic moduli ; for two

dimension, the number of moduli is . The number of these elastic constants however decreases
because of symmetry in the system. For example, since the components of strain  are symmetric

with respect to the exchange between the subscript pairs  ,  and , we have the

relations  and  which diminish the number of independent moduli to 21.

The number of moduli gets further reduced for isotropic materials for which the strain components
remain invariant for arbitrary rotations. In fact, there are only two quadratic combinations for strain

tensor that remain independent with respect to rotation of the axes:  and . Therefore the

free energy density function can be written as

(40.1)

Where  is the volume compression modulus and  is the shear modulus of the material. Thus

the isotropic system requires two moduli in order to describe its strain energy density function. It can
be shown that a system with hexagonal symmetry requires five independent elastic constants.
Similarly a cubic system requires three moduli as observed in its expression of free energy,

(40.2)

Combining elastic moduli and strain tensor components, above equation is written as,

(40.3)

where, , , 
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Three dimensional networks (contd...)

We will like to explore how these moduli are related to microscopic structure of a material.  We will

consider a network of identical springs, each having a potential energy ,  where 

 is the spring constant and  is the unstretched length of the spring. The figure shown below depict

that all springs change their length from  to , i.e. the cube undergoes pure compression with

the diagonal elements of the strain tensor defined as , the off-diagonal

elements are all zero.

Then the change in free energy density is obtained from equation 40.3 as,

(40.4)

How many springs are there per unit cell? The cubical unit cell shown above consists of a single
vertex (each of the eight vertices of the cell is shared by eight neighbouring cells) and three springs
(each of the twelve chains of the cell is shared by four neighbouring cells). Therefore, because of the

deformation of the cell, change in potential energy is deduced as , dividing it by the volume

yields the strain energy density,

(40.5)

The compression modulus can then be found by comparing 40.4 and 40.5 to obtain, ,

showing that elastic moduli depend upon the spring constant and the spring length in the equilibrium
condition.
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Entropic networks

We will now consider the properties of a network of flexible chains which are packed to sufficient
density that each chain is in proximity with its neighbours at several locations along its contour length.
A cross-linker is then added to this assembly of chains which weld each chain to its neighbour at
several random locations. In this process, the network becomes cross-linked; it no longer remains
fluidic but attains a rigidity, the extent of which depends upon the density of the cross-linking nodes.
Question arises how this network of chain behaves when subjected to external stress. In fact, after
crosslinking, each chain segment between the cross-linking nodes in essence behaves like a random

chain and its end to end displacement  obey the Gausian probability distribution as discussed

earlier. As a result, the contour length of the chain remains unaltered, however the location of the
crosslinking nodes does not remain fixed in space at a non-zero temperature; the instantaneous end

to end displacement varies. The average value of  changes also when the network is subjected to

external stresses. In this section we will like to deduce quantitatively how exactly this change occurs.

Let us consider that the system is in the shape of a rectangular prism of initial length ,

which when deforms result in a prism of length , such that the scaling factors or

the extension ratios are greater than 1,  for extension but smaller than 1,  for
compression. Question is how the entropy of the system changes with the factor .

After this deformation occurs, the probability that a given chain has a particular end to end

displacement vector,  is obtained considering that it has a displacement vector 

 in the unstressed state but has a displacement vector  after

deformation. What is the probability that the displacement vector of the chain lies within the range 

 to  after deformation.

This probability is written as , where,

                                               

is the three dimensional probability density function as derived earlier. Here, for a three dimensional

chain of  equal segments of length ,  (equation 37.15). Using the above relation we

can obtain the probability that a chain lies within the above volume element is,

(40.6)
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Entropic networks (contd...)

But the question is how many of the  individual segments have number of chains  for each

range . We can choose  out of  in    number of ways. The probability that any one of

these configurations will have the end to end displacement   is given by the above relation for 

  in equation 40.6. Hence the probability that all of the configurations will have the end to end

displacement  is given as,

(40.7)

We need to find out also the probability that each cross-linking site lies within an appropriate
distance, essentially within a volume element  of a site of a neighbouring chain in order that the
crosslinking happens. An estimate of this probability can be written as,

(40.8)

So the probability that a network has a particular configuration after deformation is the product of
above two probabilities, i.e. . The corresponding entropy of the network is written as 

, where  is the Boltzman constant. Expanding for the expression for 

 and , and simplifying, the expression of entropy is obtained as,

(40.9)

Hence the change in entropy from the reference state of unstretched configuration: 

, is

(40.10)

Hence the free energy change is obtained as 

(40.11)

Considering that volume conservation requires , we have

(40.12)

For pure shear  and , so that the expression for free energy simplifies to  

(40.13)

Putting  and considering that  is small, the change in free energy is obtained as
. Dividing this expression by undeformed volume  we obtain,

(40.14)

Where  is the density of chains. From 40.1 for pure shear conditions, , such that
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,  and  we obtain

(40.15)

Comparing equation 40.14 and 40.15, the shear modulus of the network is obtained as

(40.15)

Computer simulation of networks confirms the density dependence of the shear modulus as derived
above.
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Summary and future directions:

The objective of this course was to show how one can use well developed theoretical tools of
mechanics in analyzing variety of problems related to soft deformable materials, e.g. indentation of a
block of gel, separation of adhered surfaces, bending of thin plates and sheets, bending and torsion of
rods and so on. We touched upon also the emerging areas of soft mechanics in elasto-capillary
effect, mechanics of networks, elasticity of sub-cellular filaments. Through these discussions we have
shown that basic principles in elasticity can be implemented in the context of large variety of problems
which can enhance our understanding of various natural phenomena. There tools will be useful also in
understanding several other problems in these areas.
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