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The Lecture Contains:

Van der Waal forces between macroscopic bodies
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Van der Waal forces between macroscopic bodies

So far, we have studied how the Lifshitz - van der Waals potential (ϕ) between two atoms varies
with distance (r)

 

 

The physical origin of LW forces is the instantaneous creation of dipoles due to distortion of electron
clouds of neighboring atoms. The resulting time averaged attractive force gives rise to a negative
contribution to the potential ϕ which is captured by the second term in Eq 1, while the positive term
comes from the repulsive interactions between positively charged nuclei at very small distances. A
schematic plot of ϕ(r) is shown in Figure 8.5. In order to simplify our analysis in further steps, we
assume the following form of ϕ(r) (See figure 8.6)
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Fig. 8.5:                                                          Fig. 8.6:

In this section, we will analyze how the van der Waals potential between two macroscopic particles
varies with distance. To do this, one must think of each particle as being made up of a large number
of molecules (atoms) of one kind. The total energy of a system comprising two particles is the sum
of the respective self energies arising due to the intermolecular (interatomic) interactions within the
particle, and a third term which comes from molecules (atoms) in one particle interacting with those
in the other. Generally, we are interested in finding out the force between particles; since force is
the negative gradient of energy, while calculating the total LW energy potential for a two particle
system, we only consider cross interactions because they vary with inter-particle distance. Also, as it
turns out, one can use this expression for cross interaction potential to determine the self energy
terms, something that would be dealt with later on.   
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Consider two flat, parallel slab-like particles of thicknesses  separated by a distance d in
vacuum (see Figure 8.7). Van der Waals interactions are short range, and are generally effective for
d~10-100 nm. Particle dimensions in the x and y directions are much larger than this, of the order to
a few µm. Therefore, one can safely assume an infinite extent in both these dimensions, thereby
ignoring finite size end effects.

Fig. 8.7:

In order to calculate the total LW interaction potential, first a molecule (atom) from slab 2 is taken
(see figure 8.8) and interaction energies with all molecules (atoms) from slab 1 are summed up one
by one. It is to be assumed during this summation that the presence of surrounding molecules
(atoms) does not affect the interaction potential between the two molecules (atoms) under
consideration.
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As the LW potential is a function of the distance r between the molecules (atoms), one must choose
an integrating volume in slab 1 which is the locus of all equidistant points from the chosen point in
slab 2. Clearly, this is a thin annular cylindrical disc (see Figure 8.8)

Fig. 8.8:

Let  represent the volume of the element

 

and let  be the densities and molecular weights of materials 1 and 2 respectively.
Then, the number of molecules (atoms) per unit volume in slab 1 is given by
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Using the simplified form of the LW potential between two molecules (atoms) from Equation 8.2, and
multiplying with the number of molecules (atoms) present in the integrating volume, one gets the
interaction potential dϕ’’ between a single molecule (atom) in 2 with the annular element in 1:

 

From the Pythagorean Theorem,

 

Using Equations 8.5 and 8.6, and integrating  between appropriate limits (  from and 
) one gets the net interaction potential  between the selected molecule (atom) of 2

with the entire slab 1:

         

(8.7)
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Now, to get the total interaction potential between slabs 1 and 2, one must integrate over all points
in slab 2. To do this, the integrating volume would be one in which every point has the same value
of  (See Figure 8.9) which is a thin slab extending from 

Fig. 8.9:

If  is the potential of interaction (per unit area) between the thin integrating volume in 2 and the
entire slab 1, it is given by:

 

Using Equation (8.7) in (8.8) and integrating over the complete slab 2 
one gets the final expression for the energy of interaction between

slabs 1 and 2 (per unit area)
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Where  is the Hamaker’s constant whose value is given by:

 

 

It has units of energy, i.e., that of ergs or joules. For two bodies placed in vacuum, the value of this

constant varies from 10-19 to 10-21 J or 10-14 to 10-12 ergs (0.1 to 10 kT).
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It is to be noted that this is the LW energy of interaction per unit area. In reality, if there were two
slabs of areas A1 and A2 such that A1 < A2 one would multiply G with A1 to get the total LW energy

of interaction (ignoring end effects, and assuming that the LW forces decay fast enough in order to
be able to ignore the contribution from the remaining area A2-A1).

What is interesting to note here is that the rate of decay of the LW potential between two molecules

(atoms) goes as r-6 (Equation 8.2), while the decay is as z-3 (Equation 8.7) for the interaction

between a single molecule (atom) with a macroscopic body and as d-2 (Equation 8.9) between two
bodies. Thus, these are called long range van der Waals forces.

From Equation 8.9, it is clear that if d1 and d2 are larger than the order of 100 nm (i.e. effectively
tending to infinity), the expression reduces to that for two semi-infinite slabs placed in vacuum:

 

The force between two such bodies is then given by the negative gradient of the potential G:

 

 

As the semi-infinite bodies come closer, the value of G becomes more negative. However, at very
small distances, repulsive forces must take over. From the simplified model from Equation 8.2, we
understand that ‘contact’ between two bodies would be defined as d=d0. This is because there is an

infinitely large repulsive barrier at that point, due to which the bodies cannot come any closer. Thus,
at contact we have:
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In order to relate what we have derived so far with macroscopic observables, recall that the LW
energy of adhesion is defined as:

 

 

Thus, one can use Equation 8.14 to relate  which is a molecular parameter (as it depends on

the coefficient ) to surface tension values, which can be measured from experiments such as

contact angle measurement etc.

Putting 1=2 in Equation 8.14,

If the following mixing rule holds:
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