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The Lecture Contains:

Axisymmetric Surfaces

Young's Equation
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Axisymmetric surfaces

Figure 2.6. Axisymmetric surface (  is the axis of symmetry)

An axisymmetric surface is a surface obtained by rotating a curve around an axis

For an axisymmetric surface (Fig. 2.6),

(2.22)

(2.23)

Consider a liquid drop on a surface (Figure 2.6).  being constant, the Helmholtz free
energy  is given as

Since, 

We get,
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 also includes the body forces.

Here,  as a funtion of  is not known.

 is a functional and variational calculus can be used to find its extrema.
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For a functional,

(2.24)

the condition for equilibrium is given by

(2.25)

In the present example,

i.e. 

So, for extrema

(2.26)

The first term inside the braces is  while the other is .
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This is the Young-Laplace equation for axisymmetric surfaces. It is a non-homogeneous second-
order non-linear differential equation. This equation may have a unique solution, no solution or many
solutions. A frequently used simplification is that for weakly curved surfaces,

Some special cases

1. Homogeneous Young-Laplace equation 

One possible solution (trivial solution) is a flat surface situation, i.e.  both going to infinity.
Another solution is a thin film formed between two loops kept at a distance away (Fig. 2.7).

Figure 2.7. A thin film supported by two thin wire loops

2. 

Then . This means that the surface is spherical.
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Young’s Equation

Figure 2.8. A liquid drop on a surface

For equilibrium shape at the contact line

(2.27)

(2.28)

This is Young’s Equation. It represents the balance of interfacial tension in the horizontal direction.
Along the vertical, the interfacial tension is balanced by the elastic forces of the underlying surface.
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The contact angle is a measure of the wettability of the surface by that particular liquid. Higher the
contact angle lesser is the wettability. The extreme situations correspond to  when it is
perfectly wettable and  when it is non-wettable. A mercury drop is an example of a non-
wettable liquid. Therefore, a mercury drop tries to form a perfect sphere but the sphere gets slightly
flattened due to gravity.

The Young-Laplace and Young’s equation considered together give us the shape of a surface.
However, these equations are extremely difficult to solve analytically.  Fortunately, various
simplifications are possible in most cases which makes it much easier to solve the equations.

(2.29)

(2.30)
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