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Dimensional analysis and similitude

In many engineering applications, scale-up or scale-down of a chemical process or equipment is
frequently required. It is not practical to conduct experiments for all conditions of a process to predict
the data. The dimensional analysis is a commonly employed technique to scale-up or down a
process, and also, predict the results for different conditions.

As an example, consider drag on a sphere falling in stagnant water. If Reynolds number based on
the particle size is less than 1, drag can be theoretically calculated as (37p dpv.,.)

Alternatively, we can write a general symbolic equation based on our experience:

F= f(pfpfdpy_x) . A few experiments may also be conducted to gain insight into numerical values

for F. It is easy to show that F,.-";:rl.rzt:l2 is a dimensionless quantity, which can be interpreted as the
force per unit kinetic energy per unit cross-sectional area. Realizing that Reynolds number has a
mechanistic role to play on the drag, one can write

F _¢ pVD
7 2 = m
pve D
T T
dimensionless l\dimEHSiDnlESS
number number

This is the basis of the dimensional analysis. We now introduce Buckingham Pi-theorem, a very
popular technique to obtain a mathematical expression for a complex problem:
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Buckingham Pi-theorem
Consider ‘n' number of independent variables for a physical option:

f(qy.95-.9,) =0
Or

q, =glq,..q,)

The theorem may be interpreted to state that one can form (n — 3) independent dimensionless
groups of qq..q, variables so that h (IL,,II,..II__.) = O,where Il are the dimensionless
groups, and M (mass), L (length) and T (time) are the primary dimensions used to describe the
system. For some systems, angle (8) may also be taken as a primary group, for which one can
have (n-4) independent dimensionless groups. We explain the utility of this method in the following
examples:

1. Reconsider the previous example of drag on a sphere immersed in a flowing fluid. From the
physics of the problem, the independent variables that govern the drag are identified as
dp. v, I, p. Therefore,

f(Fp.dp,v,,p) =0
As per the Buckingham Pi-theorem, the number of dimensionless groups that can be formed is
5—3=24.

Therefore, g (IL,,I1,) = O
or I, = h (IL,)
Choose, I, = f, (dg,v, p,F)
I, = f, (dp,v, p, 1)

r
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Note that there are there repeat variables [dp,v, p, ] and two non-repeat variables (pf pF).

Choice of selecting repeat variables is often arbitrary. Therefore,

II, = dy® u® p°F

H: dPEI. ub I;.JI'_' l-'l-

iy = = [oo= (e = [2u-[2
Substitute and equate dimensions of M, L, T
ForIl, > 0=c+1:M
O0=a+b—3c+1:L
0=—b—-—2:T

Solve toobtainbh = —2,c = —-1,a= -2

F
Therefore, = | ——
Hl (PV""E‘FZ)
Similarly, for II, = 0=c+1: M

O0=a+b—3c—1:L

O0=-b—-1:T
Solvetoobtainb = —1,c=—1,a= —1
Therefore, IT, = L)
vdyp
F’Vzdp: vdpp
E— vd
Oor|F=pv-dp,"h (HRE) where R, = Tpp

The exact form of h is found by experiment
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