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Chapter 3 

Lecture 7 
 
Drag polar – 2 
 
Topics 
 

3.2.3 Summary of lift coefficient, drag coefficient, pitching moment  

         coefficient, centre of pressure and aerodynamic centre of an airfoil 

3.2.4 Examples of pressure coefficient distributions 

3.2.5 Introduction to boundary layer theory  

           3.2.6 Boundary layer over a flat plate – height of boundary layer,  

                    displacement thickness and skin friction drag 

 

3.2.3 Summary of the lift coefficient, drag coefficient, pressure coefficient, 

pitching moment coefficient, centre of pressure  and aerodynamic centre of 

an airfoil 

          In order to understand the dependence of pressure drag and skin friction 

drag on various factors, it is appropriate, at this stage, to present brief 

discussions on (I) generation of lift, drag and pitching moment from the 

distributions of pressure (p) and shear stress ( ) and (II) outline of boundary 

layer theory. These and the related topics are covered in this subsection and in 

the subsections 3.2.4 to 3.2.10. In subsections 3.2.11 to 3.2.13 the airfoil 

characteristics and their nomenclature are dealt with. Subsequently, the 

estimation of the drags of wing, fuselage and the entire airplane at subsonic 

speeds are discussed(sections 3.2.14 to 3.2.21). 

Figure 3.7 shows an airfoil at an angle of attack (α )kept in a stream of 

velocity V . The resultant aerodynamic force (R) is produced due to the 

distributions of the shear stress( ) and the pressure (p). The distributions also 

produce a pitching moment (M). By definition, the component of R perpendicular 

to the free stream direction is called lift (L) and the component along the free 

stream direction is called drag (D). The resulant aerodynamic force (R) can also 
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be resolved along and perpendicular to the chord of the airfoil. These 

components can be denoted by C and N respectively(Fig.3.7). From the 

subsequent discussion in this section, it will be evident that it is more convenient 

to evaluate N and C from the distributions of shear stress ( ) and pressure (p) 

and then evaluate L and D. 

                 

                    Fig.3.7 Aerodynamic forces and moment on an airfoil       

From Fig.3.7 it can be deduced that : 

         L = Ncosα - Csinα                                                                   (3.7) 

        D = Nsinα+Ccosα                                                                    (3.8) 

Figure 3.8 shows elements of length and dsu and dsl  at points Pu and Pl  

on the upper and lower surfaces of the airfoil respectively. The cartesian 

coordinates of points Pu and Pl   are (xu,yu) and ( xl , yl ) respectively. Whereas su 

and sl  are respectively the distances along the airfoil surface, of the points Pu 

and Pl  measured from the stagnation point (Fig.3.8). 
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      Fig.3.8 Pressure and shear stress at typical points on upper 

                       and lower surfaces of an airfoil 

 

To obtain the forces at points Pu and Pl  , the local values of p and   are 

multiplied by the local area. Since the flow past an airfoil is treated as two- 

dimensional, the span of the airfoil can be taken as unity without loss of 

generality. Hence, the local area is (ds x 1) and the quantities, L, D, N and C, on 

the airfoil, are the forces per unit span. Keeping these in mind, the local 

contributions, dNu and dCu, to N and C respectively, from the element at point Pu 

are obtained as:  

u u u u u u udN = -p ds cosθ - ds sinθ                                                         (3.9) 

u u u u u u udC = -p ds sinθ + ds cosθ                                                         (3.10) 

Note that the suffix ‘u’ denotes quantities at point Pu and the positive direction of 

the angle uθ is as shown in Fig.3.8 . 

Expressions similar to Eqs.(3.9) and (3.10) can be written down for the 

contributions to N and C from element at point Pl . 

Integrating over the entire airfoil yields : 

   u u u u u

upper surface lower surface

N = - p cosθ + sinθ ds + p cosθ - sinθ dsl l l l l        (3.11)                                   

   u u u u u

upper surface lower surface

C = -p sinθ + cosθ ds + p sinθ + cosθ dsl l l l l        (3.12)                                 
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Proceeding in a similar manner, it can be shown that Mle, the pitching 

moment about leading edge of the airfoil, per unit span, is : 

   le u u u u u u u u u u u

upper surface

M = p cosθ + sinθ x - p sinθ - cosθ y ds     

     
lower surface

+ -p cosθ + sinθ x + p sinθ + cosθ y dsl l l l l l l l l l l             (3.13)                             

                                                                                

Note: Once N and C are known, the lift per unit span (L) and drag per unit 

span (D) of the airfoil can be obtained using Eqs.(3.7) and (3.8). 

It is convenient to work in terms of lift coefficient (Cl ) and drag coefficient 

(Cd). The definitions of these may be recalled as : 

   l


2

L
C =

1
ρV c

2

                                                                                            (3.14)   

and        



d
2

D
C =

1
ρV c

2

                                                                                           (3.15)                                  

It may be pointed out, that integration of a constant pressure, say p , 

around the body would not give any resultant force i.e. 

                  p ds = 0                                                                                              (3.16) 

Hence, instead of ‘p’ the quantity  p-p  can be used in Eqs.(3.11), (3.12) 

and (3.13). At this stage the following quantities are also defined.  

          pressure coefficient : p
2

p-p
C =

1
ρV

2





                                                              (3.17) 

skin friction drag coefficient : 




f
2

c =
1
ρV

2

                                                       (3.18) 
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n
2

c
2

le
mle

2 2

N
Normalforcecoefficient C =

1
ρV c

2
C

Chordwiseor axial forcecoefficient: C = (3.19)
1
ρV c

2
M

Pitchingmomentcoefficient: C =
1
ρV c

2
                         

It may be noted that dx = ds cos θ and dy = -ds sin θ, where “ds” is an 

elemental length around a point P on the surface and θ is the angle between the 

normal to the element and the vertical (Fig.3.8). Note that θ is measured positive 

in the clockwise sense. It can be shown that : 

  

 

 

 
 
   


  
  
    

  

  

 

 

n p pu fu f

0 upper surface lower surface

c

c fu f pu p

0 upper surface lower surface

c1
C = C -C dx + c dy + c dy

c
(3.20)

1
C = c +c dx + C dy - C dy

c

l l

l l

                                 

   Following section 10.2 of Ref.1.4, the expressions for Cn, Cc and Cmle can be 

rewritten as: 

    

 

 

 2

1

1

1

  
  

  
  
  
  
  
  

  

   
 

 

 

 

 

u
n p pu fu f

0 0

u
c pu p fu f

0 0

u
mle pu p fu f

0 0

u
pu fu u p2

0 0

c c

c c

c c

c c

dy dy
C = C -C dx+ c +c dx

c dx dx

dy dy1
C = C -C dx + c -c dx

c dx dx

dy dy
C = C -C x dx - C +c x dx

c dx dx

dy d
+ C +c y dx+ -C

c dx

l
l l

l
l l

l
l l

l











     

    
f

(3.21)

y
+c y dx

dx
l

l l
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Remarks: 

(i)  From Cn and Cc the lift coefficient (Cl ) and drag coefficient (Cd) are obtained   

as :                                                                          

    n cC = C cosα - C sinαl                                                                     (3.22 ) 

     d n cC = C sinα + C cosα                                                                   (3.23) 

 (ii)  Centre of pressure : The point on the airfoil chord through which the 

resultant aerodynamic force passes is the centre of pressure. The aerodynamic 

moment about this point is zero. It may be noted that  the location of centre of 

pressure depends on the angle of attack or the lift coefficient. 

(iii) Aerodynamic centre: As the location of the centre of pressure depends on 

lift coefficient (Cl ) the pitching moment coefficient about leading edge (Cmle) also 

changes with Cl . However, it is found that there is a point on the airfoil chord 

about which the pitching moment coefficient is independent of the lift coefficient. 

This point is called ‘Aerodynamic centre‘. For incompressible flow this point is 

close to the quarter chord point of the airfoil. 

(iv) If the distributions of Cp and cf are obtained by analytical or computational 

methods, then the pressure drag coefficient (Cdp) and the skin friction drag 

coefficient(Cdf) can be evaluated.  

In experimental work the pressure distribution on an airfoil at different angles of 

attack can be easily measured. However, measurement of shear stress    on 

an airfoil surface is difficult.The profile drag coefficient (Cd) of airfoil, which is the 

sum of pressure drag coefficient and skin friction drag coefficient, is measured in 

experiments by ‘Wake survey technique’ which is described in Chapter 9, section 

‘f’ of Ref.3.10. In this technique, the momentum loss due to the presence of the 

airfoil is calculated and equated to the drag (refer section 7.5.1 of Ref.3.11 for 

derivation). 

3.2.4 Examples of pressure coefficient distributions 

Though the expression for lift coefficient (Cl ) involves both the pressure 

coefficient (Cp) and the skin friction drag coefficient (cf), the contribution of the 
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former i.e. Cp is predominant to decide Cl . On the other hand, the pressure drag 

coefficient (Cdp) is determined by the distribution of Cp and the skin friction drag 

coefficient (Cdf) is decided by the distribution of shear stress   .  

In this subsection the distributions of CP in typical cases and their implications for 

Cl  and Cdp are discussed. 

The distribution of the pressure coefficient is generally plotted on the outer side 

of the surface of the body (Fig.3.9a). The length of the arrow indicates the 

magnitude of Cp. As regards the sign convention, an arrow pointing towards the 

surface indicates that Cp is positive or local pressure is more than the free stream 

pressure  p . An arrow pointing away from the surface indicates that Cp is 

negative i.e. the local pressure is lower than  p .  

   

                 (a) Ideal fluid flow                                               (b) Real fluid flow 

                   Fig.3.9 Distribution of Cp around a circular cylinder 

Figure 3.9 shows distributions of Cp in ideal fluid flow and real fluid flow past a 

circular cylinder. It may be recalled that an ideal fluid is inviscid and 

incompressible whereas a real fluid is viscous and compressible. From the 

distribution of Cp in ideal fluid flow (Fig.3.9a) it is seen that the distribution is 

symmetric about X-axis and Y-axis. It is evident that in this case, the net forces in 

vertical and horizontal directions are zero. This results in Cl  = 0, Cdp = 0. These 

results are available in books on fluid mechanics and aerodynamics. In the real 
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fluid flow case, shown in Fig.3.9b, it is seen that the flow separates from the body 

(see description on boundary layer separation in section 3.2.7) and the pressure 

coefficient behind the cylinder is negative and nearly constant. However, the 

distribution is still symmetric about horizontal axis. Thus in this case Cl  = 0 but 

dpC > 0 . 

The distributions of Cp over symmetrical and unsymmetrical foils at Cl  = 0 

and Cl  > 0 are shown in Figs.3.10 a to d. Note also the locations of centre 

pressure and the production of pitching moment for the unsymmetrical airfoil. 

Flow visualization pictures at three angles of attack(α ) are shown in Figs.3.36 a, 

b and c. An attached flow is seen at low angle of attack. Some separated flow is 

seen at moderate angle of attack and large separated flow region is seen near α  

close to the stalling angle ( stallα ). It may be pointed out that theoretical calculation 

of skin friction drag using boundary layer theory can be done, when flow is 

attached. This topic is discussed in the next subsection. 

             

      

 

       

(a)Distribution of pressure coefficient on symmetrical airfoil at Cl = 0 and α= 0  

     Note : Lu = Ll  
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(b) Distribution of pressure coefficient on symmetrical airfoil at Cl  > 0 and α> 0 

 

 

 

       (c) Distribution of pressure coefficient on cambered airfoil at Cl  = 0, α< 0 ; 

Note:  Lu and Ll form a couple; centre of pressure is at infinity,  Cmac < 0,   
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(d) Distribution of pressure coefficient on cambered airfoil at Cl  > 0, α> 0 

                                    Note : Cmac same as in Fig.(c) 

 

Fig.3.10 Distributions of pressure coefficient on symmetrical and unsymmetric 

airfoils at Cl  = 0 and Cl > 0 

3.2.5 Introduction to boundary layer theory 

           Under conditions of normal temperature and pressure a fluid satisfies the 

‘No slip condition’ i.e. on the surface of a solid body the relative velocity between 

the fluid and the solid wall is zero. Thus, when the body is at rest the velocity of 

the fluid layer on the body is zero. In this and the subsequent subsections, the 

body is considered to be at rest and the fluid moving past it. Though the velocity 

is zero at the surface, a velocity of the order of free stream velocity is reached in 

a very thin layer called ‘Boundary layer’. The velocity gradient normal to the 

surface 
 
  

U

y
is very high in the boundary layer. Hence even if the coefficient of 

viscosity  μ  is small, the shear stress, 
 
  

U
μ

y
,in the boundary layer may be 

large or comparable to other stresses like pressure. Outside the boundary layer 
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the gradient  / U y  is very small and viscous stress can be ignored and flow 

treated as inviscid. It may be recalled from text books on fluid mechanics, that in 

an inviscid flow the Bernoulli’s equation is valid. 

Features of the boundary layer over the surface of a streamlined body are shown 

in Fig.3.11a. On the surface of a bluff body the boundary layer develops upto a 

certain extent and then separates (Fig.3.11b). The definitions of the streamlined 

body and bluff body are presented at the end of this subsection. 

 

 

 

 

 

                         

 

                          (a) boundary layer over a streamlined body 

 

                            

 

               (b) Boundary layer over a bluff body  

     Fig.3.11 Boundary layer over different shapes (not to scale) 
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The features of the flow are as follows. 

1.Near the leading edge (or the nose) of the body the flow is brought to rest.This 

point is called the ‘Stagnation point’. A laminar boundary layer develops on the 

surface starting from that point. It may be recalled, from topics on fluid 

mechanics, that in a steady laminar flow the fluid particles move downstream in 

smooth and regular trajectories; the streamlines are invariant and the fluid 

properties like velocity, pressure and temperature at a point remain the same 

with time. In an unsteady laminar flow the fluid properties at a point may vary but 

are known functions of time. In a turbulent flow, on the other hand, the fluid 

properties at a point are random functions of time. However, the motion is 

organized in such a way that statistical averages can be taken. In a laminar 

boundary layer the parameter which mainly influence its development is the 

Reynolds number  x eR = ρU x/μ ; x being distance along the surface, from the 

stagnation point. 

2.Depending on the Reynolds number (RX), the pressure gradient and other 

parameters, the boundary layer may separate or become turbulent after 

undergoing transition. The turbulent boundary layer may continue till the trailing 

edge of the body (Fig.3.11a) or may separate from the surface of the body (point 

‘S’ in Fig 3.11b). It may be added that the static pressure across the boundary 

layer at a station ‘x’, is nearly constant with ‘y’. Hence the pressure gradient 

referred here is the gradient (dp/dx) in the flow outside the boundary layer. 

3.Nature of boundary layer decides the drag and the heat transfer from the body. 

If the boundary layer is separated, the pressure in the rear portion of the body 

does not reach the freestream value resulting in a large pressure drag (Fig.3.9b). 

Incidently a streamlined body is one in which the major portion of drag is skin 

friction drag. For a bluff body the major portion of drag is pressure drag. A 

circular cylinder is a bluff body. An airfoil at low angle of attack is a streamlined 

shape. But, an airfoil at high angle of attack like stallα  is a bluff body. 

Remark: 

           General discussion on boundary layer is a specialised topic and the 

interested reader may consult Ref.3.11 for more information. Here, the features  
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of the laminar and turbulent boundary layers on a flat plate are briefly described. 

While discussing separation, the boundary layer over a curved surface is 

considered. 

 

3.2.6 Laminar boundary layer over flat plate – height of boundary layer, 

displacement thickness and skin friction drag 

              The equations of motion governing the flow of a viscous fluid are called 

‘Navier-Stokes (N-S) equations’. For derivation of these equations refer to 

chapter 15 of Ref.3.12. Taking into account the thinness of the boundary layer, 

Prandtl simplified the N-S equations in 1904. These equations are called 

‘Boundary layer equations’ (Chapter 16 of Ref.3.12). Solution of these equations, 

for laminar boundary layer over a flat plate with uniform external stream, was 

obtained by Blasius in 1908. Subsequently many others obtained the solution. 

The numerical solution by Howarth, presented in Ref.3.10, chapter 7, is given in 

Table 3.2. In this table U is the local velocity, Ue is the external velocity (which in 

this particular case is  V ), and η  is the non-dimensional distance from the wall 

defined as : 

                            


eU
η = y

x
                                                                          (3.24) 
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     Table 3.2 Non-dimensional velocity profile in a laminar boundary layer over a     

                       flat plate                                                                     

Height of boundary layer 

It is seen from table 3.2 that the external velocity (Ue) is attained very 

gradually. Hence the height at which U/Ue equals 0.99 is taken as the height of 

the boundary layer and denoted by 0.99δ . From table 3.2, eU/U 0.99  is attained 

at η = 5 . Noting the definition of η in Eq.(3.24) gives : 

            e

0.99

U
5 = δ

x
 

 Or         0.99 e
x

e x

δ U x5 5
= = ; R =

x U x R 


                                                   (3.25) 
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Figure 3.12 shows a typical non-dimensional velocity profile in a laminar 

boundary layer. While presenting such a profile, it is a common practice to plot 

U/Ue on the abscissa and ( 0.99y/δ  ) on the ordinate. 

 

Fig.3.12 Non-dimensional velocity profile in laminar and turbulent boundary 

                    layers on a flat plate 

 

It is seen from Eq.(3.25) that 0.99δ  grows in proportion to 
1

2x  (see Fig.3.13). It 

may be added that in this special case of laminar boundary layer on flat plate, the 

velocity profiles are similar at various stations i.e. the non-dimensional profiles of 

U/Ue vs  (y/ 0.99δ ) are same at all stations. 
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                       Fig.3.13  Schematic growth of boundary layer 

Displacement thickness and skin friction drag coefficient 

The presence of boundary layer causes displacement of fluid and skin 

friction drag. The displacement thickness  1δ  is defined as : 

1
e0

U
δ = 1- dy

U

 
 
 
                                                                                        (3.26) 

The local skin friction coefficient ( fC  or cf)is defined as : 

wall
f f wall wall

2 y=0
e

u
C = c = ; = μ ;Note: is a function of 'x'.

1 yρU
2

  
    

     (3.27)                         

If the length of the plate is L, then the skin friction drag per unit span of the 

plate (Df) is : 

f wall

0

L

D = dx  

Hence, skin friction drag coefficient Cdf is given by: 



f
df

2

D
C =

1
ρV L

2

                                                                                             (3.28) 

From the boundary layer profile (table 3.2) it can be shown that for a flat 

plate of length, L, the expressions for 1δ and Cdf are: 

1

L

δ 1.721
=

L R
                                                                                                (3.29)                        
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df L

L

V L1.328
C = ; R =

R 
                                                                     (3.30) 

Remark : 

             Reference 1.11, chapter 6 may be consulted for additional boundary 

layer parameters like momentum thickness ( 2δ ), shape parameter (H = 1δ / 2δ ) 

and energy thickness ( 3δ ) of a boundary layer. 

Example 3.1 

Consider a flat plate of length 500 mm kept in an air stream of velocity 15 m/s. 

Obtain (a) the boundary layer thickness  0.99δ  and the displacement thickness 

 1δ at the end of the plate (b) the skin drag coefficient. Assume -6 2= 15×10 m /s  

and the boundary layer to be laminar. 

Solution: 

     L = 0.5 m, V = 15 m/s , -6 2= 15×10 m /s  

Hence, 5
L -6

0.5×15
R = = 5×10

15×10
 

Consequently, from Eq.(3.25): 

           -30.99

5
L

δ 5 5
= = = 7.07×10

L R 5×10
 

Or -3 -3
0.99δ = 7.07×10 ×0.5 = 3.54×10 m = 3.54mm  

From Eq.(3.29): 

       -31

5
L

δ 1.721 1.721
= = = 2.434×10

L R 5×10
 

Or -5 -3
1δ = 2.434×10 ×0.5 = 1.217×10 m = 1.217 mm  

From Eq.(3.30): 

df 5
L

1.328 1.328
C = = = 0.00188

R 5×10
 

Remark: 

       0.99δ /L  is found to be 7.07 x 10-3. Hence the assumption of the thinness of 

boundary layer is confirmed by the results. 


