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9.1 Introduction 

Flight along a curved path is known as a manoeuvre. In this flight the 

radial acceleration is always present even if the tangential acceleration is zero. 

For example, from particle dynamics (Ref.1.2) we know that when a body moves 

with constant speed along a circle it is subjected to a radial acceleration equal to   

(V
2 / r) or 2ω r where, V is the speed, r is the radius of curvature of the path and 

 is the angular velocity ( = V / r). In a general case, when a particle moves 

along a curve it has an acceleration along the tangent to the path whose 

magnitude is equal to the rate of change of speed ( V ) and an acceleration along 

the radius of curvature whose magnitude is (V
2 / r). Reference 1.1, chapter 1 may 

be referred to for details.  In order that the body has these accelerations a net 

force, having components along these directions, must act on the body. For 

example, in the simpler case of a body moving with constant speed along a 
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circle, there must be a centripetal force of magnitude m 2ω r in the radially inward 

direction; m is the mass of the body. 

       For the sake of simplicity, the motions of an airplane along curved paths  

confined to either the vertical plane or the horizontal plane, are only considered 

here. The flight along a closed curve in a vertical plane is refered to as loop and 

that in the horizontal plane as turn. Reference 2.1 and Ref. 1.12, chapter 2, may 

be referred to for various types of loops and turns. However, the simpler cases 

considered here illustrate important features of these flights. 

9.2 Flight along a circular path in vertical plane (simplified loop)  

 Consider the motion of an airplane along a circular path of radius r with 

constant speed V. The forces acting on the airplane at various points of the flight 

path are shown in Fig.9.1. Note also the orientation of the airplane at various 

points and the directions in which D and L act; in a flat earth model W always 

acts in the vertically downward direction.  
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         Note : The flight path is circular. Please adjust the resolution of your 

monitor so that the flight path looks circular. 

Fig.9.1 Flight along a loop with constant radius and speed 

(Note: The quantity 
2W V

g r
 is the magnitude of the inertia force at various points) 

9.2.1 Equations of motion in a simplified loop 

The equations of motion, when the airplane is at specified locations, can be 

written down as follows. 
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At point A :    
2WV

T - D = 0 ; L - W = 
g r

                                                (9.1) 

At Point B:    
2W V

T - D - W = 0 ; L = 
g r

                                        (9.2) 

At point C :      
2W V

T - D = 0 ; L + W = 
g r

                    (9.3) 

At point D :    
2WV

T - D  + W = 0 ; L = 
gr

               (9.4)   

At a general point G the equations of motion are:   

2WV
T - D - W sin =  0 ; L + W cos = 

gr
                (9.5) 

Note that the Eqs. (9.1) to (9.4) for points A, B, C and D can be obtained from 

Eqs. (9.5)  by substituting  as 180o, 90o, 0o and 270o respectively.  

 Remarks:  

i) If the tangential velocity is not constant during the loop then the first equation of 

Eqs.(9.5) would become: 

T - D - W sin  = (W / g) a, where a = dV / dt           (9.6) 

ii) From Eqs. (9.1 to 9.5) it is observed that the lift required and the thrust 

required during a loop with constant ‘r’ and ‘V’ change rapidly with time. It is 

difficult for the pilot to maintain these values and the actual flight path is 

somewhat like the one shown in Fig. 9.2.  
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Fig.9.2 Shape of a normal loop 

9.2.2 Implications of lift required during simplified loop 

It is observed, that at the bottom of the loop i.e. point ‘A’ in Fig. 9.1, the lift 

required is equal to   
2WV

W  +  
gr

 or 
2V

L = W 1+
gr

 
 
 
 

.  The term (V
2 

/ gr) could be 

much larger than 1 and the lift required in a manoeuvre could be several times 

the weight of the airplane.  As an illustration, let the flight velocity be 100 m/s and 

the radius of curvature be 200 m, then the term (V
2
/ gr) is equal to 5.1.  Thus the 

total lift required at point ‘A’ is 6.1 W. In order that an airplane carries out the 

manoeuvres without getting disintegrated, its structure must be designed to 

sustain the lift produced during manoeuvres. Secondly, when lift produced is 

high, the drag would also be high and the engine must produce adequate output. 

Further, lift coefficient cannot exceed CLmax, and as such no manoeuvre is 

possible at V= Vstall.  

 9.2.3 Load factor 

  The ratio of the lift to the weight is called ‘Load factor’ and is denoted by ‘n’ i.e. 

              n = (L / W)           (9.7) 
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A flight with a load factor of n is called ‘ng’ flight. For example, a turn (see 

example 9.2) with load factor of 4 is referred to as a 4g turn. In level flight, n 

equals 1 and it is a 1g flight.  

Higher the value of n, greater would be the strength required of the structure and 

consequently higher structural weight of the airplane. Hence, a limit is prescribed 

for the load factor to which an airplane can be subjected to. For example, the civil 

airplanes are designed to withstand a load factor of 3 to 4 and the military 

airplanes to a load factor of 6 or more.  The limitation on the military airplane 

comes from the human factors namely, a pilot subjected to more than 6g may 

black out during the manoeuvre which is an undesirable situation.  

To monitor the load factor, an instrument called ‘g-meter’ is installed in the 

cockpit. 

9.2.4 Pull out 

   The recovery of an airplane from a dive or a glide is called a pull out  

(Fig. 9.3). The dive is an accelerated descent while the pull out phase can be 

regarded as a flight along an arc of a circle (See example 9.1). 

 

 

 

Fig.9.3 Pull out from dive 
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Example 9.1  

An airplane with a wing area of 20 m2 and a weight of 19,620 N dives with 

engine switched off, along a straight line inclined at 60o to the horizontal. What is 

the acceleration of the airplane when the flight speed is 250 kmph? If the airplane 

has to pull out of this dive at a radius of 200 m, what will be the lift coefficient 

required and the load factor? Drag polar is given by:  C
D
 = 0.035 + 0.076 2

LC  and 

the manouevre takes place around an altitude of 2 km.  

Solution: 

 From Fig. 9.3 the equations of motion in the dive can be written as follows. 

W
L-  Wcos = 0; Wsin - D = a

g
    

 = 60o,   Hence,  cos  = 0.5 and sin  = 0.866 

Consequently, L = 19620 x 0.5 = 9810 N 

The drag of the airplane(D) can be obtained by knowing CD which depends on 

C
L
 . 

2L
C =L 2ρS V

 

V = 250 kmph = 69.4 m/s,   at 2 km = 1.0065 kg / m3 

Hence,  

C
L
 = 

2 × 9810
21.0065 × 20 × 69.4

 = 0.2024 

Consequently, CD    = 0.035 + 0.076  0.20242 = 0.03811 

The drag D = L
C 0.03811D = 9810 × = 1847.3N
C 0.2024L

 

Hence,     (W/g) a = W sin  - D = 19620 x 0.866 - 1847.3 = 15144.1 N 

Or       a =  15144.1  9.81/ 19620  = 7.57 m/s2. 
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To obtain the lift required during the pull out, let us treat the bottom part of the 

flight path during the pull out as an arc of a circle. 

From Eqs. (9.1) to (9.5), the lift required is maximum at the bottom of the loop 

and is given by: 

2 2WV 1 69.4
L= W+ or L = 19620 × 1+ ×  

gr 9.81 200

 
 
 
 

 

Or  L = 19620  x  3.45   Then, 

19620 × 3.45 × 2
C = = 1.396L 21.0065 × 20 × 69.4

 

Remarks: 

i)  The maximum load factor in the above pull out is 3.45. The value of lift 

coefficient required is 1.396. This value may be very close to C
Lmax and the 

parabolic drag polar may not be valid.  

ii) Since C
L
 cannot exceed C

Lmax
, a large amount of lift cannot be produced at low 

speeds. Thus maximum attainable load factor (n
maxattainable

) at a speed is: 

 n
maxattainable

 = (1/2) ρ V2 S C
Lmax /  W 

At stalling speed the value of n is only one.   

9.3 Turning flight 

When an airplane moves along an arc of a circle about a vertical axis then 

the flight is called a turning flight. When the altitude of the airplane remains 

constant in such a flight, it is called a level turn.  In order that a turning flight is 

possible, a force must act in the direction of the radius of curvature. This can be 

done by banking the airplane so that the lift vector has a component in the 

horizontal direction. It may be added that the side force produced by deflecting 

the rudder is not large. It also causes considerable amount of drag, which is 

undesirable.  

9.3.1 Steady, level, co-ordinated-turn 

If there is no tangential acceleration i.e. the flight speed is constant, then 

the flight is called a steady turn. If the altitude remains constant then the flight is 



Flight dynamics-I   Prof. E.G. Tulapurkara 
Chapter-9 
 

Dept. of Aerospace Engg., Indian Institute of Technology, Madras 10

called a level turn. When the airplane executes a turn without sideslip, it is called 

co-ordinated-turn. In this flight the X-axis of the airplane always coincides with 

the velocity vector. The following two aspects may also be noted regarding the 

steady, level, co-ordinated-turn.  

(a) The centripetal force needed to execute the turn is provided by banking the 

wing. The horizontal component of the lift vector provides the centripetal force 

and the vertical component balances the weight of the airplane. Hence, the lift in 

a turn is greater than the weight.  

(b) An airplane executing a turn, does produce a sideslip.  

Because of the aforesaid two factors, a pilot has to apply appropriate deflections 

of elevator and rudder to execute a co-ordinated-turn.  

A co-ordinated-turn is also called ‘Correctly banked turn’. In this chapter, 

the discussion is confined to the steady level, co-ordinated-turn.  

 

9.3.2 Equations of motion in steady level co-ordinated-turn 

The forces acting on an airplane in steady, level, co-ordinated-turn are 

shown in Fig.9.4. The equations of motion in such a flight can be obtained by 

resolving the forces in three mutually perpendicular directions.   

 

 

Fig.9.4 Turning flight 
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As the turn is a steady flight:  T – D = 0 .       (9.8) 

As the turn is a level flight: W – L cos    = 0.       (9.9) 

As the turn is co-ordinated which implied that, there is no unbalanced sideforce.                             

2W V
L sin  = 

g r
                                                                                           (9.10)                            

where   is the angle of bank and r is the radius of turn. 

 

Remarks: 

i) From the above equations it is noted that L = W / cos  . Hence, in a turn L is 

larger than W. Consequently, drag will also be larger than that in a level flight at 

the same speed. The load factor n is equal to 1/ cos   and is higher than 1. 

  ii) From Eqs. (9.9) and (9.10), the radius of turn r is given by: 

2 2W V V
r = =

g Lsin g tan 
           (9.11) 

Noting that, 
1

cos =
n

  gives 2tan = n -1  and 

2

2

V
r =

g n -1
                                                                                                   (9.11a) 

The rate of turn, denoted by (ψ ), is given by: 

2V V g tan
ψ = = V / =

r gtan V




         (9.12)  

Noting 2tan = n -1  gives : 

          
2g n -1

ψ =
V

                                                                                       (9.12a)                           

(iii) In some books, the radius of turn is denoted by ‘R’. However, herein the letter 

‘R’ is used to denote range, and to avoid confusion, the radius of turn is denoted 

by ‘r’. 
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Example 9.2 

 An airplane has a jet engine which produces a thrust of 24,525 N at sea 

level. The weight of the airplane is 58,860 N. The wing has an area of 28 m2, 

zero-lift angle of – 2.2o and a slope of lift curve of 4.6 per radian. Find (a) the 

radius of a correctly banked 4g level turn at the altitude where  = 0.8 and the 

wing incidence is 8o, (b) time required to turn through 180o and  (c) thrust 

required in the manoeuvre if the drag coefficient at this angle of attack be 0.055. 

Solution:  

The given data are: W = 58860 N, S = 28 m2,  = 8o,0L = -2.2o,  

dCL
dα

  = 4.6 per radian = 
4.6

180
 x 2   per degree = 0.083 per degree, 

allowable n = 4 and T = 24525 N at sea level.                 

 

Consequently, 

dCLC = (α - α )L oLdα
= 0.0803 (8 + 2.2) = 0.82 

In a 4g turn L = 4W = 1/2 ρV2 S CL                       

Hence, V = 
1/2

2 ×4 × 588601/2(2L /ρ SC ) =L 1.225 × 0.8 × 28 × 0.82

 
 
 

 = 144.6 m/s.     

0 '1 1
cos = = or = 75 31

n 4
   

Hence, tan   = 3.873  

Consequently, 
 22 144.6V

r = = = 550.3m
gtan 9.81× 3.873

 

Rate of turn = 
V 144.6

ψ = =
r 550.3

 = 0.2627 rad /s  

Hence, time to turn through 180o is equal to = 11.95s
0.2627


 

The thrust required = Tr = 1/2  ρ V2 S CD                     



Flight dynamics-I   Prof. E.G. Tulapurkara 
Chapter-9 
 

Dept. of Aerospace Engg., Indian Institute of Technology, Madras 13

  = (1/2) x 1.225 x 0.8 x 144.62 x 28 x 0.055 = 15786 N 

Answers : (a) Radius of correctly banked turn = 550.3 m, (b) time required to turn 

through 1800 = 11.95 s and (c) thrust required during turn = 15,786 N 

Remark:  

The thrust available is given as 24525 N at sea level. If the thrust available is 

assumed to be roughly proportional to (σ0.7), the thrust available at the chosen 

altitude would be 24525 x 0.80.7 = 20978 N. This thrust is more than the thrust 

required during the turn and the flight is possible.  


