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3.5 Estimation of fuel fraction (Wf/W0) 

The weight of fuel needed depends on the following. 

I.Fuel required for mission. 

II.Fuel required as reserve. 

III.Trapped fuel which cannot be pumped out. 

The fuel required for the mission depends on the following factors. 

a) Mission to be flown. 

 b) Aerodynamics of the airplane viz. (L / D) ratio. 

 c) SFC of the engine. 

3.5.1Mission profile 

a) Simple mission: For a transport airplane the mission profile would generally 

consist of (a) warm up and take off, (b) climb, (c) cruise, (d) descent, (e) loiter 

and (f) landing(Fig.3.6). Sometimes the airplane may be required to go to 

alternate airport if the permission to land is refused. Allowance also has to be 

made for head winds encountered en-route. 

 



Airplane design(Aerodynamic)   Prof. E.G. Tulapurkara 
Chapter-3 

Dept. of Aerospace Engg., Indian Institute of Technology, Madras 2

Remarks: 

 (i) For a military airplane the flight profile could consist of (a) warm up and take-

off, (b) climb, (c) cruise to target area, (d) performing mission in the target area, 

(e) cruise back towards the base, (f) descent, (g) loiter and (h) land. In the target 

area the airplane may carry out reconnaissance, or drop bombs or engage in 

combat. 

            

                      Fig.3.6 Typical mission profile of a transport airplane 

As additional examples of the mission profiles the following three cases can be 

cited.  

(a) A trainer airplane, after reaching the specified area, may perform various 

maneuvers and return to the base. 

(b) An airplane on a humanitarian mission may go to the desired destination, 

drop food and relief supplies and return to the base. 

(c) In some advanced countries the doctors from cities fly to the remote areas, 

examine the patients and fly back. 

ii) The various segments of the mission can be grouped into the following five   

    categories. 

(a) Warm up, taxing and take-off. 

(b) Climb to cruise altitude. 

(c) Cruise according to a specified flight plan. This item is covered under the    

     topic of “Range” in “Performance analysis”. 

(d) Loiter over a certain area for a specified period of time. This item is covered  

     under the topic “Endurance” in ”Performance analysis”. 

(e) Descent and landing. 
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3.5.2 Weight fractions for various segments of mission 

The fuel required in a particular phase of the mission depends on (a) the weight 

of the airplane at the start of that phase and (b) the distance covered or the 

duration of time for the phase. Keeping these in view, the approach to estimate 

fuel fraction for chosen mission profile is,  as follows. 

i) Let the mission consist of ‘n’ phases.  

ii) The fuel fractions for the phase ‘i’ is denoted as Wi / Wi-1.  

iii) Let W
0
 be the weight at the start of the flight (say warm up) and Wn be the 

weight at the end of last phase (say landing). Then, Wn/Wo is expressed as: 

n 1 2 n-1 n

0 0 1 n-2 n-1

W W W W W
= × ×.......× ×

W W W W W
                                                                  (3.26) 

 iv)The fuel fractions (Wi/Wi-1) for all phases are estimated and (Wn/W0) is 

calculated from Eq.(3.26).   

Subsequently, the fuel fraction (Wf/W0) is deduced as: 

f n
tf

0 0

W W
= K 1-

W W

 
 
 

; where Ktf is factor allowing for trapped fuel.                  (3.26a) 

3.5.3 Fuel fraction for warm up, taxing and take-off (W1 / W0) 

Reference 1.15, chapter 7 and Ref.1.18, chapter 3 give rough guidelines for fuel 

consumed during these phases of flight. Reference 1.12, Vol.I chapter 2 gives 

breakup of fuel used in warm-up, taxing and take-off for different types of 

airplanes. Based on this data, the rough guidelines are as follows. 

For home built and single engined piston airplanes W1/W0 is 0.99. For twin 

engined turboprops, jet transports (both civil and military), flying boats and 

supersonic airplanes W1/W0  is 0.98. For military trainers and fighters W1/W0 is 

0.97. 

3.5.4 Fuel fraction for climb (W2 / W1) 

The following guidelines are given based on the data in Ref.1.12,Vol.I, chapter 2. 

The low speed airplanes including the twin-engined airplanes and flying boat 

cruise at moderate altitude (say 4 to 6 km) and hence W2/W1 is taken as 0.99. 

The military and civil transport jets cruise around 11 km altitude and W2/W1 is  
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taken as 0.98. The fighter airplanes have very powerful engines and attain 

supersonic Mach number at the end of the climb. In this case, W2/W1 is between 

0.9 to 0.96. Similarly, the supersonic transport airplanes which cruise at high 

altitudes (15 to 18 km), W2/W1 is around 0.9. Reference 1.15, chapter 7 gives 

more elaborate procedure to estimate W2/W1 and is followed for fighter and 

supersonic cruise airplanes. 

3.5.5 Fuel fraction during cruise – outline of approach 

Equations (3.8) and (3.10) present the Breguet formulae for range of airplanes 

with engine-propeller combination and with jet engine respectively. Consult 

books on performance analysis (e.g. section 7.4.2 of Ref.3.3) for the derivation of 

these equations. However, it may be pointed out that while deriving these 

formulae it is assumed that the following quantities remain constant during the 

flight. 

(a) Lift coefficient. 

(b) Specific fuel consumption (BSFC or TSFC). 

(c) Propeller efficiency for airplanes with engine-propeller combination and 

(d) Flight altitude. 

Equations for range can also be derived when the flight velocity remains constant 

instead of the lift coefficient. 

References 1.15, chapter 7 and 1.18, chapter 17 consider a slightly different but 

simpler approach. The derivation is as follows. 

In a flight at velocity V (in m/s), the distance dR (in km) covered when a quantity 

of fuel dWf (in N) is consumed in time dt, is given as : 

dR = dWf x (km / N of fuel)                                                                             (3.27) 

Now, in a time interval dt, the distance covered in km is 3.6 V dt, where V is the 

flight speed in m/s; the factor 3.6 is to convert velocity to kmph. Note dt is in hrs. 

Further, for jet engined airplanes the fuel consumed, dWf, in the time interval ‘dt‘ 

is : 

dWf = TSFC x T x dt 

where T is in N, TSFC is N/N-hr or hr-1 and dt is in hrs. 
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Hence, (km / N of fuel) = 
3.6V ×dt

TFSC×T×dt
 

Substituting this in Eq. (3.27) gives : 

f f

3.6V ×dt 3.6 V
dR = dW = dW

TFSC×T×dt TFSC×T
                                                          (3.28) 

Noting that, D

L

C W
T = W =

C (L/D)
 and dWf = - dW, gives : 

-3.6 V (L/D)
dR = dW

TFSC W

 


                                                                                      (3.29) 

Assuming V, TSFC and (L/D) to be constant and taking Wi-1 and Wi as the 

weights of the airplane at the beginning and the end of the cruise, and integrating 

Eq.(3.29), yields : 

  
 
 

i-1

i

W-3.6 V (L/D)
R = ln

TFSC W
                                                                                (3.30) 

Or i

i-1

W -R×TSFC
= exp

W 3.6× V ×(L/D)

 
 
 

;  V in m/s.                                                      (3.31) 

For an airplane with engine-propeller combination, the fuel consumed in the time 

interval ‘dt’ is : 

p p

THP BSFC×T× V ×dt
BSFC×BHP×dt = BSFC× ×dt =

η η ×1000
 

Hence, (km / N of fuel ) = 

p

3.6× V ×dt
TV

BSFC× ×dt
η 1000

 

Substituting this in Eq.(3.27) yields: 

pf
f

p

3600×η3.6× V ×dt ×dW
dR = = dW

TV BSFC×TBSFC× ×dt
η 1000

                                                       (3.32) 

Noting that, D
f

L

C W
T = W = and dW = -dW

C L/D
yields: 

 p-3600 η L/D dW
dR =

BSFC W

 
                                                                                (3.33)         
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Assuming pη , BSFC and L/D to be constant and integrating Eq.(3.33) gives: 

  
  

 

p i

i-1

3600 η W
R = (L/D) ln

BSFC W
 

Or i

i -1 p

W -R×BSFC
= exp

W 3600η (L/D)

  
 
  

                                                                              (3.34)                                 

Remarks: 

i) While deriving Eq.(3.30) both V and CL are assumed to be constant, during 

cruise. However, weight of the airplane decreases during the flight and to satisfy  

L = W = (1/2)ρV2SCL  the values of ρ should decrease as weight decreases. The 

consequence is, the altitude of the airplane should increase as the flight 

progresses. This is called ‘Cruise climb’. However, the change in the altitude is 

small and the flight can be regarded as level flight. 

ii) To evaluate the fuel fraction using Eq.(3.31) requires values of TSFC, V and 

(L/D). When Eq.(3.34) is used, the values of BSFC, (L/D) and pη  are needed. 

iii) The following may be pointed out.  

(a) For airplanes with engine-propeller combination, Eq.(3.34) shows that the fuel 

required would be minimum when the flight takes place at a CL corresponding to 

(L/D)max.  

(b) For jet engined airplanes, Eq.(3.31) shows that for minimizing the fuel 

required, the product V(CL/CD) should be maximum. Since, V is proportional to 

1/( 1/2
LC ), the quantity (VCL/CD) is maximised when CL corresponds to  

( 1/2
LC /CD)max. Assuming parabolic polar i.e. CD = CD0 + KCL

2 , it is shown that the 

value of CL corresponding to ( 1/2
LC /CD)max is DOC /3K . The value of (L/D) for this 

value of CL is 0.866 (L/D)max. 

3.5.6 Fuel fraction during loiter – outline of approach 

Equations (3.9) and (3.11) present the Breguet formulae for endurance of 

airplanes with engine-propeller combination and with jet engine, respectively. 

Books on performance analysis (e.g. section 7.4.2 of Ref.3.3) be consulted for 
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derivation of these equations. As mentioned earlier, the derivations of these 

formulae assume that the following quantities remain constant during the flight. 

(a) Lift coefficient 

(b) Specific fuel consumption (BSFC or TSFC) 

(c) Propeller efficiency for airplanes with engine-propeller combination and 

(d) Flight altitude. 

Equation for endurance can also be derived when the flight velocity remains 

constant instead of the lift coefficient. 

Reference 1.18 chapter 3 considers a slightly different but simpler approach. The 

derivation is as follows. 

In a flight at velocity V, the time elapse dE (in hr) when a quantity of fuel dWf (in 

N) is consumed is given by : 

f
f

dWhr
dE = dW × =

N of fuel N of fuel / hr.

   
   
   

 

For a jet engined airplane, (N of fuel/ hr ) = TSFC x T 

Hence,      fdW
dE =

TSFC×T
 

Noting that, T = W(CD/CL) = W/(L/D) and dWf = - dW gives: 

  
  
 

L / D
dE = - dW

TSFC× W
                                                                                       (3.35)      

Let (a) (L/D) and TSFC be assumed to remain constant during the flight,  

(b) Wi-1 and Wi the weights of the airplane at the beginning and end of flight. 

 On integrating Eq.(3.35), gives 

 i-1

i

WL/D
E = ln

TSFC W

  
  

   
                                                                                           (3.36) 

Or
 

  
 
  

i

i-1

W - E × TSFC
= exp

W L / D
                                                                                (3.37) 

For an airplane with engine-propeller combination, the quantity (N of fuel/ hr) is : 

(N of fuel/ hr) = 
p

T× V
BSFC×BHP = BSFC×

1000×η
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Consequently, f pf

D

p L

dW ×1000×ηdW
dE = =

TV C
BSFC× BSFC× W × × V

1000η C

 

                             p-1000×η ×(L/D) dW
=

BSFC× V × W
                                                      (3.38)                       

Assuming pη , BSFC,  (L/D) and V to be constant during flight and integrating 

Eq.(3.38) yields: 

p i

i-1

-1000×η (L/D) W
E = ln

BSFC× V W

 
 
 

                                                                              (3.39)                              

Or     
  
 
  

i-1

i p

W -E × BSFC× V
= exp

W 1000 × η ×(L/D)
                                                                  (3.40)                               

Remarks: 

(i) As mentioned earlier, in a flight with both (L/D) and V as constant, the flight 

altitude of airplane would increase as the weight of airplane decreases due to 

consumption of fuel. This is called cruise-climb. However, change in flight altitude 

is small and flight can be regarded as level flight. 

(ii) To evaluate the fuel fraction for loiter of specified duration, the values of 

BSFC, V, pη  and (L/D) are required for airplanes with engine-propeller 

combination and those of TSFC and (L/D) for the jet airplanes. 

(iii) Equation (3.37) shows that for a jet airplane the fuel required for a specified 

endurance, would be minimum when the flight takes place at CL corresponding to 

(L/D)max.  

Equation (3.40) shows that for an airplane with engine-propeller             

combination the fuel required for given endurance would be minimum,              

when V/(L/D) is minimum. Since, V is proportional to 1/( 1/2
LC ), this implies that  

(CD / 3/2
LC ) should be minimum or ( 3/2

LC /CD) should be maximum,  for fuel required 

to be minimum. For a parabolic polar (CD = CDo + K 2
LC ), it can be shown that 

value of CL corresponding to ( 3/2
LC /CD)max is (3CDO/K)1/2

 . The value of (L/D) 

corresponding to this value or CL is 0.866 (L/D)max. 
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3.5.7 Estimation of (L/D)max – outline of approach 

 Raymer (Reference 1.18, chapter 3) finds that (L/D)max for a chosen type of 

airplane depends on the wetted aspect ratio (Awet) defined as : 

2

wet
wet

b
A =

S
                                                                                                               (3.41)     

where, b = wing span and Swet = wetted area of the airplane. Further Swet, for a 

chosen type of airplane, is a multiple of S the wing area. Using Figs.3.5 and 3.6 

of Ref.1.18 one can get a rough estimate of (L/D)max. 

 However, keeping in view the need for drag polar for optimization of wing loading 

in chapter 4, the expressions for drag polar (CD = CDO + KCL
2 ) are deduced 

which appear to be adequate at this stage of preliminary design. The general 

expressions for CDO and K obtained in Ref.1.15 chapter 6 are used for this 

purpose. Though Ref.1.15 gives general expression for CDO and K for both 

subsonic and supersonic airplanes, here the attention is focussed on subsonic 

airplanes. 

Reference 1.15 chapter 6 gives the following expressions for CDO and K for 

subsonic airplanes with wings of moderate to high aspect ratio (A>5). 

201/2
-01 lf 1/4

D0 w f
w f

2C M(cosΛ )
C = 0.005 R T S 1- × 1-0.2M+ 0.12

R A -(t/c)


    
   
     

                (3.42)     

0.33

6 e
2 0.8

1

4

t
0.142 + f(λ) A (10 ) 0.1(3N +1)1 cK = { (1+ 0.12M ) 1+ + }

πA (4 + A)
cosΛ

 
 
 
 

  
  
  

                (3.43)     

where,  A = wing aspect ratio 

M = Mach number 

S = wing area 

t/c = wing thickness ratio 

λ  = taper ratio of wing 

1 / 4 = quarter chord sweep of wing 

Ne = number of engines, if any, located on top surface of wing 
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Af = airfoil factor. A value of 0.93 is suggested for special airfoils and 0.75 for 

older (NACA) airfoils. 

Clf = function of airfoil chord over which the flow in laminar. 

Rw = Swet / S 

Tf = a factor which is unity for a very streamlined shape and takes into 

        account the increase in CD due to departure from streamlined shape. 

  = A factor which gives correction for wing thickness ratio and is given by : 

3

w

w w

R - 2 1.9 t/c
= + 1+ 0.526

R R 0.25


           
       

                                                              (3.44)         

 f λ = factor which takes into account effect of wing taper ratio. 

        = 0.005 [1+1.5(λ - 0.6)2]                                                                          (3.45)   

Once CD0 and K are obtained, (L/D)max  is given by : 

 max
D0

1
L/D =

2 C K
                                                                                                  (3.46)                   

Three typical cases viz. a high subsonic jet airplane, a turboprop airplane and a 

low speed piston-engined airplane are considered. Based on Eqs.(3.42) and 

(3.43) drag polars are deduced for these three cases. Suggestions are also given 

to obtain drag polars of similar airplanes. 

3.5.8 Drag polar of typical high subsonic jet airplane 

A typical high subsonic jet has the following features: 

(a) M = 0.8 , (b) A = 9, (c) an advanced supercritical airfoil with t/c of 0.14 ,  

(d) taper ratio of 0.25, (e) sweep  1 / 4  of 30o, (f) Ne = 0, (g) due to high 

Reynolds number the flow can be treated as turbulent almost from the leading 

edge or Clf = 0. 

From chapter 6 of Ref.1.15 the wetted area of such airplanes is 5.5 times the 

wing planform area or Rw = 5.5. Further, Tf is 1.1. 

Hence, in the present case, with the above chosen parameters, the following 

values are obtained. 
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lf

w

f

2C
(I) 1- = 1.0 .

R

(II) A - (t/c) = 0.93 - 0.14 = 0.79.

 

3
5.5-2 1.9 0.14

(III) = + 1+0.526 = 1.013
5.5 5.5 0.25


     
    

     
. 

Remark: 

For this category of airplanes the effect of t/c on   can be obtained by 

substituting different values of (t/c) in Eq.(3.44). The following values for   are 

obtained. 

  t/c      0.1    0.14     0.18 

         0.9926    1.013     1.049 

 

(IV)    2
f λ = 0.005 [1+1.5 0.25 - 0.6 ] = 0.00592 . 

(V)  
 

20

201 1/2
4

f

M(cosΛ
0.8×(0.866)

= = 0.305
A - t/c 0.93-0.14

1 / 2) 
  
  
   

. 

(VI)  

20

1

4

f

M cosΛ

1- 0.2M+ 0.12 = 1- 0.2×0.8 + 0.12×0.305 = 0.8766
A - (t/c)

1 / 2( ) 
 
 
  

. 

Consequently, 

-0.1
D0C = 0.005 5.5 1.1 1 0.8766 S      

        -0.1= 0.02652 S                                                                                                 (3.47) 

The effect of swept angle on CD0 is of secondary nature. However, it is observed 

that CD0 should be reduced by about 0.4% for each increase in sweep by 1o. The 

effect of aspect ratio on CDO is negligible. 

Thus, for o
1

4

Λ = 30 , A = 9 and t/c = 0.14 

-0.1
D0C = 0.02686 S                                                                                                  (3.48)            

From Eq.(3.48) the variation of CD0 with S is as follows. 
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    S(m2)         50           100          500 

    CD0        0.0182         0.0169        0.0144 

 

Remark: 

For Boeing 747 with S = 511 m2 , and 1 / 4 38.5   , these parameters would 

give DOC  of 0.014. This value is close to the actual value for the airplane. See 

also Appendix C in Ref. 3.1 

Value of K : 

 The terms in Eq.(3.43) are now evaluated for typical high subsonic jet airplane 

with features mentioned under items (a) to (g) at the beginning of this subsection. 

The following quantities are obtained. 

(I) 1+0.12 M6 = 1 = 0.12 (0.80)6 = 1.0315 

(II) 
  0.33

0.33

2 2 o
1/4

t
1+ 0.142 + f λ A (10 ) 0.142 + 0.0592×9×(1.4)c = 1+

cos Λ cos 30
 

                                                        = 
2

0.2015
1+ = 1.2687

cos 30
 

(III) 
 

e
0.8 0.8

0.1(3N +1) 0.1(0 +1)
= = 0.0128

(4 + A) 4 + 9
 

Hence, Eq.(3.43) yields: 

  1
K = 1.0315× 1.2678 + 0.0128 = 0.0468

π×9
 

Expressing 
1

K =
πAe

, gives e = 0.757 

Remarks: 

(i)Angle of sweep does have significant effect on K. For M = 0.8,  

t/c = 0.14,  =0.25, Ne = 0 and Clf = 0, Eq.(3.43) gives: 

2
1/4

1.0315 0.2015
K = 1+ + 0.0128

π A cos Λ

 
 
 

2
1/4

1 0.2078
= 1.0447 +
πA cos Λ

 
 
 

                 (3.49)                                     
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For an airplane with S = 100 m2, 1/4 30o  , Eqs.(3.48) and (3.49) give the 

following drag polar. 

2
D LC = 0.0169 + 0.0468 C  

Hence,  
max

Do

1 1
L/D = = = 17.8

2 C K 0.0169×0.0468
 

This value of (L/D)max is typical of such airplanes(Ref.1.18, Chapter 3). 

i) Boeing 787-Dreamliner being brought out by Boeing has very smooth surface, 

  o
1/4average

t/c = 11%,Λ = 32 , S = 331 m2 and aspect ratio of 10.4 with winglets at 

wing tips. It is estimated to have a CD0 of 0.0128 and K of 0.04 resulting in 

(L/D)max of 22. 

 It may be added that the effect of winglets on reducing induced drag can be 

estimated approximately by adding half the height of winglet to the wingspan 

(Ref.1.15, chapter 5, see also section 3.2.21 of Ref.3.3) 


