NPTEL — Aerospace

Module-5: Hypersonic Boundary Layer theory

Lecture-20: Hypersonic boundary equation

20.1 Governing Equations for Viscous Flows

The Navier-Stokes (NS) equaadtions are the governing equations for the viscous
compressible flow and hence are the governing equations for hypersonic flows. This

section deals with the basics of NS equations and its non-dimensionalization.

Continuity Equation:

Dp cﬂH,r ¥
Dy ot

Considering steady state conditions we have;

% _g
OX ay
X Momentum Equation:
D(pu) = pDu + ubp , NOW since Br_ 0;
Dt Dt
D(D'Otu) thu therefore the L.H.S. simplifies to give X momentum equation in

steady state conditions as;

u@_u+ V@_u_ ap 9 @Jr@_u +i (8_u+8_uj (20.2)
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Y Momentum Equation:

D(pv) _pDv_ VDo “now since 22 = 0;
Dt Dt t
DEI)OtV) pbv. ; therefore the L.H.S. simplifies to give Y momentum equation in

steady State Conditions as;
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Energy Equation:
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Therefore the L.H.S. simplifies to give Energy Equation in steady State Conditions

as;
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The above equations are written for steady, compressible, viscous, two dimensional

flows in Cartesian coordinates. Where u and v are velocities in x and y directions

respectively; erepresents internal energy per unit mass and (

represents the

volumetric heating that might occur. All other notations carry their usual meaning.

We can simplify the above set of equations via appropriate assumptions, and obtain

approximate viscous flow results.
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20.2 Non Dimensional Form of Governing Equations

The non dimensional form of Navier-Stokes equations can be obtained as follows.
Here we have considered a two dimensional steady flow and ignored the normal
stresses Ty and T1yy. Reference variables of the flow can be used for non-

dimensionalization.

Non Dimensional Variables:

- u - v - X -y - p
Vo Vo C y C p pV?'oo
- e
e =
CVToo
— — K —
o Ko poo

Where Ve, Tw, po, e, ko are free stream parameters and ¢ reference length.
Therefore the Non Dimensional Equations are given as:

Non Dimensional Continuity Equation:

apw) | V) _ (20.5)
oX oy

Non Dimensional X Momentum Equation:

a1 op, 1 i{;(ma_uﬂ 206

ox " ay yM% ax Re.ay|' (ox oy
Non Dimensional Y Momentum Equation:

oyt oop, L o) fov, ou (20.7)
OX oy yM%x 0y Re«ox ox oy
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Non Dimensional Energy Equation:

—o0e —oe ,[— o (=2 -2y — o (-2 - ¥ o(—oT) of(-oT
pU—+pV—=y(y-1)M“x pu—_(u +V )+pv—_(u +v) + —| k= |+—=| k—
X oy OX oy Pr-Re«| ox\ ox ) ody

M2 | 6 |—(ov ou o|l—(ov ou
+v(y =1 i —t—=||+—=| | =+—= 20.8
7y )Rew{ax{ﬂv(éx Gyﬂ GY{ﬂ (Ox 8)’}}}( )

20.3 Process of Non-dimensionlisation of Governing Equations:-

Continuity Equation:-
We Have,

o(pu) , 9(pv) _
OX oy

With non-dimensional parameters

pN = | opul pN=)  O(pvlpN =) |_
c | a(x/c) a(y/c)

o(pu) , a(pV) _,
OX oy

X & Y momentum Equations:-

The process of non dimensionlisation is almost the same for both X & Y momentum

equations, therefore we have for X momentum equation;

ou ou op 0 oV ou 0 (éu 8uj
oU—+ pN—=——+—| y| —+— | [+—| yu| —+—
OX oy ox oy ox oy OX OX OX
Rewriting the above Equation with Non Dimensional parameters, we get;

psovaoz pu 8(U/Voo)+ pu a(V/Voo) :_&a(p/pw)
C | pVe O(X/IC) Ve O(y/cC) c d(x/c)

+;sz@ o | u a(V/Vw)+8(U/Vw) N o | u a(v/vw)+a(u/vw)
c® |o(ylc)| w\ O(x/c) o(ylc) o(x/c)| u-\ o(xlc) o(ylc)
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2

Now dividing the above equation on both sides by the factor pV= ; we get term
C
wise
First, the pressure term on Right Hand side (R.H.S); L > = p- >
C PV puVo
Voo’
Since Mach Number can be written as M? =—— therefore;
a
P > = pwz ~ and furthermore, p-- p-RT= and a’ = yRT. ; the term reduces to
P RT. 1

pM%2 MZ%RT. yM?

uN- ¢ e 1
C2 poovooz poovooc Rew

Now the viscous term,

Thus the X momentum Equation reduces to,

—ou —au 1 op 1 o|—[oév ou
PU—+ pV—=— ——= —| U —=+—
OX oy yM?x 0x Re«x 0y ox oy

& similarly Y momentum Equation reduces to,

— oV —ov 1 op 1 o|—(ov au
PU—+ pV—=— ——= —| U =+—=
OX oy yM%% 0y  Re« 0x ox oy

Normal stresses txx and tyy are ignored for the sake of simplicity.
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Lecture-21: Non-dimensionalisation of governing equations

21.1 Process of Non-dimensionlisation of Governing Equations

Energy Equation:

We know the energy equation as Eq. (20.4). Expanding the LHS of this equation, we
get,

pui e+(u2+v2) +,ovi e+(u2+v2) =
OX 2 oy 2

Kl (K aT ) L0 (K ar J _(a( pu) , a(pv) j , 0urs) | aurs) | 0(ven) | O(vry)
ox\' ox) oyl oy OX oy OX oy OX oy

Now simplifying the above equation by neglecting normal stresses txx and tyy, We get

oe oe o | (u?+v%) o | (u?+v%)
PU—+ pV—=—pU—| ——2 |- pv—| —= |+
OX oy OX 2 oy 2

a( 6Tj a( aTj (8(pu) 8(pv)] a{( (av GUJ]} a{( [av aum
— | k— |+ —| k— || ——+———F |+ —=—3V| pu| —+— | [+ —u| | —+—
ox\_ ox) oy\ oy OX oy OX ox oy oy ox oy

Now non dimensionalising Left hand side (L.H.S.) & R.H.S. terms separately;

LH.S.=

c pN= a(xlc)  pN= d(ylc) c

Non-dimensional R.H.S., 1% & 2" term:

pNS | opu 0 | (UIVR)2+(VIV)? L8 (UIV=)?+(VIV) || _
c <V O(X/C) 2 <V 0(y/c) 2

s 2 A 2 2
PV o ol o(u +V )+pva(u iv)
c oX oy
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Non-dimensional R.H.S., 3" & 4" term;

kol 0 (x0@ITa)), 0 (kT IT))|_&T<| (=0T o[-
c? | o(x/c)l ke o(xic) ) a(ylc)l ke o(ylc) ¢® |ox| ox) oyl ay
Non-dimensional R.H.S., 6™ & 7™ term reduces to;

@ |o(x/c) |Vl e\ a(xlc)  a(ylc) ¢ |ox| |“
pNS |0 Julpu(oive) WiV ||| gV @ Jol—fov du

¢ |a(ylo) V| o\ atxic) T a(ylc) ¢z |ay| |“lox oy

Non-dimensional R.H.S., 5™ term reduces to;

PV [ 8(p/ pu/V=) | _ p-V=| &(pu)
c o(xlc) | ¢ | ox

Now dividing the L.H.S. & R.H.S. by the factor ;, we obtain R.H.S. terms

pﬁovooCVTw
as;
For term 1% & 2":
VCJO3 C VOO2 VUDZ _l VOO2 _1 2
p _ _Ve(y-1) 7(27 )=|\/|oo}/(}/—1)
C poov ovaT © CVT © RT 0 a
For term 3" & 4™
Kol o c Ko Mo Koy Y

¢? pNCTw CpN«Ci CpNa=Co RePr-
For term 5™;

BV «  RT«(y-1
P __p= _RT=(y-D _ (y-1)
¢ pVCTs pCTe  RTa
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For term 6" & 7'

lLchooz C _ o sz _ 1 (7—1)V002 _ 1 7/(}/—1)V002 _ ]/(]/—1)'\/'002

¢ pVeCTx CpVeCT- Rex RT».  Rex  a’ Re

Finally the Non dimensional Energy equation is given as;

— e —de ) |[— 8 (=2 -2\ — 8 (—2 -2 y |of(=or) o(=aT
pu—_+pV—_=}/(7—1)M © ,OU—-(U +V )+pV——(U +V) | =| K—= |[+t—=| K—
OX oy OX oy ProRe«| ox\ o0x ) ady\ oy

+7( —1)M2°° 9w 6_V+8_U I 6_§+8_U
T Rew Lox | ox oy )|y ax oy

The non-dimensional parameters of the Navier-Stokes equation are,

Ratio of specific heats: y= %
Vo
Mach number: Mo =—
ax
Reynolds number: Re = PN ol
c
Prandtl number: Pr :““;Cp

[’e]

These four dimensionless parameters are called similarity parameters, and are very
important in determining the nature of a given viscous flow problem. Thermodynamic
properties, as reflected by y, are important for any high speed flow problem. A
combination of thermodynamics and flow kinetic energy can be found in M, and it

is known that,

M Flow Kinetic Energy
*~ Flow Internal Energy

For Reynolds number, we have

Re _ Inertia Force
Viscous Force
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Prandtl number, appearing in the energy equation, has the physical interpretation as,

Pr ~ Frictional dissipation
Thermal conduction

Here yand Pr are the properties of gas while Re and M involve flow properties as

well.
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Lecture-22: Order of magnitude estimate

22.1 Boundary conditions

An important difference between inviscid and viscous flows can be seen explicitly in
the boundary conditions at the wall. The usual boundary condition for an inviscid
flow is no mass transfer through the wall which mathematically gets expressed as the
normal component of velocity to be zero at the wall. This boundary condition is
termed as “free slip along the wall”. This boundary condition gets added with the
cancellation of tangential velocity at the wall due to the existence of friction. This
boundary condition is termed as “no slip along the wall”. Therefore both the
components of velocity become zero for viscous wall boundary condition, that is,

Wall boundary condition: ~ u=v=0

If there is mass transfer at the wall, then we have to express the normal velocity at the
wall as per the known mass flow rate to satisfy the mass conservation equation.
However tangential component of velocity will still remain zero at the wall if wall has

zero velocity while for conservation of momentum.

There are two types of boundary conditions related with the energy equation. In one
of them, wall is treated with isothermal wall temperature where the known

temperature is assigned at the wall as,
Constant wall temperature boundary condition: T=Ty

Here T,y is the specified wall temperature. For non uniform temperature distribution

along the surface we have,
Variable wall temperature boundary condition: T=Tw(S)

here Ty (s) is the specified wall temperature variation as a function of distance along
the surface (s). This boundary condition is very much suitable for high conductivity

wall materials so as to keep the wall at known constant temperature variation.
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However in case of insulators, where thermal conductivity is very low, the wall
temperature usually remains unknown. In such cases, wall heat flux is treated as zero
or wall is treated as adiabatic wall. The mathematical representation of this boundary

condition is,
_ _ N y =k[T]|_
Adiabatic wall boundary condition: qW ™) T 0

Here CIW is the wall heat flux. Moreover in some cased wall heat flux distribution can

be apriorily known. Therefore C'IW or the wall heat transfer rate should be specified

as the boundary condition. This wall heat flux is dependent on temperature gradient

normal to the wall in the gas immediately above the wall.
22.2 Application to boundary layer flow

Consider the boundary layer along a flat plate of length cas shown in Fig. 22.1.

V

S e

_—

\|
’|

Fig. 22.1 Hypersonic flow over flat plate.

A thin layer of fluid is assumed to be decelerated in the presence of the wall. This
assumption leads to the mathematical expressiono <c. Here ¢ is the local boundary

layer thickness. Apart from this, for hypersonic flow, we can also assume that, that

0 0
are; V<<uU gnd — <<—

ox oy

Now consider the Continuity Equation in Non Dimensional form;

o(pu) , o(pv) _
OX oy
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Here u varies from 0 at the wall to 1 at the edge of the boundary layer. Therefore we
can consider that u has order of magnitude equal to 1. It is mathematically
represented as O(1). On similar lines, we can as well mention for density as, p=

O(1). Actually the x-coordinate of all the points in the fluid domain vary from 0 to ¢

which is length of the plate. Therefore the non-dimensional x length scale can be

represented as Q:O(l). However the y co-ordinate of all the points at a particular x-

location varies from 0 tod where & is the local boundary layer thickness. Hence the
non-dimensional length scale y is smaller magnitude in comparison with other length
scales. This can be represented as V:O(élc). For unit flat plate length, we have y
=0( o). Therefore from the continuity equation in terms of order of magnitude is,
ow]low] , [PW][v] _

+ =0
0() 0(5)

From the above equation it is clear that v must be of an order of magnitude equal to

the local boundary layer thickness, &, i.e. v=0(5).

We know the non-dimensional form of X-momentum Eq. (20.6). Consider the order

of magnitude form of each term as,

—ou —au op
u—=0(@1 v—=0(1 —=0(1
PU— @ p 3 @ P @)
o (—ov o (—ou 1
ay(”éx] . ay[“ayj (5]

Thus the order of magnitude equation for X momentum can be written as,

1 1 1
0(1) +0(1) = - mYE 0(1) + Res {0(1) + (yﬂ
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Lets assume that the Reynolds number is large. Therefore the term with Reynolds
number in the denominator is of small magnitude which can be mathematically

mentioned as,

1

=0(5°
Re. (6°)
Therefore the above equation now becomes;
0()+0(1) = - L 0(1) +0(5%) 0(1)+(i)
}/M 200 52

It is clear from this figure that product of 0(5%)[0(1)]=0(5?) has very low order of

magnitude in comparison with the rest of the terms in the same equation. This term

actually is ! i_ ;6—! in X momentum equation (Eg. 20.6). Since this term is
Re~ 0y| 0Ox

very small in magnitude we can neglect it. Therefore the non-dimensional X-

momentum equation can now be written as,

—odu —au 1 op 1 o0 (—ou
O0X oy yM? 0x Rex0y " 0y (22.1)

The same in the dimensional form is,

M, U of ou
P Py T T ay Mgy

This is X-momentum is valid for high Reynolds number flows having thin boundary

layer at the wall.

Consider the Y momentum equation in non dimensional form given by Eq. (20.7);

—ov —ov 1 6p 1 o|—(ov ou
pu—_+pv—_:——2—_+——_,u —+—=
o0X oy M 0y Re« 0x ox oYy

Lets do the order of magnitude analysis of this equation.

_ L3P, s 1
0(5) +0(5) = ovE 8wow{om{(gﬂ

o0
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Here all the terms are of very small magnitude 0(o) except the term of pressure

gradient if M 2. is of unity order of magnitude. Hence that term should also have
very small order of magnitude. It implies that %:0(5). Therefore, from Y-

momentum equation given by Eq. 20.7 gets transformed for the boundary layer theory

as;

»_,
oy (22.2)

This equation clearly states that pressure at a particular X location does not change
with Y- coordinate such that the gradient of pressure remains zero in the boundary

layer. Therefore the pressure is only function of X co-ordinate, p = p(x) = pe(x),
where pe(x) is the pressure distribution outside the boundary layer. However if
freestream Mach number, M. is very large so as to have 1/yM?<-0(5). In such
cases, the pressure gradient in normal direction cab be large and still satisfy the Y-
momentum equation. Hence for large Mach numbers, &p/dy might be large enough
to be expressed as 0(1) . Hence pressure is not constant in the direction normal to the

wall for hypersonic flows.
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Lecture-23: Boundary layer equations

23.1 Boundary layer equations

Let’s derive the energy equation under the assumption of very thin boundary layer for
very high Reynolds number hypersonic flows. We know that the non-dimensional
energy equation is given by Eq. 20.8. This energy equation is for total energy which
means the summation of kinetic energy and internal energy. We have neglected the
potential energy of the fluid particle. Therefore let us derive the energy equation for
kinetic energy alone. Consider the X-momentum and Y-momentum equations given
by Eqg. (20.2) and (20.3). in the dimensional form. Multiplying the X momentum

equation by u velocity, we get;

Du D(U2/2) 8p OTxx OTyx
U—=p——=-U—+U +u
Dt Dt OX OX OX

Similarly multiply Y momentum equation by v velocity, we get;

2
Vﬂ_pD(V /2)=_V6_p+val'xy+val'yy
Dt Dt oy oy oy

Adding the above both the equations we have;

2 2 2
pD(U [2+Vv /2)=pD(V /2)=_u@_\/@+u(afxx+a‘[yxj+v aTxy+8Tyy
Dt Dt oX oy OX  OX oy oy

(23.1)

But the energy equation given by Eq. (20.4),

a[ (u2+v2)} a[ (u2+v2)} a( aTj a( 6Tj
ouU—le+—= |+ pV—|e+—— = |=—| Kk— [+—| k—
OX 2 oy 2 ox\_ ox) oyl oy

[ a(pu) N o(pv) N O(urx) N o(urxy) N o(vrxy) N O(vryy)
OX oy X oy OX oy
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Replacing the L.H.S. in terms of the substantial derivative form we get,

A e+£+ i e+£—
Pl 2 [y T T2 TP

Subtracting Eq. (23.1) from (23.2), we get, the heat energy equation is;

p%:q,cﬂ}i(,(ﬂ]_(a(pu)+a(pv)j
Dt ox\ ox) oy\ oy OX oy

N a(UTxx) + a(UTXy) n a(VZ-XV) n a(VZ'W) +u@+V@—

OX oy OX oy ox oy

Let’s simplify the L.H.S.,

DO _ e,

LH.S.=
ot P Py

From the definition of enthalpy we have,
e=h-plp

Therefore the heat energy equation is,

wl=plp) ah-plp) oh b

OX oy OX oy
Further simplification of this equation leads to,

oh oplp
pU—+ pV——pU —pv
OX oy OX oy OX oy

8p/,0= oh oh

Cancellation of similar terms from both the sides we

u@p/p_pvép/p,

PU—+ pV—————

OX oy
a(pu) o(pv)
2P +pp(
have,

0(pu) . 9(pv)
OX

OX

oy\ oy
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Now RHS. = ( 8Tj+ Kl (K aT j+a(um) , Ours) | O(vzw) | O(vry)

oy

2
DE+V'/2) oy (23.2)
Dt
u(aTxx_i_aTyxj_v aTxy+aTyy
oX  oOX oy oy

oy
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+u@+va_p_u(al'xx+afyxj_v aTxy_{_aﬂ
ox oy oX  oX oy oy

Simplifying the viscous terms,

a(UTxx) +8(UTxy) +6(foy) +6(VTyy) _u(aTxx +aTyxj_v aTxy+aTyy ou ov ou ov
OX oy OX oy OX OX

ou v ou v ou ovY ouY (v (ou avY
Tx—+Ty—+Tyx| —+— |[=A| —+— | +u|2| — | +2| — | +| —+—
OX oy oy Ox ox oy OX oy oy Ox

Therefore we have heat energy equation as,

oh oh 8( 8Tj o oT op op
oU—+pN— =—| Kk— |[+—| Kk— | +U—+V—
OX oy ox\ ox) oy\ oy ox oy

(au av]2 [ (aujz (avT {au avﬂ
AA| —+— | +u| 2| — | +2| — | +| —+—
ox oy OX oy oy Ox

Now from Y momentum Boundary Layer Equation we have, P» =0. Let us carry out

the order of magnitude analysis for the above Energy Equation;
2
01)+0() =0() +ﬁ+ 0()+A(0Q) + 0(1))2 + ;{2*0(1) +2*0(1) +(%+ 5} }

From the above equation it is very much clear that temperature gradient along Y axis

has larger magnitude as compared to the temperature gradient along X axis.

. 0 0
Moreover, we know from the momentum equation, that, v<<u & 6_<<_ for
X

boundary layer assumption. Therefore gradients of lower magnitude, Energy Equation

can be expressed as

oh  oh a( 6Tj dpe (aujz
pU—+ pV—=—| Kk— [+U——+ u| —
OX oy oyl oy dx oy (23.3)

Joint initiative of I1Ts and 11Sc — Funded by MHRD Page 17 of 39



NPTEL — Aerospace

The mass, X-momentum, Y-momentum and energy equations for the boundary layer

are respectively as follows,

%4_@:0

ox oy

yM, Mo Of ou

o Py T T ay\ My

P _g

oy
eh oh of or) dpe (auY

oU—+pV—=—| K— [+U—+ u| —
OX oy oy\ oy dx oy

These equations are non-linear. However assumptions of boundary layer theory make
solution procedure simpler. Apart from this the pressure is only function of X-
coordinate hence can be represented using an ordinary differential equation rather
than a partial differential equation. The variables u, v, p, p, T and h are the unknowns
in these equations. However, p can be known from p=p¢(x). Rest of the variables
likep and k are properties of fluid and are temperature dependant. The following

perfect gas relations should also be used to complete the set of equations.

p=pRT
h=C,T

Boundary conditions to be considered to solve above equations are

At Wall: y=0, u=0, v=0, T=T, or (g—TJ =0 (adiabatic
n w

wall)

At boundary layer edge: y—00, u—Ug, T—-Te

Here subscript e stands for the values measured or known at the edge of the boundary
layer. The boundary layer equations are valid for compressible subsonic or supersonic
flow. In case of application for hypersonic flows, it should again be noted that the Y-

momentum equation Jdp /oy =0 should be changed for high Mach number cases.
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Lecture-24: Similarity solution for boundary layer equation

24.1 Similarity solution of compressible boundary layer equation.

Boundary layer theory makes it convenient to reduce the complexity of basic
governing equation which has been derived using the order of magnitude estimate for
the non-dimensional form of the governing equations. Hence following are the mass,
momentum and energy equation which are to be solved for compressible boundary

layer.

24.1
a";u_{_%zo ( )
ox oy

au ou  op a( auJ
pU—+pN—=——+—| U—
OX oy ox oy\ oy (24.2)
P_g
oy (24.3)
oh  oh a(aTj dpe (aujz
PU—+ pV—=—/| Kk— [+U——+ u| —
OX oy oy\ oy dx oy (24.4)

These equations are derived for the X-Y coordinate system. Hence the variation of all
the properties is assumed to be dependant on X and Y co-ordinates. However, lets
transform the dependence of all the variables from X and Y to new dependant
variables (&,7). This transformation ensures the self similar solution for the velocity

profile where u=u(#n) and independent of &. This transformation has the following

dependant variables as,

&= I,Oeue#edx (24.1)
0
Ue b
n= Ejpdy (24.2)
0
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Here pe,Ueand . are the density, velocity and viscosity coefficients at the edge of

the boundary layer and are functions of x only. Therefore &=£(x).

These special variables chosen for transformation should be implemented for the
governing equations derived especially for the boundary layer. This would lead to
new form of the same governing equations. Following are the basic steps involved in

this transformation.
Step 1. Replacement of derivatives of independent variables.

The new independent variables are expressed in terms of the old independent
variables using Eqg. (24.1) and (24.2). Now we have to express the derivatives of

them in terms of new independent variables.

SlElEEE) @
% (@:J(gj] (GUJ@] 244

From the definition of &= £&(x) given by Eq. (24.1) we can write,

a—é: = Pelele (24.5)
OX
o8
2-0 24.6
Y (24.6)

From the definition of 7 given by Eq. (24.2) we can write,

on Uep O

—= — (24.7)
oy J2& on

Substituting Eqgs. (24.5)-(24.7) into Eqgs. (24.3) and (24.4), we can the derivatives as,

5 o (on) o

9 e[ 91 2 24.8
Py (axjan (24.8)
0 Uep 0

0 _Up 0 (24.9)
oy J2&0n
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We know the definition of the stream function w defined as

oy

—=pU (24.10)
oy

oy _ oV (24.11)
OX

The X momentum boundary layer equation given by Eq. (24.2) in terms of v is,

oY 9 'uay

Oyou owou_ dpe Of ou (24.12)
dy x xday  dx oy

Let’s introduce the derivatives from eq. (24.8) and (24.9) in the eq. (24.12) we get,

Uep Oy U ou (877)% oy (877)8(// Uep OU
Pelefle— Pelefle—— — |
¢ on o \ox Jon oc \ox )Jon |22 on

dpe Uepo O (Uep,u au]

—pPelelle——
dé& \/— on\ J2& on
(24.13)
Multiplying Eq. (24.13) by /2& / uep, we get,
0 ou (0on)ou 0 on \ow |ou
W Pelette—+ (—nj —| Peletle l// ( 77]—‘// —
on o0& \ ox)on o0& \ox)on |on
pe dpe Ueput ou
—J_ (24.14)
Tz 0'7[J_ 577]
Step 2. Replacement of dependent variables.
Let us define a function ‘f* of £ and n, f(&,7), such that
Y (24.15)
Ue 87]
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Here prime denotes the partial derivative of f with respect to 7. We know that the
velocity at the boundary layer edge is function of X alone. Hence it is function of &

only (ue =Ue(&) ). Therefore we can get the following

Mgl (24.16)
g dé &

LY (24.17)
on

These two steps make it easy to express the governing equations of the thin boundary

layer in terms of new variables so as to make it easier to solve.
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Lecture-25: Transformation of boundary layer equations

25.1 Transformation of boundary layer momentum equation.

We have already seen the two steps involved in getting simpler boundary layer

equation. The steps followed to those are seen here.
Step 3. Expression of f interms of y .

The stream function y has been introduced to reduce the number of dependant

variables of the governing equations. Therefore let us express the new dependent
variable f(&,n)in terms of stream function. From eq. (24.9), (24.10) and (24.15) we

can write the following,

oy oy
Y pu=ptte or Y= f' 25.1
22 on pu=p on 28 (25.1)

Integrating this equation with respect to 77, we get,

v =251 +F (&) (25.2)

Here F(&)is any arbitrary function of £. However, from the definition of stream

function, we know that difference in stream function casts mass flow rate. Therefore
for the stream function should be anchored to zero at the non-blowing wall,
w(&£,0)=0.Hence f =0 and F(&)=0 ensure the zero value of y at the wall. This

makes it clear that the any arbitrary function, represented by F (&) must be zero,

which leads to,

w =125 1 (25.3)

We will also have,

(25.4)

0
Wragf
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Step 4. Derivation for final equation.

We can derive the final expression using Egs. (24.16)- (24.17) and (25.1) and

substituting into Eq. (24.14) which is X-momentum boundary layer equation, we get,

due o' (0n
\/—f |:,0eUe/,le[f dé‘ Ueaf] [ale.lf }

— i L 6_77 ! . ”
{peUelue(\/Eaf+\/Efj+(an\/zf ]uf

_ ,Oe dpe Ue ol
J_ oy a (\/E fJ (25.5)

The Euler equation for the outer flow is,

dpe = —pe ledlie (25,6

Using Eq. (25.6) we can get the Eq. (25.5) as

OUe of ' 877
2 eezef'2 26! eeze 2 eff"— =
Vab o () g+ 2T oy a2 Ek (axj

2 ,,ﬂ_peUezlLle "_ " 677
J2& petie® uef e o ff " —J2& pief £ (ﬁxj

Therefore,

2 ' a € ' 2 8f
\/Zpel]e /Je(f )2 6u§ -l-\/Ef Pele” LLe aéf
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It can be seen that the term involving 07/ 0x does not appear in the Eq. (25.7). This
the main reason for non evaluation of dr/0ox earlier explicitly. Simplified form of

the same equation is,

i(f)sze g0, of _peddue 8(1 p,ujf (25.8)
Ue dé: 85 85 P Ue dg 677 Zé: Pelle

Let’s introduce a variable, C = pu/ pepe and obtain the final form of the X-

momentum equation in the transformed state.

vy, " _ due ,of" of _,
(CF"y + ff" = {(f) }dg 2§(f = %fj (25.9)

This transformed equation is valid for steady compressible flow in the thin boundary

layer.

The Y-momentum boundary layer y-momentum equation, gets transformed as,

P

=0 25.10
o ( )

25.2 Transformation of boundary layer energy equation

We can obtain the energy equation in the transformed variables using same strategy
incorporated earlier. Let’s substitute Eq. (24.8)- (24.11) in the L.H.S. of Eq. (24.4),

we obtain the transformed R.H.S. term of energy equation as

Sy oh_dyeh_of oT), dp (3u) (25.11)
oy ox ox oy oy ay dx oy |

Using Eq.(24.8), we can express the first term on LHS as,

8;// 8h Uepo O oh (on)aoh
[\/_a ]( el e% (8X]8nj (25.12)
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Let’s define the static enthalpy as the non dimensional variable,

9=9(5n)=— (25.13)
Hence we can write as,

N _h9 g ohe (25.14)
o oc T o¢

o _ heg’ (25.15)
on

Here g'=0g /07, since he =he(X) hence its derivation with respect to 1 is zero.

Therefore using Eq. (25.14), (25.15), we can re-express the first term of LHS of Eq.
(25.12) as,

dy ch | Up Oy oh (om)oh
Y ax‘[@ an](peue”e 5{8 ]anj

Uep g ohe 8_77 ,
I:\/—\/?f j||:,0eUe/Je(he6é: g a§}+(6xjheg:|

, a9 ohe 677) ,
=(Uepf eUe £Lehe —— 4+ pelle Lo he
(Uep )(p el 2t Pl (8x gJ

al/j ah — = PepPUe ,Llehef 8—g-i-pepue ILlefg—-i-Uepf (anjheg, (2516)
P o8 ox

oy Ox
Consider the second term of L.HS. of Eq.(25.12) using Egs. (24.8) and (24.9) in the

same way, we get,

oy oh oy (877)81,0 Uep oh
W[ e D[ D)0V Ll 2517
X oy [p #oe "\ ox Jan )\ 2z on (25.17)
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Now substituting Eq.(25.15),(25.1) and (25.4) in Eq. (25.17), we have

8- )

al/j ah = PepPUe /,leheg of M PUe he g’f (anj (2518)
ox oy é 28
Therefore complete L.H.S. of Eq.(25.11) using Eq. (25.16) and (25.18) is
ow oh oy oh ) , 09 , ohe (877)
LHS =————1— = pepUe’ tchef '—=+ peplUe’ 1ef  — +Uep ' heg’
Oy ox ox oy PP Do rpep ﬂg&f AR el
. Of  pepue’ uehefg’ , ,(677j
—pPepUe’ ttehe) — ———— = — pucheq'f'| —
pepue” uaheg’ — : 22 pueheg | —
LH.S. = peplc ,Ue[hef 99, 1y e _p g O _helg } (25.19)
o¢ 0g o5 24
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Lecture-26: Similarity solution of boundary layer equation

26.1 Transformation of boundary layer energy equation and similarity

solution

The simpler forms of X-momentum and Y-momentum have been obtained. The
energy equation has also been obtained in the transformed form for LHS. Let’s
consider the RHS of Eq. (25.11) for the transformation. RHS of the Eq. (25.11) is as.

R.H.S.ZQKKG—T]+U dpew(a—“j (26.1)
oy\ oy dx oy

Lets consider the first term of this RHS and express the temperature in terms of

enthalpy as T =h/Cp we get,

O OT) Up O |KUp O ( h
S5 Eal ) &

If we consider the gas to be calorically perfect and variation of C, to be negligible

then, we get
6[ 8Tj_ Ueo O | pkUe O (hj Uep O prUe g
Vg on| 22 on\C )|~z on | Jazc,
O[O0 )_hip i["—“g'} (26.3)
oy\ oy 2& on| Pr

For the 2" term of Eq.(26.1), we know,

dpe i dpe

u = Uef '| peleste

T

dpe i dpe_ due due

u =Uef '| peleste = pele’ tef | — pele =—pe’Ue’ tref ' 26.4
i _Pﬂdg_P#{Pdg}Pﬂdé (26.4)
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For the 3" term, from Eq.(26.1), we get

U] _ | Uep OU Ue’ p°u y 2:ue4p2,u "2
ﬂ(ﬁyj {J_ﬁf} = ) = (1) (26.5)

Therefore the complete form of RHS of Eq. (26.1),

2 2 4 2
R.H _S_ = i K‘ﬂ + u%+ﬂ a_u = heu—epi‘:p_ﬂg’}_pezuesﬂef ’%_}_M( f ”)2
oy\ oy dx oy 25 On| Pr d& 2&
(26.6)
Therefore the complete form of Eq. (26.1) using Eq. (25.19) and (26.3)-(26.5) is

Dividing both sides by pepue’ 1e, We get

f, fgahe ,6f hefg'_ he i[& ,:l_peUef'%_l_ Uezp/,l
85 85 25 2&pepe On| Pr p A& 2&pete

Multiplying both sides by 2&/he, introducing the term C = pu/ peuethe above

equation simplifies to,

251199, fog

, of , C , , 2Epelef " due  U’C
269"~ (—g ) - Zepud S,
o0& he o0&

_fg' = fr 2
g Pr phe dé: he ( )

Finally rearranging the terms we get,

C ’ fg ahe of ,OeUef due Us’C 2
—q' fog'=2&| f'—= ! £ 26.7
(PrgJ+ 9= 5[ o he 02 JoE " phe dg} e () (26.7)

Hence, the governing Egs. (25.9), (25.10) and (26.7) form the transformed set of

equations for compressible hypersonic boundary layer.

The boundary conditions to be considered for solution are,

n=0, f=f"'=0 and g =g, for isothermal wall boundary condition
While,

n=0, f=1'=0 and g'=0 for adiabatic wall boundary condition
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The boundary condition at the edge of the boundary layer is,
n—ow, f'=1land g=1

We can solve the transformed boundary layer equations which are partial differential
equations. The necessary outcome for this is the velocity and enthalpy variation in the
boundary layer. Since pressure is assumed to have same variation in the boundary
layer as that at the outer flow, we can always evaluate the other thermodynamic
properties in the boundary layer. Moreover the main parameters which we can

evaluate are skin friction coefficient and Stanton Number.

We know that the skin friction coefficient is defined as,

Where, the wall shear can be calculated as,

[+5)
Tw = ﬂa

Hence,

2 ou
)
P’ oy ),

Using the expression given by Eq. (24.9) we can write the equation for skin friction

coefficient as,

2 Uep,, [ OU
C.=—— =
o @(aﬂjw

2 u? ,
C, =— 5 u,—L2 £7(¢,0)

pu?, " 28

C, _ 2P f"(£,0) (26.8)

pu2E
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We can also calculate the Stanton number from the solution of boundary layer

equations. Here Stanton number is defined as,

S T
Pele (haw - hw)

Here h,, is the adiabatic wall enthalpy, which is the enthalpy at the wall when there is

no heat transfer from the fluid to the wall. As well, h  is the wall static enthalpy

W

corresponding to the temperature of the wall at isothermal wall temperature condition.

Here, q,, is the heat flux to the wall from the fluid which can be evaluated as,

q —(ka—T) or g, = ko
! ay w CP 8y w
Assumption made here is the constancy of specific heat or calorically perfect gas.

Thus using this expression for heatflux and from Eg. (24.9) and (25.13) we can

calculate the Stanton number as,

s 1 [k
t peue(haw_hw) Cp ay w

1 k Uephe oh
S = Kk uephe Sh 26.9
t peue(haw_hw)(cp \/E anJW ( )

1 k Uephe
S, = LS (&0
t peue(haw_hw) Cp \/2§ | (§ )
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Lecture-27: Hypersonic flow over flat plate

27.1 Hypersonic flow over flat plate.

The equations (25.9)(25.10) and (26.7) form the boundary layer equations. Let’s
consider these equations for solution of hypersonic flow over flat plate. As we had
seen earlier, there are two prominent boundary conditions considered for this flow

over flat plate as,

Isothermal wall, T,,=const

Or an adiabatic wall, (%} =0

All the freestream variables of the variables at the edge of the boundary layer are now

assumed be constant. Hence The variables ue,he, pe are of constant values and

independent of & and 7. Therefore the governing equations reduce to,

A4 " __ !af’_af n
(CE") + ff _Zf(f o —a‘ffj (27.1)
cC .\ .. 09 L of | uC o,
(mgj*fg_zg{fa& gaf} () o

These equations are the partial differential equations. Let’s assume that the functions

f and g are functions of Eqs.(4.40) and (4.41) are still partial differential equations .
Let us assume that fand g are the functions of n only. Hence f and g are

independent of £. For these assumptions the same equations reduce to,

[(CE") + ff" =0 (27.3)

c ) U'C 2
—g'| +fg'+ f")" =0 27.4
(Prg] g'+——(f") (27.4)

e

These equations are single independent variable equations, hence are the non-
linear ordinary differential equations. These equations are valid for a compressible

boundary layer over a flat plate with constant wall conditions. Here both the constants
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C =pul pepre and Pr= ucp/ k are meant for the local values in the boundary layer.

We can you shooting technique for solving these equations. Thus obtained velocity
and thermal boundary layers can be used to obtain the wall heat flux and shear stress
in turn the Stanton number and skin friction coefficient. Here the ratio of Stanton
number and skin friction coefficient can be approximated as the function of Prandtl’s
number by Reynolds analogy.

27.2 Hypersonic flow around a stagnation point

Hypersonic flow around a blunt body forms a stagnation point which can also be
evaluated using boundary layer equations. Consider hypersonic flow around a blunt
body which marks a stagnation region, as sketched in Fig. 27.1. Consider the flow to
be 2D flow for simplicity; hence the span of the cylinder is infinity. Let X be the

direction of freestream flow and R be the radius of curvature at the surface.

Fig. 27.1 Hypersonic flow around the stagnation point region [1].
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Let us consider that f and g from Eq. (25.9) and (26.7) are functions of 7 alone,

Therefore,

of 9 _2% _
FTA T T

This leads to the following changed in Eq. (25.9) and (26.7) as,

CfY +ff =21 - e (27.5)
And
(9') + Fg' = 281 o) = Ce () (27.6)

These equations are still ¢ dependent. Moreover, we can assume that the velocity at
the edge of the boundary layer, u, is very small and static enthalpy at the edge of the
boundary layer is h, = h, (stagnation enthalpy). These facts lead to the assumption
that,

Zx0 (27.7)

We can as well assume that, the flow velocity is the boundary layer at edge of the
boundary layer at the stagnation point behind the normal shock is low as to be
considered in the incompressible flow regime. Hence, we can use the result of
incompressible and inviscid flow at the stagnation point, which expresses the

boundary layer velocity as,

du,
U, = (dx )S X (27.8)
Here (ddue) is the velocity gradient at the stagnation point external to the boundary

S

layer. Using these assumptions we can re-express the ¢ as,

du,
§ =y peueodx = [ pon () xdx

Or

§ = pene () % (27.9)

Joint initiative of I1Ts and 11Sc — Funded by MHRD Page 34 of 39



NPTEL — Aerospace

The velocity gradient required for calculation here can be evaluated as,

o (2 (0) - 45 a0

But from the definition of &, Eq. (24.1) we know that,

d
o = Petehte (27.12)

Substituting this Eq. (27.11) into (27.10), we get

due, 1  du,

dg N PelUele dx (2712)

From Eqg. (27.11) into (27.12), we write,
du, 1
(dx )s - PelleX

Or,

(due> _ 1 (due>
dx s HePe (due/dx)sx dx N
Let’s consider the term (2¢/u,) du,/dé which appears in the Eq. 27.1. We can re-

write this term and can derive for the same as,

Zdue _ 2pepe(duc/d)s(x/2)] 1 _ 4
ue dé (due/dx)sx PetteX

Similarly consider the term (2¢ /u,)(p.u./ph.) du,/d¢ appearing in Eq. (27.2). We

can re-arrange this term as well,

Ue du du x2 du 1 dug\?
2g e = 2 e (G2) FI|(50), Al ozl (B)
phe d& phe dx /g 2 dx /g Peltex] phe \ dx s

However at the stagnation point, x=0. This fact leads to,

{_-peue due —
phe d&

Moreover, for a calorically perfect gas, we have,

Pe _PelTe _ Peh
T

©
=
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Using all these short expression for various terms involved in Eq.(27.1) and (27.2) we

can get these equations as,

€+ ffr=U2Y-g (27.13)

(gg')}fg' =0 (27.14)

These equations are special equation for stagnation point flow. These equations are

independent of & We can use numerical techniques shooting technique to solve these

equations.
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Lecture-28: Stagnation point flow field

28.1 Hypersonic flow around a stagnation point.

The known correlation for stagnation point heat flux for cylinder is

du
= 0.6 Y, | = _
Cylinder: a€ 0.57 Pr I:'DB #3) : dx (haw hw)

(28.1)
This equation is valid for 2D configurations. Moreover for, sphere or axi-symmetric
configuration the stagnation point heat flux can be predicted using,

Sphere:  0.763Pr"(p, ) /2 |2 (g, — hiy) (28.2)

These equations are called as Fay and Riddle equations for stagnation point heat flux
prediction. The stagnation point heat flux is more for sphere in comparison for that of
the cylinder of same diameter. The main reason for this discrimination is the
dimensionality of the flow. The hypersonic flow is two dimensional for flow over
cylinder hence it has two possible direction for passing over the cylinder however the
flow over the sphere is three dimensional. Due to the extra available dimension, flow
passes around the object easily hence the shock stand off distance and the boundary
layer thickness decrease for the sphere in comparison with the cylinder of same
diameter. The decreased boundary layer thickness increases the gradient and hence

the shear stress and heat flux at the wall for sphere in comparison with the cylinder.

The closer observation to the Eq. (28.1) and (28.2) suggests that the wall heat flux is

du,
— ) along the

propotional to the square root of the stream wise velocity gradient,(

stagnation streamline.

dp, = -p.u_du,

Hence,
du, 1 dp,
dx pu, dx (28:3)
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We can evaluate the pressure gradient of this equation from the known pressure

variation given by Newtonian method.
C =2sin" 0

Here 6 is flow deflection angle, the angle between a tangent at any point on the

surface and the freestream direction. Let’s define @ as the angle between freestream

velocity and the local surface normal. Hence the pressure distribution gets

transformed to,
C, =2cos ¢

From definition of pressure coefficient we have,

Pe — P
4w

= 2cos%Q
Or,

p.=2q cos p+p,

Differentiating this equation w.r.t X we get,

dp,  4q, _do
= - cos @ sin p—
dx pu. dx (28.4)
Substituting the Eqg. (28.4) in to the Eq. (28.3) we get,
ddie = % cos® sin® % (28.5)

All the terms involved in this equation can be evaluated using various

approximations.

u, = (%)S Ax (28.6)
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cos® ~ 1

. Ax
stSzQSzAQSz?

o _ 1

= (28.7)
1

Qoo = 5 (Pe = Do) (28.8)

Now, substituting Egs. (28.6) — (28.8) in (28.5), we get,

2 —
&) 2B

Or

du, _ l 2(pe—Pw)
. TR /—pm (28.9)

This is the approximate expression for velocity gradient encountered in the Eq. (28.1)

or (28.2). The expression clearly suggests that the wall heat flux is inversely

proportional to the nose radius or radius at the stagnation point. This is the main

reason for having hypersonic vehicles being blunt nosed to reduce the heat load at the

compromise of the drag.
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