
NPTEL – Aerospace 

Module-4: Approximate and exact methods for hypersonic 

inviscid flows 

Lecture-12: Hypersonic Mach number independence 

principle  

12.1 Introduction 

 For major considerations in hypersonic flow, detailed analysis of the flow-

field is required. The details of any flow-field are governed by a system of 

conservation equations which can be expressed in either integral or partial differential 

equation form. There are approximate solutions of these equations for various 

hypersonic applications. These approximate solutions are based upon pure theories of 

fluid dynamics. Solution for the hypersonic flowfield was available before the advent 

of high speed computers through the theoretical considerations, analytical 

formulations or approximate techniques. However, many of these older analyses, all 

of which involved some approximations to allow the solution of the governing 

equations, are just as relevant to the modern hypersonics of today as they were in 

1950s. One major advantage of approximate theories of hypersonic flows is that they 

illustrate the effect of various parameters on the physical results more than the exact 

(numerical) solution methods. 

12.2 The Governing Equations 

As we had seen, the governing equations for hypersonic flow are, 

 

Continuity :     ( ) ( ) ( ) 0u v w
t x y z
ρ ρ ρ ρ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
                         (12.1) 

X Momentum :     u u u u pu v w
t x y z x

ρ ρ ρ ρ∂ ∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂ ∂
                               (12.2) 

Y Momentum :    v v v v pu v w
t x y z y

ρ ρ ρ ρ∂ ∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂ ∂
                                (12.3) 
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Z Momentum :     w w w w pu v w
t x y z z

ρ ρ ρ ρ∂ ∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂ ∂
                             (12.4) 

Energy  :    0s s s su v w
t x y z
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

                                     (12.5) 

The above equations are governing differential equations for inviscid compressible 

flows. They are named as Euler Equations. The entropy from the energy equation can 

again be replaced by p
γρ

=Constant for isentropic process in an ideal gas along a 

streamline. Hence, the energy equation can be written as,  

                    0p p p pu v w
t x y zγ γ γ γρ ρ ρ ρ
       ∂ ∂ ∂ ∂

+ + + =       ∂ ∂ ∂ ∂       
        (12.6) 

The solution of the above equations for a problem depends on the boundary 

and the initial conditions for that problem. 

 12.3 Mach Number Independence 

At high Mach Numbers, certain aerodynamic quantities, such as pressure coefficient, 

lift and wave drag coefficients and flow-field structure (such as shock wave shapes 

and Mach wave patterns) become essentially independent of Mach number. This is 

called Mach Number Independence Principle. To understand it explicitly, let us depict 

the non-dimensionalization of the above mentioned governing equations and 

corresponding boundary conditions. 
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___
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lz =  

___

,u
Vu
∞

=
___
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Vv
∞
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___
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∞
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Where, ‘l’ denotes a characteristic length of the flow,  and Vρ∞ ∞  are freestream 

density and free stream velocity respectively. Use of this non-dimensionalization for 

steady state continuity equation is, 

       
. . .

0

u v w
V V VV

x y zl
l l l

ρ ρ ρ
ρ ρ ρρ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞

      
∂ ∂ ∂      
      + + =

      ∂ ∂ ∂      
       

                      

       
__ __ __ __ __ __

__ __ __
. . . 0u v w

x y z
ρ ρ ρ∂ ∂ ∂     + + =               ∂ ∂ ∂     

     

   (12.7)                              

Similarly we can write for other governing equations, 

                     
__ __ __ __

__ __ __ __ __ __

__ __ __. . .u u u pu v w
zx y x

ρ ρ ρ∂ ∂ ∂ ∂
+ + = −

∂∂ ∂ ∂
                               (12.8) 

                     
__ __ __ __

__ __ __ __ __ __

__ __ __ __. . .v v v pu v w
x y z y

ρ ρ ρ∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
                              (12.9) 

                    
__ __ __ __

__ __ __ __ __ __

__ __ __. . .w w w pu v w
zx y z

ρ ρ ρ∂ ∂ ∂ ∂
+ + = −

∂∂ ∂ ∂
                                (12.10) 

                      
__ __ __

__ __ __

__ __ __ __ __ __ 0p p pu v w
x y zγ γ γρ ρ ρ

     
∂ ∂ ∂     + + =
          ∂ ∂ ∂     

                      (12.11) 
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Any particular solution of these non-dimensional governing equations is again 

governed by the boundary conditions for flow over a hypersonic body. We know that 

the boundary condition for the steady inviscid hypersonic flow on the body surface is,  

. 0V n =


, which necessarily means that the normal component of velocity on the wall 

is zero. Therefore, 

0x y zun vn wn+ + =  

The u,v and w are x,y and z directional velocities and , ,x y zn n n  are the direction 

cosines The non-dimensional form of this boundary condition is, 

__ __ __

0x y zu n v n wn+ + =             (12.13)     

The flow-field for the problem is bounded on one side by the body surface and on the 

other side by the bow shock wave. The boundary conditions behind the shock are 

given by the oblique shock properties. 
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Lecture-13: Hypersonic Mach number independence 

principle 

13.1 Mach Number Independence (continued) 

We intend to solve for the hypersonic flowfield using the known governing equations 

and the boundary conditions at the wall along with the boundary conditions for the 

shock. Here we assume that the location and shape of the shock is known to us and we 

are intended to solve for the flowfield in the shock layer or the volume between shock 

and body. This technique is called as shock fitting technique. We can obtain 

correlations or use prior flow visualization data for shock shape. Therefore such 

technique can be used for analyzing the flowfield in the shock layer. 

Oblique shock relations can be used for boundary conditions at shock location.  

 

 

 

 

 

 

 

 

 

 

Fig. 12.1 Schematic of the oblique shock.  

A typical oblique shock and corresponding properties are shown in Fig. 12.1. Using 

known freestream properties we can calculate the properties behind the shock. These 

post shock properties can be used as the boundary conditions at the shock to solve the 
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Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 5 of 33 



NPTEL – Aerospace 

governing equations. Following oblique shock relations are to be used for this 

purpose.  

                                       ( )2 22 21 1
1

p M Sin
p

γ β
γ ∞

∞

= + −
+

       (13.1) 

                                       
2 2

2
2 2

( 1)
( 1) 2

M Sin
M Sinα

ρ γ β
ρ γ β

∞

∞

+
=

− +
           (13.2) 

                                       
2 2

2
2

2( 1)1
( 1)

u M Sin
V M

β
γ
∞

∞ ∞

−
= −

+
            (13.3) 

                                      
2 2

2
2

2( 1)
( 1)

v M Sin Cot
V M

β β
γ

∞

∞ ∞

−
=

+
         (13.4) 

However the governing equations are in non-dimensional, hence we have to non-

dimensionalze the post shock variables with the same reference variables.  

Now, 
2

2 2p p V
p p

ρ∞ ∞

∞ ∞

=  

__
2

2 2 .p p V
p RT

∞

∞ ∞

=  

__
2

2 2 .p p V
p RT

γ
γ

∞

∞ ∞

=  

__
2

2 2
2

.p p V
p a

γ ∞

∞ ∞

=  

__
22

2 .p p M
p

γ ∞
∞

=  
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Therefore the Eq. 13.1 can be re-written as,  

                           
2 2__

2 2 2

11 2
1

M Sinp
M M

βγ
γ γ γ

∞

∞ ∞

 −
= +  +  

   

           Or           
__

2
2 2 2

1 2 1
1

p Sin
M M

β
γ γ∞ ∞

 
= + − +  

                 (13.5) 

           Also,       
2 2__

2 2 2

( 1)
( 1) 2

M Sin
M Sin

γ βρ
γ β

∞

∞

+
=

− +
                             (13.6) 

                           
2 2__

2 2

2( 1)1
( 1)
M Sinu

M
β

γ
∞

∞

−
= −

+
                              (13.7) 

                           
2 2__

2 2

2( 1)
( 1)

M Sin Cotv
M

β β
γ

∞

∞

−
=

+
                          (13.8) 

If we take the limit of Mach number tends to∞ . Therefore in the limit as M∞ →∞ .  

                                    
2__

2
2

1
Sinp β
γ

→
+

                                  (13.9) 

                                     
__

2
1
1

γρ
γ
+

→
−

                                           (13.10) 

                                     
2__

2
21

1
Sinu β
γ

→ −
+

                            (13.11) 

                                     
2__

2
2 2

1 1
Sin Cot Sinv β β β
γ γ

→ =
+ +

         (13.12) 

Here we can observe the fact that the governing equations in their non-dimensional 

form (Eq. 12.7-12.11) are independent of Mach number. The boundary condition at 

the wall (Eq. 12.13) and the boundary conditions at the shock (Eq. 13.9-13.12) are 

also independent of Mach number. Therefore the expected flowfield in the shock 

layer should also be independent of Mach number. This fact is called as Mach number 

independence principle. It is valid for very high Mach number inviscid flows. The 

above derived fact is about two dimensional flows. This independence appears at 
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relatively lower Mach number for blunt bodies in comparison with slender ones due 

to the fact that the shock angle is very high and all the terms in the Eq. 13.3 to 13.8 

include M Sinβ∞ .  
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Lecture-14: The Hypersonic Small Disturbance Theory 

14.1 The Hypersonic Small Disturbance Theory 

Some special applications in the hypersonic speed regime need aircraft configurations 

of low drag and high lift or high lift to drag (L/D) ratio. Therefore, in such hypersonic 

applications, slender body configurations are generally preferred. Governing 

equations can be specially derived for this constraint. The formulation in this case is 

referred to as Hypersonic Small Disturbance Equations. 

Consider a typical slender body as shown in Fig. 14.1 

 

Fig 14.1: Typical slender body considered for high L/D [1]. 

Here the freestream velocity V∞  gets changed behind the shock and then on the body. 

Let us assume that the change in this velocity is more while cross the shock in 

comparison with the change taking place during the travel of the fluid over the body. 

Let 'u  and 'v  be the change in x and y components of velocity vector. Thus the 

velocity at any point on the surface of the body can be given by, 

 

V∞ ( )y f x=

x

y

d

l

V u∞ ′+

v′

V
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             ( ') 'V u v iu jv iu jv i V u jv∞= + = + = + = + +
  

    

Here, freestream velocity V∞ is assumed to be aligned with X-axis. The changes in the 

velocity, i.e. u’ and v’ are called perturbation velocities. These changes might not be 

always small. However for hypersonic Flow over slender body we are assuming these 

changes are small in comparison with the freestream velocity.  

          'u V∞<<  

and    'v V∞<<  

But u’ and v’ may not be < a∞ . Let the surface of the slender body follow a profile 

mathematically represented as ( )y f x= . Since the velocity V


, at any point on the 

body surface, is tangential to the surface at that point, slope of the velocity and slope 

of the tangent to the surface are same. Hence this tangency condition can be written 

as,  

on the body

'
'

v dy
V u dx∞

 =  +  
        (14.1) 

Since the configuration under consideration is slender, the slope at any point is of the 

order of ratio of length to diameter of the body.  

dy lO
dx d

 =  
 

                         (14.2) 

Hence, dy
dx

τ= =Slenderness Ratio 

Therefore, ' ( )
'

v dy O
V u dx

τ
∞

= =
+

               (14.3) 

However, 'u V∞<< , which leads to,   

' ( )v O
V

τ
∞

=           (14.4) 
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 Let a∞  be the freestream speed of sound, 

 ' ( )Vv O
a a

τ∞

∞ ∞

=  

 ' ( )v O M
a

τ∞
∞

=                               (14.5) 

Hence, Strength of the disturbance in the flow relative to a∞  ( 'v
a∞

) is of the order of 

M τ∞ . This expression also provides information that M τ∞  is a hypersonic similarity 

parameter. This information is fetched only from the boundary conditions.  

We can express the steady Euler Equations in terms of the perturbation velocities, u’ 

and v’ for steady flow, 

 [ ( ')] ( ') ( ') 0V u v w
x y z

ρ ρ ρ∞∂ + ∂ ∂
+ + =

∂ ∂ ∂
                                            (14.6) 

( ') ( ') ( ')( ') ' 'V u V u V u pV u v w
x y z x

ρ ρ ρ∞ ∞ ∞
∞

∂ + ∂ + ∂ + ∂
+ + + = −

∂ ∂ ∂ ∂
      (14.7) 

( ') ( ') ( ')( ') ' 'v v v pV u v w
x y z y

ρ ρ ρ∞

∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
                               (14.8) 

( ') ( ') ( ')( ') ' 'w w w pV u v w
x y z z

ρ ρ ρ∞

∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
                            (14.9) 

( ') ' ' 0p p pV u v w
x y zγ γ γρ ρ ρ∞

     ∂ ∂ ∂
+ + + =     ∂ ∂ ∂     

                           (14.10)    
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Lecture-15: The Hypersonic Small Disturbance Theory 

15.1 The Hypersonic Small Disturbance Theory (continued) 

The governing equations especially derived for the small disturbance theory (Eq. 14.6 

to 14.10) can be used to formulate the same. However boundary conditions at shock 

and at the wall are to be evaluated in the same format to solve these equations. In 

view of this, Let us derive the expression for boundary conditions (Eq. 13.9 to 13.12). 

For slender body at hypersonic speeds, both shock wave angle ‘β’ and the deflection 

angle ‘θ’ can be assumed to be small and hence equal. Therefore, 

dySin Sin
dx

β θ θ τ     

We know that, 

( )2 22 21 1
1

p M Sin
p

γ β
γ ∞

∞

= + −
+

 

For very high Mach numbers,            

2 22 2
1

p M Sin
p

γ β
γ ∞

∞

→
+

 

2 22 [ ]p O M
p

τ∞
∞

→                                                                                  (15.1) 

2 2
2 [ ]p O M pτ∞ ∞→         (15.2) 

Hence the non-dimensional pressure of unity order of magnitude is,  

__

2 2

pp
M pγ τ∞ ∞

=         

On the same lines for very high Mach numbers,  

2 ( 1)
( 1)α

ρ γ
ρ γ

+
→

−
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The order of magnitude of this ratio is also unity. Since, for 1.4γ = , 2 6
α

ρ
ρ

→ , which 

is O(1). 

2
2 21

( 1)
u Sin
V

β
γ∞

→ −
+

  

Let us define change in x-component of the velocity across the oblique shock as,  

2u V u∞∆ = −  

So, 
2

22 2 ( )
1

V uu Sin O
V V

β τ
γ

∞

∞ ∞

−∆
= → →

+
                                      

This implies that the non-dimensional perturbation velocity 
___

'u  (change in velocity in 

the x-direction) should be 
___

2

''
( )

uu
V τ∞

=  in order to have unity order of magnitude. 

2 2 ( )
( 1)

v Sin O
V

β τ
γ∞

→ →
+

 

So, the non-dimensional perturbation velocity 
___

'v  will be 
___ '' vv

V τ∞
=  to make it on the 

order of magnitude of unity. 

Therefore it is very much evident that, ( )v O Vτ ∞∆ → and 2( )u O Vτ ∞∆ = . This fact 

leads to v u∆ > ∆ since 1τ << . 

Therefore the new non-dimensional form of flow variables is, 

___

,x
lx =

___

,y
ly τ

=
___

,z
lz τ

=  

___

2

' ,' u
Vu τ∞

=
___ ' ,' v

Vv τ∞
=

___ '' ,w
Vw τ∞

=  

___

2 2 ,p
M pp γ τ∞ ∞

=  
___ ρ

ρρ
∞

=  
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In view of this non-dimensionalization, we have to reformulate the governing 

equations. The mass conservation equation is, 

[ ( ')] ( ') ( ') 0V u v w
x y z

ρ ρ ρ∞∂ + ∂ ∂
+ + =

∂ ∂ ∂
     

2

__ __ __ ___ __ ___
1 2

__ __ __

[ ( ')] ( ' ) ( ') 0
u V V Vv w

l l lx y z
τ

ρ ρ τ ρ τ ρ τρ ρ
τ τ

∞ ∞ ∞ ∞ ∞ ∞
∂ +   ∂ ∂   + + =     

    ∂ ∂ ∂
 

__ __ __ ___ __ ___
2

__ __ __
[ (1 ' )] ( ' ) ( ') 0u v w

x y z

ρ τ ρ ρ∂ + ∂ ∂
+ + =

∂ ∂ ∂
                     (15.3) 

Proceeding in similar way we get the x-momentum equation as, 

__ __ ___ __ ___
'

__ __ __

[ (1 )] [ ' ] [ ' ] 0
( ) ( ) ( )

u
V V v V w V

x l y l z l

ρ ρ ρ ρ τ ρ ρ τ

τ τ

∞∞ ∞ ∞ ∞ ∞ ∞
∂ + ∂ ∂

+ + =
∂ ∂ ∂

  

__ ___ ___ __
__ __ __ ___ __ ___

2
__ __ __ __

' ' '(1 ' ) ' 'u u u pu v w
x y z x

ρ τ ρ ρ∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
                 (15.4)           

The y-momentum equation is, 

__ ___ ___ __
__ __ __ ___ __ ___

2
__ __ __ __

' ' '(1 ' ) ' 'v v v pu v w
x y z y

ρ τ ρ ρ∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
                         (15.5) 

The z-momentum equation is, 

__ ___ ___ __
__ __ __ ___ __ ___

2
__ __ __ __

' ' '(1 ' ) ' 'w w w pu v w
x y z z

ρ τ ρ ρ∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
                        (15.6) 

And the energy equation is,  

___ ___ ___
__ __ ___

2

__ __ __
(1 ') ' ' 0p p pu v w

x y zγ γ γτ
ρ ρ ρ

     
∂ ∂ ∂     + + + =     ∂ ∂ ∂     
     

                   (15.7) 
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Here all the terms involved in making the governing equations (15.3 to 15.7)  are of 

unity order, O(1). We can simplify these equation using the known fact that 2 1τ << . 

Therefore the simplified form of the same equations are,  

 
__ __ ___ __ ___

__ __ __
( ' ) ( ') 0v w

x y z

ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
                                                   (15.8) 

 

__ ___ ___ __
__ __ ___ __ ___

__ __ __ __
' ' '' 'u u u pv w

x y z x
ρ ρ ρ∂ ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

                                    (15.9) 

__ ___ ___ __
__ __ ___ __ ___

__ __ __ __
' ' '' 'v v v pv w

x y z y
ρ ρ ρ∂ ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

                                 (15.10)     

__ ___ ___ __
__ __ ___ __ ___

__ __ __ __
' ' '' 'w w w pv w

x y z z
ρ ρ ρ∂ ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

                                     (15.11)  

___ ___ ___
__ ___

__ __ ____ __ __
' ' 0p p pv w

x y z
γ γ γ

ρ ρ ρ

     
∂ ∂ ∂     + + =          ∂ ∂ ∂     

                                 (15.12)   

These equations and the corresponding boundary equations of unity order comprise 

the equations for hypersonic small disturbance theory. Following inferences can be 

drawn from the this theory,  

 These equations are limited to hypersonic flow over slender bodies. 

 The parameter 
___

'u is decoupled from the system of equations. Once 
___

'v , 
___

'w , 
___

ρ and 
___

p are solved, 
___

'u  can be found out. 

 This reasserts the fact that, change in velocity in the flow direction is much 

smaller than the change in velocity perpendicular to the flow direction. 
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Lecture-16: The Hypersonic Equivalence Principle 

16.1 The Hypersonic Equivalence Principle 

Consider the Euler Equations for two-dimensional unsteady flow in y-z plane. Here x-

axis is the direction of freestream velocity. Therefore the governing equations in y-z 

plane perpendicular to the freestream velocity can be written as, 

( ) ( ) 0v w
t y z
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
                                                   (16.1) 

v v v pv w
t y z y

ρ ρ ρ∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
                                             (16.2) 

w w w pv w
t y z z

ρ ρ ρ∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
                                         (16.3) 

0p p pv w
t y zγ γ γρ ρ ρ
     ∂ ∂ ∂

+ + =     ∂ ∂ ∂     
                             (16.4) 

Let us non-dimensionalize using following reference variables, 

___

)

,
( /

t
l Vt

∞

=
___

,y
ly =

___

,z
lz =  

___

,v
Vv
∞

=
___

,w
Vw
∞

=  

___

2 ,p
Vp ρ∞ ∞

=  
___ ρ

ρρ
∞

=   

Where, V∞ and ρ∞ can be treated as reference quantities. 

Therefore the non-dimensional form of governing equations are, 

___ ___ ___ ___ ___

__ __ __
( ) ( ) 0v w

t y z

ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
                      (16.5) 
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___ ___ ___ __
___ ___ ___ ___ ___

__ __ __ ___
v v w pv w
t y z y

ρ ρ ρ∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
         (16.6) 

___ ___ ___ __
___ ___ ___ ___ ___

__ __ __ ___
w w w pv w
t y z z

ρ ρ ρ∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
         (16.7) 

___ ___ ___
__ ___

__ __ ____ __ __
' ' 0p p pv w

t y z
γ γ γ

ρ ρ ρ

     
∂ ∂ ∂     + + =          ∂ ∂ ∂     

      (16.8) 

Comparing these equations (16.5) to (16.8), with the earlier derived equations 

(15.8) to (15.12), it can be seen that these equations are identical if we ignore the 

variables involved in making them. However the equations (15.8) to (15.12) are for 

three dimensional steady flow and equations (16.5) to (16.8) are for two-dimensional 

unsteady flow. This information is helpful in depicting the hypersonic equivalence 

principle which states that, “The steady hypersonic flow over a slender object is 

equivalent to an unsteady flow in one less space dimension”. This analogy can be 

visualized using the Fig. 11.1. Consider a slender body translating x-direction 

direction as shown in Fig. 11.1. The frozen moment at initial time is shown in two 

views, one in x-z plane and other in y-z plane, are placed side by side in the same 

figure. The view in x-z plane is the configuration of the slender body while view in 

the y-z plane is just a point at origin in the initial time. If V∞ is the velocity of the 

object (in the negative x direction) then at any time later (say t1), tip of the object 

moves in negative x direction by distance 1x V t∞ . In this process the view of the object 

in x-z plane just gets translated as shown in Fig.11.1. However, the view of the same 

object in y-z plane is the section of the same object taken by y-z plane at origin or 

section at distance 1x V t∞  from the tip. Similarly after time t2 the view the view in x-z 

plane gets further translated while view in y-z plane portrays the section of the object 

at the distance 2x V t∞ from the tip.  
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Fig 11.1: Illustration of the hypersonic Equivalence Principle [1] 

This illustration makes it very much clear that study of three dimensional steady 

hypersonic flow over a slender object is equivalent to study two dimensional unsteady 

flow over the same. However we will have to view it differently. This equivalence 

principle forms the basis of the Blast Wave Theory.  
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Lecture-17: Blast Wave Theory 

17.1. Blast Wave Theory 

We have seen that the depiction of hypersonic equivalence principle is all about the 

equivalence between steady hypersonic flow over slender body and unsteady 

hypersonic flow in one lesser dimension. This unsteady shock motion can be realized 

by the instantaneous release of energy or a blast at the origin. An illustration in this 

regard is shown in Fig. 17.1 and 17.2 for blunt nosed cylinder and blunt nosed slab 

respectively. 

 

Fig.17.1: Blast wave analogy for a blunt-nosed cylinder [1] 

Shock wave 
propagating from 
center of blast 

1t t=

1xx V t=

r
x

rV
y

z

Blast at 
origin 
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xV

d

 

Blunt –nosed cylinder 

 

Cylindrical blast wave 
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Fig. 17.2: Blast wave analogy for a blunt-nosed slab [1] 

These two figures clearly suggest that the propagation of shock wave due to 

instantaneous energy release at the origin is equivalent with steady flow with the 

corresponding object. This propagation of shock wave due to energy release is called 

as blast wave. We can use this concept to estimate the pressure distribution, for 

examples on axisymmetric blunt nosed cylinders at hypersonic speeds, with the axis 

aligned in the direction of the flow, using the concept of blast wave. Direct analytical 

solutions are available for the planar and cylindrical blast waves for pressure near the 

center of explosion. Using such relations and analogy of blast wave we can evaluate 

the pressure distribution on the body. This theory is called as blast wave theory. The 

projection of shock waves shown in the right of figures 17.1 and 17.2 is called Blast 

waves. These release large amount of energy instantaneously. In these 

implementations using the blast wave theory, we can get pressure distribution as well 

as shock wave shapes for the flat surface downstream of the blunt nose. The pressure 
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distribution and the flow-field in the nose region cannot be provided by the blast wave 

theory. 

Case I (Blunt nosed Slab) 

 

Fig. 17.3: Schematic of blunt slab for blast wave theory [1] 

Consider the blunt nosed flat plate shown in Fig. 17.3. Let ‘D’ be the wave drag of the 

blunt nosed slab per unit span. Here wave drag should be inferred as the drag force 

offered to the object due to the high pressures behind the shock wave. As shown in 

the Fig. 17.3, the plate moves through a slab of air of thickness ‘dx’ in the direction of 

flight. Let us assume that the slab has unit span. Hence, for the motion in air, the body 

does work on the air which is equal to Ddx. Since work is form of energy, the amount 

of energy required for this motion per unit span is ‘dE’. In view of blast wave theory, 

this can also be viewed as the energy released in unit span to generate the blast wave, 

Therefore, 

                            dE Ddx=            

If the slab is assumed to be moved by unit distance, then 

                            E D=       

 

xV

D−

l

dx
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Hence it can be said that the energy released per unit area is the drag force per unit 

span for the blunt nosed slab. In the unsteady one dimensional unsteady blast wave 

problem, in reference with the slab (Fig. 17.2), we have to assume a line of energy 

release which creates the blast waves normal to the plan of paper of infinite extent and 

propagating both upward and downward directions. The solution for pressure and 

shock location is readily available in the literature (Sedov, L. I. “Similarity and 

Dimensional Methods in Mechanics {translated from Russian by M. Friedmann, ed. 

M. Holl}, Academic Press, New York, 1959.).  

For Planar Blast Wave, 

2
3

2/3
2

Ep k tρ
ρ

−
∞

∞

 
=  

 
                                    (17.1) 

Where, 
7/3 [(5 4)/3(2 )]

2 [2( 1)/3(2 )]

2 (2 1)
9( 1)

k
γ γ

γ γ

γ
γ

− −

+ −

−
=

+
         

If ‘ r ’ is the co-ordinate of the shock wave, which is vertical co-ordinate of the wave 

 
1/3

2/3Er t
ρ∞

 
=  
 

                                (17.2) 

As it can be seen here that time appears explicitly in the formulation, since this is the 

solution for unsteady propagation of blast wave.  Here pressure ahead of the blast 

wave is neglected.  
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Case II (Blunt nosed Cylinder) 

As in the case of blunt slab, the blunt nosed cylinder can be considered as moving the 

object through a cylindrical slab of thickness ‘dx’. If ‘D’ is the wave drag for the blunt 

nosed cylinder then the energy required for this motion is, 

dE Ddx=                        

Thus, for motion of unit length in the x direction for the cylinder,  

E D=                    

Both these equations derived for cylindrical shock wave are same as that 

derived for blunt slab in context of planar blast wave. In view of the blast wave 

theory, we can consider a blast wave along an infinite line perpendicular to the page 

releasing energy E per unit length along this line. The blast wave or shock wave 

generated by this blast can be seen to be a cylindrically outward propagating shock 

wave. View of this wave will be a circle of increasing diameter in the plane of paper 

as shown in Fig. 17.1. The difference between the interpretations for slab and cylinder 

case are that, E is the energy released per unit area for blunt nosed slab and E is the 

energy released per unit length for blunt nosed cylinder. We can evaluate the pressure 

at the blast by neglecting the pressure ahead the blast wave as given in same reference 

mentioned for blunt slab.  

1
2

1
1

Ep k tρ
ρ

−
∞

∞

 
=  

 
                                      (17.3) 

Where, 
[2( 1)/(2 )]

1 [(4 )/(2 )]2
k

γ γ

γ γ

γ − −

− −=                       

If r is radial co-ordinate of the wave, then, 

1/4
1/2Er t

ρ∞

 
=  
 

                 (17.4)                
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Lecture-18: Blast Wave Theory 

18.1 Blast wave equivalence for blunt nosed slab 

We have already analyzed the blast wave analogy for slab. This understanding can be 

extended for further evolution of the theory. We know that drag coefficient is, 

D
DC

q S∞

=                                    

 Where, D is the drag force 

 21
2

q Vρ∞ ∞ ∞=  

 And for unit span, area is, S d= X1, where d=base height of the body 

We have already derived the analog for drag that, 

21 . .
2 DE D V d Cρ∞ ∞= =                             (18.1) 

Time can be expressed as, /t V x∞=  where x is the distance from nose tip.  

This expression for time can be used to along with Eq. 18.1 to redefine the pressure 

on the surface expressed by Eq. 17.1.  

2 2/3

2

1
2 DV dC xp k

V

ρ
ρ

ρ

−
∞ ∞

∞
∞ ∞

 
   

=   
  

 

     

However we know that, for perfect gas,  

p p
RT RT

γρ
γ

∞ ∞
∞

∞ ∞

= =  and  

2RT aγ ∞ ∞=  and 
2

2
2

V M
a
∞

∞
∞

= ,  

2 0.3438k =  for air since 1.4γ =  for air 
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Therefore, the expression for pressure is, 

2/3
2 2/30.127 D

p xM C
p d

−

∞
∞

 =  
 

                (18.2) 

Similarly we can calculate the shock location expressed by Eq. 17.2. 

2/31/3
21 . .

2 D
xr V C d

V∞
∞

  =      
 

1/3 2/3
1/31

2 D
r xC
d d

   =    
   

 

2/3
1/30.793 D

r xC
d d

 =  
 

                       (18.3) 

The expression given by Eq. 18.2 and 18.3 provide nondimensional pressure and 

shock location for blunt slab using blast wave theory. We see here that, pressure 

distribution varies inversely with 2/3x  and the shock wave shape varies as 2/3x . The 

pressure value at a point in function of square of Mach number and depends on DC . 

We can consider the 4
3DC =  for blunt nosed slab as given by Newtonian theory.  

18.2. Blast wave equivalence for blunt nosed cylinder 

If DC is the drag coefficient for hypersonic flow over a blunt nosed cylinder, then 

D
DC

q S∞

=  

Where, D is the drag force 

21
2

q Vρ∞ ∞ ∞=  

And 2

4
S dπ
= , where d=Base diameter of the body 
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But we have already evaluated the analogy between drag and energy for blast wave 

theory. Hence, 

2 21 . .
2 4DE D V C dπρ∞ ∞= =                 

We can express the time as xt
V∞

=  

Using the equation for energy and time, the expression for pressure given by Eq. 17.3. 

becomes, 

1 8 D
Vp k V d C
x

πρ ∞
∞ ∞=                    

Also for a perfect gas, p p
RT RT

γρ
γ

∞ ∞
∞

∞ ∞

= =  

Substituting this value of ρ∞ , we get, 

1
2

1 8 D
p xp k V C

RT d
γ π
γ

−
∞

∞
∞

 =  
 

 

Now, 2RT aγ ∞ ∞=  and 
2

2
2

V M
a
∞

∞
∞

= , also for air 1.4γ = , the equation for pressure 

transforms as, 

1
2

10.8773 D
p xk M C
p d

−

∞
∞

 =  
 

            

But, 1 0.07768k =  for air since 1.4γ = , hence,  

So, equation (66) becomes, 

20.0681 DCp M
xp
d

∞
∞

=
 
 
 

          (18.4)                   
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Similarly we can find out the shock location for blunt nosed cylinder starting with Eq. 

17.4.  

 
1/21/4

2 21 . .
2 4D

xr V C d
V

π
∞

∞

  =      
 

 
1/4

1/4

8 D
r xC
d d

π =  
 

         

  

1/40.792 D
r xC
d d
=                                (18.5) 

Equations 18.4 and 18.5 and are the outcome of blast wave theory for blunt nosed 

cylinders. We see here that, pressure distribution varies inversely with x and the shock 

wave shape varies as 1/2x . The pressure value at a point in function of square of Mach 

number and depends on DC . We can consider the  1DC =  for blunt nosed cylinder as 

given by Newtonian theory.  
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Lecture-19: Thin Shock Layer Theory 

19.1 Thin Shock Layer Theory 

Thin shock layer theory is based on the assumption that the shock is very much closer 

to the body which in turn leads to small volume between shock and body. This 

situation is typical of very high Mach number flows over generic hypersonic 

configurations. In such situations, we can assume that, M∞ →∞  and 1γ → . As it has 

been already observed that the shock angle and Mach angle are almost equal for 

hypersonic flow regime, we can express this fact as β θ→ . For such high Mach 

condition within the shock layer, we will have same equation for shock, body and any 

streamline in the shock.  This is the basic assumption of thin shock layer theory.  

Consider the body and the shock as shown in Fig. 19.1. Here the co-ordinate system is 

such that x  axis is parallel to the shock while y axis is perpendicular to the shock. 

Let u  and v  be the components of velocity in the x and y directions respectively. Let 

us assume the flow to be two-dimensional flow for the present illustration.  
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Fig. 19.1: Illustration for thin shock layer theory [1] 

The momentum equation for the present coordinate system is  

2u p
R y

ρ ∂
=
∂

                       

Since our assumptions include thin shock layer and same equation for shock, 

streamlines and body.  Here, R  is the local streamline radius of curvature. For the 

thin shock-layer assumptions, 
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2

s

u p
R y

ρ ∂
=
∂

        (19.1)                     

Here sR is the shock radius of curvature.

 

 

Fig 19.2: Body shape determination using thin shock layer theory [1] 

Let ψ  defines the streamline, such that, 

u
y
ψρ ∂

=
∂

                      

Replacing dy in equation (19.1) with this equation, 

2

( )
s

u p u
R
ρ ρ

ψ
 ∂

=  ∂ 
 

s

p u
Rψ

∂
=

∂
                             (19.2) 
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Inline with the earlier assumptions made in thin shock layer, we can consider su u≈

where su is the the velocity just behind the shock. By this assumption we are re-

asserting the assumption that all the streamlines are parallel to the shock, Therefore, 

s

s

up
Rψ

∂
=

∂
           (19.3) 

We can integrate the Eq. (19.3) between a point in the shock layer where the value of 

the stream function as ψ  and just behind the shock layer, where sψ ψ= . 

[ ]( )( , ) ( ) ( )
( )

s
s s

s

u xp x p x x
R x

ψ ψ ψ= + −            (19.4) 

Using the equation (19.4) we can build an inverse method where a shock wave shape 

will be assumed for a body to solve the above equation and then obtain shape and 

pressure distribution over the body. Thus obtained body shape when matches with the 

real shape then we can get the shock shape and pressure distribution. The procedure 

described by Maslen [Ref] can be summarized as,  

1. Assume a shock wave shape for the known shape as shown in Fig. 19.2 

2. This helps us to know all the flow quantities at point a (Fig. 19.2) just behind 

the shock using oblique shock relations. The value of  aψ ψ=  

                a aV hψ ρ∞ ∞=  

3. Consider any streamline of stream function bψ , where 0 b aψ ψ< < . This helps 

us to identify the point b inside the shock layer during the travel in y direction 

from a.  

4. Calculate the pressure at point b from Eq 19.4. 

              1 ( )b a b a
s

up p
R

ψ ψ= + −  

5. Since the streamline passing through b and b’ is same, we have 'b bψ ψ= . 

Such that ,   

' 'b b bV hψ ψ ρ∞ ∞= =                                 
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6. Calculate all the thermodynamic properties at b from known pressure and 

entropy since entropy at b’ is equal to entropy at b. 

7. Calculate the velocity at point 2 from the adiabatic energy equation (total 

enthalpy is constant), that is, 

               
2

0 2
Vh h ∞

∞= +  

               here, 0h is the total enthalpy. In turn, 

                
2

0 2
buh h∞= +  (Ignoring 2v ) 

               02( )b bu h h= −  

8. Now all the flow quantities are known at point b. Repeat the same procedure 

at all the points between a and c where body surface is defined as 0ψ = . 

9. The y co-ordinate, at a particular value of ψ  can now be found by integrating 

the definition of the stream function. Since, 

                       d u
dy
ψ ρ=  

         Hence, 
s d y

u

ψ

ψ

ψ
ρ

=∫           

               Where, ρ  and u are known and ψ  is known from the previous steps. 

This also locates the body co-ordinate, where, 

                
0

s

body
dy

u

ψ ψ
ρ

= ∫  

10. This procedure should be repeated for any desired number of points for 

generating desired body shape. 
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Maslen, S. H. "Inviscid Hypersonic Flow Past Smooth Symmetric Bodies," AIAA 

Journal, vol. 2, no. 6, June 1964, pp. IO55-1O6I, as explained in  Ref: Anderson, John 

D., Jr.: “Hypersonic and High Temperature Gas Dynamics”, McGraw-Hill Book Co., 

New York, 1989 
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