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Module 3: Approximation in Hypersonic Inviscid Flows 

Lecture-7: Hypersonic flow relations  

7.1. Shock relations for hypersonic flow 

Consider a supersonic flow passing from a compression corner as shown in Fig. 7.1.  

 

Fig. 7.1 Supersonic flow over a compression corner. 

Following are the oblique shock relations for supersonic flow where β is the shock 

angle.  
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Here 1 is the freestream or pre-shock condition while 2 is the post shock condition. 

Since hypersonic flows have very high Mach number we can assume that M 1 >>1. 

This leads to the modification as, M 2 sin 2 ß-1 ≈ M2 sin2ß. Hence the relation for 

pressure ratio is, 
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Similarly density ratio can be rewritten as,  
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Ratio for temperature for very high freestream Mach numbers can be then expressed 

as, 
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The θ-β-M relation for supersonic flow as  
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For small wedge and shock angles we can write sinβ β≈  and  cos2β 1≈ and replacing 

M1 by M we get. 
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At the limit of high Mach numbers the above expression reduces to, 
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This expression is valid for high Mach numbers and small deflection angles  
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7.2. Pressure coefficient for hypersonic flow 

We know that the pressure coefficient at any point can be calculated as 
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Therefore the expression, for pressure coefficient becomes, 
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For high Mach number we have M>>1 we can the get the simplified expression as,  
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We can express the shock angle using Eq. 7.4. and also assume shock angle to be 

small (sinβ≈β). This leads to,  
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This expression is valid for small flow deflection angles and very high Mach 

numbers.  
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Lecture-8: Hypersonic flow relations 

8.1. Expansion relation for hypersonic flow 

We know that supersonic flow expands if it is provided with the outward turning as 

shown in Fig. 8.1 

 

Fig. 8.1. Supersonic flow at an expansion corner. 

The expression for the Prandtl-Meyer function can be used to get the post expansion 

properties of the flow. The expression for this function is as, 
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If we consider Mach number to be very high (M>>1) then, 
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Supersonic Flow 
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Lets consider 1
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Expressing the Eq. 8.3 using this relation we get,  
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Neglecting the tems having higher powers of Mach numbers in the denominator, we 

are left with the first term 
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We can use this simple expression of Prandtl-Meyer function for expressing the 

deflection by the expansion corner for high Mach numbers as,  
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Since total pressure is constant across the expansion fan we can calculate the pressure 

ratio for a given hypersonic expansion. 
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Since       M>>1 
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8.3. Some other hypersonic flow relations 

Using θ we can represent M2 in terms of M1 
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But we have seen in Eq. 8.6 that pressure ratio is proportional to the Mach number 

ratio. Hence we can express the pressure ratio for expansion corner in terms of 

deflection angle and upstream Mach number as,  
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It will be seen later the importance of M1θ as the similarity parameter in hypersonic 

flow, moreover let’s represented it as k.  
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We also know that the θ-β-M relation for supersonic flow is as  
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For small θ we have β also small and also for large Mach numbers we have M>>1  

Therefore this relation leads to, 
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Dividing by M 2θ2 
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Here also we can see that β/θ is represented as the function of hypersonic similarity 

parameter k. We have neglected other root since non physical. 
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We can also obtain the expressions across shock in terms of β/θ relation & k. Lets 

consider the expression for pressure ratio across the shock, where M1 =M is the Mach 

number ahead of the shock 
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From Eq. 8.7 we have,  
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Putting this expression in Eq. 8.10 we get, 
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Now we can obtain the expression for pressure coefficient using this relation as, 
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Therefore any hypersonic relation can be obtained using M1 >>1 condition. We can 

also obtain the relations in terms of k=Mθ 
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Lecture-9: Local Surface Inclination techniques (Newtonian 

Technique) 

9.1. Introduction 

Hypersonic flows are nonlinear by nature. Making Mach number tends to infinity 

cannot lead to any linear theory for small deflections in hypersonic region unlike in 

supersonic case to evaluate the flow variables. But there are approximate local 

inclination methods for hypersonic flowfield predictions (mainly pressure) where we 

need not have to solve for whole flow field. 

9.1.1 Newtonian Technique or ‘Sine-squared’ law 

Newton proposed that force on any object offered by fluid flowing, is proportional 

with square of sine angle of the flow deflection. However this proposition was made 

by Newton for low speed flows but it is highly appreciated for hypersonic situations. 

Consider a plate in the flowfield as shown in Fig. 8.1.  

 

Fig. 8.1 Schematic of the hypersonic flow over flat plate. 

Here fluid particle looses normal momentum and conserves tangential momentum. If 

V∞ is velocity of fluid approaching an inclined surface with angle θ then  

Velocity normal to the surface = sin( )V θ∞  

Mass flux blocked by surface = sin( )Vρ θ∞ ∞  

 Momentum lost by fluid per unit time= sin( ){ sin( )}V A Vρ θ θ∞ ∞ ∞   

θ   

V∞

A Sin(θ)  
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      =   2 2sin ( )V Aρ θ∞ ∞  

This lost momentum is converted in to the forced getting applied by fluid. Hence, 

2 2sin ( )F V Aρ θ∞ ∞=   

2 2sin ( )F V
A

ρ θ∞ ∞=   

Actually Newton had assumed this force is due to loss of momentum of individual 

particle. Therefore no interaction among fluid particles has been considered. However 

this force is the pressure force which is due to the random motion of particles. 

 2 2sin ( )p p Vρ θ∞ ∞ ∞− =  

The reference pressure is subtracted from the applied pressure since pressure always 

act in difference while getting applied as a force. Here p∞ is considered to be the 

pressure of freestream acting on back side of plate. Hence, 

2

2
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2

p p
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ρ

∞
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−
=  

22sinpc θ=         (9.1) 

This equation clearly demonstrates the fact that the pressure coefficient at a point is 

proportional to the sin square of the flow deflection angle. At large Mach numbers 

and moderately small deflection angles, shock angle is equal to the deflection angle 

where flow particle eventually hits the surface without any prior warning or 

deflection. This situation matches well with the Newton’s sine squared law. This is 

the reason for this law to be appreciated for hypersonic situations. 

We can use flow Eq. 9.1 for estimation on force acting on any hypersonic 

configuration. However the flow deflection angle between should be known for this 

estimation. For the surface which is in shadow Cp should be taken as zero. Using this 

principle we can calculate the lift to drag ratio for the flat plate configuration shown 

in Fig. 9.1. 
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This result is applicable to inviscid supersonic or hypersonic flow over flat plate 

Major depictions from this flow over flat plate are: 

1) L/D increases as θ decreases and becomes ∞ when θ is 0. This is logical if 

flow is inviscid where we are not having any shear or skin friction drag. 

However this is incorrect in case of viscous flow  

2) CL increases with increase in θ and becomes maximum at around 55θ ≈  

which is almost the practical condition. 

3) For small θ (below 15 degree) we have nonlinear variation of Cl which is 

unlikely for subsonic and supersonic flows.  

 

For flow over cylinder & sphere we get similar results.  

From Newtonian theory or sine squared law,  

 For sphere          

For cylinder         

These results of sphere, cylinder and plate are independent of Mach number where 

Mach number does not appear explicitly. Hence these results demonstrate the 

validity of famous Mach number independence principle which will be discussed 

in later chapter. 
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Lecture-10: Local Surface Inclination techniques (Modified 

Newtonian Technique) 

10.1. Modified Newtonian theory 

Modification to the above mentioned Newtonian theory has been proposed by Laster 

Lees where,   
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Here all the properties, upstream of the shock with subscript 1 are replaces by 

freestream subscript.  

Since Rayleigh Pitot tube formula is  
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But we know  that, 
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For high Mach numbers the above expression reduces to, 

 ( )2 1
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Coefficient of sin2θ is 1.839 for γ = 1.4 and 2 for γ = 1. However in practical 

situations as well when M∞ becomes very large γ tends to 1 which in turn results in 

the expected Newtonian theory arrangement. Results of modified Newtonian theory 

holds good for blunt body configuration, since this theory predicts exact pressure at 

stagnation point.  
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10.2. Newtonian-Busemann theory 

This theory modifies basic Newtonian theory with implementation of centrifugal 

correction. The force or pressure predicted by Newtonian theory is appropriate for 

hypersonic situations if we have slender configuration like wedge or cone. The force 

balance for a fluid particle in the presence of centrifugal force is shown in Fig. 10.1. 

However, if we have blunt nosed configuration then the pressure on the wall should 

be lower than that of predicted by Newtonian theory by the virtue of centrifugal force 

applied on the fluid particle as shown in Fig. 10.1.  

 
Fig. 10.1 Illustration of presence of centrifugal force for flow over blunt bodies [1]. 
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Consider a hypersonic flow over a typical blunt body configuration as shown in Fig. 

10.2. 

 

Fig. 10.2. Schematic of blunt body flow for Newtonian-Busemann theory [1] 

Let’s consider a stream tube of pre-shock height dy. This same stream tube gets 

deflected by angle θ behind the shock and earns thickness dn. Suppose ‘R’ is the 

radius of the curvature faced by the fluid particles passing this tube. This radius will 

be much more in comparison with the shock layer thickness. Therefore we can 

assume that all particles in shock layer face some curvature for calculation of the 

centrifugal force as, 

2P V
R
ρ

η
∂

=
∂

 

Here  

Pressure (P)=f(S,η) 

S = coordinate along stream tube 
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b
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η = coordinate along normal to the stream tube 

Hence, 

2VdP d
R
ρ η=  

We can integrate this expression along the thickness of the shock layer (line a-b-c) 

while considering the complete freestream instead of a stream tube. Therefore, 

2

0

c

a

VdP d
R

η ρ η
∆

=∫ ∫  

Here ∆η is the shock layer thickness in the direction normal from point a on the blunt 

body.  Hence, 
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However we know from mass conservation for the stream tube that V dy Vdρ ρ η∞ ∞ =  

Therefore,  

c a
o

Vp p V dy
R

η

ρ∞ ∞− = ∫


 

We have to change the limits of this integration since integration is with respect to y. 

Therefore we have to express ∆η (shock layer thickness) in terms of y co-ordinate. 

Here we are considering a very thick stream tube in the freestream by increasing dy, 

such that it extends from the stagnation streamline till point c. Therefore the lower 

limit of integration will still be zero and upper limit will be y co-ordinate of point c.  

0

cy

c a
Vp p V dy
R

ρ∞ ∞− = ∫  

Since cosc a ay y η θ= + ∆ , so, 
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If we assume cosa ay η θ>> ∆  then, 

0
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R
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We know that tangential component of velocity is conserved across the shock hence 

this is the velocity which should be considered for balancing of centrifugal force with 

pressure. Therefore lets take  cosV V θ∞=  and R as constant, 
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Here we can express the radius of curvature (R) in terms of known parameters as, 
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Using this expression , we can re-write the Eq. 10.3 as, 
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∫     (10.4) 

This is the final expression for pressure coefficient using Newtonian-Bwemann theory 

which is valid for 2D objects. 

Some basic features of  this theory are 

1. It accounts for centrifugal force 

2. It assumes small shock layer thickness as compared with body radius 

3. It does not predict the pressure well, hence not advisable in general.  

4. It is not truly local indication method since depends on upstream angles (in 

integration) 

 22sin
cp ac θ=  

Among all three Newton’s methods 

1 Direct Newton’s method is more suitable for slender bodies like wedged or cones 

2 Modified Newton’s method is suitable for blunt bodies. 

3 Newtonian Busemann theory with centrifugal effect is not practically useful. 
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Lecture-11: Tangent wedge and tangent cone methods 

11.1. Tangent wedge method  

It is another local inclination method for 2D objects with attached shock condition. 

Hence this method if suitable for sharp nosed bodies with sufficiently high Mach 

numbers to maintain the shock attached to the nose. We can evaluate the pressure at 

any point on the object using this method. This calculation is strictly based on the 

local surface inclination or flow deflection angle. This theory is based on intuition 

rather on particular scientific derivation. Moreover the prediction made by this theory 

is encouraging at high Mach number. 

Consider the 2D object shown in Fig. 11.1 for demonstration of process of this 

method.  

 

Fig. 11.1 Schematic for Tangent Wedge method [1] 

Following procedure should be adopted for calculation of pressure at any point ‘i’.  

1. Draw tangent at the nose of the wedge and find out of the angle made by the 

tangent in reference with the freestream velocity vector.   

2. Using this angle and freestream Mach number and then calculate the probable 

oblique shock angle.  

M∞

iθ

ip

2D object 

Wedge Shock 

Local Flow 
deflection 

Body Shock 
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3. If this shock angle is less than the maximum shock angle for that freestream 

Mach number then use Tangent Wedge method for calculation of pressure at 

any point on the 2D object. 

3a. Select any point ‘i’ on the surface of the 2D object and draw tangent to the 2D 

  surface at that point. Here we assume that the give 2D object is locally 

replaced  

  by the equivalent wedge.  

3b. From the known wedge angle and freestream Mach number use oblique shock 

         relation to calculate the pressure at that point.  

4. Follow this procedure at all points on the wedge surface and calculate the 

pressure on it.  

11.3. Tangent cone method  

This method is the obvious extension of tangent wedge method for 3D objects with 

attached shock condition. In this technique same procedure is to be followed however 

for 3D objects. Instead of the assumption of wedge, we have to assume presence of an 

equivalent cone at all the points on the surface of the 3D object. The simple difference 

exits due to the fact that there exists no analytical technique for evaluation of pressure 

using oblique shock relation for cone and we have to solve for the Taylor Maccoll 

equation to arrive at the shock angle for a given cone angle. Though this procedure is 

time consuming, it is simple to implement for estimation of wall pressure.  
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11.4. Shock and expansion method  

It is also a local surface inclination method like tangent wedge, cone and the 

Newton’s methods. It is applicable for only attached shock conditions like in tangent 

wedge and cone method. For implementation of this procedure consider 2D body with 

attached shock condition as shown in Fig 11.2.  

  

Fig. 11.2 Schematic for Shock and Expansion method [1]. 

 

Following procedure should be followed to implement the shock and expansion 

method  

1. Calculate flow deflection angle at the nose for the ( nθ ) 2D object.  

2. Calculate Mach number and pressure at the nose using oblique shock relations 

for the known wedge angle (angle of flow deflection at nose) and freestream 

Mach number. 

3. Here onwards use Prandtl Mayer relation for prediction of Mach number at 

any point on the surface.  

4. Select a point just downstream of the nose and calculate flow deflection angle 

at that point using slope of the tangent at the same point.  

5. Assume the flow to be expanding between nose to the selected point and 

calculate the Mach number at the chosen point using, 

( ) ( )1 2 1 2 1 2 1 21 1 1tan 1 tan 1 tan 1 tan 1
1 1 1n i n i n iM M M Mγ γ γθ θ θ

γ γ γ
− − − −+ − −  − = ∆ = − − − − − − −

 − + +

  

 

nθ
iθ

i

M∞
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Here Mn is the Mach number at nose, θn is deflection angle at nose and θi  & Mi  are 

flow deflection & Mach number at any point just down stream of nose 

6. Thus obtained Mi can be used to evaluate the rest of properties of the flow 

using isentropic relations.  

7. Thus obtain properties at all the points on the surface. We can as well use the 

properties of point ‘i’ to calculate the properties at a point just downstream of 

it instead of nose properties.   

This methodology can also, be used for axi-symmetric configurations also by using 

freestream Mach number and semi apex angle of cone. This theory does not consider 

any reflection of expansion fan from body shock to alter the pressure on body. Hence 

it creates approximations for low Mach number flows where interaction becomes 

inevitable. However results from this theory for hypersonic flow are encouraging 

since wave angle decreases with increase in Mach number for same deflection angle 

and interaction gets avoided as shown in Fig. 11.3. 

 Fig. 11.3. Illustration for interaction of waves for (a) supersonic flows and (b) hypersonic flows [1]. 

  

( )a
( )b
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