Week 12: Practical Issues in

Download Videos

Live Session

Text transcripts

MPC

Due on 2021-03-17, 23:59 IST.

0.5 points

0.5 points

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Numeric Array) 0.1877 0.264

0.5 points

0.25 points

0.25 points

0.5 points

In the previous problem, we took one set of LQR tuning parameters. We now investigate the effect of tuning parameters. In order to make the controller more

Problem 3: Effect of tuning parameters

aggressive, the Q-weight is increased (with respect to R-value); conversely, increasing the R-weight makes the LQR more sluggish. Please answer the following questions.

5) Aggressive Control: Please repeat Problem-2 with Q = 100I and R = 1. Please report the LQR gain matrix.

Accepted Answers: (Type: Numeric Array) 0.333-0.3745

No, the answer is incorrect.

Please repeat Problem-2 with Q = I and R = 0.01. Please report the LQR gain matrix.

No, the answer is incorrect.

Accepted Answers: (Type: Numeric Array) 0.333-0.3745

Score: 0

7) Sluggish/Conservative Control: Please repeat Problem-2 with Q = I and R = 100. Please report the LQR gain matrix.

Score: 0 Accepted Answers: (Type: Numeric Array)

No, the answer is incorrect.

0.0038 -0.0053

0.25 points Sluggish Control: Please repeat the above with Q = I and $R = 10^4$. Based on these results, which of the following statements is/are 0.25 points

The magnitude of LQR gain decreases as R is increased The magnitude of LQR gain increases as R is increased

The magnitude of LQR gain is independent of R The LQR poles do not vary when R is changed

The LQR poles go closer to open loop poles when R increases

The LQR poles go closer to origin when R increases No. the answer is incorrect.

Score: 0 Accepted Answers:

true?

The magnitude of LQR gain decreases as R is increased The LQR poles go closer to open loop poles when R increases

Problem 4: Closed Loop Simulations of LQR In this problem, we will consider closed-loop simulations of an LQR, starting from initial state of $x(0) = [1 \ 2]^T$

For one set of weights, the LQR gain is obtained as: $L_{\infty}=[0.3 - 0.35]$. With this L_{∞} , perform ten steps of closed-loop simuations and report the

following results. Please report the value of x(1).

No, the answer is incorrect.

Score: 0

Score: 0

Accepted Answers: (Type: Numeric Array) -0.1

0.9

Please report the value of x(2).

-0.045

No, the answer is incorrect.

0.185

Accepted Answers: (Type: Numeric Array)

11) Please report the value of x(3).

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Numeric Array) -0.00925

0.02825

Score: 0

12) Please report the value of x(4).

Accepted Answers: (Type: Numeric Array) -0.0014125

0.0033625

No, the answer is incorrect.

0.25 points

0.25 points

0.25 points

0.25 points