reviewer1@nptel.iitm.ac.in ▼ Courses » Audio System Engineering Announcements Course Ask a Question Progress Mentor ## Unit 3 - Week-2: | Course outline | Assignment - 2 | | | |---|---|---|--| | | The due date for submitting this assignment has passed. | Due on 2016-08-10, 00:50 IST. | | | How to access the Portal ? | Submitted assignment | | | | Week 1 | 1) A 100 Watt amplifier has gain of 64 dB . What input level in dBm will drive the amplifier | | | | Week-2: | in full power? | | | | Lecture 06: Acoustic Wave Equation Lecture 07: Acoustic Wave Equation (Contd.) | (a) -12 dBm (b) -14 dBm (c) -16 dBm (d) -18 dBm | | | | Lecture 08: Acoustic Wave Equation (Contd.) | No, the answer is incorrect. Score: 0 Accepted Answers: | | | | Lecture 09:
Spherical Waves
Propagation | (b) -14 dBm
2) | 1 point | | | Lecture 10:
Perception at
Sound | An acoustic signal is reflected off of a surface that is 80 % absorptive. The reflect sound will be drop by how much dB . | | | | Lecture 11: Sound
Transmission | (a) Range of 4.6 dB to 5.5 dB (b) Range of 5.6 dB to 6.5 dB | | | | Lecture 12: Sound Transmission (Contd.) | (c) Range of 6.6 dB to 7.5 dB(d) Range of 7.6 dB to 8.5 dB | | | | Assignment 2 Solution | No, the answer is incorrect.
Score: 0 | | | | Quiz : Assignment | Accepted Answers: (c) Range of 6.6 dB to 7.5 dB | | | | Week 3 | 3) An earth quake wave was traveling through the ea | 1 point
arth and the intensity detected 100 l | | | Week 4: | from source was 5.0x 10^6 W/m^2 . What is the in | | | | | distance 200 km from the source? | , | | | | (a) 0.25×106 W/m ² | | | Score: 0 Accepted Answers: (d) 1.25×106 W/m² (b) 2.5×106 W/m² (c) 1.67×106 W/m² (d) 1.25×106 W/m² No, the answer is incorrect. 1 point | A 1 kHz small source of spherical waves in air has produce sound pressure amplitude | |--| | 100 dB ($P_{ref} = 20\mu Pa$), at a radial distance 1 m from the source. Find the absolu | | magnitude of the specific acoustic impedance. Where density of air ρ_0 =1.21 kg/m^3 a | | speed of sound in air c=343m/s. | | (a) Range of 400 Rayl to 425 Rayl (b) Range of 426 Rayl to 450 Rayl (c) Range of 451 Rayl to 475 Rayl (d) Range of 476 Rayl to 500 Rayl | | No, the answer is incorrect. Score: 0 | | Accepted Answers: (a) Range of 400 Rayl to 425 Rayl | | 5) 1 point | | Plane wave in water of 100 Pa effective (rms) pressure are incident normally on a sa | | bottom. The sand bottom is characterized by ρ_2 =2000kg/m ³ and c_2 =1600m/s. When | | speed of sound in water c_1 = 1450 m/s and density ρ_1 =1000 kg/m^3 . Calculate t | | effective pressure of the wave reflected back into water and the effective pressure | | the wave transmitted into sand. | | (a) Range of 35 Pa to 40 Pa (b) Range of 41 Pa to 45 Pa (c) Range of 46 Pa to 50 Pa (d) Range of 51 Pa to 55 Pa | | No, the answer is incorrect. Score: 0 | | Accepted Answers: (a) Range of 35 Pa to 40 Pa | | 6) | | In an outdoor acoustic the ambient noise level is 70dB and a sound system generate | | of 110dB at 4ft. How far the sound will travel before it submerged with noise. | | (a) 200 ft | | (b) 300 ft | | (c) 400 ft
(d) 600 ft | | No, the answer is incorrect. | | Score: 0 | | Accepted Answers: (c) 400 ft | | 7) 1 point | | An acoustic pressure wave with an amplitude ${\it P}$ is incident on a surface of a liquid from | | air. If the velocity of sound c_1 in air is 350 m/s and c_2 liquid is 1000 m/s find the value | | the critical angle. | | (a) Range of 20° to 20.99° | | (b) Range of 21° to 21.99° | | (c) Range of 22° to 22.99° | | (d) Range of 23° to 23.99° | | No, the answer is incorrect. Score: 0 | | Accepted Answers: | | (a) Range of 20° to 20.99° | | 1 point | | An earth quake wave passes across a boundary in rock where its velocity of the strikes this boundary at 30° calculate the angle of the strikes str | | | |--|---------|--| | (a) Range of 30° to 34.99° (b) Range of 35° to 39.99° (c) Range of 40° to 44.99° (d) Range of 45° to 49.99° | | | | No, the answer is incorrect.
Score: 0 | | | | Accepted Answers: (c) Range of 40° to 44.99° | | | | 9) | 1 point | | | If the intensity of a sound in air at 1 kHz is $12W/m^2$. Find out the value of root mean squaressure? Where density of air is $\rho_0 = 1.21 kg/m^3$ and sound velocity is $c = 350 m/s$ | | | | (a) Range of 70 Pa to 71.99 Pa (b) Range of 72 Pa to 72.99 Pa (c) Range of 73 Pa to 73.99 Pa (d) Range of 74 Pa to 74.99 Pa | | | | No, the answer is incorrect. Score: 0 | | | | Accepted Answers: (a) Range of 70 Pa to 71.99 Pa | | | | Which of the following pair of tones is perceived as louder tone? (a) 25dB level at 200Hz and 25db at 600 Hz (b) 5dB level at 7 KHz and 5dB level at 2 KHz. | 1 point | | | (a) 25dB level at 200 Hz and 5dB level at 7 KHz (b) 25dB level at 200 Hz and 5dB level at 2 KHz (c) 25dB level at 600 Hz and 5dB level at 7 KHz (d) 25dB level at 600 Hz and 5dB level at 2 KHz | | | | No, the answer is incorrect.
Score: 0 | | | | Accepted Answers: (d) 25dB level at 600 Hz and 5dB level at 2 KHz | | | | Previous Page | End | | © 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - In association with Funded by Powered by Government of India Ministry of Human Resource Development