NPTEL MOOC Estimation: Assignment #8

1. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean and dB variance $\langle sigma_h^2 = -6 \rangle$ dB. The length of cyclic prefix is the minimum required. The transmitted block of samples in the time domain with cyclic prefix is,

a.
$$\frac{1}{2} + \frac{1}{4}j, \frac{5}{4} - \frac{1}{2}j, \frac{1}{2} + \frac{7}{4}j, \frac{3}{4} + \frac{3}{2}j$$

b. $\frac{1}{2} + \frac{1}{4}j, \frac{1}{2} + \frac{1}{4}j, \frac{5}{4} - \frac{1}{2}j, \frac{1}{2} + \frac{7}{4}j, \frac{3}{4} + \frac{3}{2}j$
c. $\frac{3}{4} + \frac{3}{2}j, \frac{1}{2} + \frac{1}{4}j, \frac{5}{4} - \frac{1}{2}j, \frac{1}{2} + \frac{7}{4}j, \frac{3}{4} + \frac{3}{2}j$
d. $\frac{1}{2} - \frac{1}{4}j, \frac{5}{4} + \frac{1}{2}j, \frac{1}{2} + \frac{7}{4}j, \frac{3}{4} + \frac{3}{2}j$
Ans c

- 2. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean and dB variance $\langle sigma_h^2 = -6 \rangle$ dB. The length of cyclic prefix is the minimum required. The received output symbols across the subcarriers in the frequency domain are,
 - a. 7+3j, 2j, -3-3j, -8
 b. 7-3j, 2j, -3-3j, -8
 c. -7+3j, -2j, 3+3j, 8
 d. 7-3j, 2j, -3+3j, -8
 Ans b
- 3. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean and dB variance \sigma_h^2 = -6 dB. The length of cyclic prefix is the minimum required. The LMMSE estimates of the channel coefficients across subcarriers 0, 1 respectively are,

a.
$$j, -\frac{8}{3} - \frac{4}{3}j$$

b. $-\frac{1}{3} - \frac{1}{3}j, -\frac{8}{3} - \frac{4}{3}j$

c.
$$j, \frac{6}{11} - \frac{15}{11}j$$

d. $\frac{6}{11} - \frac{15}{11}j, -\frac{1}{3} - \frac{1}{3}j$
Ans d

4. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean and dB variance $\langle sigma_h^2 = -6 \rangle$ dB. The length of cyclic prefix is the minimum required. The LMMSE estimates of the channel coefficients across subcarriers 2, 3 respectively are,

a.
$$j, -\frac{16}{9} - \frac{8}{9}j$$

b. $-\frac{1}{3} - \frac{1}{3}j, -\frac{8}{3} - \frac{4}{3}j$
c. $j, \frac{6}{11} - \frac{15}{11}j$
d. $\frac{6}{11} - \frac{15}{11}j, -\frac{1}{3} - \frac{1}{3}j$
Ans a

5. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean and dB variance $\langle sigma_h^2 = -6 \rangle$ dB. The length of cyclic prefix is the minimum required. The ML estimates of the channel coefficients across subcarriers 2, 3 are,

a.
$$3j, \frac{16}{5} + \frac{8}{5}j$$

b. $3j, -\frac{16}{5} - \frac{8}{5}j$
c. $\frac{2}{3} + \frac{5}{3}j, -\frac{1}{2} + \frac{1}{2}j$
d. $\frac{2}{3} - \frac{5}{3}j, -\frac{1}{2} - \frac{1}{2}j$
Ans b

6. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean and dB variance $\langle sigma_h^2 = -6 \rangle$ dB. The length of cyclic prefix is the minimum required. The MSEs of LMMSE estimation of the channel coefficients across subcarriers 0, 1, 2, 3 respectively are,

a.
$$\frac{1}{11}, \frac{1}{6}, \frac{1}{3}, \frac{2}{9}$$

b. $\frac{18}{11}, \frac{4}{3}, \frac{2}{3}, \frac{10}{9}$
c. $\frac{2}{11}, \frac{1}{6}, \frac{2}{3}, \frac{2}{9}$
d. $\frac{1}{11}, \frac{4}{6}, \frac{1}{3}, \frac{2}{9}$
Ans a

- 7. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean and dB variance $\langle sigma_h^2 = -6 \rangle$ dB. The length of cyclic prefix is the minimum required. The noise samples V(l) on the l^{th} subcarrier are,
 - a. Zero-mean, Gaussian, variance 1/2
 - b. Zero-mean, Non-Gaussian, variance 1/2
 - c. Zero-mean, Gaussian, variance $\frac{1}{8}$
 - d. Zero-mean, Gaussian, variance 2 Ans d
- 8. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean and dB variance $\langle sigma_h^2 = -6 \rangle$ dB. The length of cyclic prefix is the minimum required. The channel coefficients H(l) on the l^{th} subcarrier are,
 - a. Zero-mean, Gaussian, variance 1/2
 - b. Zero-mean, variance $\frac{1}{2}$
 - c. Zero-mean, Gaussian, variance $\frac{1}{8}$
 - d. Zero-mean, variance 2 Ans b
- 9. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean and dB variance $\langle sigma_h^2 = -6 \rangle$ dB. The length of cyclic prefix is the minimum required. The LMMSE estimates of the channel taps h(0), h(1) respectively are,

a.
$$j, -\frac{8}{3} - \frac{4}{3}j$$

b.
$$\frac{6}{11} - \frac{15}{11}j, -\frac{1}{3} - \frac{1}{3}j$$

c. $-\frac{155}{396} - \frac{157}{396}j, -\frac{1}{396} - \frac{91}{396}j$
d. $\frac{27}{44} - \frac{67}{132}j, \frac{15}{132} + \frac{1}{132}j$
Ans c

10. Consider an N = 4 subcarrier OFDM system with pilot symbols X(0) = 3+3j, X(1) = -2-2j, X(2) = -1+j, X(3) = 2-j. Let the corresponding received samples in the time domain be y(0) = -1-j, y(1) = 2+2j, y(2) = 3-2j, y(3) = 3-2j. Let the noise samples v(k), $0 \le k \le 3$ be zero-mean IID Gaussian with variance $\sigma^2 = -3$ dB. There are L = 2 IID channel taps with zero-mean, **Gaussian (only for this part)** and dB variance $\langle sigma_h^2 = -6 \rangle$ dB. The length of cyclic prefix is the minimum required. If the block of pilot symbols above is repeatedly transmitted, what is the number of OFDM pilot blocks *M* required such that the real and imaginary parts of the estimate $\hat{H}(1)$ lie within a radius $\frac{1}{8}$ of the real and

imaginary parts of the true parameter H(1) with probability greater than 99.99%

a. $(\sqrt{2}Q^{-1}(5 \times 10^{-6}))^2$ b. $\frac{16}{3}(Q^{-1}(5 \times 10^{-6}))^2$ c. $(Q^{-1}(5 \times 10^{-5}))^2$ d. $\frac{16}{3}(Q^{-1}(5 \times 10^{-5}))^2$ Ans d