Assignment 6 (Solutions) NPTEL MOOC (Bayesian/ MMSE Estimation for MIMO/OFDM Wireless Communications)

1. The input output model for the k th instant can be written as,

$$
\mathbf{y}^{T}(k)=\mathbf{x}^{T}(k) \mathbf{H}+\mathbf{v}^{T}(k) .
$$

By stacking all such N received vectors, the system model can be written as,

$$
\mathbf{Y}=\mathbf{X H}+\mathbf{V}
$$

where covariance matrix of $\mathbf{H}=\mathrm{E}\left\{\mathbf{H H}^{T}\right\}=\mathrm{R} \sigma_{h}^{2} \mathbf{I}_{\mathrm{MXM}}$. Similarly, the covariance matrix of $\mathbf{V}=\mathrm{E}\left\{\mathbf{V} \mathbf{V}^{T}\right\}=\mathrm{R} \sigma^{2} \mathbf{I}_{\mathrm{NXN}}$. The LMMSE estimate of the MIMO channel matrix \mathbf{H} is given by,

$$
\hat{\mathbf{H}}=\mathbf{R}_{\mathrm{HY}} \mathbf{R}_{\mathrm{YY}}^{-1} \mathbf{Y}
$$

The covariance matrix of \mathbf{Y} can be calculated as,

$$
\begin{aligned}
\mathbf{R}_{\mathrm{YY}} & =\mathrm{E}\left\{\mathbf{Y} \mathbf{Y}^{T}\right\} \\
& =\mathrm{E}\left\{(\mathbf{X} \mathbf{H}+\mathbf{V})(\mathbf{X H}+\mathbf{V})^{T}\right\} \\
& =\mathrm{E}\left\{\mathbf{X} \mathbf{H} \mathbf{H}^{T} \mathbf{X}^{T}\right\}+\mathrm{E}\left\{\mathbf{V} \mathbf{H}^{T} \mathbf{X}^{T}\right\}+\mathrm{E}\left\{\mathbf{X} \mathbf{H} \mathbf{V}^{T}\right\}+\mathrm{E}\left\{\mathbf{V} \mathbf{V}^{T}\right\} \\
& =\mathrm{R} \sigma_{h}^{2} \mathbf{X} \mathbf{X}^{T}+\mathrm{R}^{2} \mathbf{I} .
\end{aligned}
$$

Similarly, the covariance matrix of \mathbf{R}_{HY} can be calculated as,

$$
\begin{aligned}
\mathbf{R}_{\mathrm{HY}} & =\mathrm{E}\left\{\mathbf{H} \mathbf{Y}^{T}\right\} \\
& =\mathrm{E}\left\{\mathbf{H}(\mathbf{X} \mathbf{H}+\mathbf{V})^{T}\right\} \\
& =\mathrm{R} \sigma_{h}^{2} \mathbf{X}^{T} .
\end{aligned}
$$

So, $\hat{\mathbf{H}}$ can be written as,

$$
\begin{aligned}
\hat{\mathbf{H}} & =\mathrm{R} \sigma_{h}^{2} \mathbf{X}^{T}\left(\mathrm{R} \sigma_{h}^{2} \mathbf{X} \mathbf{X}^{T}+\mathrm{R} \sigma^{2} \mathbf{I}\right)^{-1} \mathbf{Y} \\
& =\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
& =\left(\frac{\mathbf{X}^{T} \mathbf{X}}{\mathrm{R} \sigma^{2}}+\frac{\mathbf{I}_{M}}{\mathrm{R} \sigma_{h}^{2}}\right)^{-1} \frac{\mathbf{X}^{T} \mathbf{Y}}{\mathrm{R} \sigma^{2}}
\end{aligned}
$$

Ans (a)
2. For system model

$$
\mathbf{Y}=\mathbf{X H}+\mathbf{V}
$$

the LMMSE estimate is given by,

$$
\hat{\mathbf{H}}=\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

By assuming $\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X} \gg \sigma^{2} \mathbf{I}$, the ML estimate can be obtained as,

$$
\begin{aligned}
\hat{\mathbf{H}} & =\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

Ans (b)
3. The error covariance of the LMMSE estimate of the MIMO channel matrix \mathbf{H} is given by,

$$
\mathrm{E}\left\{(\hat{\mathbf{H}}-\mathbf{H})(\hat{\mathbf{H}}-\mathbf{H})^{T}\right\}=\mathbf{R}_{\mathrm{HH}}-\mathbf{R}_{\mathrm{HY}} \mathbf{R}_{\mathrm{YY}}^{-1} \mathbf{R}_{\mathrm{HY}}
$$

The covariance matrices $\mathbf{R}_{H H}, \mathbf{R}_{\mathrm{HY}}$ and \mathbf{R}_{YY} are as follows,

$$
\begin{aligned}
& \mathbf{R}_{\mathrm{HH}}=\mathrm{R} \sigma_{h}^{2} \mathbf{I}, \\
& \mathbf{R}_{\mathrm{HY}}=\mathrm{R} \sigma_{h}^{2} \mathbf{X}^{T}=\mathbf{R}_{\mathrm{YH}}^{T}, \\
& \mathbf{R}_{\mathrm{YY}}=\mathrm{R} \sigma_{h}^{2} \mathbf{X X}^{T}+\mathrm{R} \sigma^{2} \mathbf{I} .
\end{aligned}
$$

After substituting the covariance matrices in the above expression, the error covariance of the LMMSE estimate can be calculated as

$$
\begin{aligned}
\mathrm{E}\left\{(\hat{\mathbf{H}}-\mathbf{H})(\hat{\mathbf{H}}-\mathbf{H})^{T}\right\} & =\mathrm{R} \sigma_{h}^{2} \mathbf{I}-\mathrm{R} \sigma_{h}^{2} \mathbf{X}^{T}\left(\mathrm{R} \sigma_{h}^{2} \mathbf{X} \mathbf{X}^{T}+\mathrm{R} \sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X R} \sigma_{h}^{2} \\
& =\mathrm{R} \sigma_{h}^{2} \mathbf{I}-\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{X R} \sigma_{h}^{2} \\
& =\mathrm{R} \sigma_{h}^{2} \mathbf{I}-\sigma_{h}^{2} \mathrm{R}\left(\mathbf{I}-\sigma^{2} \mathbf{I}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1}\right) \\
& =\mathrm{R} \sigma_{h}^{2} \sigma^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} \\
& =\left(\frac{\mathbf{X}^{T} \mathbf{X}}{\mathrm{R} \sigma^{2}}+\frac{\mathbf{I}}{\mathrm{R} \sigma_{h}^{2}}\right)^{-1} .
\end{aligned}
$$

Ans (d)
4. The error covariance of the LMMSE estimate is given by,

$$
\mathrm{E}\left\{(\hat{\mathbf{H}}-\mathbf{H})(\hat{\mathbf{H}}-\mathbf{H})^{T}\right\}=\left(\frac{\mathbf{X}^{T} \mathbf{X}}{\mathrm{R} \sigma^{2}}+\frac{\mathbf{I}}{\mathrm{R} \sigma_{h}^{2}}\right)^{-1} .
$$

By assuming $\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X} \gg \sigma^{2} \mathbf{I}$, the covariance of the ML estimate can be obtained as,

$$
\mathrm{E}\left\{(\hat{\mathbf{H}}-\mathbf{H})(\hat{\mathbf{H}}-\mathbf{H})^{T}\right\}=\left(\frac{\mathbf{X}^{T} \mathbf{X}}{\mathrm{R} \sigma^{2}}\right)^{-1}
$$

Ans (c)
5. The channel coefficients are IID Gaussian with dB variance $\sigma_{h}^{2}=$ $0 \mathrm{~dB}=1$ and the noise samples are also IID Gaussian with dB noise variance $\sigma^{2}=-3 \mathrm{~dB}=\frac{1}{2}$. The pilot matrix \mathbf{X} and the observation matrix \mathbf{Y} are given by,

$$
\begin{aligned}
\mathbf{X} & =\left[\begin{array}{cc}
1 & 1 \\
1 & -2 \\
2 & 1 \\
1 & -1
\end{array}\right], \mathbf{Y}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 1 \\
-2 & 1 & -2 \\
1 & 2 & -1
\end{array}\right], \\
\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} & =\left[\begin{array}{ll}
\frac{2}{15} & 0 \\
0 & \frac{2}{15}
\end{array}\right], \\
\mathbf{X}^{T} \mathbf{Y} & =\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & -2 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 1 \\
-2 & 1 & -2 \\
1 & 2 & -1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 1 & -3 \\
-6 & 2 & -2
\end{array}\right] .
\end{aligned}
$$

The LMMSE estimate of the MIMO channel matrix \mathbf{H} is given by,

$$
\begin{aligned}
\hat{\mathbf{H}} & =\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
& =\left[\begin{array}{ccc}
0 & 2 / 15 & -2 / 5 \\
-4 / 5 & 4 / 15 & -4 / 15
\end{array}\right] .
\end{aligned}
$$

Ans (a)
6. The ML estimate of the MIMO channel matrix \mathbf{H} is given by,

$$
\begin{aligned}
\hat{\mathbf{H}} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
& =\left[\begin{array}{ccc}
0 & 1 / 7 & -3 / 7 \\
-6 / 7 & 2 / 7 & -2 / 7
\end{array}\right] .
\end{aligned}
$$

Ans (b)
7. The error covariance of the LMMSE estimate of the MIMO channel matrix \mathbf{H} is given by,

$$
\mathrm{E}\left\{(\hat{\mathbf{H}}-\mathbf{H})(\hat{\mathbf{H}}-\mathbf{H})^{T}\right\}=\left(\frac{\mathbf{X}^{T} \mathbf{X}}{\mathrm{R} \sigma^{2}}+\frac{\mathbf{I}}{\mathrm{R} \sigma_{h}^{2}}\right)^{-1}
$$

After substituting all the values, we obtain

$$
\mathrm{E}\left\{(\hat{\mathbf{H}}-\mathbf{H})(\hat{\mathbf{H}}-\mathbf{H})^{T}\right\}=\left[\begin{array}{cc}
1 / 5 & 0 \\
0 & 1 / 5
\end{array}\right] .
$$

Ans (c)
8. Channel equalization refers to removing the effect of ISI.

Ans (d)
9. For an Inter Symbol Interference channel, received symbol at k th instant is given by,

$$
y(k)=\frac{3}{2} x(k)-\frac{1}{2} x(k-1)+v(k) .
$$

Comparing the above equation with $\mathrm{L}=2$ tap wireless channel given below,

$$
y(k)=h(0) x(k)+h(1) x(k-1)+v(k),
$$

we obtain, $h(0)=\frac{3}{2}$ and $h(1)=-\frac{1}{2}$. Considering a $r=3$ tap equalizer based on $y(k), y(k+1)$ and $y(k+2)$, model can be formulated as,

$$
\begin{aligned}
{\left[\begin{array}{c}
y(k+2) \\
y(k+1) \\
y(k)
\end{array}\right] } & =\left[\begin{array}{cccc}
h(0) & h(1) & 0 & 0 \\
0 & h(0) & h(1) & 0 \\
0 & 0 & h(0) & h(1)
\end{array}\right]\left[\begin{array}{c}
x(k+2) \\
x(k+1) \\
x(k) \\
x(k-1)
\end{array}\right]+\left[\begin{array}{c}
v(k+2) \\
v(k+1) \\
v(k)
\end{array}\right] \\
\mathbf{y}(k) & =\mathbf{H x}(k)+\mathbf{v}(k) .
\end{aligned}
$$

So, the effective channel matrix \mathbf{H} for this scenario can be written as,

$$
\mathbf{H}=\left[\begin{array}{cccc}
3 / 2 & -1 / 2 & 0 & 0 \\
0 & 3 / 2 & -1 / 2 & 0 \\
0 & 0 & 3 / 2 & -1 / 2
\end{array}\right]
$$

Ans (c)
10. The system model can be written as,

$$
\mathbf{y}=\mathbf{X h}+\mathbf{v}
$$

where the channel vector \mathbf{h} has mean and covariance matrix as $\mathrm{E}\{\mathbf{h}\}=$ $\mathbf{0}$ and $\mathrm{E}\left\{\mathbf{h h}^{T}\right\}=\mathbf{R}_{h}$, respectively. Similarly, noise vector \mathbf{v} has $\mathrm{E}\{\mathbf{v}\}=$ $\mathbf{0}$ and $\mathrm{E}\left\{\mathbf{v} \mathbf{v}^{T}\right\}=\mathbf{R}_{v}$. Also, $\mu_{y}=\mathrm{E}\{\mathbf{y}\}=\mathrm{E}\{\mathbf{X} \mathbf{h}+\mathbf{v}\}=\mathbf{0}$. The observation covariance matrix is given by,

$$
\begin{aligned}
\mathbf{R}_{y y} & =\mathrm{E}\left\{\mathbf{y} \mathbf{y}^{T}\right\} \\
& =\mathrm{E}\left\{(\mathbf{X h}+\mathbf{v})(\mathbf{X} \mathbf{h}+\mathbf{v})^{T}\right\} \\
& =\mathbf{X E}\left\{\mathbf{h} \mathbf{h}^{T}\right\} \mathbf{X}^{T}+\mathrm{E}\left\{\mathbf{v h}^{T}\right\} \mathbf{X}^{T}+\mathbf{X E}\left\{\mathbf{h} \mathbf{v}^{T}\right\}+\mathrm{E}\left\{\mathbf{v} \mathbf{v}^{T}\right\} \\
& =\mathbf{X R}_{h} \mathbf{X}^{T}+\mathbf{R}_{v} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathbf{R}_{h y} & =\mathrm{E}\left\{\mathbf{h} \mathbf{y}^{T}\right\} \\
& =\mathrm{E}\left\{\mathbf{h}(\mathbf{X} \mathbf{h}+\mathbf{v})^{T}\right\} \\
& =\mathrm{E}\left\{\mathbf{h h}^{T}\right\} \mathbf{X}^{T}+\mathrm{E}\left\{\mathbf{h v}^{T}\right\} \\
& =\mathbf{R}_{h} \mathbf{X}^{T}=\left(\mathbf{R}_{y h}\right)^{T} .
\end{aligned}
$$

The LMMSE estimate of parameter \mathbf{h} is given by

$$
\hat{\mathbf{h}}=\mathbf{R}_{h y} \mathbf{R}_{y y}^{-1} \mathbf{y}
$$

Substituting the values of the covariance matrices in the above expression, we obtain

$$
\begin{equation*}
\hat{\mathbf{h}}=\mathbf{R}_{h} \mathbf{X}^{T}\left(\mathbf{X R}_{h} \mathbf{X}^{T}+\mathbf{R}_{v}\right)^{-1} \mathbf{y} \tag{1}
\end{equation*}
$$

Using the Woodbury matrix identity, we get

$$
\begin{aligned}
& \mathbf{R}_{h} \mathbf{X}^{T}\left(\mathbf{X R}_{h} \mathbf{X}^{T}+\mathbf{R}_{v}\right)^{-1}=\mathbf{R}_{h} \mathbf{X}^{T}\left(\mathbf{R}_{v}^{-1}-\mathbf{R}_{v}^{-1} \mathbf{X}\left(\mathbf{R}_{h}^{-1}+\mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{R}_{v}^{-1}\right) \\
& =\mathbf{R}_{h} \mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{y}-\mathbf{R}_{h} \mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{X}\left(\mathbf{R}_{h}^{-1}+\mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{R}_{v}^{-1} \\
& =\mathbf{R}_{h} \mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{y}-\mathbf{R}_{h}\left(\mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{X}+\mathbf{R}_{h}^{-1}-\mathbf{R}_{h}^{-1}\right)\left(\mathbf{R}_{h}^{-1}+\mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{R}_{v}^{-1} \\
& =\left(\mathbf{R}_{h}^{-1}+\mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{R}_{v}^{-1}
\end{aligned}
$$

After substituting the above expression in the equation (1), we obtain

$$
\hat{\mathbf{h}}=\left(\mathbf{R}_{h}^{-1}+\mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{y}
$$

The error covariance for the LMMSE estimate of \mathbf{h} is,

$$
\mathrm{E}\left\{(\hat{\mathbf{h}}-\mathbf{h})(\hat{\mathbf{h}}-\mathbf{h})^{T}\right\}=\mathbf{R}_{h h}-\mathbf{R}_{h y} \mathbf{R}_{y y}^{-1} \mathbf{R}_{y h} .
$$

From the solutions to the above problem $\mathbf{R}_{h h}, \mathbf{R}_{h y}$ and $\mathbf{R}_{y y}$ can be written as,

$$
\begin{aligned}
& \mathbf{R}_{h h}=\mathbf{R}_{h}, \\
& \mathbf{R}_{h y}=\mathbf{R}_{h} \mathbf{X}^{T}=\left(\mathbf{R}_{y h}\right)^{T}, \\
& \mathbf{R}_{y y}=\mathbf{X R}_{h} \mathbf{X}^{T}+\mathbf{R}_{v}
\end{aligned}
$$

Substituting the values in the above equation, we obtain

$$
\begin{aligned}
\mathrm{E}\left\{(\hat{\mathbf{h}}-\mathbf{h})(\hat{\mathbf{h}}-\mathbf{h})^{T}\right\} & =\mathbf{R}_{h}-\mathbf{R}_{h} \mathbf{X}^{T}\left(\mathbf{X R}_{h} \mathbf{X}^{T}+\mathbf{R}_{v}\right)^{-1} \mathbf{X} \mathbf{R}_{h} \\
& =\left(\mathbf{R}_{h}^{-1}+\mathbf{X}^{T} \mathbf{R}_{v}^{-1} \mathbf{X}\right)^{-1} .
\end{aligned}
$$

Ans (a)

