1. Linear estimate of channel vector \mathbf{h} is, linear combination of observations, i.e.,

$$
\hat{\mathbf{h}}=c_{1} y(1)+c_{2} y(2)+\ldots+c_{N} y(N)=\mathbf{c}^{T} \mathbf{y}
$$

, where, $\mathbf{c}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \cdot \\ \cdot \\ c_{N}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{c}y(1) \\ y(2) \\ \cdot \\ \cdot \\ y(N)\end{array}\right]$
Mean Squared Error,

$$
\mathrm{MSE}=E\left\{\|\hat{\mathbf{h}}-\mathbf{h}\|^{2}\right\}
$$

Minimum Mean Squared Error,

$$
\mathrm{MMSE}=\min _{\hat{h}} E\left\{\|\hat{\mathbf{h}}-\mathbf{h}\|^{2}\right\}
$$

For LMMSE, $\hat{\mathbf{h}}=\mathbf{c}^{T} \mathbf{y}$.
Hence, the minimization problem for LMMSE estimate is,

$$
\min _{\hat{h}} E\left\{\|\hat{\mathbf{h}}-\mathbf{h}\|^{2}\right\}
$$

where $\hat{\mathbf{h}}=\mathbf{c}^{T} \mathbf{y}$.
Ans(c)
2. Considering multi-antenna channel problem,

$$
\mathbf{y}=\mathbf{X h}+\mathbf{v}
$$

where, \mathbf{y} is Nx 1 observation vector, \mathbf{X} is NxM pilot matrix, \mathbf{h} is Mx 1 channel vector, \mathbf{v} is Nx 1 noise vector, and $\mathrm{N}=$ number of pilot vectors, $\mathrm{M}=$ number of antennas. Also, given that $E\left\{h_{i}\right\}=0, E\left\{\left|h_{i}\right|^{2}\right\}=\sigma_{h}^{2}$, i.e.,

$$
E\left\{\mathbf{h h}^{T}\right\}=\sigma_{h}^{2} \mathbf{I}
$$

Also,

$$
\begin{aligned}
\mathbf{R}_{y y}= & E\left\{\mathbf{y} \mathbf{y}^{T}\right\}=\sigma_{h}^{2} \mathbf{X} \mathbf{X}^{T}+\sigma^{2} \mathbf{I}_{M X M}, \\
& \mathbf{R}_{h y}=E\left\{\mathbf{h} \mathbf{y}^{T}\right\}=\sigma_{h}^{2} \mathbf{X}^{T}
\end{aligned}
$$

LMMSE estimate of channel vector \mathbf{h} is,

$$
\hat{h}=\mathbf{R}_{h y} \mathbf{R}_{y y}^{-1} \mathbf{y}
$$

Substituting the values of $\mathbf{R}_{h y}$ and $\mathbf{R}_{y y}$, and Using the identity,

$$
\sigma_{h}^{2} \mathbf{X}^{T}\left(\sigma_{h}^{2} \mathbf{X} \mathbf{X}^{T}+\sigma^{2} \mathbf{I}_{M X M}\right)^{-1}=\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}_{M X M}\right)^{-1} \mathbf{X}^{T}
$$

we obtain,

$$
\begin{aligned}
\hat{h} & =\sigma_{h}^{2} \mathbf{X}^{T}\left(\sigma_{h}^{2} \mathbf{X} \mathbf{X}^{T}+\sigma^{2} \mathbf{I}_{M X M}\right)^{-1} \mathbf{y} \\
& =\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}_{M X M}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

Ans(a)
3. LMMSE estimate,

$$
\hat{h}=\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

For high Signal to Noise Ratio(SNR) scenario, $\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X} \gg \sigma^{2} \mathbf{I}$, thus, LMMSE estimate reduces to,

$$
\begin{aligned}
\hat{h}= & \sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

For low Signal to Noise Ratio(SNR) scenario, $\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X} \ll \sigma^{2} \mathbf{I}$, thus, LMMSE estimate reduces to,

$$
\begin{gathered}
\hat{h}=\sigma_{h}^{2}\left(\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
=\frac{\sigma_{h}^{2}}{\sigma^{2}} \mathbf{X}^{T} \mathbf{y}
\end{gathered}
$$

Ans(b)

4. The error covariance for the LMMSE estimate of \mathbf{h} is,

$$
\mathrm{E}\left\{(\hat{\mathbf{h}}-\mathbf{h})(\hat{\mathbf{h}}-\mathbf{h})^{T}\right\}=\mathbf{R}_{h h}-\mathbf{R}_{h y} \mathbf{R}_{y y}^{-1} \mathbf{R}_{y h} .
$$

From the solutions to the above problem $\mathbf{R}_{h h}, \mathbf{R}_{h y}$ and $\mathbf{R}_{y y}$ can be written as,

$$
\begin{aligned}
& \mathbf{R}_{h h}=\sigma_{h}^{2} \mathbf{I} \\
& \mathbf{R}_{h y}=\sigma_{h}^{2} \mathbf{X}^{T}=\left(\mathbf{R}_{y h}\right)^{T}, \\
& \mathbf{R}_{y y}=\sigma_{h}^{2} \mathbf{X} \mathbf{X}^{T}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Substituting the values in the above equation, we obtain

$$
\begin{aligned}
\mathrm{E}\left\{(\hat{\mathbf{h}}-\mathbf{h})(\hat{\mathbf{h}}-\mathbf{h})^{T}\right\} & =\sigma_{h}^{2} \mathbf{I}-\sigma_{h}^{2} \mathbf{X}^{T}\left(\sigma_{h}^{2} \mathbf{X} \mathbf{X}^{T}+\sigma^{2} \mathbf{I}\right)^{-1} \sigma_{h}^{2} \mathbf{X} \\
& =\sigma_{h}^{2} \mathbf{I}-\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X}^{T} \sigma_{h}^{2} \mathbf{X} \\
& =\sigma_{h}^{2} \mathbf{I}-\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}-\sigma^{2} \mathbf{I}\right) \\
& =\sigma^{2} \sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} \\
& =\left(\frac{\mathbf{X}^{T} \mathbf{X}}{\sigma^{2}}+\frac{\mathbf{I}}{\sigma_{h}^{2}}\right)^{-1} .
\end{aligned}
$$

Ans (c)
5. For a multi-antenna channel estimation scenario with $N=4$ pilot vectors

$$
\mathbf{x}(1)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{x}(2)=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \mathbf{x}(3)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{x}(4)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

The corresponding pilot matrix \mathbf{X} is given by,

$$
\begin{aligned}
\mathbf{X} & =\left[\begin{array}{c}
\mathbf{x}(1)^{T} \\
\mathbf{x}(2)^{T} \\
\mathbf{x}(3)^{T} \\
\mathbf{x}(4)^{T}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -2 \\
2 & 1 \\
1 & -1
\end{array}\right], \mathbf{y}=\left[\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right], \\
\mathbf{X}^{T} \mathbf{X} & =\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & -2 & 1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -2 \\
2 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right] \\
\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} & =\left[\begin{array}{cc}
\frac{1}{15} & 0 \\
0 & \frac{1}{15}
\end{array}\right] \\
\mathbf{X}^{T} \mathbf{y} & =\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & -2 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
8 \\
-2
\end{array}\right] .
\end{aligned}
$$

Given data: $\sigma^{2}=-3 \mathrm{~dB} \Longrightarrow 10 \log \sigma^{2}=-3 \Longrightarrow \sigma^{2}=\frac{1}{2}$ and $\sigma_{h}^{2}=0 \mathrm{~dB} \Longrightarrow 10 \log \sigma^{2}=$ $0 \Longrightarrow \sigma^{2}=1$.
The LMMSE estimate of \mathbf{h} is given by,

$$
\begin{aligned}
\hat{\mathbf{h}} & =\sigma_{h}^{2}\left(\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\left[\begin{array}{c}
16 / 15 \\
-4 / 15
\end{array}\right] .
\end{aligned}
$$

Ans (d)
6. The ML estimate of \mathbf{h} for a multi-antenna channel estimation scenario is given by,

$$
\hat{\mathbf{h}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} .
$$

From the solution to above problem, we obtain

$$
\hat{\mathbf{h}}=\left[\begin{array}{c}
8 / 7 \\
-2 / 7
\end{array}\right] .
$$

Ans (b)
7. The error covariance of the LMMSE estimate of \mathbf{h} for a multi-antenna channel estimation scenario is given by,

$$
\mathrm{E}\left\{(\hat{\mathbf{h}}-\mathbf{h})(\hat{\mathbf{h}}-\mathbf{h})^{T}\right\}=\left(\frac{\mathbf{X}^{T} \mathbf{X}}{\sigma^{2}}+\frac{\mathbf{I}}{\sigma_{h}^{2}}\right)^{-1} .
$$

From the solution to problem 5, we obtain

$$
\mathrm{E}\left\{(\hat{\mathbf{h}}-\mathbf{h})(\hat{\mathbf{h}}-\mathbf{h})^{T}\right\}=\left[\begin{array}{cc}
\frac{1}{15} & 0 \\
0 & \frac{1}{15}
\end{array}\right] .
$$

Ans (a)
8. The error covariance of the LMMSE estimate of \mathbf{h} for a multi-antenna channel estimation scenario is given by,

$$
\mathrm{E}\left\{(\hat{\mathbf{h}}-\mathbf{h})(\hat{\mathbf{h}}-\mathbf{h})^{T}\right\}=\left(\frac{\mathbf{X}^{T} \mathbf{X}}{\sigma^{2}}+\frac{\mathbf{I}}{\sigma_{h}^{2}}\right)^{-1} .
$$

When $\sigma_{h}^{2} \mathbf{X}^{T} \mathbf{X} \gg \sigma^{2} \mathbf{I}$, the error covariance of the LMMSE estimate of \mathbf{h} reduces to,

$$
\begin{aligned}
\mathrm{E}\left\{(\hat{\mathbf{h}}-\mathbf{h})(\hat{\mathbf{h}}-\mathbf{h})^{T}\right\} & =\left(\frac{\mathbf{X}^{T} \mathbf{X}}{\sigma^{2}}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{1}{14} & 0 \\
0 & \frac{1}{14}
\end{array}\right]
\end{aligned}
$$

Ans (a)
9. For a multi-antenna channel estimation scenario with $N=4$ pilot vectors,

$$
\mathbf{x}(1)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{x}(2)=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \mathbf{x}(3)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{x}(4)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

The corresponding pilot matrix \mathbf{X} is given by,

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{x}(1)^{T} \\
\mathbf{x}(2)^{T} \\
\mathbf{x}(3)^{T} \\
\mathbf{x}(4)^{T}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -2 \\
2 & 1 \\
1 & 1
\end{array}\right] .
$$

The received output vectors are,

$$
\mathbf{y}(1)=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \mathbf{y}(2)=\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right], \mathbf{y}(3)=\left[\begin{array}{c}
-2 \\
1 \\
-2
\end{array}\right], \mathbf{y}(4)=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] .
$$

Therefore, the observation matrix \mathbf{Y} is,

$$
\mathbf{Y}=\left[\begin{array}{l}
\mathbf{y}(1)^{T} \\
\mathbf{y}(2)^{T} \\
\mathbf{y}(3)^{T} \\
\mathbf{y}(4)^{T}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -2 & 1 \\
-2 & 1 & -2 \\
1 & 2 & -1
\end{array}\right] .
$$

The MIMO system model is,

$$
\mathbf{Y}=\mathbf{X H}+\mathbf{V} .
$$

Here, size of \mathbf{Y} matrix is 4×3 and size of \mathbf{X} matrix is 4×2. Therefore, size of \mathbf{H} matrix or size of the MIMO system is 2×3.
Ans (c)
10. The size of \mathbf{H} matrix 2 X 3, i.e. $\mathrm{M}=2$ and $\mathrm{R}=3$ and the size of \mathbf{V} matrix is 4 X 3. The channel coefficients are IID Gaussian with dB variance $\sigma_{h}^{2}=0 \mathrm{~dB}=1$ and the noise samples
are also IID Gaussian with dB noise variance $\sigma^{2}=-3 \mathrm{~dB}=\frac{1}{2}$. Therefore, the covariance matrices $\mathbf{R}_{H H}$ of the channel matrix and $\mathbf{R}_{V V}$ of the noise matrix, respectively are given by,

$$
\begin{aligned}
\mathbf{R}_{H H} & =\mathrm{E}\left\{\mathbf{H} \mathbf{H}^{T}\right\} \\
& =\mathrm{R} \sigma_{h}^{2} \mathbf{I}_{2 X 2} \\
& =3 \mathbf{I}_{2 X 2} \\
\mathbf{R}_{V V} & =\mathrm{E}\left\{\mathbf{V} \mathbf{V}^{T}\right\} \\
& =\mathrm{R} \sigma^{2} \mathbf{I}_{4 X 4} \\
& =\frac{3}{2} \mathbf{I}_{4 X 4} .
\end{aligned}
$$

Ans (a)

