NPTEL MOOC Estimation: Assignment #5

1. Consider the LMMSE (Linear Minimum Mean Squared Error) multi-antenna channel estimation problem with *N* transmitted pilot vectors $\mathbf{x}(k) = [x_1(k), x_2(k), ..., x_M(k)]^T$, $1 \le k \le N$ and *N* received symbols y(1), y(2), ..., y(N). Let the channel vector be $\mathbf{h} = [h_1, h_2, ..., h_M]^T$. Let the channel coefficients be IID Gaussian with variance σ_h^2 and noise variance is σ^2 . The optimization problem for MMSE estimation of \mathbf{h} is,

a.
$$\min |\mathbf{y} - \mathbf{X}\mathbf{h}|$$

b.
$$\min \|\mathbf{y} - \mathbf{X}\mathbf{h}\|^2$$

c. $\min E\{\|\hat{\mathbf{h}} - \mathbf{h}\|^2\}, \text{ where } \hat{\mathbf{h}} = \mathbf{c}^T \mathbf{y}$

d. min
$$E\left\{\mathbf{y}-\mathbf{X}\mathbf{h}\right\}^{2}$$

- 2. Consider the LMMSE (Linear Minimum Mean Squared Error) multi-antenna channel estimation problem with *N* transmitted pilot vectors $\mathbf{x}(k) = [x_1(k), x_2(k), ..., x_M(k)]^T$, $1 \le k \le N$ and *N* received symbols y(1), y(2), ..., y(N). Let the channel vector be $\mathbf{h} = [h_1, h_2, ..., h_M]^T$. Let the channel coefficients be IID Gaussian with variance σ_h^2 and noise variance is σ^2 . The LMMSE estimate of \mathbf{h} is,
 - a. $\sigma_h^2 (\sigma_h^2 \boldsymbol{X}^T \boldsymbol{X} + \sigma^2 \boldsymbol{I}_{MXM})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
 - b. $\sigma^2 (\sigma_h^2 \boldsymbol{X}^T \boldsymbol{X} + \sigma^2 \boldsymbol{I}_{MXM})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
 - c. $\sigma_h^2 (\sigma_h^2 X X^T + \sigma^2 I_{MXM})^{-1} X^T y$
 - d. $\sigma_h^2 (\sigma_h^2 X X^T + \sigma^2 I_{NXN})^{-1} X^T y$ Ans a
- 3. Consider the LMMSE (Linear Minimum Mean Squared Error) multi-antenna channel estimation problem with *N* transmitted pilot vectors $\mathbf{x}(k) = [x_1(k), x_2(k), ..., x_M(k)]^T$, $1 \le k \le N$ and *N* received symbols y(1), y(2), ..., y(N). Let the channel vector be $\mathbf{h} = [h_1, h_2, ..., h_M]^T$. Let the channel coefficients be IID Gaussian with variance σ_h^2 and noise variance is σ^2 . The LMMSE estimates of \mathbf{h} at high and low SNRs are approximately,
 - a. $(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}, \sigma_h^2\boldsymbol{X}^T\boldsymbol{y}$
 - b. $(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}, \frac{\sigma_h^2}{\sigma^2}\boldsymbol{X}^T\boldsymbol{y}$
 - c. $(XX^T)^{-1}X^Ty, \frac{\sigma_h^2}{\sigma^2}X^Ty$
 - d. $(\boldsymbol{X}\boldsymbol{X}^T)^{-1}\boldsymbol{X}^T\boldsymbol{y}, \sigma_h^2\boldsymbol{X}^T\boldsymbol{y}$ Ans b
- 4. Consider the LMMSE (Linear Minimum Mean Squared Error) multi-antenna channel estimation problem with *N* transmitted pilot vectors $\mathbf{x}(k) = [x_1(k), x_2(k), \dots, x_M(k)]^T$, $1 \le k \le N$

N and *N* received symbols y(1), y(2), ..., y(N). Let the channel vector be $\mathbf{h} = [h_1, h_2, ..., h_M]^T$. Let the channel coefficients be IID Gaussian with variance σ_h^2 and noise variance is σ^2 . The error covariance for the LMMSE estimate of **h** is,

a.
$$\left(\frac{XX^{T}}{\sigma^{2}} + \frac{I}{\sigma_{h}^{2}}\right)^{-1}$$

b. $\left(\frac{X^{T}X}{\sigma_{h}^{2}} + \frac{I}{\sigma^{2}}\right)^{-1}$
c. $\left(\frac{X^{T}X}{\sigma^{2}} + \frac{I}{\sigma_{h}^{2}}\right)^{-1}$
d. $\left(\frac{XX^{T}}{\sigma_{h}^{2}} + \frac{I}{\sigma^{2}}\right)^{-1}$
Ans c

5. Consider a multi-antenna channel estimation scenario with N = 4 pilot vectors $\mathbf{x}(1) = [1, 1]^T$, $\mathbf{x}(2) = [1, -2]^T$, $\mathbf{x}(3) = [2, 1]^T$, $\mathbf{x}[4] = [1, -1]^T$. Let the corresponding received vector be $\mathbf{y} = [2, 1, 1, 3]^T$. Let the channel coefficients be IID Gaussian with dB variance $\sigma_h^2 = 0$ dB and dB noise variance $\sigma^2 = -3$ dB. The LMMSE estimate of \mathbf{h} is,

a.
$$\begin{bmatrix} 8/15 \\ -2/15 \end{bmatrix}$$

b. $\begin{bmatrix} -16/15 \\ 4/15 \end{bmatrix}$
c. $\begin{bmatrix} 8/15 \\ 2/15 \end{bmatrix}$
d. $\begin{bmatrix} 16/15 \\ -4/15 \end{bmatrix}$
Ans d

6. Consider a multi-antenna channel estimation scenario with N = 4 pilot vectors $\mathbf{x}(1) = [1, 1]^T$, $\mathbf{x}(2) = [1, -2]^T$, $\mathbf{x}(3) = [2, 1]^T$, $\mathbf{x}[4] = [1, -1]^T$. Let the corresponding received vector be $\mathbf{y} = [2, 1, 1, 3]^T$. Let the channel coefficients be IID Gaussian with dB variance $\sigma_h^2 = 0$ dB and dB noise variance $\sigma^2 = -3$ dB. The ML estimate of **h** is,

a.
$$\begin{bmatrix} 8/15 \\ -4/15 \end{bmatrix}$$

b. $\begin{bmatrix} 8/7 \\ -2/7 \end{bmatrix}$
c. $\begin{bmatrix} 8/7 \\ 2/7 \end{bmatrix}$
d. $\begin{bmatrix} 16/15 \\ -4/15 \end{bmatrix}$
Ans b

7. Consider a multi-antenna channel estimation scenario with N = 4 pilot vectors $\mathbf{x}(1) = [1, 1]^T$, $\mathbf{x}(2) = [1, -2]^T$, $\mathbf{x}(3) = [2, 1]^T$, $\mathbf{x}[4] = [1, -1]^T$. Let the corresponding received vector

be $\mathbf{y} = [2, 1, 1, 3]^T$. Let the channel coefficients be IID Gaussian with dB variance $\sigma_h^2 = 0$ dB and dB noise variance $\sigma^2 = -3$ dB. The error covariance of the LMMSE estimate of **h** is,

a.
$$\begin{bmatrix} \frac{1}{15} & 0\\ 0 & \frac{1}{15} \end{bmatrix}$$

b.
$$\begin{bmatrix} \frac{1}{16} & 0\\ 0 & \frac{1}{16} \end{bmatrix}$$

c.
$$\begin{bmatrix} \frac{1}{7} & 0\\ 0 & \frac{1}{7} \end{bmatrix}$$

d.
$$\begin{bmatrix} \frac{1}{8} & 0\\ 0 & \frac{1}{8} \end{bmatrix}$$

Ans a

8. Consider a multi-antenna channel estimation scenario with N = 4 pilot vectors $\mathbf{x}(1) = [1, 1]^T$, $\mathbf{x}(2) = [1, -2]^T$, $\mathbf{x}(3) = [2, 1]^T$, $\mathbf{x}[4] = [1, -1]^T$. Let the corresponding received vector be $\mathbf{y} = [2, 1, 1, 3]^T$. Let the channel coefficients be IID Gaussian and dB noise variance $\sigma^2 = -3$ dB. Let $\sigma_h^2 \mathbf{X}^T \mathbf{X} >> \sigma^2 \mathbf{I}$. The error covariance of the LMMSE estimate of \mathbf{h} reduces to,

a.
$$\begin{bmatrix} \frac{1}{14} & 0\\ 0 & \frac{1}{14} \end{bmatrix}$$

b.
$$\begin{bmatrix} \frac{1}{15} & 0\\ 0 & \frac{1}{15} \end{bmatrix}$$

c.
$$\begin{bmatrix} 15 & 0\\ 0 & 15 \end{bmatrix}$$

d.
$$\begin{bmatrix} 14 & 0\\ 0 & 14 \end{bmatrix}$$

Ans a

- 9. Consider the MIMO channel estimation problem with N = 4 pilot vectors $\mathbf{x}(1) = [1, 1]^T$, $\mathbf{x}(2) = [1, -2]^T$, $\mathbf{x}(3) = [2, 1]^T$, $\mathbf{x}[4] = [1, -1]^T$. The received output vectors y are $\mathbf{y}(1) = [1, -1, 1]^T$, $\mathbf{y}(2) = [2, -2, 1]^T$, $\mathbf{y}(3) = [-2, 1, -2]^T$, $\mathbf{y}(4) = [1, 2, -1]^T$. Let the channel coefficients be IID Gaussian with dB variance $\sigma_h^2 = 0$ dB and dB noise variance $\sigma^2 = -3$ dB. The size of the MIMO system is,
 - a. 4x3
 - b. 4x2

- c. 2x3
- d. None of these Ans c
- 10. Consider the MIMO channel estimation problem with N = 4 pilot vectors $\mathbf{x}(1) = [1, 1]^T$, $\mathbf{x}(2) = [1, -2]^T$, $\mathbf{x}(3) = [2, 1]^T$, $\mathbf{x}[4] = [1, -1]^T$. The received output vectors y are $\mathbf{y}(1) = [1, -1, 1]^T$, $\mathbf{y}(2) = [2, -2, 1]^T$, $\mathbf{y}(3) = [-2, 1, -2]^T$, $\mathbf{y}(4) = [1, 2, -1]^T$. Let the channel coefficients be IID Gaussian with dB variance $\sigma_h^2 = 0$ dB and dB noise variance $\sigma^2 = -3$ dB. The covariance matrices \mathbf{R}_{HH} of the channel matrix and \mathbf{R}_{VV} of the noise matrix respectively are,
 - a. $3I_{2X2}$, $\frac{3}{2}I_{4X4}$ b. $\frac{3}{2}I_{4X4}$, $3I_{2X2}$ c. $\frac{3}{2}I_{2X2}$, $3I_{4X4}$ d. $2I_{2X2}$, $4I_{2X2}$ Ans a