
Assignment 4 (Solutions)
NPTEL MOOC (Bayesian/ MMSE Estimation
for MIMO/OFDM Wireless Communications)

1. The system model can be written as,

y = hx+ v

The MSE of the MMSE estimate ĥ of the above mentioned system
model is given by,

E{|ĥ− h|2} = rhh − rhyR
−1
yy ryh

= σ2
h − σ2

hx
H(σ2

hxx
H + σ2I)−1xσ2

h

= σ2
h −

σ4
h||x||2

σ2
h||x||2 + σ2

=
1

1
σ2/||x||2 +

1
σ2
h

. (1)

Given data: µh = 1+ j, σ2
h = 1/2, N = 4, σ2 = 3 dB =⇒ 10 log σ2 =

3 =⇒ σ2 ≈ 2

x =


2 + j
−1− j
1− 2j
−1 + j

 ,y =


2 + 2j
−j

−2 + j
1− j

 ,

||x||2 = |2 + j|2 + | − 1− j|2 + |1− 2j|2 + | − 1 + j|2

= 4 + 1 + 1 + 1 + 1 + 4 + 1 + 1

= 14.

Substituting all the values in equation (1), we get

E{|ĥ− h|2} =
1

1
2/14

+ 1
1/2

=
1

9
.

1



Ans (a)

2. Refer to the notes of week 3 for this question.
MMSE estimate of the complex fading coefficient h is given by,

ĥ = ĥR + jĥI .

From the solution of problem 1, the MSEs of the real, imaginary parts
of ĥ can be obtained as,

MSE of the real part of ĥ = MSE of the imaginary part of ĥ

= E{|ĥR − hR|2} = E{|ĥI − hI |2}

=
1

2
E{|ĥ− h|2} =

1

2

(
1

1
σ2/||x||2 +

1
σ2
h

)
=

1

18
.

Ans(c)

3. Let hR denotes the real part of the true parameter h and ĥR be the
real part of the estimate ĥ. Further, ĥR−hR gives the estimation error
in the real part of the estimate. Also, from the solutions to problem 1
and 2 we can say, hR ∼ N

(
ĥR,

1
18

)
. Therefore, hR − ĥR is distributed

as a zero-mean Gaussian with variance 1/18.
Hence, ĥR − hR ∼ N

(
0, 1

18

)
.

Further, ĥR−hR√
1
18

is a zero-mean unit-variance Gaussian RV. Probability

that the real part of the MMSE estimate ĥ lies within a radius 1/2 of
the unknown parameter h can be calculated as follows,

Pr

(
|ĥR − hR| ≤

1

2

)
= Pr

(
|ĥR − hR|√

1
18

≤
1
2√
1
18

)
= 1− Pr

(
|ĥR − hR|√

1
18

≥
1
2√
1
18

)

= 1−

{
Pr

(
ĥR − hR√

1
18

≥
1
2√
1
18

)
+ Pr

(
ĥR − hR√

1
18

≤ −
1
2√
1
18

)}

= 1− 2Pr

(
ĥR − hR√

1
18

≥
1
2√
1
18

)
= 1− 2Q

(
1
2√
1
18

)
= 1− 2Q

(√
9

2

)

Further, since the errors in the real and imaginary parts are indepen-
dent as they are Gaussian, the probability that both the real and imag-
inary parts of the MMSE estimate ĥ lie within a radius of 1/2 from the
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real and imaginary parts of the unknown parameter h respectively is(
1− 2Q

(√
9
2

))2

.

Ans (b)

4. To estimate the unknown parameter h, we have each observation as

y(k) = h+ v(k), for 1 ≤ k ≤ N,

where v(k) ∼ N (0, σ2
k), h ∼ N (µh, σ

2
h). By stacking N such observa-

tions, we obtain observation vector as

y = 1h+ v,

where mean of the noise vector is E{v} = 0 and its covariance matrix
is denoted by Cv = E{vvT}. So, the mean of the observation vector
is denoted by µy = E{y} = E{1h + v} = 1µh and the observation
covariance matrix can be calculated as

Ryy = E{(y − µy)(y − µy)
T}

= E{(1(h− µh) + v)(1(h− µh) + v)T}
= E{(h− µh)

2}11T + E{vvT}+ 1E{(h− µh)v
T}+ E{v(h− µh)}1T

= σ2
h11

T +Cv.

Similarly,

Rhy = E{(h− µh)(y − µy)
T}

= E{(h− µh)(1(h− µh) + v)T}
= E{(h− µh)

2}1T + E{(h− µh)v)
T}

= σ2
h1

T .

The MMSE estimate of the unknown parameter h is given by,

ĥ = RhyR
−1
yy (y − µy) + µh.

Substituting the values of the covariance matrices in the above expres-
sion, we obtain

ĥ = σ2
h1

T (σ2
h11

T +Cv)
−1(y − 1µh) + µh. (2)
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Simplifying the above expression using Woodbury matrix identity, we
get

σ2
h1

T (σ2
h11

T +Cv)
−1 = σ2

h1
T
(
C−1

v −C−1
v 1
( 1

σ2
h

+ 1TC−1
v 1
)−1

1TC−1
v

)
= σ2

h1
TC−1

v − σ2
h1

TC−1
v 1
( 1

σ2
h

+ 1TC−1
v 1
)−1

1TC−1
v

= σ2
h1

TC−1
v − σ2

h

(
1TC−1

v 1+
1

σ2
h

− 1

σ2
h

)( 1

σ2
h

+ 1TC−1
v 1
)−1

1TC−1
v

=
( 1

σ2
h

+ 1TC−1
v 1
)−1

1TC−1
v .

After substituting the above expression in equation (2), we obtain

ĥ =
( 1

σ2
h

+ 1TC−1
v 1
)−1

1TC−1
v (y − 1µh) + µh. (3)

Simplifying 1TC−1
v 1, we get

1TC−1
v 1 =

[
1 1 . . . 1

]


1
σ2
1

0 . . . 0

0 1
σ2
2

. . . 0
...

...
. . .

...
0 0 . . . 1

σ2
N



1
1
...
1

 =
N∑
k=1

1

σ2
k

.

Similarly,

1TC−1
v (y − 1µh) =

N∑
k=1

1

σ2
k

(
y(k)− µh

)
.

Now, equation (3) can be written as,

ĥ = µh +

∑N
k=1

1
σ2
k

(
y(k)− µh

)
1
σ2
h
+
∑N

k=1
1
σ2
k

=

∑N
k=1

y(k)

σ2
k
+ µh

σ2
h∑N

k=1
1
σ2
k
+ 1

σ2
h

.

Ans (d)

5. The system model can be written as,

y = 1h+ v.

The MSE of the MMSE estimate ĥ of the unknown Gaussian parameter
h is given by,

E{(ĥ− h)2} = rhh − rhyR
−1
yy ryh (4)
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From the solution of problem 4, Ryy, rhy can be written as

Ryy = σ2
h11

T +Cv,

rhy = σ2
h1

T .

Substituting the values, equation (4) can be written as

E{(ĥ− h)2} = σ2
h − σ2

h1
T (σ2

h11
T +Cv)

−11σ2
h

= σ2
h −

( 1

σ2
h

+ 1TC−1
v 1
)−1

1TC−1
v 1σ2

h

= σ2
h −

∑N
k=1

σ2
h

σ2
k

1
σ2
h
+
∑N

k=1
1
σ2
k

=
1

1
σ2
h
+
∑N

k=1
1
σ2
k

=

(
1

σ2
h

+
N∑
k=1

1

σ2
k

)−1

.

Ans (a)

6. The LMMSE estimate is identical to the MMSE estimate for a Gaussian
parameter.
Ans (c)

7. As derived in the lectures notes of week 4, the LMMSE estimate ĥ of
the unknown parameter h, which is not necessarily Gaussian is given
by

ĥ = rhyR
−1
yy y.

Ans (d)

8. In this scenario, we have N = 4 pilot vectors, each corresponding to M
transmit antennas. The length of each pilot vector is 2. Hence, M = 2.
Ans (b)

9. For a multi-antenna channel estimation scenario with N = 4 pilot vec-
tors

x(1) =

[
1
1

]
,x(2) =

[
1
−2

]
,x(3) =

[
2
1

]
,x(4) =

[
1
−1

]
.
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The corresponding pilot matrix X is given by,

X =


x(1)T

x(2)T

x(3)T

x(4)T

 =


1 1
1 −2
2 1
1 −1

 .

Ans (d)

10. From the solution of problem 9, the pilot matrix X can be written as,

X =


1 1
1 −2
2 1
1 −1

 =
[
c1 c2

]
.

Columns c1 and c2 satisfy the orthogonality property, i.e. cT1 c2 = 0.
Hence, the pilot matrix X has orthogonal columns.
Ans (c)
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