Assignment 4 (Solutions) NPTEL MOOC (Bayesian/ MMSE Estimation for MIMO/OFDM Wireless Communications)

1. The system model can be written as,

$$
\mathbf{y}=h \mathbf{x}+\mathbf{v}
$$

The MSE of the MMSE estimate \hat{h} of the above mentioned system model is given by,

$$
\begin{align*}
\mathrm{E}\left\{|\hat{h}-h|^{2}\right\} & =r_{h h}-\mathbf{r}_{h y} \mathbf{R}_{y y}^{-1} \mathbf{r}_{y h} \\
& =\sigma_{h}^{2}-\sigma_{h}^{2} \mathbf{x}^{H}\left(\sigma_{h}^{2} \mathbf{x} \mathbf{x}^{H}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{x} \sigma_{h}^{2} \\
& =\sigma_{h}^{2}-\frac{\sigma_{h}^{4}\|\mathbf{x}\|^{2}}{\sigma_{h}^{2}\|\mathbf{x}\|^{2}+\sigma^{2}} \\
& =\frac{1}{\frac{1}{\sigma^{2} /\|\mathbf{x}\|^{2}}+\frac{1}{\sigma_{h}^{2}}} . \tag{1}
\end{align*}
$$

Given data: $\mu_{h}=1+j, \sigma_{h}^{2}=1 / 2, N=4, \sigma^{2}=3 d B \Longrightarrow 10 \log \sigma^{2}=$ $3 \Longrightarrow \sigma^{2} \approx 2$

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{c}
2+j \\
-1-j \\
1-2 j \\
-1+j
\end{array}\right], \mathbf{y}=\left[\begin{array}{c}
2+2 j \\
-j \\
-2+j \\
1-j
\end{array}\right], \\
& \|\mathbf{x}\|^{2}=|2+j|^{2}+|-1-j|^{2}+|1-2 j|^{2}+|-1+j|^{2} \\
& =4+1+1+1+1+4+1+1 \\
& =14 .
\end{aligned}
$$

Substituting all the values in equation (1), we get

$$
\begin{aligned}
\mathrm{E}\left\{|\hat{h}-h|^{2}\right\} & =\frac{1}{\frac{1}{2 / 14}+\frac{1}{1 / 2}} \\
& =\frac{1}{9}
\end{aligned}
$$

Ans (a)

2. Refer to the notes of week 3 for this question.

MMSE estimate of the complex fading coefficient h is given by,

$$
\hat{h}=\hat{h}_{R}+j \hat{h}_{I} .
$$

From the solution of problem 1, the MSEs of the real, imaginary parts of \hat{h} can be obtained as,

MSE of the real part of $\hat{h}=$ MSE of the imaginary part of \hat{h}

$$
\begin{aligned}
& =\mathrm{E}\left\{\left|\hat{h}_{R}-h_{R}\right|^{2}\right\}=\mathrm{E}\left\{\left|\hat{h}_{I}-h_{I}\right|^{2}\right\} \\
& =\frac{1}{2} \mathrm{E}\left\{|\hat{h}-h|^{2}\right\}=\frac{1}{2}\left(\frac{1}{\frac{1}{\sigma^{2} /\|\mathbf{x}\|^{2}}+\frac{1}{\sigma_{h}^{2}}}\right) \\
& =\frac{1}{18} .
\end{aligned}
$$

Ans(c)

3. Let h_{R} denotes the real part of the true parameter h and \hat{h}_{R} be the real part of the estimate \hat{h}. Further, $\hat{h}_{R}-h_{R}$ gives the estimation error in the real part of the estimate. Also, from the solutions to problem 1 and 2 we can say, $h_{R} \sim \mathcal{N}\left(\hat{h}_{R}, \frac{1}{18}\right)$. Therefore, $h_{R}-\hat{h}_{R}$ is distributed as a zero-mean Gaussian with variance $1 / 18$.
Hence, $\hat{h}_{R}-h_{R} \sim \mathcal{N}\left(0, \frac{1}{18}\right)$.
Further, $\frac{\hat{h}_{R}-h_{R}}{\sqrt{\frac{1}{18}}}$ is a zero-mean unit-variance Gaussian RV. Probability that the real part of the MMSE estimate \hat{h} lies within a radius $1 / 2$ of the unknown parameter h can be calculated as follows,

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|\hat{h}_{R}-h_{R}\right| \leq \frac{1}{2}\right)=\operatorname{Pr}\left(\frac{\left|\hat{h}_{R}-h_{R}\right|}{\sqrt{\frac{1}{18}}} \leq \frac{\frac{1}{2}}{\sqrt{\frac{1}{18}}}\right)=1-\operatorname{Pr}\left(\frac{\left|\hat{h}_{R}-h_{R}\right|}{\sqrt{\frac{1}{18}}} \geq \frac{\frac{1}{2}}{\sqrt{\frac{1}{18}}}\right) \\
& =1-\left\{\operatorname{Pr}\left(\frac{\hat{h}_{R}-h_{R}}{\sqrt{\frac{1}{18}}} \geq \frac{\frac{1}{2}}{\sqrt{\frac{1}{18}}}\right)+\operatorname{Pr}\left(\frac{\hat{h}_{R}-h_{R}}{\sqrt{\frac{1}{18}}} \leq-\frac{\frac{1}{2}}{\sqrt{\frac{1}{18}}}\right)\right\} \\
& =1-2 \operatorname{Pr}\left(\frac{\hat{h}_{R}-h_{R}}{\sqrt{\frac{1}{18}}} \geq \frac{\frac{1}{2}}{\sqrt{\frac{1}{18}}}\right)=1-2 Q\left(\frac{\frac{1}{2}}{\sqrt{\frac{1}{18}}}\right)=1-2 Q\left(\sqrt{\frac{9}{2}}\right)
\end{aligned}
$$

Further, since the errors in the real and imaginary parts are independent as they are Gaussian, the probability that both the real and imaginary parts of the MMSE estimate \hat{h} lie within a radius of $1 / 2$ from the
real and imaginary parts of the unknown parameter h respectively is $\left(1-2 Q\left(\sqrt{\frac{9}{2}}\right)\right)^{2}$.
Ans (b)
4. To estimate the unknown parameter h, we have each observation as

$$
y(k)=h+v(k), \text { for } 1 \leq k \leq N,
$$

where $v(k) \sim \mathcal{N}\left(0, \sigma_{k}^{2}\right), h \sim \mathcal{N}\left(\mu_{h}, \sigma_{h}^{2}\right)$. By stacking N such observations, we obtain observation vector as

$$
\mathbf{y}=\mathbf{1} h+\mathbf{v},
$$

where mean of the noise vector is $\mathrm{E}\{\mathbf{v}\}=\mathbf{0}$ and its covariance matrix is denoted by $\mathbf{C}_{v}=\mathrm{E}\left\{\mathbf{v} \mathbf{v}^{T}\right\}$. So, the mean of the observation vector is denoted by $\mu_{y}=\mathrm{E}\{\mathbf{y}\}=\mathrm{E}\{\mathbf{1} h+\mathbf{v}\}=\mathbf{1} \mu_{h}$ and the observation covariance matrix can be calculated as

$$
\begin{aligned}
\mathbf{R}_{y y} & =\mathrm{E}\left\{\left(\mathbf{y}-\mu_{y}\right)\left(\mathbf{y}-\mu_{y}\right)^{T}\right\} \\
& =\mathrm{E}\left\{\left(\mathbf{1}\left(h-\mu_{h}\right)+\mathbf{v}\right)\left(\mathbf{1}\left(h-\mu_{h}\right)+\mathbf{v}\right)^{T}\right\} \\
& =\mathrm{E}\left\{\left(h-\mu_{h}\right)^{2}\right\} \mathbf{1 1}^{T}+\mathrm{E}\left\{\mathbf{v v}^{T}\right\}+\mathbf{1}\left\{\left(h-\mu_{h}\right) \mathbf{v}^{T}\right\}+\mathrm{E}\left\{\mathbf{v}\left(h-\mu_{h}\right)\right\} \mathbf{1}^{T} \\
& =\sigma_{h}^{2} \mathbf{1 1}^{T}+\mathbf{C}_{v} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathbf{R}_{h y} & =\mathrm{E}\left\{\left(h-\mu_{h}\right)\left(\mathbf{y}-\mu_{y}\right)^{T}\right\} \\
& =\mathrm{E}\left\{\left(h-\mu_{h}\right)\left(\mathbf{1}\left(h-\mu_{h}\right)+\mathbf{v}\right)^{T}\right\} \\
& \left.=\mathrm{E}\left\{\left(h-\mu_{h}\right)^{2}\right\} \mathbf{1}^{T}+\mathrm{E}\left\{\left(h-\mu_{h}\right) \mathbf{v}\right)^{T}\right\} \\
& =\sigma_{h}^{2} \mathbf{1}^{T} .
\end{aligned}
$$

The MMSE estimate of the unknown parameter h is given by,

$$
\hat{h}=\mathbf{R}_{h y} \mathbf{R}_{y y}^{-1}\left(\mathbf{y}-\mu_{y}\right)+\mu_{h} .
$$

Substituting the values of the covariance matrices in the above expression, we obtain

$$
\begin{equation*}
\hat{h}=\sigma_{h}^{2} \mathbf{1}^{T}\left(\sigma_{h}^{2} \mathbf{1 1}^{T}+\mathbf{C}_{v}\right)^{-1}\left(\mathbf{y}-\mathbf{1} \mu_{h}\right)+\mu_{h} . \tag{2}
\end{equation*}
$$

Simplifying the above expression using Woodbury matrix identity, we get

$$
\begin{aligned}
\sigma_{h}^{2} \mathbf{1}^{T}\left(\sigma_{h}^{2} \mathbf{1} \mathbf{1}^{T}+\mathbf{C}_{v}\right)^{-1} & =\sigma_{h}^{2} \mathbf{1}^{T}\left(\mathbf{C}_{v}^{-1}-\mathbf{C}_{v}^{-1} \mathbf{1}\left(\frac{1}{\sigma_{h}^{2}}+\mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{T} \mathbf{C}_{v}^{-1}\right) \\
& =\sigma_{h}^{2} \mathbf{1}^{T} \mathbf{C}_{v}^{-1}-\sigma_{h}^{2} \mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1}\left(\frac{1}{\sigma_{h}^{2}}+\mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{T} \mathbf{C}_{v}^{-1} \\
& =\sigma_{h}^{2} \mathbf{1}^{T} \mathbf{C}_{v}^{-1}-\sigma_{h}^{2}\left(\mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1}+\frac{1}{\sigma_{h}^{2}}-\frac{1}{\sigma_{h}^{2}}\right)\left(\frac{1}{\sigma_{h}^{2}}+\mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{T} \mathbf{C}_{v}^{-1} \\
& =\left(\frac{1}{\sigma_{h}^{2}}+\mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{T} \mathbf{C}_{v}^{-1}
\end{aligned}
$$

After substituting the above expression in equation (2), we obtain

$$
\begin{equation*}
\hat{h}=\left(\frac{1}{\sigma_{h}^{2}}+\mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{T} \mathbf{C}_{v}^{-1}\left(\mathbf{y}-\mathbf{1} \mu_{h}\right)+\mu_{h} \tag{3}
\end{equation*}
$$

Simplifying $\mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1}$, we get

Similarly,

$$
\mathbf{1}^{T} \mathbf{C}_{v}^{-1}\left(\mathbf{y}-\mathbf{1} \mu_{h}\right)=\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}}\left(y(k)-\mu_{h}\right)
$$

Now, equation (3) can be written as,

$$
\hat{h}=\mu_{h}+\frac{\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}}\left(y(k)-\mu_{h}\right)}{\frac{1}{\sigma_{h}^{2}}+\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}}}=\frac{\sum_{k=1}^{N} \frac{y(k)}{\sigma_{k}^{2}}+\frac{\mu_{h}}{\sigma_{h}^{2}}}{\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}}+\frac{1}{\sigma_{h}^{2}}} .
$$

Ans (d)
5. The system model can be written as,

$$
\mathbf{y}=\mathbf{1} h+\mathbf{v} .
$$

The MSE of the MMSE estimate \hat{h} of the unknown Gaussian parameter h is given by,

$$
\begin{equation*}
\mathrm{E}\left\{(\hat{h}-h)^{2}\right\}=r_{h h}-\mathbf{r}_{h y} \mathbf{R}_{y y}^{-1} \mathbf{r}_{y h} \tag{4}
\end{equation*}
$$

From the solution of problem $4, \mathbf{R}_{y y}, \mathbf{r}_{h y}$ can be written as

$$
\begin{aligned}
\mathbf{R}_{y y} & =\sigma_{h}^{2} \mathbf{1 1} \mathbf{1}^{T}+\mathbf{C}_{v}, \\
\mathbf{r}_{h y} & =\sigma_{h}^{2} \mathbf{1}^{T}
\end{aligned}
$$

Substituting the values, equation (4) can be written as

$$
\begin{aligned}
\mathrm{E}\left\{(\hat{h}-h)^{2}\right\} & =\sigma_{h}^{2}-\sigma_{h}^{2} \mathbf{1}^{T}\left(\sigma_{h}^{2} \mathbf{1} \mathbf{1}^{T}+\mathbf{C}_{v}\right)^{-1} \mathbf{1} \sigma_{h}^{2} \\
& =\sigma_{h}^{2}-\left(\frac{1}{\sigma_{h}^{2}}+\mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{T} \mathbf{C}_{v}^{-1} \mathbf{1} \sigma_{h}^{2} \\
& =\sigma_{h}^{2}-\frac{\sum_{k=1}^{N} \frac{\sigma_{h}^{2}}{\sigma_{k}^{2}}}{\frac{1}{\sigma_{h}^{2}}+\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}}} \\
& =\frac{1}{\frac{1}{\sigma_{h}^{2}}+\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}}} \\
& =\left(\frac{1}{\sigma_{h}^{2}}+\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}}\right)^{-1} .
\end{aligned}
$$

Ans (a)
6. The LMMSE estimate is identical to the MMSE estimate for a Gaussian parameter.
Ans (c)
7. As derived in the lectures notes of week 4, the LMMSE estimate \hat{h} of the unknown parameter h, which is not necessarily Gaussian is given by

$$
\hat{h}=\mathbf{r}_{h y} \mathbf{R}_{y y}^{-1} \mathbf{y}
$$

Ans (d)
8. In this scenario, we have $N=4$ pilot vectors, each corresponding to M transmit antennas. The length of each pilot vector is 2 . Hence, $M=2$. Ans (b)
9. For a multi-antenna channel estimation scenario with $N=4$ pilot vectors

$$
\mathbf{x}(1)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{x}(2)=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \mathbf{x}(3)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{x}(4)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

The corresponding pilot matrix \mathbf{X} is given by,

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{x}(1)^{T} \\
\mathbf{x}(2)^{T} \\
\mathbf{x}(3)^{T} \\
\mathbf{x}(4)^{T}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -2 \\
2 & 1 \\
1 & -1
\end{array}\right] .
$$

Ans (d)
10. From the solution of problem 9 , the pilot matrix \mathbf{X} can be written as,

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & 1 \\
1 & -2 \\
2 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{c}_{1} & \mathbf{c}_{2}
\end{array}\right]
$$

Columns \mathbf{c}_{1} and \mathbf{c}_{2} satisfy the orthogonality property, i.e. $\mathbf{c}_{1}^{T} \mathbf{c}_{2}=0$. Hence, the pilot matrix \mathbf{X} has orthogonal columns.
Ans (c)

