NPTEL MOOC Estimation: Assignment #4

- Consider the fading channel estimation problem where the output symbol y(k) is y(k) = hx(k) + v(k), with h, x(k), v(k) denoting the *complex* channel coefficient, pilot symbol and noise sample respectively. Let x = [2+j -1-j 1-2j -1+j]^T denote the pilot vector of transmitted pilot symbols and y = [2+2j -j -2+j 1-j]^T denote the corresponding received symbol vector. Let v(k) be IID Gaussian noise with zero-mean and dB variance σ² = 3 dB. Let mu_h = 1 + j, \sigma_h^2 = 1/2 denote the prior mean, variance of the complex symmetric Gaussian parameter h. The MSE of the MMSE estimate of ĥ is,
 - a. 1/9
 - b. 1/8
 - c. 1/10
 - d. 1/7
 - Ans a
- 2. Consider the fading channel estimation problem where the output symbol y(k) is y(k) = hx(k) + v(k), with h, x(k), v(k) denoting the *complex* channel coefficient, pilot symbol and noise sample respectively. Let $\mathbf{x} = \begin{bmatrix} 2+j & -1-j & 1-2j & -1+j \end{bmatrix}^T$ denote the pilot vector of transmitted pilot symbols and $\mathbf{y} = \begin{bmatrix} 2+2j & -j & -2+j & 1-j \end{bmatrix}^T$ denote the corresponding received symbol vector. Let v(k) be IID Gaussian noise with zero-mean and dB variance $\sigma^2 = 3$ dB. Let $mu_h = 1 + j$, $sigma_h^2 = 1/2$ denote the prior mean, variance of the complex symmetric Gaussian parameter h. The MSEs of the real, imaginary parts of \hat{h} are,
 - a. 1/2
 - b. 1/9
 - c. 1/18
 - d. 1/4
 - Ans c
- 3. Consider the fading channel estimation problem where the output symbol y(k) is y(k) = hx(k) + v(k), with h, x(k), v(k) denoting the *real* channel coefficient, pilot symbol and noise sample respectively. Let x = [2+j -1-j 1-2j -1+j]^T denote the pilot vector of transmitted pilot symbols and y = [2+2j -j -2+j 1-j]^T denote the corresponding received symbol vector. Let v(k) be IID Gaussian noise with zero-mean and dB variance σ² = 3 dB. Let mu_h = 1 + j, \sigma_h^2 = 1/2 denote the prior mean, variance of the parameter h. What is the probability that both the real and imaginary parts

of the MMSE estimate \hat{h} lie within a radius of $\frac{1}{2}$ from the real and imaginary parts of the unknown complex symmetric Gaussian parameter *h* respectively

a.
$$\left(1 - 2Q\left(\frac{9}{2}\right)\right)^2$$

b. $\left(1 - 2Q\left(\sqrt{\frac{9}{2}}\right)\right)^2$
c. $\left(1 - 2Q\left(\sqrt{\frac{9}{2}}\right)\right)^2$
d. $\left(1 - 2Q\left(\frac{9}{2}\right)\right)$
Ans b

4. Consider MMSE estimation for the wireless sensor network (WSN) scenario as described in lectures with each observation y(k) = h + v(k), for 1 ≤ k ≤ N, i.e. number of observations N and independent **non-identical** Gaussian noise samples v(k) of variance σ_k². What is the expression for the MMSE estimate h of the unknown Gaussian parameter h

a.
$$\hat{h} = \frac{\frac{(1^{T}y)/N}{\sigma^{2}} + \frac{\mu_{h}}{\sigma_{h}^{2}}}{\frac{1}{\sigma^{2}/N} + \frac{1}{\sigma_{h}^{2}}}$$

b.
$$\hat{h} = \frac{\sum_{k=1}^{N} \frac{y(k)}{2\sigma_{k}^{2}} + \frac{\mu_{h}}{\sigma_{h}^{2}}}{\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}} + \frac{1}{\sigma_{h}^{2}}}$$

c.
$$\hat{h} = \frac{\sum_{k=1}^{N} \frac{y(k)}{2\sigma_{k}^{2}} + \frac{\mu_{h}}{\sigma_{h}^{2}}}{\sum_{k=1}^{N} \frac{1}{2\sigma_{k}^{2}} + \frac{1}{\sigma_{h}^{2}}}$$

d.
$$\hat{h} = \frac{\sum_{k=1}^{N} \frac{y(k)}{\sigma_{k}^{2}} + \frac{\mu_{h}}{\sigma_{h}^{2}}}{\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}} + \frac{1}{\sigma_{h}^{2}}}$$

Ans d

5. Consider MMSE estimation for the wireless sensor network (WSN) scenario as described in lectures with each observation y(k) = h + v(k), for $1 \le k \le N$, i.e. number of observations N and independent **non-identical** Gaussian noise samples v(k) of variance σ_k^2 . What is the expression for the MSE of the MMSE estimate \hat{h} of the unknown Gaussian parameter h

a.
$$\left(\sum_{k=1}^{N} \frac{1}{\sigma_k^2} + \frac{1}{\sigma_h^2}\right)^{-1}$$

b.
$$\left(\sum_{k=1}^{N} \frac{1}{\sigma_k^2} + \frac{2}{\sigma_h^2}\right)^{-1}$$

c.
$$\sum_{k=1}^{N} \frac{2}{\sigma_k^2} + \frac{1}{\sigma_h^2}$$

d.
$$\sum_{k=1}^{N} \frac{1}{\sigma_k^2} + \frac{1}{\sigma_h^2}$$

Ans a

- 6. Which of the following statements is true about the LMMSE estimate
 - a. LMMSE estimate is always the MMSE estimate
 - b. MMSE estimate is always the LMMSE estimate
 - c. The LMMSE estimate is identical to the MMSE estimate for a Gaussian parameter
 - d. The MMSE and LMMSE estimates are always different Ans c
- 7. Consider LMMSE estimation for the wireless sensor network (WSN) scenario as described in lectures with each observation y(k) = h + v(k), for $1 \le k \le N$, i.e. number of observations *N* and IID Gaussian noise samples of variance σ^2 . What is the expression for

the LMMSE estimate \hat{h} of the unknown parameter *h*, which is not necessarily Gaussian

a.
$$\hat{h} = \frac{\frac{(x^{T}y)/\|x\|^{2}}{\sigma^{2}/\|x\|^{2}} + \frac{\mu_{h}}{\sigma_{h}^{2}}}{\frac{1}{\sigma^{2}} + \frac{1}{\sigma_{h}^{2}}}$$

b. $\hat{h} = \frac{\frac{(1^{T}y)/N}{2\sigma^{2}} + \frac{\mu_{h}}{\sigma_{h}^{2}}}{\frac{1}{2\sigma^{2}/N} + \frac{1}{\sigma_{h}^{2}}}$
c. $\hat{h} = \frac{\frac{(1^{T}y)/N}{\sigma^{2}} + \frac{\mu_{h}}{\sigma_{h}^{2}}}{\frac{1}{\sigma^{2}/N} + \frac{1}{\sigma_{h}^{2}}}$
d. $\hat{h} = r_{hy} R_{yy}^{-1} y$
Ans d

- 8. Consider a multi-antenna channel estimation scenario with N = 4 pilot vectors $\mathbf{x}(1) = [1, 1]^T$, $\mathbf{x}(2) = [1, -2]^T$, $\mathbf{x}(3) = [2, 1]^T$, $\mathbf{x}[4] = [1, -1]^T$. Let the corresponding received vector be $\mathbf{y} = [2, 1, 1, 3]^T$. Let the channel coefficients be IID Gaussian with dB variance $\sum_{i=1}^{n} \frac{1}{2} 3 dB$ and dB noise variance $\sum_{i=1}^{n} \frac{1}{2} 3 dB$. The number of antennas *M* in this scenario is,
 - a. 1
 - b. 2
 - c. 3
 - d. 4

Ans b

9. Consider a multi-antenna channel estimation scenario with N = 4 pilot vectors x(1) = [1, 1]^T, x(2) = [1, -2]^T, x(3) = [2, 1]^T, x[4] = [1, -1]^T. Let the corresponding received vector be y = [2, 1, 1, 3]^T. Let the channel coefficients be IID Gaussian with dB variance \sigma_h^2 = -3 dB and dB noise variance \sigma^2 = 3 dB. The corresponding pilot matrix X is

a.
$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & -2 & 1 & -1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ -2 \\ 1 \\ -1 \end{bmatrix}$$

c.
$$\begin{bmatrix} 1 & 1 & 2 & 1 & 1 & -2 & 1 & -1 \end{bmatrix}$$

d.
$$\begin{bmatrix} 1 & 1 \\ 1 & -2 \\ 2 & 1 \\ 1 & -1 \end{bmatrix}$$

Ans d

- 10. Consider a multi-antenna channel estimation scenario with N = 4 pilot vectors $\mathbf{x}(1) = [1, 1]^T$, $\mathbf{x}(2) = [1, -2]^T$, $\mathbf{x}(3) = [2, 1]^T$, $\mathbf{x}[4] = [1, -1]^T$. Let the corresponding received vector be $\mathbf{y} = [2, 1, 1, 3]^T$. Let the channel coefficients be IID Gaussian with dB variance $\sum_{i=1}^{r} \mathbf{x}_{i} = -3$ dB and dB noise variance $\sum_{i=1}^{r} \mathbf{x}_{i} = 3$ dB. The pilot matrix \mathbf{X} for this scenario satisfies the property that
 - a. It is invertible
 - b. It has identical columns
 - c. It has orthogonal columns
 - d. None of the above Ans c