

reviewer2@nptel.iitm.ac.in ▼

Courses » Estimation for Wireless Communications – MIMO/OFDM Cellular and Sensor Networks

Announcements

Course

Ask a Question

Progress

Unit 7 - Week 6 -Introduction to Orthogonal Frequency Division Multiplexing (OFDM) and Pilot Based OFDM Channel **Estimation, Example**

Course outline

How to Access the Portal?

Week 1 - Basics of Estimation, Maximum Likelihood (ML)

Week 2 - Vector **Estimation**

Week 3 - Cramer-Rao Bound (CRB), Vector **Parameter** Estimation. Multi-Antenna **Downlink Mobile** Channel **Estimation**

Week 4 - Least Squares (LS) Principle, Pseudo-Inverse, **Properties of LS** Estimate, Examples -Mullti-Antenna Downlink and MIMO Channel **Estimation**

Week 5 - Inter Symbol Interference, Channel Equalization, Zero-forcing equalizer, **Approximation** error of equalizer

Week 6 -Introduction to

Assignment - 6

The due date for submitting this assignment has passed. Due on 2017-09-04, 23:59 IST. As per our records you have not submitted this assignment.

1) Consider an Inter Symbol Interference channel 1 point $y(k) = x(k) + \frac{1}{3}x(k-1) + v(k)$. Let an r = 2 tap channel equalizer be designed for this scenario based on symbols y(k), y(k + 1) to detect x(k). Let the equalizer vector be denoted by **c**. The least squares problem for estimation of **c** is,

$$\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} - \begin{bmatrix}
1 \\
\frac{1}{3} \\
0
\end{bmatrix} \cdot \mathbf{c}$$

$$\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} - \begin{bmatrix}
1 \\
\frac{1}{3} \\
0
\end{bmatrix} \cdot \mathbf{c}$$

$$\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} - \begin{bmatrix}
1 \\
\frac{1}{3} \\
0
\end{bmatrix} \cdot \mathbf{c}$$

$$\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} - \begin{bmatrix}
\frac{1}{3} \\
0
\end{bmatrix} \cdot \mathbf{c}$$

$$\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} - \begin{bmatrix}
1 \\
\frac{1}{3} \\
0
\end{bmatrix} \cdot \mathbf{c}$$

$$\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} - \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} \cdot \mathbf{c}$$

No, the answer is incorrect. Score: 0

Accepted Answers:

2) Consider an Inter Symbol Interference channel

1 point

 $y(k) = x(k) + \frac{1}{3}x(k-1) + v(k)$. Let an r = 2 tap channel equalizer be designed for this scenario based on symbols y(k), y(k + 1) to detect x(k). Let the equalizer vector be denoted by **c**. The zero-forcing (ZF) equalizer vector **c** is,

Orthogonal
Frequency
Division
Multiplexing
(OFDM) and Pilot
Based OFDM
Channel
Estimation,
Example

- Lecture 26 Introduction to
 Orthogonal
 Frequency
 Division
 Multiplexing
 OFDM Cyclic
 Prefix CP and
 Circular
 Convolution
- Lecture 27 Introduction to
 Orthogonal
 Frequency
 Division
 Multiplexing
 OFDM FFT at
 Receiver and
 Flat Fading
- Checture 28 Channel
 Estimation
 Across Each
 Subcarrier in
 Orthogonal
 Frequency
 Division
 Multiplexing
 OFDM
- Lecture 29 Example
 Orthogonal
 Frequency
 Division
 Mulltiplexing
 OFDM –
 Transmission of
 Samples with
 Cyclic Prefix
- Lecture 30 Example
 Orthogonal
 Frequency
 Division
 Mulltiplexing
 OFDM FFT at
 Receiver and
 Channel
 Estimation
- Quiz : Assignment - 6
- Assignment-6 Solution

Week 7 - OFDM – Comb Type Pilot (CTP) Transmission, Channel Estimation in Time/ Frequency

- $\frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- $\frac{1}{91} \begin{bmatrix} 23\\11 \end{bmatrix}$
- $\frac{1}{3} \begin{bmatrix} 9 \\ 13 \end{bmatrix}$
- $\frac{3}{91} \begin{bmatrix} 1 \\ 27 \end{bmatrix}$

Score: 0

Accepted Answers:

$$\frac{3}{91} \left[\begin{array}{c} 1 \\ 27 \end{array} \right]$$

3) Consider an Inter Symbol Interference channel

1 point

 $y(k) = x(k) + \frac{1}{3}x(k-1) + v(k)$. Let an r = 2 tap channel equalizer be designed for this scenario based on symbols y(k), y(k+1) to detect x(k). Let the equalizer vector be denoted by \mathbf{c} . The zero-forcing equalizer is,

$$\hat{x}(k) = \frac{1}{3}y(k+1) + \frac{1}{3}y(k)$$

$$\hat{x}(k) = \frac{11}{91}y(k+1) + \frac{23}{91}y(k)$$

$$\hat{x}(k) = 3y(k+1) + \frac{13}{3}y(k)$$

$$\hat{x}(k) = \frac{3}{91}y(k+1) + \frac{81}{91}y(k)$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$\hat{x}(k) = \frac{3}{91}y(k+1) + \frac{81}{91}y(k)$$

4) Consider an Inter Symbol Interference channel

1 point

 $y(k) = x(k) + \frac{1}{3}x(k-1) + v(k)$. Let an r = 2 tap channel equalizer be designed for this scenario based on symbols y(k), y(k+1) to detect x(k). Let the equalizer vector be denoted by \mathbf{c} . Let the effective channel matrix for this scenario be denoted by \mathbf{H} . The approximation error for the zero-forcing equalizer (counting elements starting with 0) is,

$$1 - \left[\mathbf{H}^{T} (\mathbf{H}\mathbf{H}^{T})^{-1} \mathbf{H}\right]_{1,1}$$

$$1 - \left[\mathbf{H}^{T} (\mathbf{H}\mathbf{H}^{T})^{-1} \mathbf{H}\right]_{2,2}$$

$$1 - \left[\mathbf{H}^{T} (\mathbf{H}\mathbf{H}^{T})^{-1} \mathbf{H}\right]_{2,2}$$

$$1 - \left\lfloor \left(\mathbf{H} \mathbf{H}^T \right)^{-1} \right\rfloor_{1,1}$$

$$1 - \left\lfloor \left(\mathbf{H} \mathbf{H}^T \right)^{-1} \right\rfloor_{1.1}$$

No, the answer is incorrect.

Score: 0

Domain, CTP Example, Frequency Domain Equalization (FDE), Example-FDE

Week 8 -Sequential Least Squares (SLS) Estimation – Scalar/ Vector Cases, Applications -Wireless Fading Channel Estimation, SLS Example Accepted Answers:

$$1 - \left[\mathbf{H}^T (\mathbf{H} \mathbf{H}^T)^{-1} \mathbf{H}\right]_{1,1}$$

5) Consider an Inter Symbol Interference channel

1 point

 $y(k) = x(k) + \frac{1}{3}x(k-1) + v(k)$. Let an r = 2 tap channel equalizer be designed for this scenario based on symbols y(k), y(k+1) to detect x(k). Let the equalizer vector be denoted by \mathbf{c} . The approximation error for the zero-forcing equalizer is,

No, the answer is incorrect.

Score: 0

Accepted Answers:

6) Consider an Inter Symbol Interference channel

1 point

 $y(k) = \frac{3}{4}x(k) - \frac{1}{4}x(k-1) + v(k)$. Let an r = 2 tap channel equalizer be designed for this scenario based on symbols y(k+1), y(k) to detect x(k). What is the effective channel matrix **H** for this scenario?

$$\mathbf{H} = \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} & 0 \\ 0 & \frac{3}{4} & -\frac{1}{4} \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} & 0 & 0 \\ 0 & \frac{3}{4} & -\frac{1}{4} & 0 \\ 0 & 0 & \frac{3}{4} & -\frac{1}{4} \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & \frac{3}{4} & -\frac{1}{4} \\ 0 & \frac{3}{4} & -\frac{1}{4} & 0 \\ 0 & \frac{3}{4} & -\frac{1}{4} & 0 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & \frac{3}{4} & -\frac{1}{4} \\ 0 & \frac{3}{4} & -\frac{1}{4} & 0 \\ \frac{3}{4} & -\frac{1}{4} & 0 & 0 \end{bmatrix}$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$\mathbf{H} = \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} & 0\\ 0 & \frac{3}{4} & -\frac{1}{4} \end{bmatrix}$$

7) Consider an Inter Symbol Interference channel

1 point

 $y(k) = \frac{3}{4}x(k) - \frac{1}{4}x(k-1) + v(k)$. Let an r = 2 tap channel equalizer be designed for this scenario based on symbols y(k+1), y(k) to detect x(k). Let the effective channel matrix **H** for this scenario. The equalizer is,

$$\hat{x}(k) = -\frac{4}{91}y(k+1) - \frac{108}{91}y(k)$$

 $\hat{x}(k) = \frac{4}{91}y(k+1) + \frac{108}{91}y(k)$

$$\hat{x}(k) = \frac{4}{91}y(k+1) - \frac{108}{91}y(k)$$

$$\hat{x}(k) = -\frac{4}{91}y(k+1) + \frac{108}{91}y(k)$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$\hat{x}(k) = -\frac{4}{91}y(k+1) + \frac{108}{91}y(k)$$

8) Consider an Inter Symbol Interference channel

1 point

 $y(k) = \frac{3}{4}x(k) - \frac{1}{4}x(k-1) + v(k)$. Let an r=2 tap channel equalizer be designed for this scenario based on symbols y(k+1), y(k) to detect x(k). Let the effective channel matrix \mathbf{H} for this scenario. The approximation error is,

No, the answer is incorrect.

Score: 0

Accepted Answers:

9 91

9) Consider an Inter Symbol Interference channel

1 point

 $y(k) = \frac{3}{4}x(k) - \frac{1}{4}x(k-1) + v(k)$. Let an r=2 tap channel equalizer be designed for this scenario based on symbols y(k+1), y(k) to detect x(k+1). Let the effective channel matrix \mathbf{H} for this scenario. The approximation error is,

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

