Course outline

How to access the portal

Basics of Probability, Conditional Probability, MAP Principle

Random

Variables,
Probability
Density
Functions,
Applications in
Wireless
Channels
Bayes Theorem and Aposteriori
Probabilities
Maximum
Aposteriori
Probability
(MAP) Receiver
Random
Variables,
Probability
Density
Function (PDF)
Application:
Power of
Fading Wireless
Channel
Mean, Variance of Random
Variables
Application: Average Delay and RMS Delay Spread of
Wireless
Channel

Assignment 2

The due date for submitting this assignment has passed. Due on 2017-02-07, 23:59 IST. As per our records you have not submitted this assignment.

1) Consider N mutually exclusive and exhaustive events $A_{0}, A_{1}, A_{2}, \ldots, A_{N-1}$ and another 1 point event B. From Bayes' theorem, the probability $P\left(A_{i} \mid B\right)$ is,

$$
\begin{aligned}
& \frac{P\left(B \cap A_{i}\right)}{\sum_{j=0}^{N-1} P\left(B \cap A_{j}\right)} \\
& \frac{P\left(B \mid A_{i}\right)}{\sum_{j=0}^{N-1} P\left(B \cap A_{j}\right)} \\
& \frac{P\left(B \cap A_{i}\right) P\left(A_{i}\right)}{\sum_{j=0}^{N-1} P\left(B \mid A_{j}\right)} \\
& \frac{P\left(B \cap A_{i}\right)}{\sum_{j=0}^{N-1} P\left(B \cap A_{j}\right) P\left(A_{j}\right)}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{P\left(B \cap A_{i}\right)}{\sum_{j=0}^{N-1} P\left(B \cap A_{j}\right)}$
1.2)Consider a binary "asymmetric" channel with $P\left(A_{0}\right)=0.15, P\left(B_{1} \mid A_{0}\right)=0.20, P\left(B_{1} \mid A_{1}\right)=0.75,1$ point where A_{i}, B_{i} denote the events corresponding to transmitted and received symbols $i \in\{0,1\}$ at the transmitter and receiver respectively. Then, $\mathrm{P}\left(\mathrm{A}_{1}\right), \mathrm{P}\left(\mathrm{B}_{0} \mid \mathrm{A}_{1}\right)$ respectively are,
0.85, 0.80
$0.15,0.25$
$0.85,0.25$
$0.15,0.80$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$0.85,0.25$

Quiz : Assignment 2

Assignment-2 Solutions

Basics of
Random
Processes,
Wireless Fading
Channel
Modeling

Gaussian
Random
Process, Noise,
Bit-Error and
Impact on
Wireless
Systems

3Consider a binary "asymmetric" channel with $P\left(A_{0}\right)=0.15, P\left(B_{1} \mid A_{0}\right)=0.20, P\left(B_{1} \mid A_{1}\right)=0.75$, 1 point where A_{i}, B_{i} denote the events corresponding to transmitted and received symbols $i \in\{0,1\}$ at the transmitter and receiver respectively. Which of the following values correspond to a particular "likelihood" in this system

No, the answer is incorrect.
Score: 0

Accepted Answers:

0.80
4) Consider a binary "asymmetric" channel with $P\left(A_{0}\right)=0.15, P\left(B_{1} \mid A_{0}\right)=0.20, P\left(B_{1} \mid A_{1}\right)=0.75,1$ pc where A_{i}, B_{i} denote the events corresponding to transmitted and received symbols $i \in\{0,1\}$ at the transmitter and receiver respectively. What is the aposteriori probability $\mathrm{P}\left(\mathrm{A}_{0} \mid \mathrm{B}_{0}\right)$?
0.46
0.36
0.66
0.56

No, the answer is incorrect.
Score: 0
Accepted Answers:
0.36
5) Consider a binary "asymmetric" channel with $P\left(A_{0}\right)=0.15, P\left(B_{1} \mid A_{0}\right)=0.20, P\left(B_{1} \mid A_{1}\right)=0.75,1$ point where A_{i}, B_{i} denote the events corresponding to transmitted and received symbols $i \in\{0,1\}$ at the transmitter and receiver respectively. What are the MAP estimates corresponding to the observations 0,1 respectively at the receiver,
, 0
0,1
1, 0
1, 1
No, the answer is incorrect.
Score: 0

Accepted Answers:

1, 1
6) Consider a binary "asymmetric" channel with $P\left(A_{0}\right)=0.15, P\left(B_{1} \mid A_{0}\right)=0.20, P\left(B_{1} \mid A_{1}\right)=0.75$, 1 point where A_{i}, B_{i} denote the events corresponding to transmitted and received symbols $i \in\{0,1\}$ at the transmitter and receiver respectively. What is the probability of error for the MAP receiver?0.15
0.24
0.20
0.28

No, the answer is incorrect.
Score: 0

Accepted Answers:

0.15
7) Consider a binary "asymmetric" channel with $P\left(A_{0}\right)=0.15, P\left(B_{1} \mid A_{0}\right)=0.20, P\left(B_{1} \mid A_{1}\right)=0.75$, 1 point where A_{i}, B_{i} denote the events corresponding to transmitted and received symbols $i \in\{0,1\}$ at the transmitter and receiver respectively. What are the ML estimates corresponding to the observations 0,1 respectively at the receiver?
0,0
0,1
1,0
(1,1

No, the answer is incorrect.
Score: 0
Accepted Answers:
0,1
8) Consider the probability density function $f_{X}(x)=K x^{2} \exp \left(-x^{2}\right)$ for $-\infty \leq x \leq \infty$. 1 point
The value of constant K is,
2
0.5
$\frac{2}{\sqrt{\pi}}$

$\frac{1}{\sqrt{2 \pi}}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{2}{\sqrt{\pi}}$
9) Consider the probability density function $f_{X}(x)=K x^{2} \exp \left(-x^{2}\right)$ for
$-\infty \leq x \leq \infty$. The mean of the random variable is

0
No, the answer is incorrect.
Score: 0
Accepted Answers:
0
10)Consider the probability density function $f_{X}(x)=K x^{2} \exp \left(-x^{2}\right)$ for $-\infty \leq x \leq \infty$. 1 point The variance of the random variable is,

```
1.5
```

2
0.5

3
No, the answer is incorrect.
Score: 0
Accepted Answers:
1.5

Previous Page
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

A project of

ND N N N Nechnology Enhanced Learning

In association with

Powered by

