Х

reviewer2@nptel.iitm.ac.in ▼

Courses » Probability and Random Variables / Processes for Wireless Communications Announcements Course Ask a Question Progress Unit 3 - Random Variables, Probability Density Functions, Applications i Image: Course Image: Course Wireless Channels Image: Course Image: Course Image: Course Image: Course

Course outline

How to access the portal

Basics of Probability, Conditional Probability, MAP Principle

Random Variables, Probability Density Functions, Applications in Wireless Channels

- Bayes Theorem and Aposteriori Probabilities
- Maximum
 Aposteriori
 Probability
 (MAP) Receiver
- Random Variables,
 Probability
 Density
 Function (PDF)
- Application:
 Power of
 Fading Wireless
 Channel
- Mean, Variance of Random Variables
- Application: Average Delay and RMS Delay Spread of Wireless Channel

Assignment 2

The due date for submitting this assignment has passed. Due on 2017-02-07, 23:59 IST. As per our records you have not submitted this assignment.

1) Consider N mutually exclusive and exhaustive events A_0 , A_1 , A_2 ,..., A_{N-1} and another **1** point event **B**. From Bayes' theorem, the probability $P(A_i|B)$ is,

 $\frac{P(B \cap A_i)}{\sum_{j=0}^{N-1} P(B \cap A_j)}$ $\frac{P(B|A_i)}{\sum_{j=0}^{N-1} P(B \cap A_j)}$ $\frac{P(B \cap A_i)P(A_i)}{\sum_{j=0}^{N-1} P(B|A_j)}$ $\frac{P(B \cap A_i)}{\sum_{i=0}^{N-1} P(B \cap A_i)P(A_i)}$

No, the answer is incorrect. Score: 0

Accepted Answers: $\frac{P(B \cap A_i)}{\sum_{i=0}^{N-1} P(B \cap A_i)}$

1.2)Consider a binary "asymmetric" channel with $P(A_0) = 0.15$, $P(B_1|A_0) = 0.20$, $P(B_1|A_1) = 0.75$, **1** point where A_i , B_i denote the events corresponding to transmitted and received symbols $i \in \{0, 1\}$ at the transmitter and receiver respectively. Then, $P(A_1)$, $P(B_0|A_1)$ respectively are,

0.15, 0.25
 0.85, 0.25
 0.15, 0.80
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 0.85, 0.25

0.85, 0.80

22/07/2020

Probability and Random Variables / Processes for Wireless Communications - - Unit 3 - Random Variables, Probabil...

OQuiz : Assignment 2

Assignment-2 Solutions

Basics of Random Processes, Wireless Fading Channel Modeling

Gaussian Random Process, Noise, **Bit-Error and** Impact on Wireless **Systems**

3 Consider a binary "asymmetric" channel with $P(A_0) = 0.15$, $P(B_1|A_0) = 0.20$, $P(B_1|A_1) = 0.75$, **1** point where A_i, B_i denote the events corresponding to transmitted and received symbols $i \in \{0, 1\}$ at the transmitter and receiver respectively. Which of the following values correspond to a particular "likelihood" in this system

\bigcirc	0.15
\bigcirc	0.85
\bigcirc	0.70
_	

0.00 = 0.00 0.70 = 0.80No, the answer is incorrect. Score: 0 Accepted Answers: 0.80
4) Consider a binary "asymmetric" channel with P(A₀) = 0.15, P(B₁|A₀) = 0.20, P(B₁|A₁) = 0.75, **1** pcin where A_i, B_i denote the events corresponding to transmitted and received symbols $i \in \{0, 1\}$ at the transmitter and receiver respectively. What is the aposteriori probability $P(A_{0|}B_0)$?

\bigcirc	0.46
\bigcirc	0.36
\bigcirc	0.66
\bigcirc	0.56

No, the answer is incorrect. Score: 0

Accepted Answers: 0.36

5) Consider a binary "asymmetric" channel with $P(A_0) = 0.15$, $P(B_1|A_0) = 0.20$, $P(B_1|A_1) = 0.75$, **1** point where A_i, B_i denote the events corresponding to transmitted and received symbols $i \in \{0, 1\}$ at the transmitter and receiver respectively. What are the MAP estimates corresponding to the observations 0,1 respectively at the receiver,

0.0 0, 1 0 1,0 0 1.1

No, the answer is incorrect. Score: 0

Accepted Answers:

1, 1

6) Consider a binary "asymmetric" channel with $P(A_0) = 0.15$, $P(B_1|A_0) = 0.20$, $P(B_1|A_1) = 0.75$, **1** point where A_i, B_i denote the events corresponding to transmitted and received symbols $i \in \{0, 1\}$ at the transmitter and receiver respectively. What is the probability of error for the MAP receiver?

0.15 0.24 0.20 0.28 No, the answer is incorrect. Score: 0 **Accepted Answers:** 0.15

7) Consider a binary "asymmetric" channel with $P(A_0) = 0.15$, $P(B_1|A_0) = 0.20$, $P(B_1|A_1) = 0.75$, **1** point where A_i, B_i denote the events corresponding to transmitted and received symbols $i \in \{0, 1\}$ at the transmitter and receiver respectively. What are the ML estimates corresponding to the observations 0,1 respectively at the receiver?

22/07/2020

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Government of India Ministry of Human Resource Development

Powered by

